1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 STATISTIC(NumTailCalls, "Number of tail calls"); 125 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 // FIXME: Remove this once the bug has been fixed! 134 extern cl::opt<bool> ANDIGlueBug; 135 136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 137 const PPCSubtarget &STI) 138 : TargetLowering(TM), Subtarget(STI) { 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 if (Subtarget.isISA3_0()) { 170 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 172 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 174 } else { 175 // No extending loads from f16 or HW conversions back and forth. 176 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 177 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 178 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 180 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 181 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 182 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 183 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 184 } 185 186 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 187 188 // PowerPC has pre-inc load and store's. 189 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 194 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 199 if (!Subtarget.hasSPE()) { 200 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 204 } 205 206 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 207 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 208 for (MVT VT : ScalarIntVTs) { 209 setOperationAction(ISD::ADDC, VT, Legal); 210 setOperationAction(ISD::ADDE, VT, Legal); 211 setOperationAction(ISD::SUBC, VT, Legal); 212 setOperationAction(ISD::SUBE, VT, Legal); 213 } 214 215 if (Subtarget.useCRBits()) { 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 217 218 if (isPPC64 || Subtarget.hasFPCVT()) { 219 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 220 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 221 isPPC64 ? MVT::i64 : MVT::i32); 222 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 223 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 224 isPPC64 ? MVT::i64 : MVT::i32); 225 226 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 227 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 228 isPPC64 ? MVT::i64 : MVT::i32); 229 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 } else { 233 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 234 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 235 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 236 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 237 } 238 239 // PowerPC does not support direct load/store of condition registers. 240 setOperationAction(ISD::LOAD, MVT::i1, Custom); 241 setOperationAction(ISD::STORE, MVT::i1, Custom); 242 243 // FIXME: Remove this once the ANDI glue bug is fixed: 244 if (ANDIGlueBug) 245 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 246 247 for (MVT VT : MVT::integer_valuetypes()) { 248 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 249 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 250 setTruncStoreAction(VT, MVT::i1, Expand); 251 } 252 253 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 254 } 255 256 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 257 // PPC (the libcall is not available). 258 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 259 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 260 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 261 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 262 263 // We do not currently implement these libm ops for PowerPC. 264 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 265 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 266 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 267 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 268 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 269 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 270 271 // PowerPC has no SREM/UREM instructions unless we are on P9 272 // On P9 we may use a hardware instruction to compute the remainder. 273 // When the result of both the remainder and the division is required it is 274 // more efficient to compute the remainder from the result of the division 275 // rather than use the remainder instruction. The instructions are legalized 276 // directly because the DivRemPairsPass performs the transformation at the IR 277 // level. 278 if (Subtarget.isISA3_0()) { 279 setOperationAction(ISD::SREM, MVT::i32, Legal); 280 setOperationAction(ISD::UREM, MVT::i32, Legal); 281 setOperationAction(ISD::SREM, MVT::i64, Legal); 282 setOperationAction(ISD::UREM, MVT::i64, Legal); 283 } else { 284 setOperationAction(ISD::SREM, MVT::i32, Expand); 285 setOperationAction(ISD::UREM, MVT::i32, Expand); 286 setOperationAction(ISD::SREM, MVT::i64, Expand); 287 setOperationAction(ISD::UREM, MVT::i64, Expand); 288 } 289 290 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 291 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 292 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 293 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 294 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 295 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 296 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 297 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 298 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 299 300 // Handle constrained floating-point operations of scalar. 301 // TODO: Handle SPE specific operation. 302 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 303 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 304 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 305 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 306 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 307 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 308 309 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 310 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 311 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 312 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 313 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 314 if (Subtarget.hasVSX()) { 315 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 316 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 317 } 318 319 if (Subtarget.hasFSQRT()) { 320 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 321 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 322 } 323 324 if (Subtarget.hasFPRND()) { 325 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 329 330 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 331 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 334 } 335 336 // We don't support sin/cos/sqrt/fmod/pow 337 setOperationAction(ISD::FSIN , MVT::f64, Expand); 338 setOperationAction(ISD::FCOS , MVT::f64, Expand); 339 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 340 setOperationAction(ISD::FREM , MVT::f64, Expand); 341 setOperationAction(ISD::FPOW , MVT::f64, Expand); 342 setOperationAction(ISD::FSIN , MVT::f32, Expand); 343 setOperationAction(ISD::FCOS , MVT::f32, Expand); 344 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 345 setOperationAction(ISD::FREM , MVT::f32, Expand); 346 setOperationAction(ISD::FPOW , MVT::f32, Expand); 347 if (Subtarget.hasSPE()) { 348 setOperationAction(ISD::FMA , MVT::f64, Expand); 349 setOperationAction(ISD::FMA , MVT::f32, Expand); 350 } else { 351 setOperationAction(ISD::FMA , MVT::f64, Legal); 352 setOperationAction(ISD::FMA , MVT::f32, Legal); 353 } 354 355 if (Subtarget.hasSPE()) 356 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 357 358 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 359 360 // If we're enabling GP optimizations, use hardware square root 361 if (!Subtarget.hasFSQRT() && 362 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 363 Subtarget.hasFRE())) 364 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 365 366 if (!Subtarget.hasFSQRT() && 367 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 368 Subtarget.hasFRES())) 369 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 370 371 if (Subtarget.hasFCPSGN()) { 372 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 373 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 374 } else { 375 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 376 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 377 } 378 379 if (Subtarget.hasFPRND()) { 380 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 381 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 382 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 383 setOperationAction(ISD::FROUND, MVT::f64, Legal); 384 385 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 386 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 387 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 388 setOperationAction(ISD::FROUND, MVT::f32, Legal); 389 } 390 391 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 392 // to speed up scalar BSWAP64. 393 // CTPOP or CTTZ were introduced in P8/P9 respectively 394 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 395 if (Subtarget.hasP9Vector()) 396 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 397 else 398 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 399 if (Subtarget.isISA3_0()) { 400 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 401 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 402 } else { 403 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 404 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 405 } 406 407 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 408 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 409 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 410 } else { 411 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 412 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 413 } 414 415 // PowerPC does not have ROTR 416 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 417 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 418 419 if (!Subtarget.useCRBits()) { 420 // PowerPC does not have Select 421 setOperationAction(ISD::SELECT, MVT::i32, Expand); 422 setOperationAction(ISD::SELECT, MVT::i64, Expand); 423 setOperationAction(ISD::SELECT, MVT::f32, Expand); 424 setOperationAction(ISD::SELECT, MVT::f64, Expand); 425 } 426 427 // PowerPC wants to turn select_cc of FP into fsel when possible. 428 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 429 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 430 431 // PowerPC wants to optimize integer setcc a bit 432 if (!Subtarget.useCRBits()) 433 setOperationAction(ISD::SETCC, MVT::i32, Custom); 434 435 if (Subtarget.hasFPU()) { 436 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 437 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 438 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 439 440 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 441 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 442 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 443 } 444 445 // PowerPC does not have BRCOND which requires SetCC 446 if (!Subtarget.useCRBits()) 447 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 448 449 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 450 451 if (Subtarget.hasSPE()) { 452 // SPE has built-in conversions 453 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 454 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 455 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 456 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 457 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 458 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 459 } else { 460 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 461 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 462 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 463 464 // PowerPC does not have [U|S]INT_TO_FP 465 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 466 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 467 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 468 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 469 } 470 471 if (Subtarget.hasDirectMove() && isPPC64) { 472 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 473 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 474 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 475 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 476 if (TM.Options.UnsafeFPMath) { 477 setOperationAction(ISD::LRINT, MVT::f64, Legal); 478 setOperationAction(ISD::LRINT, MVT::f32, Legal); 479 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 480 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 481 setOperationAction(ISD::LROUND, MVT::f64, Legal); 482 setOperationAction(ISD::LROUND, MVT::f32, Legal); 483 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 484 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 485 } 486 } else { 487 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 488 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 489 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 490 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 491 } 492 493 // We cannot sextinreg(i1). Expand to shifts. 494 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 495 496 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 497 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 498 // support continuation, user-level threading, and etc.. As a result, no 499 // other SjLj exception interfaces are implemented and please don't build 500 // your own exception handling based on them. 501 // LLVM/Clang supports zero-cost DWARF exception handling. 502 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 503 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 504 505 // We want to legalize GlobalAddress and ConstantPool nodes into the 506 // appropriate instructions to materialize the address. 507 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 508 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 509 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 510 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 511 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 512 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 513 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 514 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 515 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 516 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 517 518 // TRAP is legal. 519 setOperationAction(ISD::TRAP, MVT::Other, Legal); 520 521 // TRAMPOLINE is custom lowered. 522 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 523 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 524 525 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 526 setOperationAction(ISD::VASTART , MVT::Other, Custom); 527 528 if (Subtarget.is64BitELFABI()) { 529 // VAARG always uses double-word chunks, so promote anything smaller. 530 setOperationAction(ISD::VAARG, MVT::i1, Promote); 531 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 532 setOperationAction(ISD::VAARG, MVT::i8, Promote); 533 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 534 setOperationAction(ISD::VAARG, MVT::i16, Promote); 535 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 536 setOperationAction(ISD::VAARG, MVT::i32, Promote); 537 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 538 setOperationAction(ISD::VAARG, MVT::Other, Expand); 539 } else if (Subtarget.is32BitELFABI()) { 540 // VAARG is custom lowered with the 32-bit SVR4 ABI. 541 setOperationAction(ISD::VAARG, MVT::Other, Custom); 542 setOperationAction(ISD::VAARG, MVT::i64, Custom); 543 } else 544 setOperationAction(ISD::VAARG, MVT::Other, Expand); 545 546 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 547 if (Subtarget.is32BitELFABI()) 548 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 549 else 550 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 551 552 // Use the default implementation. 553 setOperationAction(ISD::VAEND , MVT::Other, Expand); 554 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 555 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 556 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 557 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 558 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 559 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 560 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 561 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 562 563 // We want to custom lower some of our intrinsics. 564 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 565 566 // To handle counter-based loop conditions. 567 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 568 569 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 570 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 571 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 572 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 573 574 // Comparisons that require checking two conditions. 575 if (Subtarget.hasSPE()) { 576 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 577 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 578 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 579 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 580 } 581 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 582 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 583 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 584 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 585 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 586 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 587 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 588 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 589 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 590 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 591 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 592 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 593 594 if (Subtarget.has64BitSupport()) { 595 // They also have instructions for converting between i64 and fp. 596 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 597 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 598 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 599 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 600 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 601 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 602 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 603 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 604 // This is just the low 32 bits of a (signed) fp->i64 conversion. 605 // We cannot do this with Promote because i64 is not a legal type. 606 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 607 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 608 609 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 610 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 611 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 612 } 613 } else { 614 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 615 if (Subtarget.hasSPE()) { 616 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 617 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 618 } else { 619 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 620 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 621 } 622 } 623 624 // With the instructions enabled under FPCVT, we can do everything. 625 if (Subtarget.hasFPCVT()) { 626 if (Subtarget.has64BitSupport()) { 627 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 628 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 629 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 630 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 631 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 632 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 633 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 634 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 635 } 636 637 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 638 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 639 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 640 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 641 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 642 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 643 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 644 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 645 } 646 647 if (Subtarget.use64BitRegs()) { 648 // 64-bit PowerPC implementations can support i64 types directly 649 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 650 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 651 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 652 // 64-bit PowerPC wants to expand i128 shifts itself. 653 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 654 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 655 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 656 } else { 657 // 32-bit PowerPC wants to expand i64 shifts itself. 658 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 659 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 660 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 661 } 662 663 // PowerPC has better expansions for funnel shifts than the generic 664 // TargetLowering::expandFunnelShift. 665 if (Subtarget.has64BitSupport()) { 666 setOperationAction(ISD::FSHL, MVT::i64, Custom); 667 setOperationAction(ISD::FSHR, MVT::i64, Custom); 668 } 669 setOperationAction(ISD::FSHL, MVT::i32, Custom); 670 setOperationAction(ISD::FSHR, MVT::i32, Custom); 671 672 if (Subtarget.hasVSX()) { 673 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 674 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 675 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 676 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 677 } 678 679 if (Subtarget.hasAltivec()) { 680 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 681 setOperationAction(ISD::SADDSAT, VT, Legal); 682 setOperationAction(ISD::SSUBSAT, VT, Legal); 683 setOperationAction(ISD::UADDSAT, VT, Legal); 684 setOperationAction(ISD::USUBSAT, VT, Legal); 685 } 686 // First set operation action for all vector types to expand. Then we 687 // will selectively turn on ones that can be effectively codegen'd. 688 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 689 // add/sub are legal for all supported vector VT's. 690 setOperationAction(ISD::ADD, VT, Legal); 691 setOperationAction(ISD::SUB, VT, Legal); 692 693 // For v2i64, these are only valid with P8Vector. This is corrected after 694 // the loop. 695 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 696 setOperationAction(ISD::SMAX, VT, Legal); 697 setOperationAction(ISD::SMIN, VT, Legal); 698 setOperationAction(ISD::UMAX, VT, Legal); 699 setOperationAction(ISD::UMIN, VT, Legal); 700 } 701 else { 702 setOperationAction(ISD::SMAX, VT, Expand); 703 setOperationAction(ISD::SMIN, VT, Expand); 704 setOperationAction(ISD::UMAX, VT, Expand); 705 setOperationAction(ISD::UMIN, VT, Expand); 706 } 707 708 if (Subtarget.hasVSX()) { 709 setOperationAction(ISD::FMAXNUM, VT, Legal); 710 setOperationAction(ISD::FMINNUM, VT, Legal); 711 } 712 713 // Vector instructions introduced in P8 714 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 715 setOperationAction(ISD::CTPOP, VT, Legal); 716 setOperationAction(ISD::CTLZ, VT, Legal); 717 } 718 else { 719 setOperationAction(ISD::CTPOP, VT, Expand); 720 setOperationAction(ISD::CTLZ, VT, Expand); 721 } 722 723 // Vector instructions introduced in P9 724 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 725 setOperationAction(ISD::CTTZ, VT, Legal); 726 else 727 setOperationAction(ISD::CTTZ, VT, Expand); 728 729 // We promote all shuffles to v16i8. 730 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 731 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 732 733 // We promote all non-typed operations to v4i32. 734 setOperationAction(ISD::AND , VT, Promote); 735 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 736 setOperationAction(ISD::OR , VT, Promote); 737 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 738 setOperationAction(ISD::XOR , VT, Promote); 739 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 740 setOperationAction(ISD::LOAD , VT, Promote); 741 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 742 setOperationAction(ISD::SELECT, VT, Promote); 743 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 744 setOperationAction(ISD::VSELECT, VT, Legal); 745 setOperationAction(ISD::SELECT_CC, VT, Promote); 746 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 747 setOperationAction(ISD::STORE, VT, Promote); 748 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 749 750 // No other operations are legal. 751 setOperationAction(ISD::MUL , VT, Expand); 752 setOperationAction(ISD::SDIV, VT, Expand); 753 setOperationAction(ISD::SREM, VT, Expand); 754 setOperationAction(ISD::UDIV, VT, Expand); 755 setOperationAction(ISD::UREM, VT, Expand); 756 setOperationAction(ISD::FDIV, VT, Expand); 757 setOperationAction(ISD::FREM, VT, Expand); 758 setOperationAction(ISD::FNEG, VT, Expand); 759 setOperationAction(ISD::FSQRT, VT, Expand); 760 setOperationAction(ISD::FLOG, VT, Expand); 761 setOperationAction(ISD::FLOG10, VT, Expand); 762 setOperationAction(ISD::FLOG2, VT, Expand); 763 setOperationAction(ISD::FEXP, VT, Expand); 764 setOperationAction(ISD::FEXP2, VT, Expand); 765 setOperationAction(ISD::FSIN, VT, Expand); 766 setOperationAction(ISD::FCOS, VT, Expand); 767 setOperationAction(ISD::FABS, VT, Expand); 768 setOperationAction(ISD::FFLOOR, VT, Expand); 769 setOperationAction(ISD::FCEIL, VT, Expand); 770 setOperationAction(ISD::FTRUNC, VT, Expand); 771 setOperationAction(ISD::FRINT, VT, Expand); 772 setOperationAction(ISD::FNEARBYINT, VT, Expand); 773 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 774 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 775 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 776 setOperationAction(ISD::MULHU, VT, Expand); 777 setOperationAction(ISD::MULHS, VT, Expand); 778 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 779 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 780 setOperationAction(ISD::UDIVREM, VT, Expand); 781 setOperationAction(ISD::SDIVREM, VT, Expand); 782 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 783 setOperationAction(ISD::FPOW, VT, Expand); 784 setOperationAction(ISD::BSWAP, VT, Expand); 785 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 786 setOperationAction(ISD::ROTL, VT, Expand); 787 setOperationAction(ISD::ROTR, VT, Expand); 788 789 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 790 setTruncStoreAction(VT, InnerVT, Expand); 791 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 792 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 793 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 794 } 795 } 796 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 797 if (!Subtarget.hasP8Vector()) { 798 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 799 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 800 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 801 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 802 } 803 804 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 805 setOperationAction(ISD::ABS, VT, Custom); 806 807 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 808 // with merges, splats, etc. 809 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 810 811 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 812 // are cheap, so handle them before they get expanded to scalar. 813 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 814 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 815 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 816 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 817 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 818 819 setOperationAction(ISD::AND , MVT::v4i32, Legal); 820 setOperationAction(ISD::OR , MVT::v4i32, Legal); 821 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 822 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 823 setOperationAction(ISD::SELECT, MVT::v4i32, 824 Subtarget.useCRBits() ? Legal : Expand); 825 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 826 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 827 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 828 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 829 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 830 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 831 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 832 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 833 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 834 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 835 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 836 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 837 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 838 839 // Without hasP8Altivec set, v2i64 SMAX isn't available. 840 // But ABS custom lowering requires SMAX support. 841 if (!Subtarget.hasP8Altivec()) 842 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 843 844 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 845 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 846 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 847 if (Subtarget.hasAltivec()) 848 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 849 setOperationAction(ISD::ROTL, VT, Legal); 850 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 851 if (Subtarget.hasP8Altivec()) 852 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 853 854 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 855 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 856 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 857 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 858 859 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 860 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 861 862 if (Subtarget.hasVSX()) { 863 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 864 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 865 } 866 867 if (Subtarget.hasP8Altivec()) 868 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 869 else 870 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 871 872 if (Subtarget.isISA3_1()) { 873 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 874 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 875 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 876 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 877 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 878 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 879 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 880 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 881 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 882 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 883 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 884 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 885 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 886 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 887 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 888 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 889 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 890 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 891 } 892 893 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 894 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 895 896 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 897 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 898 899 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 900 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 901 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 902 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 903 904 // Altivec does not contain unordered floating-point compare instructions 905 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 906 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 907 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 908 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 909 910 if (Subtarget.hasVSX()) { 911 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 912 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 913 if (Subtarget.hasP8Vector()) { 914 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 915 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 916 } 917 if (Subtarget.hasDirectMove() && isPPC64) { 918 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 919 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 920 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 921 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 922 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 923 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 924 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 925 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 926 } 927 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 928 929 // The nearbyint variants are not allowed to raise the inexact exception 930 // so we can only code-gen them with unsafe math. 931 if (TM.Options.UnsafeFPMath) { 932 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 933 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 934 } 935 936 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 937 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 938 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 939 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 940 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 941 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 942 setOperationAction(ISD::FROUND, MVT::f64, Legal); 943 setOperationAction(ISD::FRINT, MVT::f64, Legal); 944 945 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 946 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 947 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 948 setOperationAction(ISD::FROUND, MVT::f32, Legal); 949 setOperationAction(ISD::FRINT, MVT::f32, Legal); 950 951 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 952 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 953 954 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 955 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 956 957 // Share the Altivec comparison restrictions. 958 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 959 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 960 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 961 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 962 963 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 964 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 965 966 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 967 968 if (Subtarget.hasP8Vector()) 969 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 970 971 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 972 973 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 974 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 975 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 976 977 if (Subtarget.hasP8Altivec()) { 978 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 979 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 980 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 981 982 // 128 bit shifts can be accomplished via 3 instructions for SHL and 983 // SRL, but not for SRA because of the instructions available: 984 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 985 // doing 986 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 987 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 988 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 989 990 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 991 } 992 else { 993 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 994 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 995 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 996 997 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 998 999 // VSX v2i64 only supports non-arithmetic operations. 1000 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1001 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1002 } 1003 1004 if (Subtarget.isISA3_1()) 1005 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1006 else 1007 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1008 1009 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1010 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1011 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1012 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1013 1014 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1015 1016 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1017 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1018 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1019 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1020 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1021 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1022 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1023 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1024 1025 // Custom handling for partial vectors of integers converted to 1026 // floating point. We already have optimal handling for v2i32 through 1027 // the DAG combine, so those aren't necessary. 1028 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1029 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1030 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1031 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1033 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1034 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1035 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1036 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1037 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1038 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1039 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1040 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1041 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1042 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1043 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1044 1045 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1046 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1047 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1048 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1049 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1050 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1051 1052 if (Subtarget.hasDirectMove()) 1053 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1054 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1055 1056 // Handle constrained floating-point operations of vector. 1057 // The predictor is `hasVSX` because altivec instruction has 1058 // no exception but VSX vector instruction has. 1059 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1060 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1061 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1062 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1063 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1064 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1065 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1066 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1067 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1068 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1069 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1070 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1071 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1072 1073 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1074 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1075 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1076 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1077 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1078 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1079 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1080 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1081 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1082 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1083 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1084 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1085 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1086 1087 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1088 } 1089 1090 if (Subtarget.hasP8Altivec()) { 1091 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1092 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1093 } 1094 1095 if (Subtarget.hasP9Vector()) { 1096 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1097 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1098 1099 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1100 // SRL, but not for SRA because of the instructions available: 1101 // VS{RL} and VS{RL}O. 1102 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1103 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1104 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1105 1106 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1107 setOperationAction(ISD::FADD, MVT::f128, Legal); 1108 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1109 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1110 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1111 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1112 // No extending loads to f128 on PPC. 1113 for (MVT FPT : MVT::fp_valuetypes()) 1114 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1115 setOperationAction(ISD::FMA, MVT::f128, Legal); 1116 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1117 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1118 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1119 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1120 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1121 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1122 1123 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1124 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1125 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1126 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1127 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1128 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1129 1130 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1131 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1132 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1133 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1134 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1135 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1136 // No implementation for these ops for PowerPC. 1137 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1138 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1139 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1140 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1141 setOperationAction(ISD::FREM, MVT::f128, Expand); 1142 1143 // Handle constrained floating-point operations of fp128 1144 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1145 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1146 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1147 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1148 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1149 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1150 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1152 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1153 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1154 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1155 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1156 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1157 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1158 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1159 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1160 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1161 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1162 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1163 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1164 } 1165 1166 if (Subtarget.hasP9Altivec()) { 1167 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1168 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1169 1170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1172 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1173 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1174 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1175 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1177 } 1178 } 1179 1180 if (Subtarget.pairedVectorMemops()) { 1181 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1182 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1183 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1184 } 1185 if (Subtarget.hasMMA()) { 1186 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1187 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1188 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1189 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1190 } 1191 1192 if (Subtarget.has64BitSupport()) 1193 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1194 1195 if (Subtarget.isISA3_1()) 1196 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1197 1198 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1199 1200 if (!isPPC64) { 1201 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1202 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1203 } 1204 1205 setBooleanContents(ZeroOrOneBooleanContent); 1206 1207 if (Subtarget.hasAltivec()) { 1208 // Altivec instructions set fields to all zeros or all ones. 1209 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1210 } 1211 1212 if (!isPPC64) { 1213 // These libcalls are not available in 32-bit. 1214 setLibcallName(RTLIB::SHL_I128, nullptr); 1215 setLibcallName(RTLIB::SRL_I128, nullptr); 1216 setLibcallName(RTLIB::SRA_I128, nullptr); 1217 } 1218 1219 if (!isPPC64) 1220 setMaxAtomicSizeInBitsSupported(32); 1221 1222 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1223 1224 // We have target-specific dag combine patterns for the following nodes: 1225 setTargetDAGCombine(ISD::ADD); 1226 setTargetDAGCombine(ISD::SHL); 1227 setTargetDAGCombine(ISD::SRA); 1228 setTargetDAGCombine(ISD::SRL); 1229 setTargetDAGCombine(ISD::MUL); 1230 setTargetDAGCombine(ISD::FMA); 1231 setTargetDAGCombine(ISD::SINT_TO_FP); 1232 setTargetDAGCombine(ISD::BUILD_VECTOR); 1233 if (Subtarget.hasFPCVT()) 1234 setTargetDAGCombine(ISD::UINT_TO_FP); 1235 setTargetDAGCombine(ISD::LOAD); 1236 setTargetDAGCombine(ISD::STORE); 1237 setTargetDAGCombine(ISD::BR_CC); 1238 if (Subtarget.useCRBits()) 1239 setTargetDAGCombine(ISD::BRCOND); 1240 setTargetDAGCombine(ISD::BSWAP); 1241 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1242 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1243 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1244 1245 setTargetDAGCombine(ISD::SIGN_EXTEND); 1246 setTargetDAGCombine(ISD::ZERO_EXTEND); 1247 setTargetDAGCombine(ISD::ANY_EXTEND); 1248 1249 setTargetDAGCombine(ISD::TRUNCATE); 1250 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1251 1252 1253 if (Subtarget.useCRBits()) { 1254 setTargetDAGCombine(ISD::TRUNCATE); 1255 setTargetDAGCombine(ISD::SETCC); 1256 setTargetDAGCombine(ISD::SELECT_CC); 1257 } 1258 1259 if (Subtarget.hasP9Altivec()) { 1260 setTargetDAGCombine(ISD::ABS); 1261 setTargetDAGCombine(ISD::VSELECT); 1262 } 1263 1264 setLibcallName(RTLIB::LOG_F128, "logf128"); 1265 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1266 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1267 setLibcallName(RTLIB::EXP_F128, "expf128"); 1268 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1269 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1270 setLibcallName(RTLIB::COS_F128, "cosf128"); 1271 setLibcallName(RTLIB::POW_F128, "powf128"); 1272 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1273 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1274 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1275 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1276 1277 // With 32 condition bits, we don't need to sink (and duplicate) compares 1278 // aggressively in CodeGenPrep. 1279 if (Subtarget.useCRBits()) { 1280 setHasMultipleConditionRegisters(); 1281 setJumpIsExpensive(); 1282 } 1283 1284 setMinFunctionAlignment(Align(4)); 1285 1286 switch (Subtarget.getCPUDirective()) { 1287 default: break; 1288 case PPC::DIR_970: 1289 case PPC::DIR_A2: 1290 case PPC::DIR_E500: 1291 case PPC::DIR_E500mc: 1292 case PPC::DIR_E5500: 1293 case PPC::DIR_PWR4: 1294 case PPC::DIR_PWR5: 1295 case PPC::DIR_PWR5X: 1296 case PPC::DIR_PWR6: 1297 case PPC::DIR_PWR6X: 1298 case PPC::DIR_PWR7: 1299 case PPC::DIR_PWR8: 1300 case PPC::DIR_PWR9: 1301 case PPC::DIR_PWR10: 1302 case PPC::DIR_PWR_FUTURE: 1303 setPrefLoopAlignment(Align(16)); 1304 setPrefFunctionAlignment(Align(16)); 1305 break; 1306 } 1307 1308 if (Subtarget.enableMachineScheduler()) 1309 setSchedulingPreference(Sched::Source); 1310 else 1311 setSchedulingPreference(Sched::Hybrid); 1312 1313 computeRegisterProperties(STI.getRegisterInfo()); 1314 1315 // The Freescale cores do better with aggressive inlining of memcpy and 1316 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1317 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1318 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1319 MaxStoresPerMemset = 32; 1320 MaxStoresPerMemsetOptSize = 16; 1321 MaxStoresPerMemcpy = 32; 1322 MaxStoresPerMemcpyOptSize = 8; 1323 MaxStoresPerMemmove = 32; 1324 MaxStoresPerMemmoveOptSize = 8; 1325 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1326 // The A2 also benefits from (very) aggressive inlining of memcpy and 1327 // friends. The overhead of a the function call, even when warm, can be 1328 // over one hundred cycles. 1329 MaxStoresPerMemset = 128; 1330 MaxStoresPerMemcpy = 128; 1331 MaxStoresPerMemmove = 128; 1332 MaxLoadsPerMemcmp = 128; 1333 } else { 1334 MaxLoadsPerMemcmp = 8; 1335 MaxLoadsPerMemcmpOptSize = 4; 1336 } 1337 1338 IsStrictFPEnabled = true; 1339 1340 // Let the subtarget (CPU) decide if a predictable select is more expensive 1341 // than the corresponding branch. This information is used in CGP to decide 1342 // when to convert selects into branches. 1343 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1344 } 1345 1346 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1347 /// the desired ByVal argument alignment. 1348 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1349 if (MaxAlign == MaxMaxAlign) 1350 return; 1351 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1352 if (MaxMaxAlign >= 32 && 1353 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1354 MaxAlign = Align(32); 1355 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1356 MaxAlign < 16) 1357 MaxAlign = Align(16); 1358 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1359 Align EltAlign; 1360 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1361 if (EltAlign > MaxAlign) 1362 MaxAlign = EltAlign; 1363 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1364 for (auto *EltTy : STy->elements()) { 1365 Align EltAlign; 1366 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1367 if (EltAlign > MaxAlign) 1368 MaxAlign = EltAlign; 1369 if (MaxAlign == MaxMaxAlign) 1370 break; 1371 } 1372 } 1373 } 1374 1375 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1376 /// function arguments in the caller parameter area. 1377 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1378 const DataLayout &DL) const { 1379 // 16byte and wider vectors are passed on 16byte boundary. 1380 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1381 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1382 if (Subtarget.hasAltivec()) 1383 getMaxByValAlign(Ty, Alignment, Align(16)); 1384 return Alignment.value(); 1385 } 1386 1387 bool PPCTargetLowering::useSoftFloat() const { 1388 return Subtarget.useSoftFloat(); 1389 } 1390 1391 bool PPCTargetLowering::hasSPE() const { 1392 return Subtarget.hasSPE(); 1393 } 1394 1395 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1396 return VT.isScalarInteger(); 1397 } 1398 1399 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1400 switch ((PPCISD::NodeType)Opcode) { 1401 case PPCISD::FIRST_NUMBER: break; 1402 case PPCISD::FSEL: return "PPCISD::FSEL"; 1403 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1404 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1405 case PPCISD::FCFID: return "PPCISD::FCFID"; 1406 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1407 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1408 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1409 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1410 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1411 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1412 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1413 case PPCISD::FP_TO_UINT_IN_VSR: 1414 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1415 case PPCISD::FP_TO_SINT_IN_VSR: 1416 return "PPCISD::FP_TO_SINT_IN_VSR"; 1417 case PPCISD::FRE: return "PPCISD::FRE"; 1418 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1419 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1420 case PPCISD::VPERM: return "PPCISD::VPERM"; 1421 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1422 case PPCISD::XXSPLTI_SP_TO_DP: 1423 return "PPCISD::XXSPLTI_SP_TO_DP"; 1424 case PPCISD::XXSPLTI32DX: 1425 return "PPCISD::XXSPLTI32DX"; 1426 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1427 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1428 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1429 case PPCISD::CMPB: return "PPCISD::CMPB"; 1430 case PPCISD::Hi: return "PPCISD::Hi"; 1431 case PPCISD::Lo: return "PPCISD::Lo"; 1432 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1433 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1434 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1435 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1436 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1437 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1438 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1439 case PPCISD::SRL: return "PPCISD::SRL"; 1440 case PPCISD::SRA: return "PPCISD::SRA"; 1441 case PPCISD::SHL: return "PPCISD::SHL"; 1442 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1443 case PPCISD::CALL: return "PPCISD::CALL"; 1444 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1445 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1446 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1447 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1448 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1449 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1450 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1451 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1452 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1453 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1454 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1455 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1456 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1457 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1458 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1459 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1460 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1461 case PPCISD::ANDI_rec_1_EQ_BIT: 1462 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1463 case PPCISD::ANDI_rec_1_GT_BIT: 1464 return "PPCISD::ANDI_rec_1_GT_BIT"; 1465 case PPCISD::VCMP: return "PPCISD::VCMP"; 1466 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1467 case PPCISD::LBRX: return "PPCISD::LBRX"; 1468 case PPCISD::STBRX: return "PPCISD::STBRX"; 1469 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1470 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1471 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1472 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1473 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1474 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1475 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1476 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1477 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1478 case PPCISD::ST_VSR_SCAL_INT: 1479 return "PPCISD::ST_VSR_SCAL_INT"; 1480 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1481 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1482 case PPCISD::BDZ: return "PPCISD::BDZ"; 1483 case PPCISD::MFFS: return "PPCISD::MFFS"; 1484 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1485 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1486 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1487 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1488 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1489 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1490 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1491 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1492 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1493 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1494 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1495 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1496 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1497 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1498 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1499 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1500 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1501 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1502 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1503 case PPCISD::PADDI_DTPREL: 1504 return "PPCISD::PADDI_DTPREL"; 1505 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1506 case PPCISD::SC: return "PPCISD::SC"; 1507 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1508 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1509 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1510 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1511 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1512 case PPCISD::VABSD: return "PPCISD::VABSD"; 1513 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1514 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1515 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1516 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1517 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1518 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1519 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1520 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1521 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1522 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1523 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1524 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1525 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1526 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1527 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1528 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1529 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1530 case PPCISD::STRICT_FADDRTZ: 1531 return "PPCISD::STRICT_FADDRTZ"; 1532 case PPCISD::STRICT_FCTIDZ: 1533 return "PPCISD::STRICT_FCTIDZ"; 1534 case PPCISD::STRICT_FCTIWZ: 1535 return "PPCISD::STRICT_FCTIWZ"; 1536 case PPCISD::STRICT_FCTIDUZ: 1537 return "PPCISD::STRICT_FCTIDUZ"; 1538 case PPCISD::STRICT_FCTIWUZ: 1539 return "PPCISD::STRICT_FCTIWUZ"; 1540 case PPCISD::STRICT_FCFID: 1541 return "PPCISD::STRICT_FCFID"; 1542 case PPCISD::STRICT_FCFIDU: 1543 return "PPCISD::STRICT_FCFIDU"; 1544 case PPCISD::STRICT_FCFIDS: 1545 return "PPCISD::STRICT_FCFIDS"; 1546 case PPCISD::STRICT_FCFIDUS: 1547 return "PPCISD::STRICT_FCFIDUS"; 1548 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1549 } 1550 return nullptr; 1551 } 1552 1553 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1554 EVT VT) const { 1555 if (!VT.isVector()) 1556 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1557 1558 return VT.changeVectorElementTypeToInteger(); 1559 } 1560 1561 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1562 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1563 return true; 1564 } 1565 1566 //===----------------------------------------------------------------------===// 1567 // Node matching predicates, for use by the tblgen matching code. 1568 //===----------------------------------------------------------------------===// 1569 1570 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1571 static bool isFloatingPointZero(SDValue Op) { 1572 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1573 return CFP->getValueAPF().isZero(); 1574 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1575 // Maybe this has already been legalized into the constant pool? 1576 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1577 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1578 return CFP->getValueAPF().isZero(); 1579 } 1580 return false; 1581 } 1582 1583 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1584 /// true if Op is undef or if it matches the specified value. 1585 static bool isConstantOrUndef(int Op, int Val) { 1586 return Op < 0 || Op == Val; 1587 } 1588 1589 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1590 /// VPKUHUM instruction. 1591 /// The ShuffleKind distinguishes between big-endian operations with 1592 /// two different inputs (0), either-endian operations with two identical 1593 /// inputs (1), and little-endian operations with two different inputs (2). 1594 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1595 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1596 SelectionDAG &DAG) { 1597 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1598 if (ShuffleKind == 0) { 1599 if (IsLE) 1600 return false; 1601 for (unsigned i = 0; i != 16; ++i) 1602 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1603 return false; 1604 } else if (ShuffleKind == 2) { 1605 if (!IsLE) 1606 return false; 1607 for (unsigned i = 0; i != 16; ++i) 1608 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1609 return false; 1610 } else if (ShuffleKind == 1) { 1611 unsigned j = IsLE ? 0 : 1; 1612 for (unsigned i = 0; i != 8; ++i) 1613 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1614 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1621 /// VPKUWUM instruction. 1622 /// The ShuffleKind distinguishes between big-endian operations with 1623 /// two different inputs (0), either-endian operations with two identical 1624 /// inputs (1), and little-endian operations with two different inputs (2). 1625 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1626 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1627 SelectionDAG &DAG) { 1628 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1629 if (ShuffleKind == 0) { 1630 if (IsLE) 1631 return false; 1632 for (unsigned i = 0; i != 16; i += 2) 1633 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1634 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1635 return false; 1636 } else if (ShuffleKind == 2) { 1637 if (!IsLE) 1638 return false; 1639 for (unsigned i = 0; i != 16; i += 2) 1640 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1641 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1642 return false; 1643 } else if (ShuffleKind == 1) { 1644 unsigned j = IsLE ? 0 : 2; 1645 for (unsigned i = 0; i != 8; i += 2) 1646 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1647 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1648 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1649 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1650 return false; 1651 } 1652 return true; 1653 } 1654 1655 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1656 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1657 /// current subtarget. 1658 /// 1659 /// The ShuffleKind distinguishes between big-endian operations with 1660 /// two different inputs (0), either-endian operations with two identical 1661 /// inputs (1), and little-endian operations with two different inputs (2). 1662 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1663 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1664 SelectionDAG &DAG) { 1665 const PPCSubtarget& Subtarget = 1666 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1667 if (!Subtarget.hasP8Vector()) 1668 return false; 1669 1670 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1671 if (ShuffleKind == 0) { 1672 if (IsLE) 1673 return false; 1674 for (unsigned i = 0; i != 16; i += 4) 1675 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1676 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1677 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1678 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1679 return false; 1680 } else if (ShuffleKind == 2) { 1681 if (!IsLE) 1682 return false; 1683 for (unsigned i = 0; i != 16; i += 4) 1684 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1685 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1686 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1687 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1688 return false; 1689 } else if (ShuffleKind == 1) { 1690 unsigned j = IsLE ? 0 : 4; 1691 for (unsigned i = 0; i != 8; i += 4) 1692 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1693 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1694 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1695 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1696 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1697 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1698 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1699 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1700 return false; 1701 } 1702 return true; 1703 } 1704 1705 /// isVMerge - Common function, used to match vmrg* shuffles. 1706 /// 1707 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1708 unsigned LHSStart, unsigned RHSStart) { 1709 if (N->getValueType(0) != MVT::v16i8) 1710 return false; 1711 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1712 "Unsupported merge size!"); 1713 1714 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1715 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1716 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1717 LHSStart+j+i*UnitSize) || 1718 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1719 RHSStart+j+i*UnitSize)) 1720 return false; 1721 } 1722 return true; 1723 } 1724 1725 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1726 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1727 /// The ShuffleKind distinguishes between big-endian merges with two 1728 /// different inputs (0), either-endian merges with two identical inputs (1), 1729 /// and little-endian merges with two different inputs (2). For the latter, 1730 /// the input operands are swapped (see PPCInstrAltivec.td). 1731 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1732 unsigned ShuffleKind, SelectionDAG &DAG) { 1733 if (DAG.getDataLayout().isLittleEndian()) { 1734 if (ShuffleKind == 1) // unary 1735 return isVMerge(N, UnitSize, 0, 0); 1736 else if (ShuffleKind == 2) // swapped 1737 return isVMerge(N, UnitSize, 0, 16); 1738 else 1739 return false; 1740 } else { 1741 if (ShuffleKind == 1) // unary 1742 return isVMerge(N, UnitSize, 8, 8); 1743 else if (ShuffleKind == 0) // normal 1744 return isVMerge(N, UnitSize, 8, 24); 1745 else 1746 return false; 1747 } 1748 } 1749 1750 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1751 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1752 /// The ShuffleKind distinguishes between big-endian merges with two 1753 /// different inputs (0), either-endian merges with two identical inputs (1), 1754 /// and little-endian merges with two different inputs (2). For the latter, 1755 /// the input operands are swapped (see PPCInstrAltivec.td). 1756 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1757 unsigned ShuffleKind, SelectionDAG &DAG) { 1758 if (DAG.getDataLayout().isLittleEndian()) { 1759 if (ShuffleKind == 1) // unary 1760 return isVMerge(N, UnitSize, 8, 8); 1761 else if (ShuffleKind == 2) // swapped 1762 return isVMerge(N, UnitSize, 8, 24); 1763 else 1764 return false; 1765 } else { 1766 if (ShuffleKind == 1) // unary 1767 return isVMerge(N, UnitSize, 0, 0); 1768 else if (ShuffleKind == 0) // normal 1769 return isVMerge(N, UnitSize, 0, 16); 1770 else 1771 return false; 1772 } 1773 } 1774 1775 /** 1776 * Common function used to match vmrgew and vmrgow shuffles 1777 * 1778 * The indexOffset determines whether to look for even or odd words in 1779 * the shuffle mask. This is based on the of the endianness of the target 1780 * machine. 1781 * - Little Endian: 1782 * - Use offset of 0 to check for odd elements 1783 * - Use offset of 4 to check for even elements 1784 * - Big Endian: 1785 * - Use offset of 0 to check for even elements 1786 * - Use offset of 4 to check for odd elements 1787 * A detailed description of the vector element ordering for little endian and 1788 * big endian can be found at 1789 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1790 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1791 * compiler differences mean to you 1792 * 1793 * The mask to the shuffle vector instruction specifies the indices of the 1794 * elements from the two input vectors to place in the result. The elements are 1795 * numbered in array-access order, starting with the first vector. These vectors 1796 * are always of type v16i8, thus each vector will contain 16 elements of size 1797 * 8. More info on the shuffle vector can be found in the 1798 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1799 * Language Reference. 1800 * 1801 * The RHSStartValue indicates whether the same input vectors are used (unary) 1802 * or two different input vectors are used, based on the following: 1803 * - If the instruction uses the same vector for both inputs, the range of the 1804 * indices will be 0 to 15. In this case, the RHSStart value passed should 1805 * be 0. 1806 * - If the instruction has two different vectors then the range of the 1807 * indices will be 0 to 31. In this case, the RHSStart value passed should 1808 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1809 * to 31 specify elements in the second vector). 1810 * 1811 * \param[in] N The shuffle vector SD Node to analyze 1812 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1813 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1814 * vector to the shuffle_vector instruction 1815 * \return true iff this shuffle vector represents an even or odd word merge 1816 */ 1817 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1818 unsigned RHSStartValue) { 1819 if (N->getValueType(0) != MVT::v16i8) 1820 return false; 1821 1822 for (unsigned i = 0; i < 2; ++i) 1823 for (unsigned j = 0; j < 4; ++j) 1824 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1825 i*RHSStartValue+j+IndexOffset) || 1826 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1827 i*RHSStartValue+j+IndexOffset+8)) 1828 return false; 1829 return true; 1830 } 1831 1832 /** 1833 * Determine if the specified shuffle mask is suitable for the vmrgew or 1834 * vmrgow instructions. 1835 * 1836 * \param[in] N The shuffle vector SD Node to analyze 1837 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1838 * \param[in] ShuffleKind Identify the type of merge: 1839 * - 0 = big-endian merge with two different inputs; 1840 * - 1 = either-endian merge with two identical inputs; 1841 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1842 * little-endian merges). 1843 * \param[in] DAG The current SelectionDAG 1844 * \return true iff this shuffle mask 1845 */ 1846 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1847 unsigned ShuffleKind, SelectionDAG &DAG) { 1848 if (DAG.getDataLayout().isLittleEndian()) { 1849 unsigned indexOffset = CheckEven ? 4 : 0; 1850 if (ShuffleKind == 1) // Unary 1851 return isVMerge(N, indexOffset, 0); 1852 else if (ShuffleKind == 2) // swapped 1853 return isVMerge(N, indexOffset, 16); 1854 else 1855 return false; 1856 } 1857 else { 1858 unsigned indexOffset = CheckEven ? 0 : 4; 1859 if (ShuffleKind == 1) // Unary 1860 return isVMerge(N, indexOffset, 0); 1861 else if (ShuffleKind == 0) // Normal 1862 return isVMerge(N, indexOffset, 16); 1863 else 1864 return false; 1865 } 1866 return false; 1867 } 1868 1869 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1870 /// amount, otherwise return -1. 1871 /// The ShuffleKind distinguishes between big-endian operations with two 1872 /// different inputs (0), either-endian operations with two identical inputs 1873 /// (1), and little-endian operations with two different inputs (2). For the 1874 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1875 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1876 SelectionDAG &DAG) { 1877 if (N->getValueType(0) != MVT::v16i8) 1878 return -1; 1879 1880 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1881 1882 // Find the first non-undef value in the shuffle mask. 1883 unsigned i; 1884 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1885 /*search*/; 1886 1887 if (i == 16) return -1; // all undef. 1888 1889 // Otherwise, check to see if the rest of the elements are consecutively 1890 // numbered from this value. 1891 unsigned ShiftAmt = SVOp->getMaskElt(i); 1892 if (ShiftAmt < i) return -1; 1893 1894 ShiftAmt -= i; 1895 bool isLE = DAG.getDataLayout().isLittleEndian(); 1896 1897 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1898 // Check the rest of the elements to see if they are consecutive. 1899 for (++i; i != 16; ++i) 1900 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1901 return -1; 1902 } else if (ShuffleKind == 1) { 1903 // Check the rest of the elements to see if they are consecutive. 1904 for (++i; i != 16; ++i) 1905 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1906 return -1; 1907 } else 1908 return -1; 1909 1910 if (isLE) 1911 ShiftAmt = 16 - ShiftAmt; 1912 1913 return ShiftAmt; 1914 } 1915 1916 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1917 /// specifies a splat of a single element that is suitable for input to 1918 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1919 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1920 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1921 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1922 1923 // The consecutive indices need to specify an element, not part of two 1924 // different elements. So abandon ship early if this isn't the case. 1925 if (N->getMaskElt(0) % EltSize != 0) 1926 return false; 1927 1928 // This is a splat operation if each element of the permute is the same, and 1929 // if the value doesn't reference the second vector. 1930 unsigned ElementBase = N->getMaskElt(0); 1931 1932 // FIXME: Handle UNDEF elements too! 1933 if (ElementBase >= 16) 1934 return false; 1935 1936 // Check that the indices are consecutive, in the case of a multi-byte element 1937 // splatted with a v16i8 mask. 1938 for (unsigned i = 1; i != EltSize; ++i) 1939 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1940 return false; 1941 1942 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1943 if (N->getMaskElt(i) < 0) continue; 1944 for (unsigned j = 0; j != EltSize; ++j) 1945 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1946 return false; 1947 } 1948 return true; 1949 } 1950 1951 /// Check that the mask is shuffling N byte elements. Within each N byte 1952 /// element of the mask, the indices could be either in increasing or 1953 /// decreasing order as long as they are consecutive. 1954 /// \param[in] N the shuffle vector SD Node to analyze 1955 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1956 /// Word/DoubleWord/QuadWord). 1957 /// \param[in] StepLen the delta indices number among the N byte element, if 1958 /// the mask is in increasing/decreasing order then it is 1/-1. 1959 /// \return true iff the mask is shuffling N byte elements. 1960 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1961 int StepLen) { 1962 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1963 "Unexpected element width."); 1964 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1965 1966 unsigned NumOfElem = 16 / Width; 1967 unsigned MaskVal[16]; // Width is never greater than 16 1968 for (unsigned i = 0; i < NumOfElem; ++i) { 1969 MaskVal[0] = N->getMaskElt(i * Width); 1970 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1971 return false; 1972 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1973 return false; 1974 } 1975 1976 for (unsigned int j = 1; j < Width; ++j) { 1977 MaskVal[j] = N->getMaskElt(i * Width + j); 1978 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1979 return false; 1980 } 1981 } 1982 } 1983 1984 return true; 1985 } 1986 1987 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1988 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1989 if (!isNByteElemShuffleMask(N, 4, 1)) 1990 return false; 1991 1992 // Now we look at mask elements 0,4,8,12 1993 unsigned M0 = N->getMaskElt(0) / 4; 1994 unsigned M1 = N->getMaskElt(4) / 4; 1995 unsigned M2 = N->getMaskElt(8) / 4; 1996 unsigned M3 = N->getMaskElt(12) / 4; 1997 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1998 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1999 2000 // Below, let H and L be arbitrary elements of the shuffle mask 2001 // where H is in the range [4,7] and L is in the range [0,3]. 2002 // H, 1, 2, 3 or L, 5, 6, 7 2003 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2004 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2005 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2006 InsertAtByte = IsLE ? 12 : 0; 2007 Swap = M0 < 4; 2008 return true; 2009 } 2010 // 0, H, 2, 3 or 4, L, 6, 7 2011 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2012 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2013 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2014 InsertAtByte = IsLE ? 8 : 4; 2015 Swap = M1 < 4; 2016 return true; 2017 } 2018 // 0, 1, H, 3 or 4, 5, L, 7 2019 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2020 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2021 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2022 InsertAtByte = IsLE ? 4 : 8; 2023 Swap = M2 < 4; 2024 return true; 2025 } 2026 // 0, 1, 2, H or 4, 5, 6, L 2027 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2028 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2029 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2030 InsertAtByte = IsLE ? 0 : 12; 2031 Swap = M3 < 4; 2032 return true; 2033 } 2034 2035 // If both vector operands for the shuffle are the same vector, the mask will 2036 // contain only elements from the first one and the second one will be undef. 2037 if (N->getOperand(1).isUndef()) { 2038 ShiftElts = 0; 2039 Swap = true; 2040 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2041 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2042 InsertAtByte = IsLE ? 12 : 0; 2043 return true; 2044 } 2045 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2046 InsertAtByte = IsLE ? 8 : 4; 2047 return true; 2048 } 2049 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2050 InsertAtByte = IsLE ? 4 : 8; 2051 return true; 2052 } 2053 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2054 InsertAtByte = IsLE ? 0 : 12; 2055 return true; 2056 } 2057 } 2058 2059 return false; 2060 } 2061 2062 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2063 bool &Swap, bool IsLE) { 2064 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2065 // Ensure each byte index of the word is consecutive. 