1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "ppc-lowering"
104 
105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
113 
114 static cl::opt<bool> DisableSCO("disable-ppc-sco",
115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
116 
117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
119 
120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
121 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
122 
123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
124 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
125 
126 STATISTIC(NumTailCalls, "Number of tail calls");
127 STATISTIC(NumSiblingCalls, "Number of sibling calls");
128 
129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
130 
131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
132 
133 // FIXME: Remove this once the bug has been fixed!
134 extern cl::opt<bool> ANDIGlueBug;
135 
136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
137                                      const PPCSubtarget &STI)
138     : TargetLowering(TM), Subtarget(STI) {
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   if (Subtarget.isISA3_0()) {
170     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
171     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
172     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
174   } else {
175     // No extending loads from f16 or HW conversions back and forth.
176     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
177     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
178     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
179     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
180     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
181     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
182     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
183     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
184   }
185 
186   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
187 
188   // PowerPC has pre-inc load and store's.
189   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
194   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
199   if (!Subtarget.hasSPE()) {
200     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
202     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
204   }
205 
206   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
207   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
208   for (MVT VT : ScalarIntVTs) {
209     setOperationAction(ISD::ADDC, VT, Legal);
210     setOperationAction(ISD::ADDE, VT, Legal);
211     setOperationAction(ISD::SUBC, VT, Legal);
212     setOperationAction(ISD::SUBE, VT, Legal);
213   }
214 
215   if (Subtarget.useCRBits()) {
216     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
217 
218     if (isPPC64 || Subtarget.hasFPCVT()) {
219       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
220       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
221                          isPPC64 ? MVT::i64 : MVT::i32);
222       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
223       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
224                         isPPC64 ? MVT::i64 : MVT::i32);
225     } else {
226       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
227       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
228     }
229 
230     // PowerPC does not support direct load/store of condition registers.
231     setOperationAction(ISD::LOAD, MVT::i1, Custom);
232     setOperationAction(ISD::STORE, MVT::i1, Custom);
233 
234     // FIXME: Remove this once the ANDI glue bug is fixed:
235     if (ANDIGlueBug)
236       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
237 
238     for (MVT VT : MVT::integer_valuetypes()) {
239       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
240       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
241       setTruncStoreAction(VT, MVT::i1, Expand);
242     }
243 
244     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
245   }
246 
247   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
248   // PPC (the libcall is not available).
249   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
250   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
251 
252   // We do not currently implement these libm ops for PowerPC.
253   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
254   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
255   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
256   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
257   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
258   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
259 
260   // PowerPC has no SREM/UREM instructions unless we are on P9
261   // On P9 we may use a hardware instruction to compute the remainder.
262   // The instructions are not legalized directly because in the cases where the
263   // result of both the remainder and the division is required it is more
264   // efficient to compute the remainder from the result of the division rather
265   // than use the remainder instruction.
266   if (Subtarget.isISA3_0()) {
267     setOperationAction(ISD::SREM, MVT::i32, Custom);
268     setOperationAction(ISD::UREM, MVT::i32, Custom);
269     setOperationAction(ISD::SREM, MVT::i64, Custom);
270     setOperationAction(ISD::UREM, MVT::i64, Custom);
271   } else {
272     setOperationAction(ISD::SREM, MVT::i32, Expand);
273     setOperationAction(ISD::UREM, MVT::i32, Expand);
274     setOperationAction(ISD::SREM, MVT::i64, Expand);
275     setOperationAction(ISD::UREM, MVT::i64, Expand);
276   }
277 
278   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
279   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
280   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
282   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
284   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
286   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
287 
288   // Handle constrained floating-point operations of scalar.
289   // TODO: Handle SPE specific operation.
290   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
291   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
294 
295   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
296   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
297   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
298   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
299 
300   // We don't support sin/cos/sqrt/fmod/pow
301   setOperationAction(ISD::FSIN , MVT::f64, Expand);
302   setOperationAction(ISD::FCOS , MVT::f64, Expand);
303   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
304   setOperationAction(ISD::FREM , MVT::f64, Expand);
305   setOperationAction(ISD::FPOW , MVT::f64, Expand);
306   setOperationAction(ISD::FSIN , MVT::f32, Expand);
307   setOperationAction(ISD::FCOS , MVT::f32, Expand);
308   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
309   setOperationAction(ISD::FREM , MVT::f32, Expand);
310   setOperationAction(ISD::FPOW , MVT::f32, Expand);
311   if (Subtarget.hasSPE()) {
312     setOperationAction(ISD::FMA  , MVT::f64, Expand);
313     setOperationAction(ISD::FMA  , MVT::f32, Expand);
314   } else {
315     setOperationAction(ISD::FMA  , MVT::f64, Legal);
316     setOperationAction(ISD::FMA  , MVT::f32, Legal);
317   }
318 
319   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
320 
321   // If we're enabling GP optimizations, use hardware square root
322   if (!Subtarget.hasFSQRT() &&
323       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
324         Subtarget.hasFRE()))
325     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
326 
327   if (!Subtarget.hasFSQRT() &&
328       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
329         Subtarget.hasFRES()))
330     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
331 
332   if (Subtarget.hasFCPSGN()) {
333     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
334     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
335   } else {
336     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
337     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
338   }
339 
340   if (Subtarget.hasFPRND()) {
341     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
342     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
343     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
344     setOperationAction(ISD::FROUND, MVT::f64, Legal);
345 
346     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
347     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
348     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
349     setOperationAction(ISD::FROUND, MVT::f32, Legal);
350   }
351 
352   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
353   // to speed up scalar BSWAP64.
354   // CTPOP or CTTZ were introduced in P8/P9 respectively
355   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
356   if (Subtarget.hasP9Vector())
357     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
358   else
359     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
360   if (Subtarget.isISA3_0()) {
361     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
362     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
363   } else {
364     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
365     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
366   }
367 
368   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
369     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
370     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
371   } else {
372     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
373     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
374   }
375 
376   // PowerPC does not have ROTR
377   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
378   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
379 
380   if (!Subtarget.useCRBits()) {
381     // PowerPC does not have Select
382     setOperationAction(ISD::SELECT, MVT::i32, Expand);
383     setOperationAction(ISD::SELECT, MVT::i64, Expand);
384     setOperationAction(ISD::SELECT, MVT::f32, Expand);
385     setOperationAction(ISD::SELECT, MVT::f64, Expand);
386   }
387 
388   // PowerPC wants to turn select_cc of FP into fsel when possible.
389   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
390   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
391 
392   // PowerPC wants to optimize integer setcc a bit
393   if (!Subtarget.useCRBits())
394     setOperationAction(ISD::SETCC, MVT::i32, Custom);
395 
396   // PowerPC does not have BRCOND which requires SetCC
397   if (!Subtarget.useCRBits())
398     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
399 
400   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
401 
402   if (Subtarget.hasSPE()) {
403     // SPE has built-in conversions
404     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
406     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
407   } else {
408     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
409     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
410 
411     // PowerPC does not have [U|S]INT_TO_FP
412     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
413     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
414   }
415 
416   if (Subtarget.hasDirectMove() && isPPC64) {
417     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
418     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
419     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
420     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
421     if (TM.Options.UnsafeFPMath) {
422       setOperationAction(ISD::LRINT, MVT::f64, Legal);
423       setOperationAction(ISD::LRINT, MVT::f32, Legal);
424       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
425       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
426       setOperationAction(ISD::LROUND, MVT::f64, Legal);
427       setOperationAction(ISD::LROUND, MVT::f32, Legal);
428       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
429       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
430     }
431   } else {
432     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
433     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
434     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
435     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
436   }
437 
438   // We cannot sextinreg(i1).  Expand to shifts.
439   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
440 
441   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
442   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
443   // support continuation, user-level threading, and etc.. As a result, no
444   // other SjLj exception interfaces are implemented and please don't build
445   // your own exception handling based on them.
446   // LLVM/Clang supports zero-cost DWARF exception handling.
447   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
448   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
449 
450   // We want to legalize GlobalAddress and ConstantPool nodes into the
451   // appropriate instructions to materialize the address.
452   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
453   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
454   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
455   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
456   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
457   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
458   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
459   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
460   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
461   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
462 
463   // TRAP is legal.
464   setOperationAction(ISD::TRAP, MVT::Other, Legal);
465 
466   // TRAMPOLINE is custom lowered.
467   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
468   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
469 
470   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
471   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
472 
473   if (Subtarget.is64BitELFABI()) {
474     // VAARG always uses double-word chunks, so promote anything smaller.
475     setOperationAction(ISD::VAARG, MVT::i1, Promote);
476     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
477     setOperationAction(ISD::VAARG, MVT::i8, Promote);
478     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
479     setOperationAction(ISD::VAARG, MVT::i16, Promote);
480     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
481     setOperationAction(ISD::VAARG, MVT::i32, Promote);
482     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
483     setOperationAction(ISD::VAARG, MVT::Other, Expand);
484   } else if (Subtarget.is32BitELFABI()) {
485     // VAARG is custom lowered with the 32-bit SVR4 ABI.
486     setOperationAction(ISD::VAARG, MVT::Other, Custom);
487     setOperationAction(ISD::VAARG, MVT::i64, Custom);
488   } else
489     setOperationAction(ISD::VAARG, MVT::Other, Expand);
490 
491   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
492   if (Subtarget.is32BitELFABI())
493     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
494   else
495     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
496 
497   // Use the default implementation.
498   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
499   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
500   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
501   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
502   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
503   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
504   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
505   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
506   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
507 
508   // We want to custom lower some of our intrinsics.
509   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
510 
511   // To handle counter-based loop conditions.
512   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
513 
514   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
515   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
516   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
517   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
518 
519   // Comparisons that require checking two conditions.
520   if (Subtarget.hasSPE()) {
521     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
522     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
523     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
524     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
525   }
526   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
527   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
528   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
529   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
530   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
531   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
532   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
533   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
534   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
535   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
536   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
537   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
538 
539   if (Subtarget.has64BitSupport()) {
540     // They also have instructions for converting between i64 and fp.
541     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
542     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
543     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
544     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
545     // This is just the low 32 bits of a (signed) fp->i64 conversion.
546     // We cannot do this with Promote because i64 is not a legal type.
547     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
548 
549     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
550       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
551   } else {
552     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
553     if (Subtarget.hasSPE())
554       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
555     else
556       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
557   }
558 
559   // With the instructions enabled under FPCVT, we can do everything.
560   if (Subtarget.hasFPCVT()) {
561     if (Subtarget.has64BitSupport()) {
562       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
563       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
564       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
565       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
566     }
567 
568     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
569     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
570     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
571     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
572   }
573 
574   if (Subtarget.use64BitRegs()) {
575     // 64-bit PowerPC implementations can support i64 types directly
576     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
577     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
578     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
579     // 64-bit PowerPC wants to expand i128 shifts itself.
580     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
581     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
582     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
583   } else {
584     // 32-bit PowerPC wants to expand i64 shifts itself.
585     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
586     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
587     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
588   }
589 
590   if (Subtarget.hasVSX()) {
591     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
592     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
593     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
594     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
595   }
596 
597   if (Subtarget.hasAltivec()) {
598     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
599       setOperationAction(ISD::SADDSAT, VT, Legal);
600       setOperationAction(ISD::SSUBSAT, VT, Legal);
601       setOperationAction(ISD::UADDSAT, VT, Legal);
602       setOperationAction(ISD::USUBSAT, VT, Legal);
603     }
604     // First set operation action for all vector types to expand. Then we
605     // will selectively turn on ones that can be effectively codegen'd.
606     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
607       // add/sub are legal for all supported vector VT's.
608       setOperationAction(ISD::ADD, VT, Legal);
609       setOperationAction(ISD::SUB, VT, Legal);
610 
611       // For v2i64, these are only valid with P8Vector. This is corrected after
612       // the loop.
613       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
614         setOperationAction(ISD::SMAX, VT, Legal);
615         setOperationAction(ISD::SMIN, VT, Legal);
616         setOperationAction(ISD::UMAX, VT, Legal);
617         setOperationAction(ISD::UMIN, VT, Legal);
618       }
619       else {
620         setOperationAction(ISD::SMAX, VT, Expand);
621         setOperationAction(ISD::SMIN, VT, Expand);
622         setOperationAction(ISD::UMAX, VT, Expand);
623         setOperationAction(ISD::UMIN, VT, Expand);
624       }
625 
626       if (Subtarget.hasVSX()) {
627         setOperationAction(ISD::FMAXNUM, VT, Legal);
628         setOperationAction(ISD::FMINNUM, VT, Legal);
629       }
630 
631       // Vector instructions introduced in P8
632       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
633         setOperationAction(ISD::CTPOP, VT, Legal);
634         setOperationAction(ISD::CTLZ, VT, Legal);
635       }
636       else {
637         setOperationAction(ISD::CTPOP, VT, Expand);
638         setOperationAction(ISD::CTLZ, VT, Expand);
639       }
640 
641       // Vector instructions introduced in P9
642       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
643         setOperationAction(ISD::CTTZ, VT, Legal);
644       else
645         setOperationAction(ISD::CTTZ, VT, Expand);
646 
647       // We promote all shuffles to v16i8.
648       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
649       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
650 
651       // We promote all non-typed operations to v4i32.
652       setOperationAction(ISD::AND   , VT, Promote);
653       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
654       setOperationAction(ISD::OR    , VT, Promote);
655       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
656       setOperationAction(ISD::XOR   , VT, Promote);
657       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
658       setOperationAction(ISD::LOAD  , VT, Promote);
659       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
660       setOperationAction(ISD::SELECT, VT, Promote);
661       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
662       setOperationAction(ISD::VSELECT, VT, Legal);
663       setOperationAction(ISD::SELECT_CC, VT, Promote);
664       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
665       setOperationAction(ISD::STORE, VT, Promote);
666       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
667 
668       // No other operations are legal.
669       setOperationAction(ISD::MUL , VT, Expand);
670       setOperationAction(ISD::SDIV, VT, Expand);
671       setOperationAction(ISD::SREM, VT, Expand);
672       setOperationAction(ISD::UDIV, VT, Expand);
673       setOperationAction(ISD::UREM, VT, Expand);
674       setOperationAction(ISD::FDIV, VT, Expand);
675       setOperationAction(ISD::FREM, VT, Expand);
676       setOperationAction(ISD::FNEG, VT, Expand);
677       setOperationAction(ISD::FSQRT, VT, Expand);
678       setOperationAction(ISD::FLOG, VT, Expand);
679       setOperationAction(ISD::FLOG10, VT, Expand);
680       setOperationAction(ISD::FLOG2, VT, Expand);
681       setOperationAction(ISD::FEXP, VT, Expand);
682       setOperationAction(ISD::FEXP2, VT, Expand);
683       setOperationAction(ISD::FSIN, VT, Expand);
684       setOperationAction(ISD::FCOS, VT, Expand);
685       setOperationAction(ISD::FABS, VT, Expand);
686       setOperationAction(ISD::FFLOOR, VT, Expand);
687       setOperationAction(ISD::FCEIL,  VT, Expand);
688       setOperationAction(ISD::FTRUNC, VT, Expand);
689       setOperationAction(ISD::FRINT,  VT, Expand);
690       setOperationAction(ISD::FNEARBYINT, VT, Expand);
691       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
692       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
693       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
694       setOperationAction(ISD::MULHU, VT, Expand);
695       setOperationAction(ISD::MULHS, VT, Expand);
696       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
697       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
698       setOperationAction(ISD::UDIVREM, VT, Expand);
699       setOperationAction(ISD::SDIVREM, VT, Expand);
700       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
701       setOperationAction(ISD::FPOW, VT, Expand);
702       setOperationAction(ISD::BSWAP, VT, Expand);
703       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
704       setOperationAction(ISD::ROTL, VT, Expand);
705       setOperationAction(ISD::ROTR, VT, Expand);
706 
707       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
708         setTruncStoreAction(VT, InnerVT, Expand);
709         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
710         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
711         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
712       }
713     }
714     if (!Subtarget.hasP8Vector()) {
715       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
716       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
717       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
718       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
719     }
720 
721     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
722       setOperationAction(ISD::ABS, VT, Custom);
723 
724     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
725     // with merges, splats, etc.
726     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
727 
728     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
729     // are cheap, so handle them before they get expanded to scalar.
730     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
731     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
732     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
733     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
734     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
735 
736     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
737     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
738     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
739     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
740     setOperationAction(ISD::SELECT, MVT::v4i32,
741                        Subtarget.useCRBits() ? Legal : Expand);
742     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
743     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
744     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
745     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
746     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
747     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
748     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
749     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
750     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
751 
752     // Without hasP8Altivec set, v2i64 SMAX isn't available.
753     // But ABS custom lowering requires SMAX support.
754     if (!Subtarget.hasP8Altivec())
755       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
756 
757     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
758     if (Subtarget.hasAltivec())
759       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
760         setOperationAction(ISD::ROTL, VT, Legal);
761     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
762     if (Subtarget.hasP8Altivec())
763       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
764 
765     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
766     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
767     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
768     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
769 
770     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
771     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
772 
773     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
774       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
775       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
776     }
777 
778     if (Subtarget.hasP8Altivec())
779       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
780     else
781       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
782 
783     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
784     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
785 
786     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
787     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
788 
789     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
790     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
791     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
792     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
793 
794     // Altivec does not contain unordered floating-point compare instructions
795     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
796     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
797     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
798     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
799 
800     if (Subtarget.hasVSX()) {
801       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
802       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
803       if (Subtarget.hasP8Vector()) {
804         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
805         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
806       }
807       if (Subtarget.hasDirectMove() && isPPC64) {
808         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
809         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
810         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
811         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
812         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
813         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
814         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
816       }
817       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
818 
819       // The nearbyint variants are not allowed to raise the inexact exception
820       // so we can only code-gen them with unsafe math.
821       if (TM.Options.UnsafeFPMath) {
822         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
823         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
824       }
825 
826       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
827       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
828       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
829       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
830       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
831       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
832       setOperationAction(ISD::FROUND, MVT::f64, Legal);
833       setOperationAction(ISD::FRINT, MVT::f64, Legal);
834 
835       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
836       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
837       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
838       setOperationAction(ISD::FROUND, MVT::f32, Legal);
839       setOperationAction(ISD::FRINT, MVT::f32, Legal);
840 
841       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
842       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
843 
844       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
845       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
846 
847       // Share the Altivec comparison restrictions.
848       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
849       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
850       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
851       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
852 
853       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
854       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
855 
856       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
857 
858       if (Subtarget.hasP8Vector())
859         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
860 
861       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
862 
863       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
864       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
865       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
866 
867       if (Subtarget.hasP8Altivec()) {
868         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
869         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
870         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
871 
872         // 128 bit shifts can be accomplished via 3 instructions for SHL and
873         // SRL, but not for SRA because of the instructions available:
874         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
875         // doing
876         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
877         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
878         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
879 
880         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
881       }
882       else {
883         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
884         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
885         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
886 
887         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
888 
889         // VSX v2i64 only supports non-arithmetic operations.
890         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
891         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
892       }
893 
894       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
895       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
896       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
897       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
898 
899       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
900 
901       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
902       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
903       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
904       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
905 
906       // Custom handling for partial vectors of integers converted to
907       // floating point. We already have optimal handling for v2i32 through
908       // the DAG combine, so those aren't necessary.
909       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
910       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
911       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
912       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
913       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
914       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
915       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
916       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
917 
918       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
919       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
920       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
921       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
922       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
923       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
924 
925       if (Subtarget.hasDirectMove())
926         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
927       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
928 
929       // Handle constrained floating-point operations of vector.
930       // The predictor is `hasVSX` because altivec instruction has
931       // no exception but VSX vector instruction has.
932       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
933       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
934       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
935       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
936 
937       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
938       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
939       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
940       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
941 
942       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
943     }
944 
945     if (Subtarget.hasP8Altivec()) {
946       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
947       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
948     }
949 
950     if (Subtarget.hasP9Vector()) {
951       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
952       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
953 
954       // 128 bit shifts can be accomplished via 3 instructions for SHL and
955       // SRL, but not for SRA because of the instructions available:
956       // VS{RL} and VS{RL}O.
957       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
958       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
959       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
960 
961       if (EnableQuadPrecision) {
962         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
963         setOperationAction(ISD::FADD, MVT::f128, Legal);
964         setOperationAction(ISD::FSUB, MVT::f128, Legal);
965         setOperationAction(ISD::FDIV, MVT::f128, Legal);
966         setOperationAction(ISD::FMUL, MVT::f128, Legal);
967         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
968         // No extending loads to f128 on PPC.
969         for (MVT FPT : MVT::fp_valuetypes())
970           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
971         setOperationAction(ISD::FMA, MVT::f128, Legal);
972         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
973         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
974         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
975         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
976         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
977         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
978 
979         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
980         setOperationAction(ISD::FRINT, MVT::f128, Legal);
981         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
982         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
983         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
984         setOperationAction(ISD::FROUND, MVT::f128, Legal);
985 
986         setOperationAction(ISD::SELECT, MVT::f128, Expand);
987         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
988         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
989         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
990         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
991         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
992         // No implementation for these ops for PowerPC.
993         setOperationAction(ISD::FSIN , MVT::f128, Expand);
994         setOperationAction(ISD::FCOS , MVT::f128, Expand);
995         setOperationAction(ISD::FPOW, MVT::f128, Expand);
996         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
997         setOperationAction(ISD::FREM, MVT::f128, Expand);
998 
999         // Handle constrained floating-point operations of fp128
1000         setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1001         setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1002         setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1003         setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1004       }
1005       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1006       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1007       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1008       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1009       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1010     }
1011 
1012     if (Subtarget.hasP9Altivec()) {
1013       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1014       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1015 
1016       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1017       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1018       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1019       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1020       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1021       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1022       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1023     }
1024   }
1025 
1026   if (Subtarget.hasQPX()) {
1027     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1028     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1029     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1030     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1031 
1032     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1033     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1034 
1035     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1036     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1037 
1038     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1039     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1040 
1041     if (!Subtarget.useCRBits())
1042       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1043     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1044 
1045     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1046     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1047     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1048     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1049     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1050     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1051     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1052 
1053     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1054     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1055 
1056     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1057     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1058 
1059     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1060     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1061     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1062     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1063     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1064     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1065     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1066     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1067     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1068     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1069 
1070     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1071     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1072 
1073     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1074     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1075 
1076     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1077 
1078     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1079     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1080     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1081     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1082 
1083     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1084     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1085 
1086     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1087     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1088 
1089     if (!Subtarget.useCRBits())
1090       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1091     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1092 
1093     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1094     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1095     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1096     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1097     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1098     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1099     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1100 
1101     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1102     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1103 
1104     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1105     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1106     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1107     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1108     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1109     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1110     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1111     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1112     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1113     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1114 
1115     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1116     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1117 
1118     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1119     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1120 
1121     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1122 
1123     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1124     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1125     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1126 
1127     if (!Subtarget.useCRBits())
1128       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1129     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1130 
1131     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1132     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1133 
1134     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1135     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1136     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1137     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1138     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1139     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1140     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1141 
1142     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1143     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1144 
1145     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1146 
1147     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1148     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1149     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1150     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1151 
1152     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1153     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1154     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1155     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1156 
1157     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1158     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1159 
1160     // These need to set FE_INEXACT, and so cannot be vectorized here.
1161     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1162     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1163 
1164     if (TM.Options.UnsafeFPMath) {
1165       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1166       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1167 
1168       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1169       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1170     } else {
1171       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1172       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1173 
1174       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1175       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1176     }
1177 
1178     // TODO: Handle constrained floating-point operations of v4f64
1179   }
1180 
1181   if (Subtarget.has64BitSupport())
1182     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1183 
1184   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1185 
1186   if (!isPPC64) {
1187     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1188     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1189   }
1190 
1191   setBooleanContents(ZeroOrOneBooleanContent);
1192 
1193   if (Subtarget.hasAltivec()) {
1194     // Altivec instructions set fields to all zeros or all ones.
1195     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1196   }
1197 
1198   if (!isPPC64) {
1199     // These libcalls are not available in 32-bit.
1200     setLibcallName(RTLIB::SHL_I128, nullptr);
1201     setLibcallName(RTLIB::SRL_I128, nullptr);
1202     setLibcallName(RTLIB::SRA_I128, nullptr);
1203   }
1204 
1205   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1206 
1207   // We have target-specific dag combine patterns for the following nodes:
1208   setTargetDAGCombine(ISD::ADD);
1209   setTargetDAGCombine(ISD::SHL);
1210   setTargetDAGCombine(ISD::SRA);
1211   setTargetDAGCombine(ISD::SRL);
1212   setTargetDAGCombine(ISD::MUL);
1213   setTargetDAGCombine(ISD::SINT_TO_FP);
1214   setTargetDAGCombine(ISD::BUILD_VECTOR);
1215   if (Subtarget.hasFPCVT())
1216     setTargetDAGCombine(ISD::UINT_TO_FP);
1217   setTargetDAGCombine(ISD::LOAD);
1218   setTargetDAGCombine(ISD::STORE);
1219   setTargetDAGCombine(ISD::BR_CC);
1220   if (Subtarget.useCRBits())
1221     setTargetDAGCombine(ISD::BRCOND);
1222   setTargetDAGCombine(ISD::BSWAP);
1223   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1224   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1225   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1226 
1227   setTargetDAGCombine(ISD::SIGN_EXTEND);
1228   setTargetDAGCombine(ISD::ZERO_EXTEND);
1229   setTargetDAGCombine(ISD::ANY_EXTEND);
1230 
1231   setTargetDAGCombine(ISD::TRUNCATE);
1232   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1233 
1234 
1235   if (Subtarget.useCRBits()) {
1236     setTargetDAGCombine(ISD::TRUNCATE);
1237     setTargetDAGCombine(ISD::SETCC);
1238     setTargetDAGCombine(ISD::SELECT_CC);
1239   }
1240 
1241   // Use reciprocal estimates.
1242   if (TM.Options.UnsafeFPMath) {
1243     setTargetDAGCombine(ISD::FDIV);
1244     setTargetDAGCombine(ISD::FSQRT);
1245   }
1246 
1247   if (Subtarget.hasP9Altivec()) {
1248     setTargetDAGCombine(ISD::ABS);
1249     setTargetDAGCombine(ISD::VSELECT);
1250   }
1251 
1252   if (EnableQuadPrecision) {
1253     setLibcallName(RTLIB::LOG_F128, "logf128");
1254     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1255     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1256     setLibcallName(RTLIB::EXP_F128, "expf128");
1257     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1258     setLibcallName(RTLIB::SIN_F128, "sinf128");
1259     setLibcallName(RTLIB::COS_F128, "cosf128");
1260     setLibcallName(RTLIB::POW_F128, "powf128");
1261     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1262     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1263     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1264     setLibcallName(RTLIB::REM_F128, "fmodf128");
1265   }
1266 
1267   // With 32 condition bits, we don't need to sink (and duplicate) compares
1268   // aggressively in CodeGenPrep.
1269   if (Subtarget.useCRBits()) {
1270     setHasMultipleConditionRegisters();
1271     setJumpIsExpensive();
1272   }
1273 
1274   setMinFunctionAlignment(Align(4));
1275 
1276   switch (Subtarget.getCPUDirective()) {
1277   default: break;
1278   case PPC::DIR_970:
1279   case PPC::DIR_A2:
1280   case PPC::DIR_E500:
1281   case PPC::DIR_E500mc:
1282   case PPC::DIR_E5500:
1283   case PPC::DIR_PWR4:
1284   case PPC::DIR_PWR5:
1285   case PPC::DIR_PWR5X:
1286   case PPC::DIR_PWR6:
1287   case PPC::DIR_PWR6X:
1288   case PPC::DIR_PWR7:
1289   case PPC::DIR_PWR8:
1290   case PPC::DIR_PWR9:
1291   case PPC::DIR_PWR_FUTURE:
1292     setPrefLoopAlignment(Align(16));
1293     setPrefFunctionAlignment(Align(16));
1294     break;
1295   }
1296 
1297   if (Subtarget.enableMachineScheduler())
1298     setSchedulingPreference(Sched::Source);
1299   else
1300     setSchedulingPreference(Sched::Hybrid);
1301 
1302   computeRegisterProperties(STI.getRegisterInfo());
1303 
1304   // The Freescale cores do better with aggressive inlining of memcpy and
1305   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1306   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1307       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1308     MaxStoresPerMemset = 32;
1309     MaxStoresPerMemsetOptSize = 16;
1310     MaxStoresPerMemcpy = 32;
1311     MaxStoresPerMemcpyOptSize = 8;
1312     MaxStoresPerMemmove = 32;
1313     MaxStoresPerMemmoveOptSize = 8;
1314   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1315     // The A2 also benefits from (very) aggressive inlining of memcpy and
1316     // friends. The overhead of a the function call, even when warm, can be
1317     // over one hundred cycles.
1318     MaxStoresPerMemset = 128;
1319     MaxStoresPerMemcpy = 128;
1320     MaxStoresPerMemmove = 128;
1321     MaxLoadsPerMemcmp = 128;
1322   } else {
1323     MaxLoadsPerMemcmp = 8;
1324     MaxLoadsPerMemcmpOptSize = 4;
1325   }
1326 }
1327 
1328 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1329 /// the desired ByVal argument alignment.
1330 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1331                              unsigned MaxMaxAlign) {
1332   if (MaxAlign == MaxMaxAlign)
1333     return;
1334   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1335     if (MaxMaxAlign >= 32 &&
1336         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1337       MaxAlign = 32;
1338     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1339              MaxAlign < 16)
1340       MaxAlign = 16;
1341   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1342     unsigned EltAlign = 0;
1343     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1344     if (EltAlign > MaxAlign)
1345       MaxAlign = EltAlign;
1346   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1347     for (auto *EltTy : STy->elements()) {
1348       unsigned EltAlign = 0;
1349       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1350       if (EltAlign > MaxAlign)
1351         MaxAlign = EltAlign;
1352       if (MaxAlign == MaxMaxAlign)
1353         break;
1354     }
1355   }
1356 }
1357 
1358 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1359 /// function arguments in the caller parameter area.
1360 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1361                                                   const DataLayout &DL) const {
1362   // 16byte and wider vectors are passed on 16byte boundary.
1363   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1364   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1365   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1366     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1367   return Align;
1368 }
1369 
1370 bool PPCTargetLowering::useSoftFloat() const {
1371   return Subtarget.useSoftFloat();
1372 }
1373 
1374 bool PPCTargetLowering::hasSPE() const {
1375   return Subtarget.hasSPE();
1376 }
1377 
1378 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1379   return VT.isScalarInteger();
1380 }
1381 
1382 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1383   switch ((PPCISD::NodeType)Opcode) {
1384   case PPCISD::FIRST_NUMBER:    break;
1385   case PPCISD::FSEL:            return "PPCISD::FSEL";
1386   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1387   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1388   case PPCISD::FCFID:           return "PPCISD::FCFID";
1389   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1390   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1391   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1392   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1393   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1394   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1395   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1396   case PPCISD::FP_TO_UINT_IN_VSR:
1397                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1398   case PPCISD::FP_TO_SINT_IN_VSR:
1399                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1400   case PPCISD::FRE:             return "PPCISD::FRE";
1401   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1402   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1403   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1404   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1405   case PPCISD::VPERM:           return "PPCISD::VPERM";
1406   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1407   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1408   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1409   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1410   case PPCISD::CMPB:            return "PPCISD::CMPB";
1411   case PPCISD::Hi:              return "PPCISD::Hi";
1412   case PPCISD::Lo:              return "PPCISD::Lo";
1413   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1414   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1415   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1416   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1417   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1418   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1419   case PPCISD::SRL:             return "PPCISD::SRL";
1420   case PPCISD::SRA:             return "PPCISD::SRA";
1421   case PPCISD::SHL:             return "PPCISD::SHL";
1422   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1423   case PPCISD::CALL:            return "PPCISD::CALL";
1424   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1425   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1426   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1427   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1428   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1429   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1430   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1431   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1432   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1433   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1434   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1435   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1436   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1437   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1438   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1439   case PPCISD::ANDI_rec_1_EQ_BIT:
1440     return "PPCISD::ANDI_rec_1_EQ_BIT";
1441   case PPCISD::ANDI_rec_1_GT_BIT:
1442     return "PPCISD::ANDI_rec_1_GT_BIT";
1443   case PPCISD::VCMP:            return "PPCISD::VCMP";
1444   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1445   case PPCISD::LBRX:            return "PPCISD::LBRX";
1446   case PPCISD::STBRX:           return "PPCISD::STBRX";
1447   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1448   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1449   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1450   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1451   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1452   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1453   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1454   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1455   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1456   case PPCISD::ST_VSR_SCAL_INT:
1457                                 return "PPCISD::ST_VSR_SCAL_INT";
1458   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1459   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1460   case PPCISD::BDZ:             return "PPCISD::BDZ";
1461   case PPCISD::MFFS:            return "PPCISD::MFFS";
1462   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1463   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1464   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1465   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1466   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1467   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1468   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1469   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1470   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1471   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1472   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1473   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1474   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1475   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1476   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1477   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1478   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1479   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1480   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1481   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1482   case PPCISD::SC:              return "PPCISD::SC";
1483   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1484   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1485   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1486   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1487   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1488   case PPCISD::VABSD:           return "PPCISD::VABSD";
1489   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1490   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1491   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1492   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1493   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1494   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1495   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1496   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1497   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1498   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1499   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1500   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1501   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1502   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1503   }
1504   return nullptr;
1505 }
1506 
1507 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1508                                           EVT VT) const {
1509   if (!VT.isVector())
1510     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1511 
1512   if (Subtarget.hasQPX())
1513     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1514 
1515   return VT.changeVectorElementTypeToInteger();
1516 }
1517 
1518 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1519   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1520   return true;
1521 }
1522 
1523 //===----------------------------------------------------------------------===//
1524 // Node matching predicates, for use by the tblgen matching code.
1525 //===----------------------------------------------------------------------===//
1526 
1527 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1528 static bool isFloatingPointZero(SDValue Op) {
1529   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1530     return CFP->getValueAPF().isZero();
1531   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1532     // Maybe this has already been legalized into the constant pool?
1533     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1534       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1535         return CFP->getValueAPF().isZero();
1536   }
1537   return false;
1538 }
1539 
1540 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1541 /// true if Op is undef or if it matches the specified value.
1542 static bool isConstantOrUndef(int Op, int Val) {
1543   return Op < 0 || Op == Val;
1544 }
1545 
1546 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1547 /// VPKUHUM instruction.
1548 /// The ShuffleKind distinguishes between big-endian operations with
1549 /// two different inputs (0), either-endian operations with two identical
1550 /// inputs (1), and little-endian operations with two different inputs (2).
1551 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1552 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1553                                SelectionDAG &DAG) {
1554   bool IsLE = DAG.getDataLayout().isLittleEndian();
1555   if (ShuffleKind == 0) {
1556     if (IsLE)
1557       return false;
1558     for (unsigned i = 0; i != 16; ++i)
1559       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1560         return false;
1561   } else if (ShuffleKind == 2) {
1562     if (!IsLE)
1563       return false;
1564     for (unsigned i = 0; i != 16; ++i)
1565       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1566         return false;
1567   } else if (ShuffleKind == 1) {
1568     unsigned j = IsLE ? 0 : 1;
1569     for (unsigned i = 0; i != 8; ++i)
1570       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1571           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1572         return false;
1573   }
1574   return true;
1575 }
1576 
1577 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1578 /// VPKUWUM instruction.
1579 /// The ShuffleKind distinguishes between big-endian operations with
1580 /// two different inputs (0), either-endian operations with two identical
1581 /// inputs (1), and little-endian operations with two different inputs (2).
1582 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1583 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1584                                SelectionDAG &DAG) {
1585   bool IsLE = DAG.getDataLayout().isLittleEndian();
1586   if (ShuffleKind == 0) {
1587     if (IsLE)
1588       return false;
1589     for (unsigned i = 0; i != 16; i += 2)
1590       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1591           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1592         return false;
1593   } else if (ShuffleKind == 2) {
1594     if (!IsLE)
1595       return false;
1596     for (unsigned i = 0; i != 16; i += 2)
1597       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1598           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1599         return false;
1600   } else if (ShuffleKind == 1) {
1601     unsigned j = IsLE ? 0 : 2;
1602     for (unsigned i = 0; i != 8; i += 2)
1603       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1604           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1605           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1606           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1607         return false;
1608   }
1609   return true;
1610 }
1611 
1612 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1613 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1614 /// current subtarget.
1615 ///
1616 /// The ShuffleKind distinguishes between big-endian operations with
1617 /// two different inputs (0), either-endian operations with two identical
1618 /// inputs (1), and little-endian operations with two different inputs (2).
1619 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1620 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1621                                SelectionDAG &DAG) {
1622   const PPCSubtarget& Subtarget =
1623       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1624   if (!Subtarget.hasP8Vector())
1625     return false;
1626 
1627   bool IsLE = DAG.getDataLayout().isLittleEndian();
1628   if (ShuffleKind == 0) {
1629     if (IsLE)
1630       return false;
1631     for (unsigned i = 0; i != 16; i += 4)
1632       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1633           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1634           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1635           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1636         return false;
1637   } else if (ShuffleKind == 2) {
1638     if (!IsLE)
1639       return false;
1640     for (unsigned i = 0; i != 16; i += 4)
1641       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1642           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1643           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1644           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1645         return false;
1646   } else if (ShuffleKind == 1) {
1647     unsigned j = IsLE ? 0 : 4;
1648     for (unsigned i = 0; i != 8; i += 4)
1649       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1650           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1651           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1652           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1653           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1654           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1655           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1656           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1657         return false;
1658   }
1659   return true;
1660 }
1661 
1662 /// isVMerge - Common function, used to match vmrg* shuffles.
1663 ///
1664 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1665                      unsigned LHSStart, unsigned RHSStart) {
1666   if (N->getValueType(0) != MVT::v16i8)
1667     return false;
1668   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1669          "Unsupported merge size!");
1670 
1671   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1672     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1673       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1674                              LHSStart+j+i*UnitSize) ||
1675           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1676                              RHSStart+j+i*UnitSize))
1677         return false;
1678     }
1679   return true;
1680 }
1681 
1682 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1683 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1684 /// The ShuffleKind distinguishes between big-endian merges with two
1685 /// different inputs (0), either-endian merges with two identical inputs (1),
1686 /// and little-endian merges with two different inputs (2).  For the latter,
1687 /// the input operands are swapped (see PPCInstrAltivec.td).