2066 if (!isNByteElemShuffleMask(N, 4, 1)) 2067 return false; 2068 2069 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2070 unsigned M0 = N->getMaskElt(0) / 4; 2071 unsigned M1 = N->getMaskElt(4) / 4; 2072 unsigned M2 = N->getMaskElt(8) / 4; 2073 unsigned M3 = N->getMaskElt(12) / 4; 2074 2075 // If both vector operands for the shuffle are the same vector, the mask will 2076 // contain only elements from the first one and the second one will be undef. 2077 if (N->getOperand(1).isUndef()) { 2078 assert(M0 < 4 && "Indexing into an undef vector?"); 2079 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2080 return false; 2081 2082 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2083 Swap = false; 2084 return true; 2085 } 2086 2087 // Ensure each word index of the ShuffleVector Mask is consecutive. 2088 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2089 return false; 2090 2091 if (IsLE) { 2092 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2093 // Input vectors don't need to be swapped if the leading element 2094 // of the result is one of the 3 left elements of the second vector 2095 // (or if there is no shift to be done at all). 2096 Swap = false; 2097 ShiftElts = (8 - M0) % 8; 2098 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2099 // Input vectors need to be swapped if the leading element 2100 // of the result is one of the 3 left elements of the first vector 2101 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2102 Swap = true; 2103 ShiftElts = (4 - M0) % 4; 2104 } 2105 2106 return true; 2107 } else { // BE 2108 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2109 // Input vectors don't need to be swapped if the leading element 2110 // of the result is one of the 4 elements of the first vector. 2111 Swap = false; 2112 ShiftElts = M0; 2113 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2114 // Input vectors need to be swapped if the leading element 2115 // of the result is one of the 4 elements of the right vector. 2116 Swap = true; 2117 ShiftElts = M0 - 4; 2118 } 2119 2120 return true; 2121 } 2122 } 2123 2124 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2125 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2126 2127 if (!isNByteElemShuffleMask(N, Width, -1)) 2128 return false; 2129 2130 for (int i = 0; i < 16; i += Width) 2131 if (N->getMaskElt(i) != i + Width - 1) 2132 return false; 2133 2134 return true; 2135 } 2136 2137 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2138 return isXXBRShuffleMaskHelper(N, 2); 2139 } 2140 2141 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2142 return isXXBRShuffleMaskHelper(N, 4); 2143 } 2144 2145 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2146 return isXXBRShuffleMaskHelper(N, 8); 2147 } 2148 2149 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2150 return isXXBRShuffleMaskHelper(N, 16); 2151 } 2152 2153 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2154 /// if the inputs to the instruction should be swapped and set \p DM to the 2155 /// value for the immediate. 2156 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2157 /// AND element 0 of the result comes from the first input (LE) or second input 2158 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2159 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2160 /// mask. 2161 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2162 bool &Swap, bool IsLE) { 2163 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2164 2165 // Ensure each byte index of the double word is consecutive. 2166 if (!isNByteElemShuffleMask(N, 8, 1)) 2167 return false; 2168 2169 unsigned M0 = N->getMaskElt(0) / 8; 2170 unsigned M1 = N->getMaskElt(8) / 8; 2171 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2172 2173 // If both vector operands for the shuffle are the same vector, the mask will 2174 // contain only elements from the first one and the second one will be undef. 2175 if (N->getOperand(1).isUndef()) { 2176 if ((M0 | M1) < 2) { 2177 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2178 Swap = false; 2179 return true; 2180 } else 2181 return false; 2182 } 2183 2184 if (IsLE) { 2185 if (M0 > 1 && M1 < 2) { 2186 Swap = false; 2187 } else if (M0 < 2 && M1 > 1) { 2188 M0 = (M0 + 2) % 4; 2189 M1 = (M1 + 2) % 4; 2190 Swap = true; 2191 } else 2192 return false; 2193 2194 // Note: if control flow comes here that means Swap is already set above 2195 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2196 return true; 2197 } else { // BE 2198 if (M0 < 2 && M1 > 1) { 2199 Swap = false; 2200 } else if (M0 > 1 && M1 < 2) { 2201 M0 = (M0 + 2) % 4; 2202 M1 = (M1 + 2) % 4; 2203 Swap = true; 2204 } else 2205 return false; 2206 2207 // Note: if control flow comes here that means Swap is already set above 2208 DM = (M0 << 1) + (M1 & 1); 2209 return true; 2210 } 2211 } 2212 2213 2214 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2215 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2216 /// elements are counted from the left of the vector register). 2217 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2218 SelectionDAG &DAG) { 2219 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2220 assert(isSplatShuffleMask(SVOp, EltSize)); 2221 if (DAG.getDataLayout().isLittleEndian()) 2222 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2223 else 2224 return SVOp->getMaskElt(0) / EltSize; 2225 } 2226 2227 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2228 /// by using a vspltis[bhw] instruction of the specified element size, return 2229 /// the constant being splatted. The ByteSize field indicates the number of 2230 /// bytes of each element [124] -> [bhw]. 2231 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2232 SDValue OpVal(nullptr, 0); 2233 2234 // If ByteSize of the splat is bigger than the element size of the 2235 // build_vector, then we have a case where we are checking for a splat where 2236 // multiple elements of the buildvector are folded together into a single 2237 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2238 unsigned EltSize = 16/N->getNumOperands(); 2239 if (EltSize < ByteSize) { 2240 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2241 SDValue UniquedVals[4]; 2242 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2243 2244 // See if all of the elements in the buildvector agree across. 2245 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2246 if (N->getOperand(i).isUndef()) continue; 2247 // If the element isn't a constant, bail fully out. 2248 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2249 2250 if (!UniquedVals[i&(Multiple-1)].getNode()) 2251 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2252 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2253 return SDValue(); // no match. 2254 } 2255 2256 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2257 // either constant or undef values that are identical for each chunk. See 2258 // if these chunks can form into a larger vspltis*. 2259 2260 // Check to see if all of the leading entries are either 0 or -1. If 2261 // neither, then this won't fit into the immediate field. 2262 bool LeadingZero = true; 2263 bool LeadingOnes = true; 2264 for (unsigned i = 0; i != Multiple-1; ++i) { 2265 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2266 2267 LeadingZero &= isNullConstant(UniquedVals[i]); 2268 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2269 } 2270 // Finally, check the least significant entry. 2271 if (LeadingZero) { 2272 if (!UniquedVals[Multiple-1].getNode()) 2273 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2274 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2275 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2276 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2277 } 2278 if (LeadingOnes) { 2279 if (!UniquedVals[Multiple-1].getNode()) 2280 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2281 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2282 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2283 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2284 } 2285 2286 return SDValue(); 2287 } 2288 2289 // Check to see if this buildvec has a single non-undef value in its elements. 2290 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2291 if (N->getOperand(i).isUndef()) continue; 2292 if (!OpVal.getNode()) 2293 OpVal = N->getOperand(i); 2294 else if (OpVal != N->getOperand(i)) 2295 return SDValue(); 2296 } 2297 2298 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2299 2300 unsigned ValSizeInBytes = EltSize; 2301 uint64_t Value = 0; 2302 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2303 Value = CN->getZExtValue(); 2304 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2305 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2306 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2307 } 2308 2309 // If the splat value is larger than the element value, then we can never do 2310 // this splat. The only case that we could fit the replicated bits into our 2311 // immediate field for would be zero, and we prefer to use vxor for it. 2312 if (ValSizeInBytes < ByteSize) return SDValue(); 2313 2314 // If the element value is larger than the splat value, check if it consists 2315 // of a repeated bit pattern of size ByteSize. 2316 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2317 return SDValue(); 2318 2319 // Properly sign extend the value. 2320 int MaskVal = SignExtend32(Value, ByteSize * 8); 2321 2322 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2323 if (MaskVal == 0) return SDValue(); 2324 2325 // Finally, if this value fits in a 5 bit sext field, return it 2326 if (SignExtend32<5>(MaskVal) == MaskVal) 2327 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2328 return SDValue(); 2329 } 2330 2331 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2332 /// amount, otherwise return -1. 2333 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2334 EVT VT = N->getValueType(0); 2335 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2336 return -1; 2337 2338 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2339 2340 // Find the first non-undef value in the shuffle mask. 2341 unsigned i; 2342 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2343 /*search*/; 2344 2345 if (i == 4) return -1; // all undef. 2346 2347 // Otherwise, check to see if the rest of the elements are consecutively 2348 // numbered from this value. 2349 unsigned ShiftAmt = SVOp->getMaskElt(i); 2350 if (ShiftAmt < i) return -1; 2351 ShiftAmt -= i; 2352 2353 // Check the rest of the elements to see if they are consecutive. 2354 for (++i; i != 4; ++i) 2355 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2356 return -1; 2357 2358 return ShiftAmt; 2359 } 2360 2361 //===----------------------------------------------------------------------===// 2362 // Addressing Mode Selection 2363 //===----------------------------------------------------------------------===// 2364 2365 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2366 /// or 64-bit immediate, and if the value can be accurately represented as a 2367 /// sign extension from a 16-bit value. If so, this returns true and the 2368 /// immediate. 2369 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2370 if (!isa<ConstantSDNode>(N)) 2371 return false; 2372 2373 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2374 if (N->getValueType(0) == MVT::i32) 2375 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2376 else 2377 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2378 } 2379 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2380 return isIntS16Immediate(Op.getNode(), Imm); 2381 } 2382 2383 2384 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2385 /// be represented as an indexed [r+r] operation. 2386 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2387 SDValue &Index, 2388 SelectionDAG &DAG) const { 2389 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2390 UI != E; ++UI) { 2391 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2392 if (Memop->getMemoryVT() == MVT::f64) { 2393 Base = N.getOperand(0); 2394 Index = N.getOperand(1); 2395 return true; 2396 } 2397 } 2398 } 2399 return false; 2400 } 2401 2402 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2403 /// can be represented as an indexed [r+r] operation. Returns false if it 2404 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2405 /// non-zero and N can be represented by a base register plus a signed 16-bit 2406 /// displacement, make a more precise judgement by checking (displacement % \p 2407 /// EncodingAlignment). 2408 bool PPCTargetLowering::SelectAddressRegReg( 2409 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2410 MaybeAlign EncodingAlignment) const { 2411 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2412 // a [pc+imm]. 2413 if (SelectAddressPCRel(N, Base)) 2414 return false; 2415 2416 int16_t Imm = 0; 2417 if (N.getOpcode() == ISD::ADD) { 2418 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2419 // SPE load/store can only handle 8-bit offsets. 2420 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2421 return true; 2422 if (isIntS16Immediate(N.getOperand(1), Imm) && 2423 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2424 return false; // r+i 2425 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2426 return false; // r+i 2427 2428 Base = N.getOperand(0); 2429 Index = N.getOperand(1); 2430 return true; 2431 } else if (N.getOpcode() == ISD::OR) { 2432 if (isIntS16Immediate(N.getOperand(1), Imm) && 2433 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2434 return false; // r+i can fold it if we can. 2435 2436 // If this is an or of disjoint bitfields, we can codegen this as an add 2437 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2438 // disjoint. 2439 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2440 2441 if (LHSKnown.Zero.getBoolValue()) { 2442 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2443 // If all of the bits are known zero on the LHS or RHS, the add won't 2444 // carry. 2445 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2446 Base = N.getOperand(0); 2447 Index = N.getOperand(1); 2448 return true; 2449 } 2450 } 2451 } 2452 2453 return false; 2454 } 2455 2456 // If we happen to be doing an i64 load or store into a stack slot that has 2457 // less than a 4-byte alignment, then the frame-index elimination may need to 2458 // use an indexed load or store instruction (because the offset may not be a 2459 // multiple of 4). The extra register needed to hold the offset comes from the 2460 // register scavenger, and it is possible that the scavenger will need to use 2461 // an emergency spill slot. As a result, we need to make sure that a spill slot 2462 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2463 // stack slot. 2464 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2465 // FIXME: This does not handle the LWA case. 2466 if (VT != MVT::i64) 2467 return; 2468 2469 // NOTE: We'll exclude negative FIs here, which come from argument 2470 // lowering, because there are no known test cases triggering this problem 2471 // using packed structures (or similar). We can remove this exclusion if 2472 // we find such a test case. The reason why this is so test-case driven is 2473 // because this entire 'fixup' is only to prevent crashes (from the 2474 // register scavenger) on not-really-valid inputs. For example, if we have: 2475 // %a = alloca i1 2476 // %b = bitcast i1* %a to i64* 2477 // store i64* a, i64 b 2478 // then the store should really be marked as 'align 1', but is not. If it 2479 // were marked as 'align 1' then the indexed form would have been 2480 // instruction-selected initially, and the problem this 'fixup' is preventing 2481 // won't happen regardless. 2482 if (FrameIdx < 0) 2483 return; 2484 2485 MachineFunction &MF = DAG.getMachineFunction(); 2486 MachineFrameInfo &MFI = MF.getFrameInfo(); 2487 2488 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2489 return; 2490 2491 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2492 FuncInfo->setHasNonRISpills(); 2493 } 2494 2495 /// Returns true if the address N can be represented by a base register plus 2496 /// a signed 16-bit displacement [r+imm], and if it is not better 2497 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2498 /// displacements that are multiples of that value. 2499 bool PPCTargetLowering::SelectAddressRegImm( 2500 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2501 MaybeAlign EncodingAlignment) const { 2502 // FIXME dl should come from parent load or store, not from address 2503 SDLoc dl(N); 2504 2505 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2506 // a [pc+imm]. 2507 if (SelectAddressPCRel(N, Base)) 2508 return false; 2509 2510 // If this can be more profitably realized as r+r, fail. 2511 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2512 return false; 2513 2514 if (N.getOpcode() == ISD::ADD) { 2515 int16_t imm = 0; 2516 if (isIntS16Immediate(N.getOperand(1), imm) && 2517 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2518 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2519 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2520 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2521 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2522 } else { 2523 Base = N.getOperand(0); 2524 } 2525 return true; // [r+i] 2526 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2527 // Match LOAD (ADD (X, Lo(G))). 2528 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2529 && "Cannot handle constant offsets yet!"); 2530 Disp = N.getOperand(1).getOperand(0); // The global address. 2531 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2532 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2533 Disp.getOpcode() == ISD::TargetConstantPool || 2534 Disp.getOpcode() == ISD::TargetJumpTable); 2535 Base = N.getOperand(0); 2536 return true; // [&g+r] 2537 } 2538 } else if (N.getOpcode() == ISD::OR) { 2539 int16_t imm = 0; 2540 if (isIntS16Immediate(N.getOperand(1), imm) && 2541 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2542 // If this is an or of disjoint bitfields, we can codegen this as an add 2543 // (for better address arithmetic) if the LHS and RHS of the OR are 2544 // provably disjoint. 2545 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2546 2547 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2548 // If all of the bits are known zero on the LHS or RHS, the add won't 2549 // carry. 2550 if (FrameIndexSDNode *FI = 2551 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2552 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2553 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2554 } else { 2555 Base = N.getOperand(0); 2556 } 2557 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2558 return true; 2559 } 2560 } 2561 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2562 // Loading from a constant address. 2563 2564 // If this address fits entirely in a 16-bit sext immediate field, codegen 2565 // this as "d, 0" 2566 int16_t Imm; 2567 if (isIntS16Immediate(CN, Imm) && 2568 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2569 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2570 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2571 CN->getValueType(0)); 2572 return true; 2573 } 2574 2575 // Handle 32-bit sext immediates with LIS + addr mode. 2576 if ((CN->getValueType(0) == MVT::i32 || 2577 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2578 (!EncodingAlignment || 2579 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2580 int Addr = (int)CN->getZExtValue(); 2581 2582 // Otherwise, break this down into an LIS + disp. 2583 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2584 2585 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2586 MVT::i32); 2587 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2588 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2589 return true; 2590 } 2591 } 2592 2593 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2594 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2595 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2596 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2597 } else 2598 Base = N; 2599 return true; // [r+0] 2600 } 2601 2602 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2603 /// represented as an indexed [r+r] operation. 2604 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2605 SDValue &Index, 2606 SelectionDAG &DAG) const { 2607 // Check to see if we can easily represent this as an [r+r] address. This 2608 // will fail if it thinks that the address is more profitably represented as 2609 // reg+imm, e.g. where imm = 0. 2610 if (SelectAddressRegReg(N, Base, Index, DAG)) 2611 return true; 2612 2613 // If the address is the result of an add, we will utilize the fact that the 2614 // address calculation includes an implicit add. However, we can reduce 2615 // register pressure if we do not materialize a constant just for use as the 2616 // index register. We only get rid of the add if it is not an add of a 2617 // value and a 16-bit signed constant and both have a single use. 2618 int16_t imm = 0; 2619 if (N.getOpcode() == ISD::ADD && 2620 (!isIntS16Immediate(N.getOperand(1), imm) || 2621 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2622 Base = N.getOperand(0); 2623 Index = N.getOperand(1); 2624 return true; 2625 } 2626 2627 // Otherwise, do it the hard way, using R0 as the base register. 2628 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2629 N.getValueType()); 2630 Index = N; 2631 return true; 2632 } 2633 2634 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2635 Ty *PCRelCand = dyn_cast<Ty>(N); 2636 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2637 } 2638 2639 /// Returns true if this address is a PC Relative address. 2640 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2641 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2642 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2643 // This is a materialize PC Relative node. Always select this as PC Relative. 2644 Base = N; 2645 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2646 return true; 2647 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2648 isValidPCRelNode<GlobalAddressSDNode>(N) || 2649 isValidPCRelNode<JumpTableSDNode>(N) || 2650 isValidPCRelNode<BlockAddressSDNode>(N)) 2651 return true; 2652 return false; 2653 } 2654 2655 /// Returns true if we should use a direct load into vector instruction 2656 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2657 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2658 2659 // If there are any other uses other than scalar to vector, then we should 2660 // keep it as a scalar load -> direct move pattern to prevent multiple 2661 // loads. 2662 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2663 if (!LD) 2664 return false; 2665 2666 EVT MemVT = LD->getMemoryVT(); 2667 if (!MemVT.isSimple()) 2668 return false; 2669 switch(MemVT.getSimpleVT().SimpleTy) { 2670 case MVT::i64: 2671 break; 2672 case MVT::i32: 2673 if (!ST.hasP8Vector()) 2674 return false; 2675 break; 2676 case MVT::i16: 2677 case MVT::i8: 2678 if (!ST.hasP9Vector()) 2679 return false; 2680 break; 2681 default: 2682 return false; 2683 } 2684 2685 SDValue LoadedVal(N, 0); 2686 if (!LoadedVal.hasOneUse()) 2687 return false; 2688 2689 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2690 UI != UE; ++UI) 2691 if (UI.getUse().get().getResNo() == 0 && 2692 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2693 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2694 return false; 2695 2696 return true; 2697 } 2698 2699 /// getPreIndexedAddressParts - returns true by value, base pointer and 2700 /// offset pointer and addressing mode by reference if the node's address 2701 /// can be legally represented as pre-indexed load / store address. 2702 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2703 SDValue &Offset, 2704 ISD::MemIndexedMode &AM, 2705 SelectionDAG &DAG) const { 2706 if (DisablePPCPreinc) return false; 2707 2708 bool isLoad = true; 2709 SDValue Ptr; 2710 EVT VT; 2711 unsigned Alignment; 2712 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2713 Ptr = LD->getBasePtr(); 2714 VT = LD->getMemoryVT(); 2715 Alignment = LD->getAlignment(); 2716 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2717 Ptr = ST->getBasePtr(); 2718 VT = ST->getMemoryVT(); 2719 Alignment = ST->getAlignment(); 2720 isLoad = false; 2721 } else 2722 return false; 2723 2724 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2725 // instructions because we can fold these into a more efficient instruction 2726 // instead, (such as LXSD). 2727 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2728 return false; 2729 } 2730 2731 // PowerPC doesn't have preinc load/store instructions for vectors 2732 if (VT.isVector()) 2733 return false; 2734 2735 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2736 // Common code will reject creating a pre-inc form if the base pointer 2737 // is a frame index, or if N is a store and the base pointer is either 2738 // the same as or a predecessor of the value being stored. Check for 2739 // those situations here, and try with swapped Base/Offset instead. 2740 bool Swap = false; 2741 2742 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2743 Swap = true; 2744 else if (!isLoad) { 2745 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2746 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2747 Swap = true; 2748 } 2749 2750 if (Swap) 2751 std::swap(Base, Offset); 2752 2753 AM = ISD::PRE_INC; 2754 return true; 2755 } 2756 2757 // LDU/STU can only handle immediates that are a multiple of 4. 2758 if (VT != MVT::i64) { 2759 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2760 return false; 2761 } else { 2762 // LDU/STU need an address with at least 4-byte alignment. 2763 if (Alignment < 4) 2764 return false; 2765 2766 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2767 return false; 2768 } 2769 2770 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2771 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2772 // sext i32 to i64 when addr mode is r+i. 2773 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2774 LD->getExtensionType() == ISD::SEXTLOAD && 2775 isa<ConstantSDNode>(Offset)) 2776 return false; 2777 } 2778 2779 AM = ISD::PRE_INC; 2780 return true; 2781 } 2782 2783 //===----------------------------------------------------------------------===// 2784 // LowerOperation implementation 2785 //===----------------------------------------------------------------------===// 2786 2787 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2788 /// and LoOpFlags to the target MO flags. 2789 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2790 unsigned &HiOpFlags, unsigned &LoOpFlags, 2791 const GlobalValue *GV = nullptr) { 2792 HiOpFlags = PPCII::MO_HA; 2793 LoOpFlags = PPCII::MO_LO; 2794 2795 // Don't use the pic base if not in PIC relocation model. 2796 if (IsPIC) { 2797 HiOpFlags |= PPCII::MO_PIC_FLAG; 2798 LoOpFlags |= PPCII::MO_PIC_FLAG; 2799 } 2800 } 2801 2802 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2803 SelectionDAG &DAG) { 2804 SDLoc DL(HiPart); 2805 EVT PtrVT = HiPart.getValueType(); 2806 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2807 2808 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2809 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2810 2811 // With PIC, the first instruction is actually "GR+hi(&G)". 2812 if (isPIC) 2813 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2814 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2815 2816 // Generate non-pic code that has direct accesses to the constant pool. 2817 // The address of the global is just (hi(&g)+lo(&g)). 2818 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2819 } 2820 2821 static void setUsesTOCBasePtr(MachineFunction &MF) { 2822 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2823 FuncInfo->setUsesTOCBasePtr(); 2824 } 2825 2826 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2827 setUsesTOCBasePtr(DAG.getMachineFunction()); 2828 } 2829 2830 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2831 SDValue GA) const { 2832 const bool Is64Bit = Subtarget.isPPC64(); 2833 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2834 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2835 : Subtarget.isAIXABI() 2836 ? DAG.getRegister(PPC::R2, VT) 2837 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2838 SDValue Ops[] = { GA, Reg }; 2839 return DAG.getMemIntrinsicNode( 2840 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2841 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2842 MachineMemOperand::MOLoad); 2843 } 2844 2845 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2846 SelectionDAG &DAG) const { 2847 EVT PtrVT = Op.getValueType(); 2848 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2849 const Constant *C = CP->getConstVal(); 2850 2851 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2852 // The actual address of the GlobalValue is stored in the TOC. 2853 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2854 if (Subtarget.isUsingPCRelativeCalls()) { 2855 SDLoc DL(CP); 2856 EVT Ty = getPointerTy(DAG.getDataLayout()); 2857 SDValue ConstPool = DAG.getTargetConstantPool( 2858 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2859 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2860 } 2861 setUsesTOCBasePtr(DAG); 2862 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2863 return getTOCEntry(DAG, SDLoc(CP), GA); 2864 } 2865 2866 unsigned MOHiFlag, MOLoFlag; 2867 bool IsPIC = isPositionIndependent(); 2868 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2869 2870 if (IsPIC && Subtarget.isSVR4ABI()) { 2871 SDValue GA = 2872 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2873 return getTOCEntry(DAG, SDLoc(CP), GA); 2874 } 2875 2876 SDValue CPIHi = 2877 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2878 SDValue CPILo = 2879 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2880 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2881 } 2882 2883 // For 64-bit PowerPC, prefer the more compact relative encodings. 2884 // This trades 32 bits per jump table entry for one or two instructions 2885 // on the jump site. 2886 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2887 if (isJumpTableRelative()) 2888 return MachineJumpTableInfo::EK_LabelDifference32; 2889 2890 return TargetLowering::getJumpTableEncoding(); 2891 } 2892 2893 bool PPCTargetLowering::isJumpTableRelative() const { 2894 if (UseAbsoluteJumpTables) 2895 return false; 2896 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2897 return true; 2898 return TargetLowering::isJumpTableRelative(); 2899 } 2900 2901 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2902 SelectionDAG &DAG) const { 2903 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2904 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2905 2906 switch (getTargetMachine().getCodeModel()) { 2907 case CodeModel::Small: 2908 case CodeModel::Medium: 2909 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2910 default: 2911 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2912 getPointerTy(DAG.getDataLayout())); 2913 } 2914 } 2915 2916 const MCExpr * 2917 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2918 unsigned JTI, 2919 MCContext &Ctx) const { 2920 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2921 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2922 2923 switch (getTargetMachine().getCodeModel()) { 2924 case CodeModel::Small: 2925 case CodeModel::Medium: 2926 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2927 default: 2928 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2929 } 2930 } 2931 2932 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2933 EVT PtrVT = Op.getValueType(); 2934 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2935 2936 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2937 if (Subtarget.isUsingPCRelativeCalls()) { 2938 SDLoc DL(JT); 2939 EVT Ty = getPointerTy(DAG.getDataLayout()); 2940 SDValue GA = 2941 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2942 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2943 return MatAddr; 2944 } 2945 2946 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2947 // The actual address of the GlobalValue is stored in the TOC. 2948 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2949 setUsesTOCBasePtr(DAG); 2950 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2951 return getTOCEntry(DAG, SDLoc(JT), GA); 2952 } 2953 2954 unsigned MOHiFlag, MOLoFlag; 2955 bool IsPIC = isPositionIndependent(); 2956 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2957 2958 if (IsPIC && Subtarget.isSVR4ABI()) { 2959 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2960 PPCII::MO_PIC_FLAG); 2961 return getTOCEntry(DAG, SDLoc(GA), GA); 2962 } 2963 2964 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2965 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2966 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2967 } 2968 2969 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2970 SelectionDAG &DAG) const { 2971 EVT PtrVT = Op.getValueType(); 2972 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2973 const BlockAddress *BA = BASDN->getBlockAddress(); 2974 2975 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2976 if (Subtarget.isUsingPCRelativeCalls()) { 2977 SDLoc DL(BASDN); 2978 EVT Ty = getPointerTy(DAG.getDataLayout()); 2979 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2980 PPCII::MO_PCREL_FLAG); 2981 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2982 return MatAddr; 2983 } 2984 2985 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2986 // The actual BlockAddress is stored in the TOC. 2987 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2988 setUsesTOCBasePtr(DAG); 2989 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2990 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2991 } 2992 2993 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2994 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2995 return getTOCEntry( 2996 DAG, SDLoc(BASDN), 2997 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2998 2999 unsigned MOHiFlag, MOLoFlag; 3000 bool IsPIC = isPositionIndependent(); 3001 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3002 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3003 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3004 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3005 } 3006 3007 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3008 SelectionDAG &DAG) const { 3009 // FIXME: TLS addresses currently use medium model code sequences, 3010 // which is the most useful form. Eventually support for small and 3011 // large models could be added if users need it, at the cost of 3012 // additional complexity. 3013 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3014 if (DAG.getTarget().useEmulatedTLS()) 3015 return LowerToTLSEmulatedModel(GA, DAG); 3016 3017 SDLoc dl(GA); 3018 const GlobalValue *GV = GA->getGlobal(); 3019 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3020 bool is64bit = Subtarget.isPPC64(); 3021 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3022 PICLevel::Level picLevel = M->getPICLevel(); 3023 3024 const TargetMachine &TM = getTargetMachine(); 3025 TLSModel::Model Model = TM.getTLSModel(GV); 3026 3027 if (Model == TLSModel::LocalExec) { 3028 if (Subtarget.isUsingPCRelativeCalls()) { 3029 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3030 SDValue TGA = DAG.getTargetGlobalAddress( 3031 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3032 SDValue MatAddr = 3033 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3034 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3035 } 3036 3037 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3038 PPCII::MO_TPREL_HA); 3039 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3040 PPCII::MO_TPREL_LO); 3041 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3042 : DAG.getRegister(PPC::R2, MVT::i32); 3043 3044 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3045 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3046 } 3047 3048 if (Model == TLSModel::InitialExec) { 3049 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3050 SDValue TGA = DAG.getTargetGlobalAddress( 3051 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3052 SDValue TGATLS = DAG.getTargetGlobalAddress( 3053 GV, dl, PtrVT, 0, 3054 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3055 SDValue TPOffset; 3056 if (IsPCRel) { 3057 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3058 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3059 MachinePointerInfo()); 3060 } else { 3061 SDValue GOTPtr; 3062 if (is64bit) { 3063 setUsesTOCBasePtr(DAG); 3064 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3065 GOTPtr = 3066 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3067 } else { 3068 if (!TM.isPositionIndependent()) 3069 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3070 else if (picLevel == PICLevel::SmallPIC) 3071 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3072 else 3073 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3074 } 3075 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3076 } 3077 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3078 } 3079 3080 if (Model == TLSModel::GeneralDynamic) { 3081 if (Subtarget.isUsingPCRelativeCalls()) { 3082 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3083 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3084 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3085 } 3086 3087 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3088 SDValue GOTPtr; 3089 if (is64bit) { 3090 setUsesTOCBasePtr(DAG); 3091 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3092 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3093 GOTReg, TGA); 3094 } else { 3095 if (picLevel == PICLevel::SmallPIC) 3096 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3097 else 3098 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3099 } 3100 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3101 GOTPtr, TGA, TGA); 3102 } 3103 3104 if (Model == TLSModel::LocalDynamic) { 3105 if (Subtarget.isUsingPCRelativeCalls()) { 3106 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3107 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3108 SDValue MatPCRel = 3109 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3110 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3111 } 3112 3113 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3114 SDValue GOTPtr; 3115 if (is64bit) { 3116 setUsesTOCBasePtr(DAG); 3117 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3118 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3119 GOTReg, TGA); 3120 } else { 3121 if (picLevel == PICLevel::SmallPIC) 3122 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3123 else 3124 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3125 } 3126 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3127 PtrVT, GOTPtr, TGA, TGA); 3128 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3129 PtrVT, TLSAddr, TGA); 3130 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3131 } 3132 3133 llvm_unreachable("Unknown TLS model!"); 3134 } 3135 3136 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3137 SelectionDAG &DAG) const { 3138 EVT PtrVT = Op.getValueType(); 3139 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3140 SDLoc DL(GSDN); 3141 const GlobalValue *GV = GSDN->getGlobal(); 3142 3143 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3144 // The actual address of the GlobalValue is stored in the TOC. 3145 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3146 if (Subtarget.isUsingPCRelativeCalls()) { 3147 EVT Ty = getPointerTy(DAG.getDataLayout()); 3148 if (isAccessedAsGotIndirect(Op)) { 3149 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3150 PPCII::MO_PCREL_FLAG | 3151 PPCII::MO_GOT_FLAG); 3152 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3153 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3154 MachinePointerInfo()); 3155 return Load; 3156 } else { 3157 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3158 PPCII::MO_PCREL_FLAG); 3159 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3160 } 3161 } 3162 setUsesTOCBasePtr(DAG); 3163 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3164 return getTOCEntry(DAG, DL, GA); 3165 } 3166 3167 unsigned MOHiFlag, MOLoFlag; 3168 bool IsPIC = isPositionIndependent(); 3169 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3170 3171 if (IsPIC && Subtarget.isSVR4ABI()) { 3172 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3173 GSDN->getOffset(), 3174 PPCII::MO_PIC_FLAG); 3175 return getTOCEntry(DAG, DL, GA); 3176 } 3177 3178 SDValue GAHi = 3179 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3180 SDValue GALo = 3181 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3182 3183 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3184 } 3185 3186 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3187 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3188 SDLoc dl(Op); 3189 3190 if (Op.getValueType() == MVT::v2i64) { 3191 // When the operands themselves are v2i64 values, we need to do something 3192 // special because VSX has no underlying comparison operations for these. 3193 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3194 // Equality can be handled by casting to the legal type for Altivec 3195 // comparisons, everything else needs to be expanded. 3196 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3197 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3198 DAG.getSetCC(dl, MVT::v4i32, 3199 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3200 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3201 CC)); 3202 } 3203 3204 return SDValue(); 3205 } 3206 3207 // We handle most of these in the usual way. 3208 return Op; 3209 } 3210 3211 // If we're comparing for equality to zero, expose the fact that this is 3212 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3213 // fold the new nodes. 3214 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3215 return V; 3216 3217 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3218 // Leave comparisons against 0 and -1 alone for now, since they're usually 3219 // optimized. FIXME: revisit this when we can custom lower all setcc 3220 // optimizations. 3221 if (C->isAllOnesValue() || C->isNullValue()) 3222 return SDValue(); 3223 } 3224 3225 // If we have an integer seteq/setne, turn it into a compare against zero 3226 // by xor'ing the rhs with the lhs, which is faster than setting a 3227 // condition register, reading it back out, and masking the correct bit. The 3228 // normal approach here uses sub to do this instead of xor. Using xor exposes 3229 // the result to other bit-twiddling opportunities. 3230 EVT LHSVT = Op.getOperand(0).getValueType(); 3231 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3232 EVT VT = Op.getValueType(); 3233 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3234 Op.getOperand(1)); 3235 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3236 } 3237 return SDValue(); 3238 } 3239 3240 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3241 SDNode *Node = Op.getNode(); 3242 EVT VT = Node->getValueType(0); 3243 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3244 SDValue InChain = Node->getOperand(0); 3245 SDValue VAListPtr = Node->getOperand(1); 3246 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3247 SDLoc dl(Node); 3248 3249 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3250 3251 // gpr_index 3252 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3253 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3254 InChain = GprIndex.getValue(1); 3255 3256 if (VT == MVT::i64) { 3257 // Check if GprIndex is even 3258 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3259 DAG.getConstant(1, dl, MVT::i32)); 3260 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3261 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3262 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3263 DAG.getConstant(1, dl, MVT::i32)); 3264 // Align GprIndex to be even if it isn't 3265 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3266 GprIndex); 3267 } 3268 3269 // fpr index is 1 byte after gpr 3270 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3271 DAG.getConstant(1, dl, MVT::i32)); 3272 3273 // fpr 3274 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3275 FprPtr, MachinePointerInfo(SV), MVT::i8); 3276 InChain = FprIndex.getValue(1); 3277 3278 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3279 DAG.getConstant(8, dl, MVT::i32)); 3280 3281 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3282 DAG.getConstant(4, dl, MVT::i32)); 3283 3284 // areas 3285 SDValue OverflowArea = 3286 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3287 InChain = OverflowArea.getValue(1); 3288 3289 SDValue RegSaveArea = 3290 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3291 InChain = RegSaveArea.getValue(1); 3292 3293 // select overflow_area if index > 8 3294 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3295 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3296 3297 // adjustment constant gpr_index * 4/8 3298 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3299 VT.isInteger() ? GprIndex : FprIndex, 3300 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3301 MVT::i32)); 3302 3303 // OurReg = RegSaveArea + RegConstant 3304 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3305 RegConstant); 3306 3307 // Floating types are 32 bytes into RegSaveArea 3308 if (VT.isFloatingPoint()) 3309 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3310 DAG.getConstant(32, dl, MVT::i32)); 3311 3312 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3313 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3314 VT.isInteger() ? GprIndex : FprIndex, 3315 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3316 MVT::i32)); 3317 3318 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3319 VT.isInteger() ? VAListPtr : FprPtr, 3320 MachinePointerInfo(SV), MVT::i8); 3321 3322 // determine if we should load from reg_save_area or overflow_area 3323 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3324 3325 // increase overflow_area by 4/8 if gpr/fpr > 8 3326 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3327 DAG.getConstant(VT.isInteger() ? 4 : 8, 3328 dl, MVT::i32)); 3329 3330 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3331 OverflowAreaPlusN); 3332 3333 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3334 MachinePointerInfo(), MVT::i32); 3335 3336 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3337 } 3338 3339 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3340 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3341 3342 // We have to copy the entire va_list struct: 3343 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3344 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3345 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3346 false, true, false, MachinePointerInfo(), 3347 MachinePointerInfo()); 3348 } 3349 3350 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3351 SelectionDAG &DAG) const { 3352 if (Subtarget.isAIXABI()) 3353 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3354 3355 return Op.getOperand(0); 3356 } 3357 3358 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3359 SelectionDAG &DAG) const { 3360 if (Subtarget.isAIXABI()) 3361 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3362 3363 SDValue Chain = Op.getOperand(0); 3364 SDValue Trmp = Op.getOperand(1); // trampoline 3365 SDValue FPtr = Op.getOperand(2); // nested function 3366 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3367 SDLoc dl(Op); 3368 3369 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3370 bool isPPC64 = (PtrVT == MVT::i64); 3371 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3372 3373 TargetLowering::ArgListTy Args; 3374 TargetLowering::ArgListEntry Entry; 3375 3376 Entry.Ty = IntPtrTy; 3377 Entry.Node = Trmp; Args.push_back(Entry); 3378 3379 // TrampSize == (isPPC64 ? 48 : 40); 3380 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3381 isPPC64 ? MVT::i64 : MVT::i32); 3382 Args.push_back(Entry); 3383 3384 Entry.Node = FPtr; Args.push_back(Entry); 3385 Entry.Node = Nest; Args.push_back(Entry); 3386 3387 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3388 TargetLowering::CallLoweringInfo CLI(DAG); 3389 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3390 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3391 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3392 3393 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3394 return CallResult.second; 3395 } 3396 3397 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3398 MachineFunction &MF = DAG.getMachineFunction(); 3399 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3400 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3401 3402 SDLoc dl(Op); 3403 3404 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3405 // vastart just stores the address of the VarArgsFrameIndex slot into the 3406 // memory location argument. 3407 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3408 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3409 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3410 MachinePointerInfo(SV)); 3411 } 3412 3413 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3414 // We suppose the given va_list is already allocated. 3415 // 3416 // typedef struct { 3417 // char gpr; /* index into the array of 8 GPRs 3418 // * stored in the register save area 3419 // * gpr=0 corresponds to r3, 3420 // * gpr=1 to r4, etc. 3421 // */ 3422 // char fpr; /* index into the array of 8 FPRs 3423 // * stored in the register save area 3424 // * fpr=0 corresponds to f1, 3425 // * fpr=1 to f2, etc. 3426 // */ 3427 // char *overflow_arg_area; 3428 // /* location on stack that holds 3429 // * the next overflow argument 3430 // */ 3431 // char *reg_save_area; 3432 // /* where r3:r10 and f1:f8 (if saved) 3433 // * are stored 3434 // */ 3435 // } va_list[1]; 3436 3437 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3438 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3439 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3440 PtrVT); 3441 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3442 PtrVT); 3443 3444 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3445 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3446 3447 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3448 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3449 3450 uint64_t FPROffset = 1; 3451 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3452 3453 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3454 3455 // Store first byte : number of int regs 3456 SDValue firstStore = 3457 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3458 MachinePointerInfo(SV), MVT::i8); 3459 uint64_t nextOffset = FPROffset; 3460 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3461 ConstFPROffset); 3462 3463 // Store second byte : number of float regs 3464 SDValue secondStore = 3465 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3466 MachinePointerInfo(SV, nextOffset), MVT::i8); 3467 nextOffset += StackOffset; 3468 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3469 3470 // Store second word : arguments given on stack 3471 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3472 MachinePointerInfo(SV, nextOffset)); 3473 nextOffset += FrameOffset; 3474 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3475 3476 // Store third word : arguments given in registers 3477 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3478 MachinePointerInfo(SV, nextOffset)); 3479 } 3480 3481 /// FPR - The set of FP registers that should be allocated for arguments 3482 /// on Darwin and AIX. 3483 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3484 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3485 PPC::F11, PPC::F12, PPC::F13}; 3486 3487 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3488 /// the stack. 3489 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3490 unsigned PtrByteSize) { 3491 unsigned ArgSize = ArgVT.getStoreSize(); 3492 if (Flags.isByVal()) 3493 ArgSize = Flags.getByValSize(); 3494 3495 // Round up to multiples of the pointer size, except for array members, 3496 // which are always packed. 3497 if (!Flags.isInConsecutiveRegs()) 3498 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3499 3500 return ArgSize; 3501 } 3502 3503 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3504 /// on the stack. 3505 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3506 ISD::ArgFlagsTy Flags, 3507 unsigned PtrByteSize) { 3508 Align Alignment(PtrByteSize); 3509 3510 // Altivec parameters are padded to a 16 byte boundary. 3511 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3512 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3513 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3514 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3515 Alignment = Align(16); 3516 3517 // ByVal parameters are aligned as requested. 3518 if (Flags.isByVal()) { 3519 auto BVAlign = Flags.getNonZeroByValAlign(); 3520 if (BVAlign > PtrByteSize) { 3521 if (BVAlign.value() % PtrByteSize != 0) 3522 llvm_unreachable( 3523 "ByVal alignment is not a multiple of the pointer size"); 3524 3525 Alignment = BVAlign; 3526 } 3527 } 3528 3529 // Array members are always packed to their original alignment. 3530 if (Flags.isInConsecutiveRegs()) { 3531 // If the array member was split into multiple registers, the first 3532 // needs to be aligned to the size of the full type. (Except for 3533 // ppcf128, which is only aligned as its f64 components.) 3534 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3535 Alignment = Align(OrigVT.getStoreSize()); 3536 else 3537 Alignment = Align(ArgVT.getStoreSize()); 3538 } 3539 3540 return Alignment; 3541 } 3542 3543 /// CalculateStackSlotUsed - Return whether this argument will use its 3544 /// stack slot (instead of being passed in registers). ArgOffset, 3545 /// AvailableFPRs, and AvailableVRs must hold the current argument 3546 /// position, and will be updated to account for this argument. 3547 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3548 unsigned PtrByteSize, unsigned LinkageSize, 3549 unsigned ParamAreaSize, unsigned &ArgOffset, 3550 unsigned &AvailableFPRs, 3551 unsigned &AvailableVRs) { 3552 bool UseMemory = false; 3553 3554 // Respect alignment of argument on the stack. 3555 Align Alignment = 3556 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3557 ArgOffset = alignTo(ArgOffset, Alignment); 3558 // If there's no space left in the argument save area, we must 3559 // use memory (this check also catches zero-sized arguments). 3560 if (ArgOffset >= LinkageSize + ParamAreaSize) 3561 UseMemory = true; 3562 3563 // Allocate argument on the stack. 3564 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3565 if (Flags.isInConsecutiveRegsLast()) 3566 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3567 // If we overran the argument save area, we must use memory 3568 // (this check catches arguments passed partially in memory) 3569 if (ArgOffset > LinkageSize + ParamAreaSize) 3570 UseMemory = true; 3571 3572 // However, if the argument is actually passed in an FPR or a VR, 3573 // we don't use memory after all. 3574 if (!Flags.isByVal()) { 3575 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3576 if (AvailableFPRs > 0) { 3577 --AvailableFPRs; 3578 return false; 3579 } 3580 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3581 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3582 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3583 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3584 if (AvailableVRs > 0) { 3585 --AvailableVRs; 3586 return false; 3587 } 3588 } 3589 3590 return UseMemory; 3591 } 3592 3593 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3594 /// ensure minimum alignment required for target. 3595 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3596 unsigned NumBytes) { 3597 return alignTo(NumBytes, Lowering->getStackAlign()); 3598 } 3599 3600 SDValue PPCTargetLowering::LowerFormalArguments( 3601 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3602 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3603 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3604 if (Subtarget.isAIXABI()) 3605 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3606 InVals); 3607 if (Subtarget.is64BitELFABI()) 3608 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3609 InVals); 3610 if (Subtarget.is32BitELFABI()) 3611 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3612 InVals); 3613 3614 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3615 InVals); 3616 } 3617 3618 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3619 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3622 3623 // 32-bit SVR4 ABI Stack Frame Layout: 3624 // +-----------------------------------+ 3625 // +--> | Back chain | 3626 // | +-----------------------------------+ 3627 // | | Floating-point register save area | 3628 // | +-----------------------------------+ 3629 // | | General register save area | 3630 // | +-----------------------------------+ 3631 // | | CR save word | 3632 // | +-----------------------------------+ 3633 // | | VRSAVE save word | 3634 // | +-----------------------------------+ 3635 // | | Alignment padding | 3636 // | +-----------------------------------+ 3637 // | | Vector register save area | 3638 // | +-----------------------------------+ 3639 // | | Local variable space | 3640 // | +-----------------------------------+ 3641 // | | Parameter list area | 3642 // | +-----------------------------------+ 3643 // | | LR save word | 3644 // | +-----------------------------------+ 3645 // SP--> +--- | Back chain | 3646 // +-----------------------------------+ 3647 // 3648 // Specifications: 3649 // System V Application Binary Interface PowerPC Processor Supplement 3650 // AltiVec Technology Programming Interface Manual 3651 3652 MachineFunction &MF = DAG.getMachineFunction(); 3653 MachineFrameInfo &MFI = MF.getFrameInfo(); 3654 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3655 3656 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3657 // Potential tail calls could cause overwriting of argument stack slots. 3658 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3659 (CallConv == CallingConv::Fast)); 3660 const Align PtrAlign(4); 3661 3662 // Assign locations to all of the incoming arguments. 3663 SmallVector<CCValAssign, 16> ArgLocs; 3664 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3665 *DAG.getContext()); 3666 3667 // Reserve space for the linkage area on the stack. 3668 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3669 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3670 if (useSoftFloat()) 3671 CCInfo.PreAnalyzeFormalArguments(Ins); 3672 3673 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3674 CCInfo.clearWasPPCF128(); 3675 3676 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3677 CCValAssign &VA = ArgLocs[i]; 3678 3679 // Arguments stored in registers. 3680 if (VA.isRegLoc()) { 3681 const TargetRegisterClass *RC; 3682 EVT ValVT = VA.getValVT(); 3683 3684 switch (ValVT.getSimpleVT().SimpleTy) { 3685 default: 3686 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3687 case MVT::i1: 3688 case MVT::i32: 3689 RC = &PPC::GPRCRegClass; 3690 break; 3691 case MVT::f32: 3692 if (Subtarget.hasP8Vector()) 3693 RC = &PPC::VSSRCRegClass; 3694 else if (Subtarget.hasSPE()) 3695 RC = &PPC::GPRCRegClass; 3696 else 3697 RC = &PPC::F4RCRegClass; 3698 break; 3699 case MVT::f64: 3700 if (Subtarget.hasVSX()) 3701 RC = &PPC::VSFRCRegClass; 3702 else if (Subtarget.hasSPE()) 3703 // SPE passes doubles in GPR pairs. 3704 RC = &PPC::GPRCRegClass; 3705 else 3706 RC = &PPC::F8RCRegClass; 3707 break; 3708 case MVT::v16i8: 3709 case MVT::v8i16: 3710 case MVT::v4i32: 3711 RC = &PPC::VRRCRegClass; 3712 break; 3713 case MVT::v4f32: 3714 RC = &PPC::VRRCRegClass; 3715 break; 3716 case MVT::v2f64: 3717 case MVT::v2i64: 3718 RC = &PPC::VRRCRegClass; 3719 break; 3720 } 3721 3722 SDValue ArgValue; 3723 // Transform the arguments stored in physical registers into 3724 // virtual ones. 3725 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3726 assert(i + 1 < e && "No second half of double precision argument"); 3727 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3728 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3729 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3730 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3731 if (!Subtarget.isLittleEndian()) 3732 std::swap (ArgValueLo, ArgValueHi); 3733 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3734 ArgValueHi); 3735 } else { 3736 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3737 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3738 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3739 if (ValVT == MVT::i1) 3740 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3741 } 3742 3743 InVals.push_back(ArgValue); 3744 } else { 3745 // Argument stored in memory. 3746 assert(VA.isMemLoc()); 3747 3748 // Get the extended size of the argument type in stack 3749 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3750 // Get the actual size of the argument type 3751 unsigned ObjSize = VA.getValVT().getStoreSize(); 3752 unsigned ArgOffset = VA.getLocMemOffset(); 3753 // Stack objects in PPC32 are right justified. 3754 ArgOffset += ArgSize - ObjSize; 3755 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3756 3757 // Create load nodes to retrieve arguments from the stack. 3758 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3759 InVals.push_back( 3760 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3761 } 3762 } 3763 3764 // Assign locations to all of the incoming aggregate by value arguments. 3765 // Aggregates passed by value are stored in the local variable space of the 3766 // caller's stack frame, right above the parameter list area. 3767 SmallVector<CCValAssign, 16> ByValArgLocs; 3768 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3769 ByValArgLocs, *DAG.getContext()); 3770 3771 // Reserve stack space for the allocations in CCInfo. 3772 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3773 3774 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3775 3776 // Area that is at least reserved in the caller of this function. 3777 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3778 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3779 3780 // Set the size that is at least reserved in caller of this function. Tail 3781 // call optimized function's reserved stack space needs to be aligned so that 3782 // taking the difference between two stack areas will result in an aligned 3783 // stack. 3784 MinReservedArea = 3785 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3786 FuncInfo->setMinReservedArea(MinReservedArea); 3787 3788 SmallVector<SDValue, 8> MemOps; 3789 3790 // If the function takes variable number of arguments, make a frame index for 3791 // the start of the first vararg value... for expansion of llvm.va_start. 3792 if (isVarArg) { 3793 static const MCPhysReg GPArgRegs[] = { 3794 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3795 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3796 }; 3797 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3798 3799 static const MCPhysReg FPArgRegs[] = { 3800 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3801 PPC::F8 3802 }; 3803 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3804 3805 if (useSoftFloat() || hasSPE()) 3806 NumFPArgRegs = 0; 3807 3808 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3809 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3810 3811 // Make room for NumGPArgRegs and NumFPArgRegs. 3812 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3813 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3814 3815 FuncInfo->setVarArgsStackOffset( 3816 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3817 CCInfo.getNextStackOffset(), true)); 3818 3819 FuncInfo->setVarArgsFrameIndex( 3820 MFI.CreateStackObject(Depth, Align(8), false)); 3821 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3822 3823 // The fixed integer arguments of a variadic function are stored to the 3824 // VarArgsFrameIndex on the stack so that they may be loaded by 3825 // dereferencing the result of va_next. 3826 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3827 // Get an existing live-in vreg, or add a new one. 3828 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3829 if (!VReg) 3830 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3831 3832 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3833 SDValue Store = 3834 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3835 MemOps.push_back(Store); 3836 // Increment the address by four for the next argument to store 3837 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3838 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3839 } 3840 3841 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3842 // is set. 3843 // The double arguments are stored to the VarArgsFrameIndex 3844 // on the stack. 3845 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3846 // Get an existing live-in vreg, or add a new one. 3847 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3848 if (!VReg) 3849 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3850 3851 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3852 SDValue Store = 3853 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3854 MemOps.push_back(Store); 3855 // Increment the address by eight for the next argument to store 3856 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3857 PtrVT); 3858 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3859 } 3860 } 3861 3862 if (!MemOps.empty()) 3863 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3864 3865 return Chain; 3866 } 3867 3868 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3869 // value to MVT::i64 and then truncate to the correct register size. 3870 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3871 EVT ObjectVT, SelectionDAG &DAG, 3872 SDValue ArgVal, 3873 const SDLoc &dl) const { 3874 if (Flags.isSExt()) 3875 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3876 DAG.getValueType(ObjectVT)); 3877 else if (Flags.isZExt()) 3878 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3879 DAG.getValueType(ObjectVT)); 3880 3881 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3882 } 3883 3884 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3885 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3886 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3887 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3888 // TODO: add description of PPC stack frame format, or at least some docs. 3889 // 3890 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3891 bool isLittleEndian = Subtarget.isLittleEndian(); 3892 MachineFunction &MF = DAG.getMachineFunction(); 3893 MachineFrameInfo &MFI = MF.getFrameInfo(); 3894 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3895 3896 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3897 "fastcc not supported on varargs functions"); 3898 3899 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3900 // Potential tail calls could cause overwriting of argument stack slots. 3901 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3902 (CallConv == CallingConv::Fast)); 3903 unsigned PtrByteSize = 8; 3904 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3905 3906 static const MCPhysReg GPR[] = { 3907 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3908 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3909 }; 3910 static const MCPhysReg VR[] = { 3911 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3912 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3913 }; 3914 3915 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3916 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3917 const unsigned Num_VR_Regs = array_lengthof(VR); 3918 3919 // Do a first pass over the arguments to determine whether the ABI 3920 // guarantees that our caller has allocated the parameter save area 3921 // on its stack frame. In the ELFv1 ABI, this is always the case; 3922 // in the ELFv2 ABI, it is true if this is a vararg function or if 3923 // any parameter is located in a stack slot. 3924 3925 bool HasParameterArea = !isELFv2ABI || isVarArg; 3926 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3927 unsigned NumBytes = LinkageSize; 3928 unsigned AvailableFPRs = Num_FPR_Regs; 3929 unsigned AvailableVRs = Num_VR_Regs; 3930 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3931 if (Ins[i].Flags.isNest()) 3932 continue; 3933 3934 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3935 PtrByteSize, LinkageSize, ParamAreaSize, 3936 NumBytes, AvailableFPRs, AvailableVRs)) 3937 HasParameterArea = true; 3938 } 3939 3940 // Add DAG nodes to load the arguments or copy them out of registers. On 3941 // entry to a function on PPC, the arguments start after the linkage area, 3942 // although the first ones are often in registers. 3943 3944 unsigned ArgOffset = LinkageSize; 3945 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3946 SmallVector<SDValue, 8> MemOps; 3947 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3948 unsigned CurArgIdx = 0; 3949 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3950 SDValue ArgVal; 3951 bool needsLoad = false; 3952 EVT ObjectVT = Ins[ArgNo].VT; 3953 EVT OrigVT = Ins[ArgNo].ArgVT; 3954 unsigned ObjSize = ObjectVT.getStoreSize(); 3955 unsigned ArgSize = ObjSize; 3956 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3957 if (Ins[ArgNo].isOrigArg()) { 3958 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3959 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3960 } 3961 // We re-align the argument offset for each argument, except when using the 3962 // fast calling convention, when we need to make sure we do that only when 3963 // we'll actually use a stack slot. 3964 unsigned CurArgOffset; 3965 Align Alignment; 3966 auto ComputeArgOffset = [&]() { 3967 /* Respect alignment of argument on the stack. */ 3968 Alignment = 3969 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3970 ArgOffset = alignTo(ArgOffset, Alignment); 3971 CurArgOffset = ArgOffset; 3972 }; 3973 3974 if (CallConv != CallingConv::Fast) { 3975 ComputeArgOffset(); 3976 3977 /* Compute GPR index associated with argument offset. */ 3978 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3979 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3980 } 3981 3982 // FIXME the codegen can be much improved in some cases. 3983 // We do not have to keep everything in memory. 3984 if (Flags.isByVal()) { 3985 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3986 3987 if (CallConv == CallingConv::Fast) 3988 ComputeArgOffset(); 3989 3990 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3991 ObjSize = Flags.getByValSize(); 3992 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3993 // Empty aggregate parameters do not take up registers. Examples: 3994 // struct { } a; 3995 // union { } b; 3996 // int c[0]; 3997 // etc. However, we have to provide a place-holder in InVals, so 3998 // pretend we have an 8-byte item at the current address for that 3999 // purpose. 4000 if (!ObjSize) { 4001 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4002 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4003 InVals.push_back(FIN); 4004 continue; 4005 } 4006 4007 // Create a stack object covering all stack doublewords occupied 4008 // by the argument. If the argument is (fully or partially) on 4009 // the stack, or if the argument is fully in registers but the 4010 // caller has allocated the parameter save anyway, we can refer 4011 // directly to the caller's stack frame. Otherwise, create a 4012 // local copy in our own frame. 4013 int FI; 4014 if (HasParameterArea || 4015 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4016 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4017 else 4018 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4019 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4020 4021 // Handle aggregates smaller than 8 bytes. 4022 if (ObjSize < PtrByteSize) { 4023 // The value of the object is its address, which differs from the 4024 // address of the enclosing doubleword on big-endian systems. 4025 SDValue Arg = FIN; 4026 if (!isLittleEndian) { 4027 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4028 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4029 } 4030 InVals.push_back(Arg); 4031 4032 if (GPR_idx != Num_GPR_Regs) { 4033 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4034 FuncInfo->addLiveInAttr(VReg, Flags); 4035 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4036 SDValue Store; 4037 4038 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4039 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4040 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4041 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4042 MachinePointerInfo(&*FuncArg), ObjType); 4043 } else { 4044 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4045 // store the whole register as-is to the parameter save area 4046 // slot. 4047 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4048 MachinePointerInfo(&*FuncArg)); 4049 } 4050 4051 MemOps.push_back(Store); 4052 } 4053 // Whether we copied from a register or not, advance the offset 4054 // into the parameter save area by a full doubleword. 4055 ArgOffset += PtrByteSize; 4056 continue; 4057 } 4058 4059 // The value of the object is its address, which is the address of 4060 // its first stack doubleword. 4061 InVals.push_back(FIN); 4062 4063 // Store whatever pieces of the object are in registers to memory. 4064 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4065 if (GPR_idx == Num_GPR_Regs) 4066 break; 4067 4068 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4069 FuncInfo->addLiveInAttr(VReg, Flags); 4070 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4071 SDValue Addr = FIN; 4072 if (j) { 4073 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4074 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4075 } 4076 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4077 MachinePointerInfo(&*FuncArg, j)); 4078 MemOps.push_back(Store); 4079 ++GPR_idx; 4080 } 4081 ArgOffset += ArgSize; 4082 continue; 4083 } 4084 4085 switch (ObjectVT.getSimpleVT().SimpleTy) { 4086 default: llvm_unreachable("Unhandled argument type!"); 4087 case MVT::i1: 4088 case MVT::i32: 4089 case MVT::i64: 4090 if (Flags.isNest()) { 4091 // The 'nest' parameter, if any, is passed in R11. 4092 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4093 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4094 4095 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4096 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4097 4098 break; 4099 } 4100 4101 // These can be scalar arguments or elements of an integer array type 4102 // passed directly. Clang may use those instead of "byval" aggregate 4103 // types to avoid forcing arguments to memory unnecessarily. 4104 if (GPR_idx != Num_GPR_Regs) { 4105 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4106 FuncInfo->addLiveInAttr(VReg, Flags); 4107 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4108 4109 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4110 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4111 // value to MVT::i64 and then truncate to the correct register size. 4112 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4113 } else { 4114 if (CallConv == CallingConv::Fast) 4115 ComputeArgOffset(); 4116 4117 needsLoad = true; 4118 ArgSize = PtrByteSize; 4119 } 4120 if (CallConv != CallingConv::Fast || needsLoad) 4121 ArgOffset += 8; 4122 break; 4123 4124 case MVT::f32: 4125 case MVT::f64: 4126 // These can be scalar arguments or elements of a float array type 4127 // passed directly. The latter are used to implement ELFv2 homogenous 4128 // float aggregates. 4129 if (FPR_idx != Num_FPR_Regs) { 4130 unsigned VReg; 4131 4132 if (ObjectVT == MVT::f32) 4133 VReg = MF.addLiveIn(FPR[FPR_idx], 4134 Subtarget.hasP8Vector() 4135 ? &PPC::VSSRCRegClass 4136 : &PPC::F4RCRegClass); 4137 else 4138 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4139 ? &PPC::VSFRCRegClass 4140 : &PPC::F8RCRegClass); 4141 4142 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4143 ++FPR_idx; 4144 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4145 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4146 // once we support fp <-> gpr moves. 4147 4148 // This can only ever happen in the presence of f32 array types, 4149 // since otherwise we never run out of FPRs before running out 4150 // of GPRs. 4151 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4152 FuncInfo->addLiveInAttr(VReg, Flags); 4153 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4154 4155 if (ObjectVT == MVT::f32) { 4156 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4157 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4158 DAG.getConstant(32, dl, MVT::i32)); 4159 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4160 } 4161 4162 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4163 } else { 4164 if (CallConv == CallingConv::Fast) 4165 ComputeArgOffset(); 4166 4167 needsLoad = true; 4168 } 4169 4170 // When passing an array of floats, the array occupies consecutive 4171 // space in the argument area; only round up to the next doubleword 4172 // at the end of the array. Otherwise, each float takes 8 bytes. 4173 if (CallConv != CallingConv::Fast || needsLoad) { 4174 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4175 ArgOffset += ArgSize; 4176 if (Flags.isInConsecutiveRegsLast()) 4177 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4178 } 4179 break; 4180 case MVT::v4f32: 4181 case MVT::v4i32: 4182 case MVT::v8i16: 4183 case MVT::v16i8: 4184 case MVT::v2f64: 4185 case MVT::v2i64: 4186 case MVT::v1i128: 4187 case MVT::f128: 4188 // These can be scalar arguments or elements of a vector array type 4189 // passed directly. The latter are used to implement ELFv2 homogenous 4190 // vector aggregates. 4191 if (VR_idx != Num_VR_Regs) { 4192 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4193 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4194 ++VR_idx; 4195 } else { 4196 if (CallConv == CallingConv::Fast) 4197 ComputeArgOffset(); 4198 needsLoad = true; 4199 } 4200 if (CallConv != CallingConv::Fast || needsLoad) 4201 ArgOffset += 16; 4202 break; 4203 } 4204 4205 // We need to load the argument to a virtual register if we determined 4206 // above that we ran out of physical registers of the appropriate type. 4207 if (needsLoad) { 4208 if (ObjSize < ArgSize && !isLittleEndian) 4209 CurArgOffset += ArgSize - ObjSize; 4210 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4211 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4212 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4213 } 4214 4215 InVals.push_back(ArgVal); 4216 } 4217 4218 // Area that is at least reserved in the caller of this function. 4219 unsigned MinReservedArea; 4220 if (HasParameterArea) 4221 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4222 else 4223 MinReservedArea = LinkageSize; 4224 4225 // Set the size that is at least reserved in caller of this function. Tail 4226 // call optimized functions' reserved stack space needs to be aligned so that 4227 // taking the difference between two stack areas will result in an aligned 4228 // stack. 4229 MinReservedArea = 4230 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4231 FuncInfo->setMinReservedArea(MinReservedArea); 4232 4233 // If the function takes variable number of arguments, make a frame index for 4234 // the start of the first vararg value... for expansion of llvm.va_start. 4235 // On ELFv2ABI spec, it writes: 4236 // C programs that are intended to be *portable* across different compilers 4237 // and architectures must use the header file <stdarg.h> to deal with variable 4238 // argument lists. 4239 if (isVarArg && MFI.hasVAStart()) { 4240 int Depth = ArgOffset; 4241 4242 FuncInfo->setVarArgsFrameIndex( 4243 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4244 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4245 4246 // If this function is vararg, store any remaining integer argument regs 4247 // to their spots on the stack so that they may be loaded by dereferencing 4248 // the result of va_next. 4249 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4250 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4251 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4252 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4253 SDValue Store = 4254 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4255 MemOps.push_back(Store); 4256 // Increment the address by four for the next argument to store 4257 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4258 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4259 } 4260 } 4261 4262 if (!MemOps.empty()) 4263 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4264 4265 return Chain; 4266 } 4267 4268 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4269 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4270 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4271 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4272 // TODO: add description of PPC stack frame format, or at least some docs. 4273 // 4274 MachineFunction &MF = DAG.getMachineFunction(); 4275 MachineFrameInfo &MFI = MF.getFrameInfo(); 4276 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4277 4278 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4279 bool isPPC64 = PtrVT == MVT::i64; 4280 // Potential tail calls could cause overwriting of argument stack slots. 4281 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4282 (CallConv == CallingConv::Fast)); 4283 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4284 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4285 unsigned ArgOffset = LinkageSize; 4286 // Area that is at least reserved in caller of this function. 4287 unsigned MinReservedArea = ArgOffset; 4288 4289 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4290 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4291 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4292 }; 4293 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4294 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4295 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4296 }; 4297 static const MCPhysReg VR[] = { 4298 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4299 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4300 }; 4301 4302 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4303 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4304 const unsigned Num_VR_Regs = array_lengthof( VR); 4305 4306 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4307 4308 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4309 4310 // In 32-bit non-varargs functions, the stack space for vectors is after the 4311 // stack space for non-vectors. We do not use this space unless we have 4312 // too many vectors to fit in registers, something that only occurs in 4313 // constructed examples:), but we have to walk the arglist to figure 4314 // that out...for the pathological case, compute VecArgOffset as the 4315 // start of the vector parameter area. Computing VecArgOffset is the 4316 // entire point of the following loop. 4317 unsigned VecArgOffset = ArgOffset; 4318 if (!isVarArg && !isPPC64) { 4319 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4320 ++ArgNo) { 4321 EVT ObjectVT = Ins[ArgNo].VT; 4322 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4323 4324 if (Flags.isByVal()) { 4325 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4326 unsigned ObjSize = Flags.getByValSize(); 4327 unsigned ArgSize = 4328 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4329 VecArgOffset += ArgSize; 4330 continue; 4331 } 4332 4333 switch(ObjectVT.getSimpleVT().SimpleTy) { 4334 default: llvm_unreachable("Unhandled argument type!"); 4335 case MVT::i1: 4336 case MVT::i32: 4337 case MVT::f32: 4338 VecArgOffset += 4; 4339 break; 4340 case MVT::i64: // PPC64 4341 case MVT::f64: 4342 // FIXME: We are guaranteed to be !isPPC64 at this point. 4343 // Does MVT::i64 apply? 4344 VecArgOffset += 8; 4345 break; 4346 case MVT::v4f32: 4347 case MVT::v4i32: 4348 case MVT::v8i16: 4349 case MVT::v16i8: 4350 // Nothing to do, we're only looking at Nonvector args here. 4351 break; 4352 } 4353 } 4354 } 4355 // We've found where the vector parameter area in memory is. Skip the 4356 // first 12 parameters; these don't use that memory. 4357 VecArgOffset = ((VecArgOffset+15)/16)*16; 4358 VecArgOffset += 12*16; 4359 4360 // Add DAG nodes to load the arguments or copy them out of registers. On 4361 // entry to a function on PPC, the arguments start after the linkage area, 4362 // although the first ones are often in registers. 4363 4364 SmallVector<SDValue, 8> MemOps; 4365 unsigned nAltivecParamsAtEnd = 0; 4366 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4367 unsigned CurArgIdx = 0; 4368 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4369 SDValue ArgVal; 4370 bool needsLoad = false; 4371 EVT ObjectVT = Ins[ArgNo].VT; 4372 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4373 unsigned ArgSize = ObjSize; 4374 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4375 if (Ins[ArgNo].isOrigArg()) { 4376 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4377 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4378 } 4379 unsigned CurArgOffset = ArgOffset; 4380 4381 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4382 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4383 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4384 if (isVarArg || isPPC64) { 4385 MinReservedArea = ((MinReservedArea+15)/16)*16; 4386 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4387 Flags, 4388 PtrByteSize); 4389 } else nAltivecParamsAtEnd++; 4390 } else 4391 // Calculate min reserved area. 4392 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4393 Flags, 4394 PtrByteSize); 4395 4396 // FIXME the codegen can be much improved in some cases. 4397 // We do not have to keep everything in memory. 4398 if (Flags.isByVal()) { 4399 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4400 4401 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4402 ObjSize = Flags.getByValSize(); 4403 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4404 // Objects of size 1 and 2 are right justified, everything else is 4405 // left justified. This means the memory address is adjusted forwards. 4406 if (ObjSize==1 || ObjSize==2) { 4407 CurArgOffset = CurArgOffset + (4 - ObjSize); 4408 } 4409 // The value of the object is its address. 4410 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4411 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4412 InVals.push_back(FIN); 4413 if (ObjSize==1 || ObjSize==2) { 4414 if (GPR_idx != Num_GPR_Regs) { 4415 unsigned VReg; 4416 if (isPPC64) 4417 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4418 else 4419 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4420 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4421 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4422 SDValue Store = 4423 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4424 MachinePointerInfo(&*FuncArg), ObjType); 4425 MemOps.push_back(Store); 4426 ++GPR_idx; 4427 } 4428 4429 ArgOffset += PtrByteSize; 4430 4431 continue; 4432 } 4433 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4434 // Store whatever pieces of the object are in registers 4435 // to memory. ArgOffset will be the address of the beginning 4436 // of the object. 4437 if (GPR_idx != Num_GPR_Regs) { 4438 unsigned VReg; 4439 if (isPPC64) 4440 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4441 else 4442 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4443 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4444 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4445 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4446 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4447 MachinePointerInfo(&*FuncArg, j)); 4448 MemOps.push_back(Store); 4449 ++GPR_idx; 4450 ArgOffset += PtrByteSize; 4451 } else { 4452 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4453 break; 4454 } 4455 } 4456 continue; 4457 } 4458 4459 switch (ObjectVT.getSimpleVT().SimpleTy) { 4460 default: llvm_unreachable("Unhandled argument type!"); 4461 case MVT::i1: 4462 case MVT::i32: 4463 if (!isPPC64) { 4464 if (GPR_idx != Num_GPR_Regs) { 4465 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4466 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4467 4468 if (ObjectVT == MVT::i1) 4469 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4470 4471 ++GPR_idx; 4472 } else { 4473 needsLoad = true; 4474 ArgSize = PtrByteSize; 4475 } 4476 // All int arguments reserve stack space in the Darwin ABI. 4477 ArgOffset += PtrByteSize; 4478 break; 4479 } 4480 LLVM_FALLTHROUGH; 4481 case MVT::i64: // PPC64 4482 if (GPR_idx != Num_GPR_Regs) { 4483 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4484 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4485 4486 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4487 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4488 // value to MVT::i64 and then truncate to the correct register size. 4489 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4490 4491 ++GPR_idx; 4492 } else { 4493 needsLoad = true; 4494 ArgSize = PtrByteSize; 4495 } 4496 // All int arguments reserve stack space in the Darwin ABI. 4497 ArgOffset += 8; 4498 break; 4499 4500 case MVT::f32: 4501 case MVT::f64: 4502 // Every 4 bytes of argument space consumes one of the GPRs available for 4503 // argument passing. 4504 if (GPR_idx != Num_GPR_Regs) { 4505 ++GPR_idx; 4506 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4507 ++GPR_idx; 4508 } 4509 if (FPR_idx != Num_FPR_Regs) { 4510 unsigned VReg; 4511 4512 if (ObjectVT == MVT::f32) 4513 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4514 else 4515 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4516 4517 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4518 ++FPR_idx; 4519 } else { 4520 needsLoad = true; 4521 } 4522 4523 // All FP arguments reserve stack space in the Darwin ABI. 4524 ArgOffset += isPPC64 ? 8 : ObjSize; 4525 break; 4526 case MVT::v4f32: 4527 case MVT::v4i32: 4528 case MVT::v8i16: 4529 case MVT::v16i8: 4530 // Note that vector arguments in registers don't reserve stack space, 4531 // except in varargs functions. 4532 if (VR_idx != Num_VR_Regs) { 4533 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4534 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4535 if (isVarArg) { 4536 while ((ArgOffset % 16) != 0) { 4537 ArgOffset += PtrByteSize; 4538 if (GPR_idx != Num_GPR_Regs) 4539 GPR_idx++; 4540 } 4541 ArgOffset += 16; 4542 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4543 } 4544 ++VR_idx; 4545 } else { 4546 if (!isVarArg && !isPPC64) { 4547 // Vectors go after all the nonvectors. 4548 CurArgOffset = VecArgOffset; 4549 VecArgOffset += 16; 4550 } else { 4551 // Vectors are aligned. 4552 ArgOffset = ((ArgOffset+15)/16)*16; 4553 CurArgOffset = ArgOffset; 4554 ArgOffset += 16; 4555 } 4556 needsLoad = true; 4557 } 4558 break; 4559 } 4560 4561 // We need to load the argument to a virtual register if we determined above 4562 // that we ran out of physical registers of the appropriate type. 4563 if (needsLoad) { 4564 int FI = MFI.CreateFixedObject(ObjSize, 4565 CurArgOffset + (ArgSize - ObjSize), 4566 isImmutable); 4567 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4568 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4569 } 4570 4571 InVals.push_back(ArgVal); 4572 } 4573 4574 // Allow for Altivec parameters at the end, if needed. 4575 if (nAltivecParamsAtEnd) { 4576 MinReservedArea = ((MinReservedArea+15)/16)*16; 4577 MinReservedArea += 16*nAltivecParamsAtEnd; 4578 } 4579 4580 // Area that is at least reserved in the caller of this function. 4581 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4582 4583 // Set the size that is at least reserved in caller of this function. Tail 4584 // call optimized functions' reserved stack space needs to be aligned so that 4585 // taking the difference between two stack areas will result in an aligned 4586 // stack. 4587 MinReservedArea = 4588 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4589 FuncInfo->setMinReservedArea(MinReservedArea); 4590 4591 // If the function takes variable number of arguments, make a frame index for 4592 // the start of the first vararg value... for expansion of llvm.va_start. 4593 if (isVarArg) { 4594 int Depth = ArgOffset; 4595 4596 FuncInfo->setVarArgsFrameIndex( 4597 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4598 Depth, true)); 4599 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4600 4601 // If this function is vararg, store any remaining integer argument regs 4602 // to their spots on the stack so that they may be loaded by dereferencing 4603 // the result of va_next. 4604 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4605 unsigned VReg; 4606 4607 if (isPPC64) 4608 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4609 else 4610 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4611 4612 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4613 SDValue Store = 4614 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4615 MemOps.push_back(Store); 4616 // Increment the address by four for the next argument to store 4617 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4618 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4619 } 4620 } 4621 4622 if (!MemOps.empty()) 4623 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4624 4625 return Chain; 4626 } 4627 4628 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4629 /// adjusted to accommodate the arguments for the tailcall. 4630 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4631 unsigned ParamSize) { 4632 4633 if (!isTailCall) return 0; 4634 4635 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4636 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4637 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4638 // Remember only if the new adjustment is bigger. 4639 if (SPDiff < FI->getTailCallSPDelta()) 4640 FI->setTailCallSPDelta(SPDiff); 4641 4642 return SPDiff; 4643 } 4644 4645 static bool isFunctionGlobalAddress(SDValue Callee); 4646 4647 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4648 const TargetMachine &TM) { 4649 // It does not make sense to call callsShareTOCBase() with a caller that 4650 // is PC Relative since PC Relative callers do not have a TOC. 4651 #ifndef NDEBUG 4652 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4653 assert(!STICaller->isUsingPCRelativeCalls() && 4654 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4655 #endif 4656 4657 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4658 // don't have enough information to determine if the caller and callee share 4659 // the same TOC base, so we have to pessimistically assume they don't for 4660 // correctness. 4661 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4662 if (!G) 4663 return false; 4664 4665 const GlobalValue *GV = G->getGlobal(); 4666 4667 // If the callee is preemptable, then the static linker will use a plt-stub 4668 // which saves the toc to the stack, and needs a nop after the call 4669 // instruction to convert to a toc-restore. 4670 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4671 return false; 4672 4673 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4674 // We may need a TOC restore in the situation where the caller requires a 4675 // valid TOC but the callee is PC Relative and does not. 4676 const Function *F = dyn_cast<Function>(GV); 4677 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4678 4679 // If we have an Alias we can try to get the function from there. 4680 if (Alias) { 4681 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4682 F = dyn_cast<Function>(GlobalObj); 4683 } 4684 4685 // If we still have no valid function pointer we do not have enough 4686 // information to determine if the callee uses PC Relative calls so we must 4687 // assume that it does. 4688 if (!F) 4689 return false; 4690 4691 // If the callee uses PC Relative we cannot guarantee that the callee won't 4692 // clobber the TOC of the caller and so we must assume that the two 4693 // functions do not share a TOC base. 4694 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4695 if (STICallee->isUsingPCRelativeCalls()) 4696 return false; 4697 4698 // The medium and large code models are expected to provide a sufficiently 4699 // large TOC to provide all data addressing needs of a module with a 4700 // single TOC. 4701 if (CodeModel::Medium == TM.getCodeModel() || 4702 CodeModel::Large == TM.getCodeModel()) 4703 return true; 4704 4705 // Otherwise we need to ensure callee and caller are in the same section, 4706 // since the linker may allocate multiple TOCs, and we don't know which 4707 // sections will belong to the same TOC base. 4708 if (!GV->isStrongDefinitionForLinker()) 4709 return false; 4710 4711 // Any explicitly-specified sections and section prefixes must also match. 4712 // Also, if we're using -ffunction-sections, then each function is always in 4713 // a different section (the same is true for COMDAT functions). 4714 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4715 GV->getSection() != Caller->getSection()) 4716 return false; 4717 if (const auto *F = dyn_cast<Function>(GV)) { 4718 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4719 return false; 4720 } 4721 4722 return true; 4723 } 4724 4725 static bool 4726 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4727 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4728 assert(Subtarget.is64BitELFABI()); 4729 4730 const unsigned PtrByteSize = 8; 4731 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4732 4733 static const MCPhysReg GPR[] = { 4734 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4735 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4736 }; 4737 static const MCPhysReg VR[] = { 4738 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4739 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4740 }; 4741 4742 const unsigned NumGPRs = array_lengthof(GPR); 4743 const unsigned NumFPRs = 13; 4744 const unsigned NumVRs = array_lengthof(VR); 4745 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4746 4747 unsigned NumBytes = LinkageSize; 4748 unsigned AvailableFPRs = NumFPRs; 4749 unsigned AvailableVRs = NumVRs; 4750 4751 for (const ISD::OutputArg& Param : Outs) { 4752 if (Param.Flags.isNest()) continue; 4753 4754 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4755 LinkageSize, ParamAreaSize, NumBytes, 4756 AvailableFPRs, AvailableVRs)) 4757 return true; 4758 } 4759 return false; 4760 } 4761 4762 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4763 if (CB.arg_size() != CallerFn->arg_size()) 4764 return false; 4765 4766 auto CalleeArgIter = CB.arg_begin(); 4767 auto CalleeArgEnd = CB.arg_end(); 4768 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4769 4770 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4771 const Value* CalleeArg = *CalleeArgIter; 4772 const Value* CallerArg = &(*CallerArgIter); 4773 if (CalleeArg == CallerArg) 4774 continue; 4775 4776 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4777 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4778 // } 4779 // 1st argument of callee is undef and has the same type as caller. 4780 if (CalleeArg->getType() == CallerArg->getType() && 4781 isa<UndefValue>(CalleeArg)) 4782 continue; 4783 4784 return false; 4785 } 4786 4787 return true; 4788 } 4789 4790 // Returns true if TCO is possible between the callers and callees 4791 // calling conventions. 4792 static bool 4793 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4794 CallingConv::ID CalleeCC) { 4795 // Tail calls are possible with fastcc and ccc. 4796 auto isTailCallableCC = [] (CallingConv::ID CC){ 4797 return CC == CallingConv::C || CC == CallingConv::Fast; 4798 }; 4799 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4800 return false; 4801 4802 // We can safely tail call both fastcc and ccc callees from a c calling 4803 // convention caller. If the caller is fastcc, we may have less stack space 4804 // than a non-fastcc caller with the same signature so disable tail-calls in 4805 // that case. 4806 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4807 } 4808 4809 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4810 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4811 const SmallVectorImpl<ISD::OutputArg> &Outs, 4812 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4813 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4814 4815 if (DisableSCO && !TailCallOpt) return false; 4816 4817 // Variadic argument functions are not supported. 4818 if (isVarArg) return false; 4819 4820 auto &Caller = DAG.getMachineFunction().getFunction(); 4821 // Check that the calling conventions are compatible for tco. 4822 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4823 return false; 4824 4825 // Caller contains any byval parameter is not supported. 4826 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4827 return false; 4828 4829 // Callee contains any byval parameter is not supported, too. 4830 // Note: This is a quick work around, because in some cases, e.g. 4831 // caller's stack size > callee's stack size, we are still able to apply 4832 // sibling call optimization. For example, gcc is able to do SCO for caller1 4833 // in the following example, but not for caller2. 4834 // struct test { 4835 // long int a; 4836 // char ary[56]; 4837 // } gTest; 4838 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4839 // b->a = v.a; 4840 // return 0; 4841 // } 4842 // void caller1(struct test a, struct test c, struct test *b) { 4843 // callee(gTest, b); } 4844 // void caller2(struct test *b) { callee(gTest, b); } 4845 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4846 return false; 4847 4848 // If callee and caller use different calling conventions, we cannot pass 4849 // parameters on stack since offsets for the parameter area may be different. 4850 if (Caller.getCallingConv() != CalleeCC && 4851 needStackSlotPassParameters(Subtarget, Outs)) 4852 return false; 4853 4854 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4855 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4856 // callee potentially have different TOC bases then we cannot tail call since 4857 // we need to restore the TOC pointer after the call. 4858 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4859 // We cannot guarantee this for indirect calls or calls to external functions. 4860 // When PC-Relative addressing is used, the concept of the TOC is no longer 4861 // applicable so this check is not required. 4862 // Check first for indirect calls. 4863 if (!Subtarget.isUsingPCRelativeCalls() && 4864 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4865 return false; 4866 4867 // Check if we share the TOC base. 4868 if (!Subtarget.isUsingPCRelativeCalls() && 4869 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4870 return false; 4871 4872 // TCO allows altering callee ABI, so we don't have to check further. 4873 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4874 return true; 4875 4876 if (DisableSCO) return false; 4877 4878 // If callee use the same argument list that caller is using, then we can 4879 // apply SCO on this case. If it is not, then we need to check if callee needs 4880 // stack for passing arguments. 4881 // PC Relative tail calls may not have a CallBase. 4882 // If there is no CallBase we cannot verify if we have the same argument 4883 // list so assume that we don't have the same argument list. 4884 if (CB && !hasSameArgumentList(&Caller, *CB) && 4885 needStackSlotPassParameters(Subtarget, Outs)) 4886 return false; 4887 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4888 return false; 4889 4890 return true; 4891 } 4892 4893 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4894 /// for tail call optimization. Targets which want to do tail call 4895 /// optimization should implement this function. 4896 bool 4897 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4898 CallingConv::ID CalleeCC, 4899 bool isVarArg, 4900 const SmallVectorImpl<ISD::InputArg> &Ins, 4901 SelectionDAG& DAG) const { 4902 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4903 return false; 4904 4905 // Variable argument functions are not supported. 4906 if (isVarArg) 4907 return false; 4908 4909 MachineFunction &MF = DAG.getMachineFunction(); 4910 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4911 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4912 // Functions containing by val parameters are not supported. 4913 for (unsigned i = 0; i != Ins.size(); i++) { 4914 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4915 if (Flags.isByVal()) return false; 4916 } 4917 4918 // Non-PIC/GOT tail calls are supported. 4919 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4920 return true; 4921 4922 // At the moment we can only do local tail calls (in same module, hidden 4923 // or protected) if we are generating PIC. 4924 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4925 return G->getGlobal()->hasHiddenVisibility() 4926 || G->getGlobal()->hasProtectedVisibility(); 4927 } 4928 4929 return false; 4930 } 4931 4932 /// isCallCompatibleAddress - Return the immediate to use if the specified 4933 /// 32-bit value is representable in the immediate field of a BxA instruction. 4934 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4935 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4936 if (!C) return nullptr; 4937 4938 int Addr = C->getZExtValue(); 4939 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4940 SignExtend32<26>(Addr) != Addr) 4941 return nullptr; // Top 6 bits have to be sext of immediate. 4942 4943 return DAG 4944 .getConstant( 4945 (int)C->getZExtValue() >> 2, SDLoc(Op), 4946 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4947 .getNode(); 4948 } 4949 4950 namespace { 4951 4952 struct TailCallArgumentInfo { 4953 SDValue Arg; 4954 SDValue FrameIdxOp; 4955 int FrameIdx = 0; 4956 4957 TailCallArgumentInfo() = default; 4958 }; 4959 4960 } // end anonymous namespace 4961 4962 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4963 static void StoreTailCallArgumentsToStackSlot( 4964 SelectionDAG &DAG, SDValue Chain, 4965 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4966 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4967 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4968 SDValue Arg = TailCallArgs[i].Arg; 4969 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4970 int FI = TailCallArgs[i].FrameIdx; 4971 // Store relative to framepointer. 4972 MemOpChains.push_back(DAG.getStore( 4973 Chain, dl, Arg, FIN, 4974 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4975 } 4976 } 4977 4978 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4979 /// the appropriate stack slot for the tail call optimized function call. 4980 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4981 SDValue OldRetAddr, SDValue OldFP, 4982 int SPDiff, const SDLoc &dl) { 4983 if (SPDiff) { 4984 // Calculate the new stack slot for the return address. 4985 MachineFunction &MF = DAG.getMachineFunction(); 4986 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4987 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4988 bool isPPC64 = Subtarget.isPPC64(); 4989 int SlotSize = isPPC64 ? 8 : 4; 4990 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4991 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4992 NewRetAddrLoc, true); 4993 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4994 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4995 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4996 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4997 } 4998 return Chain; 4999 } 5000 5001 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5002 /// the position of the argument. 5003 static void 5004 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5005 SDValue Arg, int SPDiff, unsigned ArgOffset, 5006 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5007 int Offset = ArgOffset + SPDiff; 5008 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5009 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5010 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5011 SDValue FIN = DAG.getFrameIndex(FI, VT); 5012 TailCallArgumentInfo Info; 5013 Info.Arg = Arg; 5014 Info.FrameIdxOp = FIN; 5015 Info.FrameIdx = FI; 5016 TailCallArguments.push_back(Info); 5017 } 5018 5019 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5020 /// stack slot. Returns the chain as result and the loaded frame pointers in 5021 /// LROpOut/FPOpout. Used when tail calling. 5022 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5023 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5024 SDValue &FPOpOut, const SDLoc &dl) const { 5025 if (SPDiff) { 5026 // Load the LR and FP stack slot for later adjusting. 5027 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5028 LROpOut = getReturnAddrFrameIndex(DAG); 5029 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5030 Chain = SDValue(LROpOut.getNode(), 1); 5031 } 5032 return Chain; 5033 } 5034 5035 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5036 /// by "Src" to address "Dst" of size "Size". Alignment information is 5037 /// specified by the specific parameter attribute. The copy will be passed as 5038 /// a byval function parameter. 5039 /// Sometimes what we are copying is the end of a larger object, the part that 5040 /// does not fit in registers. 5041 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5042 SDValue Chain, ISD::ArgFlagsTy Flags, 5043 SelectionDAG &DAG, const SDLoc &dl) { 5044 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5045 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5046 Flags.getNonZeroByValAlign(), false, false, false, 5047 MachinePointerInfo(), MachinePointerInfo()); 5048 } 5049 5050 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5051 /// tail calls. 5052 static void LowerMemOpCallTo( 5053 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5054 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5055 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5056 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5057 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5058 if (!isTailCall) { 5059 if (isVector) { 5060 SDValue StackPtr; 5061 if (isPPC64) 5062 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5063 else 5064 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5065 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5066 DAG.getConstant(ArgOffset, dl, PtrVT)); 5067 } 5068 MemOpChains.push_back( 5069 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5070 // Calculate and remember argument location. 5071 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5072 TailCallArguments); 5073 } 5074 5075 static void 5076 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5077 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5078 SDValue FPOp, 5079 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5080 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5081 // might overwrite each other in case of tail call optimization. 5082 SmallVector<SDValue, 8> MemOpChains2; 5083 // Do not flag preceding copytoreg stuff together with the following stuff. 5084 InFlag = SDValue(); 5085 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5086 MemOpChains2, dl); 5087 if (!MemOpChains2.empty()) 5088 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5089 5090 // Store the return address to the appropriate stack slot. 5091 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5092 5093 // Emit callseq_end just before tailcall node. 5094 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5095 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5096 InFlag = Chain.getValue(1); 5097 } 5098 5099 // Is this global address that of a function that can be called by name? (as 5100 // opposed to something that must hold a descriptor for an indirect call). 5101 static bool isFunctionGlobalAddress(SDValue Callee) { 5102 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5103 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5104 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5105 return false; 5106 5107 return G->getGlobal()->getValueType()->isFunctionTy(); 5108 } 5109 5110 return false; 5111 } 5112 5113 SDValue PPCTargetLowering::LowerCallResult( 5114 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5115 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5116 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5117 SmallVector<CCValAssign, 16> RVLocs; 5118 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5119 *DAG.getContext()); 5120 5121 CCRetInfo.AnalyzeCallResult( 5122 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5123 ? RetCC_PPC_Cold 5124 : RetCC_PPC); 5125 5126 // Copy all of the result registers out of their specified physreg. 5127 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5128 CCValAssign &VA = RVLocs[i]; 5129 assert(VA.isRegLoc() && "Can only return in registers!"); 5130 5131 SDValue Val; 5132 5133 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5134 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5135 InFlag); 5136 Chain = Lo.getValue(1); 5137 InFlag = Lo.getValue(2); 5138 VA = RVLocs[++i]; // skip ahead to next loc 5139 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5140 InFlag); 5141 Chain = Hi.getValue(1); 5142 InFlag = Hi.getValue(2); 5143 if (!Subtarget.isLittleEndian()) 5144 std::swap (Lo, Hi); 5145 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5146 } else { 5147 Val = DAG.getCopyFromReg(Chain, dl, 5148 VA.getLocReg(), VA.getLocVT(), InFlag); 5149 Chain = Val.getValue(1); 5150 InFlag = Val.getValue(2); 5151 } 5152 5153 switch (VA.getLocInfo()) { 5154 default: llvm_unreachable("Unknown loc info!"); 5155 case CCValAssign::Full: break; 5156 case CCValAssign::AExt: 5157 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5158 break; 5159 case CCValAssign::ZExt: 5160 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5161 DAG.getValueType(VA.getValVT())); 5162 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5163 break; 5164 case CCValAssign::SExt: 5165 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5166 DAG.getValueType(VA.getValVT())); 5167 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5168 break; 5169 } 5170 5171 InVals.push_back(Val); 5172 } 5173 5174 return Chain; 5175 } 5176 5177 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5178 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5179 // PatchPoint calls are not indirect. 5180 if (isPatchPoint) 5181 return false; 5182 5183 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5184 return false; 5185 5186 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5187 // becuase the immediate function pointer points to a descriptor instead of 5188 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5189 // pointer immediate points to the global entry point, while the BLA would 5190 // need to jump to the local entry point (see rL211174). 5191 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5192 isBLACompatibleAddress(Callee, DAG)) 5193 return false; 5194 5195 return true; 5196 } 5197 5198 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5199 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5200 return Subtarget.isAIXABI() || 5201 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5202 } 5203 5204 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5205 const Function &Caller, 5206 const SDValue &Callee, 5207 const PPCSubtarget &Subtarget, 5208 const TargetMachine &TM) { 5209 if (CFlags.IsTailCall) 5210 return PPCISD::TC_RETURN; 5211 5212 // This is a call through a function pointer. 5213 if (CFlags.IsIndirect) { 5214 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5215 // indirect calls. The save of the caller's TOC pointer to the stack will be 5216 // inserted into the DAG as part of call lowering. The restore of the TOC 5217 // pointer is modeled by using a pseudo instruction for the call opcode that 5218 // represents the 2 instruction sequence of an indirect branch and link, 5219 // immediately followed by a load of the TOC pointer from the the stack save 5220 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5221 // as it is not saved or used. 5222 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5223 : PPCISD::BCTRL; 5224 } 5225 5226 if (Subtarget.isUsingPCRelativeCalls()) { 5227 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5228 return PPCISD::CALL_NOTOC; 5229 } 5230 5231 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5232 // immediately following the call instruction if the caller and callee may 5233 // have different TOC bases. At link time if the linker determines the calls 5234 // may not share a TOC base, the call is redirected to a trampoline inserted 5235 // by the linker. The trampoline will (among other things) save the callers 5236 // TOC pointer at an ABI designated offset in the linkage area and the linker 5237 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5238 // into gpr2. 5239 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5240 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5241 : PPCISD::CALL_NOP; 5242 5243 return PPCISD::CALL; 5244 } 5245 5246 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5247 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5248 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5249 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5250 return SDValue(Dest, 0); 5251 5252 // Returns true if the callee is local, and false otherwise. 5253 auto isLocalCallee = [&]() { 5254 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5255 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5256 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5257 5258 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5259 !dyn_cast_or_null<GlobalIFunc>(GV); 5260 }; 5261 5262 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5263 // a static relocation model causes some versions of GNU LD (2.17.50, at 5264 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5265 // built with secure-PLT. 5266 bool UsePlt = 5267 Subtarget.is32BitELFABI() && !isLocalCallee() && 5268 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5269 5270 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5271 const TargetMachine &TM = Subtarget.getTargetMachine(); 5272 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5273 MCSymbolXCOFF *S = 5274 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5275 5276 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5277 return DAG.getMCSymbol(S, PtrVT); 5278 }; 5279 5280 if (isFunctionGlobalAddress(Callee)) { 5281 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5282 5283 if (Subtarget.isAIXABI()) { 5284 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5285 return getAIXFuncEntryPointSymbolSDNode(GV); 5286 } 5287 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5288 UsePlt ? PPCII::MO_PLT : 0); 5289 } 5290 5291 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5292 const char *SymName = S->getSymbol(); 5293 if (Subtarget.isAIXABI()) { 5294 // If there exists a user-declared function whose name is the same as the 5295 // ExternalSymbol's, then we pick up the user-declared version. 5296 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5297 if (const Function *F = 5298 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5299 return getAIXFuncEntryPointSymbolSDNode(F); 5300 5301 // On AIX, direct function calls reference the symbol for the function's 5302 // entry point, which is named by prepending a "." before the function's 5303 // C-linkage name. A Qualname is returned here because an external 5304 // function entry point is a csect with XTY_ER property. 5305 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5306 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5307 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5308 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5309 SectionKind::getMetadata()); 5310 return Sec->getQualNameSymbol(); 5311 }; 5312 5313 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5314 } 5315 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5316 UsePlt ? PPCII::MO_PLT : 0); 5317 } 5318 5319 // No transformation needed. 5320 assert(Callee.getNode() && "What no callee?"); 5321 return Callee; 5322 } 5323 5324 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5325 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5326 "Expected a CALLSEQ_STARTSDNode."); 5327 5328 // The last operand is the chain, except when the node has glue. If the node 5329 // has glue, then the last operand is the glue, and the chain is the second 5330 // last operand. 5331 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5332 if (LastValue.getValueType() != MVT::Glue) 5333 return LastValue; 5334 5335 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5336 } 5337 5338 // Creates the node that moves a functions address into the count register 5339 // to prepare for an indirect call instruction. 5340 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5341 SDValue &Glue, SDValue &Chain, 5342 const SDLoc &dl) { 5343 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5344 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5345 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5346 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5347 // The glue is the second value produced. 5348 Glue = Chain.getValue(1); 5349 } 5350 5351 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5352 SDValue &Glue, SDValue &Chain, 5353 SDValue CallSeqStart, 5354 const CallBase *CB, const SDLoc &dl, 5355 bool hasNest, 5356 const PPCSubtarget &Subtarget) { 5357 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5358 // entry point, but to the function descriptor (the function entry point 5359 // address is part of the function descriptor though). 5360 // The function descriptor is a three doubleword structure with the 5361 // following fields: function entry point, TOC base address and 5362 // environment pointer. 5363 // Thus for a call through a function pointer, the following actions need 5364 // to be performed: 5365 // 1. Save the TOC of the caller in the TOC save area of its stack 5366 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5367 // 2. Load the address of the function entry point from the function 5368 // descriptor. 5369 // 3. Load the TOC of the callee from the function descriptor into r2. 5370 // 4. Load the environment pointer from the function descriptor into 5371 // r11. 5372 // 5. Branch to the function entry point address. 5373 // 6. On return of the callee, the TOC of the caller needs to be 5374 // restored (this is done in FinishCall()). 5375 // 5376 // The loads are scheduled at the beginning of the call sequence, and the 5377 // register copies are flagged together to ensure that no other 5378 // operations can be scheduled in between. E.g. without flagging the 5379 // copies together, a TOC access in the caller could be scheduled between 5380 // the assignment of the callee TOC and the branch to the callee, which leads 5381 // to incorrect code. 5382 5383 // Start by loading the function address from the descriptor. 5384 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5385 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5386 ? (MachineMemOperand::MODereferenceable | 5387 MachineMemOperand::MOInvariant) 5388 : MachineMemOperand::MONone; 5389 5390 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5391 5392 // Registers used in building the DAG. 5393 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5394 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5395 5396 // Offsets of descriptor members. 5397 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5398 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5399 5400 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5401 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5402 5403 // One load for the functions entry point address. 5404 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5405 Alignment, MMOFlags); 5406 5407 // One for loading the TOC anchor for the module that contains the called 5408 // function. 5409 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5410 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5411 SDValue TOCPtr = 5412 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5413 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5414 5415 // One for loading the environment pointer. 5416 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5417 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5418 SDValue LoadEnvPtr = 5419 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5420 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5421 5422 5423 // Then copy the newly loaded TOC anchor to the TOC pointer. 5424 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5425 Chain = TOCVal.getValue(0); 5426 Glue = TOCVal.getValue(1); 5427 5428 // If the function call has an explicit 'nest' parameter, it takes the 5429 // place of the environment pointer. 5430 assert((!hasNest || !Subtarget.isAIXABI()) && 5431 "Nest parameter is not supported on AIX."); 5432 if (!hasNest) { 5433 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5434 Chain = EnvVal.getValue(0); 5435 Glue = EnvVal.getValue(1); 5436 } 5437 5438 // The rest of the indirect call sequence is the same as the non-descriptor 5439 // DAG. 5440 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5441 } 5442 5443 static void 5444 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5445 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5446 SelectionDAG &DAG, 5447 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5448 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5449 const PPCSubtarget &Subtarget) { 5450 const bool IsPPC64 = Subtarget.isPPC64(); 5451 // MVT for a general purpose register. 5452 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5453 5454 // First operand is always the chain. 5455 Ops.push_back(Chain); 5456 5457 // If it's a direct call pass the callee as the second operand. 5458 if (!CFlags.IsIndirect) 5459 Ops.push_back(Callee); 5460 else { 5461 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5462 5463 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5464 // on the stack (this would have been done in `LowerCall_64SVR4` or 5465 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5466 // represents both the indirect branch and a load that restores the TOC 5467 // pointer from the linkage area. The operand for the TOC restore is an add 5468 // of the TOC save offset to the stack pointer. This must be the second 5469 // operand: after the chain input but before any other variadic arguments. 5470 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5471 // saved or used. 5472 if (isTOCSaveRestoreRequired(Subtarget)) { 5473 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5474 5475 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5476 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5477 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5478 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5479 Ops.push_back(AddTOC); 5480 } 5481 5482 // Add the register used for the environment pointer. 5483 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5484 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5485 RegVT)); 5486 5487 5488 // Add CTR register as callee so a bctr can be emitted later. 5489 if (CFlags.IsTailCall) 5490 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5491 } 5492 5493 // If this is a tail call add stack pointer delta. 5494 if (CFlags.IsTailCall) 5495 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5496 5497 // Add argument registers to the end of the list so that they are known live 5498 // into the call. 5499 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5500 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5501 RegsToPass[i].second.getValueType())); 5502 5503 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5504 // no way to mark dependencies as implicit here. 5505 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5506 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5507 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5508 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5509 5510 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5511 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5512 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5513 5514 // Add a register mask operand representing the call-preserved registers. 5515 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5516 const uint32_t *Mask = 5517 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5518 assert(Mask && "Missing call preserved mask for calling convention"); 5519 Ops.push_back(DAG.getRegisterMask(Mask)); 5520 5521 // If the glue is valid, it is the last operand. 5522 if (Glue.getNode()) 5523 Ops.push_back(Glue); 5524 } 5525 5526 SDValue PPCTargetLowering::FinishCall( 5527 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5528 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5529 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5530 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5531 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5532 5533 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5534 Subtarget.isAIXABI()) 5535 setUsesTOCBasePtr(DAG); 5536 5537 unsigned CallOpc = 5538 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5539 Subtarget, DAG.getTarget()); 5540 5541 if (!CFlags.IsIndirect) 5542 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5543 else if (Subtarget.usesFunctionDescriptors()) 5544 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5545 dl, CFlags.HasNest, Subtarget); 5546 else 5547 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5548 5549 // Build the operand list for the call instruction. 5550 SmallVector<SDValue, 8> Ops; 5551 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5552 SPDiff, Subtarget); 5553 5554 // Emit tail call. 5555 if (CFlags.IsTailCall) { 5556 // Indirect tail call when using PC Relative calls do not have the same 5557 // constraints. 5558 assert(((Callee.getOpcode() == ISD::Register && 5559 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5560 Callee.getOpcode() == ISD::TargetExternalSymbol || 5561 Callee.getOpcode() == ISD::TargetGlobalAddress || 5562 isa<ConstantSDNode>(Callee) || 5563 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5564 "Expecting a global address, external symbol, absolute value, " 5565 "register or an indirect tail call when PC Relative calls are " 5566 "used."); 5567 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5568 assert(CallOpc == PPCISD::TC_RETURN && 5569 "Unexpected call opcode for a tail call."); 5570 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5571 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5572 } 5573 5574 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5575 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5576 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5577 Glue = Chain.getValue(1); 5578 5579 // When performing tail call optimization the callee pops its arguments off 5580 // the stack. Account for this here so these bytes can be pushed back on in 5581 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5582 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5583 getTargetMachine().Options.GuaranteedTailCallOpt) 5584 ? NumBytes 5585 : 0; 5586 5587 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5588 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5589 Glue, dl); 5590 Glue = Chain.getValue(1); 5591 5592 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5593 DAG, InVals); 5594 } 5595 5596 SDValue 5597 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5598 SmallVectorImpl<SDValue> &InVals) const { 5599 SelectionDAG &DAG = CLI.DAG; 5600 SDLoc &dl = CLI.DL; 5601 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5602 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5603 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5604 SDValue Chain = CLI.Chain; 5605 SDValue Callee = CLI.Callee; 5606 bool &isTailCall = CLI.IsTailCall; 5607 CallingConv::ID CallConv = CLI.CallConv; 5608 bool isVarArg = CLI.IsVarArg; 5609 bool isPatchPoint = CLI.IsPatchPoint; 5610 const CallBase *CB = CLI.CB; 5611 5612 if (isTailCall) { 5613 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5614 isTailCall = false; 5615 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5616 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5617 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5618 else 5619 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5620 Ins, DAG); 5621 if (isTailCall) { 5622 ++NumTailCalls; 5623 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5624 ++NumSiblingCalls; 5625 5626 // PC Relative calls no longer guarantee that the callee is a Global 5627 // Address Node. The callee could be an indirect tail call in which 5628 // case the SDValue for the callee could be a load (to load the address 5629 // of a function pointer) or it may be a register copy (to move the 5630 // address of the callee from a function parameter into a virtual 5631 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5632 assert((Subtarget.isUsingPCRelativeCalls() || 5633 isa<GlobalAddressSDNode>(Callee)) && 5634 "Callee should be an llvm::Function object."); 5635 5636 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5637 << "\nTCO callee: "); 5638 LLVM_DEBUG(Callee.dump()); 5639 } 5640 } 5641 5642 if (!isTailCall && CB && CB->isMustTailCall()) 5643 report_fatal_error("failed to perform tail call elimination on a call " 5644 "site marked musttail"); 5645 5646 // When long calls (i.e. indirect calls) are always used, calls are always 5647 // made via function pointer. If we have a function name, first translate it 5648 // into a pointer. 5649 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5650 !isTailCall) 5651 Callee = LowerGlobalAddress(Callee, DAG); 5652 5653 CallFlags CFlags( 5654 CallConv, isTailCall, isVarArg, isPatchPoint, 5655 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5656 // hasNest 5657 Subtarget.is64BitELFABI() && 5658 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5659 CLI.NoMerge); 5660 5661 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5662 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5663 InVals, CB); 5664 5665 if (Subtarget.isSVR4ABI()) 5666 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5667 InVals, CB); 5668 5669 if (Subtarget.isAIXABI()) 5670 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5671 InVals, CB); 5672 5673 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5674 InVals, CB); 5675 } 5676 5677 SDValue PPCTargetLowering::LowerCall_32SVR4( 5678 SDValue Chain, SDValue Callee, CallFlags CFlags, 5679 const SmallVectorImpl<ISD::OutputArg> &Outs, 5680 const SmallVectorImpl<SDValue> &OutVals, 5681 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5682 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5683 const CallBase *CB) const { 5684 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5685 // of the 32-bit SVR4 ABI stack frame layout. 5686 5687 const CallingConv::ID CallConv = CFlags.CallConv; 5688 const bool IsVarArg = CFlags.IsVarArg; 5689 const bool IsTailCall = CFlags.IsTailCall; 5690 5691 assert((CallConv == CallingConv::C || 5692 CallConv == CallingConv::Cold || 5693 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5694 5695 const Align PtrAlign(4); 5696 5697 MachineFunction &MF = DAG.getMachineFunction(); 5698 5699 // Mark this function as potentially containing a function that contains a 5700 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5701 // and restoring the callers stack pointer in this functions epilog. This is 5702 // done because by tail calling the called function might overwrite the value 5703 // in this function's (MF) stack pointer stack slot 0(SP). 5704 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5705 CallConv == CallingConv::Fast) 5706 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5707 5708 // Count how many bytes are to be pushed on the stack, including the linkage 5709 // area, parameter list area and the part of the local variable space which 5710 // contains copies of aggregates which are passed by value. 5711 5712 // Assign locations to all of the outgoing arguments. 5713 SmallVector<CCValAssign, 16> ArgLocs; 5714 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5715 5716 // Reserve space for the linkage area on the stack. 5717 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5718 PtrAlign); 5719 if (useSoftFloat()) 5720 CCInfo.PreAnalyzeCallOperands(Outs); 5721 5722 if (IsVarArg) { 5723 // Handle fixed and variable vector arguments differently. 5724 // Fixed vector arguments go into registers as long as registers are 5725 // available. Variable vector arguments always go into memory. 5726 unsigned NumArgs = Outs.size(); 5727 5728 for (unsigned i = 0; i != NumArgs; ++i) { 5729 MVT ArgVT = Outs[i].VT; 5730 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5731 bool Result; 5732 5733 if (Outs[i].IsFixed) { 5734 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5735 CCInfo); 5736 } else { 5737 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5738 ArgFlags, CCInfo); 5739 } 5740 5741 if (Result) { 5742 #ifndef NDEBUG 5743 errs() << "Call operand #" << i << " has unhandled type " 5744 << EVT(ArgVT).getEVTString() << "\n"; 5745 #endif 5746 llvm_unreachable(nullptr); 5747 } 5748 } 5749 } else { 5750 // All arguments are treated the same. 5751 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5752 } 5753 CCInfo.clearWasPPCF128(); 5754 5755 // Assign locations to all of the outgoing aggregate by value arguments. 5756 SmallVector<CCValAssign, 16> ByValArgLocs; 5757 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5758 5759 // Reserve stack space for the allocations in CCInfo. 5760 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5761 5762 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5763 5764 // Size of the linkage area, parameter list area and the part of the local 5765 // space variable where copies of aggregates which are passed by value are 5766 // stored. 5767 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5768 5769 // Calculate by how many bytes the stack has to be adjusted in case of tail 5770 // call optimization. 5771 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5772 5773 // Adjust the stack pointer for the new arguments... 5774 // These operations are automatically eliminated by the prolog/epilog pass 5775 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5776 SDValue CallSeqStart = Chain; 5777 5778 // Load the return address and frame pointer so it can be moved somewhere else 5779 // later. 5780 SDValue LROp, FPOp; 5781 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5782 5783 // Set up a copy of the stack pointer for use loading and storing any 5784 // arguments that may not fit in the registers available for argument 5785 // passing. 5786 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5787 5788 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5789 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5790 SmallVector<SDValue, 8> MemOpChains; 5791 5792 bool seenFloatArg = false; 5793 // Walk the register/memloc assignments, inserting copies/loads. 5794 // i - Tracks the index into the list of registers allocated for the call 5795 // RealArgIdx - Tracks the index into the list of actual function arguments 5796 // j - Tracks the index into the list of byval arguments 5797 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5798 i != e; 5799 ++i, ++RealArgIdx) { 5800 CCValAssign &VA = ArgLocs[i]; 5801 SDValue Arg = OutVals[RealArgIdx]; 5802 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5803 5804 if (Flags.isByVal()) { 5805 // Argument is an aggregate which is passed by value, thus we need to 5806 // create a copy of it in the local variable space of the current stack 5807 // frame (which is the stack frame of the caller) and pass the address of 5808 // this copy to the callee. 5809 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5810 CCValAssign &ByValVA = ByValArgLocs[j++]; 5811 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5812 5813 // Memory reserved in the local variable space of the callers stack frame. 5814 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5815 5816 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5817 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5818 StackPtr, PtrOff); 5819 5820 // Create a copy of the argument in the local area of the current 5821 // stack frame. 5822 SDValue MemcpyCall = 5823 CreateCopyOfByValArgument(Arg, PtrOff, 5824 CallSeqStart.getNode()->getOperand(0), 5825 Flags, DAG, dl); 5826 5827 // This must go outside the CALLSEQ_START..END. 5828 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5829 SDLoc(MemcpyCall)); 5830 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5831 NewCallSeqStart.getNode()); 5832 Chain = CallSeqStart = NewCallSeqStart; 5833 5834 // Pass the address of the aggregate copy on the stack either in a 5835 // physical register or in the parameter list area of the current stack 5836 // frame to the callee. 5837 Arg = PtrOff; 5838 } 5839 5840 // When useCRBits() is true, there can be i1 arguments. 5841 // It is because getRegisterType(MVT::i1) => MVT::i1, 5842 // and for other integer types getRegisterType() => MVT::i32. 5843 // Extend i1 and ensure callee will get i32. 5844 if (Arg.getValueType() == MVT::i1) 5845 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5846 dl, MVT::i32, Arg); 5847 5848 if (VA.isRegLoc()) { 5849 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5850 // Put argument in a physical register. 5851 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5852 bool IsLE = Subtarget.isLittleEndian(); 5853 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5854 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5855 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5856 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5857 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5858 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5859 SVal.getValue(0))); 5860 } else 5861 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5862 } else { 5863 // Put argument in the parameter list area of the current stack frame. 5864 assert(VA.isMemLoc()); 5865 unsigned LocMemOffset = VA.getLocMemOffset(); 5866 5867 if (!IsTailCall) { 5868 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5869 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5870 StackPtr, PtrOff); 5871 5872 MemOpChains.push_back( 5873 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5874 } else { 5875 // Calculate and remember argument location. 5876 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5877 TailCallArguments); 5878 } 5879 } 5880 } 5881 5882 if (!MemOpChains.empty()) 5883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5884 5885 // Build a sequence of copy-to-reg nodes chained together with token chain 5886 // and flag operands which copy the outgoing args into the appropriate regs. 5887 SDValue InFlag; 5888 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5889 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5890 RegsToPass[i].second, InFlag); 5891 InFlag = Chain.getValue(1); 5892 } 5893 5894 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5895 // registers. 5896 if (IsVarArg) { 5897 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5898 SDValue Ops[] = { Chain, InFlag }; 5899 5900 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5901 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5902 5903 InFlag = Chain.getValue(1); 5904 } 5905 5906 if (IsTailCall) 5907 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5908 TailCallArguments); 5909 5910 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5911 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5912 } 5913 5914 // Copy an argument into memory, being careful to do this outside the 5915 // call sequence for the call to which the argument belongs. 5916 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5917 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5918 SelectionDAG &DAG, const SDLoc &dl) const { 5919 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5920 CallSeqStart.getNode()->getOperand(0), 5921 Flags, DAG, dl); 5922 // The MEMCPY must go outside the CALLSEQ_START..END. 5923 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5924 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5925 SDLoc(MemcpyCall)); 5926 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5927 NewCallSeqStart.getNode()); 5928 return NewCallSeqStart; 5929 } 5930 5931 SDValue PPCTargetLowering::LowerCall_64SVR4( 5932 SDValue Chain, SDValue Callee, CallFlags CFlags, 5933 const SmallVectorImpl<ISD::OutputArg> &Outs, 5934 const SmallVectorImpl<SDValue> &OutVals, 5935 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5936 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5937 const CallBase *CB) const { 5938 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5939 bool isLittleEndian = Subtarget.isLittleEndian(); 5940 unsigned NumOps = Outs.size(); 5941 bool IsSibCall = false; 5942 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5943 5944 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5945 unsigned PtrByteSize = 8; 5946 5947 MachineFunction &MF = DAG.getMachineFunction(); 5948 5949 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5950 IsSibCall = true; 5951 5952 // Mark this function as potentially containing a function that contains a 5953 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5954 // and restoring the callers stack pointer in this functions epilog. This is 5955 // done because by tail calling the called function might overwrite the value 5956 // in this function's (MF) stack pointer stack slot 0(SP). 5957 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5958 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5959 5960 assert(!(IsFastCall && CFlags.IsVarArg) && 5961 "fastcc not supported on varargs functions"); 5962 5963 // Count how many bytes are to be pushed on the stack, including the linkage 5964 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5965 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5966 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5967 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5968 unsigned NumBytes = LinkageSize; 5969 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5970 5971 static const MCPhysReg GPR[] = { 5972 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5973 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5974 }; 5975 static const MCPhysReg VR[] = { 5976 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5977 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5978 }; 5979 5980 const unsigned NumGPRs = array_lengthof(GPR); 5981 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5982 const unsigned NumVRs = array_lengthof(VR); 5983 5984 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5985 // can be passed to the callee in registers. 5986 // For the fast calling convention, there is another check below. 5987 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5988 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5989 if (!HasParameterArea) { 5990 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5991 unsigned AvailableFPRs = NumFPRs; 5992 unsigned AvailableVRs = NumVRs; 5993 unsigned NumBytesTmp = NumBytes; 5994 for (unsigned i = 0; i != NumOps; ++i) { 5995 if (Outs[i].Flags.isNest()) continue; 5996 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5997 PtrByteSize, LinkageSize, ParamAreaSize, 5998 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5999 HasParameterArea = true; 6000 } 6001 } 6002 6003 // When using the fast calling convention, we don't provide backing for 6004 // arguments that will be in registers. 6005 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6006 6007 // Avoid allocating parameter area for fastcc functions if all the arguments 6008 // can be passed in the registers. 6009 if (IsFastCall) 6010 HasParameterArea = false; 6011 6012 // Add up all the space actually used. 6013 for (unsigned i = 0; i != NumOps; ++i) { 6014 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6015 EVT ArgVT = Outs[i].VT; 6016 EVT OrigVT = Outs[i].ArgVT; 6017 6018 if (Flags.isNest()) 6019 continue; 6020 6021 if (IsFastCall) { 6022 if (Flags.isByVal()) { 6023 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6024 if (NumGPRsUsed > NumGPRs) 6025 HasParameterArea = true; 6026 } else { 6027 switch (ArgVT.getSimpleVT().SimpleTy) { 6028 default: llvm_unreachable("Unexpected ValueType for argument!"); 6029 case MVT::i1: 6030 case MVT::i32: 6031 case MVT::i64: 6032 if (++NumGPRsUsed <= NumGPRs) 6033 continue; 6034 break; 6035 case MVT::v4i32: 6036 case MVT::v8i16: 6037 case MVT::v16i8: 6038 case MVT::v2f64: 6039 case MVT::v2i64: 6040 case MVT::v1i128: 6041 case MVT::f128: 6042 if (++NumVRsUsed <= NumVRs) 6043 continue; 6044 break; 6045 case MVT::v4f32: 6046 if (++NumVRsUsed <= NumVRs) 6047 continue; 6048 break; 6049 case MVT::f32: 6050 case MVT::f64: 6051 if (++NumFPRsUsed <= NumFPRs) 6052 continue; 6053 break; 6054 } 6055 HasParameterArea = true; 6056 } 6057 } 6058 6059 /* Respect alignment of argument on the stack. */ 6060 auto Alignement = 6061 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6062 NumBytes = alignTo(NumBytes, Alignement); 6063 6064 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6065 if (Flags.isInConsecutiveRegsLast()) 6066 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6067 } 6068 6069 unsigned NumBytesActuallyUsed = NumBytes; 6070 6071 // In the old ELFv1 ABI, 6072 // the prolog code of the callee may store up to 8 GPR argument registers to 6073 // the stack, allowing va_start to index over them in memory if its varargs. 6074 // Because we cannot tell if this is needed on the caller side, we have to 6075 // conservatively assume that it is needed. As such, make sure we have at 6076 // least enough stack space for the caller to store the 8 GPRs. 6077 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6078 // really requires memory operands, e.g. a vararg function. 6079 if (HasParameterArea) 6080 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6081 else 6082 NumBytes = LinkageSize; 6083 6084 // Tail call needs the stack to be aligned. 6085 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6086 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6087 6088 int SPDiff = 0; 6089 6090 // Calculate by how many bytes the stack has to be adjusted in case of tail 6091 // call optimization. 6092 if (!IsSibCall) 6093 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6094 6095 // To protect arguments on the stack from being clobbered in a tail call, 6096 // force all the loads to happen before doing any other lowering. 6097 if (CFlags.IsTailCall) 6098 Chain = DAG.getStackArgumentTokenFactor(Chain); 6099 6100 // Adjust the stack pointer for the new arguments... 6101 // These operations are automatically eliminated by the prolog/epilog pass 6102 if (!IsSibCall) 6103 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6104 SDValue CallSeqStart = Chain; 6105 6106 // Load the return address and frame pointer so it can be move somewhere else 6107 // later. 6108 SDValue LROp, FPOp; 6109 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6110 6111 // Set up a copy of the stack pointer for use loading and storing any 6112 // arguments that may not fit in the registers available for argument 6113 // passing. 6114 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6115 6116 // Figure out which arguments are going to go in registers, and which in 6117 // memory. Also, if this is a vararg function, floating point operations 6118 // must be stored to our stack, and loaded into integer regs as well, if 6119 // any integer regs are available for argument passing. 6120 unsigned ArgOffset = LinkageSize; 6121 6122 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6123 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6124 6125 SmallVector<SDValue, 8> MemOpChains; 6126 for (unsigned i = 0; i != NumOps; ++i) { 6127 SDValue Arg = OutVals[i]; 6128 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6129 EVT ArgVT = Outs[i].VT; 6130 EVT OrigVT = Outs[i].ArgVT; 6131 6132 // PtrOff will be used to store the current argument to the stack if a 6133 // register cannot be found for it. 6134 SDValue PtrOff; 6135 6136 // We re-align the argument offset for each argument, except when using the 6137 // fast calling convention, when we need to make sure we do that only when 6138 // we'll actually use a stack slot. 6139 auto ComputePtrOff = [&]() { 6140 /* Respect alignment of argument on the stack. */ 6141 auto Alignment = 6142 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6143 ArgOffset = alignTo(ArgOffset, Alignment); 6144 6145 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6146 6147 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6148 }; 6149 6150 if (!IsFastCall) { 6151 ComputePtrOff(); 6152 6153 /* Compute GPR index associated with argument offset. */ 6154 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6155 GPR_idx = std::min(GPR_idx, NumGPRs); 6156 } 6157 6158 // Promote integers to 64-bit values. 6159 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6160 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6161 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6162 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6163 } 6164 6165 // FIXME memcpy is used way more than necessary. Correctness first. 6166 // Note: "by value" is code for passing a structure by value, not 6167 // basic types. 6168 if (Flags.isByVal()) { 6169 // Note: Size includes alignment padding, so 6170 // struct x { short a; char b; } 6171 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6172 // These are the proper values we need for right-justifying the 6173 // aggregate in a parameter register. 6174 unsigned Size = Flags.getByValSize(); 6175 6176 // An empty aggregate parameter takes up no storage and no 6177 // registers. 6178 if (Size == 0) 6179 continue; 6180 6181 if (IsFastCall) 6182 ComputePtrOff(); 6183 6184 // All aggregates smaller than 8 bytes must be passed right-justified. 6185 if (Size==1 || Size==2 || Size==4) { 6186 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6187 if (GPR_idx != NumGPRs) { 6188 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6189 MachinePointerInfo(), VT); 6190 MemOpChains.push_back(Load.getValue(1)); 6191 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6192 6193 ArgOffset += PtrByteSize; 6194 continue; 6195 } 6196 } 6197 6198 if (GPR_idx == NumGPRs && Size < 8) { 6199 SDValue AddPtr = PtrOff; 6200 if (!isLittleEndian) { 6201 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6202 PtrOff.getValueType()); 6203 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6204 } 6205 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6206 CallSeqStart, 6207 Flags, DAG, dl); 6208 ArgOffset += PtrByteSize; 6209 continue; 6210 } 6211 // Copy entire object into memory. There are cases where gcc-generated 6212 // code assumes it is there, even if it could be put entirely into 6213 // registers. (This is not what the doc says.) 6214 6215 // FIXME: The above statement is likely due to a misunderstanding of the 6216 // documents. All arguments must be copied into the parameter area BY 6217 // THE CALLEE in the event that the callee takes the address of any 6218 // formal argument. That has not yet been implemented. However, it is 6219 // reasonable to use the stack area as a staging area for the register 6220 // load. 6221 6222 // Skip this for small aggregates, as we will use the same slot for a 6223 // right-justified copy, below. 6224 if (Size >= 8) 6225 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6226 CallSeqStart, 6227 Flags, DAG, dl); 6228 6229 // When a register is available, pass a small aggregate right-justified. 6230 if (Size < 8 && GPR_idx != NumGPRs) { 6231 // The easiest way to get this right-justified in a register 6232 // is to copy the structure into the rightmost portion of a 6233 // local variable slot, then load the whole slot into the 6234 // register. 6235 // FIXME: The memcpy seems to produce pretty awful code for 6236 // small aggregates, particularly for packed ones. 6237 // FIXME: It would be preferable to use the slot in the 6238 // parameter save area instead of a new local variable. 6239 SDValue AddPtr = PtrOff; 6240 if (!isLittleEndian) { 6241 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6242 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6243 } 6244 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6245 CallSeqStart, 6246 Flags, DAG, dl); 6247 6248 // Load the slot into the register. 6249 SDValue Load = 6250 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6251 MemOpChains.push_back(Load.getValue(1)); 6252 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6253 6254 // Done with this argument. 6255 ArgOffset += PtrByteSize; 6256 continue; 6257 } 6258 6259 // For aggregates larger than PtrByteSize, copy the pieces of the 6260 // object that fit into registers from the parameter save area. 6261 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6262 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6263 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6264 if (GPR_idx != NumGPRs) { 6265 SDValue Load = 6266 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6267 MemOpChains.push_back(Load.getValue(1)); 6268 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6269 ArgOffset += PtrByteSize; 6270 } else { 6271 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6272 break; 6273 } 6274 } 6275 continue; 6276 } 6277 6278 switch (Arg.getSimpleValueType().SimpleTy) { 6279 default: llvm_unreachable("Unexpected ValueType for argument!"); 6280 case MVT::i1: 6281 case MVT::i32: 6282 case MVT::i64: 6283 if (Flags.isNest()) { 6284 // The 'nest' parameter, if any, is passed in R11. 6285 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6286 break; 6287 } 6288 6289 // These can be scalar arguments or elements of an integer array type 6290 // passed directly. Clang may use those instead of "byval" aggregate 6291 // types to avoid forcing arguments to memory unnecessarily. 6292 if (GPR_idx != NumGPRs) { 6293 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6294 } else { 6295 if (IsFastCall) 6296 ComputePtrOff(); 6297 6298 assert(HasParameterArea && 6299 "Parameter area must exist to pass an argument in memory."); 6300 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6301 true, CFlags.IsTailCall, false, MemOpChains, 6302 TailCallArguments, dl); 6303 if (IsFastCall) 6304 ArgOffset += PtrByteSize; 6305 } 6306 if (!IsFastCall) 6307 ArgOffset += PtrByteSize; 6308 break; 6309 case MVT::f32: 6310 case MVT::f64: { 6311 // These can be scalar arguments or elements of a float array type 6312 // passed directly. The latter are used to implement ELFv2 homogenous 6313 // float aggregates. 