1688 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1689                              unsigned ShuffleKind, SelectionDAG &DAG) {
1690   if (DAG.getDataLayout().isLittleEndian()) {
1691     if (ShuffleKind == 1) // unary
1692       return isVMerge(N, UnitSize, 0, 0);
1693     else if (ShuffleKind == 2) // swapped
1694       return isVMerge(N, UnitSize, 0, 16);
1695     else
1696       return false;
1697   } else {
1698     if (ShuffleKind == 1) // unary
1699       return isVMerge(N, UnitSize, 8, 8);
1700     else if (ShuffleKind == 0) // normal
1701       return isVMerge(N, UnitSize, 8, 24);
1702     else
1703       return false;
1704   }
1705 }
1706 
1707 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1708 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1709 /// The ShuffleKind distinguishes between big-endian merges with two
1710 /// different inputs (0), either-endian merges with two identical inputs (1),
1711 /// and little-endian merges with two different inputs (2).  For the latter,
1712 /// the input operands are swapped (see PPCInstrAltivec.td).
1713 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1714                              unsigned ShuffleKind, SelectionDAG &DAG) {
1715   if (DAG.getDataLayout().isLittleEndian()) {
1716     if (ShuffleKind == 1) // unary
1717       return isVMerge(N, UnitSize, 8, 8);
1718     else if (ShuffleKind == 2) // swapped
1719       return isVMerge(N, UnitSize, 8, 24);
1720     else
1721       return false;
1722   } else {
1723     if (ShuffleKind == 1) // unary
1724       return isVMerge(N, UnitSize, 0, 0);
1725     else if (ShuffleKind == 0) // normal
1726       return isVMerge(N, UnitSize, 0, 16);
1727     else
1728       return false;
1729   }
1730 }
1731 
1732 /**
1733  * Common function used to match vmrgew and vmrgow shuffles
1734  *
1735  * The indexOffset determines whether to look for even or odd words in
1736  * the shuffle mask. This is based on the of the endianness of the target
1737  * machine.
1738  *   - Little Endian:
1739  *     - Use offset of 0 to check for odd elements
1740  *     - Use offset of 4 to check for even elements
1741  *   - Big Endian:
1742  *     - Use offset of 0 to check for even elements
1743  *     - Use offset of 4 to check for odd elements
1744  * A detailed description of the vector element ordering for little endian and
1745  * big endian can be found at
1746  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1747  * Targeting your applications - what little endian and big endian IBM XL C/C++
1748  * compiler differences mean to you
1749  *
1750  * The mask to the shuffle vector instruction specifies the indices of the
1751  * elements from the two input vectors to place in the result. The elements are
1752  * numbered in array-access order, starting with the first vector. These vectors
1753  * are always of type v16i8, thus each vector will contain 16 elements of size
1754  * 8. More info on the shuffle vector can be found in the
1755  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1756  * Language Reference.
1757  *
1758  * The RHSStartValue indicates whether the same input vectors are used (unary)
1759  * or two different input vectors are used, based on the following:
1760  *   - If the instruction uses the same vector for both inputs, the range of the
1761  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1762  *     be 0.
1763  *   - If the instruction has two different vectors then the range of the
1764  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1765  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1766  *     to 31 specify elements in the second vector).
1767  *
1768  * \param[in] N The shuffle vector SD Node to analyze
1769  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1770  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1771  * vector to the shuffle_vector instruction
1772  * \return true iff this shuffle vector represents an even or odd word merge
1773  */
1774 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1775                      unsigned RHSStartValue) {
1776   if (N->getValueType(0) != MVT::v16i8)
1777     return false;
1778 
1779   for (unsigned i = 0; i < 2; ++i)
1780     for (unsigned j = 0; j < 4; ++j)
1781       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1782                              i*RHSStartValue+j+IndexOffset) ||
1783           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1784                              i*RHSStartValue+j+IndexOffset+8))
1785         return false;
1786   return true;
1787 }
1788 
1789 /**
1790  * Determine if the specified shuffle mask is suitable for the vmrgew or
1791  * vmrgow instructions.
1792  *
1793  * \param[in] N The shuffle vector SD Node to analyze
1794  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1795  * \param[in] ShuffleKind Identify the type of merge:
1796  *   - 0 = big-endian merge with two different inputs;
1797  *   - 1 = either-endian merge with two identical inputs;
1798  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1799  *     little-endian merges).
1800  * \param[in] DAG The current SelectionDAG
1801  * \return true iff this shuffle mask
1802  */
1803 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1804                               unsigned ShuffleKind, SelectionDAG &DAG) {
1805   if (DAG.getDataLayout().isLittleEndian()) {
1806     unsigned indexOffset = CheckEven ? 4 : 0;
1807     if (ShuffleKind == 1) // Unary
1808       return isVMerge(N, indexOffset, 0);
1809     else if (ShuffleKind == 2) // swapped
1810       return isVMerge(N, indexOffset, 16);
1811     else
1812       return false;
1813   }
1814   else {
1815     unsigned indexOffset = CheckEven ? 0 : 4;
1816     if (ShuffleKind == 1) // Unary
1817       return isVMerge(N, indexOffset, 0);
1818     else if (ShuffleKind == 0) // Normal
1819       return isVMerge(N, indexOffset, 16);
1820     else
1821       return false;
1822   }
1823   return false;
1824 }
1825 
1826 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1827 /// amount, otherwise return -1.
1828 /// The ShuffleKind distinguishes between big-endian operations with two
1829 /// different inputs (0), either-endian operations with two identical inputs
1830 /// (1), and little-endian operations with two different inputs (2).  For the
1831 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1832 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1833                              SelectionDAG &DAG) {
1834   if (N->getValueType(0) != MVT::v16i8)
1835     return -1;
1836 
1837   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1838 
1839   // Find the first non-undef value in the shuffle mask.
1840   unsigned i;
1841   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1842     /*search*/;
1843 
1844   if (i == 16) return -1;  // all undef.
1845 
1846   // Otherwise, check to see if the rest of the elements are consecutively
1847   // numbered from this value.
1848   unsigned ShiftAmt = SVOp->getMaskElt(i);
1849   if (ShiftAmt < i) return -1;
1850 
1851   ShiftAmt -= i;
1852   bool isLE = DAG.getDataLayout().isLittleEndian();
1853 
1854   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1855     // Check the rest of the elements to see if they are consecutive.
1856     for (++i; i != 16; ++i)
1857       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1858         return -1;
1859   } else if (ShuffleKind == 1) {
1860     // Check the rest of the elements to see if they are consecutive.
1861     for (++i; i != 16; ++i)
1862       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1863         return -1;
1864   } else
1865     return -1;
1866 
1867   if (isLE)
1868     ShiftAmt = 16 - ShiftAmt;
1869 
1870   return ShiftAmt;
1871 }
1872 
1873 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1874 /// specifies a splat of a single element that is suitable for input to
1875 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1876 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1877   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1878          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1879 
1880   // The consecutive indices need to specify an element, not part of two
1881   // different elements.  So abandon ship early if this isn't the case.
1882   if (N->getMaskElt(0) % EltSize != 0)
1883     return false;
1884 
1885   // This is a splat operation if each element of the permute is the same, and
1886   // if the value doesn't reference the second vector.
1887   unsigned ElementBase = N->getMaskElt(0);
1888 
1889   // FIXME: Handle UNDEF elements too!
1890   if (ElementBase >= 16)
1891     return false;
1892 
1893   // Check that the indices are consecutive, in the case of a multi-byte element
1894   // splatted with a v16i8 mask.
1895   for (unsigned i = 1; i != EltSize; ++i)
1896     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1897       return false;
1898 
1899   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1900     if (N->getMaskElt(i) < 0) continue;
1901     for (unsigned j = 0; j != EltSize; ++j)
1902       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1903         return false;
1904   }
1905   return true;
1906 }
1907 
1908 /// Check that the mask is shuffling N byte elements. Within each N byte
1909 /// element of the mask, the indices could be either in increasing or
1910 /// decreasing order as long as they are consecutive.
1911 /// \param[in] N the shuffle vector SD Node to analyze
1912 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1913 /// Word/DoubleWord/QuadWord).
1914 /// \param[in] StepLen the delta indices number among the N byte element, if
1915 /// the mask is in increasing/decreasing order then it is 1/-1.
1916 /// \return true iff the mask is shuffling N byte elements.
1917 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1918                                    int StepLen) {
1919   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1920          "Unexpected element width.");
1921   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1922 
1923   unsigned NumOfElem = 16 / Width;
1924   unsigned MaskVal[16]; //  Width is never greater than 16
1925   for (unsigned i = 0; i < NumOfElem; ++i) {
1926     MaskVal[0] = N->getMaskElt(i * Width);
1927     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1928       return false;
1929     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1930       return false;
1931     }
1932 
1933     for (unsigned int j = 1; j < Width; ++j) {
1934       MaskVal[j] = N->getMaskElt(i * Width + j);
1935       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1936         return false;
1937       }
1938     }
1939   }
1940 
1941   return true;
1942 }
1943 
1944 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1945                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1946   if (!isNByteElemShuffleMask(N, 4, 1))
1947     return false;
1948 
1949   // Now we look at mask elements 0,4,8,12
1950   unsigned M0 = N->getMaskElt(0) / 4;
1951   unsigned M1 = N->getMaskElt(4) / 4;
1952   unsigned M2 = N->getMaskElt(8) / 4;
1953   unsigned M3 = N->getMaskElt(12) / 4;
1954   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1955   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1956 
1957   // Below, let H and L be arbitrary elements of the shuffle mask
1958   // where H is in the range [4,7] and L is in the range [0,3].
1959   // H, 1, 2, 3 or L, 5, 6, 7
1960   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1961       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1962     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1963     InsertAtByte = IsLE ? 12 : 0;
1964     Swap = M0 < 4;
1965     return true;
1966   }
1967   // 0, H, 2, 3 or 4, L, 6, 7
1968   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1969       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1970     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1971     InsertAtByte = IsLE ? 8 : 4;
1972     Swap = M1 < 4;
1973     return true;
1974   }
1975   // 0, 1, H, 3 or 4, 5, L, 7
1976   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1977       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1978     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1979     InsertAtByte = IsLE ? 4 : 8;
1980     Swap = M2 < 4;
1981     return true;
1982   }
1983   // 0, 1, 2, H or 4, 5, 6, L
1984   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1985       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1986     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1987     InsertAtByte = IsLE ? 0 : 12;
1988     Swap = M3 < 4;
1989     return true;
1990   }
1991 
1992   // If both vector operands for the shuffle are the same vector, the mask will
1993   // contain only elements from the first one and the second one will be undef.
1994   if (N->getOperand(1).isUndef()) {
1995     ShiftElts = 0;
1996     Swap = true;
1997     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1998     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1999       InsertAtByte = IsLE ? 12 : 0;
2000       return true;
2001     }
2002     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2003       InsertAtByte = IsLE ? 8 : 4;
2004       return true;
2005     }
2006     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2007       InsertAtByte = IsLE ? 4 : 8;
2008       return true;
2009     }
2010     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2011       InsertAtByte = IsLE ? 0 : 12;
2012       return true;
2013     }
2014   }
2015 
2016   return false;
2017 }
2018 
2019 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2020                                bool &Swap, bool IsLE) {
2021   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2022   // Ensure each byte index of the word is consecutive.
2023   if (!isNByteElemShuffleMask(N, 4, 1))
2024     return false;
2025 
2026   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2027   unsigned M0 = N->getMaskElt(0) / 4;
2028   unsigned M1 = N->getMaskElt(4) / 4;
2029   unsigned M2 = N->getMaskElt(8) / 4;
2030   unsigned M3 = N->getMaskElt(12) / 4;
2031 
2032   // If both vector operands for the shuffle are the same vector, the mask will
2033   // contain only elements from the first one and the second one will be undef.
2034   if (N->getOperand(1).isUndef()) {
2035     assert(M0 < 4 && "Indexing into an undef vector?");
2036     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2037       return false;
2038 
2039     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2040     Swap = false;
2041     return true;
2042   }
2043 
2044   // Ensure each word index of the ShuffleVector Mask is consecutive.
2045   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2046     return false;
2047 
2048   if (IsLE) {
2049     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2050       // Input vectors don't need to be swapped if the leading element
2051       // of the result is one of the 3 left elements of the second vector
2052       // (or if there is no shift to be done at all).
2053       Swap = false;
2054       ShiftElts = (8 - M0) % 8;
2055     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2056       // Input vectors need to be swapped if the leading element
2057       // of the result is one of the 3 left elements of the first vector
2058       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2059       Swap = true;
2060       ShiftElts = (4 - M0) % 4;
2061     }
2062 
2063     return true;
2064   } else {                                          // BE
2065     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2066       // Input vectors don't need to be swapped if the leading element
2067       // of the result is one of the 4 elements of the first vector.
2068       Swap = false;
2069       ShiftElts = M0;
2070     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2071       // Input vectors need to be swapped if the leading element
2072       // of the result is one of the 4 elements of the right vector.
2073       Swap = true;
2074       ShiftElts = M0 - 4;
2075     }
2076 
2077     return true;
2078   }
2079 }
2080 
2081 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2082   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2083 
2084   if (!isNByteElemShuffleMask(N, Width, -1))
2085     return false;
2086 
2087   for (int i = 0; i < 16; i += Width)
2088     if (N->getMaskElt(i) != i + Width - 1)
2089       return false;
2090 
2091   return true;
2092 }
2093 
2094 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2095   return isXXBRShuffleMaskHelper(N, 2);
2096 }
2097 
2098 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2099   return isXXBRShuffleMaskHelper(N, 4);
2100 }
2101 
2102 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2103   return isXXBRShuffleMaskHelper(N, 8);
2104 }
2105 
2106 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2107   return isXXBRShuffleMaskHelper(N, 16);
2108 }
2109 
2110 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2111 /// if the inputs to the instruction should be swapped and set \p DM to the
2112 /// value for the immediate.
2113 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2114 /// AND element 0 of the result comes from the first input (LE) or second input
2115 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2116 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2117 /// mask.
2118 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2119                                bool &Swap, bool IsLE) {
2120   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2121 
2122   // Ensure each byte index of the double word is consecutive.
2123   if (!isNByteElemShuffleMask(N, 8, 1))
2124     return false;
2125 
2126   unsigned M0 = N->getMaskElt(0) / 8;
2127   unsigned M1 = N->getMaskElt(8) / 8;
2128   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2129 
2130   // If both vector operands for the shuffle are the same vector, the mask will
2131   // contain only elements from the first one and the second one will be undef.
2132   if (N->getOperand(1).isUndef()) {
2133     if ((M0 | M1) < 2) {
2134       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2135       Swap = false;
2136       return true;
2137     } else
2138       return false;
2139   }
2140 
2141   if (IsLE) {
2142     if (M0 > 1 && M1 < 2) {
2143       Swap = false;
2144     } else if (M0 < 2 && M1 > 1) {
2145       M0 = (M0 + 2) % 4;
2146       M1 = (M1 + 2) % 4;
2147       Swap = true;
2148     } else
2149       return false;
2150 
2151     // Note: if control flow comes here that means Swap is already set above
2152     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2153     return true;
2154   } else { // BE
2155     if (M0 < 2 && M1 > 1) {
2156       Swap = false;
2157     } else if (M0 > 1 && M1 < 2) {
2158       M0 = (M0 + 2) % 4;
2159       M1 = (M1 + 2) % 4;
2160       Swap = true;
2161     } else
2162       return false;
2163 
2164     // Note: if control flow comes here that means Swap is already set above
2165     DM = (M0 << 1) + (M1 & 1);
2166     return true;
2167   }
2168 }
2169 
2170 
2171 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2172 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2173 /// elements are counted from the left of the vector register).
2174 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2175                                          SelectionDAG &DAG) {
2176   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2177   assert(isSplatShuffleMask(SVOp, EltSize));
2178   if (DAG.getDataLayout().isLittleEndian())
2179     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2180   else
2181     return SVOp->getMaskElt(0) / EltSize;
2182 }
2183 
2184 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2185 /// by using a vspltis[bhw] instruction of the specified element size, return
2186 /// the constant being splatted.  The ByteSize field indicates the number of
2187 /// bytes of each element [124] -> [bhw].
2188 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2189   SDValue OpVal(nullptr, 0);
2190 
2191   // If ByteSize of the splat is bigger than the element size of the
2192   // build_vector, then we have a case where we are checking for a splat where
2193   // multiple elements of the buildvector are folded together into a single
2194   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2195   unsigned EltSize = 16/N->getNumOperands();
2196   if (EltSize < ByteSize) {
2197     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2198     SDValue UniquedVals[4];
2199     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2200 
2201     // See if all of the elements in the buildvector agree across.
2202     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2203       if (N->getOperand(i).isUndef()) continue;
2204       // If the element isn't a constant, bail fully out.
2205       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2206 
2207       if (!UniquedVals[i&(Multiple-1)].getNode())
2208         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2209       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2210         return SDValue();  // no match.
2211     }
2212 
2213     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2214     // either constant or undef values that are identical for each chunk.  See
2215     // if these chunks can form into a larger vspltis*.
2216 
2217     // Check to see if all of the leading entries are either 0 or -1.  If
2218     // neither, then this won't fit into the immediate field.
2219     bool LeadingZero = true;
2220     bool LeadingOnes = true;
2221     for (unsigned i = 0; i != Multiple-1; ++i) {
2222       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2223 
2224       LeadingZero &= isNullConstant(UniquedVals[i]);
2225       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2226     }
2227     // Finally, check the least significant entry.
2228     if (LeadingZero) {
2229       if (!UniquedVals[Multiple-1].getNode())
2230         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2231       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2232       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2233         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2234     }
2235     if (LeadingOnes) {
2236       if (!UniquedVals[Multiple-1].getNode())
2237         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2238       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2239       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2240         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2241     }
2242 
2243     return SDValue();
2244   }
2245 
2246   // Check to see if this buildvec has a single non-undef value in its elements.
2247   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2248     if (N->getOperand(i).isUndef()) continue;
2249     if (!OpVal.getNode())
2250       OpVal = N->getOperand(i);
2251     else if (OpVal != N->getOperand(i))
2252       return SDValue();
2253   }
2254 
2255   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2256 
2257   unsigned ValSizeInBytes = EltSize;
2258   uint64_t Value = 0;
2259   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2260     Value = CN->getZExtValue();
2261   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2262     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2263     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2264   }
2265 
2266   // If the splat value is larger than the element value, then we can never do
2267   // this splat.  The only case that we could fit the replicated bits into our
2268   // immediate field for would be zero, and we prefer to use vxor for it.
2269   if (ValSizeInBytes < ByteSize) return SDValue();
2270 
2271   // If the element value is larger than the splat value, check if it consists
2272   // of a repeated bit pattern of size ByteSize.
2273   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2274     return SDValue();
2275 
2276   // Properly sign extend the value.
2277   int MaskVal = SignExtend32(Value, ByteSize * 8);
2278 
2279   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2280   if (MaskVal == 0) return SDValue();
2281 
2282   // Finally, if this value fits in a 5 bit sext field, return it
2283   if (SignExtend32<5>(MaskVal) == MaskVal)
2284     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2285   return SDValue();
2286 }
2287 
2288 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2289 /// amount, otherwise return -1.
2290 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2291   EVT VT = N->getValueType(0);
2292   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2293     return -1;
2294 
2295   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2296 
2297   // Find the first non-undef value in the shuffle mask.
2298   unsigned i;
2299   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2300     /*search*/;
2301 
2302   if (i == 4) return -1;  // all undef.
2303 
2304   // Otherwise, check to see if the rest of the elements are consecutively
2305   // numbered from this value.
2306   unsigned ShiftAmt = SVOp->getMaskElt(i);
2307   if (ShiftAmt < i) return -1;
2308   ShiftAmt -= i;
2309 
2310   // Check the rest of the elements to see if they are consecutive.
2311   for (++i; i != 4; ++i)
2312     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2313       return -1;
2314 
2315   return ShiftAmt;
2316 }
2317 
2318 //===----------------------------------------------------------------------===//
2319 //  Addressing Mode Selection
2320 //===----------------------------------------------------------------------===//
2321 
2322 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2323 /// or 64-bit immediate, and if the value can be accurately represented as a
2324 /// sign extension from a 16-bit value.  If so, this returns true and the
2325 /// immediate.
2326 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2327   if (!isa<ConstantSDNode>(N))
2328     return false;
2329 
2330   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2331   if (N->getValueType(0) == MVT::i32)
2332     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2333   else
2334     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2335 }
2336 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2337   return isIntS16Immediate(Op.getNode(), Imm);
2338 }
2339 
2340 
2341 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2342 /// be represented as an indexed [r+r] operation.
2343 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2344                                                SDValue &Index,
2345                                                SelectionDAG &DAG) const {
2346   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2347       UI != E; ++UI) {
2348     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2349       if (Memop->getMemoryVT() == MVT::f64) {
2350           Base = N.getOperand(0);
2351           Index = N.getOperand(1);
2352           return true;
2353       }
2354     }
2355   }
2356   return false;
2357 }
2358 
2359 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2360 /// can be represented as an indexed [r+r] operation.  Returns false if it
2361 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2362 /// non-zero and N can be represented by a base register plus a signed 16-bit
2363 /// displacement, make a more precise judgement by checking (displacement % \p
2364 /// EncodingAlignment).
2365 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2366                                             SDValue &Index, SelectionDAG &DAG,
2367                                             unsigned EncodingAlignment) const {
2368   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2369   // a [pc+imm].
2370   if (SelectAddressPCRel(N, Base))
2371     return false;
2372 
2373   int16_t imm = 0;
2374   if (N.getOpcode() == ISD::ADD) {
2375     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2376     // SPE load/store can only handle 8-bit offsets.
2377     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2378         return true;
2379     if (isIntS16Immediate(N.getOperand(1), imm) &&
2380         (!EncodingAlignment || !(imm % EncodingAlignment)))
2381       return false; // r+i
2382     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2383       return false;    // r+i
2384 
2385     Base = N.getOperand(0);
2386     Index = N.getOperand(1);
2387     return true;
2388   } else if (N.getOpcode() == ISD::OR) {
2389     if (isIntS16Immediate(N.getOperand(1), imm) &&
2390         (!EncodingAlignment || !(imm % EncodingAlignment)))
2391       return false; // r+i can fold it if we can.
2392 
2393     // If this is an or of disjoint bitfields, we can codegen this as an add
2394     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2395     // disjoint.
2396     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2397 
2398     if (LHSKnown.Zero.getBoolValue()) {
2399       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2400       // If all of the bits are known zero on the LHS or RHS, the add won't
2401       // carry.
2402       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2403         Base = N.getOperand(0);
2404         Index = N.getOperand(1);
2405         return true;
2406       }
2407     }
2408   }
2409 
2410   return false;
2411 }
2412 
2413 // If we happen to be doing an i64 load or store into a stack slot that has
2414 // less than a 4-byte alignment, then the frame-index elimination may need to
2415 // use an indexed load or store instruction (because the offset may not be a
2416 // multiple of 4). The extra register needed to hold the offset comes from the
2417 // register scavenger, and it is possible that the scavenger will need to use
2418 // an emergency spill slot. As a result, we need to make sure that a spill slot
2419 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2420 // stack slot.
2421 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2422   // FIXME: This does not handle the LWA case.
2423   if (VT != MVT::i64)
2424     return;
2425 
2426   // NOTE: We'll exclude negative FIs here, which come from argument
2427   // lowering, because there are no known test cases triggering this problem
2428   // using packed structures (or similar). We can remove this exclusion if
2429   // we find such a test case. The reason why this is so test-case driven is
2430   // because this entire 'fixup' is only to prevent crashes (from the
2431   // register scavenger) on not-really-valid inputs. For example, if we have:
2432   //   %a = alloca i1
2433   //   %b = bitcast i1* %a to i64*
2434   //   store i64* a, i64 b
2435   // then the store should really be marked as 'align 1', but is not. If it
2436   // were marked as 'align 1' then the indexed form would have been
2437   // instruction-selected initially, and the problem this 'fixup' is preventing
2438   // won't happen regardless.
2439   if (FrameIdx < 0)
2440     return;
2441 
2442   MachineFunction &MF = DAG.getMachineFunction();
2443   MachineFrameInfo &MFI = MF.getFrameInfo();
2444 
2445   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2446     return;
2447 
2448   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2449   FuncInfo->setHasNonRISpills();
2450 }
2451 
2452 /// Returns true if the address N can be represented by a base register plus
2453 /// a signed 16-bit displacement [r+imm], and if it is not better
2454 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2455 /// displacements that are multiples of that value.
2456 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2457                                             SDValue &Base,
2458                                             SelectionDAG &DAG,
2459                                             unsigned EncodingAlignment) const {
2460   // FIXME dl should come from parent load or store, not from address
2461   SDLoc dl(N);
2462 
2463   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2464   // a [pc+imm].
2465   if (SelectAddressPCRel(N, Base))
2466     return false;
2467 
2468   // If this can be more profitably realized as r+r, fail.
2469   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2470     return false;
2471 
2472   if (N.getOpcode() == ISD::ADD) {
2473     int16_t imm = 0;
2474     if (isIntS16Immediate(N.getOperand(1), imm) &&
2475         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2476       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2477       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2478         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2479         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2480       } else {
2481         Base = N.getOperand(0);
2482       }
2483       return true; // [r+i]
2484     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2485       // Match LOAD (ADD (X, Lo(G))).
2486       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2487              && "Cannot handle constant offsets yet!");
2488       Disp = N.getOperand(1).getOperand(0);  // The global address.
2489       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2490              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2491              Disp.getOpcode() == ISD::TargetConstantPool ||
2492              Disp.getOpcode() == ISD::TargetJumpTable);
2493       Base = N.getOperand(0);
2494       return true;  // [&g+r]
2495     }
2496   } else if (N.getOpcode() == ISD::OR) {
2497     int16_t imm = 0;
2498     if (isIntS16Immediate(N.getOperand(1), imm) &&
2499         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2500       // If this is an or of disjoint bitfields, we can codegen this as an add
2501       // (for better address arithmetic) if the LHS and RHS of the OR are
2502       // provably disjoint.
2503       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2504 
2505       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2506         // If all of the bits are known zero on the LHS or RHS, the add won't
2507         // carry.
2508         if (FrameIndexSDNode *FI =
2509               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2510           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2511           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2512         } else {
2513           Base = N.getOperand(0);
2514         }
2515         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2516         return true;
2517       }
2518     }
2519   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2520     // Loading from a constant address.
2521 
2522     // If this address fits entirely in a 16-bit sext immediate field, codegen
2523     // this as "d, 0"
2524     int16_t Imm;
2525     if (isIntS16Immediate(CN, Imm) &&
2526         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2527       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2528       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2529                              CN->getValueType(0));
2530       return true;
2531     }
2532 
2533     // Handle 32-bit sext immediates with LIS + addr mode.
2534     if ((CN->getValueType(0) == MVT::i32 ||
2535          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2536         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2537       int Addr = (int)CN->getZExtValue();
2538 
2539       // Otherwise, break this down into an LIS + disp.
2540       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2541 
2542       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2543                                    MVT::i32);
2544       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2545       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2546       return true;
2547     }
2548   }
2549 
2550   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2551   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2552     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2553     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2554   } else
2555     Base = N;
2556   return true;      // [r+0]
2557 }
2558 
2559 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2560 /// represented as an indexed [r+r] operation.
2561 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2562                                                 SDValue &Index,
2563                                                 SelectionDAG &DAG) const {
2564   // Check to see if we can easily represent this as an [r+r] address.  This
2565   // will fail if it thinks that the address is more profitably represented as
2566   // reg+imm, e.g. where imm = 0.
2567   if (SelectAddressRegReg(N, Base, Index, DAG))
2568     return true;
2569 
2570   // If the address is the result of an add, we will utilize the fact that the
2571   // address calculation includes an implicit add.  However, we can reduce
2572   // register pressure if we do not materialize a constant just for use as the
2573   // index register.  We only get rid of the add if it is not an add of a
2574   // value and a 16-bit signed constant and both have a single use.
2575   int16_t imm = 0;
2576   if (N.getOpcode() == ISD::ADD &&
2577       (!isIntS16Immediate(N.getOperand(1), imm) ||
2578        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2579     Base = N.getOperand(0);
2580     Index = N.getOperand(1);
2581     return true;
2582   }
2583 
2584   // Otherwise, do it the hard way, using R0 as the base register.
2585   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2586                          N.getValueType());
2587   Index = N;
2588   return true;
2589 }
2590 
2591 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2592   Ty *PCRelCand = dyn_cast<Ty>(N);
2593   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2594 }
2595 
2596 /// Returns true if this address is a PC Relative address.
2597 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2598 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2599 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2600   // This is a materialize PC Relative node. Always select this as PC Relative.
2601   Base = N;
2602   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2603     return true;
2604   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2605       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2606       isValidPCRelNode<JumpTableSDNode>(N) ||
2607       isValidPCRelNode<BlockAddressSDNode>(N))
2608     return true;
2609   return false;
2610 }
2611 
2612 /// Returns true if we should use a direct load into vector instruction
2613 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2614 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2615 
2616   // If there are any other uses other than scalar to vector, then we should
2617   // keep it as a scalar load -> direct move pattern to prevent multiple
2618   // loads.
2619   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2620   if (!LD)
2621     return false;
2622 
2623   EVT MemVT = LD->getMemoryVT();
2624   if (!MemVT.isSimple())
2625     return false;
2626   switch(MemVT.getSimpleVT().SimpleTy) {
2627   case MVT::i64:
2628     break;
2629   case MVT::i32:
2630     if (!ST.hasP8Vector())
2631       return false;
2632     break;
2633   case MVT::i16:
2634   case MVT::i8:
2635     if (!ST.hasP9Vector())
2636       return false;
2637     break;
2638   default:
2639     return false;
2640   }
2641 
2642   SDValue LoadedVal(N, 0);
2643   if (!LoadedVal.hasOneUse())
2644     return false;
2645 
2646   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2647        UI != UE; ++UI)
2648     if (UI.getUse().get().getResNo() == 0 &&
2649         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2650       return false;
2651 
2652   return true;
2653 }
2654 
2655 /// getPreIndexedAddressParts - returns true by value, base pointer and
2656 /// offset pointer and addressing mode by reference if the node's address
2657 /// can be legally represented as pre-indexed load / store address.
2658 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2659                                                   SDValue &Offset,
2660                                                   ISD::MemIndexedMode &AM,
2661                                                   SelectionDAG &DAG) const {
2662   if (DisablePPCPreinc) return false;
2663 
2664   bool isLoad = true;
2665   SDValue Ptr;
2666   EVT VT;
2667   unsigned Alignment;
2668   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2669     Ptr = LD->getBasePtr();
2670     VT = LD->getMemoryVT();
2671     Alignment = LD->getAlignment();
2672   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2673     Ptr = ST->getBasePtr();
2674     VT  = ST->getMemoryVT();
2675     Alignment = ST->getAlignment();
2676     isLoad = false;
2677   } else
2678     return false;
2679 
2680   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2681   // instructions because we can fold these into a more efficient instruction
2682   // instead, (such as LXSD).
2683   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2684     return false;
2685   }
2686 
2687   // PowerPC doesn't have preinc load/store instructions for vectors (except
2688   // for QPX, which does have preinc r+r forms).
2689   if (VT.isVector()) {
2690     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2691       return false;
2692     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2693       AM = ISD::PRE_INC;
2694       return true;
2695     }
2696   }
2697 
2698   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2699     // Common code will reject creating a pre-inc form if the base pointer
2700     // is a frame index, or if N is a store and the base pointer is either
2701     // the same as or a predecessor of the value being stored.  Check for
2702     // those situations here, and try with swapped Base/Offset instead.
2703     bool Swap = false;
2704 
2705     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2706       Swap = true;
2707     else if (!isLoad) {
2708       SDValue Val = cast<StoreSDNode>(N)->getValue();
2709       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2710         Swap = true;
2711     }
2712 
2713     if (Swap)
2714       std::swap(Base, Offset);
2715 
2716     AM = ISD::PRE_INC;
2717     return true;
2718   }
2719 
2720   // LDU/STU can only handle immediates that are a multiple of 4.
2721   if (VT != MVT::i64) {
2722     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2723       return false;
2724   } else {
2725     // LDU/STU need an address with at least 4-byte alignment.
2726     if (Alignment < 4)
2727       return false;
2728 
2729     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2730       return false;
2731   }
2732 
2733   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2734     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2735     // sext i32 to i64 when addr mode is r+i.
2736     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2737         LD->getExtensionType() == ISD::SEXTLOAD &&
2738         isa<ConstantSDNode>(Offset))
2739       return false;
2740   }
2741 
2742   AM = ISD::PRE_INC;
2743   return true;
2744 }
2745 
2746 //===----------------------------------------------------------------------===//
2747 //  LowerOperation implementation
2748 //===----------------------------------------------------------------------===//
2749 
2750 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2751 /// and LoOpFlags to the target MO flags.
2752 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2753                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2754                                const GlobalValue *GV = nullptr) {
2755   HiOpFlags = PPCII::MO_HA;
2756   LoOpFlags = PPCII::MO_LO;
2757 
2758   // Don't use the pic base if not in PIC relocation model.
2759   if (IsPIC) {
2760     HiOpFlags |= PPCII::MO_PIC_FLAG;
2761     LoOpFlags |= PPCII::MO_PIC_FLAG;
2762   }
2763 }
2764 
2765 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2766                              SelectionDAG &DAG) {
2767   SDLoc DL(HiPart);
2768   EVT PtrVT = HiPart.getValueType();
2769   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2770 
2771   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2772   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2773 
2774   // With PIC, the first instruction is actually "GR+hi(&G)".
2775   if (isPIC)
2776     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2777                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2778 
2779   // Generate non-pic code that has direct accesses to the constant pool.
2780   // The address of the global is just (hi(&g)+lo(&g)).
2781   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2782 }
2783 
2784 static void setUsesTOCBasePtr(MachineFunction &MF) {
2785   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2786   FuncInfo->setUsesTOCBasePtr();
2787 }
2788 
2789 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2790   setUsesTOCBasePtr(DAG.getMachineFunction());
2791 }
2792 
2793 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2794                                        SDValue GA) const {
2795   const bool Is64Bit = Subtarget.isPPC64();
2796   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2797   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2798                         : Subtarget.isAIXABI()
2799                               ? DAG.getRegister(PPC::R2, VT)
2800                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2801   SDValue Ops[] = { GA, Reg };
2802   return DAG.getMemIntrinsicNode(
2803       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2804       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2805       MachineMemOperand::MOLoad);
2806 }
2807 
2808 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2809                                              SelectionDAG &DAG) const {
2810   EVT PtrVT = Op.getValueType();
2811   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2812   const Constant *C = CP->getConstVal();
2813 
2814   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2815   // The actual address of the GlobalValue is stored in the TOC.
2816   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2817     if (Subtarget.isUsingPCRelativeCalls()) {
2818       SDLoc DL(CP);
2819       EVT Ty = getPointerTy(DAG.getDataLayout());
2820       SDValue ConstPool = DAG.getTargetConstantPool(C, Ty,
2821                                                     CP->getAlignment(),
2822                                                     CP->getOffset(),
2823                                                     PPCII::MO_PCREL_FLAG);
2824       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2825     }
2826     setUsesTOCBasePtr(DAG);
2827     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2828     return getTOCEntry(DAG, SDLoc(CP), GA);
2829   }
2830 
2831   unsigned MOHiFlag, MOLoFlag;
2832   bool IsPIC = isPositionIndependent();
2833   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2834 
2835   if (IsPIC && Subtarget.isSVR4ABI()) {
2836     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2837                                            PPCII::MO_PIC_FLAG);
2838     return getTOCEntry(DAG, SDLoc(CP), GA);
2839   }
2840 
2841   SDValue CPIHi =
2842     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2843   SDValue CPILo =
2844     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2845   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2846 }
2847 
2848 // For 64-bit PowerPC, prefer the more compact relative encodings.
2849 // This trades 32 bits per jump table entry for one or two instructions
2850 // on the jump site.
2851 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2852   if (isJumpTableRelative())
2853     return MachineJumpTableInfo::EK_LabelDifference32;
2854 
2855   return TargetLowering::getJumpTableEncoding();
2856 }
2857 
2858 bool PPCTargetLowering::isJumpTableRelative() const {
2859   if (UseAbsoluteJumpTables)
2860     return false;
2861   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2862     return true;
2863   return TargetLowering::isJumpTableRelative();
2864 }
2865 
2866 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2867                                                     SelectionDAG &DAG) const {
2868   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2869     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2870 
2871   switch (getTargetMachine().getCodeModel()) {
2872   case CodeModel::Small:
2873   case CodeModel::Medium:
2874     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2875   default:
2876     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2877                        getPointerTy(DAG.getDataLayout()));
2878   }
2879 }
2880 
2881 const MCExpr *
2882 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2883                                                 unsigned JTI,
2884                                                 MCContext &Ctx) const {
2885   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2886     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2887 
2888   switch (getTargetMachine().getCodeModel()) {
2889   case CodeModel::Small:
2890   case CodeModel::Medium:
2891     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2892   default:
2893     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2894   }
2895 }
2896 
2897 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2898   EVT PtrVT = Op.getValueType();
2899   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2900 
2901   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2902   if (Subtarget.isUsingPCRelativeCalls()) {
2903     SDLoc DL(JT);
2904     EVT Ty = getPointerTy(DAG.getDataLayout());
2905     SDValue GA =
2906         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2907     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2908     return MatAddr;
2909   }
2910 
2911   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2912   // The actual address of the GlobalValue is stored in the TOC.
2913   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2914     setUsesTOCBasePtr(DAG);
2915     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2916     return getTOCEntry(DAG, SDLoc(JT), GA);
2917   }
2918 
2919   unsigned MOHiFlag, MOLoFlag;
2920   bool IsPIC = isPositionIndependent();
2921   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2922 
2923   if (IsPIC && Subtarget.isSVR4ABI()) {
2924     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2925                                         PPCII::MO_PIC_FLAG);
2926     return getTOCEntry(DAG, SDLoc(GA), GA);
2927   }
2928 
2929   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2930   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2931   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2932 }
2933 
2934 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2935                                              SelectionDAG &DAG) const {
2936   EVT PtrVT = Op.getValueType();
2937   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2938   const BlockAddress *BA = BASDN->getBlockAddress();
2939 
2940   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2941   if (Subtarget.isUsingPCRelativeCalls()) {
2942     SDLoc DL(BASDN);
2943     EVT Ty = getPointerTy(DAG.getDataLayout());
2944     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2945                                            PPCII::MO_PCREL_FLAG);
2946     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2947     return MatAddr;
2948   }
2949 
2950   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2951   // The actual BlockAddress is stored in the TOC.
2952   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2953     setUsesTOCBasePtr(DAG);
2954     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2955     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2956   }
2957 
2958   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2959   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2960     return getTOCEntry(
2961         DAG, SDLoc(BASDN),
2962         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2963 
2964   unsigned MOHiFlag, MOLoFlag;
2965   bool IsPIC = isPositionIndependent();
2966   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2967   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2968   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2969   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2970 }
2971 
2972 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2973                                               SelectionDAG &DAG) const {
2974   // FIXME: TLS addresses currently use medium model code sequences,
2975   // which is the most useful form.  Eventually support for small and
2976   // large models could be added if users need it, at the cost of
2977   // additional complexity.
2978   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2979   if (DAG.getTarget().useEmulatedTLS())
2980     return LowerToTLSEmulatedModel(GA, DAG);
2981 
2982   SDLoc dl(GA);
2983   const GlobalValue *GV = GA->getGlobal();
2984   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2985   bool is64bit = Subtarget.isPPC64();
2986   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2987   PICLevel::Level picLevel = M->getPICLevel();
2988 
2989   const TargetMachine &TM = getTargetMachine();
2990   TLSModel::Model Model = TM.getTLSModel(GV);
2991 
2992   if (Model == TLSModel::LocalExec) {
2993     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2994                                                PPCII::MO_TPREL_HA);
2995     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2996                                                PPCII::MO_TPREL_LO);
2997     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2998                              : DAG.getRegister(PPC::R2, MVT::i32);
2999 
3000     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3001     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3002   }
3003 
3004   if (Model == TLSModel::InitialExec) {
3005     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3006     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3007                                                 PPCII::MO_TLS);
3008     SDValue GOTPtr;
3009     if (is64bit) {
3010       setUsesTOCBasePtr(DAG);
3011       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3012       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
3013                            PtrVT, GOTReg, TGA);
3014     } else {
3015       if (!TM.isPositionIndependent())
3016         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3017       else if (picLevel == PICLevel::SmallPIC)
3018         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3019       else
3020         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3021     }
3022     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
3023                                    PtrVT, TGA, GOTPtr);
3024     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3025   }
3026 
3027   if (Model == TLSModel::GeneralDynamic) {
3028     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3029     SDValue GOTPtr;
3030     if (is64bit) {
3031       setUsesTOCBasePtr(DAG);
3032       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3033       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3034                                    GOTReg, TGA);
3035     } else {
3036       if (picLevel == PICLevel::SmallPIC)
3037         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3038       else
3039         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3040     }
3041     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3042                        GOTPtr, TGA, TGA);
3043   }
3044 
3045   if (Model == TLSModel::LocalDynamic) {
3046     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3047     SDValue GOTPtr;
3048     if (is64bit) {
3049       setUsesTOCBasePtr(DAG);
3050       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3051       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3052                            GOTReg, TGA);
3053     } else {
3054       if (picLevel == PICLevel::SmallPIC)
3055         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3056       else
3057         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3058     }
3059     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3060                                   PtrVT, GOTPtr, TGA, TGA);
3061     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3062                                       PtrVT, TLSAddr, TGA);
3063     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3064   }
3065 
3066   llvm_unreachable("Unknown TLS model!");
3067 }
3068 
3069 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3070                                               SelectionDAG &DAG) const {
3071   EVT PtrVT = Op.getValueType();
3072   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3073   SDLoc DL(GSDN);
3074   const GlobalValue *GV = GSDN->getGlobal();
3075 
3076   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3077   // The actual address of the GlobalValue is stored in the TOC.
3078   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3079     if (Subtarget.isUsingPCRelativeCalls()) {
3080       EVT Ty = getPointerTy(DAG.getDataLayout());
3081       if (isAccessedAsGotIndirect(Op)) {
3082         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3083                                                 PPCII::MO_PCREL_FLAG |
3084                                                     PPCII::MO_GOT_FLAG);
3085         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3086         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3087                                    MachinePointerInfo());
3088         return Load;
3089       } else {
3090         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3091                                                 PPCII::MO_PCREL_FLAG);
3092         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3093       }
3094     }
3095     setUsesTOCBasePtr(DAG);
3096     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3097     return getTOCEntry(DAG, DL, GA);
3098   }
3099 
3100   unsigned MOHiFlag, MOLoFlag;
3101   bool IsPIC = isPositionIndependent();
3102   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3103 
3104   if (IsPIC && Subtarget.isSVR4ABI()) {
3105     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3106                                             GSDN->getOffset(),
3107                                             PPCII::MO_PIC_FLAG);
3108     return getTOCEntry(DAG, DL, GA);
3109   }
3110 
3111   SDValue GAHi =
3112     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3113   SDValue GALo =
3114     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3115 
3116   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3117 }
3118 
3119 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3120   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3121   SDLoc dl(Op);
3122 
3123   if (Op.getValueType() == MVT::v2i64) {
3124     // When the operands themselves are v2i64 values, we need to do something
3125     // special because VSX has no underlying comparison operations for these.
3126     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3127       // Equality can be handled by casting to the legal type for Altivec
3128       // comparisons, everything else needs to be expanded.
3129       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3130         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3131                  DAG.getSetCC(dl, MVT::v4i32,
3132                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3133                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3134                    CC));
3135       }
3136 
3137       return SDValue();
3138     }
3139 
3140     // We handle most of these in the usual way.
3141     return Op;
3142   }
3143 
3144   // If we're comparing for equality to zero, expose the fact that this is
3145   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3146   // fold the new nodes.
3147   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3148     return V;
3149 
3150   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3151     // Leave comparisons against 0 and -1 alone for now, since they're usually
3152     // optimized.  FIXME: revisit this when we can custom lower all setcc
3153     // optimizations.
3154     if (C->isAllOnesValue() || C->isNullValue())
3155       return SDValue();
3156   }
3157 
3158   // If we have an integer seteq/setne, turn it into a compare against zero
3159   // by xor'ing the rhs with the lhs, which is faster than setting a
3160   // condition register, reading it back out, and masking the correct bit.  The
3161   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3162   // the result to other bit-twiddling opportunities.
3163   EVT LHSVT = Op.getOperand(0).getValueType();
3164   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3165     EVT VT = Op.getValueType();
3166     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3167                                 Op.getOperand(1));
3168     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3169   }
3170   return SDValue();
3171 }
3172 
3173 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3174   SDNode *Node = Op.getNode();
3175   EVT VT = Node->getValueType(0);
3176   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3177   SDValue InChain = Node->getOperand(0);
3178   SDValue VAListPtr = Node->getOperand(1);
3179   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3180   SDLoc dl(Node);
3181 
3182   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3183 
3184   // gpr_index
3185   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3186                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3187   InChain = GprIndex.getValue(1);
3188 
3189   if (VT == MVT::i64) {
3190     // Check if GprIndex is even
3191     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3192                                  DAG.getConstant(1, dl, MVT::i32));
3193     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3194                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3195     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3196                                           DAG.getConstant(1, dl, MVT::i32));
3197     // Align GprIndex to be even if it isn't
3198     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3199                            GprIndex);
3200   }
3201 
3202   // fpr index is 1 byte after gpr
3203   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3204                                DAG.getConstant(1, dl, MVT::i32));
3205 
3206   // fpr
3207   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3208                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3209   InChain = FprIndex.getValue(1);
3210 
3211   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3212                                        DAG.getConstant(8, dl, MVT::i32));
3213 
3214   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3215                                         DAG.getConstant(4, dl, MVT::i32));
3216 
3217   // areas
3218   SDValue OverflowArea =
3219       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3220   InChain = OverflowArea.getValue(1);
3221 
3222   SDValue RegSaveArea =
3223       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3224   InChain = RegSaveArea.getValue(1);
3225 
3226   // select overflow_area if index > 8
3227   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3228                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3229 
3230   // adjustment constant gpr_index * 4/8
3231   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3232                                     VT.isInteger() ? GprIndex : FprIndex,
3233                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3234                                                     MVT::i32));
3235 
3236   // OurReg = RegSaveArea + RegConstant
3237   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3238                                RegConstant);
3239 
3240   // Floating types are 32 bytes into RegSaveArea
3241   if (VT.isFloatingPoint())
3242     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3243                          DAG.getConstant(32, dl, MVT::i32));
3244 
3245   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3246   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3247                                    VT.isInteger() ? GprIndex : FprIndex,
3248                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3249                                                    MVT::i32));
3250 
3251   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3252                               VT.isInteger() ? VAListPtr : FprPtr,
3253                               MachinePointerInfo(SV), MVT::i8);
3254 
3255   // determine if we should load from reg_save_area or overflow_area
3256   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3257 
3258   // increase overflow_area by 4/8 if gpr/fpr > 8
3259   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3260                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3261                                           dl, MVT::i32));
3262 
3263   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3264                              OverflowAreaPlusN);
3265 
3266   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3267                               MachinePointerInfo(), MVT::i32);
3268 
3269   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3270 }
3271 
3272 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3273   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3274 
3275   // We have to copy the entire va_list struct:
3276   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3277   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3278                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3279                        false, true, false, MachinePointerInfo(),
3280                        MachinePointerInfo());
3281 }
3282 
3283 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3284                                                   SelectionDAG &DAG) const {
3285   if (Subtarget.isAIXABI())
3286     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3287 
3288   return Op.getOperand(0);
3289 }
3290 
3291 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3292                                                 SelectionDAG &DAG) const {
3293   if (Subtarget.isAIXABI())
3294     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3295 
3296   SDValue Chain = Op.getOperand(0);
3297   SDValue Trmp = Op.getOperand(1); // trampoline
3298   SDValue FPtr = Op.getOperand(2); // nested function
3299   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3300   SDLoc dl(Op);
3301 
3302   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3303   bool isPPC64 = (PtrVT == MVT::i64);
3304   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3305 
3306   TargetLowering::ArgListTy Args;
3307   TargetLowering::ArgListEntry Entry;
3308 
3309   Entry.Ty = IntPtrTy;
3310   Entry.Node = Trmp; Args.push_back(Entry);
3311 
3312   // TrampSize == (isPPC64 ? 48 : 40);
3313   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3314                                isPPC64 ? MVT::i64 : MVT::i32);
3315   Args.push_back(Entry);
3316 
3317   Entry.Node = FPtr; Args.push_back(Entry);
3318   Entry.Node = Nest; Args.push_back(Entry);
3319 
3320   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3321   TargetLowering::CallLoweringInfo CLI(DAG);
3322   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3323       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3324       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3325 
3326   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3327   return CallResult.second;
3328 }
3329 
3330 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3331   MachineFunction &MF = DAG.getMachineFunction();
3332   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3333   EVT PtrVT = getPointerTy(MF.getDataLayout());
3334 
3335   SDLoc dl(Op);
3336 
3337   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3338     // vastart just stores the address of the VarArgsFrameIndex slot into the
3339     // memory location argument.
3340     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3341     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3342     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3343                         MachinePointerInfo(SV));
3344   }
3345 
3346   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3347   // We suppose the given va_list is already allocated.
3348   //
3349   // typedef struct {
3350   //  char gpr;     /* index into the array of 8 GPRs
3351   //                 * stored in the register save area
3352   //                 * gpr=0 corresponds to r3,
3353   //                 * gpr=1 to r4, etc.
3354   //                 */
3355   //  char fpr;     /* index into the array of 8 FPRs
3356   //                 * stored in the register save area
3357   //                 * fpr=0 corresponds to f1,
3358   //                 * fpr=1 to f2, etc.
3359   //                 */
3360   //  char *overflow_arg_area;
3361   //                /* location on stack that holds
3362   //                 * the next overflow argument
3363   //                 */
3364   //  char *reg_save_area;
3365   //               /* where r3:r10 and f1:f8 (if saved)
3366   //                * are stored
3367   //                */
3368   // } va_list[1];
3369 
3370   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3371   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3372   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3373                                             PtrVT);
3374   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3375                                  PtrVT);
3376 
3377   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3378   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3379 
3380   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3381   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3382 
3383   uint64_t FPROffset = 1;
3384   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3385 
3386   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3387 
3388   // Store first byte : number of int regs
3389   SDValue firstStore =
3390       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3391                         MachinePointerInfo(SV), MVT::i8);
3392   uint64_t nextOffset = FPROffset;
3393   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3394                                   ConstFPROffset);
3395 
3396   // Store second byte : number of float regs
3397   SDValue secondStore =
3398       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3399                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3400   nextOffset += StackOffset;
3401   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3402 
3403   // Store second word : arguments given on stack
3404   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3405                                     MachinePointerInfo(SV, nextOffset));
3406   nextOffset += FrameOffset;
3407   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3408 
3409   // Store third word : arguments given in registers
3410   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3411                       MachinePointerInfo(SV, nextOffset));
3412 }
3413 
3414 /// FPR - The set of FP registers that should be allocated for arguments
3415 /// on Darwin and AIX.
3416 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3417                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3418                                 PPC::F11, PPC::F12, PPC::F13};
3419 
3420 /// QFPR - The set of QPX registers that should be allocated for arguments.
3421 static const MCPhysReg QFPR[] = {
3422     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3423     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3424 
3425 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3426 /// the stack.
3427 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3428                                        unsigned PtrByteSize) {
3429   unsigned ArgSize = ArgVT.getStoreSize();
3430   if (Flags.isByVal())
3431     ArgSize = Flags.getByValSize();
3432 
3433   // Round up to multiples of the pointer size, except for array members,
3434   // which are always packed.
3435   if (!Flags.isInConsecutiveRegs())
3436     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3437 
3438   return ArgSize;
3439 }
3440 
3441 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3442 /// on the stack.
3443 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3444                                          ISD::ArgFlagsTy Flags,
3445                                          unsigned PtrByteSize) {
3446   Align Alignment(PtrByteSize);
3447 
3448   // Altivec parameters are padded to a 16 byte boundary.
3449   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3450       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3451       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3452       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3453     Alignment = Align(16);
3454   // QPX vector types stored in double-precision are padded to a 32 byte
3455   // boundary.
3456   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3457     Alignment = Align(32);
3458 
3459   // ByVal parameters are aligned as requested.
3460   if (Flags.isByVal()) {
3461     auto BVAlign = Flags.getNonZeroByValAlign();
3462     if (BVAlign > PtrByteSize) {
3463       if (BVAlign.value() % PtrByteSize != 0)
3464         llvm_unreachable(
3465             "ByVal alignment is not a multiple of the pointer size");
3466 
3467       Alignment = BVAlign;
3468     }
3469   }
3470 
3471   // Array members are always packed to their original alignment.
3472   if (Flags.isInConsecutiveRegs()) {
3473     // If the array member was split into multiple registers, the first
3474     // needs to be aligned to the size of the full type.  (Except for
3475     // ppcf128, which is only aligned as its f64 components.)
3476     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3477       Alignment = Align(OrigVT.getStoreSize());
3478     else
3479       Alignment = Align(ArgVT.getStoreSize());
3480   }
3481 
3482   return Alignment;
3483 }
3484 
3485 /// CalculateStackSlotUsed - Return whether this argument will use its
3486 /// stack slot (instead of being passed in registers).  ArgOffset,
3487 /// AvailableFPRs, and AvailableVRs must hold the current argument
3488 /// position, and will be updated to account for this argument.
3489 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3490                                    ISD::ArgFlagsTy Flags,
3491                                    unsigned PtrByteSize,
3492                                    unsigned LinkageSize,
3493                                    unsigned ParamAreaSize,
3494                                    unsigned &ArgOffset,
3495                                    unsigned &AvailableFPRs,
3496                                    unsigned &AvailableVRs, bool HasQPX) {
3497   bool UseMemory = false;
3498 
3499   // Respect alignment of argument on the stack.
3500   Align Alignment =
3501       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3502   ArgOffset = alignTo(ArgOffset, Alignment);
3503   // If there's no space left in the argument save area, we must
3504   // use memory (this check also catches zero-sized arguments).
3505   if (ArgOffset >= LinkageSize + ParamAreaSize)
3506     UseMemory = true;
3507 
3508   // Allocate argument on the stack.
3509   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3510   if (Flags.isInConsecutiveRegsLast())
3511     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3512   // If we overran the argument save area, we must use memory
3513   // (this check catches arguments passed partially in memory)
3514   if (ArgOffset > LinkageSize + ParamAreaSize)
3515     UseMemory = true;
3516 
3517   // However, if the argument is actually passed in an FPR or a VR,
3518   // we don't use memory after all.
3519   if (!Flags.isByVal()) {
3520     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3521         // QPX registers overlap with the scalar FP registers.
3522         (HasQPX && (ArgVT == MVT::v4f32 ||
3523                     ArgVT == MVT::v4f64 ||
3524                     ArgVT == MVT::v4i1)))
3525       if (AvailableFPRs > 0) {
3526         --AvailableFPRs;
3527         return false;
3528       }
3529     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3530         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3531         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3532         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3533       if (AvailableVRs > 0) {
3534         --AvailableVRs;
3535         return false;
3536       }
3537   }
3538 
3539   return UseMemory;
3540 }
3541 
3542 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3543 /// ensure minimum alignment required for target.
3544 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3545                                      unsigned NumBytes) {
3546   return alignTo(NumBytes, Lowering->getStackAlign());
3547 }
3548 
3549 SDValue PPCTargetLowering::LowerFormalArguments(
3550     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3551     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3552     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3553   if (Subtarget.isAIXABI())
3554     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3555                                     InVals);
3556   if (Subtarget.is64BitELFABI())
3557     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3558                                        InVals);
3559   if (Subtarget.is32BitELFABI())
3560     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3561                                        InVals);
3562 
3563   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3564                                      InVals);
3565 }
3566 
3567 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3568     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3569     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3570     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3571 
3572   // 32-bit SVR4 ABI Stack Frame Layout:
3573   //              +-----------------------------------+
3574   //        +-->  |            Back chain             |
3575   //        |     +-----------------------------------+
3576   //        |     | Floating-point register save area |
3577   //        |     +-----------------------------------+
3578   //        |     |    General register save area     |
3579   //        |     +-----------------------------------+
3580   //        |     |          CR save word             |
3581   //        |     +-----------------------------------+
3582   //        |     |         VRSAVE save word          |
3583   //        |     +-----------------------------------+
3584   //        |     |         Alignment padding         |
3585   //        |     +-----------------------------------+
3586   //        |     |     Vector register save area     |
3587   //        |     +-----------------------------------+
3588   //        |     |       Local variable space        |
3589   //        |     +-----------------------------------+
3590   //        |     |        Parameter list area        |
3591   //        |     +-----------------------------------+
3592   //        |     |           LR save word            |
3593   //        |     +-----------------------------------+
3594   // SP-->  +---  |            Back chain             |
3595   //              +-----------------------------------+
3596   //
3597   // Specifications:
3598   //   System V Application Binary Interface PowerPC Processor Supplement
3599   //   AltiVec Technology Programming Interface Manual
3600 
3601   MachineFunction &MF = DAG.getMachineFunction();
3602   MachineFrameInfo &MFI = MF.getFrameInfo();
3603   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3604 
3605   EVT PtrVT = getPointerTy(MF.getDataLayout());
3606   // Potential tail calls could cause overwriting of argument stack slots.
3607   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3608                        (CallConv == CallingConv::Fast));
3609   unsigned PtrByteSize = 4;
3610 
3611   // Assign locations to all of the incoming arguments.
3612   SmallVector<CCValAssign, 16> ArgLocs;
3613   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3614                  *DAG.getContext());
3615 
3616   // Reserve space for the linkage area on the stack.
3617   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3618   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3619   if (useSoftFloat())
3620     CCInfo.PreAnalyzeFormalArguments(Ins);
3621 
3622   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3623   CCInfo.clearWasPPCF128();
3624 
3625   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3626     CCValAssign &VA = ArgLocs[i];
3627 
3628     // Arguments stored in registers.
3629     if (VA.isRegLoc()) {
3630       const TargetRegisterClass *RC;
3631       EVT ValVT = VA.getValVT();
3632 
3633       switch (ValVT.getSimpleVT().SimpleTy) {
3634         default:
3635           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3636         case MVT::i1:
3637         case MVT::i32:
3638           RC = &PPC::GPRCRegClass;
3639           break;
3640         case MVT::f32:
3641           if (Subtarget.hasP8Vector())
3642             RC = &PPC::VSSRCRegClass;
3643           else if (Subtarget.hasSPE())
3644             RC = &PPC::GPRCRegClass;
3645           else
3646             RC = &PPC::F4RCRegClass;
3647           break;
3648         case MVT::f64:
3649           if (Subtarget.hasVSX())
3650             RC = &PPC::VSFRCRegClass;
3651           else if (Subtarget.hasSPE())
3652             // SPE passes doubles in GPR pairs.
3653             RC = &PPC::GPRCRegClass;
3654           else
3655             RC = &PPC::F8RCRegClass;
3656           break;
3657         case MVT::v16i8:
3658         case MVT::v8i16:
3659         case MVT::v4i32:
3660           RC = &PPC::VRRCRegClass;
3661           break;
3662         case MVT::v4f32:
3663           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3664           break;
3665         case MVT::v2f64:
3666         case MVT::v2i64:
3667           RC = &PPC::VRRCRegClass;
3668           break;
3669         case MVT::v4f64:
3670           RC = &PPC::QFRCRegClass;
3671           break;
3672         case MVT::v4i1:
3673           RC = &PPC::QBRCRegClass;
3674           break;
3675       }
3676 
3677       SDValue ArgValue;
3678       // Transform the arguments stored in physical registers into
3679       // virtual ones.
3680       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3681         assert(i + 1 < e && "No second half of double precision argument");
3682         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3683         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3684         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3685         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3686         if (!Subtarget.isLittleEndian())
3687           std::swap (ArgValueLo, ArgValueHi);
3688         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3689                                ArgValueHi);
3690       } else {
3691         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3692         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3693                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3694         if (ValVT == MVT::i1)
3695           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3696       }
3697 
3698       InVals.push_back(ArgValue);
3699     } else {
3700       // Argument stored in memory.
3701       assert(VA.isMemLoc());
3702 
3703       // Get the extended size of the argument type in stack
3704       unsigned ArgSize = VA.getLocVT().getStoreSize();
3705       // Get the actual size of the argument type
3706       unsigned ObjSize = VA.getValVT().getStoreSize();
3707       unsigned ArgOffset = VA.getLocMemOffset();
3708       // Stack objects in PPC32 are right justified.
3709       ArgOffset += ArgSize - ObjSize;
3710       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3711 
3712       // Create load nodes to retrieve arguments from the stack.
3713       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3714       InVals.push_back(
3715           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3716     }
3717   }
3718 
3719   // Assign locations to all of the incoming aggregate by value arguments.
3720   // Aggregates passed by value are stored in the local variable space of the
3721   // caller's stack frame, right above the parameter list area.
3722   SmallVector<CCValAssign, 16> ByValArgLocs;
3723   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3724                       ByValArgLocs, *DAG.getContext());
3725 
3726   // Reserve stack space for the allocations in CCInfo.
3727   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3728 
3729   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3730 
3731   // Area that is at least reserved in the caller of this function.
3732   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3733   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3734 
3735   // Set the size that is at least reserved in caller of this function.  Tail
3736   // call optimized function's reserved stack space needs to be aligned so that
3737   // taking the difference between two stack areas will result in an aligned
3738   // stack.
3739   MinReservedArea =
3740       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3741   FuncInfo->setMinReservedArea(MinReservedArea);
3742 
3743   SmallVector<SDValue, 8> MemOps;
3744 
3745   // If the function takes variable number of arguments, make a frame index for
3746   // the start of the first vararg value... for expansion of llvm.va_start.
3747   if (isVarArg) {
3748     static const MCPhysReg GPArgRegs[] = {
3749       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3750       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3751     };
3752     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3753 
3754     static const MCPhysReg FPArgRegs[] = {
3755       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3756       PPC::F8
3757     };
3758     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3759 
3760     if (useSoftFloat() || hasSPE())
3761        NumFPArgRegs = 0;
3762 
3763     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3764     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3765 
3766     // Make room for NumGPArgRegs and NumFPArgRegs.
3767     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3768                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3769 
3770     FuncInfo->setVarArgsStackOffset(
3771       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3772                             CCInfo.getNextStackOffset(), true));
3773 
3774     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3775     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3776 
3777     // The fixed integer arguments of a variadic function are stored to the
3778     // VarArgsFrameIndex on the stack so that they may be loaded by
3779     // dereferencing the result of va_next.
3780     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3781       // Get an existing live-in vreg, or add a new one.
3782       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3783       if (!VReg)
3784         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3785 
3786       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3787       SDValue Store =
3788           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3789       MemOps.push_back(Store);
3790       // Increment the address by four for the next argument to store
3791       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3792       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3793     }
3794 
3795     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3796     // is set.
3797     // The double arguments are stored to the VarArgsFrameIndex
3798     // on the stack.
3799     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3800       // Get an existing live-in vreg, or add a new one.
3801       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3802       if (!VReg)
3803         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3804 
3805       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3806       SDValue Store =
3807           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3808       MemOps.push_back(Store);
3809       // Increment the address by eight for the next argument to store
3810       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3811                                          PtrVT);
3812       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3813     }
3814   }
3815 
3816   if (!MemOps.empty())
3817     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3818 
3819   return Chain;
3820 }
3821 
3822 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3823 // value to MVT::i64 and then truncate to the correct register size.
3824 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3825                                              EVT ObjectVT, SelectionDAG &DAG,
3826                                              SDValue ArgVal,
3827                                              const SDLoc &dl) const {
3828   if (Flags.isSExt())
3829     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3830                          DAG.getValueType(ObjectVT));
3831   else if (Flags.isZExt())
3832     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3833                          DAG.getValueType(ObjectVT));
3834 
3835   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3836 }
3837 
3838 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3839     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3840     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3841     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3842   // TODO: add description of PPC stack frame format, or at least some docs.
3843   //
3844   bool isELFv2ABI = Subtarget.isELFv2ABI();
3845   bool isLittleEndian = Subtarget.isLittleEndian();
3846   MachineFunction &MF = DAG.getMachineFunction();
3847   MachineFrameInfo &MFI = MF.getFrameInfo();
3848   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3849 
3850   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3851          "fastcc not supported on varargs functions");
3852 
3853   EVT PtrVT = getPointerTy(MF.getDataLayout());
3854   // Potential tail calls could cause overwriting of argument stack slots.
3855   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3856                        (CallConv == CallingConv::Fast));
3857   unsigned PtrByteSize = 8;
3858   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3859 
3860   static const MCPhysReg GPR[] = {
3861     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3862     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3863   };
3864   static const MCPhysReg VR[] = {
3865     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3866     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3867   };
3868 
3869   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3870   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3871   const unsigned Num_VR_Regs  = array_lengthof(VR);
3872   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3873 
3874   // Do a first pass over the arguments to determine whether the ABI
3875   // guarantees that our caller has allocated the parameter save area
3876   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3877   // in the ELFv2 ABI, it is true if this is a vararg function or if
3878   // any parameter is located in a stack slot.
3879 
3880   bool HasParameterArea = !isELFv2ABI || isVarArg;
3881   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3882   unsigned NumBytes = LinkageSize;
3883   unsigned AvailableFPRs = Num_FPR_Regs;
3884   unsigned AvailableVRs = Num_VR_Regs;
3885   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3886     if (Ins[i].Flags.isNest())
3887       continue;
3888 
3889     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3890                                PtrByteSize, LinkageSize, ParamAreaSize,
3891                                NumBytes, AvailableFPRs, AvailableVRs,
3892                                Subtarget.hasQPX()))
3893       HasParameterArea = true;
3894   }
3895 
3896   // Add DAG nodes to load the arguments or copy them out of registers.  On
3897   // entry to a function on PPC, the arguments start after the linkage area,
3898   // although the first ones are often in registers.
3899 
3900   unsigned ArgOffset = LinkageSize;
3901   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3902   unsigned &QFPR_idx = FPR_idx;
3903   SmallVector<SDValue, 8> MemOps;
3904   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3905   unsigned CurArgIdx = 0;
3906   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3907     SDValue ArgVal;
3908     bool needsLoad = false;
3909     EVT ObjectVT = Ins[ArgNo].VT;
3910     EVT OrigVT = Ins[ArgNo].ArgVT;
3911     unsigned ObjSize = ObjectVT.getStoreSize();
3912     unsigned ArgSize = ObjSize;
3913     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3914     if (Ins[ArgNo].isOrigArg()) {
3915       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3916       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3917     }
3918     // We re-align the argument offset for each argument, except when using the
3919     // fast calling convention, when we need to make sure we do that only when
3920     // we'll actually use a stack slot.
3921     unsigned CurArgOffset;
3922     Align Alignment;
3923     auto ComputeArgOffset = [&]() {
3924       /* Respect alignment of argument on the stack.  */
3925       Alignment =
3926           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3927       ArgOffset = alignTo(ArgOffset, Alignment);
3928       CurArgOffset = ArgOffset;
3929     };
3930 
3931     if (CallConv != CallingConv::Fast) {
3932       ComputeArgOffset();
3933 
3934       /* Compute GPR index associated with argument offset.  */
3935       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3936       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3937     }
3938 
3939     // FIXME the codegen can be much improved in some cases.
3940     // We do not have to keep everything in memory.
3941     if (Flags.isByVal()) {
3942       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3943 
3944       if (CallConv == CallingConv::Fast)
3945         ComputeArgOffset();
3946 
3947       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3948       ObjSize = Flags.getByValSize();
3949       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3950       // Empty aggregate parameters do not take up registers.  Examples:
3951       //   struct { } a;
3952       //   union  { } b;
3953       //   int c[0];
3954       // etc.  However, we have to provide a place-holder in InVals, so
3955       // pretend we have an 8-byte item at the current address for that
3956       // purpose.
3957       if (!ObjSize) {
3958         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3959         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3960         InVals.push_back(FIN);
3961         continue;
3962       }
3963 
3964       // Create a stack object covering all stack doublewords occupied
3965       // by the argument.  If the argument is (fully or partially) on
3966       // the stack, or if the argument is fully in registers but the
3967       // caller has allocated the parameter save anyway, we can refer
3968       // directly to the caller's stack frame.  Otherwise, create a
3969       // local copy in our own frame.
3970       int FI;
3971       if (HasParameterArea ||
3972           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3973         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3974       else
3975         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3976       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3977 
3978       // Handle aggregates smaller than 8 bytes.
3979       if (ObjSize < PtrByteSize) {
3980         // The value of the object is its address, which differs from the
3981         // address of the enclosing doubleword on big-endian systems.
3982         SDValue Arg = FIN;
3983         if (!isLittleEndian) {
3984           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3985           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3986         }
3987         InVals.push_back(Arg);
3988 
3989         if (GPR_idx != Num_GPR_Regs) {
3990           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3991           FuncInfo->addLiveInAttr(VReg, Flags);
3992           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3993           SDValue Store;
3994 
3995           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3996             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3997                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3998             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3999                                       MachinePointerInfo(&*FuncArg), ObjType);
4000           } else {
4001             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4002             // store the whole register as-is to the parameter save area
4003             // slot.
4004             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4005                                  MachinePointerInfo(&*FuncArg));
4006           }
4007 
4008           MemOps.push_back(Store);
4009         }
4010         // Whether we copied from a register or not, advance the offset
4011         // into the parameter save area by a full doubleword.
4012         ArgOffset += PtrByteSize;
4013         continue;
4014       }
4015 
4016       // The value of the object is its address, which is the address of
4017       // its first stack doubleword.
4018       InVals.push_back(FIN);
4019 
4020       // Store whatever pieces of the object are in registers to memory.
4021       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4022         if (GPR_idx == Num_GPR_Regs)
4023           break;
4024 
4025         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4026         FuncInfo->addLiveInAttr(VReg, Flags);
4027         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4028         SDValue Addr = FIN;
4029         if (j) {
4030           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4031           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4032         }
4033         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4034                                      MachinePointerInfo(&*FuncArg, j));
4035         MemOps.push_back(Store);
4036         ++GPR_idx;
4037       }
4038       ArgOffset += ArgSize;
4039       continue;
4040     }
4041 
4042     switch (ObjectVT.getSimpleVT().SimpleTy) {
4043     default: llvm_unreachable("Unhandled argument type!");
4044     case MVT::i1:
4045     case MVT::i32:
4046     case MVT::i64:
4047       if (Flags.isNest()) {
4048         // The 'nest' parameter, if any, is passed in R11.
4049         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4050         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4051 
4052         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4053           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4054 
4055         break;
4056       }
4057 
4058       // These can be scalar arguments or elements of an integer array type
4059       // passed directly.  Clang may use those instead of "byval" aggregate
4060       // types to avoid forcing arguments to memory unnecessarily.
4061       if (GPR_idx != Num_GPR_Regs) {
4062         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4063         FuncInfo->addLiveInAttr(VReg, Flags);
4064         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4065 
4066         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4067           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4068           // value to MVT::i64 and then truncate to the correct register size.
4069           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4070       } else {
4071         if (CallConv == CallingConv::Fast)
4072           ComputeArgOffset();
4073 
4074         needsLoad = true;
4075         ArgSize = PtrByteSize;
4076       }
4077       if (CallConv != CallingConv::Fast || needsLoad)
4078         ArgOffset += 8;
4079       break;
4080 
4081     case MVT::f32:
4082     case MVT::f64:
4083       // These can be scalar arguments or elements of a float array type
4084       // passed directly.  The latter are used to implement ELFv2 homogenous
4085       // float aggregates.
4086       if (FPR_idx != Num_FPR_Regs) {
4087         unsigned VReg;
4088 
4089         if (ObjectVT == MVT::f32)
4090           VReg = MF.addLiveIn(FPR[FPR_idx],
4091                               Subtarget.hasP8Vector()
4092                                   ? &PPC::VSSRCRegClass
4093                                   : &PPC::F4RCRegClass);
4094         else
4095           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4096                                                 ? &PPC::VSFRCRegClass
4097                                                 : &PPC::F8RCRegClass);
4098 
4099         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4100         ++FPR_idx;
4101       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4102         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4103         // once we support fp <-> gpr moves.
4104 
4105         // This can only ever happen in the presence of f32 array types,
4106         // since otherwise we never run out of FPRs before running out
4107         // of GPRs.
4108         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4109         FuncInfo->addLiveInAttr(VReg, Flags);
4110         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4111 
4112         if (ObjectVT == MVT::f32) {
4113           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4114             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4115                                  DAG.getConstant(32, dl, MVT::i32));
4116           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4117         }
4118 
4119         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4120       } else {
4121         if (CallConv == CallingConv::Fast)
4122           ComputeArgOffset();
4123 
4124         needsLoad = true;
4125       }
4126 
4127       // When passing an array of floats, the array occupies consecutive
4128       // space in the argument area; only round up to the next doubleword
4129       // at the end of the array.  Otherwise, each float takes 8 bytes.
4130       if (CallConv != CallingConv::Fast || needsLoad) {
4131         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4132         ArgOffset += ArgSize;
4133         if (Flags.isInConsecutiveRegsLast())
4134           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4135       }
4136       break;
4137     case MVT::v4f32:
4138     case MVT::v4i32:
4139     case MVT::v8i16:
4140     case MVT::v16i8:
4141     case MVT::v2f64:
4142     case MVT::v2i64:
4143     case MVT::v1i128:
4144     case MVT::f128:
4145       if (!Subtarget.hasQPX()) {
4146         // These can be scalar arguments or elements of a vector array type
4147         // passed directly.  The latter are used to implement ELFv2 homogenous
4148         // vector aggregates.
4149         if (VR_idx != Num_VR_Regs) {
4150           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4151           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4152           ++VR_idx;
4153         } else {
4154           if (CallConv == CallingConv::Fast)
4155             ComputeArgOffset();
4156           needsLoad = true;
4157         }
4158         if (CallConv != CallingConv::Fast || needsLoad)
4159           ArgOffset += 16;
4160         break;
4161       } // not QPX
4162 
4163       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4164              "Invalid QPX parameter type");
4165       LLVM_FALLTHROUGH;
4166 
4167     case MVT::v4f64:
4168     case MVT::v4i1:
4169       // QPX vectors are treated like their scalar floating-point subregisters
4170       // (except that they're larger).
4171       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4172       if (QFPR_idx != Num_QFPR_Regs) {
4173         const TargetRegisterClass *RC;
4174         switch (ObjectVT.getSimpleVT().SimpleTy) {
4175         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4176         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4177         default:         RC = &PPC::QBRCRegClass; break;
4178         }
4179 
4180         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4181         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4182         ++QFPR_idx;
4183       } else {
4184         if (CallConv == CallingConv::Fast)
4185           ComputeArgOffset();
4186         needsLoad = true;
4187       }
4188       if (CallConv != CallingConv::Fast || needsLoad)
4189         ArgOffset += Sz;
4190       break;
4191     }
4192 
4193     // We need to load the argument to a virtual register if we determined
4194     // above that we ran out of physical registers of the appropriate type.
4195     if (needsLoad) {
4196       if (ObjSize < ArgSize && !isLittleEndian)
4197         CurArgOffset += ArgSize - ObjSize;
4198       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4199       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4200       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4201     }
4202 
4203     InVals.push_back(ArgVal);
4204   }
4205 
4206   // Area that is at least reserved in the caller of this function.
4207   unsigned MinReservedArea;
4208   if (HasParameterArea)
4209     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4210   else
4211     MinReservedArea = LinkageSize;
4212 
4213   // Set the size that is at least reserved in caller of this function.  Tail
4214   // call optimized functions' reserved stack space needs to be aligned so that
4215   // taking the difference between two stack areas will result in an aligned
4216   // stack.
4217   MinReservedArea =
4218       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4219   FuncInfo->setMinReservedArea(MinReservedArea);
4220 
4221   // If the function takes variable number of arguments, make a frame index for
4222   // the start of the first vararg value... for expansion of llvm.va_start.
4223   if (isVarArg) {
4224     int Depth = ArgOffset;
4225 
4226     FuncInfo->setVarArgsFrameIndex(
4227       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4228     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4229 
4230     // If this function is vararg, store any remaining integer argument regs
4231     // to their spots on the stack so that they may be loaded by dereferencing
4232     // the result of va_next.
4233     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4234          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4235       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4236       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4237       SDValue Store =
4238           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4239       MemOps.push_back(Store);
4240       // Increment the address by four for the next argument to store
4241       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4242       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4243     }
4244   }
4245 
4246   if (!MemOps.empty())
4247     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4248 
4249   return Chain;
4250 }
4251 
4252 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4253     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4254     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4255     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4256   // TODO: add description of PPC stack frame format, or at least some docs.
4257   //
4258   MachineFunction &MF = DAG.getMachineFunction();
4259   MachineFrameInfo &MFI = MF.getFrameInfo();
4260   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4261 
4262   EVT PtrVT = getPointerTy(MF.getDataLayout());
4263   bool isPPC64 = PtrVT == MVT::i64;
4264   // Potential tail calls could cause overwriting of argument stack slots.
4265   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4266                        (CallConv == CallingConv::Fast));
4267   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4268   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4269   unsigned ArgOffset = LinkageSize;
4270   // Area that is at least reserved in caller of this function.