6314 6315 // Named arguments go into FPRs first, and once they overflow, the 6316 // remaining arguments go into GPRs and then the parameter save area. 6317 // Unnamed arguments for vararg functions always go to GPRs and 6318 // then the parameter save area. For now, put all arguments to vararg 6319 // routines always in both locations (FPR *and* GPR or stack slot). 6320 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6321 bool NeededLoad = false; 6322 6323 // First load the argument into the next available FPR. 6324 if (FPR_idx != NumFPRs) 6325 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6326 6327 // Next, load the argument into GPR or stack slot if needed. 6328 if (!NeedGPROrStack) 6329 ; 6330 else if (GPR_idx != NumGPRs && !IsFastCall) { 6331 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6332 // once we support fp <-> gpr moves. 6333 6334 // In the non-vararg case, this can only ever happen in the 6335 // presence of f32 array types, since otherwise we never run 6336 // out of FPRs before running out of GPRs. 6337 SDValue ArgVal; 6338 6339 // Double values are always passed in a single GPR. 6340 if (Arg.getValueType() != MVT::f32) { 6341 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6342 6343 // Non-array float values are extended and passed in a GPR. 6344 } else if (!Flags.isInConsecutiveRegs()) { 6345 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6346 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6347 6348 // If we have an array of floats, we collect every odd element 6349 // together with its predecessor into one GPR. 6350 } else if (ArgOffset % PtrByteSize != 0) { 6351 SDValue Lo, Hi; 6352 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6353 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6354 if (!isLittleEndian) 6355 std::swap(Lo, Hi); 6356 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6357 6358 // The final element, if even, goes into the first half of a GPR. 6359 } else if (Flags.isInConsecutiveRegsLast()) { 6360 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6361 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6362 if (!isLittleEndian) 6363 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6364 DAG.getConstant(32, dl, MVT::i32)); 6365 6366 // Non-final even elements are skipped; they will be handled 6367 // together the with subsequent argument on the next go-around. 6368 } else 6369 ArgVal = SDValue(); 6370 6371 if (ArgVal.getNode()) 6372 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6373 } else { 6374 if (IsFastCall) 6375 ComputePtrOff(); 6376 6377 // Single-precision floating-point values are mapped to the 6378 // second (rightmost) word of the stack doubleword. 6379 if (Arg.getValueType() == MVT::f32 && 6380 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6381 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6382 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6383 } 6384 6385 assert(HasParameterArea && 6386 "Parameter area must exist to pass an argument in memory."); 6387 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6388 true, CFlags.IsTailCall, false, MemOpChains, 6389 TailCallArguments, dl); 6390 6391 NeededLoad = true; 6392 } 6393 // When passing an array of floats, the array occupies consecutive 6394 // space in the argument area; only round up to the next doubleword 6395 // at the end of the array. Otherwise, each float takes 8 bytes. 6396 if (!IsFastCall || NeededLoad) { 6397 ArgOffset += (Arg.getValueType() == MVT::f32 && 6398 Flags.isInConsecutiveRegs()) ? 4 : 8; 6399 if (Flags.isInConsecutiveRegsLast()) 6400 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6401 } 6402 break; 6403 } 6404 case MVT::v4f32: 6405 case MVT::v4i32: 6406 case MVT::v8i16: 6407 case MVT::v16i8: 6408 case MVT::v2f64: 6409 case MVT::v2i64: 6410 case MVT::v1i128: 6411 case MVT::f128: 6412 // These can be scalar arguments or elements of a vector array type 6413 // passed directly. The latter are used to implement ELFv2 homogenous 6414 // vector aggregates. 6415 6416 // For a varargs call, named arguments go into VRs or on the stack as 6417 // usual; unnamed arguments always go to the stack or the corresponding 6418 // GPRs when within range. For now, we always put the value in both 6419 // locations (or even all three). 6420 if (CFlags.IsVarArg) { 6421 assert(HasParameterArea && 6422 "Parameter area must exist if we have a varargs call."); 6423 // We could elide this store in the case where the object fits 6424 // entirely in R registers. Maybe later. 6425 SDValue Store = 6426 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6427 MemOpChains.push_back(Store); 6428 if (VR_idx != NumVRs) { 6429 SDValue Load = 6430 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6431 MemOpChains.push_back(Load.getValue(1)); 6432 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6433 } 6434 ArgOffset += 16; 6435 for (unsigned i=0; i<16; i+=PtrByteSize) { 6436 if (GPR_idx == NumGPRs) 6437 break; 6438 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6439 DAG.getConstant(i, dl, PtrVT)); 6440 SDValue Load = 6441 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6442 MemOpChains.push_back(Load.getValue(1)); 6443 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6444 } 6445 break; 6446 } 6447 6448 // Non-varargs Altivec params go into VRs or on the stack. 6449 if (VR_idx != NumVRs) { 6450 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6451 } else { 6452 if (IsFastCall) 6453 ComputePtrOff(); 6454 6455 assert(HasParameterArea && 6456 "Parameter area must exist to pass an argument in memory."); 6457 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6458 true, CFlags.IsTailCall, true, MemOpChains, 6459 TailCallArguments, dl); 6460 if (IsFastCall) 6461 ArgOffset += 16; 6462 } 6463 6464 if (!IsFastCall) 6465 ArgOffset += 16; 6466 break; 6467 } 6468 } 6469 6470 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6471 "mismatch in size of parameter area"); 6472 (void)NumBytesActuallyUsed; 6473 6474 if (!MemOpChains.empty()) 6475 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6476 6477 // Check if this is an indirect call (MTCTR/BCTRL). 6478 // See prepareDescriptorIndirectCall and buildCallOperands for more 6479 // information about calls through function pointers in the 64-bit SVR4 ABI. 6480 if (CFlags.IsIndirect) { 6481 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6482 // caller in the TOC save area. 6483 if (isTOCSaveRestoreRequired(Subtarget)) { 6484 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6485 // Load r2 into a virtual register and store it to the TOC save area. 6486 setUsesTOCBasePtr(DAG); 6487 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6488 // TOC save area offset. 6489 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6490 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6491 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6492 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6493 MachinePointerInfo::getStack( 6494 DAG.getMachineFunction(), TOCSaveOffset)); 6495 } 6496 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6497 // This does not mean the MTCTR instruction must use R12; it's easier 6498 // to model this as an extra parameter, so do that. 6499 if (isELFv2ABI && !CFlags.IsPatchPoint) 6500 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6501 } 6502 6503 // Build a sequence of copy-to-reg nodes chained together with token chain 6504 // and flag operands which copy the outgoing args into the appropriate regs. 6505 SDValue InFlag; 6506 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6507 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6508 RegsToPass[i].second, InFlag); 6509 InFlag = Chain.getValue(1); 6510 } 6511 6512 if (CFlags.IsTailCall && !IsSibCall) 6513 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6514 TailCallArguments); 6515 6516 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6517 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6518 } 6519 6520 SDValue PPCTargetLowering::LowerCall_Darwin( 6521 SDValue Chain, SDValue Callee, CallFlags CFlags, 6522 const SmallVectorImpl<ISD::OutputArg> &Outs, 6523 const SmallVectorImpl<SDValue> &OutVals, 6524 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6525 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6526 const CallBase *CB) const { 6527 unsigned NumOps = Outs.size(); 6528 6529 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6530 bool isPPC64 = PtrVT == MVT::i64; 6531 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6532 6533 MachineFunction &MF = DAG.getMachineFunction(); 6534 6535 // Mark this function as potentially containing a function that contains a 6536 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6537 // and restoring the callers stack pointer in this functions epilog. This is 6538 // done because by tail calling the called function might overwrite the value 6539 // in this function's (MF) stack pointer stack slot 0(SP). 6540 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6541 CFlags.CallConv == CallingConv::Fast) 6542 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6543 6544 // Count how many bytes are to be pushed on the stack, including the linkage 6545 // area, and parameter passing area. We start with 24/48 bytes, which is 6546 // prereserved space for [SP][CR][LR][3 x unused]. 6547 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6548 unsigned NumBytes = LinkageSize; 6549 6550 // Add up all the space actually used. 6551 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6552 // they all go in registers, but we must reserve stack space for them for 6553 // possible use by the caller. In varargs or 64-bit calls, parameters are 6554 // assigned stack space in order, with padding so Altivec parameters are 6555 // 16-byte aligned. 6556 unsigned nAltivecParamsAtEnd = 0; 6557 for (unsigned i = 0; i != NumOps; ++i) { 6558 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6559 EVT ArgVT = Outs[i].VT; 6560 // Varargs Altivec parameters are padded to a 16 byte boundary. 6561 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6562 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6563 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6564 if (!CFlags.IsVarArg && !isPPC64) { 6565 // Non-varargs Altivec parameters go after all the non-Altivec 6566 // parameters; handle those later so we know how much padding we need. 6567 nAltivecParamsAtEnd++; 6568 continue; 6569 } 6570 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6571 NumBytes = ((NumBytes+15)/16)*16; 6572 } 6573 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6574 } 6575 6576 // Allow for Altivec parameters at the end, if needed. 6577 if (nAltivecParamsAtEnd) { 6578 NumBytes = ((NumBytes+15)/16)*16; 6579 NumBytes += 16*nAltivecParamsAtEnd; 6580 } 6581 6582 // The prolog code of the callee may store up to 8 GPR argument registers to 6583 // the stack, allowing va_start to index over them in memory if its varargs. 6584 // Because we cannot tell if this is needed on the caller side, we have to 6585 // conservatively assume that it is needed. As such, make sure we have at 6586 // least enough stack space for the caller to store the 8 GPRs. 6587 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6588 6589 // Tail call needs the stack to be aligned. 6590 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6591 CFlags.CallConv == CallingConv::Fast) 6592 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6593 6594 // Calculate by how many bytes the stack has to be adjusted in case of tail 6595 // call optimization. 6596 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6597 6598 // To protect arguments on the stack from being clobbered in a tail call, 6599 // force all the loads to happen before doing any other lowering. 6600 if (CFlags.IsTailCall) 6601 Chain = DAG.getStackArgumentTokenFactor(Chain); 6602 6603 // Adjust the stack pointer for the new arguments... 6604 // These operations are automatically eliminated by the prolog/epilog pass 6605 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6606 SDValue CallSeqStart = Chain; 6607 6608 // Load the return address and frame pointer so it can be move somewhere else 6609 // later. 6610 SDValue LROp, FPOp; 6611 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6612 6613 // Set up a copy of the stack pointer for use loading and storing any 6614 // arguments that may not fit in the registers available for argument 6615 // passing. 6616 SDValue StackPtr; 6617 if (isPPC64) 6618 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6619 else 6620 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6621 6622 // Figure out which arguments are going to go in registers, and which in 6623 // memory. Also, if this is a vararg function, floating point operations 6624 // must be stored to our stack, and loaded into integer regs as well, if 6625 // any integer regs are available for argument passing. 6626 unsigned ArgOffset = LinkageSize; 6627 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6628 6629 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6630 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6631 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6632 }; 6633 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6634 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6635 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6636 }; 6637 static const MCPhysReg VR[] = { 6638 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6639 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6640 }; 6641 const unsigned NumGPRs = array_lengthof(GPR_32); 6642 const unsigned NumFPRs = 13; 6643 const unsigned NumVRs = array_lengthof(VR); 6644 6645 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6646 6647 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6648 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6649 6650 SmallVector<SDValue, 8> MemOpChains; 6651 for (unsigned i = 0; i != NumOps; ++i) { 6652 SDValue Arg = OutVals[i]; 6653 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6654 6655 // PtrOff will be used to store the current argument to the stack if a 6656 // register cannot be found for it. 6657 SDValue PtrOff; 6658 6659 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6660 6661 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6662 6663 // On PPC64, promote integers to 64-bit values. 6664 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6665 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6666 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6667 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6668 } 6669 6670 // FIXME memcpy is used way more than necessary. Correctness first. 6671 // Note: "by value" is code for passing a structure by value, not 6672 // basic types. 6673 if (Flags.isByVal()) { 6674 unsigned Size = Flags.getByValSize(); 6675 // Very small objects are passed right-justified. Everything else is 6676 // passed left-justified. 6677 if (Size==1 || Size==2) { 6678 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6679 if (GPR_idx != NumGPRs) { 6680 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6681 MachinePointerInfo(), VT); 6682 MemOpChains.push_back(Load.getValue(1)); 6683 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6684 6685 ArgOffset += PtrByteSize; 6686 } else { 6687 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6688 PtrOff.getValueType()); 6689 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6690 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6691 CallSeqStart, 6692 Flags, DAG, dl); 6693 ArgOffset += PtrByteSize; 6694 } 6695 continue; 6696 } 6697 // Copy entire object into memory. There are cases where gcc-generated 6698 // code assumes it is there, even if it could be put entirely into 6699 // registers. (This is not what the doc says.) 6700 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6701 CallSeqStart, 6702 Flags, DAG, dl); 6703 6704 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6705 // copy the pieces of the object that fit into registers from the 6706 // parameter save area. 6707 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6708 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6709 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6710 if (GPR_idx != NumGPRs) { 6711 SDValue Load = 6712 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6713 MemOpChains.push_back(Load.getValue(1)); 6714 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6715 ArgOffset += PtrByteSize; 6716 } else { 6717 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6718 break; 6719 } 6720 } 6721 continue; 6722 } 6723 6724 switch (Arg.getSimpleValueType().SimpleTy) { 6725 default: llvm_unreachable("Unexpected ValueType for argument!"); 6726 case MVT::i1: 6727 case MVT::i32: 6728 case MVT::i64: 6729 if (GPR_idx != NumGPRs) { 6730 if (Arg.getValueType() == MVT::i1) 6731 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6732 6733 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6734 } else { 6735 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6736 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6737 TailCallArguments, dl); 6738 } 6739 ArgOffset += PtrByteSize; 6740 break; 6741 case MVT::f32: 6742 case MVT::f64: 6743 if (FPR_idx != NumFPRs) { 6744 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6745 6746 if (CFlags.IsVarArg) { 6747 SDValue Store = 6748 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6749 MemOpChains.push_back(Store); 6750 6751 // Float varargs are always shadowed in available integer registers 6752 if (GPR_idx != NumGPRs) { 6753 SDValue Load = 6754 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6755 MemOpChains.push_back(Load.getValue(1)); 6756 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6757 } 6758 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6759 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6760 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6761 SDValue Load = 6762 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6763 MemOpChains.push_back(Load.getValue(1)); 6764 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6765 } 6766 } else { 6767 // If we have any FPRs remaining, we may also have GPRs remaining. 6768 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6769 // GPRs. 6770 if (GPR_idx != NumGPRs) 6771 ++GPR_idx; 6772 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6773 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6774 ++GPR_idx; 6775 } 6776 } else 6777 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6778 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6779 TailCallArguments, dl); 6780 if (isPPC64) 6781 ArgOffset += 8; 6782 else 6783 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6784 break; 6785 case MVT::v4f32: 6786 case MVT::v4i32: 6787 case MVT::v8i16: 6788 case MVT::v16i8: 6789 if (CFlags.IsVarArg) { 6790 // These go aligned on the stack, or in the corresponding R registers 6791 // when within range. The Darwin PPC ABI doc claims they also go in 6792 // V registers; in fact gcc does this only for arguments that are 6793 // prototyped, not for those that match the ... We do it for all 6794 // arguments, seems to work. 6795 while (ArgOffset % 16 !=0) { 6796 ArgOffset += PtrByteSize; 6797 if (GPR_idx != NumGPRs) 6798 GPR_idx++; 6799 } 6800 // We could elide this store in the case where the object fits 6801 // entirely in R registers. Maybe later. 6802 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6803 DAG.getConstant(ArgOffset, dl, PtrVT)); 6804 SDValue Store = 6805 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6806 MemOpChains.push_back(Store); 6807 if (VR_idx != NumVRs) { 6808 SDValue Load = 6809 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6810 MemOpChains.push_back(Load.getValue(1)); 6811 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6812 } 6813 ArgOffset += 16; 6814 for (unsigned i=0; i<16; i+=PtrByteSize) { 6815 if (GPR_idx == NumGPRs) 6816 break; 6817 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6818 DAG.getConstant(i, dl, PtrVT)); 6819 SDValue Load = 6820 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6821 MemOpChains.push_back(Load.getValue(1)); 6822 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6823 } 6824 break; 6825 } 6826 6827 // Non-varargs Altivec params generally go in registers, but have 6828 // stack space allocated at the end. 6829 if (VR_idx != NumVRs) { 6830 // Doesn't have GPR space allocated. 6831 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6832 } else if (nAltivecParamsAtEnd==0) { 6833 // We are emitting Altivec params in order. 6834 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6835 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6836 TailCallArguments, dl); 6837 ArgOffset += 16; 6838 } 6839 break; 6840 } 6841 } 6842 // If all Altivec parameters fit in registers, as they usually do, 6843 // they get stack space following the non-Altivec parameters. We 6844 // don't track this here because nobody below needs it. 6845 // If there are more Altivec parameters than fit in registers emit 6846 // the stores here. 6847 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6848 unsigned j = 0; 6849 // Offset is aligned; skip 1st 12 params which go in V registers. 6850 ArgOffset = ((ArgOffset+15)/16)*16; 6851 ArgOffset += 12*16; 6852 for (unsigned i = 0; i != NumOps; ++i) { 6853 SDValue Arg = OutVals[i]; 6854 EVT ArgType = Outs[i].VT; 6855 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6856 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6857 if (++j > NumVRs) { 6858 SDValue PtrOff; 6859 // We are emitting Altivec params in order. 6860 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6861 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6862 TailCallArguments, dl); 6863 ArgOffset += 16; 6864 } 6865 } 6866 } 6867 } 6868 6869 if (!MemOpChains.empty()) 6870 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6871 6872 // On Darwin, R12 must contain the address of an indirect callee. This does 6873 // not mean the MTCTR instruction must use R12; it's easier to model this as 6874 // an extra parameter, so do that. 6875 if (CFlags.IsIndirect) { 6876 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6877 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6878 PPC::R12), Callee)); 6879 } 6880 6881 // Build a sequence of copy-to-reg nodes chained together with token chain 6882 // and flag operands which copy the outgoing args into the appropriate regs. 6883 SDValue InFlag; 6884 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6885 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6886 RegsToPass[i].second, InFlag); 6887 InFlag = Chain.getValue(1); 6888 } 6889 6890 if (CFlags.IsTailCall) 6891 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6892 TailCallArguments); 6893 6894 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6895 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6896 } 6897 6898 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6899 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6900 CCState &State) { 6901 6902 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6903 State.getMachineFunction().getSubtarget()); 6904 const bool IsPPC64 = Subtarget.isPPC64(); 6905 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6906 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6907 6908 assert((!ValVT.isInteger() || 6909 (ValVT.getFixedSizeInBits() <= RegVT.getFixedSizeInBits())) && 6910 "Integer argument exceeds register size: should have been legalized"); 6911 6912 if (ValVT == MVT::f128) 6913 report_fatal_error("f128 is unimplemented on AIX."); 6914 6915 if (ArgFlags.isNest()) 6916 report_fatal_error("Nest arguments are unimplemented."); 6917 6918 if (ValVT.isVector() || LocVT.isVector()) 6919 report_fatal_error("Vector arguments are unimplemented on AIX."); 6920 6921 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6922 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6923 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6924 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6925 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6926 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6927 6928 if (ArgFlags.isByVal()) { 6929 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6930 report_fatal_error("Pass-by-value arguments with alignment greater than " 6931 "register width are not supported."); 6932 6933 const unsigned ByValSize = ArgFlags.getByValSize(); 6934 6935 // An empty aggregate parameter takes up no storage and no registers, 6936 // but needs a MemLoc for a stack slot for the formal arguments side. 6937 if (ByValSize == 0) { 6938 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6939 State.getNextStackOffset(), RegVT, 6940 LocInfo)); 6941 return false; 6942 } 6943 6944 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6945 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6946 for (const unsigned E = Offset + StackSize; Offset < E; 6947 Offset += PtrAlign.value()) { 6948 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6949 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6950 else { 6951 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6952 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6953 LocInfo)); 6954 break; 6955 } 6956 } 6957 return false; 6958 } 6959 6960 // Arguments always reserve parameter save area. 6961 switch (ValVT.SimpleTy) { 6962 default: 6963 report_fatal_error("Unhandled value type for argument."); 6964 case MVT::i64: 6965 // i64 arguments should have been split to i32 for PPC32. 6966 assert(IsPPC64 && "PPC32 should have split i64 values."); 6967 LLVM_FALLTHROUGH; 6968 case MVT::i1: 6969 case MVT::i32: { 6970 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6971 // AIX integer arguments are always passed in register width. 6972 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6973 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6974 : CCValAssign::LocInfo::ZExt; 6975 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6976 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6977 else 6978 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6979 6980 return false; 6981 } 6982 case MVT::f32: 6983 case MVT::f64: { 6984 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6985 const unsigned StoreSize = LocVT.getStoreSize(); 6986 // Floats are always 4-byte aligned in the PSA on AIX. 6987 // This includes f64 in 64-bit mode for ABI compatibility. 6988 const unsigned Offset = 6989 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6990 unsigned FReg = State.AllocateReg(FPR); 6991 if (FReg) 6992 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6993 6994 // Reserve and initialize GPRs or initialize the PSA as required. 6995 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6996 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6997 assert(FReg && "An FPR should be available when a GPR is reserved."); 6998 if (State.isVarArg()) { 6999 // Successfully reserved GPRs are only initialized for vararg calls. 7000 // Custom handling is required for: 7001 // f64 in PPC32 needs to be split into 2 GPRs. 7002 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7003 State.addLoc( 7004 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7005 } 7006 } else { 7007 // If there are insufficient GPRs, the PSA needs to be initialized. 7008 // Initialization occurs even if an FPR was initialized for 7009 // compatibility with the AIX XL compiler. The full memory for the 7010 // argument will be initialized even if a prior word is saved in GPR. 7011 // A custom memLoc is used when the argument also passes in FPR so 7012 // that the callee handling can skip over it easily. 7013 State.addLoc( 7014 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7015 LocInfo) 7016 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7017 break; 7018 } 7019 } 7020 7021 return false; 7022 } 7023 } 7024 return true; 7025 } 7026 7027 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7028 bool IsPPC64) { 7029 assert((IsPPC64 || SVT != MVT::i64) && 7030 "i64 should have been split for 32-bit codegen."); 7031 7032 switch (SVT) { 7033 default: 7034 report_fatal_error("Unexpected value type for formal argument"); 7035 case MVT::i1: 7036 case MVT::i32: 7037 case MVT::i64: 7038 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7039 case MVT::f32: 7040 return &PPC::F4RCRegClass; 7041 case MVT::f64: 7042 return &PPC::F8RCRegClass; 7043 } 7044 } 7045 7046 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7047 SelectionDAG &DAG, SDValue ArgValue, 7048 MVT LocVT, const SDLoc &dl) { 7049 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7050 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7051 7052 if (Flags.isSExt()) 7053 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7054 DAG.getValueType(ValVT)); 7055 else if (Flags.isZExt()) 7056 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7057 DAG.getValueType(ValVT)); 7058 7059 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7060 } 7061 7062 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7063 const unsigned LASize = FL->getLinkageSize(); 7064 7065 if (PPC::GPRCRegClass.contains(Reg)) { 7066 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7067 "Reg must be a valid argument register!"); 7068 return LASize + 4 * (Reg - PPC::R3); 7069 } 7070 7071 if (PPC::G8RCRegClass.contains(Reg)) { 7072 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7073 "Reg must be a valid argument register!"); 7074 return LASize + 8 * (Reg - PPC::X3); 7075 } 7076 7077 llvm_unreachable("Only general purpose registers expected."); 7078 } 7079 7080 // AIX ABI Stack Frame Layout: 7081 // 7082 // Low Memory +--------------------------------------------+ 7083 // SP +---> | Back chain | ---+ 7084 // | +--------------------------------------------+ | 7085 // | | Saved Condition Register | | 7086 // | +--------------------------------------------+ | 7087 // | | Saved Linkage Register | | 7088 // | +--------------------------------------------+ | Linkage Area 7089 // | | Reserved for compilers | | 7090 // | +--------------------------------------------+ | 7091 // | | Reserved for binders | | 7092 // | +--------------------------------------------+ | 7093 // | | Saved TOC pointer | ---+ 7094 // | +--------------------------------------------+ 7095 // | | Parameter save area | 7096 // | +--------------------------------------------+ 7097 // | | Alloca space | 7098 // | +--------------------------------------------+ 7099 // | | Local variable space | 7100 // | +--------------------------------------------+ 7101 // | | Float/int conversion temporary | 7102 // | +--------------------------------------------+ 7103 // | | Save area for AltiVec registers | 7104 // | +--------------------------------------------+ 7105 // | | AltiVec alignment padding | 7106 // | +--------------------------------------------+ 7107 // | | Save area for VRSAVE register | 7108 // | +--------------------------------------------+ 7109 // | | Save area for General Purpose registers | 7110 // | +--------------------------------------------+ 7111 // | | Save area for Floating Point registers | 7112 // | +--------------------------------------------+ 7113 // +---- | Back chain | 7114 // High Memory +--------------------------------------------+ 7115 // 7116 // Specifications: 7117 // AIX 7.2 Assembler Language Reference 7118 // Subroutine linkage convention 7119 7120 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7121 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7122 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7123 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7124 7125 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7126 CallConv == CallingConv::Fast) && 7127 "Unexpected calling convention!"); 7128 7129 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7130 report_fatal_error("Tail call support is unimplemented on AIX."); 7131 7132 if (useSoftFloat()) 7133 report_fatal_error("Soft float support is unimplemented on AIX."); 7134 7135 const PPCSubtarget &Subtarget = 7136 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7137 7138 const bool IsPPC64 = Subtarget.isPPC64(); 7139 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7140 7141 // Assign locations to all of the incoming arguments. 7142 SmallVector<CCValAssign, 16> ArgLocs; 7143 MachineFunction &MF = DAG.getMachineFunction(); 7144 MachineFrameInfo &MFI = MF.getFrameInfo(); 7145 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7146 7147 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7148 // Reserve space for the linkage area on the stack. 7149 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7150 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7151 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7152 7153 SmallVector<SDValue, 8> MemOps; 7154 7155 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7156 CCValAssign &VA = ArgLocs[I++]; 7157 MVT LocVT = VA.getLocVT(); 7158 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7159 7160 // For compatibility with the AIX XL compiler, the float args in the 7161 // parameter save area are initialized even if the argument is available 7162 // in register. The caller is required to initialize both the register 7163 // and memory, however, the callee can choose to expect it in either. 7164 // The memloc is dismissed here because the argument is retrieved from 7165 // the register. 7166 if (VA.isMemLoc() && VA.needsCustom()) 7167 continue; 7168 7169 if (Flags.isByVal() && VA.isMemLoc()) { 7170 const unsigned Size = 7171 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7172 PtrByteSize); 7173 const int FI = MF.getFrameInfo().CreateFixedObject( 7174 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7175 /* IsAliased */ true); 7176 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7177 InVals.push_back(FIN); 7178 7179 continue; 7180 } 7181 7182 if (Flags.isByVal()) { 7183 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7184 7185 const MCPhysReg ArgReg = VA.getLocReg(); 7186 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7187 7188 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7189 report_fatal_error("Over aligned byvals not supported yet."); 7190 7191 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7192 const int FI = MF.getFrameInfo().CreateFixedObject( 7193 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7194 /* IsAliased */ true); 7195 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7196 InVals.push_back(FIN); 7197 7198 // Add live ins for all the RegLocs for the same ByVal. 7199 const TargetRegisterClass *RegClass = 7200 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7201 7202 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7203 unsigned Offset) { 7204 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7205 // Since the callers side has left justified the aggregate in the 7206 // register, we can simply store the entire register into the stack 7207 // slot. 7208 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7209 // The store to the fixedstack object is needed becuase accessing a 7210 // field of the ByVal will use a gep and load. Ideally we will optimize 7211 // to extracting the value from the register directly, and elide the 7212 // stores when the arguments address is not taken, but that will need to 7213 // be future work. 7214 SDValue Store = DAG.getStore( 7215 CopyFrom.getValue(1), dl, CopyFrom, 7216 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7217 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7218 7219 MemOps.push_back(Store); 7220 }; 7221 7222 unsigned Offset = 0; 7223 HandleRegLoc(VA.getLocReg(), Offset); 7224 Offset += PtrByteSize; 7225 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7226 Offset += PtrByteSize) { 7227 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7228 "RegLocs should be for ByVal argument."); 7229 7230 const CCValAssign RL = ArgLocs[I++]; 7231 HandleRegLoc(RL.getLocReg(), Offset); 7232 } 7233 7234 if (Offset != StackSize) { 7235 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7236 "Expected MemLoc for remaining bytes."); 7237 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7238 // Consume the MemLoc.The InVal has already been emitted, so nothing 7239 // more needs to be done. 7240 ++I; 7241 } 7242 7243 continue; 7244 } 7245 7246 EVT ValVT = VA.getValVT(); 7247 if (VA.isRegLoc() && !VA.needsCustom()) { 7248 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7249 unsigned VReg = 7250 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7251 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7252 if (ValVT.isScalarInteger() && 7253 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7254 ArgValue = 7255 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7256 } 7257 InVals.push_back(ArgValue); 7258 continue; 7259 } 7260 if (VA.isMemLoc()) { 7261 const unsigned LocSize = LocVT.getStoreSize(); 7262 const unsigned ValSize = ValVT.getStoreSize(); 7263 assert((ValSize <= LocSize) && 7264 "Object size is larger than size of MemLoc"); 7265 int CurArgOffset = VA.getLocMemOffset(); 7266 // Objects are right-justified because AIX is big-endian. 7267 if (LocSize > ValSize) 7268 CurArgOffset += LocSize - ValSize; 7269 // Potential tail calls could cause overwriting of argument stack slots. 7270 const bool IsImmutable = 7271 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7272 (CallConv == CallingConv::Fast)); 7273 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7274 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7275 SDValue ArgValue = 7276 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7277 InVals.push_back(ArgValue); 7278 continue; 7279 } 7280 } 7281 7282 // On AIX a minimum of 8 words is saved to the parameter save area. 7283 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7284 // Area that is at least reserved in the caller of this function. 7285 unsigned CallerReservedArea = 7286 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7287 7288 // Set the size that is at least reserved in caller of this function. Tail 7289 // call optimized function's reserved stack space needs to be aligned so 7290 // that taking the difference between two stack areas will result in an 7291 // aligned stack. 7292 CallerReservedArea = 7293 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7294 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7295 FuncInfo->setMinReservedArea(CallerReservedArea); 7296 7297 if (isVarArg) { 7298 FuncInfo->setVarArgsFrameIndex( 7299 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7300 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7301 7302 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7303 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7304 7305 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7306 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7307 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7308 7309 // The fixed integer arguments of a variadic function are stored to the 7310 // VarArgsFrameIndex on the stack so that they may be loaded by 7311 // dereferencing the result of va_next. 7312 for (unsigned GPRIndex = 7313 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7314 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7315 7316 const unsigned VReg = 7317 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7318 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7319 7320 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7321 SDValue Store = 7322 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7323 MemOps.push_back(Store); 7324 // Increment the address for the next argument to store. 7325 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7326 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7327 } 7328 } 7329 7330 if (!MemOps.empty()) 7331 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7332 7333 return Chain; 7334 } 7335 7336 SDValue PPCTargetLowering::LowerCall_AIX( 7337 SDValue Chain, SDValue Callee, CallFlags CFlags, 7338 const SmallVectorImpl<ISD::OutputArg> &Outs, 7339 const SmallVectorImpl<SDValue> &OutVals, 7340 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7341 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7342 const CallBase *CB) const { 7343 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7344 // AIX ABI stack frame layout. 7345 7346 assert((CFlags.CallConv == CallingConv::C || 7347 CFlags.CallConv == CallingConv::Cold || 7348 CFlags.CallConv == CallingConv::Fast) && 7349 "Unexpected calling convention!"); 7350 7351 if (CFlags.IsPatchPoint) 7352 report_fatal_error("This call type is unimplemented on AIX."); 7353 7354 const PPCSubtarget& Subtarget = 7355 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7356 if (Subtarget.hasAltivec()) 7357 report_fatal_error("Altivec support is unimplemented on AIX."); 7358 7359 MachineFunction &MF = DAG.getMachineFunction(); 7360 SmallVector<CCValAssign, 16> ArgLocs; 7361 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7362 *DAG.getContext()); 7363 7364 // Reserve space for the linkage save area (LSA) on the stack. 7365 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7366 // [SP][CR][LR][2 x reserved][TOC]. 7367 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7368 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7369 const bool IsPPC64 = Subtarget.isPPC64(); 7370 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7371 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7372 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7373 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7374 7375 // The prolog code of the callee may store up to 8 GPR argument registers to 7376 // the stack, allowing va_start to index over them in memory if the callee 7377 // is variadic. 7378 // Because we cannot tell if this is needed on the caller side, we have to 7379 // conservatively assume that it is needed. As such, make sure we have at 7380 // least enough stack space for the caller to store the 8 GPRs. 7381 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7382 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7383 CCInfo.getNextStackOffset()); 7384 7385 // Adjust the stack pointer for the new arguments... 7386 // These operations are automatically eliminated by the prolog/epilog pass. 7387 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7388 SDValue CallSeqStart = Chain; 7389 7390 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7391 SmallVector<SDValue, 8> MemOpChains; 7392 7393 // Set up a copy of the stack pointer for loading and storing any 7394 // arguments that may not fit in the registers available for argument 7395 // passing. 7396 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7397 : DAG.getRegister(PPC::R1, MVT::i32); 7398 7399 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7400 const unsigned ValNo = ArgLocs[I].getValNo(); 7401 SDValue Arg = OutVals[ValNo]; 7402 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7403 7404 if (Flags.isByVal()) { 7405 const unsigned ByValSize = Flags.getByValSize(); 7406 7407 // Nothing to do for zero-sized ByVals on the caller side. 7408 if (!ByValSize) { 7409 ++I; 7410 continue; 7411 } 7412 7413 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7414 return DAG.getExtLoad( 7415 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7416 (LoadOffset != 0) 7417 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7418 : Arg, 7419 MachinePointerInfo(), VT); 7420 }; 7421 7422 unsigned LoadOffset = 0; 7423 7424 // Initialize registers, which are fully occupied by the by-val argument. 7425 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7426 SDValue Load = GetLoad(PtrVT, LoadOffset); 7427 MemOpChains.push_back(Load.getValue(1)); 7428 LoadOffset += PtrByteSize; 7429 const CCValAssign &ByValVA = ArgLocs[I++]; 7430 assert(ByValVA.getValNo() == ValNo && 7431 "Unexpected location for pass-by-value argument."); 7432 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7433 } 7434 7435 if (LoadOffset == ByValSize) 7436 continue; 7437 7438 // There must be one more loc to handle the remainder. 7439 assert(ArgLocs[I].getValNo() == ValNo && 7440 "Expected additional location for by-value argument."); 7441 7442 if (ArgLocs[I].isMemLoc()) { 7443 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7444 const CCValAssign &ByValVA = ArgLocs[I++]; 7445 ISD::ArgFlagsTy MemcpyFlags = Flags; 7446 // Only memcpy the bytes that don't pass in register. 7447 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7448 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7449 (LoadOffset != 0) 7450 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7451 : Arg, 7452 DAG.getObjectPtrOffset(dl, StackPtr, 7453 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7454 CallSeqStart, MemcpyFlags, DAG, dl); 7455 continue; 7456 } 7457 7458 // Initialize the final register residue. 7459 // Any residue that occupies the final by-val arg register must be 7460 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7461 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7462 // 2 and 1 byte loads. 7463 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7464 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7465 "Unexpected register residue for by-value argument."); 7466 SDValue ResidueVal; 7467 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7468 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7469 const MVT VT = 7470 N == 1 ? MVT::i8 7471 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7472 SDValue Load = GetLoad(VT, LoadOffset); 7473 MemOpChains.push_back(Load.getValue(1)); 7474 LoadOffset += N; 7475 Bytes += N; 7476 7477 // By-val arguments are passed left-justfied in register. 7478 // Every load here needs to be shifted, otherwise a full register load 7479 // should have been used. 7480 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7481 "Unexpected load emitted during handling of pass-by-value " 7482 "argument."); 7483 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7484 EVT ShiftAmountTy = 7485 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7486 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7487 SDValue ShiftedLoad = 7488 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7489 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7490 ShiftedLoad) 7491 : ShiftedLoad; 7492 } 7493 7494 const CCValAssign &ByValVA = ArgLocs[I++]; 7495 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7496 continue; 7497 } 7498 7499 CCValAssign &VA = ArgLocs[I++]; 7500 const MVT LocVT = VA.getLocVT(); 7501 const MVT ValVT = VA.getValVT(); 7502 7503 switch (VA.getLocInfo()) { 7504 default: 7505 report_fatal_error("Unexpected argument extension type."); 7506 case CCValAssign::Full: 7507 break; 7508 case CCValAssign::ZExt: 7509 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7510 break; 7511 case CCValAssign::SExt: 7512 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7513 break; 7514 } 7515 7516 if (VA.isRegLoc() && !VA.needsCustom()) { 7517 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7518 continue; 7519 } 7520 7521 if (VA.isMemLoc()) { 7522 SDValue PtrOff = 7523 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7524 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7525 MemOpChains.push_back( 7526 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7527 7528 continue; 7529 } 7530 7531 // Custom handling is used for GPR initializations for vararg float 7532 // arguments. 7533 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7534 ValVT.isFloatingPoint() && LocVT.isInteger() && 7535 "Unexpected register handling for calling convention."); 7536 7537 SDValue ArgAsInt = 7538 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7539 7540 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7541 // f32 in 32-bit GPR 7542 // f64 in 64-bit GPR 7543 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7544 else if (Arg.getValueType().getFixedSizeInBits() < 7545 LocVT.getFixedSizeInBits()) 7546 // f32 in 64-bit GPR. 7547 RegsToPass.push_back(std::make_pair( 7548 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7549 else { 7550 // f64 in two 32-bit GPRs 7551 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7552 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7553 "Unexpected custom register for argument!"); 7554 CCValAssign &GPR1 = VA; 7555 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7556 DAG.getConstant(32, dl, MVT::i8)); 7557 RegsToPass.push_back(std::make_pair( 7558 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7559 7560 if (I != E) { 7561 // If only 1 GPR was available, there will only be one custom GPR and 7562 // the argument will also pass in memory. 7563 CCValAssign &PeekArg = ArgLocs[I]; 7564 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7565 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7566 CCValAssign &GPR2 = ArgLocs[I++]; 7567 RegsToPass.push_back(std::make_pair( 7568 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7569 } 7570 } 7571 } 7572 } 7573 7574 if (!MemOpChains.empty()) 7575 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7576 7577 // For indirect calls, we need to save the TOC base to the stack for 7578 // restoration after the call. 7579 if (CFlags.IsIndirect) { 7580 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7581 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7582 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7583 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7584 const unsigned TOCSaveOffset = 7585 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7586 7587 setUsesTOCBasePtr(DAG); 7588 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7589 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7590 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7591 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7592 Chain = DAG.getStore( 7593 Val.getValue(1), dl, Val, AddPtr, 7594 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7595 } 7596 7597 // Build a sequence of copy-to-reg nodes chained together with token chain 7598 // and flag operands which copy the outgoing args into the appropriate regs. 7599 SDValue InFlag; 7600 for (auto Reg : RegsToPass) { 7601 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7602 InFlag = Chain.getValue(1); 7603 } 7604 7605 const int SPDiff = 0; 7606 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7607 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7608 } 7609 7610 bool 7611 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7612 MachineFunction &MF, bool isVarArg, 7613 const SmallVectorImpl<ISD::OutputArg> &Outs, 7614 LLVMContext &Context) const { 7615 SmallVector<CCValAssign, 16> RVLocs; 7616 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7617 return CCInfo.CheckReturn( 7618 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7619 ? RetCC_PPC_Cold 7620 : RetCC_PPC); 7621 } 7622 7623 SDValue 7624 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7625 bool isVarArg, 7626 const SmallVectorImpl<ISD::OutputArg> &Outs, 7627 const SmallVectorImpl<SDValue> &OutVals, 7628 const SDLoc &dl, SelectionDAG &DAG) const { 7629 SmallVector<CCValAssign, 16> RVLocs; 7630 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7631 *DAG.getContext()); 7632 CCInfo.AnalyzeReturn(Outs, 7633 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7634 ? RetCC_PPC_Cold 7635 : RetCC_PPC); 7636 7637 SDValue Flag; 7638 SmallVector<SDValue, 4> RetOps(1, Chain); 7639 7640 // Copy the result values into the output registers. 7641 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7642 CCValAssign &VA = RVLocs[i]; 7643 assert(VA.isRegLoc() && "Can only return in registers!"); 7644 7645 SDValue Arg = OutVals[RealResIdx]; 7646 7647 if (Subtarget.isAIXABI() && 7648 (VA.getLocVT().isVector() || VA.getValVT().isVector())) 7649 report_fatal_error("Returning vector types not yet supported on AIX."); 7650 7651 switch (VA.getLocInfo()) { 7652 default: llvm_unreachable("Unknown loc info!"); 7653 case CCValAssign::Full: break; 7654 case CCValAssign::AExt: 7655 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7656 break; 7657 case CCValAssign::ZExt: 7658 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7659 break; 7660 case CCValAssign::SExt: 7661 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7662 break; 7663 } 7664 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7665 bool isLittleEndian = Subtarget.isLittleEndian(); 7666 // Legalize ret f64 -> ret 2 x i32. 7667 SDValue SVal = 7668 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7669 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7670 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7671 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7672 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7673 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7674 Flag = Chain.getValue(1); 7675 VA = RVLocs[++i]; // skip ahead to next loc 7676 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7677 } else 7678 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7679 Flag = Chain.getValue(1); 7680 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7681 } 7682 7683 RetOps[0] = Chain; // Update chain. 7684 7685 // Add the flag if we have it. 7686 if (Flag.getNode()) 7687 RetOps.push_back(Flag); 7688 7689 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7690 } 7691 7692 SDValue 7693 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7694 SelectionDAG &DAG) const { 7695 SDLoc dl(Op); 7696 7697 // Get the correct type for integers. 7698 EVT IntVT = Op.getValueType(); 7699 7700 // Get the inputs. 7701 SDValue Chain = Op.getOperand(0); 7702 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7703 // Build a DYNAREAOFFSET node. 7704 SDValue Ops[2] = {Chain, FPSIdx}; 7705 SDVTList VTs = DAG.getVTList(IntVT); 7706 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7707 } 7708 7709 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7710 SelectionDAG &DAG) const { 7711 // When we pop the dynamic allocation we need to restore the SP link. 7712 SDLoc dl(Op); 7713 7714 // Get the correct type for pointers. 7715 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7716 7717 // Construct the stack pointer operand. 7718 bool isPPC64 = Subtarget.isPPC64(); 7719 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7720 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7721 7722 // Get the operands for the STACKRESTORE. 7723 SDValue Chain = Op.getOperand(0); 7724 SDValue SaveSP = Op.getOperand(1); 7725 7726 // Load the old link SP. 7727 SDValue LoadLinkSP = 7728 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7729 7730 // Restore the stack pointer. 7731 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7732 7733 // Store the old link SP. 7734 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7735 } 7736 7737 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7738 MachineFunction &MF = DAG.getMachineFunction(); 7739 bool isPPC64 = Subtarget.isPPC64(); 7740 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7741 7742 // Get current frame pointer save index. The users of this index will be 7743 // primarily DYNALLOC instructions. 7744 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7745 int RASI = FI->getReturnAddrSaveIndex(); 7746 7747 // If the frame pointer save index hasn't been defined yet. 7748 if (!RASI) { 7749 // Find out what the fix offset of the frame pointer save area. 7750 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7751 // Allocate the frame index for frame pointer save area. 7752 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7753 // Save the result. 7754 FI->setReturnAddrSaveIndex(RASI); 7755 } 7756 return DAG.getFrameIndex(RASI, PtrVT); 7757 } 7758 7759 SDValue 7760 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7761 MachineFunction &MF = DAG.getMachineFunction(); 7762 bool isPPC64 = Subtarget.isPPC64(); 7763 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7764 7765 // Get current frame pointer save index. The users of this index will be 7766 // primarily DYNALLOC instructions. 7767 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7768 int FPSI = FI->getFramePointerSaveIndex(); 7769 7770 // If the frame pointer save index hasn't been defined yet. 7771 if (!FPSI) { 7772 // Find out what the fix offset of the frame pointer save area. 7773 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7774 // Allocate the frame index for frame pointer save area. 7775 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7776 // Save the result. 7777 FI->setFramePointerSaveIndex(FPSI); 7778 } 7779 return DAG.getFrameIndex(FPSI, PtrVT); 7780 } 7781 7782 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7783 SelectionDAG &DAG) const { 7784 MachineFunction &MF = DAG.getMachineFunction(); 7785 // Get the inputs. 7786 SDValue Chain = Op.getOperand(0); 7787 SDValue Size = Op.getOperand(1); 7788 SDLoc dl(Op); 7789 7790 // Get the correct type for pointers. 7791 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7792 // Negate the size. 7793 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7794 DAG.getConstant(0, dl, PtrVT), Size); 7795 // Construct a node for the frame pointer save index. 7796 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7797 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7798 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7799 if (hasInlineStackProbe(MF)) 7800 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7801 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7802 } 7803 7804 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7805 SelectionDAG &DAG) const { 7806 MachineFunction &MF = DAG.getMachineFunction(); 7807 7808 bool isPPC64 = Subtarget.isPPC64(); 7809 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7810 7811 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7812 return DAG.getFrameIndex(FI, PtrVT); 7813 } 7814 7815 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7816 SelectionDAG &DAG) const { 7817 SDLoc DL(Op); 7818 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7819 DAG.getVTList(MVT::i32, MVT::Other), 7820 Op.getOperand(0), Op.getOperand(1)); 7821 } 7822 7823 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7824 SelectionDAG &DAG) const { 7825 SDLoc DL(Op); 7826 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7827 Op.getOperand(0), Op.getOperand(1)); 7828 } 7829 7830 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7831 if (Op.getValueType().isVector()) 7832 return LowerVectorLoad(Op, DAG); 7833 7834 assert(Op.getValueType() == MVT::i1 && 7835 "Custom lowering only for i1 loads"); 7836 7837 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7838 7839 SDLoc dl(Op); 7840 LoadSDNode *LD = cast<LoadSDNode>(Op); 7841 7842 SDValue Chain = LD->getChain(); 7843 SDValue BasePtr = LD->getBasePtr(); 7844 MachineMemOperand *MMO = LD->getMemOperand(); 7845 7846 SDValue NewLD = 7847 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7848 BasePtr, MVT::i8, MMO); 7849 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7850 7851 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7852 return DAG.getMergeValues(Ops, dl); 7853 } 7854 7855 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7856 if (Op.getOperand(1).getValueType().isVector()) 7857 return LowerVectorStore(Op, DAG); 7858 7859 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7860 "Custom lowering only for i1 stores"); 7861 7862 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7863 7864 SDLoc dl(Op); 7865 StoreSDNode *ST = cast<StoreSDNode>(Op); 7866 7867 SDValue Chain = ST->getChain(); 7868 SDValue BasePtr = ST->getBasePtr(); 7869 SDValue Value = ST->getValue(); 7870 MachineMemOperand *MMO = ST->getMemOperand(); 7871 7872 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7873 Value); 7874 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7875 } 7876 7877 // FIXME: Remove this once the ANDI glue bug is fixed: 7878 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7879 assert(Op.getValueType() == MVT::i1 && 7880 "Custom lowering only for i1 results"); 7881 7882 SDLoc DL(Op); 7883 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7884 } 7885 7886 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7887 SelectionDAG &DAG) const { 7888 7889 // Implements a vector truncate that fits in a vector register as a shuffle. 7890 // We want to legalize vector truncates down to where the source fits in 7891 // a vector register (and target is therefore smaller than vector register 7892 // size). At that point legalization will try to custom lower the sub-legal 7893 // result and get here - where we can contain the truncate as a single target 7894 // operation. 7895 7896 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7897 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7898 // 7899 // We will implement it for big-endian ordering as this (where x denotes 7900 // undefined): 7901 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7902 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7903 // 7904 // The same operation in little-endian ordering will be: 7905 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7906 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7907 7908 EVT TrgVT = Op.getValueType(); 7909 assert(TrgVT.isVector() && "Vector type expected."); 7910 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7911 EVT EltVT = TrgVT.getVectorElementType(); 7912 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7913 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7914 !isPowerOf2_32(EltVT.getSizeInBits())) 7915 return SDValue(); 7916 7917 SDValue N1 = Op.getOperand(0); 7918 EVT SrcVT = N1.getValueType(); 7919 unsigned SrcSize = SrcVT.getSizeInBits(); 7920 if (SrcSize > 256 || 7921 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7922 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7923 return SDValue(); 7924 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7925 return SDValue(); 7926 7927 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7928 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7929 7930 SDLoc DL(Op); 7931 SDValue Op1, Op2; 7932 if (SrcSize == 256) { 7933 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7934 EVT SplitVT = 7935 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7936 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7937 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7938 DAG.getConstant(0, DL, VecIdxTy)); 7939 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7940 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7941 } 7942 else { 7943 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7944 Op2 = DAG.getUNDEF(WideVT); 7945 } 7946 7947 // First list the elements we want to keep. 7948 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7949 SmallVector<int, 16> ShuffV; 7950 if (Subtarget.isLittleEndian()) 7951 for (unsigned i = 0; i < TrgNumElts; ++i) 7952 ShuffV.push_back(i * SizeMult); 7953 else 7954 for (unsigned i = 1; i <= TrgNumElts; ++i) 7955 ShuffV.push_back(i * SizeMult - 1); 7956 7957 // Populate the remaining elements with undefs. 7958 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7959 // ShuffV.push_back(i + WideNumElts); 7960 ShuffV.push_back(WideNumElts + 1); 7961 7962 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7963 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7964 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7965 } 7966 7967 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7968 /// possible. 7969 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7970 // Not FP, or using SPE? Not a fsel. 7971 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7972 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7973 return Op; 7974 7975 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7976 7977 EVT ResVT = Op.getValueType(); 7978 EVT CmpVT = Op.getOperand(0).getValueType(); 7979 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7980 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7981 SDLoc dl(Op); 7982 SDNodeFlags Flags = Op.getNode()->getFlags(); 7983 7984 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7985 // presence of infinities. 7986 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7987 switch (CC) { 7988 default: 7989 break; 7990 case ISD::SETOGT: 7991 case ISD::SETGT: 7992 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7993 case ISD::SETOLT: 7994 case ISD::SETLT: 7995 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7996 } 7997 } 7998 7999 // We might be able to do better than this under some circumstances, but in 8000 // general, fsel-based lowering of select is a finite-math-only optimization. 8001 // For more information, see section F.3 of the 2.06 ISA specification. 8002 // With ISA 3.0 8003 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8004 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8005 return Op; 8006 8007 // If the RHS of the comparison is a 0.0, we don't need to do the 8008 // subtraction at all. 8009 SDValue Sel1; 8010 if (isFloatingPointZero(RHS)) 8011 switch (CC) { 8012 default: break; // SETUO etc aren't handled by fsel. 8013 case ISD::SETNE: 8014 std::swap(TV, FV); 8015 LLVM_FALLTHROUGH; 8016 case ISD::SETEQ: 8017 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8018 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8019 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8020 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8021 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8022 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8023 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8024 case ISD::SETULT: 8025 case ISD::SETLT: 8026 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8027 LLVM_FALLTHROUGH; 8028 case ISD::SETOGE: 8029 case ISD::SETGE: 8030 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8031 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8032 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8033 case ISD::SETUGT: 8034 case ISD::SETGT: 8035 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8036 LLVM_FALLTHROUGH; 8037 case ISD::SETOLE: 8038 case ISD::SETLE: 8039 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8040 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8041 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8042 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8043 } 8044 8045 SDValue Cmp; 8046 switch (CC) { 8047 default: break; // SETUO etc aren't handled by fsel. 8048 case ISD::SETNE: 8049 std::swap(TV, FV); 8050 LLVM_FALLTHROUGH; 8051 case ISD::SETEQ: 8052 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8053 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8054 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8055 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8056 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8057 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8058 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8059 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8060 case ISD::SETULT: 8061 case ISD::SETLT: 8062 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8063 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8064 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8065 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8066 case ISD::SETOGE: 8067 case ISD::SETGE: 8068 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8069 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8070 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8071 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8072 case ISD::SETUGT: 8073 case ISD::SETGT: 8074 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8075 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8076 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8077 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8078 case ISD::SETOLE: 8079 case ISD::SETLE: 8080 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8081 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8082 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8083 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8084 } 8085 return Op; 8086 } 8087 8088 static unsigned getPPCStrictOpcode(unsigned Opc) { 8089 switch (Opc) { 8090 default: 8091 llvm_unreachable("No strict version of this opcode!"); 8092 case PPCISD::FCTIDZ: 8093 return PPCISD::STRICT_FCTIDZ; 8094 case PPCISD::FCTIWZ: 8095 return PPCISD::STRICT_FCTIWZ; 8096 case PPCISD::FCTIDUZ: 8097 return PPCISD::STRICT_FCTIDUZ; 8098 case PPCISD::FCTIWUZ: 8099 return PPCISD::STRICT_FCTIWUZ; 8100 case PPCISD::FCFID: 8101 return PPCISD::STRICT_FCFID; 8102 case PPCISD::FCFIDU: 8103 return PPCISD::STRICT_FCFIDU; 8104 case PPCISD::FCFIDS: 8105 return PPCISD::STRICT_FCFIDS; 8106 case PPCISD::FCFIDUS: 8107 return PPCISD::STRICT_FCFIDUS; 8108 } 8109 } 8110 8111 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8112 const PPCSubtarget &Subtarget) { 8113 SDLoc dl(Op); 8114 bool IsStrict = Op->isStrictFPOpcode(); 8115 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8116 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8117 8118 // TODO: Any other flags to propagate? 8119 SDNodeFlags Flags; 8120 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8121 8122 // For strict nodes, source is the second operand. 8123 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8124 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8125 assert(Src.getValueType().isFloatingPoint()); 8126 if (Src.getValueType() == MVT::f32) { 8127 if (IsStrict) { 8128 Src = 8129 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8130 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8131 Chain = Src.getValue(1); 8132 } else 8133 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8134 } 8135 SDValue Conv; 8136 unsigned Opc = ISD::DELETED_NODE; 8137 switch (Op.getSimpleValueType().SimpleTy) { 8138 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8139 case MVT::i32: 8140 Opc = IsSigned ? PPCISD::FCTIWZ 8141 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8142 break; 8143 case MVT::i64: 8144 assert((IsSigned || Subtarget.hasFPCVT()) && 8145 "i64 FP_TO_UINT is supported only with FPCVT"); 8146 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8147 } 8148 if (IsStrict) { 8149 Opc = getPPCStrictOpcode(Opc); 8150 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8151 {Chain, Src}, Flags); 8152 } else { 8153 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8154 } 8155 return Conv; 8156 } 8157 8158 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8159 SelectionDAG &DAG, 8160 const SDLoc &dl) const { 8161 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8162 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8163 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8164 bool IsStrict = Op->isStrictFPOpcode(); 8165 8166 // Convert the FP value to an int value through memory. 8167 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8168 (IsSigned || Subtarget.hasFPCVT()); 8169 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8170 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8171 MachinePointerInfo MPI = 8172 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8173 8174 // Emit a store to the stack slot. 8175 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8176 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8177 if (i32Stack) { 8178 MachineFunction &MF = DAG.getMachineFunction(); 8179 Alignment = Align(4); 8180 MachineMemOperand *MMO = 8181 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8182 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8183 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8184 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8185 } else 8186 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8187 8188 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8189 // add in a bias on big endian. 8190 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8191 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8192 DAG.getConstant(4, dl, FIPtr.getValueType())); 8193 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8194 } 8195 8196 RLI.Chain = Chain; 8197 RLI.Ptr = FIPtr; 8198 RLI.MPI = MPI; 8199 RLI.Alignment = Alignment; 8200 } 8201 8202 /// Custom lowers floating point to integer conversions to use 8203 /// the direct move instructions available in ISA 2.07 to avoid the 8204 /// need for load/store combinations. 8205 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8206 SelectionDAG &DAG, 8207 const SDLoc &dl) const { 8208 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8209 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8210 if (Op->isStrictFPOpcode()) 8211 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8212 else 8213 return Mov; 8214 } 8215 8216 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8217 const SDLoc &dl) const { 8218 bool IsStrict = Op->isStrictFPOpcode(); 8219 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8220 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8221 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8222 EVT SrcVT = Src.getValueType(); 8223 EVT DstVT = Op.getValueType(); 8224 8225 // FP to INT conversions are legal for f128. 8226 if (SrcVT == MVT::f128) 8227 return Op; 8228 8229 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8230 // PPC (the libcall is not available). 8231 if (SrcVT == MVT::ppcf128) { 8232 if (DstVT == MVT::i32) { 8233 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8234 // set other fast-math flags to FP operations in both strict and 8235 // non-strict cases. (FP_TO_SINT, FSUB) 8236 SDNodeFlags Flags; 8237 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8238 8239 if (IsSigned) { 8240 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8241 DAG.getIntPtrConstant(0, dl)); 8242 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8243 DAG.getIntPtrConstant(1, dl)); 8244 8245 // Add the two halves of the long double in round-to-zero mode, and use 8246 // a smaller FP_TO_SINT. 8247 if (IsStrict) { 8248 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8249 DAG.getVTList(MVT::f64, MVT::Other), 8250 {Op.getOperand(0), Lo, Hi}, Flags); 8251 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8252 DAG.getVTList(MVT::i32, MVT::Other), 8253 {Res.getValue(1), Res}, Flags); 8254 } else { 8255 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8256 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8257 } 8258 } else { 8259 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8260 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8261 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8262 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8263 if (IsStrict) { 8264 // Sel = Src < 0x80000000 8265 // FltOfs = select Sel, 0.0, 0x80000000 8266 // IntOfs = select Sel, 0, 0x80000000 8267 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8268 SDValue Chain = Op.getOperand(0); 8269 EVT SetCCVT = 8270 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8271 EVT DstSetCCVT = 8272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8273 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8274 Chain, true); 8275 Chain = Sel.getValue(1); 8276 8277 SDValue FltOfs = DAG.getSelect( 8278 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8279 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8280 8281 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8282 DAG.getVTList(SrcVT, MVT::Other), 8283 {Chain, Src, FltOfs}, Flags); 8284 Chain = Val.getValue(1); 8285 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8286 DAG.getVTList(DstVT, MVT::Other), 8287 {Chain, Val}, Flags); 8288 Chain = SInt.getValue(1); 8289 SDValue IntOfs = DAG.getSelect( 8290 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8291 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8292 return DAG.getMergeValues({Result, Chain}, dl); 8293 } else { 8294 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8295 // FIXME: generated code sucks. 8296 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8297 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8298 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8299 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8300 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8301 } 8302 } 8303 } 8304 8305 return SDValue(); 8306 } 8307 8308 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8309 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8310 8311 ReuseLoadInfo RLI; 8312 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8313 8314 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8315 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8316 } 8317 8318 // We're trying to insert a regular store, S, and then a load, L. If the 8319 // incoming value, O, is a load, we might just be able to have our load use the 8320 // address used by O. However, we don't know if anything else will store to 8321 // that address before we can load from it. To prevent this situation, we need 8322 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8323 // the same chain operand as O, we create a token factor from the chain results 8324 // of O and L, and we replace all uses of O's chain result with that token 8325 // factor (see spliceIntoChain below for this last part). 8326 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8327 ReuseLoadInfo &RLI, 8328 SelectionDAG &DAG, 8329 ISD::LoadExtType ET) const { 8330 // Conservatively skip reusing for constrained FP nodes. 8331 if (Op->isStrictFPOpcode()) 8332 return false; 8333 8334 SDLoc dl(Op); 8335 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8336 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8337 if (ET == ISD::NON_EXTLOAD && 8338 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8339 isOperationLegalOrCustom(Op.getOpcode(), 8340 Op.getOperand(0).getValueType())) { 8341 8342 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8343 return true; 8344 } 8345 8346 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8347 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8348 LD->isNonTemporal()) 8349 return false; 8350 if (LD->getMemoryVT() != MemVT) 8351 return false; 8352 8353 RLI.Ptr = LD->getBasePtr(); 8354 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8355 assert(LD->getAddressingMode() == ISD::PRE_INC && 8356 "Non-pre-inc AM on PPC?"); 8357 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8358 LD->getOffset()); 8359 } 8360 8361 RLI.Chain = LD->getChain(); 8362 RLI.MPI = LD->getPointerInfo(); 8363 RLI.IsDereferenceable = LD->isDereferenceable(); 8364 RLI.IsInvariant = LD->isInvariant(); 8365 RLI.Alignment = LD->getAlign(); 8366 RLI.AAInfo = LD->getAAInfo(); 8367 RLI.Ranges = LD->getRanges(); 8368 8369 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8370 return true; 8371 } 8372 8373 // Given the head of the old chain, ResChain, insert a token factor containing 8374 // it and NewResChain, and make users of ResChain now be users of that token 8375 // factor. 8376 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8377 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8378 SDValue NewResChain, 8379 SelectionDAG &DAG) const { 8380 if (!ResChain) 8381 return; 8382 8383 SDLoc dl(NewResChain); 8384 8385 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8386 NewResChain, DAG.getUNDEF(MVT::Other)); 8387 assert(TF.getNode() != NewResChain.getNode() && 8388 "A new TF really is required here"); 8389 8390 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8391 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8392 } 8393 8394 /// Analyze profitability of direct move 8395 /// prefer float load to int load plus direct move 8396 /// when there is no integer use of int load 8397 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8398 SDNode *Origin = Op.getOperand(0).getNode(); 8399 if (Origin->getOpcode() != ISD::LOAD) 8400 return true; 8401 8402 // If there is no LXSIBZX/LXSIHZX, like Power8, 8403 // prefer direct move if the memory size is 1 or 2 bytes. 8404 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8405 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8406 return true; 8407 8408 for (SDNode::use_iterator UI = Origin->use_begin(), 8409 UE = Origin->use_end(); 8410 UI != UE; ++UI) { 8411 8412 // Only look at the users of the loaded value. 8413 if (UI.getUse().get().getResNo() != 0) 8414 continue; 8415 8416 if (UI->getOpcode() != ISD::SINT_TO_FP && 8417 UI->getOpcode() != ISD::UINT_TO_FP && 8418 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8419 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8420 return true; 8421 } 8422 8423 return false; 8424 } 8425 8426 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8427 const PPCSubtarget &Subtarget, 8428 SDValue Chain = SDValue()) { 8429 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8430 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8431 SDLoc dl(Op); 8432 8433 // TODO: Any other flags to propagate? 8434 SDNodeFlags Flags; 8435 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8436 8437 // If we have FCFIDS, then use it when converting to single-precision. 8438 // Otherwise, convert to double-precision and then round. 8439 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8440 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8441 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8442 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8443 if (Op->isStrictFPOpcode()) { 8444 if (!Chain) 8445 Chain = Op.getOperand(0); 8446 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8447 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8448 } else 8449 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8450 } 8451 8452 /// Custom lowers integer to floating point conversions to use 8453 /// the direct move instructions available in ISA 2.07 to avoid the 8454 /// need for load/store combinations. 8455 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8456 SelectionDAG &DAG, 8457 const SDLoc &dl) const { 8458 assert((Op.getValueType() == MVT::f32 || 8459 Op.getValueType() == MVT::f64) && 8460 "Invalid floating point type as target of conversion"); 8461 assert(Subtarget.hasFPCVT() && 8462 "Int to FP conversions with direct moves require FPCVT"); 8463 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8464 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8465 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8466 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8467 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8468 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8469 return convertIntToFP(Op, Mov, DAG, Subtarget); 8470 } 8471 8472 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8473 8474 EVT VecVT = Vec.getValueType(); 8475 assert(VecVT.isVector() && "Expected a vector type."); 8476 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8477 8478 EVT EltVT = VecVT.getVectorElementType(); 8479 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8480 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8481 8482 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8483 SmallVector<SDValue, 16> Ops(NumConcat); 8484 Ops[0] = Vec; 8485 SDValue UndefVec = DAG.getUNDEF(VecVT); 8486 for (unsigned i = 1; i < NumConcat; ++i) 8487 Ops[i] = UndefVec; 8488 8489 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8490 } 8491 8492 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8493 const SDLoc &dl) const { 8494 bool IsStrict = Op->isStrictFPOpcode(); 8495 unsigned Opc = Op.getOpcode(); 8496 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8497 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8498 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8499 "Unexpected conversion type"); 8500 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8501 "Supports conversions to v2f64/v4f32 only."); 8502 8503 // TODO: Any other flags to propagate? 8504 SDNodeFlags Flags; 8505 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8506 8507 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8508 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8509 8510 SDValue Wide = widenVec(DAG, Src, dl); 8511 EVT WideVT = Wide.getValueType(); 8512 unsigned WideNumElts = WideVT.getVectorNumElements(); 8513 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8514 8515 SmallVector<int, 16> ShuffV; 8516 for (unsigned i = 0; i < WideNumElts; ++i) 8517 ShuffV.push_back(i + WideNumElts); 8518 8519 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8520 int SaveElts = FourEltRes ? 4 : 2; 8521 if (Subtarget.isLittleEndian()) 8522 for (int i = 0; i < SaveElts; i++) 8523 ShuffV[i * Stride] = i; 8524 else 8525 for (int i = 1; i <= SaveElts; i++) 8526 ShuffV[i * Stride - 1] = i - 1; 8527 8528 SDValue ShuffleSrc2 = 8529 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8530 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8531 8532 SDValue Extend; 8533 if (SignedConv) { 8534 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8535 EVT ExtVT = Src.getValueType(); 8536 if (Subtarget.hasP9Altivec()) 8537 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8538 IntermediateVT.getVectorNumElements()); 8539 8540 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8541 DAG.getValueType(ExtVT)); 8542 } else 8543 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8544 8545 if (IsStrict) 8546 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8547 {Op.getOperand(0), Extend}, Flags); 8548 8549 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8550 } 8551 8552 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8553 SelectionDAG &DAG) const { 8554 SDLoc dl(Op); 8555 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8556 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8557 bool IsStrict = Op->isStrictFPOpcode(); 8558 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8559 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8560 8561 // TODO: Any other flags to propagate? 8562 SDNodeFlags Flags; 8563 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8564 8565 EVT InVT = Src.getValueType(); 8566 EVT OutVT = Op.getValueType(); 8567 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8568 isOperationCustom(Op.getOpcode(), InVT)) 8569 return LowerINT_TO_FPVector(Op, DAG, dl); 8570 8571 // Conversions to f128 are legal. 8572 if (Op.getValueType() == MVT::f128) 8573 return Op; 8574 8575 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8576 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8577 return SDValue(); 8578 8579 if (Src.getValueType() == MVT::i1) 8580 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8581 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8582 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8583 8584 // If we have direct moves, we can do all the conversion, skip the store/load 8585 // however, without FPCVT we can't do most conversions. 8586 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8587 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8588 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8589 8590 assert((IsSigned || Subtarget.hasFPCVT()) && 8591 "UINT_TO_FP is supported only with FPCVT"); 8592 8593 if (Src.getValueType() == MVT::i64) { 8594 SDValue SINT = Src; 8595 // When converting to single-precision, we actually need to convert 8596 // to double-precision first and then round to single-precision. 8597 // To avoid double-rounding effects during that operation, we have 8598 // to prepare the input operand. Bits that might be truncated when 8599 // converting to double-precision are replaced by a bit that won't 8600 // be lost at this stage, but is below the single-precision rounding 8601 // position. 8602 // 8603 // However, if -enable-unsafe-fp-math is in effect, accept double 8604 // rounding to avoid the extra overhead. 8605 if (Op.getValueType() == MVT::f32 && 8606 !Subtarget.hasFPCVT() && 8607 !DAG.getTarget().Options.UnsafeFPMath) { 8608 8609 // Twiddle input to make sure the low 11 bits are zero. (If this 8610 // is the case, we are guaranteed the value will fit into the 53 bit 8611 // mantissa of an IEEE double-precision value without rounding.) 8612 // If any of those low 11 bits were not zero originally, make sure 8613 // bit 12 (value 2048) is set instead, so that the final rounding 8614 // to single-precision gets the correct result. 8615 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8616 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8617 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8618 Round, DAG.getConstant(2047, dl, MVT::i64)); 8619 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8620 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8621 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8622 8623 // However, we cannot use that value unconditionally: if the magnitude 8624 // of the input value is small, the bit-twiddling we did above might 8625 // end up visibly changing the output. Fortunately, in that case, we 8626 // don't need to twiddle bits since the original input will convert 8627 // exactly to double-precision floating-point already. Therefore, 8628 // construct a conditional to use the original value if the top 11 8629 // bits are all sign-bit copies, and use the rounded value computed 8630 // above otherwise. 8631 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8632 SINT, DAG.getConstant(53, dl, MVT::i32)); 8633 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8634 Cond, DAG.getConstant(1, dl, MVT::i64)); 8635 Cond = DAG.getSetCC( 8636 dl, 8637 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8638 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8639 8640 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8641 } 8642 8643 ReuseLoadInfo RLI; 8644 SDValue Bits; 8645 8646 MachineFunction &MF = DAG.getMachineFunction(); 8647 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8648 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8649 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8650 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8651 } else if (Subtarget.hasLFIWAX() && 8652 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8653 MachineMemOperand *MMO = 8654 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8655 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8656 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8657 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8658 DAG.getVTList(MVT::f64, MVT::Other), 8659 Ops, MVT::i32, MMO); 8660 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8661 } else if (Subtarget.hasFPCVT() && 8662 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8663 MachineMemOperand *MMO = 8664 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8665 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8666 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8667 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8668 DAG.getVTList(MVT::f64, MVT::Other), 8669 Ops, MVT::i32, MMO); 8670 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8671 } else if (((Subtarget.hasLFIWAX() && 8672 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8673 (Subtarget.hasFPCVT() && 8674 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8675 SINT.getOperand(0).getValueType() == MVT::i32) { 8676 MachineFrameInfo &MFI = MF.getFrameInfo(); 8677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8678 8679 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8680 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8681 8682 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8683 MachinePointerInfo::getFixedStack( 8684 DAG.getMachineFunction(), FrameIdx)); 8685 Chain = Store; 8686 8687 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8688 "Expected an i32 store"); 8689 8690 RLI.Ptr = FIdx; 8691 RLI.Chain = Chain; 8692 RLI.MPI = 8693 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8694 RLI.Alignment = Align(4); 8695 8696 MachineMemOperand *MMO = 8697 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8698 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8699 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8700 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8701 PPCISD::LFIWZX : PPCISD::LFIWAX, 8702 dl, DAG.getVTList(MVT::f64, MVT::Other), 8703 Ops, MVT::i32, MMO); 8704 Chain = Bits.getValue(1); 8705 } else 8706 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8707 8708 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8709 if (IsStrict) 8710 Chain = FP.getValue(1); 8711 8712 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8713 if (IsStrict) 8714 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8715 DAG.getVTList(MVT::f32, MVT::Other), 8716 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8717 else 8718 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8719 DAG.getIntPtrConstant(0, dl)); 8720 } 8721 return FP; 8722 } 8723 8724 assert(Src.getValueType() == MVT::i32 && 8725 "Unhandled INT_TO_FP type in custom expander!"); 8726 // Since we only generate this in 64-bit mode, we can take advantage of 8727 // 64-bit registers. In particular, sign extend the input value into the 8728 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8729 // then lfd it and fcfid it. 8730 MachineFunction &MF = DAG.getMachineFunction(); 8731 MachineFrameInfo &MFI = MF.getFrameInfo(); 8732 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8733 8734 SDValue Ld; 8735 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8736 ReuseLoadInfo RLI; 8737 bool ReusingLoad; 8738 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8739 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8740 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8741 8742 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8743 MachinePointerInfo::getFixedStack( 8744 DAG.getMachineFunction(), FrameIdx)); 8745 Chain = Store; 8746 8747 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8748 "Expected an i32 store"); 8749 8750 RLI.Ptr = FIdx; 8751 RLI.Chain = Chain; 8752 RLI.MPI = 8753 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8754 RLI.Alignment = Align(4); 8755 } 8756 8757 MachineMemOperand *MMO = 8758 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8759 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8760 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8761 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8762 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8763 MVT::i32, MMO); 8764 Chain = Ld.getValue(1); 8765 if (ReusingLoad) 8766 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8767 } else { 8768 assert(Subtarget.isPPC64() && 8769 "i32->FP without LFIWAX supported only on PPC64"); 8770 8771 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8772 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8773 8774 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8775 8776 // STD the extended value into the stack slot. 8777 SDValue Store = DAG.getStore( 8778 Chain, dl, Ext64, FIdx, 8779 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8780 Chain = Store; 8781 8782 // Load the value as a double. 8783 Ld = DAG.getLoad( 8784 MVT::f64, dl, Chain, FIdx, 8785 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8786 Chain = Ld.getValue(1); 8787 } 8788 8789 // FCFID it and return it. 8790 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8791 if (IsStrict) 8792 Chain = FP.getValue(1); 8793 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8794 if (IsStrict) 8795 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8796 DAG.getVTList(MVT::f32, MVT::Other), 8797 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8798 else 8799 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8800 DAG.getIntPtrConstant(0, dl)); 8801 } 8802 return FP; 8803 } 8804 8805 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8806 SelectionDAG &DAG) const { 8807 SDLoc dl(Op); 8808 /* 8809 The rounding mode is in bits 30:31 of FPSR, and has the following 8810 settings: 8811 00 Round to nearest 8812 01 Round to 0 8813 10 Round to +inf 8814 11 Round to -inf 8815 8816 FLT_ROUNDS, on the other hand, expects the following: 8817 -1 Undefined 8818 0 Round to 0 8819 1 Round to nearest 8820 2 Round to +inf 8821 3 Round to -inf 8822 8823 To perform the conversion, we do: 8824 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8825 */ 8826 8827 MachineFunction &MF = DAG.getMachineFunction(); 8828 EVT VT = Op.getValueType(); 8829 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8830 8831 // Save FP Control Word to register 8832 SDValue Chain = Op.getOperand(0); 8833 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8834 Chain = MFFS.getValue(1); 8835 8836 // Save FP register to stack slot 8837 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8838 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8839 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8840 8841 // Load FP Control Word from low 32 bits of stack slot. 8842 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8843 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8844 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8845 Chain = CWD.getValue(1); 8846 8847 // Transform as necessary 8848 SDValue CWD1 = 8849 DAG.getNode(ISD::AND, dl, MVT::i32, 8850 CWD, DAG.getConstant(3, dl, MVT::i32)); 8851 SDValue CWD2 = 8852 DAG.getNode(ISD::SRL, dl, MVT::i32, 8853 DAG.getNode(ISD::AND, dl, MVT::i32, 8854 DAG.getNode(ISD::XOR, dl, MVT::i32, 8855 CWD, DAG.getConstant(3, dl, MVT::i32)), 8856 DAG.getConstant(3, dl, MVT::i32)), 8857 DAG.getConstant(1, dl, MVT::i32)); 8858 8859 SDValue RetVal = 8860 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8861 8862 RetVal = 8863 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8864 dl, VT, RetVal); 8865 8866 return DAG.getMergeValues({RetVal, Chain}, dl); 8867 } 8868 8869 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8870 EVT VT = Op.getValueType(); 8871 unsigned BitWidth = VT.getSizeInBits(); 8872 SDLoc dl(Op); 8873 assert(Op.getNumOperands() == 3 && 8874 VT == Op.getOperand(1).getValueType() && 8875 "Unexpected SHL!"); 8876 8877 // Expand into a bunch of logical ops. Note that these ops 8878 // depend on the PPC behavior for oversized shift amounts. 8879 SDValue Lo = Op.getOperand(0); 8880 SDValue Hi = Op.getOperand(1); 8881 SDValue Amt = Op.getOperand(2); 8882 EVT AmtVT = Amt.getValueType(); 8883 8884 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8885 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8886 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8887 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8888 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8889 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8890 DAG.getConstant(-BitWidth, dl, AmtVT)); 8891 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8892 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8893 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8894 SDValue OutOps[] = { OutLo, OutHi }; 8895 return DAG.getMergeValues(OutOps, dl); 8896 } 8897 8898 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8899 EVT VT = Op.getValueType(); 8900 SDLoc dl(Op); 8901 unsigned BitWidth = VT.getSizeInBits(); 8902 assert(Op.getNumOperands() == 3 && 8903 VT == Op.getOperand(1).getValueType() && 8904 "Unexpected SRL!"); 8905 8906 // Expand into a bunch of logical ops. Note that these ops 8907 // depend on the PPC behavior for oversized shift amounts. 8908 SDValue Lo = Op.getOperand(0); 8909 SDValue Hi = Op.getOperand(1); 8910 SDValue Amt = Op.getOperand(2); 8911 EVT AmtVT = Amt.getValueType(); 8912 8913 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8914 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8915 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8916 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8917 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8918 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8919 DAG.getConstant(-BitWidth, dl, AmtVT)); 8920 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8921 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8922 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8923 SDValue OutOps[] = { OutLo, OutHi }; 8924 return DAG.getMergeValues(OutOps, dl); 8925 } 8926 8927 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8928 SDLoc dl(Op); 8929 EVT VT = Op.getValueType(); 8930 unsigned BitWidth = VT.getSizeInBits(); 8931 assert(Op.getNumOperands() == 3 && 8932 VT == Op.getOperand(1).getValueType() && 8933 "Unexpected SRA!"); 8934 8935 // Expand into a bunch of logical ops, followed by a select_cc. 8936 SDValue Lo = Op.getOperand(0); 8937 SDValue Hi = Op.getOperand(1); 8938 SDValue Amt = Op.getOperand(2); 8939 EVT AmtVT = Amt.getValueType(); 8940 8941 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8942 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8943 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8944 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8945 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8946 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8947 DAG.getConstant(-BitWidth, dl, AmtVT)); 8948 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8949 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8950 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8951 Tmp4, Tmp6, ISD::SETLE); 8952 SDValue OutOps[] = { OutLo, OutHi }; 8953 return DAG.getMergeValues(OutOps, dl); 8954 } 8955 8956 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8957 SelectionDAG &DAG) const { 8958 SDLoc dl(Op); 8959 EVT VT = Op.getValueType(); 8960 unsigned BitWidth = VT.getSizeInBits(); 8961 8962 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8963 SDValue X = Op.getOperand(0); 8964 SDValue Y = Op.getOperand(1); 8965 SDValue Z = Op.getOperand(2); 8966 EVT AmtVT = Z.getValueType(); 8967 8968 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8969 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8970 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8971 // on PowerPC shift by BW being well defined. 8972 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8973 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8974 SDValue SubZ = 8975 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8976 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8977 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8978 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8979 } 8980 8981 //===----------------------------------------------------------------------===// 8982 // Vector related lowering. 8983 // 8984 8985 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8986 /// element size of SplatSize. Cast the result to VT. 8987 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8988 SelectionDAG &DAG, const SDLoc &dl) { 8989 static const MVT VTys[] = { // canonical VT to use for each size. 8990 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8991 }; 8992 8993 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8994 8995 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8996 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8997 SplatSize = 1; 8998 Val = 0xFF; 8999 } 9000 9001 EVT CanonicalVT = VTys[SplatSize-1]; 9002 9003 // Build a canonical splat for this value. 9004 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9005 } 9006 9007 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9008 /// specified intrinsic ID. 9009 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9010 const SDLoc &dl, EVT DestVT = MVT::Other) { 9011 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9012 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9013 DAG.getConstant(IID, dl, MVT::i32), Op); 9014 } 9015 9016 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9017 /// specified intrinsic ID. 9018 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9019 SelectionDAG &DAG, const SDLoc &dl, 9020 EVT DestVT = MVT::Other) { 9021 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9022 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9023 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9024 } 9025 9026 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9027 /// specified intrinsic ID. 9028 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9029 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9030 EVT DestVT = MVT::Other) { 9031 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9032 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9033 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9034 } 9035 9036 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9037 /// amount. The result has the specified value type. 9038 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9039 SelectionDAG &DAG, const SDLoc &dl) { 9040 // Force LHS/RHS to be the right type. 9041 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9042 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9043 9044 int Ops[16]; 9045 for (unsigned i = 0; i != 16; ++i) 9046 Ops[i] = i + Amt; 9047 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9048 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9049 } 9050 9051 /// Do we have an efficient pattern in a .td file for this node? 9052 /// 9053 /// \param V - pointer to the BuildVectorSDNode being matched 9054 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9055 /// 9056 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9057 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9058 /// the opposite is true (expansion is beneficial) are: 9059 /// - The node builds a vector out of integers that are not 32 or 64-bits 9060 /// - The node builds a vector out of constants 9061 /// - The node is a "load-and-splat" 9062 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9063 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9064 bool HasDirectMove, 9065 bool HasP8Vector) { 9066 EVT VecVT = V->getValueType(0); 9067 bool RightType = VecVT == MVT::v2f64 || 9068 (HasP8Vector && VecVT == MVT::v4f32) || 9069 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9070 if (!RightType) 9071 return false; 9072 9073 bool IsSplat = true; 9074 bool IsLoad = false; 9075 SDValue Op0 = V->getOperand(0); 9076 9077 // This function is called in a block that confirms the node is not a constant 9078 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9079 // different constants. 9080 if (V->isConstant()) 9081 return false; 9082 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9083 if (V->getOperand(i).isUndef()) 9084 return false; 9085 // We want to expand nodes that represent load-and-splat even if the 9086 // loaded value is a floating point truncation or conversion to int. 9087 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9088 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9089 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9090 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9091 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9092 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9093 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9094 IsLoad = true; 9095 // If the operands are different or the input is not a load and has more 9096 // uses than just this BV node, then it isn't a splat. 9097 if (V->getOperand(i) != Op0 || 9098 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9099 IsSplat = false; 9100 } 9101 return !(IsSplat && IsLoad); 9102 } 9103 9104 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9105 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9106 9107 SDLoc dl(Op); 9108 SDValue Op0 = Op->getOperand(0); 9109 9110 if ((Op.getValueType() != MVT::f128) || 9111 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9112 (Op0.getOperand(0).getValueType() != MVT::i64) || 9113 (Op0.getOperand(1).getValueType() != MVT::i64)) 9114 return SDValue(); 9115 9116 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9117 Op0.getOperand(1)); 9118 } 9119 9120 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9121 const SDValue *InputLoad = &Op; 9122 if (InputLoad->getOpcode() == ISD::BITCAST) 9123 InputLoad = &InputLoad->getOperand(0); 9124 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9125 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9126 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9127 InputLoad = &InputLoad->getOperand(0); 9128 } 9129 if (InputLoad->getOpcode() != ISD::LOAD) 9130 return nullptr; 9131 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9132 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9133 } 9134 9135 // Convert the argument APFloat to a single precision APFloat if there is no 9136 // loss in information during the conversion to single precision APFloat and the 9137 // resulting number is not a denormal number. Return true if successful. 9138 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9139 APFloat APFloatToConvert = ArgAPFloat; 9140 bool LosesInfo = true; 9141 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9142 &LosesInfo); 9143 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9144 if (Success) 9145 ArgAPFloat = APFloatToConvert; 9146 return Success; 9147 } 9148 9149 // Bitcast the argument APInt to a double and convert it to a single precision 9150 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9151 // argument if there is no loss in information during the conversion from 9152 // double to single precision APFloat and the resulting number is not a denormal 9153 // number. Return true if successful. 9154 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9155 double DpValue = ArgAPInt.bitsToDouble(); 9156 APFloat APFloatDp(DpValue); 9157 bool Success = convertToNonDenormSingle(APFloatDp); 9158 if (Success) 9159 ArgAPInt = APFloatDp.bitcastToAPInt(); 9160 return Success; 9161 } 9162 9163 // If this is a case we can't handle, return null and let the default 9164 // expansion code take care of it. If we CAN select this case, and if it 9165 // selects to a single instruction, return Op. Otherwise, if we can codegen 9166 // this case more efficiently than a constant pool load, lower it to the 9167 // sequence of ops that should be used. 9168 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9169 SelectionDAG &DAG) const { 9170 SDLoc dl(Op); 9171 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9172 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9173 9174 // Check if this is a splat of a constant value. 9175 APInt APSplatBits, APSplatUndef; 9176 unsigned SplatBitSize; 9177 bool HasAnyUndefs; 9178 bool BVNIsConstantSplat = 9179 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9180 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9181 9182 // If it is a splat of a double, check if we can shrink it to a 32 bit 9183 // non-denormal float which when converted back to double gives us the same 9184 // double. This is to exploit the XXSPLTIDP instruction. 9185 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9186 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9187 convertToNonDenormSingle(APSplatBits)) { 9188 SDValue SplatNode = DAG.getNode( 9189 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9190 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9191 return DAG.getBitcast(Op.getValueType(), SplatNode); 9192 } 9193 9194 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9195 9196 bool IsPermutedLoad = false; 9197 const SDValue *InputLoad = 9198 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9199 // Handle load-and-splat patterns as we have instructions that will do this 9200 // in one go. 9201 if (InputLoad && DAG.isSplatValue(Op, true)) { 9202 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9203 9204 // We have handling for 4 and 8 byte elements. 9205 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9206 9207 // Checking for a single use of this load, we have to check for vector 9208 // width (128 bits) / ElementSize uses (since each operand of the 9209 // BUILD_VECTOR is a separate use of the value. 9210 unsigned NumUsesOfInputLD = 128 / ElementSize; 9211 for (SDValue BVInOp : Op->ops()) 9212 if (BVInOp.isUndef()) 9213 NumUsesOfInputLD--; 9214 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9215 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9216 ((Subtarget.hasVSX() && ElementSize == 64) || 9217 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9218 SDValue Ops[] = { 9219 LD->getChain(), // Chain 9220 LD->getBasePtr(), // Ptr 9221 DAG.getValueType(Op.getValueType()) // VT 9222 }; 9223 SDValue LdSplt = DAG.getMemIntrinsicNode( 9224 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9225 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9226 // Replace all uses of the output chain of the original load with the 9227 // output chain of the new load. 9228 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9229 LdSplt.getValue(1)); 9230 return LdSplt; 9231 } 9232 } 9233 9234 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9235 // lowered to VSX instructions under certain conditions. 9236 // Without VSX, there is no pattern more efficient than expanding the node. 9237 if (Subtarget.hasVSX() && 9238 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9239 Subtarget.hasP8Vector())) 9240 return Op; 9241 return SDValue(); 9242 } 9243 9244 uint64_t SplatBits = APSplatBits.getZExtValue(); 9245 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9246 unsigned SplatSize = SplatBitSize / 8; 9247 9248 // First, handle single instruction cases. 9249 9250 // All zeros? 9251 if (SplatBits == 0) { 9252 // Canonicalize all zero vectors to be v4i32. 9253 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9254 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9255 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9256 } 9257 return Op; 9258 } 9259 9260 // We have XXSPLTIW for constant splats four bytes wide. 9261 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9262 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9263 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9264 // turned into a 4-byte splat of 0xABABABAB. 9265 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9266 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9267 Op.getValueType(), DAG, dl); 9268 9269 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9270 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9271 dl); 9272 9273 // We have XXSPLTIB for constant splats one byte wide. 9274 if (Subtarget.hasP9Vector() && SplatSize == 1) 9275 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9276 dl); 9277 9278 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9279 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9280 (32-SplatBitSize)); 9281 if (SextVal >= -16 && SextVal <= 15) 9282 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9283 dl); 9284 9285 // Two instruction sequences. 9286 9287 // If this value is in the range [-32,30] and is even, use: 9288 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9289 // If this value is in the range [17,31] and is odd, use: 9290 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9291 // If this value is in the range [-31,-17] and is odd, use: 9292 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9293 // Note the last two are three-instruction sequences. 9294 if (SextVal >= -32 && SextVal <= 31) { 9295 // To avoid having these optimizations undone by constant folding, 9296 // we convert to a pseudo that will be expanded later into one of 9297 // the above forms. 9298 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9299 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9300 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9301 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9302 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9303 if (VT == Op.getValueType()) 9304 return RetVal; 9305 else 9306 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9307 } 9308 9309 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9310 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9311 // for fneg/fabs. 9312 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9313 // Make -1 and vspltisw -1: 9314 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9315 9316 // Make the VSLW intrinsic, computing 0x8000_0000. 9317 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9318 OnesV, DAG, dl); 9319 9320 // xor by OnesV to invert it. 9321 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9322 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9323 } 9324 9325 // Check to see if this is a wide variety of vsplti*, binop self cases. 9326 static const signed char SplatCsts[] = { 9327 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9328 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9329 }; 9330 9331 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9332 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9333 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9334 int i = SplatCsts[idx]; 9335 9336 // Figure out what shift amount will be used by altivec if shifted by i in 9337 // this splat size. 9338 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9339 9340 // vsplti + shl self. 9341 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9342 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9343 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9344 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9345 Intrinsic::ppc_altivec_vslw 9346 }; 9347 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9348 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9349 } 9350 9351 // vsplti + srl self. 9352 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9353 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9354 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9355 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9356 Intrinsic::ppc_altivec_vsrw 9357 }; 9358 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9359 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9360 } 9361 9362 // vsplti + sra self. 9363 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9364 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9365 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9366 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9367 Intrinsic::ppc_altivec_vsraw 9368 }; 9369 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9370 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9371 } 9372 9373 // vsplti + rol self. 9374 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9375 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9376 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9377 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9378 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9379 Intrinsic::ppc_altivec_vrlw 9380 }; 9381 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9382 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9383 } 9384 9385 // t = vsplti c, result = vsldoi t, t, 1 9386 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9387 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9388 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9389 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9390 } 9391 // t = vsplti c, result = vsldoi t, t, 2 9392 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9393 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9394 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9395 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9396 } 9397 // t = vsplti c, result = vsldoi t, t, 3 9398 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9399 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9400 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9401 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9402 } 9403 } 9404 9405 return SDValue(); 9406 } 9407 9408 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9409 /// the specified operations to build the shuffle. 9410 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9411 SDValue RHS, SelectionDAG &DAG, 9412 const SDLoc &dl) { 9413 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9414 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9415 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9416 9417 enum { 9418 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9419 OP_VMRGHW, 9420 OP_VMRGLW, 9421 OP_VSPLTISW0, 9422 OP_VSPLTISW1, 9423 OP_VSPLTISW2, 9424 OP_VSPLTISW3, 9425 OP_VSLDOI4, 9426 OP_VSLDOI8, 9427 OP_VSLDOI12 9428 }; 9429 9430 if (OpNum == OP_COPY) { 9431 if (LHSID == (1*9+2)*9+3) return LHS; 9432 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9433 return RHS; 9434 } 9435 9436 SDValue OpLHS, OpRHS; 9437 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9438 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9439 9440 int ShufIdxs[16]; 9441 switch (OpNum) { 9442 default: llvm_unreachable("Unknown i32 permute!"); 9443 case OP_VMRGHW: 9444 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9445 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9446 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9447 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9448 break; 9449 case OP_VMRGLW: 9450 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9451 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9452 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9453 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9454 break; 9455 case OP_VSPLTISW0: 9456 for (unsigned i = 0; i != 16; ++i) 9457 ShufIdxs[i] = (i&3)+0; 9458 break; 9459 case OP_VSPLTISW1: 9460 for (unsigned i = 0; i != 16; ++i) 9461 ShufIdxs[i] = (i&3)+4; 9462 break; 9463 case OP_VSPLTISW2: 9464 for (unsigned i = 0; i != 16; ++i) 9465 ShufIdxs[i] = (i&3)+8; 9466 break; 9467 case OP_VSPLTISW3: 9468 for (unsigned i = 0; i != 16; ++i) 9469 ShufIdxs[i] = (i&3)+12; 9470 break; 9471 case OP_VSLDOI4: 9472 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9473 case OP_VSLDOI8: 9474 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9475 case OP_VSLDOI12: 9476 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9477 } 9478 EVT VT = OpLHS.getValueType(); 9479 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9480 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9481 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9482 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9483 } 9484 9485 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9486 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9487 /// SDValue. 9488 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9489 SelectionDAG &DAG) const { 9490 const unsigned BytesInVector = 16; 9491 bool IsLE = Subtarget.isLittleEndian(); 9492 SDLoc dl(N); 9493 SDValue V1 = N->getOperand(0); 9494 SDValue V2 = N->getOperand(1); 9495 unsigned ShiftElts = 0, InsertAtByte = 0; 9496 bool Swap = false; 9497 9498 // Shifts required to get the byte we want at element 7. 9499 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9500 0, 15, 14, 13, 12, 11, 10, 9}; 9501 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9502 1, 2, 3, 4, 5, 6, 7, 8}; 9503 9504 ArrayRef<int> Mask = N->getMask(); 9505 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9506 9507 // For each mask element, find out if we're just inserting something 9508 // from V2 into V1 or vice versa. 9509 // Possible permutations inserting an element from V2 into V1: 9510 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9511 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9512 // ... 9513 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9514 // Inserting from V1 into V2 will be similar, except mask range will be 9515 // [16,31]. 9516 9517 bool FoundCandidate = false; 9518 // If both vector operands for the shuffle are the same vector, the mask 9519 // will contain only elements from the first one and the second one will be 9520 // undef. 9521 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9522 // Go through the mask of half-words to find an element that's being moved 9523 // from one vector to the other. 9524 for (unsigned i = 0; i < BytesInVector; ++i) { 9525 unsigned CurrentElement = Mask[i]; 9526 // If 2nd operand is undefined, we should only look for element 7 in the 9527 // Mask. 9528 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9529 continue; 9530 9531 bool OtherElementsInOrder = true; 9532 // Examine the other elements in the Mask to see if they're in original 9533 // order. 9534 for (unsigned j = 0; j < BytesInVector; ++j) { 9535 if (j == i) 9536 continue; 9537 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9538 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9539 // in which we always assume we're always picking from the 1st operand. 9540 int MaskOffset = 9541 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9542 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9543 OtherElementsInOrder = false; 9544 break; 9545 } 9546 } 9547 // If other elements are in original order, we record the number of shifts 9548 // we need to get the element we want into element 7. Also record which byte 9549 // in the vector we should insert into. 9550 if (OtherElementsInOrder) { 9551 // If 2nd operand is undefined, we assume no shifts and no swapping. 9552 if (V2.isUndef()) { 9553 ShiftElts = 0; 9554 Swap = false; 9555 } else { 9556 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9557 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9558 : BigEndianShifts[CurrentElement & 0xF]; 9559 Swap = CurrentElement < BytesInVector; 9560 } 9561 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9562 FoundCandidate = true; 9563 break; 9564 } 9565 } 9566 9567 if (!FoundCandidate) 9568 return SDValue(); 9569 9570 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9571 // optionally with VECSHL if shift is required. 9572 if (Swap) 9573 std::swap(V1, V2); 9574 if (V2.isUndef()) 9575 V2 = V1; 9576 if (ShiftElts) { 9577 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9578 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9579 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9580 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9581 } 9582 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9583 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9584 } 9585 9586 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9587 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9588 /// SDValue. 9589 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9590 SelectionDAG &DAG) const { 9591 const unsigned NumHalfWords = 8; 9592 const unsigned BytesInVector = NumHalfWords * 2; 9593 // Check that the shuffle is on half-words. 9594 if (!isNByteElemShuffleMask(N, 2, 1)) 9595 return SDValue(); 9596 9597 bool IsLE = Subtarget.isLittleEndian(); 9598 SDLoc dl(N); 9599 SDValue V1 = N->getOperand(0); 9600 SDValue V2 = N->getOperand(1); 9601 unsigned ShiftElts = 0, InsertAtByte = 0; 9602 bool Swap = false; 9603 9604 // Shifts required to get the half-word we want at element 3. 9605 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9606 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9607 9608 uint32_t Mask = 0; 9609 uint32_t OriginalOrderLow = 0x1234567; 9610 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9611 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9612 // 32-bit space, only need 4-bit nibbles per element. 9613 for (unsigned i = 0; i < NumHalfWords; ++i) { 9614 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9615 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9616 } 9617 9618 // For each mask element, find out if we're just inserting something 9619 // from V2 into V1 or vice versa. Possible permutations inserting an element 9620 // from V2 into V1: 9621 // X, 1, 2, 3, 4, 5, 6, 7 9622 // 0, X, 2, 3, 4, 5, 6, 7 9623 // 0, 1, X, 3, 4, 5, 6, 7 9624 // 0, 1, 2, X, 4, 5, 6, 7 9625 // 0, 1, 2, 3, X, 5, 6, 7 9626 // 0, 1, 2, 3, 4, X, 6, 7 9627 // 0, 1, 2, 3, 4, 5, X, 7 9628 // 0, 1, 2, 3, 4, 5, 6, X 9629 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9630 9631 bool FoundCandidate = false; 9632 // Go through the mask of half-words to find an element that's being moved 9633 // from one vector to the other. 9634 for (unsigned i = 0; i < NumHalfWords; ++i) { 9635 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9636 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9637 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9638 uint32_t TargetOrder = 0x0; 9639 9640 // If both vector operands for the shuffle are the same vector, the mask 9641 // will contain only elements from the first one and the second one will be 9642 // undef. 9643 if (V2.isUndef()) { 9644 ShiftElts = 0; 9645 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9646 TargetOrder = OriginalOrderLow; 9647 Swap = false; 9648 // Skip if not the correct element or mask of other elements don't equal 9649 // to our expected order. 9650 if (MaskOneElt == VINSERTHSrcElem && 9651 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9652 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9653 FoundCandidate = true; 9654 break; 9655 } 9656 } else { // If both operands are defined. 9657 // Target order is [8,15] if the current mask is between [0,7]. 9658 TargetOrder = 9659 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9660 // Skip if mask of other elements don't equal our expected order. 9661 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9662 // We only need the last 3 bits for the number of shifts. 9663 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9664 : BigEndianShifts[MaskOneElt & 0x7]; 9665 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9666 Swap = MaskOneElt < NumHalfWords; 9667 FoundCandidate = true; 9668 break; 9669 } 9670 } 9671 } 9672 9673 if (!FoundCandidate) 9674 return SDValue(); 9675 9676 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9677 // optionally with VECSHL if shift is required. 9678 if (Swap) 9679 std::swap(V1, V2); 9680 if (V2.isUndef()) 9681 V2 = V1; 9682 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9683 if (ShiftElts) { 9684 // Double ShiftElts because we're left shifting on v16i8 type. 9685 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9686 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9687 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9688 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9689 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9690 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9691 } 9692 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9693 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9694 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9695 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9696 } 9697 9698 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9699 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9700 /// return the default SDValue. 9701 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9702 SelectionDAG &DAG) const { 9703 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9704 // to v16i8. Peek through the bitcasts to get the actual operands. 9705 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9706 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9707 9708 auto ShuffleMask = SVN->getMask(); 9709 SDValue VecShuffle(SVN, 0); 9710 SDLoc DL(SVN); 9711 9712 // Check that we have a four byte shuffle. 9713 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9714 return SDValue(); 9715 9716 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9717 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9718 std::swap(LHS, RHS); 9719 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9720 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9721 } 9722 9723 // Ensure that the RHS is a vector of constants. 9724 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9725 if (!BVN) 9726 return SDValue(); 9727 9728 // Check if RHS is a splat of 4-bytes (or smaller). 9729 APInt APSplatValue, APSplatUndef; 9730 unsigned SplatBitSize; 9731 bool HasAnyUndefs; 9732 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9733 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9734 SplatBitSize > 32) 9735 return SDValue(); 9736 9737 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9738 // The instruction splats a constant C into two words of the source vector 9739 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9740 // Thus we check that the shuffle mask is the equivalent of 9741 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9742 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9743 // within each word are consecutive, so we only need to check the first byte. 9744 SDValue Index; 9745 bool IsLE = Subtarget.isLittleEndian(); 9746 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9747 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9748 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9749 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9750 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9751 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9752 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9753 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9754 else 9755 return SDValue(); 9756 9757 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9758 // for XXSPLTI32DX. 9759 unsigned SplatVal = APSplatValue.getZExtValue(); 9760 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9761 SplatVal |= (SplatVal << SplatBitSize); 9762 9763 SDValue SplatNode = DAG.getNode( 9764 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9765 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9766 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9767 } 9768 9769 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9770 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9771 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9772 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9773 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9774 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9775 assert(Op.getValueType() == MVT::v1i128 && 9776 "Only set v1i128 as custom, other type shouldn't reach here!"); 9777 SDLoc dl(Op); 9778 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9779 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9780 unsigned SHLAmt = N1.getConstantOperandVal(0); 9781 if (SHLAmt % 8 == 0) { 9782 SmallVector<int, 16> Mask(16, 0); 9783 std::iota(Mask.begin(), Mask.end(), 0); 9784 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9785 if (SDValue Shuffle = 9786 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9787 DAG.getUNDEF(MVT::v16i8), Mask)) 9788 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9789 } 9790 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9791 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9792 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9793 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9794 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9795 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9796 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9797 } 9798 9799 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9800 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9801 /// return the code it can be lowered into. Worst case, it can always be 9802 /// lowered into a vperm. 9803 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9804 SelectionDAG &DAG) const { 9805 SDLoc dl(Op); 9806 SDValue V1 = Op.getOperand(0); 9807 SDValue V2 = Op.getOperand(1); 9808 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9809 9810 // Any nodes that were combined in the target-independent combiner prior 9811 // to vector legalization will not be sent to the target combine. Try to 9812 // combine it here. 9813 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9814 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9815 return NewShuffle; 9816 Op = NewShuffle; 9817 SVOp = cast<ShuffleVectorSDNode>(Op); 9818 V1 = Op.getOperand(0); 9819 V2 = Op.getOperand(1); 9820 } 9821 EVT VT = Op.getValueType(); 9822 bool isLittleEndian = Subtarget.isLittleEndian(); 9823 9824 unsigned ShiftElts, InsertAtByte; 9825 bool Swap = false; 9826 9827 // If this is a load-and-splat, we can do that with a single instruction 9828 // in some cases. However if the load has multiple uses, we don't want to 9829 // combine it because that will just produce multiple loads. 9830 bool IsPermutedLoad = false; 9831 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9832 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9833 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9834 InputLoad->hasOneUse()) { 9835 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9836 int SplatIdx = 9837 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9838 9839 // The splat index for permuted loads will be in the left half of the vector 9840 // which is strictly wider than the loaded value by 8 bytes. So we need to 9841 // adjust the splat index to point to the correct address in memory. 9842 if (IsPermutedLoad) { 9843 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9844 SplatIdx += IsFourByte ? 2 : 1; 9845 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9846 "Splat of a value outside of the loaded memory"); 9847 } 9848 9849 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9850 // For 4-byte load-and-splat, we need Power9. 9851 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9852 uint64_t Offset = 0; 9853 if (IsFourByte) 9854 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9855 else 9856 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9857 9858 SDValue BasePtr = LD->getBasePtr(); 9859 if (Offset != 0) 9860 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9861 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9862 SDValue Ops[] = { 9863 LD->getChain(), // Chain 9864 BasePtr, // BasePtr 9865 DAG.getValueType(Op.getValueType()) // VT 9866 }; 9867 SDVTList VTL = 9868 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9869 SDValue LdSplt = 9870 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9871 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9872 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9873 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9874 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9875 return LdSplt; 9876 } 9877 } 9878 if (Subtarget.hasP9Vector() && 9879 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9880 isLittleEndian)) { 9881 if (Swap) 9882 std::swap(V1, V2); 9883 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9884 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9885 if (ShiftElts) { 9886 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9887 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9888 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9889 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9890 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9891 } 9892 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9893 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9894 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9895 } 9896 9897 if (Subtarget.hasPrefixInstrs()) { 9898 SDValue SplatInsertNode; 9899 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9900 return SplatInsertNode; 9901 } 9902 9903 if (Subtarget.hasP9Altivec()) { 9904 SDValue NewISDNode; 9905 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9906 return NewISDNode; 9907 9908 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9909 return NewISDNode; 9910 } 9911 9912 if (Subtarget.hasVSX() && 9913 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9914 if (Swap) 9915 std::swap(V1, V2); 9916 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9917 SDValue Conv2 = 9918 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9919 9920 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9921 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9922 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9923 } 9924 9925 if (Subtarget.hasVSX() && 9926 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9927 if (Swap) 9928 std::swap(V1, V2); 9929 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9930 SDValue Conv2 = 9931 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9932 9933 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9934 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9935 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9936 } 9937 9938 if (Subtarget.hasP9Vector()) { 9939 if (PPC::isXXBRHShuffleMask(SVOp)) { 9940 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9941 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9942 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9943 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9944 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9945 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9946 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9947 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9948 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9949 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9950 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9951 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9952 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9953 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9954 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9955 } 9956 } 9957 9958 if (Subtarget.hasVSX()) { 9959 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9960 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9961 9962 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9963 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9964 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9965 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9966 } 9967 9968 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9969 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9970 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9971 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9972 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9973 } 9974 } 9975 9976 // Cases that are handled by instructions that take permute immediates 9977 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9978 // selected by the instruction selector. 9979 if (V2.isUndef()) { 9980 if (PPC::isSplatShuffleMask(SVOp, 1) || 9981 PPC::isSplatShuffleMask(SVOp, 2) || 9982 PPC::isSplatShuffleMask(SVOp, 4) || 9983 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9984 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9985 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9986 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9987 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9988 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9989 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9990 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9991 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9992 (Subtarget.hasP8Altivec() && ( 9993 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9994 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9995 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9996 return Op; 9997 } 9998 } 9999 10000 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10001 // and produce a fixed permutation. If any of these match, do not lower to 10002 // VPERM. 10003 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10004 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10005 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10006 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10007 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10008 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10009 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10010 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10011 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10012 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10013 (Subtarget.hasP8Altivec() && ( 10014 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10015 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10016 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10017 return Op; 10018 10019 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10020 // perfect shuffle table to emit an optimal matching sequence. 10021 ArrayRef<int> PermMask = SVOp->getMask(); 10022 10023 unsigned PFIndexes[4]; 10024 bool isFourElementShuffle = true; 10025 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10026 unsigned EltNo = 8; // Start out undef. 10027 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10028 if (PermMask[i*4+j] < 0) 10029 continue; // Undef, ignore it. 10030 10031 unsigned ByteSource = PermMask[i*4+j]; 10032 if ((ByteSource & 3) != j) { 10033 isFourElementShuffle = false; 10034 break; 10035 } 10036 10037 if (EltNo == 8) { 10038 EltNo = ByteSource/4; 10039 } else if (EltNo != ByteSource/4) { 10040 isFourElementShuffle = false; 10041 break; 10042 } 10043 } 10044 PFIndexes[i] = EltNo; 10045 } 10046 10047 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10048 // perfect shuffle vector to determine if it is cost effective to do this as 10049 // discrete instructions, or whether we should use a vperm. 10050 // For now, we skip this for little endian until such time as we have a 10051 // little-endian perfect shuffle table. 10052 if (isFourElementShuffle && !isLittleEndian) { 10053 // Compute the index in the perfect shuffle table. 10054 unsigned PFTableIndex = 10055 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10056 10057 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10058 unsigned Cost = (PFEntry >> 30); 10059 10060 // Determining when to avoid vperm is tricky. Many things affect the cost 10061 // of vperm, particularly how many times the perm mask needs to be computed. 10062 // For example, if the perm mask can be hoisted out of a loop or is already 10063 // used (perhaps because there are multiple permutes with the same shuffle 10064 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10065 // the loop requires an extra register. 10066 // 10067 // As a compromise, we only emit discrete instructions if the shuffle can be 10068 // generated in 3 or fewer operations. When we have loop information 10069 // available, if this block is within a loop, we should avoid using vperm 10070 // for 3-operation perms and use a constant pool load instead. 10071 if (Cost < 3) 10072 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10073 } 10074 10075 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10076 // vector that will get spilled to the constant pool. 10077 if (V2.isUndef()) V2 = V1; 10078 10079 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10080 // that it is in input element units, not in bytes. Convert now. 10081 10082 // For little endian, the order of the input vectors is reversed, and 10083 // the permutation mask is complemented with respect to 31. This is 10084 // necessary to produce proper semantics with the big-endian-biased vperm 10085 // instruction. 10086 EVT EltVT = V1.getValueType().getVectorElementType(); 10087 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10088 10089 SmallVector<SDValue, 16> ResultMask; 10090 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10091 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10092 10093 for (unsigned j = 0; j != BytesPerElement; ++j) 10094 if (isLittleEndian) 10095 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10096 dl, MVT::i32)); 10097 else 10098 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10099 MVT::i32)); 10100 } 10101 10102 ShufflesHandledWithVPERM++; 10103 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10104 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10105 LLVM_DEBUG(SVOp->dump()); 10106 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10107 LLVM_DEBUG(VPermMask.dump()); 10108 10109 if (isLittleEndian) 10110 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10111 V2, V1, VPermMask); 10112 else 10113 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10114 V1, V2, VPermMask); 10115 } 10116 10117 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10118 /// vector comparison. If it is, return true and fill in Opc/isDot with 10119 /// information about the intrinsic. 10120 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10121 bool &isDot, const PPCSubtarget &Subtarget) { 10122 unsigned IntrinsicID = 10123 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10124 CompareOpc = -1; 10125 isDot = false; 10126 switch (IntrinsicID) { 10127 default: 10128 return false; 10129 // Comparison predicates. 10130 case Intrinsic::ppc_altivec_vcmpbfp_p: 10131 CompareOpc = 966; 10132 isDot = true; 10133 break; 10134 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10135 CompareOpc = 198; 10136 isDot = true; 10137 break; 10138 case Intrinsic::ppc_altivec_vcmpequb_p: 10139 CompareOpc = 6; 10140 isDot = true; 10141 break; 10142 case Intrinsic::ppc_altivec_vcmpequh_p: 10143 CompareOpc = 70; 10144 isDot = true; 10145 break; 10146 case Intrinsic::ppc_altivec_vcmpequw_p: 10147 CompareOpc = 134; 10148 isDot = true; 10149 break; 10150 case Intrinsic::ppc_altivec_vcmpequd_p: 10151 if (Subtarget.hasP8Altivec()) { 10152 CompareOpc = 199; 10153 isDot = true; 10154 } else 10155 return false; 10156 break; 10157 case Intrinsic::ppc_altivec_vcmpneb_p: 10158 case Intrinsic::ppc_altivec_vcmpneh_p: 10159 case Intrinsic::ppc_altivec_vcmpnew_p: 10160 case Intrinsic::ppc_altivec_vcmpnezb_p: 10161 case Intrinsic::ppc_altivec_vcmpnezh_p: 10162 case Intrinsic::ppc_altivec_vcmpnezw_p: 10163 if (Subtarget.hasP9Altivec()) { 10164 switch (IntrinsicID) { 10165 default: 10166 llvm_unreachable("Unknown comparison intrinsic."); 10167 case Intrinsic::ppc_altivec_vcmpneb_p: 10168 CompareOpc = 7; 10169 break; 10170 case Intrinsic::ppc_altivec_vcmpneh_p: 10171 CompareOpc = 71; 10172 break; 10173 case Intrinsic::ppc_altivec_vcmpnew_p: 10174 CompareOpc = 135; 10175 break; 10176 case Intrinsic::ppc_altivec_vcmpnezb_p: 10177 CompareOpc = 263; 10178 break; 10179 case Intrinsic::ppc_altivec_vcmpnezh_p: 10180 CompareOpc = 327; 10181 break; 10182 case Intrinsic::ppc_altivec_vcmpnezw_p: 10183 CompareOpc = 391; 10184 break; 10185 } 10186 isDot = true; 10187 } else 10188 return false; 10189 break; 10190 case Intrinsic::ppc_altivec_vcmpgefp_p: 10191 CompareOpc = 454; 10192 isDot = true; 10193 break; 10194 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10195 CompareOpc = 710; 10196 isDot = true; 10197 break; 10198 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10199 CompareOpc = 774; 10200 isDot = true; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10203 CompareOpc = 838; 10204 isDot = true; 10205 break; 10206 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10207 CompareOpc = 902; 10208 isDot = true; 10209 break; 10210 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10211 if (Subtarget.hasP8Altivec()) { 10212 CompareOpc = 967; 10213 isDot = true; 10214 } else 10215 return false; 10216 break; 10217 case Intrinsic::ppc_altivec_vcmpgtub_p: 10218 CompareOpc = 518; 10219 isDot = true; 10220 break; 10221 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10222 CompareOpc = 582; 10223 isDot = true; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10226 CompareOpc = 646; 10227 isDot = true; 10228 break; 10229 case Intrinsic::ppc_altivec_vcmpgtud_p: 10230 if (Subtarget.hasP8Altivec()) { 10231 CompareOpc = 711; 10232 isDot = true; 10233 } else 10234 return false; 10235 break; 10236 10237 case Intrinsic::ppc_altivec_vcmpequq: 10238 case Intrinsic::ppc_altivec_vcmpgtsq: 10239 case Intrinsic::ppc_altivec_vcmpgtuq: 10240 if (!Subtarget.isISA3_1()) 10241 return false; 10242 switch (IntrinsicID) { 10243 default: 10244 llvm_unreachable("Unknown comparison intrinsic."); 10245 case Intrinsic::ppc_altivec_vcmpequq: 10246 CompareOpc = 455; 10247 break; 10248 case Intrinsic::ppc_altivec_vcmpgtsq: 10249 CompareOpc = 903; 10250 break; 10251 case Intrinsic::ppc_altivec_vcmpgtuq: 10252 CompareOpc = 647; 10253 break; 10254 } 10255 break; 10256 10257 // VSX predicate comparisons use the same infrastructure 10258 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10259 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10260 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10261 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10262 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10263 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10264 if (Subtarget.hasVSX()) { 10265 switch (IntrinsicID) { 10266 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10267 CompareOpc = 99; 10268 break; 10269 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10270 CompareOpc = 115; 10271 break; 10272 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10273 CompareOpc = 107; 10274 break; 10275 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10276 CompareOpc = 67; 10277 break; 10278 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10279 CompareOpc = 83; 10280 break; 10281 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10282 CompareOpc = 75; 10283 break; 10284 } 10285 isDot = true; 10286 } else 10287 return false; 10288 break; 10289 10290 // Normal Comparisons. 10291 case Intrinsic::ppc_altivec_vcmpbfp: 10292 CompareOpc = 966; 10293 break; 10294 case Intrinsic::ppc_altivec_vcmpeqfp: 10295 CompareOpc = 198; 10296 break; 10297 case Intrinsic::ppc_altivec_vcmpequb: 10298 CompareOpc = 6; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpequh: 10301 CompareOpc = 70; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpequw: 10304 CompareOpc = 134; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpequd: 10307 if (Subtarget.hasP8Altivec()) 10308 CompareOpc = 199; 10309 else 10310 return false; 10311 break; 10312 case Intrinsic::ppc_altivec_vcmpneb: 10313 case Intrinsic::ppc_altivec_vcmpneh: 10314 case Intrinsic::ppc_altivec_vcmpnew: 10315 case Intrinsic::ppc_altivec_vcmpnezb: 10316 case Intrinsic::ppc_altivec_vcmpnezh: 10317 case Intrinsic::ppc_altivec_vcmpnezw: 10318 if (Subtarget.hasP9Altivec()) 10319 switch (IntrinsicID) { 10320 default: 10321 llvm_unreachable("Unknown comparison intrinsic."); 10322 case Intrinsic::ppc_altivec_vcmpneb: 10323 CompareOpc = 7; 10324 break; 10325 case Intrinsic::ppc_altivec_vcmpneh: 10326 CompareOpc = 71; 10327 break; 10328 case Intrinsic::ppc_altivec_vcmpnew: 10329 CompareOpc = 135; 10330 break; 10331 case Intrinsic::ppc_altivec_vcmpnezb: 10332 CompareOpc = 263; 10333 break; 10334 case Intrinsic::ppc_altivec_vcmpnezh: 10335 CompareOpc = 327; 10336 break; 10337 case Intrinsic::ppc_altivec_vcmpnezw: 10338 CompareOpc = 391; 10339 break; 10340 } 10341 else 10342 return false; 10343 break; 10344 case Intrinsic::ppc_altivec_vcmpgefp: 10345 CompareOpc = 454; 10346 break; 10347 case Intrinsic::ppc_altivec_vcmpgtfp: 10348 CompareOpc = 710; 10349 break; 10350 case Intrinsic::ppc_altivec_vcmpgtsb: 10351 CompareOpc = 774; 10352 break; 10353 case Intrinsic::ppc_altivec_vcmpgtsh: 10354 CompareOpc = 838; 10355 break; 10356 case Intrinsic::ppc_altivec_vcmpgtsw: 10357 CompareOpc = 902; 10358 break; 10359 case Intrinsic::ppc_altivec_vcmpgtsd: 10360 if (Subtarget.hasP8Altivec()) 10361 CompareOpc = 967; 10362 else 10363 return false; 10364 break; 10365 case Intrinsic::ppc_altivec_vcmpgtub: 10366 CompareOpc = 518; 10367 break; 10368 case Intrinsic::ppc_altivec_vcmpgtuh: 10369 CompareOpc = 582; 10370 break; 10371 case Intrinsic::ppc_altivec_vcmpgtuw: 10372 CompareOpc = 646; 10373 break; 10374 case Intrinsic::ppc_altivec_vcmpgtud: 10375 if (Subtarget.hasP8Altivec()) 10376 CompareOpc = 711; 10377 else 10378 return false; 10379 break; 10380 case Intrinsic::ppc_altivec_vcmpequq_p: 10381 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10382 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10383 if (!Subtarget.isISA3_1()) 10384 return false; 10385 switch (IntrinsicID) { 10386 default: 10387 llvm_unreachable("Unknown comparison intrinsic."); 10388 case Intrinsic::ppc_altivec_vcmpequq_p: 10389 CompareOpc = 455; 10390 break; 10391 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10392 CompareOpc = 903; 10393 break; 10394 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10395 CompareOpc = 647; 10396 break; 10397 } 10398 isDot = true; 10399 break; 10400 } 10401 return true; 10402 } 10403 10404 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10405 /// lower, do it, otherwise return null. 10406 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10407 SelectionDAG &DAG) const { 10408 unsigned IntrinsicID = 10409 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10410 10411 SDLoc dl(Op); 10412 10413 switch (IntrinsicID) { 10414 case Intrinsic::thread_pointer: 10415 // Reads the thread pointer register, used for __builtin_thread_pointer. 10416 if (Subtarget.isPPC64()) 10417 return DAG.getRegister(PPC::X13, MVT::i64); 10418 return DAG.getRegister(PPC::R2, MVT::i32); 10419 10420 case Intrinsic::ppc_mma_disassemble_acc: 10421 case Intrinsic::ppc_mma_disassemble_pair: { 10422 int NumVecs = 2; 10423 SDValue WideVec = Op.getOperand(1); 10424 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10425 NumVecs = 4; 10426 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10427 } 10428 SmallVector<SDValue, 4> RetOps; 10429 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10430 SDValue Extract = DAG.getNode( 10431 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10432 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10433 : VecNo, 10434 dl, MVT::i64)); 10435 RetOps.push_back(Extract); 10436 } 10437 return DAG.getMergeValues(RetOps, dl); 10438 } 10439 } 10440 10441 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10442 // opcode number of the comparison. 10443 int CompareOpc; 10444 bool isDot; 10445 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10446 return SDValue(); // Don't custom lower most intrinsics. 10447 10448 // If this is a non-dot comparison, make the VCMP node and we are done. 10449 if (!isDot) { 10450 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10451 Op.getOperand(1), Op.getOperand(2), 10452 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10453 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10454 } 10455 10456 // Create the PPCISD altivec 'dot' comparison node. 10457 SDValue Ops[] = { 10458 Op.getOperand(2), // LHS 10459 Op.getOperand(3), // RHS 10460 DAG.getConstant(CompareOpc, dl, MVT::i32) 10461 }; 10462 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10463 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10464 10465 // Now that we have the comparison, emit a copy from the CR to a GPR. 10466 // This is flagged to the above dot comparison. 10467 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10468 DAG.getRegister(PPC::CR6, MVT::i32), 10469 CompNode.getValue(1)); 10470 10471 // Unpack the result based on how the target uses it. 10472 unsigned BitNo; // Bit # of CR6. 10473 bool InvertBit; // Invert result? 10474 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10475 default: // Can't happen, don't crash on invalid number though. 10476 case 0: // Return the value of the EQ bit of CR6. 10477 BitNo = 0; InvertBit = false; 10478 break; 10479 case 1: // Return the inverted value of the EQ bit of CR6. 10480 BitNo = 0; InvertBit = true; 10481 break; 10482 case 2: // Return the value of the LT bit of CR6. 10483 BitNo = 2; InvertBit = false; 10484 break; 10485 case 3: // Return the inverted value of the LT bit of CR6. 10486 BitNo = 2; InvertBit = true; 10487 break; 10488 } 10489 10490 // Shift the bit into the low position. 