4271   unsigned MinReservedArea = ArgOffset;
4272 
4273   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4274     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4275     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4276   };
4277   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4278     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4279     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4280   };
4281   static const MCPhysReg VR[] = {
4282     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4283     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4284   };
4285 
4286   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4287   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4288   const unsigned Num_VR_Regs  = array_lengthof( VR);
4289 
4290   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4291 
4292   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4293 
4294   // In 32-bit non-varargs functions, the stack space for vectors is after the
4295   // stack space for non-vectors.  We do not use this space unless we have
4296   // too many vectors to fit in registers, something that only occurs in
4297   // constructed examples:), but we have to walk the arglist to figure
4298   // that out...for the pathological case, compute VecArgOffset as the
4299   // start of the vector parameter area.  Computing VecArgOffset is the
4300   // entire point of the following loop.
4301   unsigned VecArgOffset = ArgOffset;
4302   if (!isVarArg && !isPPC64) {
4303     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4304          ++ArgNo) {
4305       EVT ObjectVT = Ins[ArgNo].VT;
4306       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4307 
4308       if (Flags.isByVal()) {
4309         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4310         unsigned ObjSize = Flags.getByValSize();
4311         unsigned ArgSize =
4312                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4313         VecArgOffset += ArgSize;
4314         continue;
4315       }
4316 
4317       switch(ObjectVT.getSimpleVT().SimpleTy) {
4318       default: llvm_unreachable("Unhandled argument type!");
4319       case MVT::i1:
4320       case MVT::i32:
4321       case MVT::f32:
4322         VecArgOffset += 4;
4323         break;
4324       case MVT::i64:  // PPC64
4325       case MVT::f64:
4326         // FIXME: We are guaranteed to be !isPPC64 at this point.
4327         // Does MVT::i64 apply?
4328         VecArgOffset += 8;
4329         break;
4330       case MVT::v4f32:
4331       case MVT::v4i32:
4332       case MVT::v8i16:
4333       case MVT::v16i8:
4334         // Nothing to do, we're only looking at Nonvector args here.
4335         break;
4336       }
4337     }
4338   }
4339   // We've found where the vector parameter area in memory is.  Skip the
4340   // first 12 parameters; these don't use that memory.
4341   VecArgOffset = ((VecArgOffset+15)/16)*16;
4342   VecArgOffset += 12*16;
4343 
4344   // Add DAG nodes to load the arguments or copy them out of registers.  On
4345   // entry to a function on PPC, the arguments start after the linkage area,
4346   // although the first ones are often in registers.
4347 
4348   SmallVector<SDValue, 8> MemOps;
4349   unsigned nAltivecParamsAtEnd = 0;
4350   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4351   unsigned CurArgIdx = 0;
4352   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4353     SDValue ArgVal;
4354     bool needsLoad = false;
4355     EVT ObjectVT = Ins[ArgNo].VT;
4356     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4357     unsigned ArgSize = ObjSize;
4358     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4359     if (Ins[ArgNo].isOrigArg()) {
4360       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4361       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4362     }
4363     unsigned CurArgOffset = ArgOffset;
4364 
4365     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4366     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4367         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4368       if (isVarArg || isPPC64) {
4369         MinReservedArea = ((MinReservedArea+15)/16)*16;
4370         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4371                                                   Flags,
4372                                                   PtrByteSize);
4373       } else  nAltivecParamsAtEnd++;
4374     } else
4375       // Calculate min reserved area.
4376       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4377                                                 Flags,
4378                                                 PtrByteSize);
4379 
4380     // FIXME the codegen can be much improved in some cases.
4381     // We do not have to keep everything in memory.
4382     if (Flags.isByVal()) {
4383       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4384 
4385       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4386       ObjSize = Flags.getByValSize();
4387       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4388       // Objects of size 1 and 2 are right justified, everything else is
4389       // left justified.  This means the memory address is adjusted forwards.
4390       if (ObjSize==1 || ObjSize==2) {
4391         CurArgOffset = CurArgOffset + (4 - ObjSize);
4392       }
4393       // The value of the object is its address.
4394       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4395       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4396       InVals.push_back(FIN);
4397       if (ObjSize==1 || ObjSize==2) {
4398         if (GPR_idx != Num_GPR_Regs) {
4399           unsigned VReg;
4400           if (isPPC64)
4401             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4402           else
4403             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4404           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4405           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4406           SDValue Store =
4407               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4408                                 MachinePointerInfo(&*FuncArg), ObjType);
4409           MemOps.push_back(Store);
4410           ++GPR_idx;
4411         }
4412 
4413         ArgOffset += PtrByteSize;
4414 
4415         continue;
4416       }
4417       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4418         // Store whatever pieces of the object are in registers
4419         // to memory.  ArgOffset will be the address of the beginning
4420         // of the object.
4421         if (GPR_idx != Num_GPR_Regs) {
4422           unsigned VReg;
4423           if (isPPC64)
4424             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4425           else
4426             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4427           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4428           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4429           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4430           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4431                                        MachinePointerInfo(&*FuncArg, j));
4432           MemOps.push_back(Store);
4433           ++GPR_idx;
4434           ArgOffset += PtrByteSize;
4435         } else {
4436           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4437           break;
4438         }
4439       }
4440       continue;
4441     }
4442 
4443     switch (ObjectVT.getSimpleVT().SimpleTy) {
4444     default: llvm_unreachable("Unhandled argument type!");
4445     case MVT::i1:
4446     case MVT::i32:
4447       if (!isPPC64) {
4448         if (GPR_idx != Num_GPR_Regs) {
4449           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4450           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4451 
4452           if (ObjectVT == MVT::i1)
4453             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4454 
4455           ++GPR_idx;
4456         } else {
4457           needsLoad = true;
4458           ArgSize = PtrByteSize;
4459         }
4460         // All int arguments reserve stack space in the Darwin ABI.
4461         ArgOffset += PtrByteSize;
4462         break;
4463       }
4464       LLVM_FALLTHROUGH;
4465     case MVT::i64:  // PPC64
4466       if (GPR_idx != Num_GPR_Regs) {
4467         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4468         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4469 
4470         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4471           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4472           // value to MVT::i64 and then truncate to the correct register size.
4473           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4474 
4475         ++GPR_idx;
4476       } else {
4477         needsLoad = true;
4478         ArgSize = PtrByteSize;
4479       }
4480       // All int arguments reserve stack space in the Darwin ABI.
4481       ArgOffset += 8;
4482       break;
4483 
4484     case MVT::f32:
4485     case MVT::f64:
4486       // Every 4 bytes of argument space consumes one of the GPRs available for
4487       // argument passing.
4488       if (GPR_idx != Num_GPR_Regs) {
4489         ++GPR_idx;
4490         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4491           ++GPR_idx;
4492       }
4493       if (FPR_idx != Num_FPR_Regs) {
4494         unsigned VReg;
4495 
4496         if (ObjectVT == MVT::f32)
4497           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4498         else
4499           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4500 
4501         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4502         ++FPR_idx;
4503       } else {
4504         needsLoad = true;
4505       }
4506 
4507       // All FP arguments reserve stack space in the Darwin ABI.
4508       ArgOffset += isPPC64 ? 8 : ObjSize;
4509       break;
4510     case MVT::v4f32:
4511     case MVT::v4i32:
4512     case MVT::v8i16:
4513     case MVT::v16i8:
4514       // Note that vector arguments in registers don't reserve stack space,
4515       // except in varargs functions.
4516       if (VR_idx != Num_VR_Regs) {
4517         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4518         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4519         if (isVarArg) {
4520           while ((ArgOffset % 16) != 0) {
4521             ArgOffset += PtrByteSize;
4522             if (GPR_idx != Num_GPR_Regs)
4523               GPR_idx++;
4524           }
4525           ArgOffset += 16;
4526           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4527         }
4528         ++VR_idx;
4529       } else {
4530         if (!isVarArg && !isPPC64) {
4531           // Vectors go after all the nonvectors.
4532           CurArgOffset = VecArgOffset;
4533           VecArgOffset += 16;
4534         } else {
4535           // Vectors are aligned.
4536           ArgOffset = ((ArgOffset+15)/16)*16;
4537           CurArgOffset = ArgOffset;
4538           ArgOffset += 16;
4539         }
4540         needsLoad = true;
4541       }
4542       break;
4543     }
4544 
4545     // We need to load the argument to a virtual register if we determined above
4546     // that we ran out of physical registers of the appropriate type.
4547     if (needsLoad) {
4548       int FI = MFI.CreateFixedObject(ObjSize,
4549                                      CurArgOffset + (ArgSize - ObjSize),
4550                                      isImmutable);
4551       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4552       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4553     }
4554 
4555     InVals.push_back(ArgVal);
4556   }
4557 
4558   // Allow for Altivec parameters at the end, if needed.
4559   if (nAltivecParamsAtEnd) {
4560     MinReservedArea = ((MinReservedArea+15)/16)*16;
4561     MinReservedArea += 16*nAltivecParamsAtEnd;
4562   }
4563 
4564   // Area that is at least reserved in the caller of this function.
4565   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4566 
4567   // Set the size that is at least reserved in caller of this function.  Tail
4568   // call optimized functions' reserved stack space needs to be aligned so that
4569   // taking the difference between two stack areas will result in an aligned
4570   // stack.
4571   MinReservedArea =
4572       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4573   FuncInfo->setMinReservedArea(MinReservedArea);
4574 
4575   // If the function takes variable number of arguments, make a frame index for
4576   // the start of the first vararg value... for expansion of llvm.va_start.
4577   if (isVarArg) {
4578     int Depth = ArgOffset;
4579 
4580     FuncInfo->setVarArgsFrameIndex(
4581       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4582                             Depth, true));
4583     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4584 
4585     // If this function is vararg, store any remaining integer argument regs
4586     // to their spots on the stack so that they may be loaded by dereferencing
4587     // the result of va_next.
4588     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4589       unsigned VReg;
4590 
4591       if (isPPC64)
4592         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4593       else
4594         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4595 
4596       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4597       SDValue Store =
4598           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4599       MemOps.push_back(Store);
4600       // Increment the address by four for the next argument to store
4601       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4602       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4603     }
4604   }
4605 
4606   if (!MemOps.empty())
4607     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4608 
4609   return Chain;
4610 }
4611 
4612 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4613 /// adjusted to accommodate the arguments for the tailcall.
4614 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4615                                    unsigned ParamSize) {
4616 
4617   if (!isTailCall) return 0;
4618 
4619   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4620   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4621   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4622   // Remember only if the new adjustment is bigger.
4623   if (SPDiff < FI->getTailCallSPDelta())
4624     FI->setTailCallSPDelta(SPDiff);
4625 
4626   return SPDiff;
4627 }
4628 
4629 static bool isFunctionGlobalAddress(SDValue Callee);
4630 
4631 static bool
4632 callsShareTOCBase(const Function *Caller, SDValue Callee,
4633                     const TargetMachine &TM) {
4634    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4635    // don't have enough information to determine if the caller and calle share
4636    // the same  TOC base, so we have to pessimistically assume they don't for
4637    // correctness.
4638    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4639    if (!G)
4640      return false;
4641 
4642    const GlobalValue *GV = G->getGlobal();
4643   // The medium and large code models are expected to provide a sufficiently
4644   // large TOC to provide all data addressing needs of a module with a
4645   // single TOC. Since each module will be addressed with a single TOC then we
4646   // only need to check that caller and callee don't cross dso boundaries.
4647   if (CodeModel::Medium == TM.getCodeModel() ||
4648       CodeModel::Large == TM.getCodeModel())
4649     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4650 
4651   // Otherwise we need to ensure callee and caller are in the same section,
4652   // since the linker may allocate multiple TOCs, and we don't know which
4653   // sections will belong to the same TOC base.
4654 
4655   if (!GV->isStrongDefinitionForLinker())
4656     return false;
4657 
4658   // Any explicitly-specified sections and section prefixes must also match.
4659   // Also, if we're using -ffunction-sections, then each function is always in
4660   // a different section (the same is true for COMDAT functions).
4661   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4662       GV->getSection() != Caller->getSection())
4663     return false;
4664   if (const auto *F = dyn_cast<Function>(GV)) {
4665     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4666       return false;
4667   }
4668 
4669   // If the callee might be interposed, then we can't assume the ultimate call
4670   // target will be in the same section. Even in cases where we can assume that
4671   // interposition won't happen, in any case where the linker might insert a
4672   // stub to allow for interposition, we must generate code as though
4673   // interposition might occur. To understand why this matters, consider a
4674   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4675   // in the same section, but a is in a different module (i.e. has a different
4676   // TOC base pointer). If the linker allows for interposition between b and c,
4677   // then it will generate a stub for the call edge between b and c which will
4678   // save the TOC pointer into the designated stack slot allocated by b. If we
4679   // return true here, and therefore allow a tail call between b and c, that
4680   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4681   // pointer into the stack slot allocated by a (where the a -> b stub saved
4682   // a's TOC base pointer). If we're not considering a tail call, but rather,
4683   // whether a nop is needed after the call instruction in b, because the linker
4684   // will insert a stub, it might complain about a missing nop if we omit it
4685   // (although many don't complain in this case).
4686   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4687     return false;
4688 
4689   return true;
4690 }
4691 
4692 static bool
4693 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4694                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4695   assert(Subtarget.is64BitELFABI());
4696 
4697   const unsigned PtrByteSize = 8;
4698   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4699 
4700   static const MCPhysReg GPR[] = {
4701     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4702     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4703   };
4704   static const MCPhysReg VR[] = {
4705     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4706     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4707   };
4708 
4709   const unsigned NumGPRs = array_lengthof(GPR);
4710   const unsigned NumFPRs = 13;
4711   const unsigned NumVRs = array_lengthof(VR);
4712   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4713 
4714   unsigned NumBytes = LinkageSize;
4715   unsigned AvailableFPRs = NumFPRs;
4716   unsigned AvailableVRs = NumVRs;
4717 
4718   for (const ISD::OutputArg& Param : Outs) {
4719     if (Param.Flags.isNest()) continue;
4720 
4721     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4722                                PtrByteSize, LinkageSize, ParamAreaSize,
4723                                NumBytes, AvailableFPRs, AvailableVRs,
4724                                Subtarget.hasQPX()))
4725       return true;
4726   }
4727   return false;
4728 }
4729 
4730 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4731   if (CB.arg_size() != CallerFn->arg_size())
4732     return false;
4733 
4734   auto CalleeArgIter = CB.arg_begin();
4735   auto CalleeArgEnd = CB.arg_end();
4736   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4737 
4738   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4739     const Value* CalleeArg = *CalleeArgIter;
4740     const Value* CallerArg = &(*CallerArgIter);
4741     if (CalleeArg == CallerArg)
4742       continue;
4743 
4744     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4745     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4746     //      }
4747     // 1st argument of callee is undef and has the same type as caller.
4748     if (CalleeArg->getType() == CallerArg->getType() &&
4749         isa<UndefValue>(CalleeArg))
4750       continue;
4751 
4752     return false;
4753   }
4754 
4755   return true;
4756 }
4757 
4758 // Returns true if TCO is possible between the callers and callees
4759 // calling conventions.
4760 static bool
4761 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4762                                     CallingConv::ID CalleeCC) {
4763   // Tail calls are possible with fastcc and ccc.
4764   auto isTailCallableCC  = [] (CallingConv::ID CC){
4765       return  CC == CallingConv::C || CC == CallingConv::Fast;
4766   };
4767   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4768     return false;
4769 
4770   // We can safely tail call both fastcc and ccc callees from a c calling
4771   // convention caller. If the caller is fastcc, we may have less stack space
4772   // than a non-fastcc caller with the same signature so disable tail-calls in
4773   // that case.
4774   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4775 }
4776 
4777 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4778     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4779     const SmallVectorImpl<ISD::OutputArg> &Outs,
4780     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4781   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4782 
4783   if (DisableSCO && !TailCallOpt) return false;
4784 
4785   // Variadic argument functions are not supported.
4786   if (isVarArg) return false;
4787 
4788   auto &Caller = DAG.getMachineFunction().getFunction();
4789   // Check that the calling conventions are compatible for tco.
4790   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4791     return false;
4792 
4793   // Caller contains any byval parameter is not supported.
4794   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4795     return false;
4796 
4797   // Callee contains any byval parameter is not supported, too.
4798   // Note: This is a quick work around, because in some cases, e.g.
4799   // caller's stack size > callee's stack size, we are still able to apply
4800   // sibling call optimization. For example, gcc is able to do SCO for caller1
4801   // in the following example, but not for caller2.
4802   //   struct test {
4803   //     long int a;
4804   //     char ary[56];
4805   //   } gTest;
4806   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4807   //     b->a = v.a;
4808   //     return 0;
4809   //   }
4810   //   void caller1(struct test a, struct test c, struct test *b) {
4811   //     callee(gTest, b); }
4812   //   void caller2(struct test *b) { callee(gTest, b); }
4813   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4814     return false;
4815 
4816   // If callee and caller use different calling conventions, we cannot pass
4817   // parameters on stack since offsets for the parameter area may be different.
4818   if (Caller.getCallingConv() != CalleeCC &&
4819       needStackSlotPassParameters(Subtarget, Outs))
4820     return false;
4821 
4822   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4823   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4824   // callee potentially have different TOC bases then we cannot tail call since
4825   // we need to restore the TOC pointer after the call.
4826   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4827   // We cannot guarantee this for indirect calls or calls to external functions.
4828   // When PC-Relative addressing is used, the concept of the TOC is no longer
4829   // applicable so this check is not required.
4830   // Check first for indirect calls.
4831   if (!Subtarget.isUsingPCRelativeCalls() &&
4832       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4833     return false;
4834 
4835   // Check if we share the TOC base.
4836   if (!Subtarget.isUsingPCRelativeCalls() &&
4837       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4838     return false;
4839 
4840   // TCO allows altering callee ABI, so we don't have to check further.
4841   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4842     return true;
4843 
4844   if (DisableSCO) return false;
4845 
4846   // If callee use the same argument list that caller is using, then we can
4847   // apply SCO on this case. If it is not, then we need to check if callee needs
4848   // stack for passing arguments.
4849   // PC Relative tail calls may not have a CallBase.
4850   // If there is no CallBase we cannot verify if we have the same argument
4851   // list so assume that we don't have the same argument list.
4852   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4853       needStackSlotPassParameters(Subtarget, Outs))
4854     return false;
4855   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4856     return false;
4857 
4858   return true;
4859 }
4860 
4861 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4862 /// for tail call optimization. Targets which want to do tail call
4863 /// optimization should implement this function.
4864 bool
4865 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4866                                                      CallingConv::ID CalleeCC,
4867                                                      bool isVarArg,
4868                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4869                                                      SelectionDAG& DAG) const {
4870   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4871     return false;
4872 
4873   // Variable argument functions are not supported.
4874   if (isVarArg)
4875     return false;
4876 
4877   MachineFunction &MF = DAG.getMachineFunction();
4878   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4879   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4880     // Functions containing by val parameters are not supported.
4881     for (unsigned i = 0; i != Ins.size(); i++) {
4882        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4883        if (Flags.isByVal()) return false;
4884     }
4885 
4886     // Non-PIC/GOT tail calls are supported.
4887     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4888       return true;
4889 
4890     // At the moment we can only do local tail calls (in same module, hidden
4891     // or protected) if we are generating PIC.
4892     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4893       return G->getGlobal()->hasHiddenVisibility()
4894           || G->getGlobal()->hasProtectedVisibility();
4895   }
4896 
4897   return false;
4898 }
4899 
4900 /// isCallCompatibleAddress - Return the immediate to use if the specified
4901 /// 32-bit value is representable in the immediate field of a BxA instruction.
4902 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4903   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4904   if (!C) return nullptr;
4905 
4906   int Addr = C->getZExtValue();
4907   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4908       SignExtend32<26>(Addr) != Addr)
4909     return nullptr;  // Top 6 bits have to be sext of immediate.
4910 
4911   return DAG
4912       .getConstant(
4913           (int)C->getZExtValue() >> 2, SDLoc(Op),
4914           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4915       .getNode();
4916 }
4917 
4918 namespace {
4919 
4920 struct TailCallArgumentInfo {
4921   SDValue Arg;
4922   SDValue FrameIdxOp;
4923   int FrameIdx = 0;
4924 
4925   TailCallArgumentInfo() = default;
4926 };
4927 
4928 } // end anonymous namespace
4929 
4930 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4931 static void StoreTailCallArgumentsToStackSlot(
4932     SelectionDAG &DAG, SDValue Chain,
4933     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4934     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4935   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4936     SDValue Arg = TailCallArgs[i].Arg;
4937     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4938     int FI = TailCallArgs[i].FrameIdx;
4939     // Store relative to framepointer.
4940     MemOpChains.push_back(DAG.getStore(
4941         Chain, dl, Arg, FIN,
4942         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4943   }
4944 }
4945 
4946 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4947 /// the appropriate stack slot for the tail call optimized function call.
4948 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4949                                              SDValue OldRetAddr, SDValue OldFP,
4950                                              int SPDiff, const SDLoc &dl) {
4951   if (SPDiff) {
4952     // Calculate the new stack slot for the return address.
4953     MachineFunction &MF = DAG.getMachineFunction();
4954     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4955     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4956     bool isPPC64 = Subtarget.isPPC64();
4957     int SlotSize = isPPC64 ? 8 : 4;
4958     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4959     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4960                                                          NewRetAddrLoc, true);
4961     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4962     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4963     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4964                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4965   }
4966   return Chain;
4967 }
4968 
4969 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4970 /// the position of the argument.
4971 static void
4972 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4973                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4974                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4975   int Offset = ArgOffset + SPDiff;
4976   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4977   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4978   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4979   SDValue FIN = DAG.getFrameIndex(FI, VT);
4980   TailCallArgumentInfo Info;
4981   Info.Arg = Arg;
4982   Info.FrameIdxOp = FIN;
4983   Info.FrameIdx = FI;
4984   TailCallArguments.push_back(Info);
4985 }
4986 
4987 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4988 /// stack slot. Returns the chain as result and the loaded frame pointers in
4989 /// LROpOut/FPOpout. Used when tail calling.
4990 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4991     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4992     SDValue &FPOpOut, const SDLoc &dl) const {
4993   if (SPDiff) {
4994     // Load the LR and FP stack slot for later adjusting.
4995     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4996     LROpOut = getReturnAddrFrameIndex(DAG);
4997     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4998     Chain = SDValue(LROpOut.getNode(), 1);
4999   }
5000   return Chain;
5001 }
5002 
5003 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5004 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5005 /// specified by the specific parameter attribute. The copy will be passed as
5006 /// a byval function parameter.
5007 /// Sometimes what we are copying is the end of a larger object, the part that
5008 /// does not fit in registers.
5009 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5010                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5011                                          SelectionDAG &DAG, const SDLoc &dl) {
5012   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5013   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5014                        Flags.getNonZeroByValAlign(), false, false, false,
5015                        MachinePointerInfo(), MachinePointerInfo());
5016 }
5017 
5018 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5019 /// tail calls.
5020 static void LowerMemOpCallTo(
5021     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5022     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5023     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5024     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5025   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5026   if (!isTailCall) {
5027     if (isVector) {
5028       SDValue StackPtr;
5029       if (isPPC64)
5030         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5031       else
5032         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5033       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5034                            DAG.getConstant(ArgOffset, dl, PtrVT));
5035     }
5036     MemOpChains.push_back(
5037         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5038     // Calculate and remember argument location.
5039   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5040                                   TailCallArguments);
5041 }
5042 
5043 static void
5044 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5045                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5046                 SDValue FPOp,
5047                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5048   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5049   // might overwrite each other in case of tail call optimization.
5050   SmallVector<SDValue, 8> MemOpChains2;
5051   // Do not flag preceding copytoreg stuff together with the following stuff.
5052   InFlag = SDValue();
5053   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5054                                     MemOpChains2, dl);
5055   if (!MemOpChains2.empty())
5056     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5057 
5058   // Store the return address to the appropriate stack slot.
5059   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5060 
5061   // Emit callseq_end just before tailcall node.
5062   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5063                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5064   InFlag = Chain.getValue(1);
5065 }
5066 
5067 // Is this global address that of a function that can be called by name? (as
5068 // opposed to something that must hold a descriptor for an indirect call).
5069 static bool isFunctionGlobalAddress(SDValue Callee) {
5070   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5071     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5072         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5073       return false;
5074 
5075     return G->getGlobal()->getValueType()->isFunctionTy();
5076   }
5077 
5078   return false;
5079 }
5080 
5081 SDValue PPCTargetLowering::LowerCallResult(
5082     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5083     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5084     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5085   SmallVector<CCValAssign, 16> RVLocs;
5086   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5087                     *DAG.getContext());
5088 
5089   CCRetInfo.AnalyzeCallResult(
5090       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5091                ? RetCC_PPC_Cold
5092                : RetCC_PPC);
5093 
5094   // Copy all of the result registers out of their specified physreg.
5095   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5096     CCValAssign &VA = RVLocs[i];
5097     assert(VA.isRegLoc() && "Can only return in registers!");
5098 
5099     SDValue Val;
5100 
5101     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5102       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5103                                       InFlag);
5104       Chain = Lo.getValue(1);
5105       InFlag = Lo.getValue(2);
5106       VA = RVLocs[++i]; // skip ahead to next loc
5107       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5108                                       InFlag);
5109       Chain = Hi.getValue(1);
5110       InFlag = Hi.getValue(2);
5111       if (!Subtarget.isLittleEndian())
5112         std::swap (Lo, Hi);
5113       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5114     } else {
5115       Val = DAG.getCopyFromReg(Chain, dl,
5116                                VA.getLocReg(), VA.getLocVT(), InFlag);
5117       Chain = Val.getValue(1);
5118       InFlag = Val.getValue(2);
5119     }
5120 
5121     switch (VA.getLocInfo()) {
5122     default: llvm_unreachable("Unknown loc info!");
5123     case CCValAssign::Full: break;
5124     case CCValAssign::AExt:
5125       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5126       break;
5127     case CCValAssign::ZExt:
5128       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5129                         DAG.getValueType(VA.getValVT()));
5130       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5131       break;
5132     case CCValAssign::SExt:
5133       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5134                         DAG.getValueType(VA.getValVT()));
5135       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5136       break;
5137     }
5138 
5139     InVals.push_back(Val);
5140   }
5141 
5142   return Chain;
5143 }
5144 
5145 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5146                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5147   // PatchPoint calls are not indirect.
5148   if (isPatchPoint)
5149     return false;
5150 
5151   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5152     return false;
5153 
5154   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5155   // becuase the immediate function pointer points to a descriptor instead of
5156   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5157   // pointer immediate points to the global entry point, while the BLA would
5158   // need to jump to the local entry point (see rL211174).
5159   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5160       isBLACompatibleAddress(Callee, DAG))
5161     return false;
5162 
5163   return true;
5164 }
5165 
5166 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5167 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5168   return Subtarget.isAIXABI() ||
5169          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5170 }
5171 
5172 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5173                               const Function &Caller,
5174                               const SDValue &Callee,
5175                               const PPCSubtarget &Subtarget,
5176                               const TargetMachine &TM) {
5177   if (CFlags.IsTailCall)
5178     return PPCISD::TC_RETURN;
5179 
5180   // This is a call through a function pointer.
5181   if (CFlags.IsIndirect) {
5182     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5183     // indirect calls. The save of the caller's TOC pointer to the stack will be
5184     // inserted into the DAG as part of call lowering. The restore of the TOC
5185     // pointer is modeled by using a pseudo instruction for the call opcode that
5186     // represents the 2 instruction sequence of an indirect branch and link,
5187     // immediately followed by a load of the TOC pointer from the the stack save
5188     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5189     // as it is not saved or used.
5190     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5191                                                : PPCISD::BCTRL;
5192   }
5193 
5194   if (Subtarget.isUsingPCRelativeCalls()) {
5195     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5196     return PPCISD::CALL_NOTOC;
5197   }
5198 
5199   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5200   // immediately following the call instruction if the caller and callee may
5201   // have different TOC bases. At link time if the linker determines the calls
5202   // may not share a TOC base, the call is redirected to a trampoline inserted
5203   // by the linker. The trampoline will (among other things) save the callers
5204   // TOC pointer at an ABI designated offset in the linkage area and the linker
5205   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5206   // into gpr2.
5207   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5208       return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5209                                                     : PPCISD::CALL_NOP;
5210 
5211   return PPCISD::CALL;
5212 }
5213 
5214 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5215                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5216   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5217     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5218       return SDValue(Dest, 0);
5219 
5220   // Returns true if the callee is local, and false otherwise.
5221   auto isLocalCallee = [&]() {
5222     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5223     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5224     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5225 
5226     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5227            !dyn_cast_or_null<GlobalIFunc>(GV);
5228   };
5229 
5230   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5231   // a static relocation model causes some versions of GNU LD (2.17.50, at
5232   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5233   // built with secure-PLT.
5234   bool UsePlt =
5235       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5236       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5237 
5238   // On AIX, direct function calls reference the symbol for the function's
5239   // entry point, which is named by prepending a "." before the function's
5240   // C-linkage name.
5241   const auto getAIXFuncEntryPointSymbolSDNode =
5242       [&](StringRef FuncName, bool IsDeclaration,
5243           const XCOFF::StorageClass &SC) {
5244         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5245 
5246         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5247             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5248 
5249         if (IsDeclaration && !S->hasRepresentedCsectSet()) {
5250           // On AIX, an undefined symbol needs to be associated with a
5251           // MCSectionXCOFF to get the correct storage mapping class.
5252           // In this case, XCOFF::XMC_PR.
5253           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5254               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5255               SectionKind::getMetadata());
5256           S->setRepresentedCsect(Sec);
5257         }
5258 
5259         MVT PtrVT =
5260             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5261         return DAG.getMCSymbol(S, PtrVT);
5262       };
5263 
5264   if (isFunctionGlobalAddress(Callee)) {
5265     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5266     const GlobalValue *GV = G->getGlobal();
5267 
5268     if (!Subtarget.isAIXABI())
5269       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5270                                         UsePlt ? PPCII::MO_PLT : 0);
5271 
5272     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5273     const GlobalObject *GO = cast<GlobalObject>(GV);
5274     const XCOFF::StorageClass SC =
5275         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5276     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5277                                             SC);
5278   }
5279 
5280   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5281     const char *SymName = S->getSymbol();
5282     if (!Subtarget.isAIXABI())
5283       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5284                                          UsePlt ? PPCII::MO_PLT : 0);
5285 
5286     // If there exists a user-declared function whose name is the same as the
5287     // ExternalSymbol's, then we pick up the user-declared version.
5288     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5289     if (const Function *F =
5290             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5291       const XCOFF::StorageClass SC =
5292           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5293       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5294                                               SC);
5295     }
5296 
5297     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5298   }
5299 
5300   // No transformation needed.
5301   assert(Callee.getNode() && "What no callee?");
5302   return Callee;
5303 }
5304 
5305 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5306   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5307          "Expected a CALLSEQ_STARTSDNode.");
5308 
5309   // The last operand is the chain, except when the node has glue. If the node
5310   // has glue, then the last operand is the glue, and the chain is the second
5311   // last operand.
5312   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5313   if (LastValue.getValueType() != MVT::Glue)
5314     return LastValue;
5315 
5316   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5317 }
5318 
5319 // Creates the node that moves a functions address into the count register
5320 // to prepare for an indirect call instruction.
5321 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5322                                 SDValue &Glue, SDValue &Chain,
5323                                 const SDLoc &dl) {
5324   SDValue MTCTROps[] = {Chain, Callee, Glue};
5325   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5326   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5327                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5328   // The glue is the second value produced.
5329   Glue = Chain.getValue(1);
5330 }
5331 
5332 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5333                                           SDValue &Glue, SDValue &Chain,
5334                                           SDValue CallSeqStart,
5335                                           const CallBase *CB, const SDLoc &dl,
5336                                           bool hasNest,
5337                                           const PPCSubtarget &Subtarget) {
5338   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5339   // entry point, but to the function descriptor (the function entry point
5340   // address is part of the function descriptor though).
5341   // The function descriptor is a three doubleword structure with the
5342   // following fields: function entry point, TOC base address and
5343   // environment pointer.
5344   // Thus for a call through a function pointer, the following actions need
5345   // to be performed:
5346   //   1. Save the TOC of the caller in the TOC save area of its stack
5347   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5348   //   2. Load the address of the function entry point from the function
5349   //      descriptor.
5350   //   3. Load the TOC of the callee from the function descriptor into r2.
5351   //   4. Load the environment pointer from the function descriptor into
5352   //      r11.
5353   //   5. Branch to the function entry point address.
5354   //   6. On return of the callee, the TOC of the caller needs to be
5355   //      restored (this is done in FinishCall()).
5356   //
5357   // The loads are scheduled at the beginning of the call sequence, and the
5358   // register copies are flagged together to ensure that no other
5359   // operations can be scheduled in between. E.g. without flagging the
5360   // copies together, a TOC access in the caller could be scheduled between
5361   // the assignment of the callee TOC and the branch to the callee, which leads
5362   // to incorrect code.
5363 
5364   // Start by loading the function address from the descriptor.
5365   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5366   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5367                       ? (MachineMemOperand::MODereferenceable |
5368                          MachineMemOperand::MOInvariant)
5369                       : MachineMemOperand::MONone;
5370 
5371   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5372 
5373   // Registers used in building the DAG.
5374   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5375   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5376 
5377   // Offsets of descriptor members.
5378   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5379   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5380 
5381   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5382   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5383 
5384   // One load for the functions entry point address.
5385   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5386                                     Alignment, MMOFlags);
5387 
5388   // One for loading the TOC anchor for the module that contains the called
5389   // function.
5390   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5391   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5392   SDValue TOCPtr =
5393       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5394                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5395 
5396   // One for loading the environment pointer.
5397   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5398   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5399   SDValue LoadEnvPtr =
5400       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5401                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5402 
5403 
5404   // Then copy the newly loaded TOC anchor to the TOC pointer.
5405   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5406   Chain = TOCVal.getValue(0);
5407   Glue = TOCVal.getValue(1);
5408 
5409   // If the function call has an explicit 'nest' parameter, it takes the
5410   // place of the environment pointer.
5411   assert((!hasNest || !Subtarget.isAIXABI()) &&
5412          "Nest parameter is not supported on AIX.");
5413   if (!hasNest) {
5414     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5415     Chain = EnvVal.getValue(0);
5416     Glue = EnvVal.getValue(1);
5417   }
5418 
5419   // The rest of the indirect call sequence is the same as the non-descriptor
5420   // DAG.
5421   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5422 }
5423 
5424 static void
5425 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5426                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5427                   SelectionDAG &DAG,
5428                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5429                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5430                   const PPCSubtarget &Subtarget) {
5431   const bool IsPPC64 = Subtarget.isPPC64();
5432   // MVT for a general purpose register.
5433   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5434 
5435   // First operand is always the chain.
5436   Ops.push_back(Chain);
5437 
5438   // If it's a direct call pass the callee as the second operand.
5439   if (!CFlags.IsIndirect)
5440     Ops.push_back(Callee);
5441   else {
5442     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5443 
5444     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5445     // on the stack (this would have been done in `LowerCall_64SVR4` or
5446     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5447     // represents both the indirect branch and a load that restores the TOC
5448     // pointer from the linkage area. The operand for the TOC restore is an add
5449     // of the TOC save offset to the stack pointer. This must be the second
5450     // operand: after the chain input but before any other variadic arguments.
5451     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5452     // saved or used.
5453     if (isTOCSaveRestoreRequired(Subtarget)) {
5454       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5455 
5456       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5457       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5458       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5459       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5460       Ops.push_back(AddTOC);
5461     }
5462 
5463     // Add the register used for the environment pointer.
5464     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5465       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5466                                     RegVT));
5467 
5468 
5469     // Add CTR register as callee so a bctr can be emitted later.
5470     if (CFlags.IsTailCall)
5471       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5472   }
5473 
5474   // If this is a tail call add stack pointer delta.
5475   if (CFlags.IsTailCall)
5476     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5477 
5478   // Add argument registers to the end of the list so that they are known live
5479   // into the call.
5480   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5481     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5482                                   RegsToPass[i].second.getValueType()));
5483 
5484   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5485   // no way to mark dependencies as implicit here.
5486   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5487   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5488        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5489     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5490 
5491   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5492   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5493     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5494 
5495   // Add a register mask operand representing the call-preserved registers.
5496   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5497   const uint32_t *Mask =
5498       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5499   assert(Mask && "Missing call preserved mask for calling convention");
5500   Ops.push_back(DAG.getRegisterMask(Mask));
5501 
5502   // If the glue is valid, it is the last operand.
5503   if (Glue.getNode())
5504     Ops.push_back(Glue);
5505 }
5506 
5507 SDValue PPCTargetLowering::FinishCall(
5508     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5509     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5510     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5511     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5512     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5513 
5514   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5515       Subtarget.isAIXABI())
5516     setUsesTOCBasePtr(DAG);
5517 
5518   unsigned CallOpc =
5519       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5520                     Subtarget, DAG.getTarget());
5521 
5522   if (!CFlags.IsIndirect)
5523     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5524   else if (Subtarget.usesFunctionDescriptors())
5525     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5526                                   dl, CFlags.HasNest, Subtarget);
5527   else
5528     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5529 
5530   // Build the operand list for the call instruction.
5531   SmallVector<SDValue, 8> Ops;
5532   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5533                     SPDiff, Subtarget);
5534 
5535   // Emit tail call.
5536   if (CFlags.IsTailCall) {
5537     // Indirect tail call when using PC Relative calls do not have the same
5538     // constraints.
5539     assert(((Callee.getOpcode() == ISD::Register &&
5540              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5541             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5542             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5543             isa<ConstantSDNode>(Callee) ||
5544             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5545            "Expecting a global address, external symbol, absolute value, "
5546            "register or an indirect tail call when PC Relative calls are "
5547            "used.");
5548     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5549     assert(CallOpc == PPCISD::TC_RETURN &&
5550            "Unexpected call opcode for a tail call.");
5551     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5552     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5553   }
5554 
5555   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5556   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5557   Glue = Chain.getValue(1);
5558 
5559   // When performing tail call optimization the callee pops its arguments off
5560   // the stack. Account for this here so these bytes can be pushed back on in
5561   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5562   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5563                          getTargetMachine().Options.GuaranteedTailCallOpt)
5564                             ? NumBytes
5565                             : 0;
5566 
5567   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5568                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5569                              Glue, dl);
5570   Glue = Chain.getValue(1);
5571 
5572   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5573                          DAG, InVals);
5574 }
5575 
5576 SDValue
5577 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5578                              SmallVectorImpl<SDValue> &InVals) const {
5579   SelectionDAG &DAG                     = CLI.DAG;
5580   SDLoc &dl                             = CLI.DL;
5581   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5582   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5583   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5584   SDValue Chain                         = CLI.Chain;
5585   SDValue Callee                        = CLI.Callee;
5586   bool &isTailCall                      = CLI.IsTailCall;
5587   CallingConv::ID CallConv              = CLI.CallConv;
5588   bool isVarArg                         = CLI.IsVarArg;
5589   bool isPatchPoint                     = CLI.IsPatchPoint;
5590   const CallBase *CB                    = CLI.CB;
5591 
5592   if (isTailCall) {
5593     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5594       isTailCall = false;
5595     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5596       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5597           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5598     else
5599       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5600                                                      Ins, DAG);
5601     if (isTailCall) {
5602       ++NumTailCalls;
5603       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5604         ++NumSiblingCalls;
5605 
5606       // PC Relative calls no longer guarantee that the callee is a Global
5607       // Address Node. The callee could be an indirect tail call in which
5608       // case the SDValue for the callee could be a load (to load the address
5609       // of a function pointer) or it may be a register copy (to move the
5610       // address of the callee from a function parameter into a virtual
5611       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5612       assert((Subtarget.isUsingPCRelativeCalls() ||
5613               isa<GlobalAddressSDNode>(Callee)) &&
5614              "Callee should be an llvm::Function object.");
5615 
5616       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5617                         << "\nTCO callee: ");
5618       LLVM_DEBUG(Callee.dump());
5619     }
5620   }
5621 
5622   if (!isTailCall && CB && CB->isMustTailCall())
5623     report_fatal_error("failed to perform tail call elimination on a call "
5624                        "site marked musttail");
5625 
5626   // When long calls (i.e. indirect calls) are always used, calls are always
5627   // made via function pointer. If we have a function name, first translate it
5628   // into a pointer.