10491 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10492 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10493 // Isolate the bit. 10494 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10495 DAG.getConstant(1, dl, MVT::i32)); 10496 10497 // If we are supposed to, toggle the bit. 10498 if (InvertBit) 10499 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10500 DAG.getConstant(1, dl, MVT::i32)); 10501 return Flags; 10502 } 10503 10504 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10505 SelectionDAG &DAG) const { 10506 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10507 // the beginning of the argument list. 10508 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10509 SDLoc DL(Op); 10510 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10511 case Intrinsic::ppc_cfence: { 10512 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10513 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10514 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10515 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10516 Op.getOperand(ArgStart + 1)), 10517 Op.getOperand(0)), 10518 0); 10519 } 10520 default: 10521 break; 10522 } 10523 return SDValue(); 10524 } 10525 10526 // Lower scalar BSWAP64 to xxbrd. 10527 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10528 SDLoc dl(Op); 10529 // MTVSRDD 10530 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10531 Op.getOperand(0)); 10532 // XXBRD 10533 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10534 // MFVSRD 10535 int VectorIndex = 0; 10536 if (Subtarget.isLittleEndian()) 10537 VectorIndex = 1; 10538 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10539 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10540 return Op; 10541 } 10542 10543 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10544 // compared to a value that is atomically loaded (atomic loads zero-extend). 10545 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10546 SelectionDAG &DAG) const { 10547 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10548 "Expecting an atomic compare-and-swap here."); 10549 SDLoc dl(Op); 10550 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10551 EVT MemVT = AtomicNode->getMemoryVT(); 10552 if (MemVT.getSizeInBits() >= 32) 10553 return Op; 10554 10555 SDValue CmpOp = Op.getOperand(2); 10556 // If this is already correctly zero-extended, leave it alone. 10557 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10558 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10559 return Op; 10560 10561 // Clear the high bits of the compare operand. 10562 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10563 SDValue NewCmpOp = 10564 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10565 DAG.getConstant(MaskVal, dl, MVT::i32)); 10566 10567 // Replace the existing compare operand with the properly zero-extended one. 10568 SmallVector<SDValue, 4> Ops; 10569 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10570 Ops.push_back(AtomicNode->getOperand(i)); 10571 Ops[2] = NewCmpOp; 10572 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10573 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10574 auto NodeTy = 10575 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10576 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10577 } 10578 10579 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10580 SelectionDAG &DAG) const { 10581 SDLoc dl(Op); 10582 // Create a stack slot that is 16-byte aligned. 10583 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10584 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10585 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10586 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10587 10588 // Store the input value into Value#0 of the stack slot. 10589 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10590 MachinePointerInfo()); 10591 // Load it out. 10592 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10593 } 10594 10595 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10596 SelectionDAG &DAG) const { 10597 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10598 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10599 10600 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10601 // We have legal lowering for constant indices but not for variable ones. 10602 if (!C) 10603 return SDValue(); 10604 10605 EVT VT = Op.getValueType(); 10606 SDLoc dl(Op); 10607 SDValue V1 = Op.getOperand(0); 10608 SDValue V2 = Op.getOperand(1); 10609 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10610 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10611 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10612 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10613 unsigned InsertAtElement = C->getZExtValue(); 10614 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10615 if (Subtarget.isLittleEndian()) { 10616 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10617 } 10618 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10619 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10620 } 10621 return Op; 10622 } 10623 10624 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10625 SelectionDAG &DAG) const { 10626 SDLoc dl(Op); 10627 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10628 SDValue LoadChain = LN->getChain(); 10629 SDValue BasePtr = LN->getBasePtr(); 10630 EVT VT = Op.getValueType(); 10631 10632 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10633 return Op; 10634 10635 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10636 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10637 // 2 or 4 vsx registers. 10638 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10639 "Type unsupported without MMA"); 10640 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10641 "Type unsupported without paired vector support"); 10642 Align Alignment = LN->getAlign(); 10643 SmallVector<SDValue, 4> Loads; 10644 SmallVector<SDValue, 4> LoadChains; 10645 unsigned NumVecs = VT.getSizeInBits() / 128; 10646 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10647 SDValue Load = 10648 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10649 LN->getPointerInfo().getWithOffset(Idx * 16), 10650 commonAlignment(Alignment, Idx * 16), 10651 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10652 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10653 DAG.getConstant(16, dl, BasePtr.getValueType())); 10654 Loads.push_back(Load); 10655 LoadChains.push_back(Load.getValue(1)); 10656 } 10657 if (Subtarget.isLittleEndian()) { 10658 std::reverse(Loads.begin(), Loads.end()); 10659 std::reverse(LoadChains.begin(), LoadChains.end()); 10660 } 10661 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10662 SDValue Value = 10663 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10664 dl, VT, Loads); 10665 SDValue RetOps[] = {Value, TF}; 10666 return DAG.getMergeValues(RetOps, dl); 10667 } 10668 10669 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10670 SelectionDAG &DAG) const { 10671 SDLoc dl(Op); 10672 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10673 SDValue StoreChain = SN->getChain(); 10674 SDValue BasePtr = SN->getBasePtr(); 10675 SDValue Value = SN->getValue(); 10676 EVT StoreVT = Value.getValueType(); 10677 10678 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10679 return Op; 10680 10681 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10682 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10683 // underlying registers individually. 10684 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10685 "Type unsupported without MMA"); 10686 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10687 "Type unsupported without paired vector support"); 10688 Align Alignment = SN->getAlign(); 10689 SmallVector<SDValue, 4> Stores; 10690 unsigned NumVecs = 2; 10691 if (StoreVT == MVT::v512i1) { 10692 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10693 NumVecs = 4; 10694 } 10695 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10696 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10697 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10698 DAG.getConstant(VecNum, dl, MVT::i64)); 10699 SDValue Store = 10700 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10701 SN->getPointerInfo().getWithOffset(Idx * 16), 10702 commonAlignment(Alignment, Idx * 16), 10703 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10704 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10705 DAG.getConstant(16, dl, BasePtr.getValueType())); 10706 Stores.push_back(Store); 10707 } 10708 SDValue TF = DAG.getTokenFactor(dl, Stores); 10709 return TF; 10710 } 10711 10712 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10713 SDLoc dl(Op); 10714 if (Op.getValueType() == MVT::v4i32) { 10715 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10716 10717 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10718 // +16 as shift amt. 10719 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10720 SDValue RHSSwap = // = vrlw RHS, 16 10721 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10722 10723 // Shrinkify inputs to v8i16. 10724 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10725 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10726 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10727 10728 // Low parts multiplied together, generating 32-bit results (we ignore the 10729 // top parts). 10730 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10731 LHS, RHS, DAG, dl, MVT::v4i32); 10732 10733 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10734 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10735 // Shift the high parts up 16 bits. 10736 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10737 Neg16, DAG, dl); 10738 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10739 } else if (Op.getValueType() == MVT::v16i8) { 10740 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10741 bool isLittleEndian = Subtarget.isLittleEndian(); 10742 10743 // Multiply the even 8-bit parts, producing 16-bit sums. 10744 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10745 LHS, RHS, DAG, dl, MVT::v8i16); 10746 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10747 10748 // Multiply the odd 8-bit parts, producing 16-bit sums. 10749 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10750 LHS, RHS, DAG, dl, MVT::v8i16); 10751 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10752 10753 // Merge the results together. Because vmuleub and vmuloub are 10754 // instructions with a big-endian bias, we must reverse the 10755 // element numbering and reverse the meaning of "odd" and "even" 10756 // when generating little endian code. 10757 int Ops[16]; 10758 for (unsigned i = 0; i != 8; ++i) { 10759 if (isLittleEndian) { 10760 Ops[i*2 ] = 2*i; 10761 Ops[i*2+1] = 2*i+16; 10762 } else { 10763 Ops[i*2 ] = 2*i+1; 10764 Ops[i*2+1] = 2*i+1+16; 10765 } 10766 } 10767 if (isLittleEndian) 10768 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10769 else 10770 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10771 } else { 10772 llvm_unreachable("Unknown mul to lower!"); 10773 } 10774 } 10775 10776 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10777 10778 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10779 10780 EVT VT = Op.getValueType(); 10781 assert(VT.isVector() && 10782 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10783 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10784 VT == MVT::v16i8) && 10785 "Unexpected vector element type!"); 10786 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10787 "Current subtarget doesn't support smax v2i64!"); 10788 10789 // For vector abs, it can be lowered to: 10790 // abs x 10791 // ==> 10792 // y = -x 10793 // smax(x, y) 10794 10795 SDLoc dl(Op); 10796 SDValue X = Op.getOperand(0); 10797 SDValue Zero = DAG.getConstant(0, dl, VT); 10798 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10799 10800 // SMAX patch https://reviews.llvm.org/D47332 10801 // hasn't landed yet, so use intrinsic first here. 10802 // TODO: Should use SMAX directly once SMAX patch landed 10803 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10804 if (VT == MVT::v2i64) 10805 BifID = Intrinsic::ppc_altivec_vmaxsd; 10806 else if (VT == MVT::v8i16) 10807 BifID = Intrinsic::ppc_altivec_vmaxsh; 10808 else if (VT == MVT::v16i8) 10809 BifID = Intrinsic::ppc_altivec_vmaxsb; 10810 10811 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10812 } 10813 10814 // Custom lowering for fpext vf32 to v2f64 10815 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10816 10817 assert(Op.getOpcode() == ISD::FP_EXTEND && 10818 "Should only be called for ISD::FP_EXTEND"); 10819 10820 // FIXME: handle extends from half precision float vectors on P9. 10821 // We only want to custom lower an extend from v2f32 to v2f64. 10822 if (Op.getValueType() != MVT::v2f64 || 10823 Op.getOperand(0).getValueType() != MVT::v2f32) 10824 return SDValue(); 10825 10826 SDLoc dl(Op); 10827 SDValue Op0 = Op.getOperand(0); 10828 10829 switch (Op0.getOpcode()) { 10830 default: 10831 return SDValue(); 10832 case ISD::EXTRACT_SUBVECTOR: { 10833 assert(Op0.getNumOperands() == 2 && 10834 isa<ConstantSDNode>(Op0->getOperand(1)) && 10835 "Node should have 2 operands with second one being a constant!"); 10836 10837 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10838 return SDValue(); 10839 10840 // Custom lower is only done for high or low doubleword. 10841 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10842 if (Idx % 2 != 0) 10843 return SDValue(); 10844 10845 // Since input is v4f32, at this point Idx is either 0 or 2. 10846 // Shift to get the doubleword position we want. 10847 int DWord = Idx >> 1; 10848 10849 // High and low word positions are different on little endian. 10850 if (Subtarget.isLittleEndian()) 10851 DWord ^= 0x1; 10852 10853 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10854 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10855 } 10856 case ISD::FADD: 10857 case ISD::FMUL: 10858 case ISD::FSUB: { 10859 SDValue NewLoad[2]; 10860 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10861 // Ensure both input are loads. 10862 SDValue LdOp = Op0.getOperand(i); 10863 if (LdOp.getOpcode() != ISD::LOAD) 10864 return SDValue(); 10865 // Generate new load node. 10866 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10867 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10868 NewLoad[i] = DAG.getMemIntrinsicNode( 10869 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10870 LD->getMemoryVT(), LD->getMemOperand()); 10871 } 10872 SDValue NewOp = 10873 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10874 NewLoad[1], Op0.getNode()->getFlags()); 10875 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10876 DAG.getConstant(0, dl, MVT::i32)); 10877 } 10878 case ISD::LOAD: { 10879 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10880 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10881 SDValue NewLd = DAG.getMemIntrinsicNode( 10882 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10883 LD->getMemoryVT(), LD->getMemOperand()); 10884 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10885 DAG.getConstant(0, dl, MVT::i32)); 10886 } 10887 } 10888 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10889 } 10890 10891 /// LowerOperation - Provide custom lowering hooks for some operations. 10892 /// 10893 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10894 switch (Op.getOpcode()) { 10895 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10896 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10897 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10898 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10899 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10900 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10901 case ISD::SETCC: return LowerSETCC(Op, DAG); 10902 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10903 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10904 10905 // Variable argument lowering. 10906 case ISD::VASTART: return LowerVASTART(Op, DAG); 10907 case ISD::VAARG: return LowerVAARG(Op, DAG); 10908 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10909 10910 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10911 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10912 case ISD::GET_DYNAMIC_AREA_OFFSET: 10913 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10914 10915 // Exception handling lowering. 10916 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10917 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10918 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10919 10920 case ISD::LOAD: return LowerLOAD(Op, DAG); 10921 case ISD::STORE: return LowerSTORE(Op, DAG); 10922 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10923 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10924 case ISD::STRICT_FP_TO_UINT: 10925 case ISD::STRICT_FP_TO_SINT: 10926 case ISD::FP_TO_UINT: 10927 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10928 case ISD::STRICT_UINT_TO_FP: 10929 case ISD::STRICT_SINT_TO_FP: 10930 case ISD::UINT_TO_FP: 10931 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10932 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10933 10934 // Lower 64-bit shifts. 10935 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10936 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10937 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10938 10939 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10940 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10941 10942 // Vector-related lowering. 10943 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10944 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10945 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10946 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10947 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10948 case ISD::MUL: return LowerMUL(Op, DAG); 10949 case ISD::ABS: return LowerABS(Op, DAG); 10950 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10951 case ISD::ROTL: return LowerROTL(Op, DAG); 10952 10953 // For counter-based loop handling. 10954 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10955 10956 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10957 10958 // Frame & Return address. 10959 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10960 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10961 10962 case ISD::INTRINSIC_VOID: 10963 return LowerINTRINSIC_VOID(Op, DAG); 10964 case ISD::BSWAP: 10965 return LowerBSWAP(Op, DAG); 10966 case ISD::ATOMIC_CMP_SWAP: 10967 return LowerATOMIC_CMP_SWAP(Op, DAG); 10968 } 10969 } 10970 10971 void PPCTargetLowering::LowerOperationWrapper(SDNode *N, 10972 SmallVectorImpl<SDValue> &Results, 10973 SelectionDAG &DAG) const { 10974 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10975 10976 if (!Res.getNode()) 10977 return; 10978 10979 // Take the return value as-is if original node has only one result. 10980 if (N->getNumValues() == 1) { 10981 Results.push_back(Res); 10982 return; 10983 } 10984 10985 // New node should have the same number of results. 10986 assert((N->getNumValues() == Res->getNumValues()) && 10987 "Lowering returned the wrong number of results!"); 10988 10989 for (unsigned i = 0; i < N->getNumValues(); ++i) 10990 Results.push_back(Res.getValue(i)); 10991 } 10992 10993 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10994 SmallVectorImpl<SDValue>&Results, 10995 SelectionDAG &DAG) const { 10996 SDLoc dl(N); 10997 switch (N->getOpcode()) { 10998 default: 10999 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11000 case ISD::READCYCLECOUNTER: { 11001 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11002 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11003 11004 Results.push_back( 11005 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11006 Results.push_back(RTB.getValue(2)); 11007 break; 11008 } 11009 case ISD::INTRINSIC_W_CHAIN: { 11010 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11011 Intrinsic::loop_decrement) 11012 break; 11013 11014 assert(N->getValueType(0) == MVT::i1 && 11015 "Unexpected result type for CTR decrement intrinsic"); 11016 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11017 N->getValueType(0)); 11018 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11019 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11020 N->getOperand(1)); 11021 11022 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11023 Results.push_back(NewInt.getValue(1)); 11024 break; 11025 } 11026 case ISD::VAARG: { 11027 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11028 return; 11029 11030 EVT VT = N->getValueType(0); 11031 11032 if (VT == MVT::i64) { 11033 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11034 11035 Results.push_back(NewNode); 11036 Results.push_back(NewNode.getValue(1)); 11037 } 11038 return; 11039 } 11040 case ISD::STRICT_FP_TO_SINT: 11041 case ISD::STRICT_FP_TO_UINT: 11042 case ISD::FP_TO_SINT: 11043 case ISD::FP_TO_UINT: 11044 // LowerFP_TO_INT() can only handle f32 and f64. 11045 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11046 MVT::ppcf128) 11047 return; 11048 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11049 return; 11050 case ISD::TRUNCATE: { 11051 if (!N->getValueType(0).isVector()) 11052 return; 11053 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11054 if (Lowered) 11055 Results.push_back(Lowered); 11056 return; 11057 } 11058 case ISD::FSHL: 11059 case ISD::FSHR: 11060 // Don't handle funnel shifts here. 11061 return; 11062 case ISD::BITCAST: 11063 // Don't handle bitcast here. 11064 return; 11065 case ISD::FP_EXTEND: 11066 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11067 if (Lowered) 11068 Results.push_back(Lowered); 11069 return; 11070 } 11071 } 11072 11073 //===----------------------------------------------------------------------===// 11074 // Other Lowering Code 11075 //===----------------------------------------------------------------------===// 11076 11077 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11078 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11079 Function *Func = Intrinsic::getDeclaration(M, Id); 11080 return Builder.CreateCall(Func, {}); 11081 } 11082 11083 // The mappings for emitLeading/TrailingFence is taken from 11084 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11085 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11086 Instruction *Inst, 11087 AtomicOrdering Ord) const { 11088 if (Ord == AtomicOrdering::SequentiallyConsistent) 11089 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11090 if (isReleaseOrStronger(Ord)) 11091 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11092 return nullptr; 11093 } 11094 11095 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11096 Instruction *Inst, 11097 AtomicOrdering Ord) const { 11098 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11099 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11100 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11101 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11102 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11103 return Builder.CreateCall( 11104 Intrinsic::getDeclaration( 11105 Builder.GetInsertBlock()->getParent()->getParent(), 11106 Intrinsic::ppc_cfence, {Inst->getType()}), 11107 {Inst}); 11108 // FIXME: Can use isync for rmw operation. 11109 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11110 } 11111 return nullptr; 11112 } 11113 11114 MachineBasicBlock * 11115 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11116 unsigned AtomicSize, 11117 unsigned BinOpcode, 11118 unsigned CmpOpcode, 11119 unsigned CmpPred) const { 11120 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11121 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11122 11123 auto LoadMnemonic = PPC::LDARX; 11124 auto StoreMnemonic = PPC::STDCX; 11125 switch (AtomicSize) { 11126 default: 11127 llvm_unreachable("Unexpected size of atomic entity"); 11128 case 1: 11129 LoadMnemonic = PPC::LBARX; 11130 StoreMnemonic = PPC::STBCX; 11131 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11132 break; 11133 case 2: 11134 LoadMnemonic = PPC::LHARX; 11135 StoreMnemonic = PPC::STHCX; 11136 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11137 break; 11138 case 4: 11139 LoadMnemonic = PPC::LWARX; 11140 StoreMnemonic = PPC::STWCX; 11141 break; 11142 case 8: 11143 LoadMnemonic = PPC::LDARX; 11144 StoreMnemonic = PPC::STDCX; 11145 break; 11146 } 11147 11148 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11149 MachineFunction *F = BB->getParent(); 11150 MachineFunction::iterator It = ++BB->getIterator(); 11151 11152 Register dest = MI.getOperand(0).getReg(); 11153 Register ptrA = MI.getOperand(1).getReg(); 11154 Register ptrB = MI.getOperand(2).getReg(); 11155 Register incr = MI.getOperand(3).getReg(); 11156 DebugLoc dl = MI.getDebugLoc(); 11157 11158 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11159 MachineBasicBlock *loop2MBB = 11160 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11161 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11162 F->insert(It, loopMBB); 11163 if (CmpOpcode) 11164 F->insert(It, loop2MBB); 11165 F->insert(It, exitMBB); 11166 exitMBB->splice(exitMBB->begin(), BB, 11167 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11168 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11169 11170 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11171 Register TmpReg = (!BinOpcode) ? incr : 11172 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11173 : &PPC::GPRCRegClass); 11174 11175 // thisMBB: 11176 // ... 11177 // fallthrough --> loopMBB 11178 BB->addSuccessor(loopMBB); 11179 11180 // loopMBB: 11181 // l[wd]arx dest, ptr 11182 // add r0, dest, incr 11183 // st[wd]cx. r0, ptr 11184 // bne- loopMBB 11185 // fallthrough --> exitMBB 11186 11187 // For max/min... 11188 // loopMBB: 11189 // l[wd]arx dest, ptr 11190 // cmpl?[wd] incr, dest 11191 // bgt exitMBB 11192 // loop2MBB: 11193 // st[wd]cx. dest, ptr 11194 // bne- loopMBB 11195 // fallthrough --> exitMBB 11196 11197 BB = loopMBB; 11198 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11199 .addReg(ptrA).addReg(ptrB); 11200 if (BinOpcode) 11201 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11202 if (CmpOpcode) { 11203 // Signed comparisons of byte or halfword values must be sign-extended. 11204 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11205 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11206 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11207 ExtReg).addReg(dest); 11208 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11209 .addReg(incr).addReg(ExtReg); 11210 } else 11211 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11212 .addReg(incr).addReg(dest); 11213 11214 BuildMI(BB, dl, TII->get(PPC::BCC)) 11215 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11216 BB->addSuccessor(loop2MBB); 11217 BB->addSuccessor(exitMBB); 11218 BB = loop2MBB; 11219 } 11220 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11221 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11222 BuildMI(BB, dl, TII->get(PPC::BCC)) 11223 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11224 BB->addSuccessor(loopMBB); 11225 BB->addSuccessor(exitMBB); 11226 11227 // exitMBB: 11228 // ... 11229 BB = exitMBB; 11230 return BB; 11231 } 11232 11233 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11234 MachineInstr &MI, MachineBasicBlock *BB, 11235 bool is8bit, // operation 11236 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11237 // If we support part-word atomic mnemonics, just use them 11238 if (Subtarget.hasPartwordAtomics()) 11239 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11240 CmpPred); 11241 11242 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11243 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11244 // In 64 bit mode we have to use 64 bits for addresses, even though the 11245 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11246 // registers without caring whether they're 32 or 64, but here we're 11247 // doing actual arithmetic on the addresses. 11248 bool is64bit = Subtarget.isPPC64(); 11249 bool isLittleEndian = Subtarget.isLittleEndian(); 11250 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11251 11252 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11253 MachineFunction *F = BB->getParent(); 11254 MachineFunction::iterator It = ++BB->getIterator(); 11255 11256 Register dest = MI.getOperand(0).getReg(); 11257 Register ptrA = MI.getOperand(1).getReg(); 11258 Register ptrB = MI.getOperand(2).getReg(); 11259 Register incr = MI.getOperand(3).getReg(); 11260 DebugLoc dl = MI.getDebugLoc(); 11261 11262 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11263 MachineBasicBlock *loop2MBB = 11264 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11265 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11266 F->insert(It, loopMBB); 11267 if (CmpOpcode) 11268 F->insert(It, loop2MBB); 11269 F->insert(It, exitMBB); 11270 exitMBB->splice(exitMBB->begin(), BB, 11271 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11272 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11273 11274 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11275 const TargetRegisterClass *RC = 11276 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11277 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11278 11279 Register PtrReg = RegInfo.createVirtualRegister(RC); 11280 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11281 Register ShiftReg = 11282 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11283 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11284 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11285 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11286 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11287 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11288 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11289 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11290 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11291 Register Ptr1Reg; 11292 Register TmpReg = 11293 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11294 11295 // thisMBB: 11296 // ... 11297 // fallthrough --> loopMBB 11298 BB->addSuccessor(loopMBB); 11299 11300 // The 4-byte load must be aligned, while a char or short may be 11301 // anywhere in the word. Hence all this nasty bookkeeping code. 11302 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11303 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11304 // xori shift, shift1, 24 [16] 11305 // rlwinm ptr, ptr1, 0, 0, 29 11306 // slw incr2, incr, shift 11307 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11308 // slw mask, mask2, shift 11309 // loopMBB: 11310 // lwarx tmpDest, ptr 11311 // add tmp, tmpDest, incr2 11312 // andc tmp2, tmpDest, mask 11313 // and tmp3, tmp, mask 11314 // or tmp4, tmp3, tmp2 11315 // stwcx. tmp4, ptr 11316 // bne- loopMBB 11317 // fallthrough --> exitMBB 11318 // srw dest, tmpDest, shift 11319 if (ptrA != ZeroReg) { 11320 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11321 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11322 .addReg(ptrA) 11323 .addReg(ptrB); 11324 } else { 11325 Ptr1Reg = ptrB; 11326 } 11327 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11328 // mode. 11329 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11330 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11331 .addImm(3) 11332 .addImm(27) 11333 .addImm(is8bit ? 28 : 27); 11334 if (!isLittleEndian) 11335 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11336 .addReg(Shift1Reg) 11337 .addImm(is8bit ? 24 : 16); 11338 if (is64bit) 11339 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11340 .addReg(Ptr1Reg) 11341 .addImm(0) 11342 .addImm(61); 11343 else 11344 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11345 .addReg(Ptr1Reg) 11346 .addImm(0) 11347 .addImm(0) 11348 .addImm(29); 11349 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11350 if (is8bit) 11351 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11352 else { 11353 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11354 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11355 .addReg(Mask3Reg) 11356 .addImm(65535); 11357 } 11358 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11359 .addReg(Mask2Reg) 11360 .addReg(ShiftReg); 11361 11362 BB = loopMBB; 11363 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11364 .addReg(ZeroReg) 11365 .addReg(PtrReg); 11366 if (BinOpcode) 11367 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11368 .addReg(Incr2Reg) 11369 .addReg(TmpDestReg); 11370 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11371 .addReg(TmpDestReg) 11372 .addReg(MaskReg); 11373 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11374 if (CmpOpcode) { 11375 // For unsigned comparisons, we can directly compare the shifted values. 11376 // For signed comparisons we shift and sign extend. 11377 Register SReg = RegInfo.createVirtualRegister(GPRC); 11378 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11379 .addReg(TmpDestReg) 11380 .addReg(MaskReg); 11381 unsigned ValueReg = SReg; 11382 unsigned CmpReg = Incr2Reg; 11383 if (CmpOpcode == PPC::CMPW) { 11384 ValueReg = RegInfo.createVirtualRegister(GPRC); 11385 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11386 .addReg(SReg) 11387 .addReg(ShiftReg); 11388 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11389 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11390 .addReg(ValueReg); 11391 ValueReg = ValueSReg; 11392 CmpReg = incr; 11393 } 11394 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11395 .addReg(CmpReg) 11396 .addReg(ValueReg); 11397 BuildMI(BB, dl, TII->get(PPC::BCC)) 11398 .addImm(CmpPred) 11399 .addReg(PPC::CR0) 11400 .addMBB(exitMBB); 11401 BB->addSuccessor(loop2MBB); 11402 BB->addSuccessor(exitMBB); 11403 BB = loop2MBB; 11404 } 11405 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11406 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11407 .addReg(Tmp4Reg) 11408 .addReg(ZeroReg) 11409 .addReg(PtrReg); 11410 BuildMI(BB, dl, TII->get(PPC::BCC)) 11411 .addImm(PPC::PRED_NE) 11412 .addReg(PPC::CR0) 11413 .addMBB(loopMBB); 11414 BB->addSuccessor(loopMBB); 11415 BB->addSuccessor(exitMBB); 11416 11417 // exitMBB: 11418 // ... 11419 BB = exitMBB; 11420 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11421 .addReg(TmpDestReg) 11422 .addReg(ShiftReg); 11423 return BB; 11424 } 11425 11426 llvm::MachineBasicBlock * 11427 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11428 MachineBasicBlock *MBB) const { 11429 DebugLoc DL = MI.getDebugLoc(); 11430 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11431 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11432 11433 MachineFunction *MF = MBB->getParent(); 11434 MachineRegisterInfo &MRI = MF->getRegInfo(); 11435 11436 const BasicBlock *BB = MBB->getBasicBlock(); 11437 MachineFunction::iterator I = ++MBB->getIterator(); 11438 11439 Register DstReg = MI.getOperand(0).getReg(); 11440 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11441 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11442 Register mainDstReg = MRI.createVirtualRegister(RC); 11443 Register restoreDstReg = MRI.createVirtualRegister(RC); 11444 11445 MVT PVT = getPointerTy(MF->getDataLayout()); 11446 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11447 "Invalid Pointer Size!"); 11448 // For v = setjmp(buf), we generate 11449 // 11450 // thisMBB: 11451 // SjLjSetup mainMBB 11452 // bl mainMBB 11453 // v_restore = 1 11454 // b sinkMBB 11455 // 11456 // mainMBB: 11457 // buf[LabelOffset] = LR 11458 // v_main = 0 11459 // 11460 // sinkMBB: 11461 // v = phi(main, restore) 11462 // 11463 11464 MachineBasicBlock *thisMBB = MBB; 11465 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11466 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11467 MF->insert(I, mainMBB); 11468 MF->insert(I, sinkMBB); 11469 11470 MachineInstrBuilder MIB; 11471 11472 // Transfer the remainder of BB and its successor edges to sinkMBB. 11473 sinkMBB->splice(sinkMBB->begin(), MBB, 11474 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11475 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11476 11477 // Note that the structure of the jmp_buf used here is not compatible 11478 // with that used by libc, and is not designed to be. Specifically, it 11479 // stores only those 'reserved' registers that LLVM does not otherwise 11480 // understand how to spill. Also, by convention, by the time this 11481 // intrinsic is called, Clang has already stored the frame address in the 11482 // first slot of the buffer and stack address in the third. Following the 11483 // X86 target code, we'll store the jump address in the second slot. We also 11484 // need to save the TOC pointer (R2) to handle jumps between shared 11485 // libraries, and that will be stored in the fourth slot. The thread 11486 // identifier (R13) is not affected. 11487 11488 // thisMBB: 11489 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11490 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11491 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11492 11493 // Prepare IP either in reg. 11494 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11495 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11496 Register BufReg = MI.getOperand(1).getReg(); 11497 11498 if (Subtarget.is64BitELFABI()) { 11499 setUsesTOCBasePtr(*MBB->getParent()); 11500 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11501 .addReg(PPC::X2) 11502 .addImm(TOCOffset) 11503 .addReg(BufReg) 11504 .cloneMemRefs(MI); 11505 } 11506 11507 // Naked functions never have a base pointer, and so we use r1. For all 11508 // other functions, this decision must be delayed until during PEI. 11509 unsigned BaseReg; 11510 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11511 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11512 else 11513 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11514 11515 MIB = BuildMI(*thisMBB, MI, DL, 11516 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11517 .addReg(BaseReg) 11518 .addImm(BPOffset) 11519 .addReg(BufReg) 11520 .cloneMemRefs(MI); 11521 11522 // Setup 11523 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11524 MIB.addRegMask(TRI->getNoPreservedMask()); 11525 11526 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11527 11528 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11529 .addMBB(mainMBB); 11530 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11531 11532 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11533 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11534 11535 // mainMBB: 11536 // mainDstReg = 0 11537 MIB = 11538 BuildMI(mainMBB, DL, 11539 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11540 11541 // Store IP 11542 if (Subtarget.isPPC64()) { 11543 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11544 .addReg(LabelReg) 11545 .addImm(LabelOffset) 11546 .addReg(BufReg); 11547 } else { 11548 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11549 .addReg(LabelReg) 11550 .addImm(LabelOffset) 11551 .addReg(BufReg); 11552 } 11553 MIB.cloneMemRefs(MI); 11554 11555 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11556 mainMBB->addSuccessor(sinkMBB); 11557 11558 // sinkMBB: 11559 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11560 TII->get(PPC::PHI), DstReg) 11561 .addReg(mainDstReg).addMBB(mainMBB) 11562 .addReg(restoreDstReg).addMBB(thisMBB); 11563 11564 MI.eraseFromParent(); 11565 return sinkMBB; 11566 } 11567 11568 MachineBasicBlock * 11569 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11570 MachineBasicBlock *MBB) const { 11571 DebugLoc DL = MI.getDebugLoc(); 11572 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11573 11574 MachineFunction *MF = MBB->getParent(); 11575 MachineRegisterInfo &MRI = MF->getRegInfo(); 11576 11577 MVT PVT = getPointerTy(MF->getDataLayout()); 11578 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11579 "Invalid Pointer Size!"); 11580 11581 const TargetRegisterClass *RC = 11582 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11583 Register Tmp = MRI.createVirtualRegister(RC); 11584 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11585 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11586 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11587 unsigned BP = 11588 (PVT == MVT::i64) 11589 ? PPC::X30 11590 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11591 : PPC::R30); 11592 11593 MachineInstrBuilder MIB; 11594 11595 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11596 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11597 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11598 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11599 11600 Register BufReg = MI.getOperand(0).getReg(); 11601 11602 // Reload FP (the jumped-to function may not have had a 11603 // frame pointer, and if so, then its r31 will be restored 11604 // as necessary). 11605 if (PVT == MVT::i64) { 11606 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11607 .addImm(0) 11608 .addReg(BufReg); 11609 } else { 11610 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11611 .addImm(0) 11612 .addReg(BufReg); 11613 } 11614 MIB.cloneMemRefs(MI); 11615 11616 // Reload IP 11617 if (PVT == MVT::i64) { 11618 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11619 .addImm(LabelOffset) 11620 .addReg(BufReg); 11621 } else { 11622 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11623 .addImm(LabelOffset) 11624 .addReg(BufReg); 11625 } 11626 MIB.cloneMemRefs(MI); 11627 11628 // Reload SP 11629 if (PVT == MVT::i64) { 11630 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11631 .addImm(SPOffset) 11632 .addReg(BufReg); 11633 } else { 11634 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11635 .addImm(SPOffset) 11636 .addReg(BufReg); 11637 } 11638 MIB.cloneMemRefs(MI); 11639 11640 // Reload BP 11641 if (PVT == MVT::i64) { 11642 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11643 .addImm(BPOffset) 11644 .addReg(BufReg); 11645 } else { 11646 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11647 .addImm(BPOffset) 11648 .addReg(BufReg); 11649 } 11650 MIB.cloneMemRefs(MI); 11651 11652 // Reload TOC 11653 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11654 setUsesTOCBasePtr(*MBB->getParent()); 11655 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11656 .addImm(TOCOffset) 11657 .addReg(BufReg) 11658 .cloneMemRefs(MI); 11659 } 11660 11661 // Jump 11662 BuildMI(*MBB, MI, DL, 11663 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11664 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11665 11666 MI.eraseFromParent(); 11667 return MBB; 11668 } 11669 11670 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11671 // If the function specifically requests inline stack probes, emit them. 11672 if (MF.getFunction().hasFnAttribute("probe-stack")) 11673 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11674 "inline-asm"; 11675 return false; 11676 } 11677 11678 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11679 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11680 unsigned StackAlign = TFI->getStackAlignment(); 11681 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11682 "Unexpected stack alignment"); 11683 // The default stack probe size is 4096 if the function has no 11684 // stack-probe-size attribute. 11685 unsigned StackProbeSize = 4096; 11686 const Function &Fn = MF.getFunction(); 11687 if (Fn.hasFnAttribute("stack-probe-size")) 11688 Fn.getFnAttribute("stack-probe-size") 11689 .getValueAsString() 11690 .getAsInteger(0, StackProbeSize); 11691 // Round down to the stack alignment. 11692 StackProbeSize &= ~(StackAlign - 1); 11693 return StackProbeSize ? StackProbeSize : StackAlign; 11694 } 11695 11696 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11697 // into three phases. In the first phase, it uses pseudo instruction 11698 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11699 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11700 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11701 // MaxCallFrameSize so that it can calculate correct data area pointer. 11702 MachineBasicBlock * 11703 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11704 MachineBasicBlock *MBB) const { 11705 const bool isPPC64 = Subtarget.isPPC64(); 11706 MachineFunction *MF = MBB->getParent(); 11707 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11708 DebugLoc DL = MI.getDebugLoc(); 11709 const unsigned ProbeSize = getStackProbeSize(*MF); 11710 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11711 MachineRegisterInfo &MRI = MF->getRegInfo(); 11712 // The CFG of probing stack looks as 11713 // +-----+ 11714 // | MBB | 11715 // +--+--+ 11716 // | 11717 // +----v----+ 11718 // +--->+ TestMBB +---+ 11719 // | +----+----+ | 11720 // | | | 11721 // | +-----v----+ | 11722 // +---+ BlockMBB | | 11723 // +----------+ | 11724 // | 11725 // +---------+ | 11726 // | TailMBB +<--+ 11727 // +---------+ 11728 // In MBB, calculate previous frame pointer and final stack pointer. 11729 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11730 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11731 // TailMBB is spliced via \p MI. 11732 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11733 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11734 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11735 11736 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11737 MF->insert(MBBIter, TestMBB); 11738 MF->insert(MBBIter, BlockMBB); 11739 MF->insert(MBBIter, TailMBB); 11740 11741 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11742 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11743 11744 Register DstReg = MI.getOperand(0).getReg(); 11745 Register NegSizeReg = MI.getOperand(1).getReg(); 11746 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11747 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11748 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11749 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11750 11751 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11752 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11753 // NegSize. 11754 unsigned ProbeOpc; 11755 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11756 ProbeOpc = 11757 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11758 else 11759 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11760 // and NegSizeReg will be allocated in the same phyreg to avoid 11761 // redundant copy when NegSizeReg has only one use which is current MI and 11762 // will be replaced by PREPARE_PROBED_ALLOCA then. 11763 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11764 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11765 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11766 .addDef(ActualNegSizeReg) 11767 .addReg(NegSizeReg) 11768 .add(MI.getOperand(2)) 11769 .add(MI.getOperand(3)); 11770 11771 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11772 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11773 FinalStackPtr) 11774 .addReg(SPReg) 11775 .addReg(ActualNegSizeReg); 11776 11777 // Materialize a scratch register for update. 11778 int64_t NegProbeSize = -(int64_t)ProbeSize; 11779 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11780 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11781 if (!isInt<16>(NegProbeSize)) { 11782 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11783 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11784 .addImm(NegProbeSize >> 16); 11785 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11786 ScratchReg) 11787 .addReg(TempReg) 11788 .addImm(NegProbeSize & 0xFFFF); 11789 } else 11790 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11791 .addImm(NegProbeSize); 11792 11793 { 11794 // Probing leading residual part. 11795 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11796 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11797 .addReg(ActualNegSizeReg) 11798 .addReg(ScratchReg); 11799 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11800 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11801 .addReg(Div) 11802 .addReg(ScratchReg); 11803 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11804 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11805 .addReg(Mul) 11806 .addReg(ActualNegSizeReg); 11807 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11808 .addReg(FramePointer) 11809 .addReg(SPReg) 11810 .addReg(NegMod); 11811 } 11812 11813 { 11814 // Remaining part should be multiple of ProbeSize. 11815 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11816 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11817 .addReg(SPReg) 11818 .addReg(FinalStackPtr); 11819 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11820 .addImm(PPC::PRED_EQ) 11821 .addReg(CmpResult) 11822 .addMBB(TailMBB); 11823 TestMBB->addSuccessor(BlockMBB); 11824 TestMBB->addSuccessor(TailMBB); 11825 } 11826 11827 { 11828 // Touch the block. 11829 // |P...|P...|P... 11830 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11831 .addReg(FramePointer) 11832 .addReg(SPReg) 11833 .addReg(ScratchReg); 11834 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11835 BlockMBB->addSuccessor(TestMBB); 11836 } 11837 11838 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11839 // DYNAREAOFFSET pseudo instruction to get the future result. 11840 Register MaxCallFrameSizeReg = 11841 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11842 BuildMI(TailMBB, DL, 11843 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11844 MaxCallFrameSizeReg) 11845 .add(MI.getOperand(2)) 11846 .add(MI.getOperand(3)); 11847 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11848 .addReg(SPReg) 11849 .addReg(MaxCallFrameSizeReg); 11850 11851 // Splice instructions after MI to TailMBB. 11852 TailMBB->splice(TailMBB->end(), MBB, 11853 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11854 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11855 MBB->addSuccessor(TestMBB); 11856 11857 // Delete the pseudo instruction. 11858 MI.eraseFromParent(); 11859 11860 ++NumDynamicAllocaProbed; 11861 return TailMBB; 11862 } 11863 11864 MachineBasicBlock * 11865 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11866 MachineBasicBlock *BB) const { 11867 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11868 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11869 if (Subtarget.is64BitELFABI() && 11870 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11871 !Subtarget.isUsingPCRelativeCalls()) { 11872 // Call lowering should have added an r2 operand to indicate a dependence 11873 // on the TOC base pointer value. It can't however, because there is no 11874 // way to mark the dependence as implicit there, and so the stackmap code 11875 // will confuse it with a regular operand. Instead, add the dependence 11876 // here. 11877 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11878 } 11879 11880 return emitPatchPoint(MI, BB); 11881 } 11882 11883 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11884 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11885 return emitEHSjLjSetJmp(MI, BB); 11886 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11887 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11888 return emitEHSjLjLongJmp(MI, BB); 11889 } 11890 11891 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11892 11893 // To "insert" these instructions we actually have to insert their 11894 // control-flow patterns. 11895 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11896 MachineFunction::iterator It = ++BB->getIterator(); 11897 11898 MachineFunction *F = BB->getParent(); 11899 11900 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11901 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11902 MI.getOpcode() == PPC::SELECT_I8) { 11903 SmallVector<MachineOperand, 2> Cond; 11904 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11905 MI.getOpcode() == PPC::SELECT_CC_I8) 11906 Cond.push_back(MI.getOperand(4)); 11907 else 11908 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11909 Cond.push_back(MI.getOperand(1)); 11910 11911 DebugLoc dl = MI.getDebugLoc(); 11912 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11913 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11914 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11915 MI.getOpcode() == PPC::SELECT_CC_F8 || 11916 MI.getOpcode() == PPC::SELECT_CC_F16 || 11917 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11918 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11919 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11920 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11921 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11922 MI.getOpcode() == PPC::SELECT_CC_SPE || 11923 MI.getOpcode() == PPC::SELECT_F4 || 11924 MI.getOpcode() == PPC::SELECT_F8 || 11925 MI.getOpcode() == PPC::SELECT_F16 || 11926 MI.getOpcode() == PPC::SELECT_SPE || 11927 MI.getOpcode() == PPC::SELECT_SPE4 || 11928 MI.getOpcode() == PPC::SELECT_VRRC || 11929 MI.getOpcode() == PPC::SELECT_VSFRC || 11930 MI.getOpcode() == PPC::SELECT_VSSRC || 11931 MI.getOpcode() == PPC::SELECT_VSRC) { 11932 // The incoming instruction knows the destination vreg to set, the 11933 // condition code register to branch on, the true/false values to 11934 // select between, and a branch opcode to use. 11935 11936 // thisMBB: 11937 // ... 11938 // TrueVal = ... 11939 // cmpTY ccX, r1, r2 11940 // bCC copy1MBB 11941 // fallthrough --> copy0MBB 11942 MachineBasicBlock *thisMBB = BB; 11943 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11944 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11945 DebugLoc dl = MI.getDebugLoc(); 11946 F->insert(It, copy0MBB); 11947 F->insert(It, sinkMBB); 11948 11949 // Transfer the remainder of BB and its successor edges to sinkMBB. 11950 sinkMBB->splice(sinkMBB->begin(), BB, 11951 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11952 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11953 11954 // Next, add the true and fallthrough blocks as its successors. 11955 BB->addSuccessor(copy0MBB); 11956 BB->addSuccessor(sinkMBB); 11957 11958 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11959 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11960 MI.getOpcode() == PPC::SELECT_F16 || 11961 MI.getOpcode() == PPC::SELECT_SPE4 || 11962 MI.getOpcode() == PPC::SELECT_SPE || 11963 MI.getOpcode() == PPC::SELECT_VRRC || 11964 MI.getOpcode() == PPC::SELECT_VSFRC || 11965 MI.getOpcode() == PPC::SELECT_VSSRC || 11966 MI.getOpcode() == PPC::SELECT_VSRC) { 11967 BuildMI(BB, dl, TII->get(PPC::BC)) 11968 .addReg(MI.getOperand(1).getReg()) 11969 .addMBB(sinkMBB); 11970 } else { 11971 unsigned SelectPred = MI.getOperand(4).getImm(); 11972 BuildMI(BB, dl, TII->get(PPC::BCC)) 11973 .addImm(SelectPred) 11974 .addReg(MI.getOperand(1).getReg()) 11975 .addMBB(sinkMBB); 11976 } 11977 11978 // copy0MBB: 11979 // %FalseValue = ... 11980 // # fallthrough to sinkMBB 11981 BB = copy0MBB; 11982 11983 // Update machine-CFG edges 11984 BB->addSuccessor(sinkMBB); 11985 11986 // sinkMBB: 11987 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11988 // ... 11989 BB = sinkMBB; 11990 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11991 .addReg(MI.getOperand(3).getReg()) 11992 .addMBB(copy0MBB) 11993 .addReg(MI.getOperand(2).getReg()) 11994 .addMBB(thisMBB); 11995 } else if (MI.getOpcode() == PPC::ReadTB) { 11996 // To read the 64-bit time-base register on a 32-bit target, we read the 11997 // two halves. Should the counter have wrapped while it was being read, we 11998 // need to try again. 11999 // ... 12000 // readLoop: 12001 // mfspr Rx,TBU # load from TBU 12002 // mfspr Ry,TB # load from TB 12003 // mfspr Rz,TBU # load from TBU 12004 // cmpw crX,Rx,Rz # check if 'old'='new' 12005 // bne readLoop # branch if they're not equal 12006 // ... 12007 12008 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12009 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12010 DebugLoc dl = MI.getDebugLoc(); 12011 F->insert(It, readMBB); 12012 F->insert(It, sinkMBB); 12013 12014 // Transfer the remainder of BB and its successor edges to sinkMBB. 12015 sinkMBB->splice(sinkMBB->begin(), BB, 12016 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12017 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12018 12019 BB->addSuccessor(readMBB); 12020 BB = readMBB; 12021 12022 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12023 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12024 Register LoReg = MI.getOperand(0).getReg(); 12025 Register HiReg = MI.getOperand(1).getReg(); 12026 12027 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12028 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12029 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12030 12031 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12032 12033 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12034 .addReg(HiReg) 12035 .addReg(ReadAgainReg); 12036 BuildMI(BB, dl, TII->get(PPC::BCC)) 12037 .addImm(PPC::PRED_NE) 12038 .addReg(CmpReg) 12039 .addMBB(readMBB); 12040 12041 BB->addSuccessor(readMBB); 12042 BB->addSuccessor(sinkMBB); 12043 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12044 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12045 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12046 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12047 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12048 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12049 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12050 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12051 12052 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12053 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12054 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12055 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12056 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12057 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12058 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12059 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12060 12061 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12062 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12063 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12064 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12065 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12066 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12067 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12068 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12069 12070 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12071 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12072 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12073 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12074 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12075 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12076 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12077 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12078 12079 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12080 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12081 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12082 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12083 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12084 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12085 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12086 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12087 12088 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12089 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12090 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12091 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12092 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12093 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12094 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12095 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12096 12097 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12098 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12099 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12100 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12101 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12102 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12103 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12104 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12105 12106 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12107 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12108 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12109 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12110 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12111 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12112 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12113 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12114 12115 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12116 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12117 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12118 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12119 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12120 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12121 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12122 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12123 12124 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12125 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12126 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12127 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12128 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12129 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12130 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12131 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12132 12133 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12134 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12135 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12136 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12137 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12138 BB = EmitAtomicBinary(MI, BB, 4, 0); 12139 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12140 BB = EmitAtomicBinary(MI, BB, 8, 0); 12141 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12142 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12143 (Subtarget.hasPartwordAtomics() && 12144 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12145 (Subtarget.hasPartwordAtomics() && 12146 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12147 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12148 12149 auto LoadMnemonic = PPC::LDARX; 12150 auto StoreMnemonic = PPC::STDCX; 12151 switch (MI.getOpcode()) { 12152 default: 12153 llvm_unreachable("Compare and swap of unknown size"); 12154 case PPC::ATOMIC_CMP_SWAP_I8: 12155 LoadMnemonic = PPC::LBARX; 12156 StoreMnemonic = PPC::STBCX; 12157 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12158 break; 12159 case PPC::ATOMIC_CMP_SWAP_I16: 12160 LoadMnemonic = PPC::LHARX; 12161 StoreMnemonic = PPC::STHCX; 12162 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12163 break; 12164 case PPC::ATOMIC_CMP_SWAP_I32: 12165 LoadMnemonic = PPC::LWARX; 12166 StoreMnemonic = PPC::STWCX; 12167 break; 12168 case PPC::ATOMIC_CMP_SWAP_I64: 12169 LoadMnemonic = PPC::LDARX; 12170 StoreMnemonic = PPC::STDCX; 12171 break; 12172 } 12173 Register dest = MI.getOperand(0).getReg(); 12174 Register ptrA = MI.getOperand(1).getReg(); 12175 Register ptrB = MI.getOperand(2).getReg(); 12176 Register oldval = MI.getOperand(3).getReg(); 12177 Register newval = MI.getOperand(4).getReg(); 12178 DebugLoc dl = MI.getDebugLoc(); 12179 12180 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12181 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12182 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12183 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12184 F->insert(It, loop1MBB); 12185 F->insert(It, loop2MBB); 12186 F->insert(It, midMBB); 12187 F->insert(It, exitMBB); 12188 exitMBB->splice(exitMBB->begin(), BB, 12189 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12190 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12191 12192 // thisMBB: 12193 // ... 12194 // fallthrough --> loopMBB 12195 BB->addSuccessor(loop1MBB); 12196 12197 // loop1MBB: 12198 // l[bhwd]arx dest, ptr 12199 // cmp[wd] dest, oldval 12200 // bne- midMBB 12201 // loop2MBB: 12202 // st[bhwd]cx. newval, ptr 12203 // bne- loopMBB 12204 // b exitBB 12205 // midMBB: 12206 // st[bhwd]cx. dest, ptr 12207 // exitBB: 12208 BB = loop1MBB; 12209 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12210 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12211 .addReg(oldval) 12212 .addReg(dest); 12213 BuildMI(BB, dl, TII->get(PPC::BCC)) 12214 .addImm(PPC::PRED_NE) 12215 .addReg(PPC::CR0) 12216 .addMBB(midMBB); 12217 BB->addSuccessor(loop2MBB); 12218 BB->addSuccessor(midMBB); 12219 12220 BB = loop2MBB; 12221 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12222 .addReg(newval) 12223 .addReg(ptrA) 12224 .addReg(ptrB); 12225 BuildMI(BB, dl, TII->get(PPC::BCC)) 12226 .addImm(PPC::PRED_NE) 12227 .addReg(PPC::CR0) 12228 .addMBB(loop1MBB); 12229 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12230 BB->addSuccessor(loop1MBB); 12231 BB->addSuccessor(exitMBB); 12232 12233 BB = midMBB; 12234 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12235 .addReg(dest) 12236 .addReg(ptrA) 12237 .addReg(ptrB); 12238 BB->addSuccessor(exitMBB); 12239 12240 // exitMBB: 12241 // ... 12242 BB = exitMBB; 12243 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12244 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12245 // We must use 64-bit registers for addresses when targeting 64-bit, 12246 // since we're actually doing arithmetic on them. Other registers 12247 // can be 32-bit. 12248 bool is64bit = Subtarget.isPPC64(); 12249 bool isLittleEndian = Subtarget.isLittleEndian(); 12250 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12251 12252 Register dest = MI.getOperand(0).getReg(); 12253 Register ptrA = MI.getOperand(1).getReg(); 12254 Register ptrB = MI.getOperand(2).getReg(); 12255 Register oldval = MI.getOperand(3).getReg(); 12256 Register newval = MI.getOperand(4).getReg(); 12257 DebugLoc dl = MI.getDebugLoc(); 12258 12259 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12260 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12261 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12262 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12263 F->insert(It, loop1MBB); 12264 F->insert(It, loop2MBB); 12265 F->insert(It, midMBB); 12266 F->insert(It, exitMBB); 12267 exitMBB->splice(exitMBB->begin(), BB, 12268 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12269 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12270 12271 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12272 const TargetRegisterClass *RC = 12273 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12274 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12275 12276 Register PtrReg = RegInfo.createVirtualRegister(RC); 12277 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12278 Register ShiftReg = 12279 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12280 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12281 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12282 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12283 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12284 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12285 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12286 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12287 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12288 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12289 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12290 Register Ptr1Reg; 12291 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12292 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12293 // thisMBB: 12294 // ... 12295 // fallthrough --> loopMBB 12296 BB->addSuccessor(loop1MBB); 12297 12298 // The 4-byte load must be aligned, while a char or short may be 12299 // anywhere in the word. Hence all this nasty bookkeeping code. 12300 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12301 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12302 // xori shift, shift1, 24 [16] 12303 // rlwinm ptr, ptr1, 0, 0, 29 12304 // slw newval2, newval, shift 12305 // slw oldval2, oldval,shift 12306 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12307 // slw mask, mask2, shift 12308 // and newval3, newval2, mask 12309 // and oldval3, oldval2, mask 12310 // loop1MBB: 12311 // lwarx tmpDest, ptr 12312 // and tmp, tmpDest, mask 12313 // cmpw tmp, oldval3 12314 // bne- midMBB 12315 // loop2MBB: 12316 // andc tmp2, tmpDest, mask 12317 // or tmp4, tmp2, newval3 12318 // stwcx. tmp4, ptr 12319 // bne- loop1MBB 12320 // b exitBB 12321 // midMBB: 12322 // stwcx. tmpDest, ptr 12323 // exitBB: 12324 // srw dest, tmpDest, shift 12325 if (ptrA != ZeroReg) { 12326 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12327 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12328 .addReg(ptrA) 12329 .addReg(ptrB); 12330 } else { 12331 Ptr1Reg = ptrB; 12332 } 12333 12334 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12335 // mode. 12336 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12337 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12338 .addImm(3) 12339 .addImm(27) 12340 .addImm(is8bit ? 28 : 27); 12341 if (!isLittleEndian) 12342 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12343 .addReg(Shift1Reg) 12344 .addImm(is8bit ? 24 : 16); 12345 if (is64bit) 12346 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12347 .addReg(Ptr1Reg) 12348 .addImm(0) 12349 .addImm(61); 12350 else 12351 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12352 .addReg(Ptr1Reg) 12353 .addImm(0) 12354 .addImm(0) 12355 .addImm(29); 12356 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12357 .addReg(newval) 12358 .addReg(ShiftReg); 12359 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12360 .addReg(oldval) 12361 .addReg(ShiftReg); 12362 if (is8bit) 12363 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12364 else { 12365 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12366 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12367 .addReg(Mask3Reg) 12368 .addImm(65535); 12369 } 12370 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12371 .addReg(Mask2Reg) 12372 .addReg(ShiftReg); 12373 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12374 .addReg(NewVal2Reg) 12375 .addReg(MaskReg); 12376 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12377 .addReg(OldVal2Reg) 12378 .addReg(MaskReg); 12379 12380 BB = loop1MBB; 12381 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12382 .addReg(ZeroReg) 12383 .addReg(PtrReg); 12384 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12385 .addReg(TmpDestReg) 12386 .addReg(MaskReg); 12387 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12388 .addReg(TmpReg) 12389 .addReg(OldVal3Reg); 12390 BuildMI(BB, dl, TII->get(PPC::BCC)) 12391 .addImm(PPC::PRED_NE) 12392 .addReg(PPC::CR0) 12393 .addMBB(midMBB); 12394 BB->addSuccessor(loop2MBB); 12395 BB->addSuccessor(midMBB); 12396 12397 BB = loop2MBB; 12398 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12399 .addReg(TmpDestReg) 12400 .addReg(MaskReg); 12401 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12402 .addReg(Tmp2Reg) 12403 .addReg(NewVal3Reg); 12404 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12405 .addReg(Tmp4Reg) 12406 .addReg(ZeroReg) 12407 .addReg(PtrReg); 12408 BuildMI(BB, dl, TII->get(PPC::BCC)) 12409 .addImm(PPC::PRED_NE) 12410 .addReg(PPC::CR0) 12411 .addMBB(loop1MBB); 12412 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12413 BB->addSuccessor(loop1MBB); 12414 BB->addSuccessor(exitMBB); 12415 12416 BB = midMBB; 12417 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12418 .addReg(TmpDestReg) 12419 .addReg(ZeroReg) 12420 .addReg(PtrReg); 12421 BB->addSuccessor(exitMBB); 12422 12423 // exitMBB: 12424 // ... 12425 BB = exitMBB; 12426 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12427 .addReg(TmpReg) 12428 .addReg(ShiftReg); 12429 } else if (MI.getOpcode() == PPC::FADDrtz) { 12430 // This pseudo performs an FADD with rounding mode temporarily forced 12431 // to round-to-zero. We emit this via custom inserter since the FPSCR 12432 // is not modeled at the SelectionDAG level. 12433 Register Dest = MI.getOperand(0).getReg(); 12434 Register Src1 = MI.getOperand(1).getReg(); 12435 Register Src2 = MI.getOperand(2).getReg(); 12436 DebugLoc dl = MI.getDebugLoc(); 12437 12438 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12439 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12440 12441 // Save FPSCR value. 12442 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12443 12444 // Set rounding mode to round-to-zero. 12445 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12446 .addImm(31) 12447 .addReg(PPC::RM, RegState::ImplicitDefine); 12448 12449 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12450 .addImm(30) 12451 .addReg(PPC::RM, RegState::ImplicitDefine); 12452 12453 // Perform addition. 12454 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12455 .addReg(Src1) 12456 .addReg(Src2); 12457 if (MI.getFlag(MachineInstr::NoFPExcept)) 12458 MIB.setMIFlag(MachineInstr::NoFPExcept); 12459 12460 // Restore FPSCR value. 12461 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12462 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12463 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12464 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12465 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12466 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12467 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12468 ? PPC::ANDI8_rec 12469 : PPC::ANDI_rec; 12470 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12471 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12472 12473 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12474 Register Dest = RegInfo.createVirtualRegister( 12475 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12476 12477 DebugLoc Dl = MI.getDebugLoc(); 12478 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12479 .addReg(MI.getOperand(1).getReg()) 12480 .addImm(1); 12481 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12482 MI.getOperand(0).getReg()) 12483 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12484 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12485 DebugLoc Dl = MI.getDebugLoc(); 12486 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12487 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12488 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12489 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12490 MI.getOperand(0).getReg()) 12491 .addReg(CRReg); 12492 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12493 DebugLoc Dl = MI.getDebugLoc(); 12494 unsigned Imm = MI.getOperand(1).getImm(); 12495 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12496 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12497 MI.getOperand(0).getReg()) 12498 .addReg(PPC::CR0EQ); 12499 } else if (MI.getOpcode() == PPC::SETRNDi) { 12500 DebugLoc dl = MI.getDebugLoc(); 12501 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12502 12503 // Save FPSCR value. 12504 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12505 12506 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12507 // the following settings: 12508 // 00 Round to nearest 12509 // 01 Round to 0 12510 // 10 Round to +inf 12511 // 11 Round to -inf 12512 12513 // When the operand is immediate, using the two least significant bits of 12514 // the immediate to set the bits 62:63 of FPSCR. 12515 unsigned Mode = MI.getOperand(1).getImm(); 12516 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12517 .addImm(31) 12518 .addReg(PPC::RM, RegState::ImplicitDefine); 12519 12520 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12521 .addImm(30) 12522 .addReg(PPC::RM, RegState::ImplicitDefine); 12523 } else if (MI.getOpcode() == PPC::SETRND) { 12524 DebugLoc dl = MI.getDebugLoc(); 12525 12526 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12527 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12528 // If the target doesn't have DirectMove, we should use stack to do the 12529 // conversion, because the target doesn't have the instructions like mtvsrd 12530 // or mfvsrd to do this conversion directly. 12531 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12532 if (Subtarget.hasDirectMove()) { 12533 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12534 .addReg(SrcReg); 12535 } else { 12536 // Use stack to do the register copy. 12537 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12538 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12539 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12540 if (RC == &PPC::F8RCRegClass) { 12541 // Copy register from F8RCRegClass to G8RCRegclass. 12542 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12543 "Unsupported RegClass."); 12544 12545 StoreOp = PPC::STFD; 12546 LoadOp = PPC::LD; 12547 } else { 12548 // Copy register from G8RCRegClass to F8RCRegclass. 12549 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12550 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12551 "Unsupported RegClass."); 12552 } 12553 12554 MachineFrameInfo &MFI = F->getFrameInfo(); 12555 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12556 12557 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12558 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12559 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12560 MFI.getObjectAlign(FrameIdx)); 12561 12562 // Store the SrcReg into the stack. 12563 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12564 .addReg(SrcReg) 12565 .addImm(0) 12566 .addFrameIndex(FrameIdx) 12567 .addMemOperand(MMOStore); 12568 12569 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12570 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12571 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12572 MFI.getObjectAlign(FrameIdx)); 12573 12574 // Load from the stack where SrcReg is stored, and save to DestReg, 12575 // so we have done the RegClass conversion from RegClass::SrcReg to 12576 // RegClass::DestReg. 12577 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12578 .addImm(0) 12579 .addFrameIndex(FrameIdx) 12580 .addMemOperand(MMOLoad); 12581 } 12582 }; 12583 12584 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12585 12586 // Save FPSCR value. 12587 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12588 12589 // When the operand is gprc register, use two least significant bits of the 12590 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12591 // 12592 // copy OldFPSCRTmpReg, OldFPSCRReg 12593 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12594 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12595 // copy NewFPSCRReg, NewFPSCRTmpReg 12596 // mtfsf 255, NewFPSCRReg 12597 MachineOperand SrcOp = MI.getOperand(1); 12598 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12599 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12600 12601 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12602 12603 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12604 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12605 12606 // The first operand of INSERT_SUBREG should be a register which has 12607 // subregisters, we only care about its RegClass, so we should use an 12608 // IMPLICIT_DEF register. 12609 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12610 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12611 .addReg(ImDefReg) 12612 .add(SrcOp) 12613 .addImm(1); 12614 12615 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12616 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12617 .addReg(OldFPSCRTmpReg) 12618 .addReg(ExtSrcReg) 12619 .addImm(0) 12620 .addImm(62); 12621 12622 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12623 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12624 12625 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12626 // bits of FPSCR. 