5629   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5630       !isTailCall)
5631     Callee = LowerGlobalAddress(Callee, DAG);
5632 
5633   CallFlags CFlags(
5634       CallConv, isTailCall, isVarArg, isPatchPoint,
5635       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5636       // hasNest
5637       Subtarget.is64BitELFABI() &&
5638           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }));
5639 
5640   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5641     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5642                             InVals, CB);
5643 
5644   if (Subtarget.isSVR4ABI())
5645     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5646                             InVals, CB);
5647 
5648   if (Subtarget.isAIXABI())
5649     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5650                          InVals, CB);
5651 
5652   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5653                           InVals, CB);
5654 }
5655 
5656 SDValue PPCTargetLowering::LowerCall_32SVR4(
5657     SDValue Chain, SDValue Callee, CallFlags CFlags,
5658     const SmallVectorImpl<ISD::OutputArg> &Outs,
5659     const SmallVectorImpl<SDValue> &OutVals,
5660     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5661     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5662     const CallBase *CB) const {
5663   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5664   // of the 32-bit SVR4 ABI stack frame layout.
5665 
5666   const CallingConv::ID CallConv = CFlags.CallConv;
5667   const bool IsVarArg = CFlags.IsVarArg;
5668   const bool IsTailCall = CFlags.IsTailCall;
5669 
5670   assert((CallConv == CallingConv::C ||
5671           CallConv == CallingConv::Cold ||
5672           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5673 
5674   unsigned PtrByteSize = 4;
5675 
5676   MachineFunction &MF = DAG.getMachineFunction();
5677 
5678   // Mark this function as potentially containing a function that contains a
5679   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5680   // and restoring the callers stack pointer in this functions epilog. This is
5681   // done because by tail calling the called function might overwrite the value
5682   // in this function's (MF) stack pointer stack slot 0(SP).
5683   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5684       CallConv == CallingConv::Fast)
5685     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5686 
5687   // Count how many bytes are to be pushed on the stack, including the linkage
5688   // area, parameter list area and the part of the local variable space which
5689   // contains copies of aggregates which are passed by value.
5690 
5691   // Assign locations to all of the outgoing arguments.
5692   SmallVector<CCValAssign, 16> ArgLocs;
5693   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5694 
5695   // Reserve space for the linkage area on the stack.
5696   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5697                        PtrByteSize);
5698   if (useSoftFloat())
5699     CCInfo.PreAnalyzeCallOperands(Outs);
5700 
5701   if (IsVarArg) {
5702     // Handle fixed and variable vector arguments differently.
5703     // Fixed vector arguments go into registers as long as registers are
5704     // available. Variable vector arguments always go into memory.
5705     unsigned NumArgs = Outs.size();
5706 
5707     for (unsigned i = 0; i != NumArgs; ++i) {
5708       MVT ArgVT = Outs[i].VT;
5709       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5710       bool Result;
5711 
5712       if (Outs[i].IsFixed) {
5713         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5714                                CCInfo);
5715       } else {
5716         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5717                                       ArgFlags, CCInfo);
5718       }
5719 
5720       if (Result) {
5721 #ifndef NDEBUG
5722         errs() << "Call operand #" << i << " has unhandled type "
5723              << EVT(ArgVT).getEVTString() << "\n";
5724 #endif
5725         llvm_unreachable(nullptr);
5726       }
5727     }
5728   } else {
5729     // All arguments are treated the same.
5730     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5731   }
5732   CCInfo.clearWasPPCF128();
5733 
5734   // Assign locations to all of the outgoing aggregate by value arguments.
5735   SmallVector<CCValAssign, 16> ByValArgLocs;
5736   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5737 
5738   // Reserve stack space for the allocations in CCInfo.
5739   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5740 
5741   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5742 
5743   // Size of the linkage area, parameter list area and the part of the local
5744   // space variable where copies of aggregates which are passed by value are
5745   // stored.
5746   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5747 
5748   // Calculate by how many bytes the stack has to be adjusted in case of tail
5749   // call optimization.
5750   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5751 
5752   // Adjust the stack pointer for the new arguments...
5753   // These operations are automatically eliminated by the prolog/epilog pass
5754   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5755   SDValue CallSeqStart = Chain;
5756 
5757   // Load the return address and frame pointer so it can be moved somewhere else
5758   // later.
5759   SDValue LROp, FPOp;
5760   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5761 
5762   // Set up a copy of the stack pointer for use loading and storing any
5763   // arguments that may not fit in the registers available for argument
5764   // passing.
5765   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5766 
5767   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5768   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5769   SmallVector<SDValue, 8> MemOpChains;
5770 
5771   bool seenFloatArg = false;
5772   // Walk the register/memloc assignments, inserting copies/loads.
5773   // i - Tracks the index into the list of registers allocated for the call
5774   // RealArgIdx - Tracks the index into the list of actual function arguments
5775   // j - Tracks the index into the list of byval arguments
5776   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5777        i != e;
5778        ++i, ++RealArgIdx) {
5779     CCValAssign &VA = ArgLocs[i];
5780     SDValue Arg = OutVals[RealArgIdx];
5781     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5782 
5783     if (Flags.isByVal()) {
5784       // Argument is an aggregate which is passed by value, thus we need to
5785       // create a copy of it in the local variable space of the current stack
5786       // frame (which is the stack frame of the caller) and pass the address of
5787       // this copy to the callee.
5788       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5789       CCValAssign &ByValVA = ByValArgLocs[j++];
5790       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5791 
5792       // Memory reserved in the local variable space of the callers stack frame.
5793       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5794 
5795       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5796       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5797                            StackPtr, PtrOff);
5798 
5799       // Create a copy of the argument in the local area of the current
5800       // stack frame.
5801       SDValue MemcpyCall =
5802         CreateCopyOfByValArgument(Arg, PtrOff,
5803                                   CallSeqStart.getNode()->getOperand(0),
5804                                   Flags, DAG, dl);
5805 
5806       // This must go outside the CALLSEQ_START..END.
5807       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5808                                                      SDLoc(MemcpyCall));
5809       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5810                              NewCallSeqStart.getNode());
5811       Chain = CallSeqStart = NewCallSeqStart;
5812 
5813       // Pass the address of the aggregate copy on the stack either in a
5814       // physical register or in the parameter list area of the current stack
5815       // frame to the callee.
5816       Arg = PtrOff;
5817     }
5818 
5819     // When useCRBits() is true, there can be i1 arguments.
5820     // It is because getRegisterType(MVT::i1) => MVT::i1,
5821     // and for other integer types getRegisterType() => MVT::i32.
5822     // Extend i1 and ensure callee will get i32.
5823     if (Arg.getValueType() == MVT::i1)
5824       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5825                         dl, MVT::i32, Arg);
5826 
5827     if (VA.isRegLoc()) {
5828       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5829       // Put argument in a physical register.
5830       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5831         bool IsLE = Subtarget.isLittleEndian();
5832         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5833                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5834         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5835         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5836                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5837         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5838                              SVal.getValue(0)));
5839       } else
5840         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5841     } else {
5842       // Put argument in the parameter list area of the current stack frame.
5843       assert(VA.isMemLoc());
5844       unsigned LocMemOffset = VA.getLocMemOffset();
5845 
5846       if (!IsTailCall) {
5847         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5848         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5849                              StackPtr, PtrOff);
5850 
5851         MemOpChains.push_back(
5852             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5853       } else {
5854         // Calculate and remember argument location.
5855         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5856                                  TailCallArguments);
5857       }
5858     }
5859   }
5860 
5861   if (!MemOpChains.empty())
5862     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5863 
5864   // Build a sequence of copy-to-reg nodes chained together with token chain
5865   // and flag operands which copy the outgoing args into the appropriate regs.
5866   SDValue InFlag;
5867   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5868     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5869                              RegsToPass[i].second, InFlag);
5870     InFlag = Chain.getValue(1);
5871   }
5872 
5873   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5874   // registers.
5875   if (IsVarArg) {
5876     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5877     SDValue Ops[] = { Chain, InFlag };
5878 
5879     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5880                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5881 
5882     InFlag = Chain.getValue(1);
5883   }
5884 
5885   if (IsTailCall)
5886     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5887                     TailCallArguments);
5888 
5889   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5890                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5891 }
5892 
5893 // Copy an argument into memory, being careful to do this outside the
5894 // call sequence for the call to which the argument belongs.
5895 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5896     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5897     SelectionDAG &DAG, const SDLoc &dl) const {
5898   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5899                         CallSeqStart.getNode()->getOperand(0),
5900                         Flags, DAG, dl);
5901   // The MEMCPY must go outside the CALLSEQ_START..END.
5902   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5903   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5904                                                  SDLoc(MemcpyCall));
5905   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5906                          NewCallSeqStart.getNode());
5907   return NewCallSeqStart;
5908 }
5909 
5910 SDValue PPCTargetLowering::LowerCall_64SVR4(
5911     SDValue Chain, SDValue Callee, CallFlags CFlags,
5912     const SmallVectorImpl<ISD::OutputArg> &Outs,
5913     const SmallVectorImpl<SDValue> &OutVals,
5914     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5915     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5916     const CallBase *CB) const {
5917   bool isELFv2ABI = Subtarget.isELFv2ABI();
5918   bool isLittleEndian = Subtarget.isLittleEndian();
5919   unsigned NumOps = Outs.size();
5920   bool IsSibCall = false;
5921   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5922 
5923   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5924   unsigned PtrByteSize = 8;
5925 
5926   MachineFunction &MF = DAG.getMachineFunction();
5927 
5928   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5929     IsSibCall = true;
5930 
5931   // Mark this function as potentially containing a function that contains a
5932   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5933   // and restoring the callers stack pointer in this functions epilog. This is
5934   // done because by tail calling the called function might overwrite the value
5935   // in this function's (MF) stack pointer stack slot 0(SP).
5936   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5937     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5938 
5939   assert(!(IsFastCall && CFlags.IsVarArg) &&
5940          "fastcc not supported on varargs functions");
5941 
5942   // Count how many bytes are to be pushed on the stack, including the linkage
5943   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5944   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5945   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5946   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5947   unsigned NumBytes = LinkageSize;
5948   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5949   unsigned &QFPR_idx = FPR_idx;
5950 
5951   static const MCPhysReg GPR[] = {
5952     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5953     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5954   };
5955   static const MCPhysReg VR[] = {
5956     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5957     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5958   };
5959 
5960   const unsigned NumGPRs = array_lengthof(GPR);
5961   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5962   const unsigned NumVRs  = array_lengthof(VR);
5963   const unsigned NumQFPRs = NumFPRs;
5964 
5965   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5966   // can be passed to the callee in registers.
5967   // For the fast calling convention, there is another check below.
5968   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5969   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5970   if (!HasParameterArea) {
5971     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5972     unsigned AvailableFPRs = NumFPRs;
5973     unsigned AvailableVRs = NumVRs;
5974     unsigned NumBytesTmp = NumBytes;
5975     for (unsigned i = 0; i != NumOps; ++i) {
5976       if (Outs[i].Flags.isNest()) continue;
5977       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5978                                 PtrByteSize, LinkageSize, ParamAreaSize,
5979                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5980                                 Subtarget.hasQPX()))
5981         HasParameterArea = true;
5982     }
5983   }
5984 
5985   // When using the fast calling convention, we don't provide backing for
5986   // arguments that will be in registers.
5987   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5988 
5989   // Avoid allocating parameter area for fastcc functions if all the arguments
5990   // can be passed in the registers.
5991   if (IsFastCall)
5992     HasParameterArea = false;
5993 
5994   // Add up all the space actually used.
5995   for (unsigned i = 0; i != NumOps; ++i) {
5996     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5997     EVT ArgVT = Outs[i].VT;
5998     EVT OrigVT = Outs[i].ArgVT;
5999 
6000     if (Flags.isNest())
6001       continue;
6002 
6003     if (IsFastCall) {
6004       if (Flags.isByVal()) {
6005         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6006         if (NumGPRsUsed > NumGPRs)
6007           HasParameterArea = true;
6008       } else {
6009         switch (ArgVT.getSimpleVT().SimpleTy) {
6010         default: llvm_unreachable("Unexpected ValueType for argument!");
6011         case MVT::i1:
6012         case MVT::i32:
6013         case MVT::i64:
6014           if (++NumGPRsUsed <= NumGPRs)
6015             continue;
6016           break;
6017         case MVT::v4i32:
6018         case MVT::v8i16:
6019         case MVT::v16i8:
6020         case MVT::v2f64:
6021         case MVT::v2i64:
6022         case MVT::v1i128:
6023         case MVT::f128:
6024           if (++NumVRsUsed <= NumVRs)
6025             continue;
6026           break;
6027         case MVT::v4f32:
6028           // When using QPX, this is handled like a FP register, otherwise, it
6029           // is an Altivec register.
6030           if (Subtarget.hasQPX()) {
6031             if (++NumFPRsUsed <= NumFPRs)
6032               continue;
6033           } else {
6034             if (++NumVRsUsed <= NumVRs)
6035               continue;
6036           }
6037           break;
6038         case MVT::f32:
6039         case MVT::f64:
6040         case MVT::v4f64: // QPX
6041         case MVT::v4i1:  // QPX
6042           if (++NumFPRsUsed <= NumFPRs)
6043             continue;
6044           break;
6045         }
6046         HasParameterArea = true;
6047       }
6048     }
6049 
6050     /* Respect alignment of argument on the stack.  */
6051     auto Alignement =
6052         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6053     NumBytes = alignTo(NumBytes, Alignement);
6054 
6055     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6056     if (Flags.isInConsecutiveRegsLast())
6057       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6058   }
6059 
6060   unsigned NumBytesActuallyUsed = NumBytes;
6061 
6062   // In the old ELFv1 ABI,
6063   // the prolog code of the callee may store up to 8 GPR argument registers to
6064   // the stack, allowing va_start to index over them in memory if its varargs.
6065   // Because we cannot tell if this is needed on the caller side, we have to
6066   // conservatively assume that it is needed.  As such, make sure we have at
6067   // least enough stack space for the caller to store the 8 GPRs.
6068   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6069   // really requires memory operands, e.g. a vararg function.
6070   if (HasParameterArea)
6071     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6072   else
6073     NumBytes = LinkageSize;
6074 
6075   // Tail call needs the stack to be aligned.
6076   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6077     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6078 
6079   int SPDiff = 0;
6080 
6081   // Calculate by how many bytes the stack has to be adjusted in case of tail
6082   // call optimization.
6083   if (!IsSibCall)
6084     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6085 
6086   // To protect arguments on the stack from being clobbered in a tail call,
6087   // force all the loads to happen before doing any other lowering.
6088   if (CFlags.IsTailCall)
6089     Chain = DAG.getStackArgumentTokenFactor(Chain);
6090 
6091   // Adjust the stack pointer for the new arguments...
6092   // These operations are automatically eliminated by the prolog/epilog pass
6093   if (!IsSibCall)
6094     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6095   SDValue CallSeqStart = Chain;
6096 
6097   // Load the return address and frame pointer so it can be move somewhere else
6098   // later.
6099   SDValue LROp, FPOp;
6100   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6101 
6102   // Set up a copy of the stack pointer for use loading and storing any
6103   // arguments that may not fit in the registers available for argument
6104   // passing.
6105   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6106 
6107   // Figure out which arguments are going to go in registers, and which in
6108   // memory.  Also, if this is a vararg function, floating point operations
6109   // must be stored to our stack, and loaded into integer regs as well, if
6110   // any integer regs are available for argument passing.
6111   unsigned ArgOffset = LinkageSize;
6112 
6113   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6114   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6115 
6116   SmallVector<SDValue, 8> MemOpChains;
6117   for (unsigned i = 0; i != NumOps; ++i) {
6118     SDValue Arg = OutVals[i];
6119     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6120     EVT ArgVT = Outs[i].VT;
6121     EVT OrigVT = Outs[i].ArgVT;
6122 
6123     // PtrOff will be used to store the current argument to the stack if a
6124     // register cannot be found for it.
6125     SDValue PtrOff;
6126 
6127     // We re-align the argument offset for each argument, except when using the
6128     // fast calling convention, when we need to make sure we do that only when
6129     // we'll actually use a stack slot.
6130     auto ComputePtrOff = [&]() {
6131       /* Respect alignment of argument on the stack.  */
6132       auto Alignment =
6133           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6134       ArgOffset = alignTo(ArgOffset, Alignment);
6135 
6136       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6137 
6138       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6139     };
6140 
6141     if (!IsFastCall) {
6142       ComputePtrOff();
6143 
6144       /* Compute GPR index associated with argument offset.  */
6145       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6146       GPR_idx = std::min(GPR_idx, NumGPRs);
6147     }
6148 
6149     // Promote integers to 64-bit values.
6150     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6151       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6152       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6153       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6154     }
6155 
6156     // FIXME memcpy is used way more than necessary.  Correctness first.
6157     // Note: "by value" is code for passing a structure by value, not
6158     // basic types.
6159     if (Flags.isByVal()) {
6160       // Note: Size includes alignment padding, so
6161       //   struct x { short a; char b; }
6162       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6163       // These are the proper values we need for right-justifying the
6164       // aggregate in a parameter register.
6165       unsigned Size = Flags.getByValSize();
6166 
6167       // An empty aggregate parameter takes up no storage and no
6168       // registers.
6169       if (Size == 0)
6170         continue;
6171 
6172       if (IsFastCall)
6173         ComputePtrOff();
6174 
6175       // All aggregates smaller than 8 bytes must be passed right-justified.
6176       if (Size==1 || Size==2 || Size==4) {
6177         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6178         if (GPR_idx != NumGPRs) {
6179           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6180                                         MachinePointerInfo(), VT);
6181           MemOpChains.push_back(Load.getValue(1));
6182           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6183 
6184           ArgOffset += PtrByteSize;
6185           continue;
6186         }
6187       }
6188 
6189       if (GPR_idx == NumGPRs && Size < 8) {
6190         SDValue AddPtr = PtrOff;
6191         if (!isLittleEndian) {
6192           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6193                                           PtrOff.getValueType());
6194           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6195         }
6196         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6197                                                           CallSeqStart,
6198                                                           Flags, DAG, dl);
6199         ArgOffset += PtrByteSize;
6200         continue;
6201       }
6202       // Copy entire object into memory.  There are cases where gcc-generated
6203       // code assumes it is there, even if it could be put entirely into
6204       // registers.  (This is not what the doc says.)
6205 
6206       // FIXME: The above statement is likely due to a misunderstanding of the
6207       // documents.  All arguments must be copied into the parameter area BY
6208       // THE CALLEE in the event that the callee takes the address of any
6209       // formal argument.  That has not yet been implemented.  However, it is
6210       // reasonable to use the stack area as a staging area for the register
6211       // load.
6212 
6213       // Skip this for small aggregates, as we will use the same slot for a
6214       // right-justified copy, below.
6215       if (Size >= 8)
6216         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6217                                                           CallSeqStart,
6218                                                           Flags, DAG, dl);
6219 
6220       // When a register is available, pass a small aggregate right-justified.
6221       if (Size < 8 && GPR_idx != NumGPRs) {
6222         // The easiest way to get this right-justified in a register
6223         // is to copy the structure into the rightmost portion of a
6224         // local variable slot, then load the whole slot into the
6225         // register.
6226         // FIXME: The memcpy seems to produce pretty awful code for
6227         // small aggregates, particularly for packed ones.
6228         // FIXME: It would be preferable to use the slot in the
6229         // parameter save area instead of a new local variable.
6230         SDValue AddPtr = PtrOff;
6231         if (!isLittleEndian) {
6232           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6233           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6234         }
6235         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6236                                                           CallSeqStart,
6237                                                           Flags, DAG, dl);
6238 
6239         // Load the slot into the register.
6240         SDValue Load =
6241             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6242         MemOpChains.push_back(Load.getValue(1));
6243         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6244 
6245         // Done with this argument.
6246         ArgOffset += PtrByteSize;
6247         continue;
6248       }
6249 
6250       // For aggregates larger than PtrByteSize, copy the pieces of the
6251       // object that fit into registers from the parameter save area.
6252       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6253         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6254         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6255         if (GPR_idx != NumGPRs) {
6256           SDValue Load =
6257               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6258           MemOpChains.push_back(Load.getValue(1));
6259           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6260           ArgOffset += PtrByteSize;
6261         } else {
6262           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6263           break;
6264         }
6265       }
6266       continue;
6267     }
6268 
6269     switch (Arg.getSimpleValueType().SimpleTy) {
6270     default: llvm_unreachable("Unexpected ValueType for argument!");
6271     case MVT::i1:
6272     case MVT::i32:
6273     case MVT::i64:
6274       if (Flags.isNest()) {
6275         // The 'nest' parameter, if any, is passed in R11.
6276         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6277         break;
6278       }
6279 
6280       // These can be scalar arguments or elements of an integer array type
6281       // passed directly.  Clang may use those instead of "byval" aggregate
6282       // types to avoid forcing arguments to memory unnecessarily.
6283       if (GPR_idx != NumGPRs) {
6284         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6285       } else {
6286         if (IsFastCall)
6287           ComputePtrOff();
6288 
6289         assert(HasParameterArea &&
6290                "Parameter area must exist to pass an argument in memory.");
6291         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6292                          true, CFlags.IsTailCall, false, MemOpChains,
6293                          TailCallArguments, dl);
6294         if (IsFastCall)
6295           ArgOffset += PtrByteSize;
6296       }
6297       if (!IsFastCall)
6298         ArgOffset += PtrByteSize;
6299       break;
6300     case MVT::f32:
6301     case MVT::f64: {
6302       // These can be scalar arguments or elements of a float array type
6303       // passed directly.  The latter are used to implement ELFv2 homogenous
6304       // float aggregates.
6305 
6306       // Named arguments go into FPRs first, and once they overflow, the
6307       // remaining arguments go into GPRs and then the parameter save area.
6308       // Unnamed arguments for vararg functions always go to GPRs and
6309       // then the parameter save area.  For now, put all arguments to vararg
6310       // routines always in both locations (FPR *and* GPR or stack slot).
6311       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6312       bool NeededLoad = false;
6313 
6314       // First load the argument into the next available FPR.
6315       if (FPR_idx != NumFPRs)
6316         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6317 
6318       // Next, load the argument into GPR or stack slot if needed.
6319       if (!NeedGPROrStack)
6320         ;
6321       else if (GPR_idx != NumGPRs && !IsFastCall) {
6322         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6323         // once we support fp <-> gpr moves.
6324 
6325         // In the non-vararg case, this can only ever happen in the
6326         // presence of f32 array types, since otherwise we never run
6327         // out of FPRs before running out of GPRs.
6328         SDValue ArgVal;
6329 
6330         // Double values are always passed in a single GPR.
6331         if (Arg.getValueType() != MVT::f32) {
6332           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6333 
6334         // Non-array float values are extended and passed in a GPR.
6335         } else if (!Flags.isInConsecutiveRegs()) {
6336           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6337           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6338 
6339         // If we have an array of floats, we collect every odd element
6340         // together with its predecessor into one GPR.
6341         } else if (ArgOffset % PtrByteSize != 0) {
6342           SDValue Lo, Hi;
6343           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6344           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6345           if (!isLittleEndian)
6346             std::swap(Lo, Hi);
6347           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6348 
6349         // The final element, if even, goes into the first half of a GPR.
6350         } else if (Flags.isInConsecutiveRegsLast()) {
6351           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6352           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6353           if (!isLittleEndian)
6354             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6355                                  DAG.getConstant(32, dl, MVT::i32));
6356 
6357         // Non-final even elements are skipped; they will be handled
6358         // together the with subsequent argument on the next go-around.
6359         } else
6360           ArgVal = SDValue();
6361 
6362         if (ArgVal.getNode())
6363           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6364       } else {
6365         if (IsFastCall)
6366           ComputePtrOff();
6367 
6368         // Single-precision floating-point values are mapped to the
6369         // second (rightmost) word of the stack doubleword.
6370         if (Arg.getValueType() == MVT::f32 &&
6371             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6372           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6373           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6374         }
6375 
6376         assert(HasParameterArea &&
6377                "Parameter area must exist to pass an argument in memory.");
6378         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6379                          true, CFlags.IsTailCall, false, MemOpChains,
6380                          TailCallArguments, dl);
6381 
6382         NeededLoad = true;
6383       }
6384       // When passing an array of floats, the array occupies consecutive
6385       // space in the argument area; only round up to the next doubleword
6386       // at the end of the array.  Otherwise, each float takes 8 bytes.
6387       if (!IsFastCall || NeededLoad) {
6388         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6389                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6390         if (Flags.isInConsecutiveRegsLast())
6391           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6392       }
6393       break;
6394     }
6395     case MVT::v4f32:
6396     case MVT::v4i32:
6397     case MVT::v8i16:
6398     case MVT::v16i8:
6399     case MVT::v2f64:
6400     case MVT::v2i64:
6401     case MVT::v1i128:
6402     case MVT::f128:
6403       if (!Subtarget.hasQPX()) {
6404       // These can be scalar arguments or elements of a vector array type
6405       // passed directly.  The latter are used to implement ELFv2 homogenous
6406       // vector aggregates.
6407 
6408       // For a varargs call, named arguments go into VRs or on the stack as
6409       // usual; unnamed arguments always go to the stack or the corresponding
6410       // GPRs when within range.  For now, we always put the value in both
6411       // locations (or even all three).
6412       if (CFlags.IsVarArg) {
6413         assert(HasParameterArea &&
6414                "Parameter area must exist if we have a varargs call.");
6415         // We could elide this store in the case where the object fits
6416         // entirely in R registers.  Maybe later.
6417         SDValue Store =
6418             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6419         MemOpChains.push_back(Store);
6420         if (VR_idx != NumVRs) {
6421           SDValue Load =
6422               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6423           MemOpChains.push_back(Load.getValue(1));
6424           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6425         }
6426         ArgOffset += 16;
6427         for (unsigned i=0; i<16; i+=PtrByteSize) {
6428           if (GPR_idx == NumGPRs)
6429             break;
6430           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6431                                    DAG.getConstant(i, dl, PtrVT));
6432           SDValue Load =
6433               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6434           MemOpChains.push_back(Load.getValue(1));
6435           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6436         }
6437         break;
6438       }
6439 
6440       // Non-varargs Altivec params go into VRs or on the stack.
6441       if (VR_idx != NumVRs) {
6442         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6443       } else {
6444         if (IsFastCall)
6445           ComputePtrOff();
6446 
6447         assert(HasParameterArea &&
6448                "Parameter area must exist to pass an argument in memory.");
6449         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6450                          true, CFlags.IsTailCall, true, MemOpChains,
6451                          TailCallArguments, dl);
6452         if (IsFastCall)
6453           ArgOffset += 16;
6454       }
6455 
6456       if (!IsFastCall)
6457         ArgOffset += 16;
6458       break;
6459       } // not QPX
6460 
6461       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6462              "Invalid QPX parameter type");
6463 
6464       LLVM_FALLTHROUGH;
6465     case MVT::v4f64:
6466     case MVT::v4i1: {
6467       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6468       if (CFlags.IsVarArg) {
6469         assert(HasParameterArea &&
6470                "Parameter area must exist if we have a varargs call.");
6471         // We could elide this store in the case where the object fits
6472         // entirely in R registers.  Maybe later.
6473         SDValue Store =
6474             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6475         MemOpChains.push_back(Store);
6476         if (QFPR_idx != NumQFPRs) {
6477           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6478                                      PtrOff, MachinePointerInfo());
6479           MemOpChains.push_back(Load.getValue(1));
6480           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6481         }
6482         ArgOffset += (IsF32 ? 16 : 32);
6483         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6484           if (GPR_idx == NumGPRs)
6485             break;
6486           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6487                                    DAG.getConstant(i, dl, PtrVT));
6488           SDValue Load =
6489               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6490           MemOpChains.push_back(Load.getValue(1));
6491           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6492         }
6493         break;
6494       }
6495 
6496       // Non-varargs QPX params go into registers or on the stack.
6497       if (QFPR_idx != NumQFPRs) {
6498         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6499       } else {
6500         if (IsFastCall)
6501           ComputePtrOff();
6502 
6503         assert(HasParameterArea &&
6504                "Parameter area must exist to pass an argument in memory.");
6505         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6506                          true, CFlags.IsTailCall, true, MemOpChains,
6507                          TailCallArguments, dl);
6508         if (IsFastCall)
6509           ArgOffset += (IsF32 ? 16 : 32);
6510       }
6511 
6512       if (!IsFastCall)
6513         ArgOffset += (IsF32 ? 16 : 32);
6514       break;
6515       }
6516     }
6517   }
6518 
6519   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6520          "mismatch in size of parameter area");
6521   (void)NumBytesActuallyUsed;
6522 
6523   if (!MemOpChains.empty())
6524     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6525 
6526   // Check if this is an indirect call (MTCTR/BCTRL).
6527   // See prepareDescriptorIndirectCall and buildCallOperands for more
6528   // information about calls through function pointers in the 64-bit SVR4 ABI.
6529   if (CFlags.IsIndirect) {
6530     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6531     // caller in the TOC save area.
6532     if (isTOCSaveRestoreRequired(Subtarget)) {
6533       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6534       // Load r2 into a virtual register and store it to the TOC save area.
6535       setUsesTOCBasePtr(DAG);
6536       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6537       // TOC save area offset.
6538       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6539       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6540       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6541       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6542                            MachinePointerInfo::getStack(
6543                                DAG.getMachineFunction(), TOCSaveOffset));
6544     }
6545     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6546     // This does not mean the MTCTR instruction must use R12; it's easier
6547     // to model this as an extra parameter, so do that.
6548     if (isELFv2ABI && !CFlags.IsPatchPoint)
6549       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6550   }
6551 
6552   // Build a sequence of copy-to-reg nodes chained together with token chain
6553   // and flag operands which copy the outgoing args into the appropriate regs.
6554   SDValue InFlag;
6555   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6556     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6557                              RegsToPass[i].second, InFlag);
6558     InFlag = Chain.getValue(1);
6559   }
6560 
6561   if (CFlags.IsTailCall && !IsSibCall)
6562     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6563                     TailCallArguments);
6564 
6565   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6566                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6567 }
6568 
6569 SDValue PPCTargetLowering::LowerCall_Darwin(
6570     SDValue Chain, SDValue Callee, CallFlags CFlags,
6571     const SmallVectorImpl<ISD::OutputArg> &Outs,
6572     const SmallVectorImpl<SDValue> &OutVals,
6573     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6574     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6575     const CallBase *CB) const {
6576   unsigned NumOps = Outs.size();
6577 
6578   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6579   bool isPPC64 = PtrVT == MVT::i64;
6580   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6581 
6582   MachineFunction &MF = DAG.getMachineFunction();
6583 
6584   // Mark this function as potentially containing a function that contains a
6585   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6586   // and restoring the callers stack pointer in this functions epilog. This is
6587   // done because by tail calling the called function might overwrite the value
6588   // in this function's (MF) stack pointer stack slot 0(SP).
6589   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6590       CFlags.CallConv == CallingConv::Fast)
6591     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6592 
6593   // Count how many bytes are to be pushed on the stack, including the linkage
6594   // area, and parameter passing area.  We start with 24/48 bytes, which is
6595   // prereserved space for [SP][CR][LR][3 x unused].
6596   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6597   unsigned NumBytes = LinkageSize;
6598 
6599   // Add up all the space actually used.
6600   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6601   // they all go in registers, but we must reserve stack space for them for
6602   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6603   // assigned stack space in order, with padding so Altivec parameters are
6604   // 16-byte aligned.
6605   unsigned nAltivecParamsAtEnd = 0;
6606   for (unsigned i = 0; i != NumOps; ++i) {
6607     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6608     EVT ArgVT = Outs[i].VT;
6609     // Varargs Altivec parameters are padded to a 16 byte boundary.
6610     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6611         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6612         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6613       if (!CFlags.IsVarArg && !isPPC64) {
6614         // Non-varargs Altivec parameters go after all the non-Altivec
6615         // parameters; handle those later so we know how much padding we need.
6616         nAltivecParamsAtEnd++;
6617         continue;
6618       }
6619       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6620       NumBytes = ((NumBytes+15)/16)*16;
6621     }
6622     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6623   }
6624 
6625   // Allow for Altivec parameters at the end, if needed.
6626   if (nAltivecParamsAtEnd) {
6627     NumBytes = ((NumBytes+15)/16)*16;
6628     NumBytes += 16*nAltivecParamsAtEnd;
6629   }
6630 
6631   // The prolog code of the callee may store up to 8 GPR argument registers to
6632   // the stack, allowing va_start to index over them in memory if its varargs.
6633   // Because we cannot tell if this is needed on the caller side, we have to
6634   // conservatively assume that it is needed.  As such, make sure we have at
6635   // least enough stack space for the caller to store the 8 GPRs.
6636   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6637 
6638   // Tail call needs the stack to be aligned.
6639   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6640       CFlags.CallConv == CallingConv::Fast)
6641     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6642 
6643   // Calculate by how many bytes the stack has to be adjusted in case of tail
6644   // call optimization.
6645   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6646 
6647   // To protect arguments on the stack from being clobbered in a tail call,
6648   // force all the loads to happen before doing any other lowering.
6649   if (CFlags.IsTailCall)
6650     Chain = DAG.getStackArgumentTokenFactor(Chain);
6651 
6652   // Adjust the stack pointer for the new arguments...
6653   // These operations are automatically eliminated by the prolog/epilog pass
6654   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6655   SDValue CallSeqStart = Chain;
6656 
6657   // Load the return address and frame pointer so it can be move somewhere else
6658   // later.
6659   SDValue LROp, FPOp;
6660   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6661 
6662   // Set up a copy of the stack pointer for use loading and storing any
6663   // arguments that may not fit in the registers available for argument
6664   // passing.
6665   SDValue StackPtr;
6666   if (isPPC64)
6667     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6668   else
6669     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6670 
6671   // Figure out which arguments are going to go in registers, and which in
6672   // memory.  Also, if this is a vararg function, floating point operations
6673   // must be stored to our stack, and loaded into integer regs as well, if
6674   // any integer regs are available for argument passing.
6675   unsigned ArgOffset = LinkageSize;
6676   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6677 
6678   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6679     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6680     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6681   };
6682   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6683     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6684     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6685   };
6686   static const MCPhysReg VR[] = {
6687     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6688     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6689   };
6690   const unsigned NumGPRs = array_lengthof(GPR_32);
6691   const unsigned NumFPRs = 13;
6692   const unsigned NumVRs  = array_lengthof(VR);
6693 
6694   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6695 
6696   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6697   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6698 
6699   SmallVector<SDValue, 8> MemOpChains;
6700   for (unsigned i = 0; i != NumOps; ++i) {
6701     SDValue Arg = OutVals[i];
6702     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6703 
6704     // PtrOff will be used to store the current argument to the stack if a
6705     // register cannot be found for it.
6706     SDValue PtrOff;
6707 
6708     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6709 
6710     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6711 
6712     // On PPC64, promote integers to 64-bit values.
6713     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6714       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6715       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6716       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6717     }
6718 
6719     // FIXME memcpy is used way more than necessary.  Correctness first.
6720     // Note: "by value" is code for passing a structure by value, not
6721     // basic types.
6722     if (Flags.isByVal()) {
6723       unsigned Size = Flags.getByValSize();
6724       // Very small objects are passed right-justified.  Everything else is
6725       // passed left-justified.
6726       if (Size==1 || Size==2) {
6727         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6728         if (GPR_idx != NumGPRs) {
6729           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6730                                         MachinePointerInfo(), VT);
6731           MemOpChains.push_back(Load.getValue(1));
6732           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6733 
6734           ArgOffset += PtrByteSize;
6735         } else {
6736           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6737                                           PtrOff.getValueType());
6738           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6739           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6740                                                             CallSeqStart,
6741                                                             Flags, DAG, dl);
6742           ArgOffset += PtrByteSize;
6743         }
6744         continue;
6745       }
6746       // Copy entire object into memory.  There are cases where gcc-generated
6747       // code assumes it is there, even if it could be put entirely into
6748       // registers.  (This is not what the doc says.)
6749       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6750                                                         CallSeqStart,
6751                                                         Flags, DAG, dl);
6752 
6753       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6754       // copy the pieces of the object that fit into registers from the
6755       // parameter save area.
6756       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6757         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6758         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6759         if (GPR_idx != NumGPRs) {
6760           SDValue Load =
6761               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6762           MemOpChains.push_back(Load.getValue(1));
6763           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6764           ArgOffset += PtrByteSize;
6765         } else {
6766           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6767           break;
6768         }
6769       }
6770       continue;
6771     }
6772 
6773     switch (Arg.getSimpleValueType().SimpleTy) {
6774     default: llvm_unreachable("Unexpected ValueType for argument!");
6775     case MVT::i1:
6776     case MVT::i32:
6777     case MVT::i64:
6778       if (GPR_idx != NumGPRs) {
6779         if (Arg.getValueType() == MVT::i1)
6780           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6781 
6782         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6783       } else {
6784         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6785                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6786                          TailCallArguments, dl);
6787       }
6788       ArgOffset += PtrByteSize;
6789       break;
6790     case MVT::f32:
6791     case MVT::f64:
6792       if (FPR_idx != NumFPRs) {
6793         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6794 
6795         if (CFlags.IsVarArg) {
6796           SDValue Store =
6797               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6798           MemOpChains.push_back(Store);
6799 
6800           // Float varargs are always shadowed in available integer registers
6801           if (GPR_idx != NumGPRs) {
6802             SDValue Load =
6803                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6804             MemOpChains.push_back(Load.getValue(1));
6805             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6806           }
6807           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6808             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6809             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6810             SDValue Load =
6811                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6812             MemOpChains.push_back(Load.getValue(1));
6813             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6814           }
6815         } else {
6816           // If we have any FPRs remaining, we may also have GPRs remaining.
6817           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6818           // GPRs.
6819           if (GPR_idx != NumGPRs)
6820             ++GPR_idx;
6821           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6822               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6823             ++GPR_idx;
6824         }
6825       } else
6826         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6827                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6828                          TailCallArguments, dl);
6829       if (isPPC64)
6830         ArgOffset += 8;
6831       else
6832         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6833       break;
6834     case MVT::v4f32:
6835     case MVT::v4i32:
6836     case MVT::v8i16:
6837     case MVT::v16i8:
6838       if (CFlags.IsVarArg) {
6839         // These go aligned on the stack, or in the corresponding R registers
6840         // when within range.  The Darwin PPC ABI doc claims they also go in
6841         // V registers; in fact gcc does this only for arguments that are
6842         // prototyped, not for those that match the ...  We do it for all
6843         // arguments, seems to work.
6844         while (ArgOffset % 16 !=0) {
6845           ArgOffset += PtrByteSize;
6846           if (GPR_idx != NumGPRs)
6847             GPR_idx++;
6848         }
6849         // We could elide this store in the case where the object fits
6850         // entirely in R registers.  Maybe later.
6851         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6852                              DAG.getConstant(ArgOffset, dl, PtrVT));
6853         SDValue Store =
6854             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6855         MemOpChains.push_back(Store);
6856         if (VR_idx != NumVRs) {
6857           SDValue Load =
6858               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6859           MemOpChains.push_back(Load.getValue(1));
6860           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6861         }
6862         ArgOffset += 16;
6863         for (unsigned i=0; i<16; i+=PtrByteSize) {
6864           if (GPR_idx == NumGPRs)
6865             break;
6866           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6867                                    DAG.getConstant(i, dl, PtrVT));
6868           SDValue Load =
6869               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6870           MemOpChains.push_back(Load.getValue(1));
6871           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6872         }
6873         break;
6874       }
6875 
6876       // Non-varargs Altivec params generally go in registers, but have
6877       // stack space allocated at the end.
6878       if (VR_idx != NumVRs) {
6879         // Doesn't have GPR space allocated.
6880         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6881       } else if (nAltivecParamsAtEnd==0) {
6882         // We are emitting Altivec params in order.
6883         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6884                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6885                          TailCallArguments, dl);
6886         ArgOffset += 16;
6887       }
6888       break;
6889     }
6890   }
6891   // If all Altivec parameters fit in registers, as they usually do,
6892   // they get stack space following the non-Altivec parameters.  We
6893   // don't track this here because nobody below needs it.
6894   // If there are more Altivec parameters than fit in registers emit
6895   // the stores here.
6896   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6897     unsigned j = 0;
6898     // Offset is aligned; skip 1st 12 params which go in V registers.
6899     ArgOffset = ((ArgOffset+15)/16)*16;
6900     ArgOffset += 12*16;
6901     for (unsigned i = 0; i != NumOps; ++i) {
6902       SDValue Arg = OutVals[i];
6903       EVT ArgType = Outs[i].VT;
6904       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6905           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6906         if (++j > NumVRs) {
6907           SDValue PtrOff;
6908           // We are emitting Altivec params in order.
6909           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6910                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6911                            TailCallArguments, dl);
6912           ArgOffset += 16;
6913         }
6914       }
6915     }
6916   }
6917 
6918   if (!MemOpChains.empty())
6919     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6920 
6921   // On Darwin, R12 must contain the address of an indirect callee.  This does
6922   // not mean the MTCTR instruction must use R12; it's easier to model this as
6923   // an extra parameter, so do that.
6924   if (CFlags.IsIndirect) {
6925     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6926     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6927                                                    PPC::R12), Callee));
6928   }
6929 
6930   // Build a sequence of copy-to-reg nodes chained together with token chain
6931   // and flag operands which copy the outgoing args into the appropriate regs.
6932   SDValue InFlag;
6933   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6934     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6935                              RegsToPass[i].second, InFlag);
6936     InFlag = Chain.getValue(1);
6937   }
6938 
6939   if (CFlags.IsTailCall)
6940     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6941                     TailCallArguments);
6942 
6943   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6944                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6945 }
6946 
6947 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6948                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6949                    CCState &State) {
6950 
6951   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6952       State.getMachineFunction().getSubtarget());
6953   const bool IsPPC64 = Subtarget.isPPC64();
6954   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6955   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6956 
6957   assert((!ValVT.isInteger() ||
6958           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6959          "Integer argument exceeds register size: should have been legalized");
6960 
6961   if (ValVT == MVT::f128)
6962     report_fatal_error("f128 is unimplemented on AIX.");
6963 
6964   if (ArgFlags.isNest())
6965     report_fatal_error("Nest arguments are unimplemented.");
6966 
6967   if (ValVT.isVector() || LocVT.isVector())
6968     report_fatal_error("Vector arguments are unimplemented on AIX.");
6969 
6970   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6971                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6972                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6973   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6974                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6975                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6976 
6977   if (ArgFlags.isByVal()) {
6978     if (ArgFlags.getNonZeroByValAlign() > PtrByteSize)
6979       report_fatal_error("Pass-by-value arguments with alignment greater than "
6980                          "register width are not supported.");
6981 
6982     const unsigned ByValSize = ArgFlags.getByValSize();
6983 
6984     // An empty aggregate parameter takes up no storage and no registers,
6985     // but needs a MemLoc for a stack slot for the formal arguments side.
6986     if (ByValSize == 0) {
6987       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6988                                        State.getNextStackOffset(), RegVT,
6989                                        LocInfo));
6990       return false;
6991     }
6992 
6993     const unsigned StackSize = alignTo(ByValSize, PtrByteSize);
6994     unsigned Offset = State.AllocateStack(StackSize, PtrByteSize);
6995     for (const unsigned E = Offset + StackSize; Offset < E;
6996          Offset += PtrByteSize) {
6997       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6998         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6999       else {
7000         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7001                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
7002                                          LocInfo));
7003         break;
7004       }
7005     }
7006     return false;
7007   }
7008 
7009   // Arguments always reserve parameter save area.
7010   switch (ValVT.SimpleTy) {
7011   default:
7012     report_fatal_error("Unhandled value type for argument.");
7013   case MVT::i64:
7014     // i64 arguments should have been split to i32 for PPC32.
7015     assert(IsPPC64 && "PPC32 should have split i64 values.");
7016     LLVM_FALLTHROUGH;
7017   case MVT::i1:
7018   case MVT::i32: {
7019     const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize);
7020     // AIX integer arguments are always passed in register width.
7021     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
7022       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
7023                                   : CCValAssign::LocInfo::ZExt;
7024     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7025       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7026     else
7027       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
7028 
7029     return false;
7030   }
7031   case MVT::f32:
7032   case MVT::f64: {
7033     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7034     const unsigned StoreSize = LocVT.getStoreSize();
7035     // Floats are always 4-byte aligned in the PSA on AIX.
7036     // This includes f64 in 64-bit mode for ABI compatibility.
7037     const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
7038     unsigned FReg = State.AllocateReg(FPR);
7039     if (FReg)
7040       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7041 
7042     // Reserve and initialize GPRs or initialize the PSA as required.
7043     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
7044       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7045         assert(FReg && "An FPR should be available when a GPR is reserved.");
7046         if (State.isVarArg()) {
7047           // Successfully reserved GPRs are only initialized for vararg calls.
7048           // Custom handling is required for:
7049           //   f64 in PPC32 needs to be split into 2 GPRs.
7050           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7051           State.addLoc(
7052               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7053         }
7054       } else {
7055         // If there are insufficient GPRs, the PSA needs to be initialized.
7056         // Initialization occurs even if an FPR was initialized for
7057         // compatibility with the AIX XL compiler. The full memory for the
7058         // argument will be initialized even if a prior word is saved in GPR.
7059         // A custom memLoc is used when the argument also passes in FPR so
7060         // that the callee handling can skip over it easily.
7061         State.addLoc(
7062             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7063                                              LocInfo)
7064                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7065         break;
7066       }
7067     }
7068 
7069     return false;
7070   }
7071   }
7072   return true;
7073 }
7074 
7075 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7076                                                     bool IsPPC64) {
7077   assert((IsPPC64 || SVT != MVT::i64) &&
7078          "i64 should have been split for 32-bit codegen.");
7079 
7080   switch (SVT) {
7081   default:
7082     report_fatal_error("Unexpected value type for formal argument");
7083   case MVT::i1:
7084   case MVT::i32:
7085   case MVT::i64:
7086     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7087   case MVT::f32:
7088     return &PPC::F4RCRegClass;
7089   case MVT::f64:
7090     return &PPC::F8RCRegClass;
7091   }
7092 }
7093 
7094 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7095                                         SelectionDAG &DAG, SDValue ArgValue,
7096                                         MVT LocVT, const SDLoc &dl) {
7097   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7098   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7099 
7100   if (Flags.isSExt())
7101     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7102                            DAG.getValueType(ValVT));
7103   else if (Flags.isZExt())
7104     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7105                            DAG.getValueType(ValVT));
7106 
7107   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7108 }
7109 
7110 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7111   const unsigned LASize = FL->getLinkageSize();
7112 
7113   if (PPC::GPRCRegClass.contains(Reg)) {
7114     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7115            "Reg must be a valid argument register!");
7116     return LASize + 4 * (Reg - PPC::R3);
7117   }
7118 
7119   if (PPC::G8RCRegClass.contains(Reg)) {
7120     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7121            "Reg must be a valid argument register!");
7122     return LASize + 8 * (Reg - PPC::X3);
7123   }
7124 
7125   llvm_unreachable("Only general purpose registers expected.");
7126 }
7127 
7128 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7129     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7130     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7131     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7132 
7133   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7134           CallConv == CallingConv::Fast) &&
7135          "Unexpected calling convention!");
7136 
7137   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7138     report_fatal_error("Tail call support is unimplemented on AIX.");
7139 
7140   if (useSoftFloat())
7141     report_fatal_error("Soft float support is unimplemented on AIX.");
7142 
7143   const PPCSubtarget &Subtarget =
7144       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7145   if (Subtarget.hasQPX())
7146     report_fatal_error("QPX support is not supported on AIX.");
7147 
7148   const bool IsPPC64 = Subtarget.isPPC64();
7149   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7150 
7151   // Assign locations to all of the incoming arguments.
7152   SmallVector<CCValAssign, 16> ArgLocs;
7153   MachineFunction &MF = DAG.getMachineFunction();
7154   MachineFrameInfo &MFI = MF.getFrameInfo();
7155   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7156 
7157   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7158   // Reserve space for the linkage area on the stack.
7159   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7160   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7161   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7162 
7163   SmallVector<SDValue, 8> MemOps;
7164 
7165   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7166     CCValAssign &VA = ArgLocs[I++];
7167     MVT LocVT = VA.getLocVT();
7168     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7169 
7170     // For compatibility with the AIX XL compiler, the float args in the
7171     // parameter save area are initialized even if the argument is available
7172     // in register.  The caller is required to initialize both the register
7173     // and memory, however, the callee can choose to expect it in either.
7174     // The memloc is dismissed here because the argument is retrieved from
7175     // the register.
7176     if (VA.isMemLoc() && VA.needsCustom())
7177       continue;
7178 
7179     if (Flags.isByVal() && VA.isMemLoc()) {
7180       const unsigned Size =
7181           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7182                   PtrByteSize);
7183       const int FI = MF.getFrameInfo().CreateFixedObject(
7184           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7185           /* IsAliased */ true);
7186       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7187       InVals.push_back(FIN);
7188 
7189       continue;
7190     }
7191 
7192     if (Flags.isByVal()) {
7193       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7194 
7195       const MCPhysReg ArgReg = VA.getLocReg();
7196       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7197 
7198       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7199         report_fatal_error("Over aligned byvals not supported yet.");
7200 
7201       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7202       const int FI = MF.getFrameInfo().CreateFixedObject(
7203           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7204           /* IsAliased */ true);
7205       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7206       InVals.push_back(FIN);
7207 
7208       // Add live ins for all the RegLocs for the same ByVal.
7209       const TargetRegisterClass *RegClass =
7210           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7211 
7212       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7213                                                unsigned Offset) {
7214         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7215         // Since the callers side has left justified the aggregate in the
7216         // register, we can simply store the entire register into the stack
7217         // slot.
7218         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7219         // The store to the fixedstack object is needed becuase accessing a
7220         // field of the ByVal will use a gep and load. Ideally we will optimize
7221         // to extracting the value from the register directly, and elide the
7222         // stores when the arguments address is not taken, but that will need to
7223         // be future work.
7224         SDValue Store =
7225             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7226                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7227                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7228 
7229         MemOps.push_back(Store);
7230       };
7231 
7232       unsigned Offset = 0;
7233       HandleRegLoc(VA.getLocReg(), Offset);
7234       Offset += PtrByteSize;
7235       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7236            Offset += PtrByteSize) {
7237         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7238                "RegLocs should be for ByVal argument.");
7239 
7240         const CCValAssign RL = ArgLocs[I++];
7241         HandleRegLoc(RL.getLocReg(), Offset);
7242       }
7243 
7244       if (Offset != StackSize) {
7245         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7246                "Expected MemLoc for remaining bytes.");
7247         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7248         // Consume the MemLoc.The InVal has already been emitted, so nothing
7249         // more needs to be done.
7250         ++I;
7251       }
7252 
7253       continue;
7254     }
7255 
7256     EVT ValVT = VA.getValVT();
7257     if (VA.isRegLoc() && !VA.needsCustom()) {
7258       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7259       unsigned VReg =
7260           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7261       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7262       if (ValVT.isScalarInteger() &&
7263           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7264         ArgValue =
7265             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7266       }
7267       InVals.push_back(ArgValue);
7268       continue;
7269     }
7270     if (VA.isMemLoc()) {
7271       const unsigned LocSize = LocVT.getStoreSize();
7272       const unsigned ValSize = ValVT.getStoreSize();
7273       assert((ValSize <= LocSize) &&
7274              "Object size is larger than size of MemLoc");
7275       int CurArgOffset = VA.getLocMemOffset();
7276       // Objects are right-justified because AIX is big-endian.
7277       if (LocSize > ValSize)
7278         CurArgOffset += LocSize - ValSize;
7279       // Potential tail calls could cause overwriting of argument stack slots.
7280       const bool IsImmutable =
7281           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7282             (CallConv == CallingConv::Fast));
7283       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7284       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7285       SDValue ArgValue =
7286           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7287       InVals.push_back(ArgValue);
7288       continue;
7289     }
7290   }
7291 
7292   // On AIX a minimum of 8 words is saved to the parameter save area.
7293   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7294   // Area that is at least reserved in the caller of this function.
7295   unsigned CallerReservedArea =
7296       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7297 
7298   // Set the size that is at least reserved in caller of this function. Tail
7299   // call optimized function's reserved stack space needs to be aligned so
7300   // that taking the difference between two stack areas will result in an
7301   // aligned stack.
7302   CallerReservedArea =
7303       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7304   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7305   FuncInfo->setMinReservedArea(CallerReservedArea);
7306 
7307   if (isVarArg) {
7308     FuncInfo->setVarArgsFrameIndex(
7309         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7310     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7311 
7312     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7313                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7314 
7315     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7316                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7317     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7318 
7319     // The fixed integer arguments of a variadic function are stored to the
7320     // VarArgsFrameIndex on the stack so that they may be loaded by
7321     // dereferencing the result of va_next.
7322     for (unsigned GPRIndex =
7323              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7324          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7325 
7326       const unsigned VReg =
7327           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7328                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7329 
7330       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7331       SDValue Store =
7332           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7333       MemOps.push_back(Store);
7334       // Increment the address for the next argument to store.
7335       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7336       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7337     }
7338   }
7339 
7340   if (!MemOps.empty())
7341     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7342 
7343   return Chain;
7344 }
7345 
7346 SDValue PPCTargetLowering::LowerCall_AIX(
7347     SDValue Chain, SDValue Callee, CallFlags CFlags,
7348     const SmallVectorImpl<ISD::OutputArg> &Outs,
7349     const SmallVectorImpl<SDValue> &OutVals,
7350     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7351     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7352     const CallBase *CB) const {
7353 
7354   assert((CFlags.CallConv == CallingConv::C ||
7355           CFlags.CallConv == CallingConv::Cold ||
7356           CFlags.CallConv == CallingConv::Fast) &&
7357          "Unexpected calling convention!");
7358 
7359   if (CFlags.IsPatchPoint)
7360     report_fatal_error("This call type is unimplemented on AIX.");
7361 
7362   const PPCSubtarget& Subtarget =
7363       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7364   if (Subtarget.hasQPX())
7365     report_fatal_error("QPX is not supported on AIX.");
7366   if (Subtarget.hasAltivec())
7367     report_fatal_error("Altivec support is unimplemented on AIX.");
7368 
7369   MachineFunction &MF = DAG.getMachineFunction();
7370   SmallVector<CCValAssign, 16> ArgLocs;
7371   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7372                  *DAG.getContext());
7373 
7374   // Reserve space for the linkage save area (LSA) on the stack.
7375   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7376   //   [SP][CR][LR][2 x reserved][TOC].
7377   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7378   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7379   const bool IsPPC64 = Subtarget.isPPC64();
7380   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7381   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7382   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7383   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7384 
7385   // The prolog code of the callee may store up to 8 GPR argument registers to
7386   // the stack, allowing va_start to index over them in memory if the callee
7387   // is variadic.
7388   // Because we cannot tell if this is needed on the caller side, we have to
7389   // conservatively assume that it is needed.  As such, make sure we have at
7390   // least enough stack space for the caller to store the 8 GPRs.
7391   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7392   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7393                                      CCInfo.getNextStackOffset());
7394 
7395   // Adjust the stack pointer for the new arguments...
7396   // These operations are automatically eliminated by the prolog/epilog pass.
7397   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7398   SDValue CallSeqStart = Chain;
7399 
7400   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7401   SmallVector<SDValue, 8> MemOpChains;
7402 
7403   // Set up a copy of the stack pointer for loading and storing any
7404   // arguments that may not fit in the registers available for argument
7405   // passing.
7406   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7407                                    : DAG.getRegister(PPC::R1, MVT::i32);
7408 
7409   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7410     const unsigned ValNo = ArgLocs[I].getValNo();
7411     SDValue Arg = OutVals[ValNo];
7412     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7413 
7414     if (Flags.isByVal()) {
7415       const unsigned ByValSize = Flags.getByValSize();
7416 
7417       // Nothing to do for zero-sized ByVals on the caller side.
7418       if (!ByValSize) {
7419         ++I;
7420         continue;
7421       }
7422 
7423       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7424         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7425                               (LoadOffset != 0)
7426                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7427                                   : Arg,
7428                               MachinePointerInfo(), VT);
7429       };
7430 
7431       unsigned LoadOffset = 0;
7432 
7433       // Initialize registers, which are fully occupied by the by-val argument.
7434       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7435         SDValue Load = GetLoad(PtrVT, LoadOffset);
7436         MemOpChains.push_back(Load.getValue(1));
7437         LoadOffset += PtrByteSize;
7438         const CCValAssign &ByValVA = ArgLocs[I++];
7439         assert(ByValVA.getValNo() == ValNo &&
7440                "Unexpected location for pass-by-value argument.");
7441         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7442       }
7443 
7444       if (LoadOffset == ByValSize)
7445         continue;
7446 
7447       // There must be one more loc to handle the remainder.
7448       assert(ArgLocs[I].getValNo() == ValNo &&
7449              "Expected additional location for by-value argument.");
7450 
7451       if (ArgLocs[I].isMemLoc()) {
7452         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7453         const CCValAssign &ByValVA = ArgLocs[I++];
7454         ISD::ArgFlagsTy MemcpyFlags = Flags;
7455         // Only memcpy the bytes that don't pass in register.
7456         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7457         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7458             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7459                               : Arg,
7460             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7461             CallSeqStart, MemcpyFlags, DAG, dl);
7462         continue;
7463       }
7464 
7465       // Initialize the final register residue.
7466       // Any residue that occupies the final by-val arg register must be
7467       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7468       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7469       // 2 and 1 byte loads.
7470       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7471       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7472              "Unexpected register residue for by-value argument.");
7473       SDValue ResidueVal;
7474       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7475         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7476         const MVT VT =
7477             N == 1 ? MVT::i8
7478                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7479         SDValue Load = GetLoad(VT, LoadOffset);
7480         MemOpChains.push_back(Load.getValue(1));
7481         LoadOffset += N;
7482         Bytes += N;
7483 
7484         // By-val arguments are passed left-justfied in register.
7485         // Every load here needs to be shifted, otherwise a full register load
7486         // should have been used.
7487         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7488                "Unexpected load emitted during handling of pass-by-value "
7489                "argument.");
7490         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7491         EVT ShiftAmountTy =
7492             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7493         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7494         SDValue ShiftedLoad =
7495             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7496         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7497                                               ShiftedLoad)
7498                                 : ShiftedLoad;
7499       }
7500 
7501       const CCValAssign &ByValVA = ArgLocs[I++];
7502       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7503       continue;
7504     }
7505 
7506     CCValAssign &VA = ArgLocs[I++];
7507     const MVT LocVT = VA.getLocVT();
7508     const MVT ValVT = VA.getValVT();
7509 
7510     switch (VA.getLocInfo()) {
7511     default:
7512       report_fatal_error("Unexpected argument extension type.");
7513     case CCValAssign::Full:
7514       break;
7515     case CCValAssign::ZExt:
7516       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7517       break;
7518     case CCValAssign::SExt:
7519       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7520       break;
7521     }
7522 
7523     if (VA.isRegLoc() && !VA.needsCustom()) {
7524       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7525       continue;
7526     }
7527 
7528     if (VA.isMemLoc()) {
7529       SDValue PtrOff =
7530           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7531       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7532       MemOpChains.push_back(
7533           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7534 
7535       continue;
7536     }
7537 
7538     // Custom handling is used for GPR initializations for vararg float
7539     // arguments.
7540     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7541            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7542            "Unexpected register handling for calling convention.");
7543 
7544     SDValue ArgAsInt =
7545         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7546 
7547     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7548       // f32 in 32-bit GPR
7549       // f64 in 64-bit GPR
7550       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7551     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7552       // f32 in 64-bit GPR.
7553       RegsToPass.push_back(std::make_pair(
7554           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7555     else {
7556       // f64 in two 32-bit GPRs
7557       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7558       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7559              "Unexpected custom register for argument!");
7560       CCValAssign &GPR1 = VA;
7561       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7562                                      DAG.getConstant(32, dl, MVT::i8));
7563       RegsToPass.push_back(std::make_pair(
7564           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7565 
7566       if (I != E) {
7567         // If only 1 GPR was available, there will only be one custom GPR and
7568         // the argument will also pass in memory.
7569         CCValAssign &PeekArg = ArgLocs[I];
7570         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7571           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7572           CCValAssign &GPR2 = ArgLocs[I++];
7573           RegsToPass.push_back(std::make_pair(
7574               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7575         }
7576       }
7577     }
7578   }
7579 
7580   if (!MemOpChains.empty())
7581     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7582 
7583   // For indirect calls, we need to save the TOC base to the stack for
7584   // restoration after the call.
7585   if (CFlags.IsIndirect) {
7586     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7587     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7588     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7589     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7590     const unsigned TOCSaveOffset =
7591         Subtarget.getFrameLowering()->getTOCSaveOffset();
7592 
7593     setUsesTOCBasePtr(DAG);
7594     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7595     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7596     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7597     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7598     Chain = DAG.getStore(
7599         Val.getValue(1), dl, Val, AddPtr,
7600         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7601   }
7602 
7603   // Build a sequence of copy-to-reg nodes chained together with token chain
7604   // and flag operands which copy the outgoing args into the appropriate regs.
7605   SDValue InFlag;
7606   for (auto Reg : RegsToPass) {
7607     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7608     InFlag = Chain.getValue(1);
7609   }
7610 
7611   const int SPDiff = 0;
7612   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7613                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7614 }
7615 
7616 bool
7617 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7618                                   MachineFunction &MF, bool isVarArg,
7619                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7620                                   LLVMContext &Context) const {
7621   SmallVector<CCValAssign, 16> RVLocs;
7622   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7623   return CCInfo.CheckReturn(
7624       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7625                 ? RetCC_PPC_Cold
7626                 : RetCC_PPC);
7627 }
7628 
7629 SDValue
7630 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7631                                bool isVarArg,
7632                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7633                                const SmallVectorImpl<SDValue> &OutVals,
7634                                const SDLoc &dl, SelectionDAG &DAG) const {
7635   SmallVector<CCValAssign, 16> RVLocs;
7636   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7637                  *DAG.getContext());
7638   CCInfo.AnalyzeReturn(Outs,
7639                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7640                            ? RetCC_PPC_Cold
7641                            : RetCC_PPC);
7642 
7643   SDValue Flag;
7644   SmallVector<SDValue, 4> RetOps(1, Chain);
7645 
7646   // Copy the result values into the output registers.
7647   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7648     CCValAssign &VA = RVLocs[i];
7649     assert(VA.isRegLoc() && "Can only return in registers!");
7650 
7651     SDValue Arg = OutVals[RealResIdx];
7652 
7653     switch (VA.getLocInfo()) {
7654     default: llvm_unreachable("Unknown loc info!");
7655     case CCValAssign::Full: break;
7656     case CCValAssign::AExt:
7657       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7658       break;
7659     case CCValAssign::ZExt:
7660       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7661       break;
7662     case CCValAssign::SExt:
7663       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7664       break;
7665     }
7666     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7667       bool isLittleEndian = Subtarget.isLittleEndian();
7668       // Legalize ret f64 -> ret 2 x i32.
7669       SDValue SVal =
7670           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7671                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7672       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7673       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7674       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7675                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7676       Flag = Chain.getValue(1);
7677       VA = RVLocs[++i]; // skip ahead to next loc
7678       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7679     } else
7680       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7681     Flag = Chain.getValue(1);
7682     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7683   }
7684 
7685   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7686   const MCPhysReg *I =
7687     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7688   if (I) {
7689     for (; *I; ++I) {
7690 
7691       if (PPC::G8RCRegClass.contains(*I))
7692         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7693       else if (PPC::F8RCRegClass.contains(*I))
7694         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7695       else if (PPC::CRRCRegClass.contains(*I))
7696         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7697       else if (PPC::VRRCRegClass.contains(*I))
7698         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7699       else
7700         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7701     }
7702   }
7703 
7704   RetOps[0] = Chain;  // Update chain.
7705 
7706   // Add the flag if we have it.
7707   if (Flag.getNode())
7708     RetOps.push_back(Flag);
7709 
7710   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7711 }
7712 
7713 SDValue
7714 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7715                                                 SelectionDAG &DAG) const {
7716   SDLoc dl(Op);
7717 
7718   // Get the correct type for integers.
7719   EVT IntVT = Op.getValueType();
7720 
7721   // Get the inputs.
7722   SDValue Chain = Op.getOperand(0);
7723   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7724   // Build a DYNAREAOFFSET node.
7725   SDValue Ops[2] = {Chain, FPSIdx};
7726   SDVTList VTs = DAG.getVTList(IntVT);
7727   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7728 }
7729 
7730 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7731                                              SelectionDAG &DAG) const {
7732   // When we pop the dynamic allocation we need to restore the SP link.
7733   SDLoc dl(Op);
7734 
7735   // Get the correct type for pointers.
7736   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7737 
7738   // Construct the stack pointer operand.
7739   bool isPPC64 = Subtarget.isPPC64();
7740   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7741   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7742 
7743   // Get the operands for the STACKRESTORE.
7744   SDValue Chain = Op.getOperand(0);
7745   SDValue SaveSP = Op.getOperand(1);
7746 
7747   // Load the old link SP.
7748   SDValue LoadLinkSP =
7749       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7750 
7751   // Restore the stack pointer.
7752   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7753 
7754   // Store the old link SP.
7755   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7756 }
7757 
7758 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7759   MachineFunction &MF = DAG.getMachineFunction();
7760   bool isPPC64 = Subtarget.isPPC64();
7761   EVT PtrVT = getPointerTy(MF.getDataLayout());
7762 
7763   // Get current frame pointer save index.  The users of this index will be
7764   // primarily DYNALLOC instructions.
7765   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7766   int RASI = FI->getReturnAddrSaveIndex();
7767 
7768   // If the frame pointer save index hasn't been defined yet.
7769   if (!RASI) {
7770     // Find out what the fix offset of the frame pointer save area.
7771     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7772     // Allocate the frame index for frame pointer save area.
7773     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7774     // Save the result.
7775     FI->setReturnAddrSaveIndex(RASI);
7776   }
7777   return DAG.getFrameIndex(RASI, PtrVT);
7778 }
7779 
7780 SDValue
7781 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7782   MachineFunction &MF = DAG.getMachineFunction();
7783   bool isPPC64 = Subtarget.isPPC64();
7784   EVT PtrVT = getPointerTy(MF.getDataLayout());
7785 
7786   // Get current frame pointer save index.  The users of this index will be
7787   // primarily DYNALLOC instructions.
7788   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7789   int FPSI = FI->getFramePointerSaveIndex();
7790 
7791   // If the frame pointer save index hasn't been defined yet.
7792   if (!FPSI) {
7793     // Find out what the fix offset of the frame pointer save area.
7794     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7795     // Allocate the frame index for frame pointer save area.
7796     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7797     // Save the result.
7798     FI->setFramePointerSaveIndex(FPSI);
7799   }
7800   return DAG.getFrameIndex(FPSI, PtrVT);
7801 }
7802 
7803 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7804                                                    SelectionDAG &DAG) const {
7805   // Get the inputs.
7806   SDValue Chain = Op.getOperand(0);
7807   SDValue Size  = Op.getOperand(1);
7808   SDLoc dl(Op);
7809 
7810   // Get the correct type for pointers.
7811   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7812   // Negate the size.
7813   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7814                                 DAG.getConstant(0, dl, PtrVT), Size);
7815   // Construct a node for the frame pointer save index.
7816   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7817   // Build a DYNALLOC node.
7818   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7819   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7820   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7821 }
7822 
7823 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7824                                                      SelectionDAG &DAG) const {
7825   MachineFunction &MF = DAG.getMachineFunction();
7826 
7827   bool isPPC64 = Subtarget.isPPC64();
7828   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7829 
7830   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7831   return DAG.getFrameIndex(FI, PtrVT);
7832 }
7833 
7834 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7835                                                SelectionDAG &DAG) const {
7836   SDLoc DL(Op);
7837   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7838                      DAG.getVTList(MVT::i32, MVT::Other),
7839                      Op.getOperand(0), Op.getOperand(1));
7840 }
7841 
7842 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7843                                                 SelectionDAG &DAG) const {
7844   SDLoc DL(Op);
7845   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7846                      Op.getOperand(0), Op.getOperand(1));
7847 }
7848 
7849 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7850   if (Op.getValueType().isVector())
7851     return LowerVectorLoad(Op, DAG);
7852 
7853   assert(Op.getValueType() == MVT::i1 &&
7854          "Custom lowering only for i1 loads");
7855 
7856   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7857 
7858   SDLoc dl(Op);
7859   LoadSDNode *LD = cast<LoadSDNode>(Op);
7860 
7861   SDValue Chain = LD->getChain();
7862   SDValue BasePtr = LD->getBasePtr();
7863   MachineMemOperand *MMO = LD->getMemOperand();
7864 
7865   SDValue NewLD =
7866       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7867                      BasePtr, MVT::i8, MMO);
7868   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7869 
7870   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7871   return DAG.getMergeValues(Ops, dl);
7872 }
7873 
7874 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7875   if (Op.getOperand(1).getValueType().isVector())
7876     return LowerVectorStore(Op, DAG);
7877 
7878   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7879          "Custom lowering only for i1 stores");
7880 
7881   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7882 
7883   SDLoc dl(Op);
7884   StoreSDNode *ST = cast<StoreSDNode>(Op);
7885 
7886   SDValue Chain = ST->getChain();
7887   SDValue BasePtr = ST->getBasePtr();
7888   SDValue Value = ST->getValue();
7889   MachineMemOperand *MMO = ST->getMemOperand();
7890 
7891   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7892                       Value);
7893   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7894 }
7895 
7896 // FIXME: Remove this once the ANDI glue bug is fixed:
7897 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7898   assert(Op.getValueType() == MVT::i1 &&
7899          "Custom lowering only for i1 results");
7900 
7901   SDLoc DL(Op);
7902   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7903 }
7904 
7905 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7906                                                SelectionDAG &DAG) const {
7907 
7908   // Implements a vector truncate that fits in a vector register as a shuffle.
7909   // We want to legalize vector truncates down to where the source fits in
7910   // a vector register (and target is therefore smaller than vector register
7911   // size).  At that point legalization will try to custom lower the sub-legal
7912   // result and get here - where we can contain the truncate as a single target
7913   // operation.
7914 
7915   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7916   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7917   //
7918   // We will implement it for big-endian ordering as this (where x denotes
7919   // undefined):
7920   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7921   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7922   //
7923   // The same operation in little-endian ordering will be:
7924   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7925   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7926 
7927   assert(Op.getValueType().isVector() && "Vector type expected.");
7928 
7929   SDLoc DL(Op);
7930   SDValue N1 = Op.getOperand(0);
7931   unsigned SrcSize = N1.getValueType().getSizeInBits();
7932   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7933   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7934 
7935   EVT TrgVT = Op.getValueType();
7936   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7937   EVT EltVT = TrgVT.getVectorElementType();
7938   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7939   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7940 
7941   // First list the elements we want to keep.
7942   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7943   SmallVector<int, 16> ShuffV;
7944   if (Subtarget.isLittleEndian())
7945     for (unsigned i = 0; i < TrgNumElts; ++i)
7946       ShuffV.push_back(i * SizeMult);
7947   else
7948     for (unsigned i = 1; i <= TrgNumElts; ++i)
7949       ShuffV.push_back(i * SizeMult - 1);
7950 
7951   // Populate the remaining elements with undefs.
7952   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7953     // ShuffV.push_back(i + WideNumElts);
7954     ShuffV.push_back(WideNumElts + 1);
7955 
7956   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7957   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7958 }
7959 
7960 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7961 /// possible.
7962 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7963   // Not FP? Not a fsel.
7964   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7965       !Op.getOperand(2).getValueType().isFloatingPoint())
7966     return Op;
7967 
7968   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7969 
7970   EVT ResVT = Op.getValueType();
7971   EVT CmpVT = Op.getOperand(0).getValueType();
7972   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7973   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7974   SDLoc dl(Op);
7975 
7976   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7977   // presence of infinities.
7978   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7979     switch (CC) {
7980     default:
7981       break;
7982     case ISD::SETOGT:
7983     case ISD::SETGT:
7984       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7985     case ISD::SETOLT:
7986     case ISD::SETLT:
7987       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7988     }
7989   }
7990 
7991   // We might be able to do better than this under some circumstances, but in
7992   // general, fsel-based lowering of select is a finite-math-only optimization.
7993   // For more information, see section F.3 of the 2.06 ISA specification.
7994   // With ISA 3.0
7995   if (!DAG.getTarget().Options.NoInfsFPMath ||
7996       !DAG.getTarget().Options.NoNaNsFPMath)
7997     return Op;
7998 
7999   // TODO: Propagate flags from the select rather than global settings.
8000   SDNodeFlags Flags;
8001   Flags.setNoInfs(true);
8002   Flags.setNoNaNs(true);
8003 
8004   // If the RHS of the comparison is a 0.0, we don't need to do the
8005   // subtraction at all.
8006   SDValue Sel1;
8007   if (isFloatingPointZero(RHS))
8008     switch (CC) {
8009     default: break;       // SETUO etc aren't handled by fsel.
8010     case ISD::SETNE:
8011       std::swap(TV, FV);
8012       LLVM_FALLTHROUGH;
8013     case ISD::SETEQ:
8014       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8015         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8016       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8017       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8018         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8019       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8020                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8021     case ISD::SETULT:
8022     case ISD::SETLT:
8023       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8024       LLVM_FALLTHROUGH;
8025     case ISD::SETOGE:
8026     case ISD::SETGE:
8027       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8028         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8029       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8030     case ISD::SETUGT:
8031     case ISD::SETGT:
8032       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8033       LLVM_FALLTHROUGH;
8034     case ISD::SETOLE:
8035     case ISD::SETLE:
8036       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8037         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8038       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8039                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8040     }
8041 
8042   SDValue Cmp;
8043   switch (CC) {
8044   default: break;       // SETUO etc aren't handled by fsel.
8045   case ISD::SETNE:
8046     std::swap(TV, FV);
8047     LLVM_FALLTHROUGH;
8048   case ISD::SETEQ:
8049     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8050     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8051       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8052     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8053     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8054       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8055     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8056                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8057   case ISD::SETULT:
8058   case ISD::SETLT:
8059     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8060     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8061       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8062     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8063   case ISD::SETOGE:
8064   case ISD::SETGE:
8065     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8066     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8067       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8068     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8069   case ISD::SETUGT:
8070   case ISD::SETGT:
8071     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8072     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8073       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8074     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8075   case ISD::SETOLE:
8076   case ISD::SETLE:
8077     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8078     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8079       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8080     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8081   }
8082   return Op;
8083 }
8084 
8085 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8086                                                SelectionDAG &DAG,
8087                                                const SDLoc &dl) const {
8088   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8089   SDValue Src = Op.getOperand(0);
8090   if (Src.getValueType() == MVT::f32)
8091     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8092 
8093   SDValue Tmp;
8094   switch (Op.getSimpleValueType().SimpleTy) {
8095   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8096   case MVT::i32:
8097     Tmp = DAG.getNode(
8098         Op.getOpcode() == ISD::FP_TO_SINT
8099             ? PPCISD::FCTIWZ
8100             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8101         dl, MVT::f64, Src);
8102     break;
8103   case MVT::i64:
8104     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8105            "i64 FP_TO_UINT is supported only with FPCVT");
8106     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8107                                                         PPCISD::FCTIDUZ,
8108                       dl, MVT::f64, Src);
8109     break;
8110   }
8111 
8112   // Convert the FP value to an int value through memory.
8113   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8114     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
8115   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8116   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8117   MachinePointerInfo MPI =
8118       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8119 
8120   // Emit a store to the stack slot.
8121   SDValue Chain;
8122   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8123   if (i32Stack) {
8124     MachineFunction &MF = DAG.getMachineFunction();
8125     Alignment = Align(4);
8126     MachineMemOperand *MMO =
8127         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8128     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
8129     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8130               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8131   } else
8132     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
8133 
8134   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8135   // add in a bias on big endian.