12627 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12628 .addImm(255) 12629 .addReg(NewFPSCRReg) 12630 .addImm(0) 12631 .addImm(0); 12632 } else if (MI.getOpcode() == PPC::SETFLM) { 12633 DebugLoc Dl = MI.getDebugLoc(); 12634 12635 // Result of setflm is previous FPSCR content, so we need to save it first. 12636 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12637 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12638 12639 // Put bits in 32:63 to FPSCR. 12640 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12641 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12642 .addImm(255) 12643 .addReg(NewFPSCRReg) 12644 .addImm(0) 12645 .addImm(0); 12646 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12647 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12648 return emitProbedAlloca(MI, BB); 12649 } else { 12650 llvm_unreachable("Unexpected instr type to insert"); 12651 } 12652 12653 MI.eraseFromParent(); // The pseudo instruction is gone now. 12654 return BB; 12655 } 12656 12657 //===----------------------------------------------------------------------===// 12658 // Target Optimization Hooks 12659 //===----------------------------------------------------------------------===// 12660 12661 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12662 // For the estimates, convergence is quadratic, so we essentially double the 12663 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12664 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12665 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12666 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12667 if (VT.getScalarType() == MVT::f64) 12668 RefinementSteps++; 12669 return RefinementSteps; 12670 } 12671 12672 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12673 int Enabled, int &RefinementSteps, 12674 bool &UseOneConstNR, 12675 bool Reciprocal) const { 12676 EVT VT = Operand.getValueType(); 12677 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12678 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12679 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12680 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12681 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12682 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12683 12684 // The Newton-Raphson computation with a single constant does not provide 12685 // enough accuracy on some CPUs. 12686 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12687 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12688 } 12689 return SDValue(); 12690 } 12691 12692 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12693 int Enabled, 12694 int &RefinementSteps) const { 12695 EVT VT = Operand.getValueType(); 12696 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12697 (VT == MVT::f64 && Subtarget.hasFRE()) || 12698 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12699 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12700 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12701 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12702 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12703 } 12704 return SDValue(); 12705 } 12706 12707 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12708 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12709 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12710 // enabled for division), this functionality is redundant with the default 12711 // combiner logic (once the division -> reciprocal/multiply transformation 12712 // has taken place). As a result, this matters more for older cores than for 12713 // newer ones. 12714 12715 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12716 // reciprocal if there are two or more FDIVs (for embedded cores with only 12717 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12718 switch (Subtarget.getCPUDirective()) { 12719 default: 12720 return 3; 12721 case PPC::DIR_440: 12722 case PPC::DIR_A2: 12723 case PPC::DIR_E500: 12724 case PPC::DIR_E500mc: 12725 case PPC::DIR_E5500: 12726 return 2; 12727 } 12728 } 12729 12730 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12731 // collapsed, and so we need to look through chains of them. 12732 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12733 int64_t& Offset, SelectionDAG &DAG) { 12734 if (DAG.isBaseWithConstantOffset(Loc)) { 12735 Base = Loc.getOperand(0); 12736 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12737 12738 // The base might itself be a base plus an offset, and if so, accumulate 12739 // that as well. 12740 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12741 } 12742 } 12743 12744 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12745 unsigned Bytes, int Dist, 12746 SelectionDAG &DAG) { 12747 if (VT.getSizeInBits() / 8 != Bytes) 12748 return false; 12749 12750 SDValue BaseLoc = Base->getBasePtr(); 12751 if (Loc.getOpcode() == ISD::FrameIndex) { 12752 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12753 return false; 12754 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12755 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12756 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12757 int FS = MFI.getObjectSize(FI); 12758 int BFS = MFI.getObjectSize(BFI); 12759 if (FS != BFS || FS != (int)Bytes) return false; 12760 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12761 } 12762 12763 SDValue Base1 = Loc, Base2 = BaseLoc; 12764 int64_t Offset1 = 0, Offset2 = 0; 12765 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12766 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12767 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12768 return true; 12769 12770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12771 const GlobalValue *GV1 = nullptr; 12772 const GlobalValue *GV2 = nullptr; 12773 Offset1 = 0; 12774 Offset2 = 0; 12775 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12776 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12777 if (isGA1 && isGA2 && GV1 == GV2) 12778 return Offset1 == (Offset2 + Dist*Bytes); 12779 return false; 12780 } 12781 12782 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12783 // not enforce equality of the chain operands. 12784 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12785 unsigned Bytes, int Dist, 12786 SelectionDAG &DAG) { 12787 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12788 EVT VT = LS->getMemoryVT(); 12789 SDValue Loc = LS->getBasePtr(); 12790 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12791 } 12792 12793 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12794 EVT VT; 12795 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12796 default: return false; 12797 case Intrinsic::ppc_altivec_lvx: 12798 case Intrinsic::ppc_altivec_lvxl: 12799 case Intrinsic::ppc_vsx_lxvw4x: 12800 case Intrinsic::ppc_vsx_lxvw4x_be: 12801 VT = MVT::v4i32; 12802 break; 12803 case Intrinsic::ppc_vsx_lxvd2x: 12804 case Intrinsic::ppc_vsx_lxvd2x_be: 12805 VT = MVT::v2f64; 12806 break; 12807 case Intrinsic::ppc_altivec_lvebx: 12808 VT = MVT::i8; 12809 break; 12810 case Intrinsic::ppc_altivec_lvehx: 12811 VT = MVT::i16; 12812 break; 12813 case Intrinsic::ppc_altivec_lvewx: 12814 VT = MVT::i32; 12815 break; 12816 } 12817 12818 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12819 } 12820 12821 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12822 EVT VT; 12823 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12824 default: return false; 12825 case Intrinsic::ppc_altivec_stvx: 12826 case Intrinsic::ppc_altivec_stvxl: 12827 case Intrinsic::ppc_vsx_stxvw4x: 12828 VT = MVT::v4i32; 12829 break; 12830 case Intrinsic::ppc_vsx_stxvd2x: 12831 VT = MVT::v2f64; 12832 break; 12833 case Intrinsic::ppc_vsx_stxvw4x_be: 12834 VT = MVT::v4i32; 12835 break; 12836 case Intrinsic::ppc_vsx_stxvd2x_be: 12837 VT = MVT::v2f64; 12838 break; 12839 case Intrinsic::ppc_altivec_stvebx: 12840 VT = MVT::i8; 12841 break; 12842 case Intrinsic::ppc_altivec_stvehx: 12843 VT = MVT::i16; 12844 break; 12845 case Intrinsic::ppc_altivec_stvewx: 12846 VT = MVT::i32; 12847 break; 12848 } 12849 12850 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12851 } 12852 12853 return false; 12854 } 12855 12856 // Return true is there is a nearyby consecutive load to the one provided 12857 // (regardless of alignment). We search up and down the chain, looking though 12858 // token factors and other loads (but nothing else). As a result, a true result 12859 // indicates that it is safe to create a new consecutive load adjacent to the 12860 // load provided. 12861 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12862 SDValue Chain = LD->getChain(); 12863 EVT VT = LD->getMemoryVT(); 12864 12865 SmallSet<SDNode *, 16> LoadRoots; 12866 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12867 SmallSet<SDNode *, 16> Visited; 12868 12869 // First, search up the chain, branching to follow all token-factor operands. 12870 // If we find a consecutive load, then we're done, otherwise, record all 12871 // nodes just above the top-level loads and token factors. 12872 while (!Queue.empty()) { 12873 SDNode *ChainNext = Queue.pop_back_val(); 12874 if (!Visited.insert(ChainNext).second) 12875 continue; 12876 12877 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12878 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12879 return true; 12880 12881 if (!Visited.count(ChainLD->getChain().getNode())) 12882 Queue.push_back(ChainLD->getChain().getNode()); 12883 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12884 for (const SDUse &O : ChainNext->ops()) 12885 if (!Visited.count(O.getNode())) 12886 Queue.push_back(O.getNode()); 12887 } else 12888 LoadRoots.insert(ChainNext); 12889 } 12890 12891 // Second, search down the chain, starting from the top-level nodes recorded 12892 // in the first phase. These top-level nodes are the nodes just above all 12893 // loads and token factors. Starting with their uses, recursively look though 12894 // all loads (just the chain uses) and token factors to find a consecutive 12895 // load. 12896 Visited.clear(); 12897 Queue.clear(); 12898 12899 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12900 IE = LoadRoots.end(); I != IE; ++I) { 12901 Queue.push_back(*I); 12902 12903 while (!Queue.empty()) { 12904 SDNode *LoadRoot = Queue.pop_back_val(); 12905 if (!Visited.insert(LoadRoot).second) 12906 continue; 12907 12908 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12909 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12910 return true; 12911 12912 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12913 UE = LoadRoot->use_end(); UI != UE; ++UI) 12914 if (((isa<MemSDNode>(*UI) && 12915 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12916 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12917 Queue.push_back(*UI); 12918 } 12919 } 12920 12921 return false; 12922 } 12923 12924 /// This function is called when we have proved that a SETCC node can be replaced 12925 /// by subtraction (and other supporting instructions) so that the result of 12926 /// comparison is kept in a GPR instead of CR. This function is purely for 12927 /// codegen purposes and has some flags to guide the codegen process. 12928 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12929 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12930 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12931 12932 // Zero extend the operands to the largest legal integer. Originally, they 12933 // must be of a strictly smaller size. 12934 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12935 DAG.getConstant(Size, DL, MVT::i32)); 12936 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12937 DAG.getConstant(Size, DL, MVT::i32)); 12938 12939 // Swap if needed. Depends on the condition code. 12940 if (Swap) 12941 std::swap(Op0, Op1); 12942 12943 // Subtract extended integers. 12944 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12945 12946 // Move the sign bit to the least significant position and zero out the rest. 12947 // Now the least significant bit carries the result of original comparison. 12948 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12949 DAG.getConstant(Size - 1, DL, MVT::i32)); 12950 auto Final = Shifted; 12951 12952 // Complement the result if needed. Based on the condition code. 12953 if (Complement) 12954 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12955 DAG.getConstant(1, DL, MVT::i64)); 12956 12957 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12958 } 12959 12960 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12961 DAGCombinerInfo &DCI) const { 12962 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12963 12964 SelectionDAG &DAG = DCI.DAG; 12965 SDLoc DL(N); 12966 12967 // Size of integers being compared has a critical role in the following 12968 // analysis, so we prefer to do this when all types are legal. 12969 if (!DCI.isAfterLegalizeDAG()) 12970 return SDValue(); 12971 12972 // If all users of SETCC extend its value to a legal integer type 12973 // then we replace SETCC with a subtraction 12974 for (SDNode::use_iterator UI = N->use_begin(), 12975 UE = N->use_end(); UI != UE; ++UI) { 12976 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12977 return SDValue(); 12978 } 12979 12980 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12981 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12982 12983 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12984 12985 if (OpSize < Size) { 12986 switch (CC) { 12987 default: break; 12988 case ISD::SETULT: 12989 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12990 case ISD::SETULE: 12991 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12992 case ISD::SETUGT: 12993 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12994 case ISD::SETUGE: 12995 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12996 } 12997 } 12998 12999 return SDValue(); 13000 } 13001 13002 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13003 DAGCombinerInfo &DCI) const { 13004 SelectionDAG &DAG = DCI.DAG; 13005 SDLoc dl(N); 13006 13007 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13008 // If we're tracking CR bits, we need to be careful that we don't have: 13009 // trunc(binary-ops(zext(x), zext(y))) 13010 // or 13011 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13012 // such that we're unnecessarily moving things into GPRs when it would be 13013 // better to keep them in CR bits. 13014 13015 // Note that trunc here can be an actual i1 trunc, or can be the effective 13016 // truncation that comes from a setcc or select_cc. 13017 if (N->getOpcode() == ISD::TRUNCATE && 13018 N->getValueType(0) != MVT::i1) 13019 return SDValue(); 13020 13021 if (N->getOperand(0).getValueType() != MVT::i32 && 13022 N->getOperand(0).getValueType() != MVT::i64) 13023 return SDValue(); 13024 13025 if (N->getOpcode() == ISD::SETCC || 13026 N->getOpcode() == ISD::SELECT_CC) { 13027 // If we're looking at a comparison, then we need to make sure that the 13028 // high bits (all except for the first) don't matter the result. 13029 ISD::CondCode CC = 13030 cast<CondCodeSDNode>(N->getOperand( 13031 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13032 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13033 13034 if (ISD::isSignedIntSetCC(CC)) { 13035 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13036 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13037 return SDValue(); 13038 } else if (ISD::isUnsignedIntSetCC(CC)) { 13039 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13040 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13041 !DAG.MaskedValueIsZero(N->getOperand(1), 13042 APInt::getHighBitsSet(OpBits, OpBits-1))) 13043 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13044 : SDValue()); 13045 } else { 13046 // This is neither a signed nor an unsigned comparison, just make sure 13047 // that the high bits are equal. 13048 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13049 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13050 13051 // We don't really care about what is known about the first bit (if 13052 // anything), so clear it in all masks prior to comparing them. 13053 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13054 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13055 13056 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13057 return SDValue(); 13058 } 13059 } 13060 13061 // We now know that the higher-order bits are irrelevant, we just need to 13062 // make sure that all of the intermediate operations are bit operations, and 13063 // all inputs are extensions. 13064 if (N->getOperand(0).getOpcode() != ISD::AND && 13065 N->getOperand(0).getOpcode() != ISD::OR && 13066 N->getOperand(0).getOpcode() != ISD::XOR && 13067 N->getOperand(0).getOpcode() != ISD::SELECT && 13068 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13069 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13070 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13071 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13072 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13073 return SDValue(); 13074 13075 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13076 N->getOperand(1).getOpcode() != ISD::AND && 13077 N->getOperand(1).getOpcode() != ISD::OR && 13078 N->getOperand(1).getOpcode() != ISD::XOR && 13079 N->getOperand(1).getOpcode() != ISD::SELECT && 13080 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13081 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13082 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13083 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13084 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13085 return SDValue(); 13086 13087 SmallVector<SDValue, 4> Inputs; 13088 SmallVector<SDValue, 8> BinOps, PromOps; 13089 SmallPtrSet<SDNode *, 16> Visited; 13090 13091 for (unsigned i = 0; i < 2; ++i) { 13092 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13093 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13094 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13095 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13096 isa<ConstantSDNode>(N->getOperand(i))) 13097 Inputs.push_back(N->getOperand(i)); 13098 else 13099 BinOps.push_back(N->getOperand(i)); 13100 13101 if (N->getOpcode() == ISD::TRUNCATE) 13102 break; 13103 } 13104 13105 // Visit all inputs, collect all binary operations (and, or, xor and 13106 // select) that are all fed by extensions. 13107 while (!BinOps.empty()) { 13108 SDValue BinOp = BinOps.back(); 13109 BinOps.pop_back(); 13110 13111 if (!Visited.insert(BinOp.getNode()).second) 13112 continue; 13113 13114 PromOps.push_back(BinOp); 13115 13116 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13117 // The condition of the select is not promoted. 13118 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13119 continue; 13120 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13121 continue; 13122 13123 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13124 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13125 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13126 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13127 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13128 Inputs.push_back(BinOp.getOperand(i)); 13129 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13130 BinOp.getOperand(i).getOpcode() == ISD::OR || 13131 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13132 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13133 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13134 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13135 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13136 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13137 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13138 BinOps.push_back(BinOp.getOperand(i)); 13139 } else { 13140 // We have an input that is not an extension or another binary 13141 // operation; we'll abort this transformation. 13142 return SDValue(); 13143 } 13144 } 13145 } 13146 13147 // Make sure that this is a self-contained cluster of operations (which 13148 // is not quite the same thing as saying that everything has only one 13149 // use). 13150 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13151 if (isa<ConstantSDNode>(Inputs[i])) 13152 continue; 13153 13154 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13155 UE = Inputs[i].getNode()->use_end(); 13156 UI != UE; ++UI) { 13157 SDNode *User = *UI; 13158 if (User != N && !Visited.count(User)) 13159 return SDValue(); 13160 13161 // Make sure that we're not going to promote the non-output-value 13162 // operand(s) or SELECT or SELECT_CC. 13163 // FIXME: Although we could sometimes handle this, and it does occur in 13164 // practice that one of the condition inputs to the select is also one of 13165 // the outputs, we currently can't deal with this. 13166 if (User->getOpcode() == ISD::SELECT) { 13167 if (User->getOperand(0) == Inputs[i]) 13168 return SDValue(); 13169 } else if (User->getOpcode() == ISD::SELECT_CC) { 13170 if (User->getOperand(0) == Inputs[i] || 13171 User->getOperand(1) == Inputs[i]) 13172 return SDValue(); 13173 } 13174 } 13175 } 13176 13177 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13178 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13179 UE = PromOps[i].getNode()->use_end(); 13180 UI != UE; ++UI) { 13181 SDNode *User = *UI; 13182 if (User != N && !Visited.count(User)) 13183 return SDValue(); 13184 13185 // Make sure that we're not going to promote the non-output-value 13186 // operand(s) or SELECT or SELECT_CC. 13187 // FIXME: Although we could sometimes handle this, and it does occur in 13188 // practice that one of the condition inputs to the select is also one of 13189 // the outputs, we currently can't deal with this. 13190 if (User->getOpcode() == ISD::SELECT) { 13191 if (User->getOperand(0) == PromOps[i]) 13192 return SDValue(); 13193 } else if (User->getOpcode() == ISD::SELECT_CC) { 13194 if (User->getOperand(0) == PromOps[i] || 13195 User->getOperand(1) == PromOps[i]) 13196 return SDValue(); 13197 } 13198 } 13199 } 13200 13201 // Replace all inputs with the extension operand. 13202 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13203 // Constants may have users outside the cluster of to-be-promoted nodes, 13204 // and so we need to replace those as we do the promotions. 13205 if (isa<ConstantSDNode>(Inputs[i])) 13206 continue; 13207 else 13208 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13209 } 13210 13211 std::list<HandleSDNode> PromOpHandles; 13212 for (auto &PromOp : PromOps) 13213 PromOpHandles.emplace_back(PromOp); 13214 13215 // Replace all operations (these are all the same, but have a different 13216 // (i1) return type). DAG.getNode will validate that the types of 13217 // a binary operator match, so go through the list in reverse so that 13218 // we've likely promoted both operands first. Any intermediate truncations or 13219 // extensions disappear. 13220 while (!PromOpHandles.empty()) { 13221 SDValue PromOp = PromOpHandles.back().getValue(); 13222 PromOpHandles.pop_back(); 13223 13224 if (PromOp.getOpcode() == ISD::TRUNCATE || 13225 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13226 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13227 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13228 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13229 PromOp.getOperand(0).getValueType() != MVT::i1) { 13230 // The operand is not yet ready (see comment below). 13231 PromOpHandles.emplace_front(PromOp); 13232 continue; 13233 } 13234 13235 SDValue RepValue = PromOp.getOperand(0); 13236 if (isa<ConstantSDNode>(RepValue)) 13237 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13238 13239 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13240 continue; 13241 } 13242 13243 unsigned C; 13244 switch (PromOp.getOpcode()) { 13245 default: C = 0; break; 13246 case ISD::SELECT: C = 1; break; 13247 case ISD::SELECT_CC: C = 2; break; 13248 } 13249 13250 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13251 PromOp.getOperand(C).getValueType() != MVT::i1) || 13252 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13253 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13254 // The to-be-promoted operands of this node have not yet been 13255 // promoted (this should be rare because we're going through the 13256 // list backward, but if one of the operands has several users in 13257 // this cluster of to-be-promoted nodes, it is possible). 13258 PromOpHandles.emplace_front(PromOp); 13259 continue; 13260 } 13261 13262 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13263 PromOp.getNode()->op_end()); 13264 13265 // If there are any constant inputs, make sure they're replaced now. 13266 for (unsigned i = 0; i < 2; ++i) 13267 if (isa<ConstantSDNode>(Ops[C+i])) 13268 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13269 13270 DAG.ReplaceAllUsesOfValueWith(PromOp, 13271 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13272 } 13273 13274 // Now we're left with the initial truncation itself. 13275 if (N->getOpcode() == ISD::TRUNCATE) 13276 return N->getOperand(0); 13277 13278 // Otherwise, this is a comparison. The operands to be compared have just 13279 // changed type (to i1), but everything else is the same. 13280 return SDValue(N, 0); 13281 } 13282 13283 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13284 DAGCombinerInfo &DCI) const { 13285 SelectionDAG &DAG = DCI.DAG; 13286 SDLoc dl(N); 13287 13288 // If we're tracking CR bits, we need to be careful that we don't have: 13289 // zext(binary-ops(trunc(x), trunc(y))) 13290 // or 13291 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13292 // such that we're unnecessarily moving things into CR bits that can more 13293 // efficiently stay in GPRs. Note that if we're not certain that the high 13294 // bits are set as required by the final extension, we still may need to do 13295 // some masking to get the proper behavior. 13296 13297 // This same functionality is important on PPC64 when dealing with 13298 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13299 // the return values of functions. Because it is so similar, it is handled 13300 // here as well. 13301 13302 if (N->getValueType(0) != MVT::i32 && 13303 N->getValueType(0) != MVT::i64) 13304 return SDValue(); 13305 13306 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13307 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13308 return SDValue(); 13309 13310 if (N->getOperand(0).getOpcode() != ISD::AND && 13311 N->getOperand(0).getOpcode() != ISD::OR && 13312 N->getOperand(0).getOpcode() != ISD::XOR && 13313 N->getOperand(0).getOpcode() != ISD::SELECT && 13314 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13315 return SDValue(); 13316 13317 SmallVector<SDValue, 4> Inputs; 13318 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13319 SmallPtrSet<SDNode *, 16> Visited; 13320 13321 // Visit all inputs, collect all binary operations (and, or, xor and 13322 // select) that are all fed by truncations. 13323 while (!BinOps.empty()) { 13324 SDValue BinOp = BinOps.back(); 13325 BinOps.pop_back(); 13326 13327 if (!Visited.insert(BinOp.getNode()).second) 13328 continue; 13329 13330 PromOps.push_back(BinOp); 13331 13332 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13333 // The condition of the select is not promoted. 13334 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13335 continue; 13336 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13337 continue; 13338 13339 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13340 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13341 Inputs.push_back(BinOp.getOperand(i)); 13342 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13343 BinOp.getOperand(i).getOpcode() == ISD::OR || 13344 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13345 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13346 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13347 BinOps.push_back(BinOp.getOperand(i)); 13348 } else { 13349 // We have an input that is not a truncation or another binary 13350 // operation; we'll abort this transformation. 13351 return SDValue(); 13352 } 13353 } 13354 } 13355 13356 // The operands of a select that must be truncated when the select is 13357 // promoted because the operand is actually part of the to-be-promoted set. 13358 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13359 13360 // Make sure that this is a self-contained cluster of operations (which 13361 // is not quite the same thing as saying that everything has only one 13362 // use). 13363 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13364 if (isa<ConstantSDNode>(Inputs[i])) 13365 continue; 13366 13367 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13368 UE = Inputs[i].getNode()->use_end(); 13369 UI != UE; ++UI) { 13370 SDNode *User = *UI; 13371 if (User != N && !Visited.count(User)) 13372 return SDValue(); 13373 13374 // If we're going to promote the non-output-value operand(s) or SELECT or 13375 // SELECT_CC, record them for truncation. 13376 if (User->getOpcode() == ISD::SELECT) { 13377 if (User->getOperand(0) == Inputs[i]) 13378 SelectTruncOp[0].insert(std::make_pair(User, 13379 User->getOperand(0).getValueType())); 13380 } else if (User->getOpcode() == ISD::SELECT_CC) { 13381 if (User->getOperand(0) == Inputs[i]) 13382 SelectTruncOp[0].insert(std::make_pair(User, 13383 User->getOperand(0).getValueType())); 13384 if (User->getOperand(1) == Inputs[i]) 13385 SelectTruncOp[1].insert(std::make_pair(User, 13386 User->getOperand(1).getValueType())); 13387 } 13388 } 13389 } 13390 13391 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13392 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13393 UE = PromOps[i].getNode()->use_end(); 13394 UI != UE; ++UI) { 13395 SDNode *User = *UI; 13396 if (User != N && !Visited.count(User)) 13397 return SDValue(); 13398 13399 // If we're going to promote the non-output-value operand(s) or SELECT or 13400 // SELECT_CC, record them for truncation. 13401 if (User->getOpcode() == ISD::SELECT) { 13402 if (User->getOperand(0) == PromOps[i]) 13403 SelectTruncOp[0].insert(std::make_pair(User, 13404 User->getOperand(0).getValueType())); 13405 } else if (User->getOpcode() == ISD::SELECT_CC) { 13406 if (User->getOperand(0) == PromOps[i]) 13407 SelectTruncOp[0].insert(std::make_pair(User, 13408 User->getOperand(0).getValueType())); 13409 if (User->getOperand(1) == PromOps[i]) 13410 SelectTruncOp[1].insert(std::make_pair(User, 13411 User->getOperand(1).getValueType())); 13412 } 13413 } 13414 } 13415 13416 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13417 bool ReallyNeedsExt = false; 13418 if (N->getOpcode() != ISD::ANY_EXTEND) { 13419 // If all of the inputs are not already sign/zero extended, then 13420 // we'll still need to do that at the end. 13421 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13422 if (isa<ConstantSDNode>(Inputs[i])) 13423 continue; 13424 13425 unsigned OpBits = 13426 Inputs[i].getOperand(0).getValueSizeInBits(); 13427 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13428 13429 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13430 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13431 APInt::getHighBitsSet(OpBits, 13432 OpBits-PromBits))) || 13433 (N->getOpcode() == ISD::SIGN_EXTEND && 13434 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13435 (OpBits-(PromBits-1)))) { 13436 ReallyNeedsExt = true; 13437 break; 13438 } 13439 } 13440 } 13441 13442 // Replace all inputs, either with the truncation operand, or a 13443 // truncation or extension to the final output type. 13444 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13445 // Constant inputs need to be replaced with the to-be-promoted nodes that 13446 // use them because they might have users outside of the cluster of 13447 // promoted nodes. 13448 if (isa<ConstantSDNode>(Inputs[i])) 13449 continue; 13450 13451 SDValue InSrc = Inputs[i].getOperand(0); 13452 if (Inputs[i].getValueType() == N->getValueType(0)) 13453 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13454 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13455 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13456 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13457 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13458 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13459 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13460 else 13461 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13462 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13463 } 13464 13465 std::list<HandleSDNode> PromOpHandles; 13466 for (auto &PromOp : PromOps) 13467 PromOpHandles.emplace_back(PromOp); 13468 13469 // Replace all operations (these are all the same, but have a different 13470 // (promoted) return type). DAG.getNode will validate that the types of 13471 // a binary operator match, so go through the list in reverse so that 13472 // we've likely promoted both operands first. 13473 while (!PromOpHandles.empty()) { 13474 SDValue PromOp = PromOpHandles.back().getValue(); 13475 PromOpHandles.pop_back(); 13476 13477 unsigned C; 13478 switch (PromOp.getOpcode()) { 13479 default: C = 0; break; 13480 case ISD::SELECT: C = 1; break; 13481 case ISD::SELECT_CC: C = 2; break; 13482 } 13483 13484 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13485 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13486 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13487 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13488 // The to-be-promoted operands of this node have not yet been 13489 // promoted (this should be rare because we're going through the 13490 // list backward, but if one of the operands has several users in 13491 // this cluster of to-be-promoted nodes, it is possible). 13492 PromOpHandles.emplace_front(PromOp); 13493 continue; 13494 } 13495 13496 // For SELECT and SELECT_CC nodes, we do a similar check for any 13497 // to-be-promoted comparison inputs. 13498 if (PromOp.getOpcode() == ISD::SELECT || 13499 PromOp.getOpcode() == ISD::SELECT_CC) { 13500 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13501 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13502 (SelectTruncOp[1].count(PromOp.getNode()) && 13503 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13504 PromOpHandles.emplace_front(PromOp); 13505 continue; 13506 } 13507 } 13508 13509 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13510 PromOp.getNode()->op_end()); 13511 13512 // If this node has constant inputs, then they'll need to be promoted here. 13513 for (unsigned i = 0; i < 2; ++i) { 13514 if (!isa<ConstantSDNode>(Ops[C+i])) 13515 continue; 13516 if (Ops[C+i].getValueType() == N->getValueType(0)) 13517 continue; 13518 13519 if (N->getOpcode() == ISD::SIGN_EXTEND) 13520 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13521 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13522 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13523 else 13524 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13525 } 13526 13527 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13528 // truncate them again to the original value type. 13529 if (PromOp.getOpcode() == ISD::SELECT || 13530 PromOp.getOpcode() == ISD::SELECT_CC) { 13531 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13532 if (SI0 != SelectTruncOp[0].end()) 13533 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13534 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13535 if (SI1 != SelectTruncOp[1].end()) 13536 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13537 } 13538 13539 DAG.ReplaceAllUsesOfValueWith(PromOp, 13540 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13541 } 13542 13543 // Now we're left with the initial extension itself. 13544 if (!ReallyNeedsExt) 13545 return N->getOperand(0); 13546 13547 // To zero extend, just mask off everything except for the first bit (in the 13548 // i1 case). 13549 if (N->getOpcode() == ISD::ZERO_EXTEND) 13550 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13551 DAG.getConstant(APInt::getLowBitsSet( 13552 N->getValueSizeInBits(0), PromBits), 13553 dl, N->getValueType(0))); 13554 13555 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13556 "Invalid extension type"); 13557 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13558 SDValue ShiftCst = 13559 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13560 return DAG.getNode( 13561 ISD::SRA, dl, N->getValueType(0), 13562 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13563 ShiftCst); 13564 } 13565 13566 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13567 DAGCombinerInfo &DCI) const { 13568 assert(N->getOpcode() == ISD::SETCC && 13569 "Should be called with a SETCC node"); 13570 13571 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13572 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13573 SDValue LHS = N->getOperand(0); 13574 SDValue RHS = N->getOperand(1); 13575 13576 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13577 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13578 LHS.hasOneUse()) 13579 std::swap(LHS, RHS); 13580 13581 // x == 0-y --> x+y == 0 13582 // x != 0-y --> x+y != 0 13583 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13584 RHS.hasOneUse()) { 13585 SDLoc DL(N); 13586 SelectionDAG &DAG = DCI.DAG; 13587 EVT VT = N->getValueType(0); 13588 EVT OpVT = LHS.getValueType(); 13589 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13590 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13591 } 13592 } 13593 13594 return DAGCombineTruncBoolExt(N, DCI); 13595 } 13596 13597 // Is this an extending load from an f32 to an f64? 13598 static bool isFPExtLoad(SDValue Op) { 13599 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13600 return LD->getExtensionType() == ISD::EXTLOAD && 13601 Op.getValueType() == MVT::f64; 13602 return false; 13603 } 13604 13605 /// Reduces the number of fp-to-int conversion when building a vector. 13606 /// 13607 /// If this vector is built out of floating to integer conversions, 13608 /// transform it to a vector built out of floating point values followed by a 13609 /// single floating to integer conversion of the vector. 13610 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13611 /// becomes (fptosi (build_vector ($A, $B, ...))) 13612 SDValue PPCTargetLowering:: 13613 combineElementTruncationToVectorTruncation(SDNode *N, 13614 DAGCombinerInfo &DCI) const { 13615 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13616 "Should be called with a BUILD_VECTOR node"); 13617 13618 SelectionDAG &DAG = DCI.DAG; 13619 SDLoc dl(N); 13620 13621 SDValue FirstInput = N->getOperand(0); 13622 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13623 "The input operand must be an fp-to-int conversion."); 13624 13625 // This combine happens after legalization so the fp_to_[su]i nodes are 13626 // already converted to PPCSISD nodes. 13627 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13628 if (FirstConversion == PPCISD::FCTIDZ || 13629 FirstConversion == PPCISD::FCTIDUZ || 13630 FirstConversion == PPCISD::FCTIWZ || 13631 FirstConversion == PPCISD::FCTIWUZ) { 13632 bool IsSplat = true; 13633 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13634 FirstConversion == PPCISD::FCTIWUZ; 13635 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13636 SmallVector<SDValue, 4> Ops; 13637 EVT TargetVT = N->getValueType(0); 13638 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13639 SDValue NextOp = N->getOperand(i); 13640 if (NextOp.getOpcode() != PPCISD::MFVSR) 13641 return SDValue(); 13642 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13643 if (NextConversion != FirstConversion) 13644 return SDValue(); 13645 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13646 // This is not valid if the input was originally double precision. It is 13647 // also not profitable to do unless this is an extending load in which 13648 // case doing this combine will allow us to combine consecutive loads. 13649 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13650 return SDValue(); 13651 if (N->getOperand(i) != FirstInput) 13652 IsSplat = false; 13653 } 13654 13655 // If this is a splat, we leave it as-is since there will be only a single 13656 // fp-to-int conversion followed by a splat of the integer. This is better 13657 // for 32-bit and smaller ints and neutral for 64-bit ints. 13658 if (IsSplat) 13659 return SDValue(); 13660 13661 // Now that we know we have the right type of node, get its operands 13662 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13663 SDValue In = N->getOperand(i).getOperand(0); 13664 if (Is32Bit) { 13665 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13666 // here, we know that all inputs are extending loads so this is safe). 13667 if (In.isUndef()) 13668 Ops.push_back(DAG.getUNDEF(SrcVT)); 13669 else { 13670 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13671 MVT::f32, In.getOperand(0), 13672 DAG.getIntPtrConstant(1, dl)); 13673 Ops.push_back(Trunc); 13674 } 13675 } else 13676 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13677 } 13678 13679 unsigned Opcode; 13680 if (FirstConversion == PPCISD::FCTIDZ || 13681 FirstConversion == PPCISD::FCTIWZ) 13682 Opcode = ISD::FP_TO_SINT; 13683 else 13684 Opcode = ISD::FP_TO_UINT; 13685 13686 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13687 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13688 return DAG.getNode(Opcode, dl, TargetVT, BV); 13689 } 13690 return SDValue(); 13691 } 13692 13693 /// Reduce the number of loads when building a vector. 13694 /// 13695 /// Building a vector out of multiple loads can be converted to a load 13696 /// of the vector type if the loads are consecutive. If the loads are 13697 /// consecutive but in descending order, a shuffle is added at the end 13698 /// to reorder the vector. 13699 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13700 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13701 "Should be called with a BUILD_VECTOR node"); 13702 13703 SDLoc dl(N); 13704 13705 // Return early for non byte-sized type, as they can't be consecutive. 13706 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13707 return SDValue(); 13708 13709 bool InputsAreConsecutiveLoads = true; 13710 bool InputsAreReverseConsecutive = true; 13711 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13712 SDValue FirstInput = N->getOperand(0); 13713 bool IsRoundOfExtLoad = false; 13714 13715 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13716 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13717 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13718 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13719 } 13720 // Not a build vector of (possibly fp_rounded) loads. 13721 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13722 N->getNumOperands() == 1) 13723 return SDValue(); 13724 13725 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13726 // If any inputs are fp_round(extload), they all must be. 13727 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13728 return SDValue(); 13729 13730 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13731 N->getOperand(i); 13732 if (NextInput.getOpcode() != ISD::LOAD) 13733 return SDValue(); 13734 13735 SDValue PreviousInput = 13736 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13737 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13738 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13739 13740 // If any inputs are fp_round(extload), they all must be. 13741 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13742 return SDValue(); 13743 13744 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13745 InputsAreConsecutiveLoads = false; 13746 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13747 InputsAreReverseConsecutive = false; 13748 13749 // Exit early if the loads are neither consecutive nor reverse consecutive. 13750 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13751 return SDValue(); 13752 } 13753 13754 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13755 "The loads cannot be both consecutive and reverse consecutive."); 13756 13757 SDValue FirstLoadOp = 13758 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13759 SDValue LastLoadOp = 13760 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13761 N->getOperand(N->getNumOperands()-1); 13762 13763 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13764 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13765 if (InputsAreConsecutiveLoads) { 13766 assert(LD1 && "Input needs to be a LoadSDNode."); 13767 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13768 LD1->getBasePtr(), LD1->getPointerInfo(), 13769 LD1->getAlignment()); 13770 } 13771 if (InputsAreReverseConsecutive) { 13772 assert(LDL && "Input needs to be a LoadSDNode."); 13773 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13774 LDL->getBasePtr(), LDL->getPointerInfo(), 13775 LDL->getAlignment()); 13776 SmallVector<int, 16> Ops; 13777 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13778 Ops.push_back(i); 13779 13780 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13781 DAG.getUNDEF(N->getValueType(0)), Ops); 13782 } 13783 return SDValue(); 13784 } 13785 13786 // This function adds the required vector_shuffle needed to get 13787 // the elements of the vector extract in the correct position 13788 // as specified by the CorrectElems encoding. 13789 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13790 SDValue Input, uint64_t Elems, 13791 uint64_t CorrectElems) { 13792 SDLoc dl(N); 13793 13794 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13795 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13796 13797 // Knowing the element indices being extracted from the original 13798 // vector and the order in which they're being inserted, just put 13799 // them at element indices required for the instruction. 13800 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13801 if (DAG.getDataLayout().isLittleEndian()) 13802 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13803 else 13804 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13805 CorrectElems = CorrectElems >> 8; 13806 Elems = Elems >> 8; 13807 } 13808 13809 SDValue Shuffle = 13810 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13811 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13812 13813 EVT VT = N->getValueType(0); 13814 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13815 13816 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13817 Input.getValueType().getVectorElementType(), 13818 VT.getVectorNumElements()); 13819 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13820 DAG.getValueType(ExtVT)); 13821 } 13822 13823 // Look for build vector patterns where input operands come from sign 13824 // extended vector_extract elements of specific indices. If the correct indices 13825 // aren't used, add a vector shuffle to fix up the indices and create 13826 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13827 // during instruction selection. 13828 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13829 // This array encodes the indices that the vector sign extend instructions 13830 // extract from when extending from one type to another for both BE and LE. 13831 // The right nibble of each byte corresponds to the LE incides. 13832 // and the left nibble of each byte corresponds to the BE incides. 13833 // For example: 0x3074B8FC byte->word 13834 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13835 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13836 // For example: 0x000070F8 byte->double word 13837 // For LE: the allowed indices are: 0x0,0x8 13838 // For BE: the allowed indices are: 0x7,0xF 13839 uint64_t TargetElems[] = { 13840 0x3074B8FC, // b->w 13841 0x000070F8, // b->d 13842 0x10325476, // h->w 13843 0x00003074, // h->d 13844 0x00001032, // w->d 13845 }; 13846 13847 uint64_t Elems = 0; 13848 int Index; 13849 SDValue Input; 13850 13851 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13852 if (!Op) 13853 return false; 13854 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13855 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13856 return false; 13857 13858 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13859 // of the right width. 13860 SDValue Extract = Op.getOperand(0); 13861 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13862 Extract = Extract.getOperand(0); 13863 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13864 return false; 13865 13866 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13867 if (!ExtOp) 13868 return false; 13869 13870 Index = ExtOp->getZExtValue(); 13871 if (Input && Input != Extract.getOperand(0)) 13872 return false; 13873 13874 if (!Input) 13875 Input = Extract.getOperand(0); 13876 13877 Elems = Elems << 8; 13878 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13879 Elems |= Index; 13880 13881 return true; 13882 }; 13883 13884 // If the build vector operands aren't sign extended vector extracts, 13885 // of the same input vector, then return. 13886 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13887 if (!isSExtOfVecExtract(N->getOperand(i))) { 13888 return SDValue(); 13889 } 13890 } 13891 13892 // If the vector extract indicies are not correct, add the appropriate 13893 // vector_shuffle. 13894 int TgtElemArrayIdx; 13895 int InputSize = Input.getValueType().getScalarSizeInBits(); 13896 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13897 if (InputSize + OutputSize == 40) 13898 TgtElemArrayIdx = 0; 13899 else if (InputSize + OutputSize == 72) 13900 TgtElemArrayIdx = 1; 13901 else if (InputSize + OutputSize == 48) 13902 TgtElemArrayIdx = 2; 13903 else if (InputSize + OutputSize == 80) 13904 TgtElemArrayIdx = 3; 13905 else if (InputSize + OutputSize == 96) 13906 TgtElemArrayIdx = 4; 13907 else 13908 return SDValue(); 13909 13910 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13911 CorrectElems = DAG.getDataLayout().isLittleEndian() 13912 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13913 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13914 if (Elems != CorrectElems) { 13915 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13916 } 13917 13918 // Regular lowering will catch cases where a shuffle is not needed. 13919 return SDValue(); 13920 } 13921 13922 // Look for the pattern of a load from a narrow width to i128, feeding 13923 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13924 // (LXVRZX). This node represents a zero extending load that will be matched 13925 // to the Load VSX Vector Rightmost instructions. 13926 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13927 SDLoc DL(N); 13928 13929 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13930 if (N->getValueType(0) != MVT::v1i128) 13931 return SDValue(); 13932 13933 SDValue Operand = N->getOperand(0); 13934 // Proceed with the transformation if the operand to the BUILD_VECTOR 13935 // is a load instruction. 13936 if (Operand.getOpcode() != ISD::LOAD) 13937 return SDValue(); 13938 13939 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13940 EVT MemoryType = LD->getMemoryVT(); 13941 13942 // This transformation is only valid if the we are loading either a byte, 13943 // halfword, word, or doubleword. 13944 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13945 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13946 13947 // Ensure that the load from the narrow width is being zero extended to i128. 13948 if (!ValidLDType || 13949 (LD->getExtensionType() != ISD::ZEXTLOAD && 13950 LD->getExtensionType() != ISD::EXTLOAD)) 13951 return SDValue(); 13952 13953 SDValue LoadOps[] = { 13954 LD->getChain(), LD->getBasePtr(), 13955 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13956 13957 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13958 DAG.getVTList(MVT::v1i128, MVT::Other), 13959 LoadOps, MemoryType, LD->getMemOperand()); 13960 } 13961 13962 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13963 DAGCombinerInfo &DCI) const { 13964 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13965 "Should be called with a BUILD_VECTOR node"); 13966 13967 SelectionDAG &DAG = DCI.DAG; 13968 SDLoc dl(N); 13969 13970 if (!Subtarget.hasVSX()) 13971 return SDValue(); 13972 13973 // The target independent DAG combiner will leave a build_vector of 13974 // float-to-int conversions intact. We can generate MUCH better code for 13975 // a float-to-int conversion of a vector of floats. 13976 SDValue FirstInput = N->getOperand(0); 13977 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13978 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13979 if (Reduced) 13980 return Reduced; 13981 } 13982 13983 // If we're building a vector out of consecutive loads, just load that 13984 // vector type. 13985 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13986 if (Reduced) 13987 return Reduced; 13988 13989 // If we're building a vector out of extended elements from another vector 13990 // we have P9 vector integer extend instructions. The code assumes legal 13991 // input types (i.e. it can't handle things like v4i16) so do not run before 13992 // legalization. 13993 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13994 Reduced = combineBVOfVecSExt(N, DAG); 13995 if (Reduced) 13996 return Reduced; 13997 } 13998 13999 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14000 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14001 // is a load from <valid narrow width> to i128. 14002 if (Subtarget.isISA3_1()) { 14003 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14004 if (BVOfZLoad) 14005 return BVOfZLoad; 14006 } 14007 14008 if (N->getValueType(0) != MVT::v2f64) 14009 return SDValue(); 14010 14011 // Looking for: 14012 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14013 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14014 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14015 return SDValue(); 14016 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14017 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14018 return SDValue(); 14019 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14020 return SDValue(); 14021 14022 SDValue Ext1 = FirstInput.getOperand(0); 14023 SDValue Ext2 = N->getOperand(1).getOperand(0); 14024 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14025 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14026 return SDValue(); 14027 14028 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14029 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14030 if (!Ext1Op || !Ext2Op) 14031 return SDValue(); 14032 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14033 Ext1.getOperand(0) != Ext2.getOperand(0)) 14034 return SDValue(); 14035 14036 int FirstElem = Ext1Op->getZExtValue(); 14037 int SecondElem = Ext2Op->getZExtValue(); 14038 int SubvecIdx; 14039 if (FirstElem == 0 && SecondElem == 1) 14040 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14041 else if (FirstElem == 2 && SecondElem == 3) 14042 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14043 else 14044 return SDValue(); 14045 14046 SDValue SrcVec = Ext1.getOperand(0); 14047 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14048 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14049 return DAG.getNode(NodeType, dl, MVT::v2f64, 14050 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14051 } 14052 14053 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14054 DAGCombinerInfo &DCI) const { 14055 assert((N->getOpcode() == ISD::SINT_TO_FP || 14056 N->getOpcode() == ISD::UINT_TO_FP) && 14057 "Need an int -> FP conversion node here"); 14058 14059 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14060 return SDValue(); 14061 14062 SelectionDAG &DAG = DCI.DAG; 14063 SDLoc dl(N); 14064 SDValue Op(N, 0); 14065 14066 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14067 // from the hardware. 14068 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14069 return SDValue(); 14070 if (!Op.getOperand(0).getValueType().isSimple()) 14071 return SDValue(); 14072 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14073 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14074 return SDValue(); 14075 14076 SDValue FirstOperand(Op.getOperand(0)); 14077 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14078 (FirstOperand.getValueType() == MVT::i8 || 14079 FirstOperand.getValueType() == MVT::i16); 14080 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14081 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14082 bool DstDouble = Op.getValueType() == MVT::f64; 14083 unsigned ConvOp = Signed ? 14084 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14085 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14086 SDValue WidthConst = 14087 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14088 dl, false); 14089 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14090 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14091 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14092 DAG.getVTList(MVT::f64, MVT::Other), 14093 Ops, MVT::i8, LDN->getMemOperand()); 14094 14095 // For signed conversion, we need to sign-extend the value in the VSR 14096 if (Signed) { 14097 SDValue ExtOps[] = { Ld, WidthConst }; 14098 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14099 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14100 } else 14101 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14102 } 14103 14104 14105 // For i32 intermediate values, unfortunately, the conversion functions 14106 // leave the upper 32 bits of the value are undefined. Within the set of 14107 // scalar instructions, we have no method for zero- or sign-extending the 14108 // value. Thus, we cannot handle i32 intermediate values here. 14109 if (Op.getOperand(0).getValueType() == MVT::i32) 14110 return SDValue(); 14111 14112 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14113 "UINT_TO_FP is supported only with FPCVT"); 14114 14115 // If we have FCFIDS, then use it when converting to single-precision. 14116 // Otherwise, convert to double-precision and then round. 14117 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14118 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14119 : PPCISD::FCFIDS) 14120 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14121 : PPCISD::FCFID); 14122 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14123 ? MVT::f32 14124 : MVT::f64; 14125 14126 // If we're converting from a float, to an int, and back to a float again, 14127 // then we don't need the store/load pair at all. 14128 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14129 Subtarget.hasFPCVT()) || 14130 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14131 SDValue Src = Op.getOperand(0).getOperand(0); 14132 if (Src.getValueType() == MVT::f32) { 14133 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14134 DCI.AddToWorklist(Src.getNode()); 14135 } else if (Src.getValueType() != MVT::f64) { 14136 // Make sure that we don't pick up a ppc_fp128 source value. 14137 return SDValue(); 14138 } 14139 14140 unsigned FCTOp = 14141 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14142 PPCISD::FCTIDUZ; 14143 14144 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14145 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14146 14147 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14148 FP = DAG.getNode(ISD::FP_ROUND, dl, 14149 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14150 DCI.AddToWorklist(FP.getNode()); 14151 } 14152 14153 return FP; 14154 } 14155 14156 return SDValue(); 14157 } 14158 14159 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14160 // builtins) into loads with swaps. 14161 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14162 DAGCombinerInfo &DCI) const { 14163 SelectionDAG &DAG = DCI.DAG; 14164 SDLoc dl(N); 14165 SDValue Chain; 14166 SDValue Base; 14167 MachineMemOperand *MMO; 14168 14169 switch (N->getOpcode()) { 14170 default: 14171 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14172 case ISD::LOAD: { 14173 LoadSDNode *LD = cast<LoadSDNode>(N); 14174 Chain = LD->getChain(); 14175 Base = LD->getBasePtr(); 14176 MMO = LD->getMemOperand(); 14177 // If the MMO suggests this isn't a load of a full vector, leave 14178 // things alone. For a built-in, we have to make the change for 14179 // correctness, so if there is a size problem that will be a bug. 14180 if (MMO->getSize() < 16) 14181 return SDValue(); 14182 break; 14183 } 14184 case ISD::INTRINSIC_W_CHAIN: { 14185 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14186 Chain = Intrin->getChain(); 14187 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14188 // us what we want. Get operand 2 instead. 14189 Base = Intrin->getOperand(2); 14190 MMO = Intrin->getMemOperand(); 14191 break; 14192 } 14193 } 14194 14195 MVT VecTy = N->getValueType(0).getSimpleVT(); 14196 14197 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14198 // aligned and the type is a vector with elements up to 4 bytes 14199 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14200 VecTy.getScalarSizeInBits() <= 32) { 14201 return SDValue(); 14202 } 14203 14204 SDValue LoadOps[] = { Chain, Base }; 14205 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14206 DAG.getVTList(MVT::v2f64, MVT::Other), 14207 LoadOps, MVT::v2f64, MMO); 14208 14209 DCI.AddToWorklist(Load.getNode()); 14210 Chain = Load.getValue(1); 14211 SDValue Swap = DAG.getNode( 14212 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14213 DCI.AddToWorklist(Swap.getNode()); 14214 14215 // Add a bitcast if the resulting load type doesn't match v2f64. 14216 if (VecTy != MVT::v2f64) { 14217 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14218 DCI.AddToWorklist(N.getNode()); 14219 // Package {bitcast value, swap's chain} to match Load's shape. 14220 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14221 N, Swap.getValue(1)); 14222 } 14223 14224 return Swap; 14225 } 14226 14227 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14228 // builtins) into stores with swaps. 14229 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14230 DAGCombinerInfo &DCI) const { 14231 SelectionDAG &DAG = DCI.DAG; 14232 SDLoc dl(N); 14233 SDValue Chain; 14234 SDValue Base; 14235 unsigned SrcOpnd; 14236 MachineMemOperand *MMO; 14237 14238 switch (N->getOpcode()) { 14239 default: 14240 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14241 case ISD::STORE: { 14242 StoreSDNode *ST = cast<StoreSDNode>(N); 14243 Chain = ST->getChain(); 14244 Base = ST->getBasePtr(); 14245 MMO = ST->getMemOperand(); 14246 SrcOpnd = 1; 14247 // If the MMO suggests this isn't a store of a full vector, leave 14248 // things alone. For a built-in, we have to make the change for 14249 // correctness, so if there is a size problem that will be a bug. 14250 if (MMO->getSize() < 16) 14251 return SDValue(); 14252 break; 14253 } 14254 case ISD::INTRINSIC_VOID: { 14255 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14256 Chain = Intrin->getChain(); 14257 // Intrin->getBasePtr() oddly does not get what we want. 14258 Base = Intrin->getOperand(3); 14259 MMO = Intrin->getMemOperand(); 14260 SrcOpnd = 2; 14261 break; 14262 } 14263 } 14264 14265 SDValue Src = N->getOperand(SrcOpnd); 14266 MVT VecTy = Src.getValueType().getSimpleVT(); 14267 14268 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14269 // aligned and the type is a vector with elements up to 4 bytes 14270 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14271 VecTy.getScalarSizeInBits() <= 32) { 14272 return SDValue(); 14273 } 14274 14275 // All stores are done as v2f64 and possible bit cast. 14276 if (VecTy != MVT::v2f64) { 14277 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14278 DCI.AddToWorklist(Src.getNode()); 14279 } 14280 14281 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14282 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14283 DCI.AddToWorklist(Swap.getNode()); 14284 Chain = Swap.getValue(1); 14285 SDValue StoreOps[] = { Chain, Swap, Base }; 14286 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14287 DAG.getVTList(MVT::Other), 14288 StoreOps, VecTy, MMO); 14289 DCI.AddToWorklist(Store.getNode()); 14290 return Store; 14291 } 14292 14293 // Handle DAG combine for STORE (FP_TO_INT F). 14294 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14295 DAGCombinerInfo &DCI) const { 14296 14297 SelectionDAG &DAG = DCI.DAG; 14298 SDLoc dl(N); 14299 unsigned Opcode = N->getOperand(1).getOpcode(); 14300 14301 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14302 && "Not a FP_TO_INT Instruction!"); 14303 14304 SDValue Val = N->getOperand(1).getOperand(0); 14305 EVT Op1VT = N->getOperand(1).getValueType(); 14306 EVT ResVT = Val.getValueType(); 14307 14308 if (!isTypeLegal(ResVT)) 14309 return SDValue(); 14310 14311 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14312 bool ValidTypeForStoreFltAsInt = 14313 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14314 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14315 14316 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14317 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14318 return SDValue(); 14319 14320 // Extend f32 values to f64 14321 if (ResVT.getScalarSizeInBits() == 32) { 14322 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14323 DCI.AddToWorklist(Val.getNode()); 14324 } 14325 14326 // Set signed or unsigned conversion opcode. 14327 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14328 PPCISD::FP_TO_SINT_IN_VSR : 14329 PPCISD::FP_TO_UINT_IN_VSR; 14330 14331 Val = DAG.getNode(ConvOpcode, 14332 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14333 DCI.AddToWorklist(Val.getNode()); 14334 14335 // Set number of bytes being converted. 14336 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14337 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14338 DAG.getIntPtrConstant(ByteSize, dl, false), 14339 DAG.getValueType(Op1VT) }; 14340 14341 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14342 DAG.getVTList(MVT::Other), Ops, 14343 cast<StoreSDNode>(N)->getMemoryVT(), 14344 cast<StoreSDNode>(N)->getMemOperand()); 14345 14346 DCI.AddToWorklist(Val.getNode()); 14347 return Val; 14348 } 14349 14350 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14351 // Check that the source of the element keeps flipping 14352 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14353 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14354 for (int i = 1, e = Mask.size(); i < e; i++) { 14355 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14356 return false; 14357 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14358 return false; 14359 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14360 } 14361 return true; 14362 } 14363 14364 static bool isSplatBV(SDValue Op) { 14365 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14366 return false; 14367 SDValue FirstOp; 14368 14369 // Find first non-undef input. 14370 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14371 FirstOp = Op.getOperand(i); 14372 if (!FirstOp.isUndef()) 14373 break; 14374 } 14375 14376 // All inputs are undef or the same as the first non-undef input. 14377 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14378 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14379 return false; 14380 return true; 14381 } 14382 14383 static SDValue isScalarToVec(SDValue Op) { 14384 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14385 return Op; 14386 if (Op.getOpcode() != ISD::BITCAST) 14387 return SDValue(); 14388 Op = Op.getOperand(0); 14389 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14390 return Op; 14391 return SDValue(); 14392 } 14393 14394 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14395 int LHSMaxIdx, int RHSMinIdx, 14396 int RHSMaxIdx, int HalfVec) { 14397 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14398 int Idx = ShuffV[i]; 14399 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14400 ShuffV[i] += HalfVec; 14401 } 14402 return; 14403 } 14404 14405 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14406 // the original is: 14407 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14408 // In such a case, just change the shuffle mask to extract the element 14409 // from the permuted index. 14410 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14411 SDLoc dl(OrigSToV); 14412 EVT VT = OrigSToV.getValueType(); 14413 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14414 "Expecting a SCALAR_TO_VECTOR here"); 14415 SDValue Input = OrigSToV.getOperand(0); 14416 14417 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14418 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14419 SDValue OrigVector = Input.getOperand(0); 14420 14421 // Can't handle non-const element indices or different vector types 14422 // for the input to the extract and the output of the scalar_to_vector. 14423 if (Idx && VT == OrigVector.getValueType()) { 14424 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14425 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14426 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14427 } 14428 } 14429 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14430 OrigSToV.getOperand(0)); 14431 } 14432 14433 // On little endian subtargets, combine shuffles such as: 14434 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14435 // into: 14436 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14437 // because the latter can be matched to a single instruction merge. 14438 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14439 // to put the value into element zero. Adjust the shuffle mask so that the 14440 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14441 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14442 SelectionDAG &DAG) const { 14443 SDValue LHS = SVN->getOperand(0); 14444 SDValue RHS = SVN->getOperand(1); 14445 auto Mask = SVN->getMask(); 14446 int NumElts = LHS.getValueType().getVectorNumElements(); 14447 SDValue Res(SVN, 0); 14448 SDLoc dl(SVN); 14449 14450 // None of these combines are useful on big endian systems since the ISA 14451 // already has a big endian bias. 14452 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14453 return Res; 14454 14455 // If this is not a shuffle of a shuffle and the first element comes from 14456 // the second vector, canonicalize to the commuted form. This will make it 14457 // more likely to match one of the single instruction patterns. 14458 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14459 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14460 std::swap(LHS, RHS); 14461 Res = DAG.getCommutedVectorShuffle(*SVN); 14462 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14463 } 14464 14465 // Adjust the shuffle mask if either input vector comes from a 14466 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14467 // form (to prevent the need for a swap). 14468 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14469 SDValue SToVLHS = isScalarToVec(LHS); 14470 SDValue SToVRHS = isScalarToVec(RHS); 14471 if (SToVLHS || SToVRHS) { 14472 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14473 : SToVRHS.getValueType().getVectorNumElements(); 14474 int NumEltsOut = ShuffV.size(); 14475 14476 // Initially assume that neither input is permuted. These will be adjusted 14477 // accordingly if either input is. 14478 int LHSMaxIdx = -1; 14479 int RHSMinIdx = -1; 14480 int RHSMaxIdx = -1; 14481 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14482 14483 // Get the permuted scalar to vector nodes for the source(s) that come from 14484 // ISD::SCALAR_TO_VECTOR. 14485 if (SToVLHS) { 14486 // Set up the values for the shuffle vector fixup. 14487 LHSMaxIdx = NumEltsOut / NumEltsIn; 14488 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14489 if (SToVLHS.getValueType() != LHS.getValueType()) 14490 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14491 LHS = SToVLHS; 14492 } 14493 if (SToVRHS) { 14494 RHSMinIdx = NumEltsOut; 14495 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14496 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14497 if (SToVRHS.getValueType() != RHS.getValueType()) 14498 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14499 RHS = SToVRHS; 14500 } 14501 14502 // Fix up the shuffle mask to reflect where the desired element actually is. 14503 // The minimum and maximum indices that correspond to element zero for both 14504 // the LHS and RHS are computed and will control which shuffle mask entries 14505 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14506 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14507 // HalfVec to refer to the corresponding element in the permuted vector. 14508 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14509 HalfVec); 14510 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14511 14512 // We may have simplified away the shuffle. We won't be able to do anything 14513 // further with it here. 14514 if (!isa<ShuffleVectorSDNode>(Res)) 14515 return Res; 14516 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14517 } 14518 14519 // The common case after we commuted the shuffle is that the RHS is a splat 14520 // and we have elements coming in from the splat at indices that are not 14521 // conducive to using a merge. 14522 // Example: 14523 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14524 if (!isSplatBV(RHS)) 14525 return Res; 14526 14527 // We are looking for a mask such that all even elements are from 14528 // one vector and all odd elements from the other. 14529 if (!isAlternatingShuffMask(Mask, NumElts)) 14530 return Res; 14531 14532 // Adjust the mask so we are pulling in the same index from the splat 14533 // as the index from the interesting vector in consecutive elements. 14534 // Example (even elements from first vector): 14535 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14536 if (Mask[0] < NumElts) 14537 for (int i = 1, e = Mask.size(); i < e; i += 2) 14538 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14539 // Example (odd elements from first vector): 14540 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14541 else 14542 for (int i = 0, e = Mask.size(); i < e; i += 2) 14543 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14544 14545 // If the RHS has undefs, we need to remove them since we may have created 14546 // a shuffle that adds those instead of the splat value. 14547 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14548 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14549 14550 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14551 return Res; 14552 } 14553 14554 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14555 LSBaseSDNode *LSBase, 14556 DAGCombinerInfo &DCI) const { 14557 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14558 "Not a reverse memop pattern!"); 14559 14560 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14561 auto Mask = SVN->getMask(); 14562 int i = 0; 14563 auto I = Mask.rbegin(); 14564 auto E = Mask.rend(); 14565 14566 for (; I != E; ++I) { 14567 if (*I != i) 14568 return false; 14569 i++; 14570 } 14571 return true; 14572 }; 14573 14574 SelectionDAG &DAG = DCI.DAG; 14575 EVT VT = SVN->getValueType(0); 14576 14577 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14578 return SDValue(); 14579 14580 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14581 // See comment in PPCVSXSwapRemoval.cpp. 14582 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14583 if (!Subtarget.hasP9Vector()) 14584 return SDValue(); 14585 14586 if(!IsElementReverse(SVN)) 14587 return SDValue(); 14588 14589 if (LSBase->getOpcode() == ISD::LOAD) { 14590 SDLoc dl(SVN); 14591 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14592 return DAG.getMemIntrinsicNode( 14593 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14594 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14595 } 14596 14597 if (LSBase->getOpcode() == ISD::STORE) { 14598 SDLoc dl(LSBase); 14599 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14600 LSBase->getBasePtr()}; 14601 return DAG.getMemIntrinsicNode( 14602 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14603 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14604 } 14605 14606 llvm_unreachable("Expected a load or store node here"); 14607 } 14608 14609 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14610 DAGCombinerInfo &DCI) const { 14611 SelectionDAG &DAG = DCI.DAG; 14612 SDLoc dl(N); 14613 switch (N->getOpcode()) { 14614 default: break; 14615 case ISD::ADD: 14616 return combineADD(N, DCI); 14617 case ISD::SHL: 14618 return combineSHL(N, DCI); 14619 case ISD::SRA: 14620 return combineSRA(N, DCI); 14621 case ISD::SRL: 14622 return combineSRL(N, DCI); 14623 case ISD::MUL: 14624 return combineMUL(N, DCI); 14625 case ISD::FMA: 14626 case PPCISD::FNMSUB: 14627 return combineFMALike(N, DCI); 14628 case PPCISD::SHL: 14629 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14630 return N->getOperand(0); 14631 break; 14632 case PPCISD::SRL: 14633 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14634 return N->getOperand(0); 14635 break; 14636 case PPCISD::SRA: 14637 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14638 if (C->isNullValue() || // 0 >>s V -> 0. 14639 C->isAllOnesValue()) // -1 >>s V -> -1. 14640 return N->getOperand(0); 14641 } 14642 break; 14643 case ISD::SIGN_EXTEND: 14644 case ISD::ZERO_EXTEND: 14645 case ISD::ANY_EXTEND: 14646 return DAGCombineExtBoolTrunc(N, DCI); 14647 case ISD::TRUNCATE: 14648 return combineTRUNCATE(N, DCI); 14649 case ISD::SETCC: 14650 if (SDValue CSCC = combineSetCC(N, DCI)) 14651 return CSCC; 14652 LLVM_FALLTHROUGH; 14653 case ISD::SELECT_CC: 14654 return DAGCombineTruncBoolExt(N, DCI); 14655 case ISD::SINT_TO_FP: 14656 case ISD::UINT_TO_FP: 14657 return combineFPToIntToFP(N, DCI); 14658 case ISD::VECTOR_SHUFFLE: 14659 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14660 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14661 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14662 } 14663 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14664 case ISD::STORE: { 14665 14666 EVT Op1VT = N->getOperand(1).getValueType(); 14667 unsigned Opcode = N->getOperand(1).getOpcode(); 14668 14669 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14670 SDValue Val= combineStoreFPToInt(N, DCI); 14671 if (Val) 14672 return Val; 14673 } 14674 14675 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14676 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14677 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14678 if (Val) 14679 return Val; 14680 } 14681 14682 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14683 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14684 N->getOperand(1).getNode()->hasOneUse() && 14685 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14686 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14687 14688 // STBRX can only handle simple types and it makes no sense to store less 14689 // two bytes in byte-reversed order. 14690 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14691 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14692 break; 14693 14694 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14695 // Do an any-extend to 32-bits if this is a half-word input. 14696 if (BSwapOp.getValueType() == MVT::i16) 14697 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14698 14699 // If the type of BSWAP operand is wider than stored memory width 14700 // it need to be shifted to the right side before STBRX. 