8136   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8137     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8138                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8139     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8140   }
8141 
8142   RLI.Chain = Chain;
8143   RLI.Ptr = FIPtr;
8144   RLI.MPI = MPI;
8145   RLI.Alignment = Alignment;
8146 }
8147 
8148 /// Custom lowers floating point to integer conversions to use
8149 /// the direct move instructions available in ISA 2.07 to avoid the
8150 /// need for load/store combinations.
8151 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8152                                                     SelectionDAG &DAG,
8153                                                     const SDLoc &dl) const {
8154   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8155   SDValue Src = Op.getOperand(0);
8156 
8157   if (Src.getValueType() == MVT::f32)
8158     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8159 
8160   SDValue Tmp;
8161   switch (Op.getSimpleValueType().SimpleTy) {
8162   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8163   case MVT::i32:
8164     Tmp = DAG.getNode(
8165         Op.getOpcode() == ISD::FP_TO_SINT
8166             ? PPCISD::FCTIWZ
8167             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8168         dl, MVT::f64, Src);
8169     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8170     break;
8171   case MVT::i64:
8172     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8173            "i64 FP_TO_UINT is supported only with FPCVT");
8174     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8175                                                         PPCISD::FCTIDUZ,
8176                       dl, MVT::f64, Src);
8177     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8178     break;
8179   }
8180   return Tmp;
8181 }
8182 
8183 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8184                                           const SDLoc &dl) const {
8185 
8186   // FP to INT conversions are legal for f128.
8187   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
8188     return Op;
8189 
8190   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8191   // PPC (the libcall is not available).
8192   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8193     if (Op.getValueType() == MVT::i32) {
8194       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8195         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8196                                  MVT::f64, Op.getOperand(0),
8197                                  DAG.getIntPtrConstant(0, dl));
8198         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8199                                  MVT::f64, Op.getOperand(0),
8200                                  DAG.getIntPtrConstant(1, dl));
8201 
8202         // Add the two halves of the long double in round-to-zero mode.
8203         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8204 
8205         // Now use a smaller FP_TO_SINT.
8206         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8207       }
8208       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8209         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8210         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8211         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8212         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8213         // FIXME: generated code sucks.
8214         // TODO: Are there fast-math-flags to propagate to this FSUB?
8215         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8216                                    Op.getOperand(0), Tmp);
8217         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8218         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8219                            DAG.getConstant(0x80000000, dl, MVT::i32));
8220         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8221                                     Op.getOperand(0));
8222         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8223                                ISD::SETGE);
8224       }
8225     }
8226 
8227     return SDValue();
8228   }
8229 
8230   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8231     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8232 
8233   ReuseLoadInfo RLI;
8234   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8235 
8236   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8237                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8238 }
8239 
8240 // We're trying to insert a regular store, S, and then a load, L. If the
8241 // incoming value, O, is a load, we might just be able to have our load use the
8242 // address used by O. However, we don't know if anything else will store to
8243 // that address before we can load from it. To prevent this situation, we need
8244 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8245 // the same chain operand as O, we create a token factor from the chain results
8246 // of O and L, and we replace all uses of O's chain result with that token
8247 // factor (see spliceIntoChain below for this last part).
8248 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8249                                             ReuseLoadInfo &RLI,
8250                                             SelectionDAG &DAG,
8251                                             ISD::LoadExtType ET) const {
8252   SDLoc dl(Op);
8253   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8254                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8255   if (ET == ISD::NON_EXTLOAD &&
8256       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8257       isOperationLegalOrCustom(Op.getOpcode(),
8258                                Op.getOperand(0).getValueType())) {
8259 
8260     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8261     return true;
8262   }
8263 
8264   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8265   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8266       LD->isNonTemporal())
8267     return false;
8268   if (LD->getMemoryVT() != MemVT)
8269     return false;
8270 
8271   RLI.Ptr = LD->getBasePtr();
8272   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8273     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8274            "Non-pre-inc AM on PPC?");
8275     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8276                           LD->getOffset());
8277   }
8278 
8279   RLI.Chain = LD->getChain();
8280   RLI.MPI = LD->getPointerInfo();
8281   RLI.IsDereferenceable = LD->isDereferenceable();
8282   RLI.IsInvariant = LD->isInvariant();
8283   RLI.Alignment = LD->getAlign();
8284   RLI.AAInfo = LD->getAAInfo();
8285   RLI.Ranges = LD->getRanges();
8286 
8287   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8288   return true;
8289 }
8290 
8291 // Given the head of the old chain, ResChain, insert a token factor containing
8292 // it and NewResChain, and make users of ResChain now be users of that token
8293 // factor.
8294 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8295 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8296                                         SDValue NewResChain,
8297                                         SelectionDAG &DAG) const {
8298   if (!ResChain)
8299     return;
8300 
8301   SDLoc dl(NewResChain);
8302 
8303   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8304                            NewResChain, DAG.getUNDEF(MVT::Other));
8305   assert(TF.getNode() != NewResChain.getNode() &&
8306          "A new TF really is required here");
8307 
8308   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8309   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8310 }
8311 
8312 /// Analyze profitability of direct move
8313 /// prefer float load to int load plus direct move
8314 /// when there is no integer use of int load
8315 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8316   SDNode *Origin = Op.getOperand(0).getNode();
8317   if (Origin->getOpcode() != ISD::LOAD)
8318     return true;
8319 
8320   // If there is no LXSIBZX/LXSIHZX, like Power8,
8321   // prefer direct move if the memory size is 1 or 2 bytes.
8322   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8323   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8324     return true;
8325 
8326   for (SDNode::use_iterator UI = Origin->use_begin(),
8327                             UE = Origin->use_end();
8328        UI != UE; ++UI) {
8329 
8330     // Only look at the users of the loaded value.
8331     if (UI.getUse().get().getResNo() != 0)
8332       continue;
8333 
8334     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8335         UI->getOpcode() != ISD::UINT_TO_FP)
8336       return true;
8337   }
8338 
8339   return false;
8340 }
8341 
8342 /// Custom lowers integer to floating point conversions to use
8343 /// the direct move instructions available in ISA 2.07 to avoid the
8344 /// need for load/store combinations.
8345 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8346                                                     SelectionDAG &DAG,
8347                                                     const SDLoc &dl) const {
8348   assert((Op.getValueType() == MVT::f32 ||
8349           Op.getValueType() == MVT::f64) &&
8350          "Invalid floating point type as target of conversion");
8351   assert(Subtarget.hasFPCVT() &&
8352          "Int to FP conversions with direct moves require FPCVT");
8353   SDValue FP;
8354   SDValue Src = Op.getOperand(0);
8355   bool SinglePrec = Op.getValueType() == MVT::f32;
8356   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8357   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8358   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8359                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8360 
8361   if (WordInt) {
8362     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8363                      dl, MVT::f64, Src);
8364     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8365   }
8366   else {
8367     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8368     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8369   }
8370 
8371   return FP;
8372 }
8373 
8374 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8375 
8376   EVT VecVT = Vec.getValueType();
8377   assert(VecVT.isVector() && "Expected a vector type.");
8378   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8379 
8380   EVT EltVT = VecVT.getVectorElementType();
8381   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8382   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8383 
8384   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8385   SmallVector<SDValue, 16> Ops(NumConcat);
8386   Ops[0] = Vec;
8387   SDValue UndefVec = DAG.getUNDEF(VecVT);
8388   for (unsigned i = 1; i < NumConcat; ++i)
8389     Ops[i] = UndefVec;
8390 
8391   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8392 }
8393 
8394 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8395                                                 const SDLoc &dl) const {
8396 
8397   unsigned Opc = Op.getOpcode();
8398   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8399          "Unexpected conversion type");
8400   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8401          "Supports conversions to v2f64/v4f32 only.");
8402 
8403   bool SignedConv = Opc == ISD::SINT_TO_FP;
8404   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8405 
8406   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8407   EVT WideVT = Wide.getValueType();
8408   unsigned WideNumElts = WideVT.getVectorNumElements();
8409   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8410 
8411   SmallVector<int, 16> ShuffV;
8412   for (unsigned i = 0; i < WideNumElts; ++i)
8413     ShuffV.push_back(i + WideNumElts);
8414 
8415   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8416   int SaveElts = FourEltRes ? 4 : 2;
8417   if (Subtarget.isLittleEndian())
8418     for (int i = 0; i < SaveElts; i++)
8419       ShuffV[i * Stride] = i;
8420   else
8421     for (int i = 1; i <= SaveElts; i++)
8422       ShuffV[i * Stride - 1] = i - 1;
8423 
8424   SDValue ShuffleSrc2 =
8425       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8426   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8427 
8428   SDValue Extend;
8429   if (SignedConv) {
8430     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8431     EVT ExtVT = Op.getOperand(0).getValueType();
8432     if (Subtarget.hasP9Altivec())
8433       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8434                                IntermediateVT.getVectorNumElements());
8435 
8436     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8437                          DAG.getValueType(ExtVT));
8438   } else
8439     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8440 
8441   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8442 }
8443 
8444 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8445                                           SelectionDAG &DAG) const {
8446   SDLoc dl(Op);
8447 
8448   EVT InVT = Op.getOperand(0).getValueType();
8449   EVT OutVT = Op.getValueType();
8450   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8451       isOperationCustom(Op.getOpcode(), InVT))
8452     return LowerINT_TO_FPVector(Op, DAG, dl);
8453 
8454   // Conversions to f128 are legal.
8455   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8456     return Op;
8457 
8458   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8459     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8460       return SDValue();
8461 
8462     SDValue Value = Op.getOperand(0);
8463     // The values are now known to be -1 (false) or 1 (true). To convert this
8464     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8465     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8466     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8467 
8468     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8469 
8470     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8471 
8472     if (Op.getValueType() != MVT::v4f64)
8473       Value = DAG.getNode(ISD::FP_ROUND, dl,
8474                           Op.getValueType(), Value,
8475                           DAG.getIntPtrConstant(1, dl));
8476     return Value;
8477   }
8478 
8479   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8480   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8481     return SDValue();
8482 
8483   if (Op.getOperand(0).getValueType() == MVT::i1)
8484     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8485                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8486                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8487 
8488   // If we have direct moves, we can do all the conversion, skip the store/load
8489   // however, without FPCVT we can't do most conversions.
8490   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8491       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8492     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8493 
8494   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8495          "UINT_TO_FP is supported only with FPCVT");
8496 
8497   // If we have FCFIDS, then use it when converting to single-precision.
8498   // Otherwise, convert to double-precision and then round.
8499   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8500                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8501                                                             : PPCISD::FCFIDS)
8502                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8503                                                             : PPCISD::FCFID);
8504   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8505                   ? MVT::f32
8506                   : MVT::f64;
8507 
8508   if (Op.getOperand(0).getValueType() == MVT::i64) {
8509     SDValue SINT = Op.getOperand(0);
8510     // When converting to single-precision, we actually need to convert
8511     // to double-precision first and then round to single-precision.
8512     // To avoid double-rounding effects during that operation, we have
8513     // to prepare the input operand.  Bits that might be truncated when
8514     // converting to double-precision are replaced by a bit that won't
8515     // be lost at this stage, but is below the single-precision rounding
8516     // position.
8517     //
8518     // However, if -enable-unsafe-fp-math is in effect, accept double
8519     // rounding to avoid the extra overhead.
8520     if (Op.getValueType() == MVT::f32 &&
8521         !Subtarget.hasFPCVT() &&
8522         !DAG.getTarget().Options.UnsafeFPMath) {
8523 
8524       // Twiddle input to make sure the low 11 bits are zero.  (If this
8525       // is the case, we are guaranteed the value will fit into the 53 bit
8526       // mantissa of an IEEE double-precision value without rounding.)
8527       // If any of those low 11 bits were not zero originally, make sure
8528       // bit 12 (value 2048) is set instead, so that the final rounding
8529       // to single-precision gets the correct result.
8530       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8531                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8532       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8533                           Round, DAG.getConstant(2047, dl, MVT::i64));
8534       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8535       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8536                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8537 
8538       // However, we cannot use that value unconditionally: if the magnitude
8539       // of the input value is small, the bit-twiddling we did above might
8540       // end up visibly changing the output.  Fortunately, in that case, we
8541       // don't need to twiddle bits since the original input will convert
8542       // exactly to double-precision floating-point already.  Therefore,
8543       // construct a conditional to use the original value if the top 11
8544       // bits are all sign-bit copies, and use the rounded value computed
8545       // above otherwise.
8546       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8547                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8548       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8549                          Cond, DAG.getConstant(1, dl, MVT::i64));
8550       Cond = DAG.getSetCC(
8551           dl,
8552           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8553           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8554 
8555       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8556     }
8557 
8558     ReuseLoadInfo RLI;
8559     SDValue Bits;
8560 
8561     MachineFunction &MF = DAG.getMachineFunction();
8562     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8563       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8564                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8565       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8566     } else if (Subtarget.hasLFIWAX() &&
8567                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8568       MachineMemOperand *MMO =
8569         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8570                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8571       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8572       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8573                                      DAG.getVTList(MVT::f64, MVT::Other),
8574                                      Ops, MVT::i32, MMO);
8575       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8576     } else if (Subtarget.hasFPCVT() &&
8577                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8578       MachineMemOperand *MMO =
8579         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8580                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8581       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8582       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8583                                      DAG.getVTList(MVT::f64, MVT::Other),
8584                                      Ops, MVT::i32, MMO);
8585       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8586     } else if (((Subtarget.hasLFIWAX() &&
8587                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8588                 (Subtarget.hasFPCVT() &&
8589                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8590                SINT.getOperand(0).getValueType() == MVT::i32) {
8591       MachineFrameInfo &MFI = MF.getFrameInfo();
8592       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8593 
8594       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8595       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8596 
8597       SDValue Store =
8598           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8599                        MachinePointerInfo::getFixedStack(
8600                            DAG.getMachineFunction(), FrameIdx));
8601 
8602       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8603              "Expected an i32 store");
8604 
8605       RLI.Ptr = FIdx;
8606       RLI.Chain = Store;
8607       RLI.MPI =
8608           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8609       RLI.Alignment = Align(4);
8610 
8611       MachineMemOperand *MMO =
8612         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8613                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8614       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8615       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8616                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8617                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8618                                      Ops, MVT::i32, MMO);
8619     } else
8620       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8621 
8622     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8623 
8624     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8625       FP = DAG.getNode(ISD::FP_ROUND, dl,
8626                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8627     return FP;
8628   }
8629 
8630   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8631          "Unhandled INT_TO_FP type in custom expander!");
8632   // Since we only generate this in 64-bit mode, we can take advantage of
8633   // 64-bit registers.  In particular, sign extend the input value into the
8634   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8635   // then lfd it and fcfid it.
8636   MachineFunction &MF = DAG.getMachineFunction();
8637   MachineFrameInfo &MFI = MF.getFrameInfo();
8638   EVT PtrVT = getPointerTy(MF.getDataLayout());
8639 
8640   SDValue Ld;
8641   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8642     ReuseLoadInfo RLI;
8643     bool ReusingLoad;
8644     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8645                                             DAG))) {
8646       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8647       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8648 
8649       SDValue Store =
8650           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8651                        MachinePointerInfo::getFixedStack(
8652                            DAG.getMachineFunction(), FrameIdx));
8653 
8654       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8655              "Expected an i32 store");
8656 
8657       RLI.Ptr = FIdx;
8658       RLI.Chain = Store;
8659       RLI.MPI =
8660           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8661       RLI.Alignment = Align(4);
8662     }
8663 
8664     MachineMemOperand *MMO =
8665       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8666                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8667     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8668     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8669                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8670                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8671                                  Ops, MVT::i32, MMO);
8672     if (ReusingLoad)
8673       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8674   } else {
8675     assert(Subtarget.isPPC64() &&
8676            "i32->FP without LFIWAX supported only on PPC64");
8677 
8678     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8679     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8680 
8681     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8682                                 Op.getOperand(0));
8683 
8684     // STD the extended value into the stack slot.
8685     SDValue Store = DAG.getStore(
8686         DAG.getEntryNode(), dl, Ext64, FIdx,
8687         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8688 
8689     // Load the value as a double.
8690     Ld = DAG.getLoad(
8691         MVT::f64, dl, Store, FIdx,
8692         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8693   }
8694 
8695   // FCFID it and return it.
8696   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8697   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8698     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8699                      DAG.getIntPtrConstant(0, dl));
8700   return FP;
8701 }
8702 
8703 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8704                                             SelectionDAG &DAG) const {
8705   SDLoc dl(Op);
8706   /*
8707    The rounding mode is in bits 30:31 of FPSR, and has the following
8708    settings:
8709      00 Round to nearest
8710      01 Round to 0
8711      10 Round to +inf
8712      11 Round to -inf
8713 
8714   FLT_ROUNDS, on the other hand, expects the following:
8715     -1 Undefined
8716      0 Round to 0
8717      1 Round to nearest
8718      2 Round to +inf
8719      3 Round to -inf
8720 
8721   To perform the conversion, we do:
8722     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8723   */
8724 
8725   MachineFunction &MF = DAG.getMachineFunction();
8726   EVT VT = Op.getValueType();
8727   EVT PtrVT = getPointerTy(MF.getDataLayout());
8728 
8729   // Save FP Control Word to register
8730   SDValue Chain = Op.getOperand(0);
8731   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8732   Chain = MFFS.getValue(1);
8733 
8734   // Save FP register to stack slot
8735   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8736   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8737   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8738 
8739   // Load FP Control Word from low 32 bits of stack slot.
8740   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8741   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8742   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8743   Chain = CWD.getValue(1);
8744 
8745   // Transform as necessary
8746   SDValue CWD1 =
8747     DAG.getNode(ISD::AND, dl, MVT::i32,
8748                 CWD, DAG.getConstant(3, dl, MVT::i32));
8749   SDValue CWD2 =
8750     DAG.getNode(ISD::SRL, dl, MVT::i32,
8751                 DAG.getNode(ISD::AND, dl, MVT::i32,
8752                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8753                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8754                             DAG.getConstant(3, dl, MVT::i32)),
8755                 DAG.getConstant(1, dl, MVT::i32));
8756 
8757   SDValue RetVal =
8758     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8759 
8760   RetVal =
8761       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8762                   dl, VT, RetVal);
8763 
8764   return DAG.getMergeValues({RetVal, Chain}, dl);
8765 }
8766 
8767 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8768   EVT VT = Op.getValueType();
8769   unsigned BitWidth = VT.getSizeInBits();
8770   SDLoc dl(Op);
8771   assert(Op.getNumOperands() == 3 &&
8772          VT == Op.getOperand(1).getValueType() &&
8773          "Unexpected SHL!");
8774 
8775   // Expand into a bunch of logical ops.  Note that these ops
8776   // depend on the PPC behavior for oversized shift amounts.
8777   SDValue Lo = Op.getOperand(0);
8778   SDValue Hi = Op.getOperand(1);
8779   SDValue Amt = Op.getOperand(2);
8780   EVT AmtVT = Amt.getValueType();
8781 
8782   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8783                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8784   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8785   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8786   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8787   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8788                              DAG.getConstant(-BitWidth, dl, AmtVT));
8789   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8790   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8791   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8792   SDValue OutOps[] = { OutLo, OutHi };
8793   return DAG.getMergeValues(OutOps, dl);
8794 }
8795 
8796 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8797   EVT VT = Op.getValueType();
8798   SDLoc dl(Op);
8799   unsigned BitWidth = VT.getSizeInBits();
8800   assert(Op.getNumOperands() == 3 &&
8801          VT == Op.getOperand(1).getValueType() &&
8802          "Unexpected SRL!");
8803 
8804   // Expand into a bunch of logical ops.  Note that these ops
8805   // depend on the PPC behavior for oversized shift amounts.
8806   SDValue Lo = Op.getOperand(0);
8807   SDValue Hi = Op.getOperand(1);
8808   SDValue Amt = Op.getOperand(2);
8809   EVT AmtVT = Amt.getValueType();
8810 
8811   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8812                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8813   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8814   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8815   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8816   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8817                              DAG.getConstant(-BitWidth, dl, AmtVT));
8818   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8819   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8820   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8821   SDValue OutOps[] = { OutLo, OutHi };
8822   return DAG.getMergeValues(OutOps, dl);
8823 }
8824 
8825 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8826   SDLoc dl(Op);
8827   EVT VT = Op.getValueType();
8828   unsigned BitWidth = VT.getSizeInBits();
8829   assert(Op.getNumOperands() == 3 &&
8830          VT == Op.getOperand(1).getValueType() &&
8831          "Unexpected SRA!");
8832 
8833   // Expand into a bunch of logical ops, followed by a select_cc.
8834   SDValue Lo = Op.getOperand(0);
8835   SDValue Hi = Op.getOperand(1);
8836   SDValue Amt = Op.getOperand(2);
8837   EVT AmtVT = Amt.getValueType();
8838 
8839   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8840                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8841   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8842   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8843   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8844   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8845                              DAG.getConstant(-BitWidth, dl, AmtVT));
8846   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8847   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8848   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8849                                   Tmp4, Tmp6, ISD::SETLE);
8850   SDValue OutOps[] = { OutLo, OutHi };
8851   return DAG.getMergeValues(OutOps, dl);
8852 }
8853 
8854 //===----------------------------------------------------------------------===//
8855 // Vector related lowering.
8856 //
8857 
8858 /// BuildSplatI - Build a canonical splati of Val with an element size of
8859 /// SplatSize.  Cast the result to VT.
8860 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8861                            SelectionDAG &DAG, const SDLoc &dl) {
8862   static const MVT VTys[] = { // canonical VT to use for each size.
8863     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8864   };
8865 
8866   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8867 
8868   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8869   if (Val == -1)
8870     SplatSize = 1;
8871 
8872   EVT CanonicalVT = VTys[SplatSize-1];
8873 
8874   // Build a canonical splat for this value.
8875   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8876 }
8877 
8878 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8879 /// specified intrinsic ID.
8880 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8881                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8882   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8883   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8884                      DAG.getConstant(IID, dl, MVT::i32), Op);
8885 }
8886 
8887 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8888 /// specified intrinsic ID.
8889 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8890                                 SelectionDAG &DAG, const SDLoc &dl,
8891                                 EVT DestVT = MVT::Other) {
8892   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8893   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8894                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8895 }
8896 
8897 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8898 /// specified intrinsic ID.
8899 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8900                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8901                                 EVT DestVT = MVT::Other) {
8902   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8903   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8904                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8905 }
8906 
8907 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8908 /// amount.  The result has the specified value type.
8909 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8910                            SelectionDAG &DAG, const SDLoc &dl) {
8911   // Force LHS/RHS to be the right type.
8912   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8913   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8914 
8915   int Ops[16];
8916   for (unsigned i = 0; i != 16; ++i)
8917     Ops[i] = i + Amt;
8918   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8919   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8920 }
8921 
8922 /// Do we have an efficient pattern in a .td file for this node?
8923 ///
8924 /// \param V - pointer to the BuildVectorSDNode being matched
8925 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8926 ///
8927 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8928 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8929 /// the opposite is true (expansion is beneficial) are:
8930 /// - The node builds a vector out of integers that are not 32 or 64-bits
8931 /// - The node builds a vector out of constants
8932 /// - The node is a "load-and-splat"
8933 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8934 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8935                                             bool HasDirectMove,
8936                                             bool HasP8Vector) {
8937   EVT VecVT = V->getValueType(0);
8938   bool RightType = VecVT == MVT::v2f64 ||
8939     (HasP8Vector && VecVT == MVT::v4f32) ||
8940     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8941   if (!RightType)
8942     return false;
8943 
8944   bool IsSplat = true;
8945   bool IsLoad = false;
8946   SDValue Op0 = V->getOperand(0);
8947 
8948   // This function is called in a block that confirms the node is not a constant
8949   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8950   // different constants.
8951   if (V->isConstant())
8952     return false;
8953   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8954     if (V->getOperand(i).isUndef())
8955       return false;
8956     // We want to expand nodes that represent load-and-splat even if the
8957     // loaded value is a floating point truncation or conversion to int.
8958     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8959         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8960          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8961         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8962          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8963         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8964          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8965       IsLoad = true;
8966     // If the operands are different or the input is not a load and has more
8967     // uses than just this BV node, then it isn't a splat.
8968     if (V->getOperand(i) != Op0 ||
8969         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8970       IsSplat = false;
8971   }
8972   return !(IsSplat && IsLoad);
8973 }
8974 
8975 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8976 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8977 
8978   SDLoc dl(Op);
8979   SDValue Op0 = Op->getOperand(0);
8980 
8981   if (!EnableQuadPrecision ||
8982       (Op.getValueType() != MVT::f128 ) ||
8983       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8984       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8985       (Op0.getOperand(1).getValueType() != MVT::i64))
8986     return SDValue();
8987 
8988   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8989                      Op0.getOperand(1));
8990 }
8991 
8992 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8993   const SDValue *InputLoad = &Op;
8994   if (InputLoad->getOpcode() == ISD::BITCAST)
8995     InputLoad = &InputLoad->getOperand(0);
8996   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8997     InputLoad = &InputLoad->getOperand(0);
8998   if (InputLoad->getOpcode() != ISD::LOAD)
8999     return nullptr;
9000   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9001   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9002 }
9003 
9004 // If this is a case we can't handle, return null and let the default
9005 // expansion code take care of it.  If we CAN select this case, and if it
9006 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9007 // this case more efficiently than a constant pool load, lower it to the
9008 // sequence of ops that should be used.
9009 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9010                                              SelectionDAG &DAG) const {
9011   SDLoc dl(Op);
9012   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9013   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9014 
9015   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
9016     // We first build an i32 vector, load it into a QPX register,
9017     // then convert it to a floating-point vector and compare it
9018     // to a zero vector to get the boolean result.
9019     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9020     int FrameIdx = MFI.CreateStackObject(16, 16, false);
9021     MachinePointerInfo PtrInfo =
9022         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9023     EVT PtrVT = getPointerTy(DAG.getDataLayout());
9024     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9025 
9026     assert(BVN->getNumOperands() == 4 &&
9027       "BUILD_VECTOR for v4i1 does not have 4 operands");
9028 
9029     bool IsConst = true;
9030     for (unsigned i = 0; i < 4; ++i) {
9031       if (BVN->getOperand(i).isUndef()) continue;
9032       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
9033         IsConst = false;
9034         break;
9035       }
9036     }
9037 
9038     if (IsConst) {
9039       Constant *One =
9040         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
9041       Constant *NegOne =
9042         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
9043 
9044       Constant *CV[4];
9045       for (unsigned i = 0; i < 4; ++i) {
9046         if (BVN->getOperand(i).isUndef())
9047           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
9048         else if (isNullConstant(BVN->getOperand(i)))
9049           CV[i] = NegOne;
9050         else
9051           CV[i] = One;
9052       }
9053 
9054       Constant *CP = ConstantVector::get(CV);
9055       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
9056                                           16 /* alignment */);
9057 
9058       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
9059       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
9060       return DAG.getMemIntrinsicNode(
9061           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
9062           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
9063     }
9064 
9065     SmallVector<SDValue, 4> Stores;
9066     for (unsigned i = 0; i < 4; ++i) {
9067       if (BVN->getOperand(i).isUndef()) continue;
9068 
9069       unsigned Offset = 4*i;
9070       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9071       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9072 
9073       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
9074       if (StoreSize > 4) {
9075         Stores.push_back(
9076             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
9077                               PtrInfo.getWithOffset(Offset), MVT::i32));
9078       } else {
9079         SDValue StoreValue = BVN->getOperand(i);
9080         if (StoreSize < 4)
9081           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
9082 
9083         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
9084                                       PtrInfo.getWithOffset(Offset)));
9085       }
9086     }
9087 
9088     SDValue StoreChain;
9089     if (!Stores.empty())
9090       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9091     else
9092       StoreChain = DAG.getEntryNode();
9093 
9094     // Now load from v4i32 into the QPX register; this will extend it to
9095     // v4i64 but not yet convert it to a floating point. Nevertheless, this
9096     // is typed as v4f64 because the QPX register integer states are not
9097     // explicitly represented.
9098 
9099     SDValue Ops[] = {StoreChain,
9100                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
9101                      FIdx};
9102     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
9103 
9104     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
9105       dl, VTs, Ops, MVT::v4i32, PtrInfo);
9106     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9107       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
9108       LoadedVect);
9109 
9110     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
9111 
9112     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
9113   }
9114 
9115   // All other QPX vectors are handled by generic code.
9116   if (Subtarget.hasQPX())
9117     return SDValue();
9118 
9119   // Check if this is a splat of a constant value.
9120   APInt APSplatBits, APSplatUndef;
9121   unsigned SplatBitSize;
9122   bool HasAnyUndefs;
9123   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9124                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9125       SplatBitSize > 32) {
9126 
9127     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
9128     // Handle load-and-splat patterns as we have instructions that will do this
9129     // in one go.
9130     if (InputLoad && DAG.isSplatValue(Op, true)) {
9131       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9132 
9133       // We have handling for 4 and 8 byte elements.
9134       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9135 
9136       // Checking for a single use of this load, we have to check for vector
9137       // width (128 bits) / ElementSize uses (since each operand of the
9138       // BUILD_VECTOR is a separate use of the value.
9139       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9140           ((Subtarget.hasVSX() && ElementSize == 64) ||
9141            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9142         SDValue Ops[] = {
9143           LD->getChain(),    // Chain
9144           LD->getBasePtr(),  // Ptr
9145           DAG.getValueType(Op.getValueType()) // VT
9146         };
9147         return
9148           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9149                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9150                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9151       }
9152     }
9153 
9154     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9155     // lowered to VSX instructions under certain conditions.
9156     // Without VSX, there is no pattern more efficient than expanding the node.
9157     if (Subtarget.hasVSX() &&
9158         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9159                                         Subtarget.hasP8Vector()))
9160       return Op;
9161     return SDValue();
9162   }
9163 
9164   unsigned SplatBits = APSplatBits.getZExtValue();
9165   unsigned SplatUndef = APSplatUndef.getZExtValue();
9166   unsigned SplatSize = SplatBitSize / 8;
9167 
9168   // First, handle single instruction cases.
9169 
9170   // All zeros?
9171   if (SplatBits == 0) {
9172     // Canonicalize all zero vectors to be v4i32.
9173     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9174       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9175       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9176     }
9177     return Op;
9178   }
9179 
9180   // We have XXSPLTIB for constant splats one byte wide
9181   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
9182   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
9183   if (Subtarget.hasP9Vector() && SplatSize == 1)
9184     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
9185 
9186   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9187   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9188                     (32-SplatBitSize));
9189   if (SextVal >= -16 && SextVal <= 15)
9190     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
9191 
9192   // Two instruction sequences.
9193 
9194   // If this value is in the range [-32,30] and is even, use:
9195   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9196   // If this value is in the range [17,31] and is odd, use:
9197   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9198   // If this value is in the range [-31,-17] and is odd, use:
9199   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9200   // Note the last two are three-instruction sequences.
9201   if (SextVal >= -32 && SextVal <= 31) {
9202     // To avoid having these optimizations undone by constant folding,
9203     // we convert to a pseudo that will be expanded later into one of
9204     // the above forms.
9205     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9206     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9207               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9208     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9209     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9210     if (VT == Op.getValueType())
9211       return RetVal;
9212     else
9213       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9214   }
9215 
9216   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9217   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9218   // for fneg/fabs.
9219   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9220     // Make -1 and vspltisw -1:
9221     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
9222 
9223     // Make the VSLW intrinsic, computing 0x8000_0000.
9224     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9225                                    OnesV, DAG, dl);
9226 
9227     // xor by OnesV to invert it.
9228     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9229     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9230   }
9231 
9232   // Check to see if this is a wide variety of vsplti*, binop self cases.
9233   static const signed char SplatCsts[] = {
9234     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9235     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9236   };
9237 
9238   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9239     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9240     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9241     int i = SplatCsts[idx];
9242 
9243     // Figure out what shift amount will be used by altivec if shifted by i in
9244     // this splat size.
9245     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9246 
9247     // vsplti + shl self.
9248     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9249       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9250       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9251         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9252         Intrinsic::ppc_altivec_vslw
9253       };
9254       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9255       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9256     }
9257 
9258     // vsplti + srl self.
9259     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9260       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9261       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9262         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9263         Intrinsic::ppc_altivec_vsrw
9264       };
9265       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9266       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9267     }
9268 
9269     // vsplti + sra self.
9270     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9271       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9272       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9273         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9274         Intrinsic::ppc_altivec_vsraw
9275       };
9276       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9277       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9278     }
9279 
9280     // vsplti + rol self.
9281     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9282                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9283       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9284       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9285         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9286         Intrinsic::ppc_altivec_vrlw
9287       };
9288       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9289       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9290     }
9291 
9292     // t = vsplti c, result = vsldoi t, t, 1
9293     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9294       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9295       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9296       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9297     }
9298     // t = vsplti c, result = vsldoi t, t, 2
9299     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9300       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9301       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9302       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9303     }
9304     // t = vsplti c, result = vsldoi t, t, 3
9305     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9306       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9307       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9308       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9309     }
9310   }
9311 
9312   return SDValue();
9313 }
9314 
9315 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9316 /// the specified operations to build the shuffle.
9317 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9318                                       SDValue RHS, SelectionDAG &DAG,
9319                                       const SDLoc &dl) {
9320   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9321   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9322   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9323 
9324   enum {
9325     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9326     OP_VMRGHW,
9327     OP_VMRGLW,
9328     OP_VSPLTISW0,
9329     OP_VSPLTISW1,
9330     OP_VSPLTISW2,
9331     OP_VSPLTISW3,
9332     OP_VSLDOI4,
9333     OP_VSLDOI8,
9334     OP_VSLDOI12
9335   };
9336 
9337   if (OpNum == OP_COPY) {
9338     if (LHSID == (1*9+2)*9+3) return LHS;
9339     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9340     return RHS;
9341   }
9342 
9343   SDValue OpLHS, OpRHS;
9344   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9345   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9346 
9347   int ShufIdxs[16];
9348   switch (OpNum) {
9349   default: llvm_unreachable("Unknown i32 permute!");
9350   case OP_VMRGHW:
9351     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9352     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9353     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9354     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9355     break;
9356   case OP_VMRGLW:
9357     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9358     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9359     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9360     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9361     break;
9362   case OP_VSPLTISW0:
9363     for (unsigned i = 0; i != 16; ++i)
9364       ShufIdxs[i] = (i&3)+0;
9365     break;
9366   case OP_VSPLTISW1:
9367     for (unsigned i = 0; i != 16; ++i)
9368       ShufIdxs[i] = (i&3)+4;
9369     break;
9370   case OP_VSPLTISW2:
9371     for (unsigned i = 0; i != 16; ++i)
9372       ShufIdxs[i] = (i&3)+8;
9373     break;
9374   case OP_VSPLTISW3:
9375     for (unsigned i = 0; i != 16; ++i)
9376       ShufIdxs[i] = (i&3)+12;
9377     break;
9378   case OP_VSLDOI4:
9379     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9380   case OP_VSLDOI8:
9381     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9382   case OP_VSLDOI12:
9383     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9384   }
9385   EVT VT = OpLHS.getValueType();
9386   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9387   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9388   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9389   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9390 }
9391 
9392 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9393 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9394 /// SDValue.
9395 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9396                                            SelectionDAG &DAG) const {
9397   const unsigned BytesInVector = 16;
9398   bool IsLE = Subtarget.isLittleEndian();
9399   SDLoc dl(N);
9400   SDValue V1 = N->getOperand(0);
9401   SDValue V2 = N->getOperand(1);
9402   unsigned ShiftElts = 0, InsertAtByte = 0;
9403   bool Swap = false;
9404 
9405   // Shifts required to get the byte we want at element 7.
9406   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9407                                    0, 15, 14, 13, 12, 11, 10, 9};
9408   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9409                                 1, 2,  3,  4,  5,  6,  7,  8};
9410 
9411   ArrayRef<int> Mask = N->getMask();
9412   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9413 
9414   // For each mask element, find out if we're just inserting something
9415   // from V2 into V1 or vice versa.
9416   // Possible permutations inserting an element from V2 into V1:
9417   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9418   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9419   //   ...
9420   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9421   // Inserting from V1 into V2 will be similar, except mask range will be
9422   // [16,31].
9423 
9424   bool FoundCandidate = false;
9425   // If both vector operands for the shuffle are the same vector, the mask
9426   // will contain only elements from the first one and the second one will be
9427   // undef.
9428   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9429   // Go through the mask of half-words to find an element that's being moved
9430   // from one vector to the other.
9431   for (unsigned i = 0; i < BytesInVector; ++i) {
9432     unsigned CurrentElement = Mask[i];
9433     // If 2nd operand is undefined, we should only look for element 7 in the
9434     // Mask.
9435     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9436       continue;
9437 
9438     bool OtherElementsInOrder = true;
9439     // Examine the other elements in the Mask to see if they're in original
9440     // order.
9441     for (unsigned j = 0; j < BytesInVector; ++j) {
9442       if (j == i)
9443         continue;
9444       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9445       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9446       // in which we always assume we're always picking from the 1st operand.
9447       int MaskOffset =
9448           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9449       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9450         OtherElementsInOrder = false;
9451         break;
9452       }
9453     }
9454     // If other elements are in original order, we record the number of shifts
9455     // we need to get the element we want into element 7. Also record which byte
9456     // in the vector we should insert into.
9457     if (OtherElementsInOrder) {
9458       // If 2nd operand is undefined, we assume no shifts and no swapping.
9459       if (V2.isUndef()) {
9460         ShiftElts = 0;
9461         Swap = false;
9462       } else {
9463         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9464         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9465                          : BigEndianShifts[CurrentElement & 0xF];
9466         Swap = CurrentElement < BytesInVector;
9467       }
9468       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9469       FoundCandidate = true;
9470       break;
9471     }
9472   }
9473 
9474   if (!FoundCandidate)
9475     return SDValue();
9476 
9477   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9478   // optionally with VECSHL if shift is required.
9479   if (Swap)
9480     std::swap(V1, V2);
9481   if (V2.isUndef())
9482     V2 = V1;
9483   if (ShiftElts) {
9484     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9485                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9486     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9487                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9488   }
9489   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9490                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9491 }
9492 
9493 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9494 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9495 /// SDValue.
9496 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9497                                            SelectionDAG &DAG) const {
9498   const unsigned NumHalfWords = 8;
9499   const unsigned BytesInVector = NumHalfWords * 2;
9500   // Check that the shuffle is on half-words.
9501   if (!isNByteElemShuffleMask(N, 2, 1))
9502     return SDValue();
9503 
9504   bool IsLE = Subtarget.isLittleEndian();
9505   SDLoc dl(N);
9506   SDValue V1 = N->getOperand(0);
9507   SDValue V2 = N->getOperand(1);
9508   unsigned ShiftElts = 0, InsertAtByte = 0;
9509   bool Swap = false;
9510 
9511   // Shifts required to get the half-word we want at element 3.