14701 if (Op1VT.bitsGT(mVT)) { 14702 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14703 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14704 DAG.getConstant(Shift, dl, MVT::i32)); 14705 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14706 if (Op1VT == MVT::i64) 14707 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14708 } 14709 14710 SDValue Ops[] = { 14711 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14712 }; 14713 return 14714 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14715 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14716 cast<StoreSDNode>(N)->getMemOperand()); 14717 } 14718 14719 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14720 // So it can increase the chance of CSE constant construction. 14721 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14722 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14723 // Need to sign-extended to 64-bits to handle negative values. 14724 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14725 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14726 MemVT.getSizeInBits()); 14727 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14728 14729 // DAG.getTruncStore() can't be used here because it doesn't accept 14730 // the general (base + offset) addressing mode. 14731 // So we use UpdateNodeOperands and setTruncatingStore instead. 14732 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14733 N->getOperand(3)); 14734 cast<StoreSDNode>(N)->setTruncatingStore(true); 14735 return SDValue(N, 0); 14736 } 14737 14738 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14739 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14740 if (Op1VT.isSimple()) { 14741 MVT StoreVT = Op1VT.getSimpleVT(); 14742 if (Subtarget.needsSwapsForVSXMemOps() && 14743 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14744 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14745 return expandVSXStoreForLE(N, DCI); 14746 } 14747 break; 14748 } 14749 case ISD::LOAD: { 14750 LoadSDNode *LD = cast<LoadSDNode>(N); 14751 EVT VT = LD->getValueType(0); 14752 14753 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14754 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14755 if (VT.isSimple()) { 14756 MVT LoadVT = VT.getSimpleVT(); 14757 if (Subtarget.needsSwapsForVSXMemOps() && 14758 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14759 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14760 return expandVSXLoadForLE(N, DCI); 14761 } 14762 14763 // We sometimes end up with a 64-bit integer load, from which we extract 14764 // two single-precision floating-point numbers. This happens with 14765 // std::complex<float>, and other similar structures, because of the way we 14766 // canonicalize structure copies. However, if we lack direct moves, 14767 // then the final bitcasts from the extracted integer values to the 14768 // floating-point numbers turn into store/load pairs. Even with direct moves, 14769 // just loading the two floating-point numbers is likely better. 14770 auto ReplaceTwoFloatLoad = [&]() { 14771 if (VT != MVT::i64) 14772 return false; 14773 14774 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14775 LD->isVolatile()) 14776 return false; 14777 14778 // We're looking for a sequence like this: 14779 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14780 // t16: i64 = srl t13, Constant:i32<32> 14781 // t17: i32 = truncate t16 14782 // t18: f32 = bitcast t17 14783 // t19: i32 = truncate t13 14784 // t20: f32 = bitcast t19 14785 14786 if (!LD->hasNUsesOfValue(2, 0)) 14787 return false; 14788 14789 auto UI = LD->use_begin(); 14790 while (UI.getUse().getResNo() != 0) ++UI; 14791 SDNode *Trunc = *UI++; 14792 while (UI.getUse().getResNo() != 0) ++UI; 14793 SDNode *RightShift = *UI; 14794 if (Trunc->getOpcode() != ISD::TRUNCATE) 14795 std::swap(Trunc, RightShift); 14796 14797 if (Trunc->getOpcode() != ISD::TRUNCATE || 14798 Trunc->getValueType(0) != MVT::i32 || 14799 !Trunc->hasOneUse()) 14800 return false; 14801 if (RightShift->getOpcode() != ISD::SRL || 14802 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14803 RightShift->getConstantOperandVal(1) != 32 || 14804 !RightShift->hasOneUse()) 14805 return false; 14806 14807 SDNode *Trunc2 = *RightShift->use_begin(); 14808 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14809 Trunc2->getValueType(0) != MVT::i32 || 14810 !Trunc2->hasOneUse()) 14811 return false; 14812 14813 SDNode *Bitcast = *Trunc->use_begin(); 14814 SDNode *Bitcast2 = *Trunc2->use_begin(); 14815 14816 if (Bitcast->getOpcode() != ISD::BITCAST || 14817 Bitcast->getValueType(0) != MVT::f32) 14818 return false; 14819 if (Bitcast2->getOpcode() != ISD::BITCAST || 14820 Bitcast2->getValueType(0) != MVT::f32) 14821 return false; 14822 14823 if (Subtarget.isLittleEndian()) 14824 std::swap(Bitcast, Bitcast2); 14825 14826 // Bitcast has the second float (in memory-layout order) and Bitcast2 14827 // has the first one. 14828 14829 SDValue BasePtr = LD->getBasePtr(); 14830 if (LD->isIndexed()) { 14831 assert(LD->getAddressingMode() == ISD::PRE_INC && 14832 "Non-pre-inc AM on PPC?"); 14833 BasePtr = 14834 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14835 LD->getOffset()); 14836 } 14837 14838 auto MMOFlags = 14839 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14840 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14841 LD->getPointerInfo(), LD->getAlignment(), 14842 MMOFlags, LD->getAAInfo()); 14843 SDValue AddPtr = 14844 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14845 BasePtr, DAG.getIntPtrConstant(4, dl)); 14846 SDValue FloatLoad2 = DAG.getLoad( 14847 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14848 LD->getPointerInfo().getWithOffset(4), 14849 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14850 14851 if (LD->isIndexed()) { 14852 // Note that DAGCombine should re-form any pre-increment load(s) from 14853 // what is produced here if that makes sense. 14854 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14855 } 14856 14857 DCI.CombineTo(Bitcast2, FloatLoad); 14858 DCI.CombineTo(Bitcast, FloatLoad2); 14859 14860 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14861 SDValue(FloatLoad2.getNode(), 1)); 14862 return true; 14863 }; 14864 14865 if (ReplaceTwoFloatLoad()) 14866 return SDValue(N, 0); 14867 14868 EVT MemVT = LD->getMemoryVT(); 14869 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14870 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14871 if (LD->isUnindexed() && VT.isVector() && 14872 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14873 // P8 and later hardware should just use LOAD. 14874 !Subtarget.hasP8Vector() && 14875 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14876 VT == MVT::v4f32))) && 14877 LD->getAlign() < ABIAlignment) { 14878 // This is a type-legal unaligned Altivec load. 14879 SDValue Chain = LD->getChain(); 14880 SDValue Ptr = LD->getBasePtr(); 14881 bool isLittleEndian = Subtarget.isLittleEndian(); 14882 14883 // This implements the loading of unaligned vectors as described in 14884 // the venerable Apple Velocity Engine overview. Specifically: 14885 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14886 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14887 // 14888 // The general idea is to expand a sequence of one or more unaligned 14889 // loads into an alignment-based permutation-control instruction (lvsl 14890 // or lvsr), a series of regular vector loads (which always truncate 14891 // their input address to an aligned address), and a series of 14892 // permutations. The results of these permutations are the requested 14893 // loaded values. The trick is that the last "extra" load is not taken 14894 // from the address you might suspect (sizeof(vector) bytes after the 14895 // last requested load), but rather sizeof(vector) - 1 bytes after the 14896 // last requested vector. The point of this is to avoid a page fault if 14897 // the base address happened to be aligned. This works because if the 14898 // base address is aligned, then adding less than a full vector length 14899 // will cause the last vector in the sequence to be (re)loaded. 14900 // Otherwise, the next vector will be fetched as you might suspect was 14901 // necessary. 14902 14903 // We might be able to reuse the permutation generation from 14904 // a different base address offset from this one by an aligned amount. 14905 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14906 // optimization later. 14907 Intrinsic::ID Intr, IntrLD, IntrPerm; 14908 MVT PermCntlTy, PermTy, LDTy; 14909 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14910 : Intrinsic::ppc_altivec_lvsl; 14911 IntrLD = Intrinsic::ppc_altivec_lvx; 14912 IntrPerm = Intrinsic::ppc_altivec_vperm; 14913 PermCntlTy = MVT::v16i8; 14914 PermTy = MVT::v4i32; 14915 LDTy = MVT::v4i32; 14916 14917 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14918 14919 // Create the new MMO for the new base load. It is like the original MMO, 14920 // but represents an area in memory almost twice the vector size centered 14921 // on the original address. If the address is unaligned, we might start 14922 // reading up to (sizeof(vector)-1) bytes below the address of the 14923 // original unaligned load. 14924 MachineFunction &MF = DAG.getMachineFunction(); 14925 MachineMemOperand *BaseMMO = 14926 MF.getMachineMemOperand(LD->getMemOperand(), 14927 -(long)MemVT.getStoreSize()+1, 14928 2*MemVT.getStoreSize()-1); 14929 14930 // Create the new base load. 14931 SDValue LDXIntID = 14932 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14933 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14934 SDValue BaseLoad = 14935 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14936 DAG.getVTList(PermTy, MVT::Other), 14937 BaseLoadOps, LDTy, BaseMMO); 14938 14939 // Note that the value of IncOffset (which is provided to the next 14940 // load's pointer info offset value, and thus used to calculate the 14941 // alignment), and the value of IncValue (which is actually used to 14942 // increment the pointer value) are different! This is because we 14943 // require the next load to appear to be aligned, even though it 14944 // is actually offset from the base pointer by a lesser amount. 14945 int IncOffset = VT.getSizeInBits() / 8; 14946 int IncValue = IncOffset; 14947 14948 // Walk (both up and down) the chain looking for another load at the real 14949 // (aligned) offset (the alignment of the other load does not matter in 14950 // this case). If found, then do not use the offset reduction trick, as 14951 // that will prevent the loads from being later combined (as they would 14952 // otherwise be duplicates). 14953 if (!findConsecutiveLoad(LD, DAG)) 14954 --IncValue; 14955 14956 SDValue Increment = 14957 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14958 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14959 14960 MachineMemOperand *ExtraMMO = 14961 MF.getMachineMemOperand(LD->getMemOperand(), 14962 1, 2*MemVT.getStoreSize()-1); 14963 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14964 SDValue ExtraLoad = 14965 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14966 DAG.getVTList(PermTy, MVT::Other), 14967 ExtraLoadOps, LDTy, ExtraMMO); 14968 14969 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14970 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14971 14972 // Because vperm has a big-endian bias, we must reverse the order 14973 // of the input vectors and complement the permute control vector 14974 // when generating little endian code. We have already handled the 14975 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14976 // and ExtraLoad here. 14977 SDValue Perm; 14978 if (isLittleEndian) 14979 Perm = BuildIntrinsicOp(IntrPerm, 14980 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14981 else 14982 Perm = BuildIntrinsicOp(IntrPerm, 14983 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14984 14985 if (VT != PermTy) 14986 Perm = Subtarget.hasAltivec() 14987 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14988 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14989 DAG.getTargetConstant(1, dl, MVT::i64)); 14990 // second argument is 1 because this rounding 14991 // is always exact. 14992 14993 // The output of the permutation is our loaded result, the TokenFactor is 14994 // our new chain. 14995 DCI.CombineTo(N, Perm, TF); 14996 return SDValue(N, 0); 14997 } 14998 } 14999 break; 15000 case ISD::INTRINSIC_WO_CHAIN: { 15001 bool isLittleEndian = Subtarget.isLittleEndian(); 15002 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15003 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15004 : Intrinsic::ppc_altivec_lvsl); 15005 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15006 SDValue Add = N->getOperand(1); 15007 15008 int Bits = 4 /* 16 byte alignment */; 15009 15010 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15011 APInt::getAllOnesValue(Bits /* alignment */) 15012 .zext(Add.getScalarValueSizeInBits()))) { 15013 SDNode *BasePtr = Add->getOperand(0).getNode(); 15014 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15015 UE = BasePtr->use_end(); 15016 UI != UE; ++UI) { 15017 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15018 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15019 IID) { 15020 // We've found another LVSL/LVSR, and this address is an aligned 15021 // multiple of that one. The results will be the same, so use the 15022 // one we've just found instead. 15023 15024 return SDValue(*UI, 0); 15025 } 15026 } 15027 } 15028 15029 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15030 SDNode *BasePtr = Add->getOperand(0).getNode(); 15031 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15032 UE = BasePtr->use_end(); UI != UE; ++UI) { 15033 if (UI->getOpcode() == ISD::ADD && 15034 isa<ConstantSDNode>(UI->getOperand(1)) && 15035 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15036 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15037 (1ULL << Bits) == 0) { 15038 SDNode *OtherAdd = *UI; 15039 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15040 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15041 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15042 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15043 return SDValue(*VI, 0); 15044 } 15045 } 15046 } 15047 } 15048 } 15049 } 15050 15051 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15052 // Expose the vabsduw/h/b opportunity for down stream 15053 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15054 (IID == Intrinsic::ppc_altivec_vmaxsw || 15055 IID == Intrinsic::ppc_altivec_vmaxsh || 15056 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15057 SDValue V1 = N->getOperand(1); 15058 SDValue V2 = N->getOperand(2); 15059 if ((V1.getSimpleValueType() == MVT::v4i32 || 15060 V1.getSimpleValueType() == MVT::v8i16 || 15061 V1.getSimpleValueType() == MVT::v16i8) && 15062 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15063 // (0-a, a) 15064 if (V1.getOpcode() == ISD::SUB && 15065 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15066 V1.getOperand(1) == V2) { 15067 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15068 } 15069 // (a, 0-a) 15070 if (V2.getOpcode() == ISD::SUB && 15071 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15072 V2.getOperand(1) == V1) { 15073 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15074 } 15075 // (x-y, y-x) 15076 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15077 V1.getOperand(0) == V2.getOperand(1) && 15078 V1.getOperand(1) == V2.getOperand(0)) { 15079 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15080 } 15081 } 15082 } 15083 } 15084 15085 break; 15086 case ISD::INTRINSIC_W_CHAIN: 15087 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15088 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15089 if (Subtarget.needsSwapsForVSXMemOps()) { 15090 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15091 default: 15092 break; 15093 case Intrinsic::ppc_vsx_lxvw4x: 15094 case Intrinsic::ppc_vsx_lxvd2x: 15095 return expandVSXLoadForLE(N, DCI); 15096 } 15097 } 15098 break; 15099 case ISD::INTRINSIC_VOID: 15100 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15101 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15102 if (Subtarget.needsSwapsForVSXMemOps()) { 15103 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15104 default: 15105 break; 15106 case Intrinsic::ppc_vsx_stxvw4x: 15107 case Intrinsic::ppc_vsx_stxvd2x: 15108 return expandVSXStoreForLE(N, DCI); 15109 } 15110 } 15111 break; 15112 case ISD::BSWAP: 15113 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15114 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15115 N->getOperand(0).hasOneUse() && 15116 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15117 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15118 N->getValueType(0) == MVT::i64))) { 15119 SDValue Load = N->getOperand(0); 15120 LoadSDNode *LD = cast<LoadSDNode>(Load); 15121 // Create the byte-swapping load. 15122 SDValue Ops[] = { 15123 LD->getChain(), // Chain 15124 LD->getBasePtr(), // Ptr 15125 DAG.getValueType(N->getValueType(0)) // VT 15126 }; 15127 SDValue BSLoad = 15128 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15129 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15130 MVT::i64 : MVT::i32, MVT::Other), 15131 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15132 15133 // If this is an i16 load, insert the truncate. 15134 SDValue ResVal = BSLoad; 15135 if (N->getValueType(0) == MVT::i16) 15136 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15137 15138 // First, combine the bswap away. This makes the value produced by the 15139 // load dead. 15140 DCI.CombineTo(N, ResVal); 15141 15142 // Next, combine the load away, we give it a bogus result value but a real 15143 // chain result. The result value is dead because the bswap is dead. 15144 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15145 15146 // Return N so it doesn't get rechecked! 15147 return SDValue(N, 0); 15148 } 15149 break; 15150 case PPCISD::VCMP: 15151 // If a VCMP_rec node already exists with exactly the same operands as this 15152 // node, use its result instead of this node (VCMP_rec computes both a CR6 15153 // and a normal output). 15154 // 15155 if (!N->getOperand(0).hasOneUse() && 15156 !N->getOperand(1).hasOneUse() && 15157 !N->getOperand(2).hasOneUse()) { 15158 15159 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15160 SDNode *VCMPrecNode = nullptr; 15161 15162 SDNode *LHSN = N->getOperand(0).getNode(); 15163 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15164 UI != E; ++UI) 15165 if (UI->getOpcode() == PPCISD::VCMP_rec && 15166 UI->getOperand(1) == N->getOperand(1) && 15167 UI->getOperand(2) == N->getOperand(2) && 15168 UI->getOperand(0) == N->getOperand(0)) { 15169 VCMPrecNode = *UI; 15170 break; 15171 } 15172 15173 // If there is no VCMP_rec node, or if the flag value has a single use, 15174 // don't transform this. 15175 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15176 break; 15177 15178 // Look at the (necessarily single) use of the flag value. If it has a 15179 // chain, this transformation is more complex. Note that multiple things 15180 // could use the value result, which we should ignore. 15181 SDNode *FlagUser = nullptr; 15182 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15183 FlagUser == nullptr; ++UI) { 15184 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15185 SDNode *User = *UI; 15186 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15187 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15188 FlagUser = User; 15189 break; 15190 } 15191 } 15192 } 15193 15194 // If the user is a MFOCRF instruction, we know this is safe. 15195 // Otherwise we give up for right now. 15196 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15197 return SDValue(VCMPrecNode, 0); 15198 } 15199 break; 15200 case ISD::BRCOND: { 15201 SDValue Cond = N->getOperand(1); 15202 SDValue Target = N->getOperand(2); 15203 15204 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15205 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15206 Intrinsic::loop_decrement) { 15207 15208 // We now need to make the intrinsic dead (it cannot be instruction 15209 // selected). 15210 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15211 assert(Cond.getNode()->hasOneUse() && 15212 "Counter decrement has more than one use"); 15213 15214 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15215 N->getOperand(0), Target); 15216 } 15217 } 15218 break; 15219 case ISD::BR_CC: { 15220 // If this is a branch on an altivec predicate comparison, lower this so 15221 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15222 // lowering is done pre-legalize, because the legalizer lowers the predicate 15223 // compare down to code that is difficult to reassemble. 15224 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15225 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15226 15227 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15228 // value. If so, pass-through the AND to get to the intrinsic. 15229 if (LHS.getOpcode() == ISD::AND && 15230 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15231 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15232 Intrinsic::loop_decrement && 15233 isa<ConstantSDNode>(LHS.getOperand(1)) && 15234 !isNullConstant(LHS.getOperand(1))) 15235 LHS = LHS.getOperand(0); 15236 15237 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15238 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15239 Intrinsic::loop_decrement && 15240 isa<ConstantSDNode>(RHS)) { 15241 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15242 "Counter decrement comparison is not EQ or NE"); 15243 15244 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15245 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15246 (CC == ISD::SETNE && !Val); 15247 15248 // We now need to make the intrinsic dead (it cannot be instruction 15249 // selected). 15250 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15251 assert(LHS.getNode()->hasOneUse() && 15252 "Counter decrement has more than one use"); 15253 15254 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15255 N->getOperand(0), N->getOperand(4)); 15256 } 15257 15258 int CompareOpc; 15259 bool isDot; 15260 15261 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15262 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15263 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15264 assert(isDot && "Can't compare against a vector result!"); 15265 15266 // If this is a comparison against something other than 0/1, then we know 15267 // that the condition is never/always true. 15268 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15269 if (Val != 0 && Val != 1) { 15270 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15271 return N->getOperand(0); 15272 // Always !=, turn it into an unconditional branch. 15273 return DAG.getNode(ISD::BR, dl, MVT::Other, 15274 N->getOperand(0), N->getOperand(4)); 15275 } 15276 15277 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15278 15279 // Create the PPCISD altivec 'dot' comparison node. 15280 SDValue Ops[] = { 15281 LHS.getOperand(2), // LHS of compare 15282 LHS.getOperand(3), // RHS of compare 15283 DAG.getConstant(CompareOpc, dl, MVT::i32) 15284 }; 15285 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15286 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15287 15288 // Unpack the result based on how the target uses it. 15289 PPC::Predicate CompOpc; 15290 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15291 default: // Can't happen, don't crash on invalid number though. 15292 case 0: // Branch on the value of the EQ bit of CR6. 15293 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15294 break; 15295 case 1: // Branch on the inverted value of the EQ bit of CR6. 15296 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15297 break; 15298 case 2: // Branch on the value of the LT bit of CR6. 15299 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15300 break; 15301 case 3: // Branch on the inverted value of the LT bit of CR6. 15302 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15303 break; 15304 } 15305 15306 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15307 DAG.getConstant(CompOpc, dl, MVT::i32), 15308 DAG.getRegister(PPC::CR6, MVT::i32), 15309 N->getOperand(4), CompNode.getValue(1)); 15310 } 15311 break; 15312 } 15313 case ISD::BUILD_VECTOR: 15314 return DAGCombineBuildVector(N, DCI); 15315 case ISD::ABS: 15316 return combineABS(N, DCI); 15317 case ISD::VSELECT: 15318 return combineVSelect(N, DCI); 15319 } 15320 15321 return SDValue(); 15322 } 15323 15324 SDValue 15325 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15326 SelectionDAG &DAG, 15327 SmallVectorImpl<SDNode *> &Created) const { 15328 // fold (sdiv X, pow2) 15329 EVT VT = N->getValueType(0); 15330 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15331 return SDValue(); 15332 if ((VT != MVT::i32 && VT != MVT::i64) || 15333 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15334 return SDValue(); 15335 15336 SDLoc DL(N); 15337 SDValue N0 = N->getOperand(0); 15338 15339 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15340 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15341 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15342 15343 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15344 Created.push_back(Op.getNode()); 15345 15346 if (IsNegPow2) { 15347 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15348 Created.push_back(Op.getNode()); 15349 } 15350 15351 return Op; 15352 } 15353 15354 //===----------------------------------------------------------------------===// 15355 // Inline Assembly Support 15356 //===----------------------------------------------------------------------===// 15357 15358 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15359 KnownBits &Known, 15360 const APInt &DemandedElts, 15361 const SelectionDAG &DAG, 15362 unsigned Depth) const { 15363 Known.resetAll(); 15364 switch (Op.getOpcode()) { 15365 default: break; 15366 case PPCISD::LBRX: { 15367 // lhbrx is known to have the top bits cleared out. 15368 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15369 Known.Zero = 0xFFFF0000; 15370 break; 15371 } 15372 case ISD::INTRINSIC_WO_CHAIN: { 15373 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15374 default: break; 15375 case Intrinsic::ppc_altivec_vcmpbfp_p: 15376 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15377 case Intrinsic::ppc_altivec_vcmpequb_p: 15378 case Intrinsic::ppc_altivec_vcmpequh_p: 15379 case Intrinsic::ppc_altivec_vcmpequw_p: 15380 case Intrinsic::ppc_altivec_vcmpequd_p: 15381 case Intrinsic::ppc_altivec_vcmpequq_p: 15382 case Intrinsic::ppc_altivec_vcmpgefp_p: 15383 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15384 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15385 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15386 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15387 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15388 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15389 case Intrinsic::ppc_altivec_vcmpgtub_p: 15390 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15391 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15392 case Intrinsic::ppc_altivec_vcmpgtud_p: 15393 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15394 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15395 break; 15396 } 15397 } 15398 } 15399 } 15400 15401 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15402 switch (Subtarget.getCPUDirective()) { 15403 default: break; 15404 case PPC::DIR_970: 15405 case PPC::DIR_PWR4: 15406 case PPC::DIR_PWR5: 15407 case PPC::DIR_PWR5X: 15408 case PPC::DIR_PWR6: 15409 case PPC::DIR_PWR6X: 15410 case PPC::DIR_PWR7: 15411 case PPC::DIR_PWR8: 15412 case PPC::DIR_PWR9: 15413 case PPC::DIR_PWR10: 15414 case PPC::DIR_PWR_FUTURE: { 15415 if (!ML) 15416 break; 15417 15418 if (!DisableInnermostLoopAlign32) { 15419 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15420 // so that we can decrease cache misses and branch-prediction misses. 15421 // Actual alignment of the loop will depend on the hotness check and other 15422 // logic in alignBlocks. 15423 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15424 return Align(32); 15425 } 15426 15427 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15428 15429 // For small loops (between 5 and 8 instructions), align to a 32-byte 15430 // boundary so that the entire loop fits in one instruction-cache line. 15431 uint64_t LoopSize = 0; 15432 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15433 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15434 LoopSize += TII->getInstSizeInBytes(*J); 15435 if (LoopSize > 32) 15436 break; 15437 } 15438 15439 if (LoopSize > 16 && LoopSize <= 32) 15440 return Align(32); 15441 15442 break; 15443 } 15444 } 15445 15446 return TargetLowering::getPrefLoopAlignment(ML); 15447 } 15448 15449 /// getConstraintType - Given a constraint, return the type of 15450 /// constraint it is for this target. 15451 PPCTargetLowering::ConstraintType 15452 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15453 if (Constraint.size() == 1) { 15454 switch (Constraint[0]) { 15455 default: break; 15456 case 'b': 15457 case 'r': 15458 case 'f': 15459 case 'd': 15460 case 'v': 15461 case 'y': 15462 return C_RegisterClass; 15463 case 'Z': 15464 // FIXME: While Z does indicate a memory constraint, it specifically 15465 // indicates an r+r address (used in conjunction with the 'y' modifier 15466 // in the replacement string). Currently, we're forcing the base 15467 // register to be r0 in the asm printer (which is interpreted as zero) 15468 // and forming the complete address in the second register. This is 15469 // suboptimal. 15470 return C_Memory; 15471 } 15472 } else if (Constraint == "wc") { // individual CR bits. 15473 return C_RegisterClass; 15474 } else if (Constraint == "wa" || Constraint == "wd" || 15475 Constraint == "wf" || Constraint == "ws" || 15476 Constraint == "wi" || Constraint == "ww") { 15477 return C_RegisterClass; // VSX registers. 15478 } 15479 return TargetLowering::getConstraintType(Constraint); 15480 } 15481 15482 /// Examine constraint type and operand type and determine a weight value. 15483 /// This object must already have been set up with the operand type 15484 /// and the current alternative constraint selected. 15485 TargetLowering::ConstraintWeight 15486 PPCTargetLowering::getSingleConstraintMatchWeight( 15487 AsmOperandInfo &info, const char *constraint) const { 15488 ConstraintWeight weight = CW_Invalid; 15489 Value *CallOperandVal = info.CallOperandVal; 15490 // If we don't have a value, we can't do a match, 15491 // but allow it at the lowest weight. 15492 if (!CallOperandVal) 15493 return CW_Default; 15494 Type *type = CallOperandVal->getType(); 15495 15496 // Look at the constraint type. 15497 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15498 return CW_Register; // an individual CR bit. 15499 else if ((StringRef(constraint) == "wa" || 15500 StringRef(constraint) == "wd" || 15501 StringRef(constraint) == "wf") && 15502 type->isVectorTy()) 15503 return CW_Register; 15504 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15505 return CW_Register; // just hold 64-bit integers data. 15506 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15507 return CW_Register; 15508 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15509 return CW_Register; 15510 15511 switch (*constraint) { 15512 default: 15513 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15514 break; 15515 case 'b': 15516 if (type->isIntegerTy()) 15517 weight = CW_Register; 15518 break; 15519 case 'f': 15520 if (type->isFloatTy()) 15521 weight = CW_Register; 15522 break; 15523 case 'd': 15524 if (type->isDoubleTy()) 15525 weight = CW_Register; 15526 break; 15527 case 'v': 15528 if (type->isVectorTy()) 15529 weight = CW_Register; 15530 break; 15531 case 'y': 15532 weight = CW_Register; 15533 break; 15534 case 'Z': 15535 weight = CW_Memory; 15536 break; 15537 } 15538 return weight; 15539 } 15540 15541 std::pair<unsigned, const TargetRegisterClass *> 15542 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15543 StringRef Constraint, 15544 MVT VT) const { 15545 if (Constraint.size() == 1) { 15546 // GCC RS6000 Constraint Letters 15547 switch (Constraint[0]) { 15548 case 'b': // R1-R31 15549 if (VT == MVT::i64 && Subtarget.isPPC64()) 15550 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15551 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15552 case 'r': // R0-R31 15553 if (VT == MVT::i64 && Subtarget.isPPC64()) 15554 return std::make_pair(0U, &PPC::G8RCRegClass); 15555 return std::make_pair(0U, &PPC::GPRCRegClass); 15556 // 'd' and 'f' constraints are both defined to be "the floating point 15557 // registers", where one is for 32-bit and the other for 64-bit. We don't 15558 // really care overly much here so just give them all the same reg classes. 15559 case 'd': 15560 case 'f': 15561 if (Subtarget.hasSPE()) { 15562 if (VT == MVT::f32 || VT == MVT::i32) 15563 return std::make_pair(0U, &PPC::GPRCRegClass); 15564 if (VT == MVT::f64 || VT == MVT::i64) 15565 return std::make_pair(0U, &PPC::SPERCRegClass); 15566 } else { 15567 if (VT == MVT::f32 || VT == MVT::i32) 15568 return std::make_pair(0U, &PPC::F4RCRegClass); 15569 if (VT == MVT::f64 || VT == MVT::i64) 15570 return std::make_pair(0U, &PPC::F8RCRegClass); 15571 } 15572 break; 15573 case 'v': 15574 if (Subtarget.hasAltivec()) 15575 return std::make_pair(0U, &PPC::VRRCRegClass); 15576 break; 15577 case 'y': // crrc 15578 return std::make_pair(0U, &PPC::CRRCRegClass); 15579 } 15580 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15581 // An individual CR bit. 15582 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15583 } else if ((Constraint == "wa" || Constraint == "wd" || 15584 Constraint == "wf" || Constraint == "wi") && 15585 Subtarget.hasVSX()) { 15586 return std::make_pair(0U, &PPC::VSRCRegClass); 15587 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15588 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15589 return std::make_pair(0U, &PPC::VSSRCRegClass); 15590 else 15591 return std::make_pair(0U, &PPC::VSFRCRegClass); 15592 } 15593 15594 // If we name a VSX register, we can't defer to the base class because it 15595 // will not recognize the correct register (their names will be VSL{0-31} 15596 // and V{0-31} so they won't match). So we match them here. 15597 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15598 int VSNum = atoi(Constraint.data() + 3); 15599 assert(VSNum >= 0 && VSNum <= 63 && 15600 "Attempted to access a vsr out of range"); 15601 if (VSNum < 32) 15602 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15603 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15604 } 15605 std::pair<unsigned, const TargetRegisterClass *> R = 15606 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15607 15608 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15609 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15610 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15611 // register. 15612 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15613 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15614 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15615 PPC::GPRCRegClass.contains(R.first)) 15616 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15617 PPC::sub_32, &PPC::G8RCRegClass), 15618 &PPC::G8RCRegClass); 15619 15620 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15621 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15622 R.first = PPC::CR0; 15623 R.second = &PPC::CRRCRegClass; 15624 } 15625 15626 return R; 15627 } 15628 15629 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15630 /// vector. If it is invalid, don't add anything to Ops. 15631 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15632 std::string &Constraint, 15633 std::vector<SDValue>&Ops, 15634 SelectionDAG &DAG) const { 15635 SDValue Result; 15636 15637 // Only support length 1 constraints. 15638 if (Constraint.length() > 1) return; 15639 15640 char Letter = Constraint[0]; 15641 switch (Letter) { 15642 default: break; 15643 case 'I': 15644 case 'J': 15645 case 'K': 15646 case 'L': 15647 case 'M': 15648 case 'N': 15649 case 'O': 15650 case 'P': { 15651 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15652 if (!CST) return; // Must be an immediate to match. 15653 SDLoc dl(Op); 15654 int64_t Value = CST->getSExtValue(); 15655 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15656 // numbers are printed as such. 15657 switch (Letter) { 15658 default: llvm_unreachable("Unknown constraint letter!"); 15659 case 'I': // "I" is a signed 16-bit constant. 15660 if (isInt<16>(Value)) 15661 Result = DAG.getTargetConstant(Value, dl, TCVT); 15662 break; 15663 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15664 if (isShiftedUInt<16, 16>(Value)) 15665 Result = DAG.getTargetConstant(Value, dl, TCVT); 15666 break; 15667 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15668 if (isShiftedInt<16, 16>(Value)) 15669 Result = DAG.getTargetConstant(Value, dl, TCVT); 15670 break; 15671 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15672 if (isUInt<16>(Value)) 15673 Result = DAG.getTargetConstant(Value, dl, TCVT); 15674 break; 15675 case 'M': // "M" is a constant that is greater than 31. 15676 if (Value > 31) 15677 Result = DAG.getTargetConstant(Value, dl, TCVT); 15678 break; 15679 case 'N': // "N" is a positive constant that is an exact power of two. 15680 if (Value > 0 && isPowerOf2_64(Value)) 15681 Result = DAG.getTargetConstant(Value, dl, TCVT); 15682 break; 15683 case 'O': // "O" is the constant zero. 15684 if (Value == 0) 15685 Result = DAG.getTargetConstant(Value, dl, TCVT); 15686 break; 15687 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15688 if (isInt<16>(-Value)) 15689 Result = DAG.getTargetConstant(Value, dl, TCVT); 15690 break; 15691 } 15692 break; 15693 } 15694 } 15695 15696 if (Result.getNode()) { 15697 Ops.push_back(Result); 15698 return; 15699 } 15700 15701 // Handle standard constraint letters. 15702 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15703 } 15704 15705 // isLegalAddressingMode - Return true if the addressing mode represented 15706 // by AM is legal for this target, for a load/store of the specified type. 15707 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15708 const AddrMode &AM, Type *Ty, 15709 unsigned AS, 15710 Instruction *I) const { 15711 // Vector type r+i form is supported since power9 as DQ form. We don't check 15712 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15713 // imm form is preferred and the offset can be adjusted to use imm form later 15714 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15715 // max offset to check legal addressing mode, we should be a little aggressive 15716 // to contain other offsets for that LSRUse. 15717 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15718 return false; 15719 15720 // PPC allows a sign-extended 16-bit immediate field. 15721 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15722 return false; 15723 15724 // No global is ever allowed as a base. 15725 if (AM.BaseGV) 15726 return false; 15727 15728 // PPC only support r+r, 15729 switch (AM.Scale) { 15730 case 0: // "r+i" or just "i", depending on HasBaseReg. 15731 break; 15732 case 1: 15733 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15734 return false; 15735 // Otherwise we have r+r or r+i. 15736 break; 15737 case 2: 15738 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15739 return false; 15740 // Allow 2*r as r+r. 15741 break; 15742 default: 15743 // No other scales are supported. 15744 return false; 15745 } 15746 15747 return true; 15748 } 15749 15750 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15751 SelectionDAG &DAG) const { 15752 MachineFunction &MF = DAG.getMachineFunction(); 15753 MachineFrameInfo &MFI = MF.getFrameInfo(); 15754 MFI.setReturnAddressIsTaken(true); 15755 15756 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15757 return SDValue(); 15758 15759 SDLoc dl(Op); 15760 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15761 15762 // Make sure the function does not optimize away the store of the RA to 15763 // the stack. 15764 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15765 FuncInfo->setLRStoreRequired(); 15766 bool isPPC64 = Subtarget.isPPC64(); 15767 auto PtrVT = getPointerTy(MF.getDataLayout()); 15768 15769 if (Depth > 0) { 15770 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15771 SDValue Offset = 15772 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15773 isPPC64 ? MVT::i64 : MVT::i32); 15774 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15775 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15776 MachinePointerInfo()); 15777 } 15778 15779 // Just load the return address off the stack. 15780 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15781 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15782 MachinePointerInfo()); 15783 } 15784 15785 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15786 SelectionDAG &DAG) const { 15787 SDLoc dl(Op); 15788 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15789 15790 MachineFunction &MF = DAG.getMachineFunction(); 15791 MachineFrameInfo &MFI = MF.getFrameInfo(); 15792 MFI.setFrameAddressIsTaken(true); 15793 15794 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15795 bool isPPC64 = PtrVT == MVT::i64; 15796 15797 // Naked functions never have a frame pointer, and so we use r1. For all 15798 // other functions, this decision must be delayed until during PEI. 15799 unsigned FrameReg; 15800 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15801 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15802 else 15803 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15804 15805 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15806 PtrVT); 15807 while (Depth--) 15808 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15809 FrameAddr, MachinePointerInfo()); 15810 return FrameAddr; 15811 } 15812 15813 // FIXME? Maybe this could be a TableGen attribute on some registers and 15814 // this table could be generated automatically from RegInfo. 15815 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15816 const MachineFunction &MF) const { 15817 bool isPPC64 = Subtarget.isPPC64(); 15818 15819 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15820 if (!is64Bit && VT != LLT::scalar(32)) 15821 report_fatal_error("Invalid register global variable type"); 15822 15823 Register Reg = StringSwitch<Register>(RegName) 15824 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15825 .Case("r2", isPPC64 ? Register() : PPC::R2) 15826 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15827 .Default(Register()); 15828 15829 if (Reg) 15830 return Reg; 15831 report_fatal_error("Invalid register name global variable"); 15832 } 15833 15834 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15835 // 32-bit SVR4 ABI access everything as got-indirect. 15836 if (Subtarget.is32BitELFABI()) 15837 return true; 15838 15839 // AIX accesses everything indirectly through the TOC, which is similar to 15840 // the GOT. 15841 if (Subtarget.isAIXABI()) 15842 return true; 15843 15844 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15845 // If it is small or large code model, module locals are accessed 15846 // indirectly by loading their address from .toc/.got. 15847 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15848 return true; 15849 15850 // JumpTable and BlockAddress are accessed as got-indirect. 15851 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15852 return true; 15853 15854 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15855 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15856 15857 return false; 15858 } 15859 15860 bool 15861 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15862 // The PowerPC target isn't yet aware of offsets. 15863 return false; 15864 } 15865 15866 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15867 const CallInst &I, 15868 MachineFunction &MF, 15869 unsigned Intrinsic) const { 15870 switch (Intrinsic) { 15871 case Intrinsic::ppc_altivec_lvx: 15872 case Intrinsic::ppc_altivec_lvxl: 15873 case Intrinsic::ppc_altivec_lvebx: 15874 case Intrinsic::ppc_altivec_lvehx: 15875 case Intrinsic::ppc_altivec_lvewx: 15876 case Intrinsic::ppc_vsx_lxvd2x: 15877 case Intrinsic::ppc_vsx_lxvw4x: 15878 case Intrinsic::ppc_vsx_lxvd2x_be: 15879 case Intrinsic::ppc_vsx_lxvw4x_be: 15880 case Intrinsic::ppc_vsx_lxvl: 15881 case Intrinsic::ppc_vsx_lxvll: { 15882 EVT VT; 15883 switch (Intrinsic) { 15884 case Intrinsic::ppc_altivec_lvebx: 15885 VT = MVT::i8; 15886 break; 15887 case Intrinsic::ppc_altivec_lvehx: 15888 VT = MVT::i16; 15889 break; 15890 case Intrinsic::ppc_altivec_lvewx: 15891 VT = MVT::i32; 15892 break; 15893 case Intrinsic::ppc_vsx_lxvd2x: 15894 case Intrinsic::ppc_vsx_lxvd2x_be: 15895 VT = MVT::v2f64; 15896 break; 15897 default: 15898 VT = MVT::v4i32; 15899 break; 15900 } 15901 15902 Info.opc = ISD::INTRINSIC_W_CHAIN; 15903 Info.memVT = VT; 15904 Info.ptrVal = I.getArgOperand(0); 15905 Info.offset = -VT.getStoreSize()+1; 15906 Info.size = 2*VT.getStoreSize()-1; 15907 Info.align = Align(1); 15908 Info.flags = MachineMemOperand::MOLoad; 15909 return true; 15910 } 15911 case Intrinsic::ppc_altivec_stvx: 15912 case Intrinsic::ppc_altivec_stvxl: 15913 case Intrinsic::ppc_altivec_stvebx: 15914 case Intrinsic::ppc_altivec_stvehx: 15915 case Intrinsic::ppc_altivec_stvewx: 15916 case Intrinsic::ppc_vsx_stxvd2x: 15917 case Intrinsic::ppc_vsx_stxvw4x: 15918 case Intrinsic::ppc_vsx_stxvd2x_be: 15919 case Intrinsic::ppc_vsx_stxvw4x_be: 15920 case Intrinsic::ppc_vsx_stxvl: 15921 case Intrinsic::ppc_vsx_stxvll: { 15922 EVT VT; 15923 switch (Intrinsic) { 15924 case Intrinsic::ppc_altivec_stvebx: 15925 VT = MVT::i8; 15926 break; 15927 case Intrinsic::ppc_altivec_stvehx: 15928 VT = MVT::i16; 15929 break; 15930 case Intrinsic::ppc_altivec_stvewx: 15931 VT = MVT::i32; 15932 break; 15933 case Intrinsic::ppc_vsx_stxvd2x: 15934 case Intrinsic::ppc_vsx_stxvd2x_be: 15935 VT = MVT::v2f64; 15936 break; 15937 default: 15938 VT = MVT::v4i32; 15939 break; 15940 } 15941 15942 Info.opc = ISD::INTRINSIC_VOID; 15943 Info.memVT = VT; 15944 Info.ptrVal = I.getArgOperand(1); 15945 Info.offset = -VT.getStoreSize()+1; 15946 Info.size = 2*VT.getStoreSize()-1; 15947 Info.align = Align(1); 15948 Info.flags = MachineMemOperand::MOStore; 15949 return true; 15950 } 15951 default: 15952 break; 15953 } 15954 15955 return false; 15956 } 15957 15958 /// It returns EVT::Other if the type should be determined using generic 15959 /// target-independent logic. 15960 EVT PPCTargetLowering::getOptimalMemOpType( 15961 const MemOp &Op, const AttributeList &FuncAttributes) const { 15962 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15963 // We should use Altivec/VSX loads and stores when available. For unaligned 15964 // addresses, unaligned VSX loads are only fast starting with the P8. 15965 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15966 (Op.isAligned(Align(16)) || 15967 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15968 return MVT::v4i32; 15969 } 15970 15971 if (Subtarget.isPPC64()) { 15972 return MVT::i64; 15973 } 15974 15975 return MVT::i32; 15976 } 15977 15978 /// Returns true if it is beneficial to convert a load of a constant 15979 /// to just the constant itself. 15980 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15981 Type *Ty) const { 15982 assert(Ty->isIntegerTy()); 15983 15984 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15985 return !(BitSize == 0 || BitSize > 64); 15986 } 15987 15988 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15989 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15990 return false; 15991 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15992 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15993 return NumBits1 == 64 && NumBits2 == 32; 15994 } 15995 15996 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15997 if (!VT1.isInteger() || !VT2.isInteger()) 15998 return false; 15999 unsigned NumBits1 = VT1.getSizeInBits(); 16000 unsigned NumBits2 = VT2.getSizeInBits(); 16001 return NumBits1 == 64 && NumBits2 == 32; 16002 } 16003 16004 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16005 // Generally speaking, zexts are not free, but they are free when they can be 16006 // folded with other operations. 16007 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16008 EVT MemVT = LD->getMemoryVT(); 16009 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16010 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16011 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16012 LD->getExtensionType() == ISD::ZEXTLOAD)) 16013 return true; 16014 } 16015 16016 // FIXME: Add other cases... 16017 // - 32-bit shifts with a zext to i64 16018 // - zext after ctlz, bswap, etc. 16019 // - zext after and by a constant mask 16020 16021 return TargetLowering::isZExtFree(Val, VT2); 16022 } 16023 16024 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16025 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16026 "invalid fpext types"); 16027 // Extending to float128 is not free. 16028 if (DestVT == MVT::f128) 16029 return false; 16030 return true; 16031 } 16032 16033 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16034 return isInt<16>(Imm) || isUInt<16>(Imm); 16035 } 16036 16037 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16038 return isInt<16>(Imm) || isUInt<16>(Imm); 16039 } 16040 16041 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16042 unsigned, 16043 unsigned, 16044 MachineMemOperand::Flags, 16045 bool *Fast) const { 16046 if (DisablePPCUnaligned) 16047 return false; 16048 16049 // PowerPC supports unaligned memory access for simple non-vector types. 16050 // Although accessing unaligned addresses is not as efficient as accessing 16051 // aligned addresses, it is generally more efficient than manual expansion, 16052 // and generally only traps for software emulation when crossing page 16053 // boundaries. 16054 16055 if (!VT.isSimple()) 16056 return false; 16057 16058 if (VT.isFloatingPoint() && !VT.isVector() && 16059 !Subtarget.allowsUnalignedFPAccess()) 16060 return false; 16061 16062 if (VT.getSimpleVT().isVector()) { 16063 if (Subtarget.hasVSX()) { 16064 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16065 VT != MVT::v4f32 && VT != MVT::v4i32) 16066 return false; 16067 } else { 16068 return false; 16069 } 16070 } 16071 16072 if (VT == MVT::ppcf128) 16073 return false; 16074 16075 if (Fast) 16076 *Fast = true; 16077 16078 return true; 16079 } 16080 16081 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16082 SDValue C) const { 16083 // Check integral scalar types. 16084 if (!VT.isScalarInteger()) 16085 return false; 16086 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16087 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16088 return false; 16089 // This transformation will generate >= 2 operations. But the following 16090 // cases will generate <= 2 instructions during ISEL. So exclude them. 16091 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16092 // HW instruction, ie. MULLI 16093 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16094 // instruction is needed than case 1, ie. MULLI and RLDICR 16095 int64_t Imm = ConstNode->getSExtValue(); 16096 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16097 Imm >>= Shift; 16098 if (isInt<16>(Imm)) 16099 return false; 16100 uint64_t UImm = static_cast<uint64_t>(Imm); 16101 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16102 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16103 return true; 16104 } 16105 return false; 16106 } 16107 16108 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16109 EVT VT) const { 16110 return isFMAFasterThanFMulAndFAdd( 16111 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16112 } 16113 16114 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16115 Type *Ty) const { 16116 switch (Ty->getScalarType()->getTypeID()) { 16117 case Type::FloatTyID: 16118 case Type::DoubleTyID: 16119 return true; 16120 case Type::FP128TyID: 16121 return Subtarget.hasP9Vector(); 16122 default: 16123 return false; 16124 } 16125 } 16126 16127 // FIXME: add more patterns which are not profitable to hoist. 16128 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16129 if (!I->hasOneUse()) 16130 return true; 16131 16132 Instruction *User = I->user_back(); 16133 assert(User && "A single use instruction with no uses."); 16134 16135 switch (I->getOpcode()) { 16136 case Instruction::FMul: { 16137 // Don't break FMA, PowerPC prefers FMA. 16138 if (User->getOpcode() != Instruction::FSub && 16139 User->getOpcode() != Instruction::FAdd) 16140 return true; 16141 16142 const TargetOptions &Options = getTargetMachine().Options; 16143 const Function *F = I->getFunction(); 16144 const DataLayout &DL = F->getParent()->getDataLayout(); 16145 Type *Ty = User->getOperand(0)->getType(); 16146 16147 return !( 16148 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16149 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16150 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16151 } 16152 case Instruction::Load: { 16153 // Don't break "store (load float*)" pattern, this pattern will be combined 16154 // to "store (load int32)" in later InstCombine pass. See function 16155 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16156 // cycles than loading a 32 bit integer. 16157 LoadInst *LI = cast<LoadInst>(I); 16158 // For the loads that combineLoadToOperationType does nothing, like 16159 // ordered load, it should be profitable to hoist them. 16160 // For swifterror load, it can only be used for pointer to pointer type, so 16161 // later type check should get rid of this case. 16162 if (!LI->isUnordered()) 16163 return true; 16164 16165 if (User->getOpcode() != Instruction::Store) 16166 return true; 16167 16168 if (I->getType()->getTypeID() != Type::FloatTyID) 16169 return true; 16170 16171 return false; 16172 } 16173 default: 16174 return true; 16175 } 16176 return true; 16177 } 16178 16179 const MCPhysReg * 16180 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16181 // LR is a callee-save register, but we must treat it as clobbered by any call 16182 // site. Hence we include LR in the scratch registers, which are in turn added 16183 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16184 // to CTR, which is used by any indirect call. 16185 static const MCPhysReg ScratchRegs[] = { 16186 PPC::X12, PPC::LR8, PPC::CTR8, 0 16187 }; 16188 16189 return ScratchRegs; 16190 } 16191 16192 Register PPCTargetLowering::getExceptionPointerRegister( 16193 const Constant *PersonalityFn) const { 16194 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16195 } 16196 16197 Register PPCTargetLowering::getExceptionSelectorRegister( 16198 const Constant *PersonalityFn) const { 16199 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16200 } 16201 16202 bool 16203 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16204 EVT VT , unsigned DefinedValues) const { 16205 if (VT == MVT::v2i64) 16206 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16207 16208 if (Subtarget.hasVSX()) 16209 return true; 16210 16211 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16212 } 16213 16214 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16215 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16216 return TargetLowering::getSchedulingPreference(N); 16217 16218 return Sched::ILP; 16219 } 16220 16221 // Create a fast isel object. 16222 FastISel * 16223 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16224 const TargetLibraryInfo *LibInfo) const { 16225 return PPC::createFastISel(FuncInfo, LibInfo); 16226 } 16227 16228 // 'Inverted' means the FMA opcode after negating one multiplicand. 16229 // For example, (fma -a b c) = (fnmsub a b c) 16230 static unsigned invertFMAOpcode(unsigned Opc) { 16231 switch (Opc) { 16232 default: 16233 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16234 case ISD::FMA: 16235 return PPCISD::FNMSUB; 16236 case PPCISD::FNMSUB: 16237 return ISD::FMA; 16238 } 16239 } 16240 16241 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16242 bool LegalOps, bool OptForSize, 16243 NegatibleCost &Cost, 16244 unsigned Depth) const { 16245 if (Depth > SelectionDAG::MaxRecursionDepth) 16246 return SDValue(); 16247 16248 unsigned Opc = Op.getOpcode(); 16249 EVT VT = Op.getValueType(); 16250 SDNodeFlags Flags = Op.getNode()->getFlags(); 16251 16252 switch (Opc) { 16253 case PPCISD::FNMSUB: 16254 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16255 break; 16256 16257 const TargetOptions &Options = getTargetMachine().Options; 16258 SDValue N0 = Op.getOperand(0); 16259 SDValue N1 = Op.getOperand(1); 16260 SDValue N2 = Op.getOperand(2); 16261 SDLoc Loc(Op); 16262 16263 NegatibleCost N2Cost = NegatibleCost::Expensive; 16264 SDValue NegN2 = 16265 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16266 16267 if (!NegN2) 16268 return SDValue(); 16269 16270 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16271 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16272 // These transformations may change sign of zeroes. For example, 16273 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16274 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16275 // Try and choose the cheaper one to negate. 16276 NegatibleCost N0Cost = NegatibleCost::Expensive; 16277 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16278 N0Cost, Depth + 1); 16279 16280 NegatibleCost N1Cost = NegatibleCost::Expensive; 16281 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16282 N1Cost, Depth + 1); 16283 16284 if (NegN0 && N0Cost <= N1Cost) { 16285 Cost = std::min(N0Cost, N2Cost); 16286 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16287 } else if (NegN1) { 16288 Cost = std::min(N1Cost, N2Cost); 16289 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16290 } 16291 } 16292 16293 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16294 if (isOperationLegal(ISD::FMA, VT)) { 16295 Cost = N2Cost; 16296 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16297 } 16298 16299 break; 16300 } 16301 16302 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16303 Cost, Depth); 16304 } 16305 16306 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16307 bool PPCTargetLowering::useLoadStackGuardNode() const { 16308 if (!Subtarget.isTargetLinux()) 16309 return TargetLowering::useLoadStackGuardNode(); 16310 return true; 16311 } 16312 16313 // Override to disable global variable loading on Linux. 16314 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16315 if (!Subtarget.isTargetLinux()) 16316 return TargetLowering::insertSSPDeclarations(M); 16317 } 16318 16319 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16320 bool ForCodeSize) const { 16321 if (!VT.isSimple() || !Subtarget.hasVSX()) 16322 return false; 16323 16324 switch(VT.getSimpleVT().SimpleTy) { 16325 default: 16326 // For FP types that are currently not supported by PPC backend, return 16327 // false. Examples: f16, f80. 16328 return false; 16329 case MVT::f32: 16330 case MVT::f64: 16331 if (Subtarget.hasPrefixInstrs()) { 16332 // With prefixed instructions, we can materialize anything that can be 16333 // represented with a 32-bit immediate, not just positive zero. 16334 APFloat APFloatOfImm = Imm; 16335 return convertToNonDenormSingle(APFloatOfImm); 16336 } 16337 LLVM_FALLTHROUGH; 16338 case MVT::ppcf128: 16339 return Imm.isPosZero(); 16340 } 16341 } 16342 16343 // For vector shift operation op, fold 16344 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16345 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16346 SelectionDAG &DAG) { 16347 SDValue N0 = N->getOperand(0); 16348 SDValue N1 = N->getOperand(1); 16349 EVT VT = N0.getValueType(); 16350 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16351 unsigned Opcode = N->getOpcode(); 16352 unsigned TargetOpcode; 16353 16354 switch (Opcode) { 16355 default: 16356 llvm_unreachable("Unexpected shift operation"); 16357 case ISD::SHL: 16358 TargetOpcode = PPCISD::SHL; 16359 break; 16360 case ISD::SRL: 16361 TargetOpcode = PPCISD::SRL; 16362 break; 16363 case ISD::SRA: 16364 TargetOpcode = PPCISD::SRA; 16365 break; 16366 } 16367 16368 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16369 N1->getOpcode() == ISD::AND) 16370 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16371 if (Mask->getZExtValue() == OpSizeInBits - 1) 16372 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16373 16374 return SDValue(); 16375 } 16376 16377 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16378 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16379 return Value; 16380 16381 SDValue N0 = N->getOperand(0); 16382 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16383 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16384 N0.getOpcode() != ISD::SIGN_EXTEND || 16385 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16386 N->getValueType(0) != MVT::i64) 16387 return SDValue(); 16388 16389 // We can't save an operation here if the value is already extended, and 16390 // the existing shift is easier to combine. 16391 SDValue ExtsSrc = N0.getOperand(0); 16392 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16393 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16394 return SDValue(); 16395 16396 SDLoc DL(N0); 16397 SDValue ShiftBy = SDValue(CN1, 0); 16398 // We want the shift amount to be i32 on the extswli, but the shift could 16399 // have an i64. 16400 if (ShiftBy.getValueType() == MVT::i64) 16401 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16402 16403 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16404 ShiftBy); 16405 } 16406 16407 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16408 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16409 return Value; 16410 16411 return SDValue(); 16412 } 16413 16414 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16415 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16416 return Value; 16417 16418 return SDValue(); 16419 } 16420 16421 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16422 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16423 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16424 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16425 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16426 const PPCSubtarget &Subtarget) { 16427 if (!Subtarget.isPPC64()) 16428 return SDValue(); 16429 16430 SDValue LHS = N->getOperand(0); 16431 SDValue RHS = N->getOperand(1); 16432 16433 auto isZextOfCompareWithConstant = [](SDValue Op) { 16434 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16435 Op.getValueType() != MVT::i64) 16436 return false; 16437 16438 SDValue Cmp = Op.getOperand(0); 16439 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16440 Cmp.getOperand(0).getValueType() != MVT::i64) 16441 return false; 16442 16443 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16444 int64_t NegConstant = 0 - Constant->getSExtValue(); 16445 // Due to the limitations of the addi instruction, 16446 // -C is required to be [-32768, 32767]. 16447 return isInt<16>(NegConstant); 16448 } 16449 16450 return false; 16451 }; 16452 16453 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16454 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16455 16456 // If there is a pattern, canonicalize a zext operand to the RHS. 16457 if (LHSHasPattern && !RHSHasPattern) 16458 std::swap(LHS, RHS); 16459 else if (!LHSHasPattern && !RHSHasPattern) 16460 return SDValue(); 16461 16462 SDLoc DL(N); 16463 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16464 SDValue Cmp = RHS.getOperand(0); 16465 SDValue Z = Cmp.getOperand(0); 16466 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16467 16468 assert(Constant && "Constant Should not be a null pointer."); 16469 int64_t NegConstant = 0 - Constant->getSExtValue(); 16470 16471 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16472 default: break; 16473 case ISD::SETNE: { 16474 // when C == 0 16475 // --> addze X, (addic Z, -1).carry 16476 // / 16477 // add X, (zext(setne Z, C))-- 16478 // \ when -32768 <= -C <= 32767 && C != 0 16479 // --> addze X, (addic (addi Z, -C), -1).carry 16480 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16481 DAG.getConstant(NegConstant, DL, MVT::i64)); 16482 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16483 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16484 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16485 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16486 SDValue(Addc.getNode(), 1)); 16487 } 16488 case ISD::SETEQ: { 16489 // when C == 0 16490 // --> addze X, (subfic Z, 0).carry 16491 // / 16492 // add X, (zext(sete Z, C))-- 16493 // \ when -32768 <= -C <= 32767 && C != 0 16494 // --> addze X, (subfic (addi Z, -C), 0).carry 16495 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16496 DAG.getConstant(NegConstant, DL, MVT::i64)); 16497 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16498 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16499 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16500 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16501 SDValue(Subc.getNode(), 1)); 16502 } 16503 } 16504 16505 return SDValue(); 16506 } 16507 16508 // Transform 16509 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16510 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16511 // In this case both C1 and C2 must be known constants. 16512 // C1+C2 must fit into a 34 bit signed integer. 16513 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16514 const PPCSubtarget &Subtarget) { 16515 if (!Subtarget.isUsingPCRelativeCalls()) 16516 return SDValue(); 16517 16518 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16519 // If we find that node try to cast the Global Address and the Constant. 16520 SDValue LHS = N->getOperand(0); 16521 SDValue RHS = N->getOperand(1); 16522 16523 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16524 std::swap(LHS, RHS); 16525 16526 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16527 return SDValue(); 16528 16529 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16530 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16531 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16532 16533 // Check that both casts succeeded. 16534 if (!GSDN || !ConstNode) 16535 return SDValue(); 16536 16537 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16538 SDLoc DL(GSDN); 16539 16540 // The signed int offset needs to fit in 34 bits. 16541 if (!isInt<34>(NewOffset)) 16542 return SDValue(); 16543 16544 // The new global address is a copy of the old global address except 16545 // that it has the updated Offset. 16546 SDValue GA = 16547 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16548 NewOffset, GSDN->getTargetFlags()); 16549 SDValue MatPCRel = 16550 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16551 return MatPCRel; 16552 } 16553 16554 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16555 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16556 return Value; 16557 16558 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16559 return Value; 16560 16561 return SDValue(); 16562 } 16563 16564 // Detect TRUNCATE operations on bitcasts of float128 values. 16565 // What we are looking for here is the situtation where we extract a subset 16566 // of bits from a 128 bit float. 16567 // This can be of two forms: 16568 // 1) BITCAST of f128 feeding TRUNCATE 16569 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16570 // The reason this is required is because we do not have a legal i128 type 16571 // and so we want to prevent having to store the f128 and then reload part 16572 // of it. 16573 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16574 DAGCombinerInfo &DCI) const { 16575 // If we are using CRBits then try that first. 16576 if (Subtarget.useCRBits()) { 16577 // Check if CRBits did anything and return that if it did. 16578 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16579 return CRTruncValue; 16580 } 16581 16582 SDLoc dl(N); 16583 SDValue Op0 = N->getOperand(0); 16584 16585 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16586 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16587 EVT VT = N->getValueType(0); 16588 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16589 return SDValue(); 16590 SDValue Sub = Op0.getOperand(0); 16591 if (Sub.getOpcode() == ISD::SUB) { 16592 SDValue SubOp0 = Sub.getOperand(0); 16593 SDValue SubOp1 = Sub.getOperand(1); 16594 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16595 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16596 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16597 SubOp1.getOperand(0), 16598 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16599 } 16600 } 16601 } 16602 16603 // Looking for a truncate of i128 to i64. 16604 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16605 return SDValue(); 16606 16607 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16608 16609 // SRL feeding TRUNCATE. 16610 if (Op0.getOpcode() == ISD::SRL) { 16611 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16612 // The right shift has to be by 64 bits. 16613 if (!ConstNode || ConstNode->getZExtValue() != 64) 16614 return SDValue(); 16615 16616 // Switch the element number to extract. 16617 EltToExtract = EltToExtract ? 0 : 1; 16618 // Update Op0 past the SRL. 16619 Op0 = Op0.getOperand(0); 16620 } 16621 16622 // BITCAST feeding a TRUNCATE possibly via SRL. 16623 if (Op0.getOpcode() == ISD::BITCAST && 16624 Op0.getValueType() == MVT::i128 && 16625 Op0.getOperand(0).getValueType() == MVT::f128) { 16626 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16627 return DCI.DAG.getNode( 16628 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16629 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16630 } 16631 return SDValue(); 16632 } 16633 16634 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16635 SelectionDAG &DAG = DCI.DAG; 16636 16637 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16638 if (!ConstOpOrElement) 16639 return SDValue(); 16640 16641 // An imul is usually smaller than the alternative sequence for legal type. 16642 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16643 isOperationLegal(ISD::MUL, N->getValueType(0))) 16644 return SDValue(); 16645 16646 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16647 switch (this->Subtarget.getCPUDirective()) { 16648 default: 16649 // TODO: enhance the condition for subtarget before pwr8 16650 return false; 16651 case PPC::DIR_PWR8: 16652 // type mul add shl 16653 // scalar 4 1 1 16654 // vector 7 2 2 16655 return true; 16656 case PPC::DIR_PWR9: 16657 case PPC::DIR_PWR10: 16658 case PPC::DIR_PWR_FUTURE: 16659 // type mul add shl 16660 // scalar 5 2 2 16661 // vector 7 2 2 16662 16663 // The cycle RATIO of related operations are showed as a table above. 16664 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16665 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16666 // are 4, it is always profitable; but for 3 instrs patterns 16667 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16668 // So we should only do it for vector type. 16669 return IsAddOne && IsNeg ? VT.isVector() : true; 16670 } 16671 }; 16672 16673 EVT VT = N->getValueType(0); 16674 SDLoc DL(N); 16675 16676 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16677 bool IsNeg = MulAmt.isNegative(); 16678 APInt MulAmtAbs = MulAmt.abs(); 16679 16680 if ((MulAmtAbs - 1).isPowerOf2()) { 16681 // (mul x, 2^N + 1) => (add (shl x, N), x) 16682 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16683 16684 if (!IsProfitable(IsNeg, true, VT)) 16685 return SDValue(); 16686 16687 SDValue Op0 = N->getOperand(0); 16688 SDValue Op1 = 16689 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16690 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16691 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16692 16693 if (!IsNeg) 16694 return Res; 16695 16696 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16697 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16698 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16699 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16700 16701 if (!IsProfitable(IsNeg, false, VT)) 16702 return SDValue(); 16703 16704 SDValue Op0 = N->getOperand(0); 16705 SDValue Op1 = 16706 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16707 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16708 16709 if (!IsNeg) 16710 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16711 else 16712 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16713 16714 } else { 16715 return SDValue(); 16716 } 16717 } 16718 16719 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16720 // in combiner since we need to check SD flags and other subtarget features. 16721 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16722 DAGCombinerInfo &DCI) const { 16723 SDValue N0 = N->getOperand(0); 16724 SDValue N1 = N->getOperand(1); 16725 SDValue N2 = N->getOperand(2); 16726 SDNodeFlags Flags = N->getFlags(); 16727 EVT VT = N->getValueType(0); 16728 SelectionDAG &DAG = DCI.DAG; 16729 const TargetOptions &Options = getTargetMachine().Options; 16730 unsigned Opc = N->getOpcode(); 16731 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16732 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16733 SDLoc Loc(N); 16734 16735 if (!isOperationLegal(ISD::FMA, VT)) 16736 return SDValue(); 16737 16738 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16739 // since (fnmsub a b c)=-0 while c-ab=+0. 16740 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16741 return SDValue(); 16742 16743 // (fma (fneg a) b c) => (fnmsub a b c) 16744 // (fnmsub (fneg a) b c) => (fma a b c) 16745 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16746 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16747 16748 // (fma a (fneg b) c) => (fnmsub a b c) 16749 // (fnmsub a (fneg b) c) => (fma a b c) 16750 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16751 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16752 16753 return SDValue(); 16754 } 16755 16756 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16757 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16758 if (!Subtarget.is64BitELFABI()) 16759 return false; 16760 16761 // If not a tail call then no need to proceed. 16762 if (!CI->isTailCall()) 16763 return false; 16764 16765 // If sibling calls have been disabled and tail-calls aren't guaranteed 16766 // there is no reason to duplicate. 16767 auto &TM = getTargetMachine(); 16768 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16769 return false; 16770 16771 // Can't tail call a function called indirectly, or if it has variadic args. 16772 const Function *Callee = CI->getCalledFunction(); 16773 if (!Callee || Callee->isVarArg()) 16774 return false; 16775 16776 // Make sure the callee and caller calling conventions are eligible for tco. 16777 const Function *Caller = CI->getParent()->getParent(); 16778 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16779 CI->getCallingConv())) 16780 return false; 16781 16782 // If the function is local then we have a good chance at tail-calling it 16783 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16784 } 16785 16786 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16787 if (!Subtarget.hasVSX()) 16788 return false; 16789 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16790 return true; 16791 return VT == MVT::f32 || VT == MVT::f64 || 16792 VT == MVT::v4f32 || VT == MVT::v2f64; 16793 } 16794 16795 bool PPCTargetLowering:: 16796 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16797 const Value *Mask = AndI.getOperand(1); 16798 // If the mask is suitable for andi. or andis. we should sink the and. 16799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16800 // Can't handle constants wider than 64-bits. 16801 if (CI->getBitWidth() > 64) 16802 return false; 16803 int64_t ConstVal = CI->getZExtValue(); 16804 return isUInt<16>(ConstVal) || 16805 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16806 } 16807 16808 // For non-constant masks, we can always use the record-form and. 16809 return true; 16810 } 16811 16812 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16813 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16814 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16815 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16816 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16817 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16818 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16819 assert(Subtarget.hasP9Altivec() && 16820 "Only combine this when P9 altivec supported!"); 16821 EVT VT = N->getValueType(0); 16822 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16823 return SDValue(); 16824 16825 SelectionDAG &DAG = DCI.DAG; 16826 SDLoc dl(N); 16827 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16828 // Even for signed integers, if it's known to be positive (as signed 16829 // integer) due to zero-extended inputs. 16830 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16831 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16832 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16833 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16834 (SubOpcd1 == ISD::ZERO_EXTEND || 16835 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16836 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16837 N->getOperand(0)->getOperand(0), 16838 N->getOperand(0)->getOperand(1), 16839 DAG.getTargetConstant(0, dl, MVT::i32)); 16840 } 16841 16842 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16843 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16844 N->getOperand(0).hasOneUse()) { 16845 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16846 N->getOperand(0)->getOperand(0), 16847 N->getOperand(0)->getOperand(1), 16848 DAG.getTargetConstant(1, dl, MVT::i32)); 16849 } 16850 } 16851 16852 return SDValue(); 16853 } 16854 16855 // For type v4i32/v8ii16/v16i8, transform 16856 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16857 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16858 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16859 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16860 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16861 DAGCombinerInfo &DCI) const { 16862 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16863 assert(Subtarget.hasP9Altivec() && 16864 "Only combine this when P9 altivec supported!"); 16865 16866 SelectionDAG &DAG = DCI.DAG; 16867 SDLoc dl(N); 16868 SDValue Cond = N->getOperand(0); 16869 SDValue TrueOpnd = N->getOperand(1); 16870 SDValue FalseOpnd = N->getOperand(2); 16871 EVT VT = N->getOperand(1).getValueType(); 16872 16873 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16874 FalseOpnd.getOpcode() != ISD::SUB) 16875 return SDValue(); 16876 16877 // ABSD only available for type v4i32/v8i16/v16i8 16878 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16879 return SDValue(); 16880 16881 // At least to save one more dependent computation 16882 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16883 return SDValue(); 16884 16885 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16886 16887 // Can only handle unsigned comparison here 16888 switch (CC) { 16889 default: 16890 return SDValue(); 16891 case ISD::SETUGT: 16892 case ISD::SETUGE: 16893 break; 16894 case ISD::SETULT: 16895 case ISD::SETULE: 16896 std::swap(TrueOpnd, FalseOpnd); 16897 break; 16898 } 16899 16900 SDValue CmpOpnd1 = Cond.getOperand(0); 16901 SDValue CmpOpnd2 = Cond.getOperand(1); 16902 16903 // SETCC CmpOpnd1 CmpOpnd2 cond 16904 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16905 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16906 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16907 TrueOpnd.getOperand(1) == CmpOpnd2 && 16908 FalseOpnd.getOperand(0) == CmpOpnd2 && 16909 FalseOpnd.getOperand(1) == CmpOpnd1) { 16910 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16911 CmpOpnd1, CmpOpnd2, 16912 DAG.getTargetConstant(0, dl, MVT::i32)); 16913 } 16914 16915 return SDValue(); 16916 } 16917