9512   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9513   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9514 
9515   uint32_t Mask = 0;
9516   uint32_t OriginalOrderLow = 0x1234567;
9517   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9518   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9519   // 32-bit space, only need 4-bit nibbles per element.
9520   for (unsigned i = 0; i < NumHalfWords; ++i) {
9521     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9522     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9523   }
9524 
9525   // For each mask element, find out if we're just inserting something
9526   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9527   // from V2 into V1:
9528   //   X, 1, 2, 3, 4, 5, 6, 7
9529   //   0, X, 2, 3, 4, 5, 6, 7
9530   //   0, 1, X, 3, 4, 5, 6, 7
9531   //   0, 1, 2, X, 4, 5, 6, 7
9532   //   0, 1, 2, 3, X, 5, 6, 7
9533   //   0, 1, 2, 3, 4, X, 6, 7
9534   //   0, 1, 2, 3, 4, 5, X, 7
9535   //   0, 1, 2, 3, 4, 5, 6, X
9536   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9537 
9538   bool FoundCandidate = false;
9539   // Go through the mask of half-words to find an element that's being moved
9540   // from one vector to the other.
9541   for (unsigned i = 0; i < NumHalfWords; ++i) {
9542     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9543     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9544     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9545     uint32_t TargetOrder = 0x0;
9546 
9547     // If both vector operands for the shuffle are the same vector, the mask
9548     // will contain only elements from the first one and the second one will be
9549     // undef.
9550     if (V2.isUndef()) {
9551       ShiftElts = 0;
9552       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9553       TargetOrder = OriginalOrderLow;
9554       Swap = false;
9555       // Skip if not the correct element or mask of other elements don't equal
9556       // to our expected order.
9557       if (MaskOneElt == VINSERTHSrcElem &&
9558           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9559         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9560         FoundCandidate = true;
9561         break;
9562       }
9563     } else { // If both operands are defined.
9564       // Target order is [8,15] if the current mask is between [0,7].
9565       TargetOrder =
9566           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9567       // Skip if mask of other elements don't equal our expected order.
9568       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9569         // We only need the last 3 bits for the number of shifts.
9570         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9571                          : BigEndianShifts[MaskOneElt & 0x7];
9572         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9573         Swap = MaskOneElt < NumHalfWords;
9574         FoundCandidate = true;
9575         break;
9576       }
9577     }
9578   }
9579 
9580   if (!FoundCandidate)
9581     return SDValue();
9582 
9583   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9584   // optionally with VECSHL if shift is required.
9585   if (Swap)
9586     std::swap(V1, V2);
9587   if (V2.isUndef())
9588     V2 = V1;
9589   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9590   if (ShiftElts) {
9591     // Double ShiftElts because we're left shifting on v16i8 type.
9592     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9593                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9594     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9595     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9596                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9597     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9598   }
9599   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9600   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9601                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9602   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9603 }
9604 
9605 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9606 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9607 /// return the code it can be lowered into.  Worst case, it can always be
9608 /// lowered into a vperm.
9609 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9610                                                SelectionDAG &DAG) const {
9611   SDLoc dl(Op);
9612   SDValue V1 = Op.getOperand(0);
9613   SDValue V2 = Op.getOperand(1);
9614   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9615   EVT VT = Op.getValueType();
9616   bool isLittleEndian = Subtarget.isLittleEndian();
9617 
9618   unsigned ShiftElts, InsertAtByte;
9619   bool Swap = false;
9620 
9621   // If this is a load-and-splat, we can do that with a single instruction
9622   // in some cases. However if the load has multiple uses, we don't want to
9623   // combine it because that will just produce multiple loads.
9624   const SDValue *InputLoad = getNormalLoadInput(V1);
9625   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9626       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9627       InputLoad->hasOneUse()) {
9628     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9629     int SplatIdx =
9630       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9631 
9632     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9633     // For 4-byte load-and-splat, we need Power9.
9634     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9635       uint64_t Offset = 0;
9636       if (IsFourByte)
9637         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9638       else
9639         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9640       SDValue BasePtr = LD->getBasePtr();
9641       if (Offset != 0)
9642         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9643                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9644       SDValue Ops[] = {
9645         LD->getChain(),    // Chain
9646         BasePtr,           // BasePtr
9647         DAG.getValueType(Op.getValueType()) // VT
9648       };
9649       SDVTList VTL =
9650         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9651       SDValue LdSplt =
9652         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9653                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9654       if (LdSplt.getValueType() != SVOp->getValueType(0))
9655         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9656       return LdSplt;
9657     }
9658   }
9659   if (Subtarget.hasP9Vector() &&
9660       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9661                            isLittleEndian)) {
9662     if (Swap)
9663       std::swap(V1, V2);
9664     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9665     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9666     if (ShiftElts) {
9667       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9668                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9669       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9670                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9671       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9672     }
9673     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9674                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9675     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9676   }
9677 
9678   if (Subtarget.hasP9Altivec()) {
9679     SDValue NewISDNode;
9680     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9681       return NewISDNode;
9682 
9683     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9684       return NewISDNode;
9685   }
9686 
9687   if (Subtarget.hasVSX() &&
9688       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9689     if (Swap)
9690       std::swap(V1, V2);
9691     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9692     SDValue Conv2 =
9693         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9694 
9695     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9696                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9697     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9698   }
9699 
9700   if (Subtarget.hasVSX() &&
9701     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9702     if (Swap)
9703       std::swap(V1, V2);
9704     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9705     SDValue Conv2 =
9706         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9707 
9708     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9709                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9710     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9711   }
9712 
9713   if (Subtarget.hasP9Vector()) {
9714      if (PPC::isXXBRHShuffleMask(SVOp)) {
9715       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9716       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9717       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9718     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9719       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9720       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9721       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9722     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9723       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9724       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9725       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9726     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9727       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9728       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9729       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9730     }
9731   }
9732 
9733   if (Subtarget.hasVSX()) {
9734     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9735       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9736 
9737       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9738       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9739                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9740       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9741     }
9742 
9743     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9744     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9745       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9746       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9747       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9748     }
9749   }
9750 
9751   if (Subtarget.hasQPX()) {
9752     if (VT.getVectorNumElements() != 4)
9753       return SDValue();
9754 
9755     if (V2.isUndef()) V2 = V1;
9756 
9757     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9758     if (AlignIdx != -1) {
9759       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9760                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9761     } else if (SVOp->isSplat()) {
9762       int SplatIdx = SVOp->getSplatIndex();
9763       if (SplatIdx >= 4) {
9764         std::swap(V1, V2);
9765         SplatIdx -= 4;
9766       }
9767 
9768       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9769                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9770     }
9771 
9772     // Lower this into a qvgpci/qvfperm pair.
9773 
9774     // Compute the qvgpci literal
9775     unsigned idx = 0;
9776     for (unsigned i = 0; i < 4; ++i) {
9777       int m = SVOp->getMaskElt(i);
9778       unsigned mm = m >= 0 ? (unsigned) m : i;
9779       idx |= mm << (3-i)*3;
9780     }
9781 
9782     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9783                              DAG.getConstant(idx, dl, MVT::i32));
9784     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9785   }
9786 
9787   // Cases that are handled by instructions that take permute immediates
9788   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9789   // selected by the instruction selector.
9790   if (V2.isUndef()) {
9791     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9792         PPC::isSplatShuffleMask(SVOp, 2) ||
9793         PPC::isSplatShuffleMask(SVOp, 4) ||
9794         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9795         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9796         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9797         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9798         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9799         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9800         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9801         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9802         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9803         (Subtarget.hasP8Altivec() && (
9804          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9805          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9806          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9807       return Op;
9808     }
9809   }
9810 
9811   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9812   // and produce a fixed permutation.  If any of these match, do not lower to
9813   // VPERM.
9814   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9815   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9816       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9817       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9818       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9819       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9820       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9821       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9822       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9823       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9824       (Subtarget.hasP8Altivec() && (
9825        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9826        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9827        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9828     return Op;
9829 
9830   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9831   // perfect shuffle table to emit an optimal matching sequence.
9832   ArrayRef<int> PermMask = SVOp->getMask();
9833 
9834   unsigned PFIndexes[4];
9835   bool isFourElementShuffle = true;
9836   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9837     unsigned EltNo = 8;   // Start out undef.
9838     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9839       if (PermMask[i*4+j] < 0)
9840         continue;   // Undef, ignore it.
9841 
9842       unsigned ByteSource = PermMask[i*4+j];
9843       if ((ByteSource & 3) != j) {
9844         isFourElementShuffle = false;
9845         break;
9846       }
9847 
9848       if (EltNo == 8) {
9849         EltNo = ByteSource/4;
9850       } else if (EltNo != ByteSource/4) {
9851         isFourElementShuffle = false;
9852         break;
9853       }
9854     }
9855     PFIndexes[i] = EltNo;
9856   }
9857 
9858   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9859   // perfect shuffle vector to determine if it is cost effective to do this as
9860   // discrete instructions, or whether we should use a vperm.
9861   // For now, we skip this for little endian until such time as we have a
9862   // little-endian perfect shuffle table.
9863   if (isFourElementShuffle && !isLittleEndian) {
9864     // Compute the index in the perfect shuffle table.
9865     unsigned PFTableIndex =
9866       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9867 
9868     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9869     unsigned Cost  = (PFEntry >> 30);
9870 
9871     // Determining when to avoid vperm is tricky.  Many things affect the cost
9872     // of vperm, particularly how many times the perm mask needs to be computed.
9873     // For example, if the perm mask can be hoisted out of a loop or is already
9874     // used (perhaps because there are multiple permutes with the same shuffle
9875     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9876     // the loop requires an extra register.
9877     //
9878     // As a compromise, we only emit discrete instructions if the shuffle can be
9879     // generated in 3 or fewer operations.  When we have loop information
9880     // available, if this block is within a loop, we should avoid using vperm
9881     // for 3-operation perms and use a constant pool load instead.
9882     if (Cost < 3)
9883       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9884   }
9885 
9886   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9887   // vector that will get spilled to the constant pool.
9888   if (V2.isUndef()) V2 = V1;
9889 
9890   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9891   // that it is in input element units, not in bytes.  Convert now.
9892 
9893   // For little endian, the order of the input vectors is reversed, and
9894   // the permutation mask is complemented with respect to 31.  This is
9895   // necessary to produce proper semantics with the big-endian-biased vperm
9896   // instruction.
9897   EVT EltVT = V1.getValueType().getVectorElementType();
9898   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9899 
9900   SmallVector<SDValue, 16> ResultMask;
9901   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9902     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9903 
9904     for (unsigned j = 0; j != BytesPerElement; ++j)
9905       if (isLittleEndian)
9906         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9907                                              dl, MVT::i32));
9908       else
9909         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9910                                              MVT::i32));
9911   }
9912 
9913   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9914   if (isLittleEndian)
9915     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9916                        V2, V1, VPermMask);
9917   else
9918     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9919                        V1, V2, VPermMask);
9920 }
9921 
9922 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9923 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9924 /// information about the intrinsic.
9925 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9926                                  bool &isDot, const PPCSubtarget &Subtarget) {
9927   unsigned IntrinsicID =
9928       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9929   CompareOpc = -1;
9930   isDot = false;
9931   switch (IntrinsicID) {
9932   default:
9933     return false;
9934   // Comparison predicates.
9935   case Intrinsic::ppc_altivec_vcmpbfp_p:
9936     CompareOpc = 966;
9937     isDot = true;
9938     break;
9939   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9940     CompareOpc = 198;
9941     isDot = true;
9942     break;
9943   case Intrinsic::ppc_altivec_vcmpequb_p:
9944     CompareOpc = 6;
9945     isDot = true;
9946     break;
9947   case Intrinsic::ppc_altivec_vcmpequh_p:
9948     CompareOpc = 70;
9949     isDot = true;
9950     break;
9951   case Intrinsic::ppc_altivec_vcmpequw_p:
9952     CompareOpc = 134;
9953     isDot = true;
9954     break;
9955   case Intrinsic::ppc_altivec_vcmpequd_p:
9956     if (Subtarget.hasP8Altivec()) {
9957       CompareOpc = 199;
9958       isDot = true;
9959     } else
9960       return false;
9961     break;
9962   case Intrinsic::ppc_altivec_vcmpneb_p:
9963   case Intrinsic::ppc_altivec_vcmpneh_p:
9964   case Intrinsic::ppc_altivec_vcmpnew_p:
9965   case Intrinsic::ppc_altivec_vcmpnezb_p:
9966   case Intrinsic::ppc_altivec_vcmpnezh_p:
9967   case Intrinsic::ppc_altivec_vcmpnezw_p:
9968     if (Subtarget.hasP9Altivec()) {
9969       switch (IntrinsicID) {
9970       default:
9971         llvm_unreachable("Unknown comparison intrinsic.");
9972       case Intrinsic::ppc_altivec_vcmpneb_p:
9973         CompareOpc = 7;
9974         break;
9975       case Intrinsic::ppc_altivec_vcmpneh_p:
9976         CompareOpc = 71;
9977         break;
9978       case Intrinsic::ppc_altivec_vcmpnew_p:
9979         CompareOpc = 135;
9980         break;
9981       case Intrinsic::ppc_altivec_vcmpnezb_p:
9982         CompareOpc = 263;
9983         break;
9984       case Intrinsic::ppc_altivec_vcmpnezh_p:
9985         CompareOpc = 327;
9986         break;
9987       case Intrinsic::ppc_altivec_vcmpnezw_p:
9988         CompareOpc = 391;
9989         break;
9990       }
9991       isDot = true;
9992     } else
9993       return false;
9994     break;
9995   case Intrinsic::ppc_altivec_vcmpgefp_p:
9996     CompareOpc = 454;
9997     isDot = true;
9998     break;
9999   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10000     CompareOpc = 710;
10001     isDot = true;
10002     break;
10003   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10004     CompareOpc = 774;
10005     isDot = true;
10006     break;
10007   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10008     CompareOpc = 838;
10009     isDot = true;
10010     break;
10011   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10012     CompareOpc = 902;
10013     isDot = true;
10014     break;
10015   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10016     if (Subtarget.hasP8Altivec()) {
10017       CompareOpc = 967;
10018       isDot = true;
10019     } else
10020       return false;
10021     break;
10022   case Intrinsic::ppc_altivec_vcmpgtub_p:
10023     CompareOpc = 518;
10024     isDot = true;
10025     break;
10026   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10027     CompareOpc = 582;
10028     isDot = true;
10029     break;
10030   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10031     CompareOpc = 646;
10032     isDot = true;
10033     break;
10034   case Intrinsic::ppc_altivec_vcmpgtud_p:
10035     if (Subtarget.hasP8Altivec()) {
10036       CompareOpc = 711;
10037       isDot = true;
10038     } else
10039       return false;
10040     break;
10041 
10042   // VSX predicate comparisons use the same infrastructure
10043   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10044   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10045   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10046   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10047   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10048   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10049     if (Subtarget.hasVSX()) {
10050       switch (IntrinsicID) {
10051       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10052         CompareOpc = 99;
10053         break;
10054       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10055         CompareOpc = 115;
10056         break;
10057       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10058         CompareOpc = 107;
10059         break;
10060       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10061         CompareOpc = 67;
10062         break;
10063       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10064         CompareOpc = 83;
10065         break;
10066       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10067         CompareOpc = 75;
10068         break;
10069       }
10070       isDot = true;
10071     } else
10072       return false;
10073     break;
10074 
10075   // Normal Comparisons.
10076   case Intrinsic::ppc_altivec_vcmpbfp:
10077     CompareOpc = 966;
10078     break;
10079   case Intrinsic::ppc_altivec_vcmpeqfp:
10080     CompareOpc = 198;
10081     break;
10082   case Intrinsic::ppc_altivec_vcmpequb:
10083     CompareOpc = 6;
10084     break;
10085   case Intrinsic::ppc_altivec_vcmpequh:
10086     CompareOpc = 70;
10087     break;
10088   case Intrinsic::ppc_altivec_vcmpequw:
10089     CompareOpc = 134;
10090     break;
10091   case Intrinsic::ppc_altivec_vcmpequd:
10092     if (Subtarget.hasP8Altivec())
10093       CompareOpc = 199;
10094     else
10095       return false;
10096     break;
10097   case Intrinsic::ppc_altivec_vcmpneb:
10098   case Intrinsic::ppc_altivec_vcmpneh:
10099   case Intrinsic::ppc_altivec_vcmpnew:
10100   case Intrinsic::ppc_altivec_vcmpnezb:
10101   case Intrinsic::ppc_altivec_vcmpnezh:
10102   case Intrinsic::ppc_altivec_vcmpnezw:
10103     if (Subtarget.hasP9Altivec())
10104       switch (IntrinsicID) {
10105       default:
10106         llvm_unreachable("Unknown comparison intrinsic.");
10107       case Intrinsic::ppc_altivec_vcmpneb:
10108         CompareOpc = 7;
10109         break;
10110       case Intrinsic::ppc_altivec_vcmpneh:
10111         CompareOpc = 71;
10112         break;
10113       case Intrinsic::ppc_altivec_vcmpnew:
10114         CompareOpc = 135;
10115         break;
10116       case Intrinsic::ppc_altivec_vcmpnezb:
10117         CompareOpc = 263;
10118         break;
10119       case Intrinsic::ppc_altivec_vcmpnezh:
10120         CompareOpc = 327;
10121         break;
10122       case Intrinsic::ppc_altivec_vcmpnezw:
10123         CompareOpc = 391;
10124         break;
10125       }
10126     else
10127       return false;
10128     break;
10129   case Intrinsic::ppc_altivec_vcmpgefp:
10130     CompareOpc = 454;
10131     break;
10132   case Intrinsic::ppc_altivec_vcmpgtfp:
10133     CompareOpc = 710;
10134     break;
10135   case Intrinsic::ppc_altivec_vcmpgtsb:
10136     CompareOpc = 774;
10137     break;
10138   case Intrinsic::ppc_altivec_vcmpgtsh:
10139     CompareOpc = 838;
10140     break;
10141   case Intrinsic::ppc_altivec_vcmpgtsw:
10142     CompareOpc = 902;
10143     break;
10144   case Intrinsic::ppc_altivec_vcmpgtsd:
10145     if (Subtarget.hasP8Altivec())
10146       CompareOpc = 967;
10147     else
10148       return false;
10149     break;
10150   case Intrinsic::ppc_altivec_vcmpgtub:
10151     CompareOpc = 518;
10152     break;
10153   case Intrinsic::ppc_altivec_vcmpgtuh:
10154     CompareOpc = 582;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgtuw:
10157     CompareOpc = 646;
10158     break;
10159   case Intrinsic::ppc_altivec_vcmpgtud:
10160     if (Subtarget.hasP8Altivec())
10161       CompareOpc = 711;
10162     else
10163       return false;
10164     break;
10165   }
10166   return true;
10167 }
10168 
10169 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10170 /// lower, do it, otherwise return null.
10171 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10172                                                    SelectionDAG &DAG) const {
10173   unsigned IntrinsicID =
10174     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10175 
10176   SDLoc dl(Op);
10177 
10178   if (IntrinsicID == Intrinsic::thread_pointer) {
10179     // Reads the thread pointer register, used for __builtin_thread_pointer.
10180     if (Subtarget.isPPC64())
10181       return DAG.getRegister(PPC::X13, MVT::i64);
10182     return DAG.getRegister(PPC::R2, MVT::i32);
10183   }
10184 
10185   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10186   // opcode number of the comparison.
10187   int CompareOpc;
10188   bool isDot;
10189   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10190     return SDValue();    // Don't custom lower most intrinsics.
10191 
10192   // If this is a non-dot comparison, make the VCMP node and we are done.
10193   if (!isDot) {
10194     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10195                               Op.getOperand(1), Op.getOperand(2),
10196                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10197     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10198   }
10199 
10200   // Create the PPCISD altivec 'dot' comparison node.
10201   SDValue Ops[] = {
10202     Op.getOperand(2),  // LHS
10203     Op.getOperand(3),  // RHS
10204     DAG.getConstant(CompareOpc, dl, MVT::i32)
10205   };
10206   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10207   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10208 
10209   // Now that we have the comparison, emit a copy from the CR to a GPR.
10210   // This is flagged to the above dot comparison.
10211   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10212                                 DAG.getRegister(PPC::CR6, MVT::i32),
10213                                 CompNode.getValue(1));
10214 
10215   // Unpack the result based on how the target uses it.
10216   unsigned BitNo;   // Bit # of CR6.
10217   bool InvertBit;   // Invert result?
10218   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10219   default:  // Can't happen, don't crash on invalid number though.
10220   case 0:   // Return the value of the EQ bit of CR6.
10221     BitNo = 0; InvertBit = false;
10222     break;
10223   case 1:   // Return the inverted value of the EQ bit of CR6.
10224     BitNo = 0; InvertBit = true;
10225     break;
10226   case 2:   // Return the value of the LT bit of CR6.
10227     BitNo = 2; InvertBit = false;
10228     break;
10229   case 3:   // Return the inverted value of the LT bit of CR6.
10230     BitNo = 2; InvertBit = true;
10231     break;
10232   }
10233 
10234   // Shift the bit into the low position.
10235   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10236                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10237   // Isolate the bit.
10238   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10239                       DAG.getConstant(1, dl, MVT::i32));
10240 
10241   // If we are supposed to, toggle the bit.
10242   if (InvertBit)
10243     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10244                         DAG.getConstant(1, dl, MVT::i32));
10245   return Flags;
10246 }
10247 
10248 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10249                                                SelectionDAG &DAG) const {
10250   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10251   // the beginning of the argument list.
10252   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10253   SDLoc DL(Op);
10254   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10255   case Intrinsic::ppc_cfence: {
10256     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10257     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10258     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10259                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10260                                                   Op.getOperand(ArgStart + 1)),
10261                                       Op.getOperand(0)),
10262                    0);
10263   }
10264   default:
10265     break;
10266   }
10267   return SDValue();
10268 }
10269 
10270 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
10271   // Check for a DIV with the same operands as this REM.
10272   for (auto UI : Op.getOperand(1)->uses()) {
10273     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
10274         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
10275       if (UI->getOperand(0) == Op.getOperand(0) &&
10276           UI->getOperand(1) == Op.getOperand(1))
10277         return SDValue();
10278   }
10279   return Op;
10280 }
10281 
10282 // Lower scalar BSWAP64 to xxbrd.
10283 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10284   SDLoc dl(Op);
10285   // MTVSRDD
10286   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10287                    Op.getOperand(0));
10288   // XXBRD
10289   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10290   // MFVSRD
10291   int VectorIndex = 0;
10292   if (Subtarget.isLittleEndian())
10293     VectorIndex = 1;
10294   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10295                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10296   return Op;
10297 }
10298 
10299 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10300 // compared to a value that is atomically loaded (atomic loads zero-extend).
10301 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10302                                                 SelectionDAG &DAG) const {
10303   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10304          "Expecting an atomic compare-and-swap here.");
10305   SDLoc dl(Op);
10306   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10307   EVT MemVT = AtomicNode->getMemoryVT();
10308   if (MemVT.getSizeInBits() >= 32)
10309     return Op;
10310 
10311   SDValue CmpOp = Op.getOperand(2);
10312   // If this is already correctly zero-extended, leave it alone.
10313   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10314   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10315     return Op;
10316 
10317   // Clear the high bits of the compare operand.
10318   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10319   SDValue NewCmpOp =
10320     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10321                 DAG.getConstant(MaskVal, dl, MVT::i32));
10322 
10323   // Replace the existing compare operand with the properly zero-extended one.
10324   SmallVector<SDValue, 4> Ops;
10325   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10326     Ops.push_back(AtomicNode->getOperand(i));
10327   Ops[2] = NewCmpOp;
10328   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10329   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10330   auto NodeTy =
10331     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10332   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10333 }
10334 
10335 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10336                                                  SelectionDAG &DAG) const {
10337   SDLoc dl(Op);
10338   // Create a stack slot that is 16-byte aligned.
10339   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10340   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10341   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10342   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10343 
10344   // Store the input value into Value#0 of the stack slot.
10345   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10346                                MachinePointerInfo());
10347   // Load it out.
10348   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10349 }
10350 
10351 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10352                                                   SelectionDAG &DAG) const {
10353   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10354          "Should only be called for ISD::INSERT_VECTOR_ELT");
10355 
10356   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10357   // We have legal lowering for constant indices but not for variable ones.
10358   if (!C)
10359     return SDValue();
10360 
10361   EVT VT = Op.getValueType();
10362   SDLoc dl(Op);
10363   SDValue V1 = Op.getOperand(0);
10364   SDValue V2 = Op.getOperand(1);
10365   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10366   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10367     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10368     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10369     unsigned InsertAtElement = C->getZExtValue();
10370     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10371     if (Subtarget.isLittleEndian()) {
10372       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10373     }
10374     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10375                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10376   }
10377   return Op;
10378 }
10379 
10380 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10381                                                    SelectionDAG &DAG) const {
10382   SDLoc dl(Op);
10383   SDNode *N = Op.getNode();
10384 
10385   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10386          "Unknown extract_vector_elt type");
10387 
10388   SDValue Value = N->getOperand(0);
10389 
10390   // The first part of this is like the store lowering except that we don't
10391   // need to track the chain.
10392 
10393   // The values are now known to be -1 (false) or 1 (true). To convert this
10394   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10395   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10396   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10397 
10398   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10399   // understand how to form the extending load.
10400   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10401 
10402   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10403 
10404   // Now convert to an integer and store.
10405   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10406     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10407     Value);
10408 
10409   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10410   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10411   MachinePointerInfo PtrInfo =
10412       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10413   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10414   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10415 
10416   SDValue StoreChain = DAG.getEntryNode();
10417   SDValue Ops[] = {StoreChain,
10418                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10419                    Value, FIdx};
10420   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10421 
10422   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10423     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10424 
10425   // Extract the value requested.
10426   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10427   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10428   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10429 
10430   SDValue IntVal =
10431       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10432 
10433   if (!Subtarget.useCRBits())
10434     return IntVal;
10435 
10436   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10437 }
10438 
10439 /// Lowering for QPX v4i1 loads
10440 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10441                                            SelectionDAG &DAG) const {
10442   SDLoc dl(Op);
10443   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10444   SDValue LoadChain = LN->getChain();
10445   SDValue BasePtr = LN->getBasePtr();
10446 
10447   if (Op.getValueType() == MVT::v4f64 ||
10448       Op.getValueType() == MVT::v4f32) {
10449     EVT MemVT = LN->getMemoryVT();
10450     unsigned Alignment = LN->getAlignment();
10451 
10452     // If this load is properly aligned, then it is legal.
10453     if (Alignment >= MemVT.getStoreSize())
10454       return Op;
10455 
10456     EVT ScalarVT = Op.getValueType().getScalarType(),
10457         ScalarMemVT = MemVT.getScalarType();
10458     unsigned Stride = ScalarMemVT.getStoreSize();
10459 
10460     SDValue Vals[4], LoadChains[4];
10461     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10462       SDValue Load;
10463       if (ScalarVT != ScalarMemVT)
10464         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10465                               BasePtr,
10466                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10467                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10468                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10469       else
10470         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10471                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10472                            MinAlign(Alignment, Idx * Stride),
10473                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10474 
10475       if (Idx == 0 && LN->isIndexed()) {
10476         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10477                "Unknown addressing mode on vector load");
10478         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10479                                   LN->getAddressingMode());
10480       }
10481 
10482       Vals[Idx] = Load;
10483       LoadChains[Idx] = Load.getValue(1);
10484 
10485       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10486                             DAG.getConstant(Stride, dl,
10487                                             BasePtr.getValueType()));
10488     }
10489 
10490     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10491     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10492 
10493     if (LN->isIndexed()) {
10494       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10495       return DAG.getMergeValues(RetOps, dl);
10496     }
10497 
10498     SDValue RetOps[] = { Value, TF };
10499     return DAG.getMergeValues(RetOps, dl);
10500   }
10501 
10502   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10503   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10504 
10505   // To lower v4i1 from a byte array, we load the byte elements of the
10506   // vector and then reuse the BUILD_VECTOR logic.
10507 
10508   SDValue VectElmts[4], VectElmtChains[4];
10509   for (unsigned i = 0; i < 4; ++i) {
10510     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10511     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10512 
10513     VectElmts[i] = DAG.getExtLoad(
10514         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10515         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10516         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10517     VectElmtChains[i] = VectElmts[i].getValue(1);
10518   }
10519 
10520   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10521   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10522 
10523   SDValue RVals[] = { Value, LoadChain };
10524   return DAG.getMergeValues(RVals, dl);
10525 }
10526 
10527 /// Lowering for QPX v4i1 stores
10528 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10529                                             SelectionDAG &DAG) const {
10530   SDLoc dl(Op);
10531   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10532   SDValue StoreChain = SN->getChain();
10533   SDValue BasePtr = SN->getBasePtr();
10534   SDValue Value = SN->getValue();
10535 
10536   if (Value.getValueType() == MVT::v4f64 ||
10537       Value.getValueType() == MVT::v4f32) {
10538     EVT MemVT = SN->getMemoryVT();
10539     unsigned Alignment = SN->getAlignment();
10540 
10541     // If this store is properly aligned, then it is legal.
10542     if (Alignment >= MemVT.getStoreSize())
10543       return Op;
10544 
10545     EVT ScalarVT = Value.getValueType().getScalarType(),
10546         ScalarMemVT = MemVT.getScalarType();
10547     unsigned Stride = ScalarMemVT.getStoreSize();
10548 
10549     SDValue Stores[4];
10550     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10551       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10552                                DAG.getVectorIdxConstant(Idx, dl));
10553       SDValue Store;
10554       if (ScalarVT != ScalarMemVT)
10555         Store =
10556             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10557                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10558                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10559                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10560       else
10561         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10562                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10563                              MinAlign(Alignment, Idx * Stride),
10564                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10565 
10566       if (Idx == 0 && SN->isIndexed()) {
10567         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10568                "Unknown addressing mode on vector store");
10569         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10570                                     SN->getAddressingMode());
10571       }
10572 
10573       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10574                             DAG.getConstant(Stride, dl,
10575                                             BasePtr.getValueType()));
10576       Stores[Idx] = Store;
10577     }
10578 
10579     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10580 
10581     if (SN->isIndexed()) {
10582       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10583       return DAG.getMergeValues(RetOps, dl);
10584     }
10585 
10586     return TF;
10587   }
10588 
10589   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10590   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10591 
10592   // The values are now known to be -1 (false) or 1 (true). To convert this
10593   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10594   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10595   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10596 
10597   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10598   // understand how to form the extending load.
10599   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10600 
10601   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10602 
10603   // Now convert to an integer and store.
10604   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10605     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10606     Value);
10607 
10608   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10609   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10610   MachinePointerInfo PtrInfo =
10611       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10613   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10614 
10615   SDValue Ops[] = {StoreChain,
10616                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10617                    Value, FIdx};
10618   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10619 
10620   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10621     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10622 
10623   // Move data into the byte array.
10624   SDValue Loads[4], LoadChains[4];
10625   for (unsigned i = 0; i < 4; ++i) {
10626     unsigned Offset = 4*i;
10627     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10628     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10629 
10630     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10631                            PtrInfo.getWithOffset(Offset));
10632     LoadChains[i] = Loads[i].getValue(1);
10633   }
10634 
10635   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10636 
10637   SDValue Stores[4];
10638   for (unsigned i = 0; i < 4; ++i) {
10639     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10640     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10641 
10642     Stores[i] = DAG.getTruncStore(
10643         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10644         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10645         SN->getAAInfo());
10646   }
10647 
10648   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10649 
10650   return StoreChain;
10651 }
10652 
10653 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10654   SDLoc dl(Op);
10655   if (Op.getValueType() == MVT::v4i32) {
10656     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10657 
10658     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10659     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10660 
10661     SDValue RHSSwap =   // = vrlw RHS, 16
10662       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10663 
10664     // Shrinkify inputs to v8i16.
10665     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10666     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10667     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10668 
10669     // Low parts multiplied together, generating 32-bit results (we ignore the
10670     // top parts).
10671     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10672                                         LHS, RHS, DAG, dl, MVT::v4i32);
10673 
10674     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10675                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10676     // Shift the high parts up 16 bits.
10677     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10678                               Neg16, DAG, dl);
10679     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10680   } else if (Op.getValueType() == MVT::v16i8) {
10681     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10682     bool isLittleEndian = Subtarget.isLittleEndian();
10683 
10684     // Multiply the even 8-bit parts, producing 16-bit sums.
10685     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10686                                            LHS, RHS, DAG, dl, MVT::v8i16);
10687     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10688 
10689     // Multiply the odd 8-bit parts, producing 16-bit sums.
10690     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10691                                           LHS, RHS, DAG, dl, MVT::v8i16);
10692     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10693 
10694     // Merge the results together.  Because vmuleub and vmuloub are
10695     // instructions with a big-endian bias, we must reverse the
10696     // element numbering and reverse the meaning of "odd" and "even"
10697     // when generating little endian code.
10698     int Ops[16];
10699     for (unsigned i = 0; i != 8; ++i) {
10700       if (isLittleEndian) {
10701         Ops[i*2  ] = 2*i;
10702         Ops[i*2+1] = 2*i+16;
10703       } else {
10704         Ops[i*2  ] = 2*i+1;
10705         Ops[i*2+1] = 2*i+1+16;
10706       }
10707     }
10708     if (isLittleEndian)
10709       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10710     else
10711       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10712   } else {
10713     llvm_unreachable("Unknown mul to lower!");
10714   }
10715 }
10716 
10717 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10718 
10719   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10720 
10721   EVT VT = Op.getValueType();
10722   assert(VT.isVector() &&
10723          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10724   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10725           VT == MVT::v16i8) &&
10726          "Unexpected vector element type!");
10727   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10728          "Current subtarget doesn't support smax v2i64!");
10729 
10730   // For vector abs, it can be lowered to:
10731   // abs x
10732   // ==>
10733   // y = -x
10734   // smax(x, y)
10735 
10736   SDLoc dl(Op);
10737   SDValue X = Op.getOperand(0);
10738   SDValue Zero = DAG.getConstant(0, dl, VT);
10739   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10740 
10741   // SMAX patch https://reviews.llvm.org/D47332
10742   // hasn't landed yet, so use intrinsic first here.
10743   // TODO: Should use SMAX directly once SMAX patch landed
10744   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10745   if (VT == MVT::v2i64)
10746     BifID = Intrinsic::ppc_altivec_vmaxsd;
10747   else if (VT == MVT::v8i16)
10748     BifID = Intrinsic::ppc_altivec_vmaxsh;
10749   else if (VT == MVT::v16i8)
10750     BifID = Intrinsic::ppc_altivec_vmaxsb;
10751 
10752   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10753 }
10754 
10755 // Custom lowering for fpext vf32 to v2f64
10756 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10757 
10758   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10759          "Should only be called for ISD::FP_EXTEND");
10760 
10761   // We only want to custom lower an extend from v2f32 to v2f64.
10762   if (Op.getValueType() != MVT::v2f64 ||
10763       Op.getOperand(0).getValueType() != MVT::v2f32)
10764     return SDValue();
10765 
10766   SDLoc dl(Op);
10767   SDValue Op0 = Op.getOperand(0);
10768 
10769   switch (Op0.getOpcode()) {
10770   default:
10771     return SDValue();
10772   case ISD::EXTRACT_SUBVECTOR: {
10773     assert(Op0.getNumOperands() == 2 &&
10774            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10775            "Node should have 2 operands with second one being a constant!");
10776 
10777     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10778       return SDValue();
10779 
10780     // Custom lower is only done for high or low doubleword.
10781     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10782     if (Idx % 2 != 0)
10783       return SDValue();
10784 
10785     // Since input is v4f32, at this point Idx is either 0 or 2.
10786     // Shift to get the doubleword position we want.
10787     int DWord = Idx >> 1;
10788 
10789     // High and low word positions are different on little endian.
10790     if (Subtarget.isLittleEndian())
10791       DWord ^= 0x1;
10792 
10793     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10794                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10795   }
10796   case ISD::FADD:
10797   case ISD::FMUL:
10798   case ISD::FSUB: {
10799     SDValue NewLoad[2];
10800     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10801       // Ensure both input are loads.
10802       SDValue LdOp = Op0.getOperand(i);
10803       if (LdOp.getOpcode() != ISD::LOAD)
10804         return SDValue();
10805       // Generate new load node.
10806       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10807       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10808       NewLoad[i] = DAG.getMemIntrinsicNode(
10809           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10810           LD->getMemoryVT(), LD->getMemOperand());
10811     }
10812     SDValue NewOp =
10813         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10814                     NewLoad[1], Op0.getNode()->getFlags());
10815     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10816                        DAG.getConstant(0, dl, MVT::i32));
10817   }
10818   case ISD::LOAD: {
10819     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10820     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10821     SDValue NewLd = DAG.getMemIntrinsicNode(
10822         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10823         LD->getMemoryVT(), LD->getMemOperand());
10824     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10825                        DAG.getConstant(0, dl, MVT::i32));
10826   }
10827   }
10828   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10829 }
10830 
10831 /// LowerOperation - Provide custom lowering hooks for some operations.
10832 ///
10833 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10834   switch (Op.getOpcode()) {
10835   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10836   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10837   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10838   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10839   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10840   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10841   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10842   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10843   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10844 
10845   // Variable argument lowering.
10846   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10847   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10848   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10849 
10850   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10851   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10852   case ISD::GET_DYNAMIC_AREA_OFFSET:
10853     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10854 
10855   // Exception handling lowering.
10856   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10857   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10858   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10859 
10860   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10861   case ISD::STORE:              return LowerSTORE(Op, DAG);
10862   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10863   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10864   case ISD::FP_TO_UINT:
10865   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10866   case ISD::UINT_TO_FP:
10867   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10868   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10869 
10870   // Lower 64-bit shifts.
10871   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10872   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10873   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10874 
10875   // Vector-related lowering.
10876   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10877   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10878   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10879   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10880   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10881   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10882   case ISD::MUL:                return LowerMUL(Op, DAG);
10883   case ISD::ABS:                return LowerABS(Op, DAG);
10884   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10885 
10886   // For counter-based loop handling.
10887   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10888 
10889   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10890 
10891   // Frame & Return address.
10892   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10893   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10894 
10895   case ISD::INTRINSIC_VOID:
10896     return LowerINTRINSIC_VOID(Op, DAG);
10897   case ISD::SREM:
10898   case ISD::UREM:
10899     return LowerREM(Op, DAG);
10900   case ISD::BSWAP:
10901     return LowerBSWAP(Op, DAG);
10902   case ISD::ATOMIC_CMP_SWAP:
10903     return LowerATOMIC_CMP_SWAP(Op, DAG);
10904   }
10905 }
10906 
10907 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10908                                            SmallVectorImpl<SDValue>&Results,
10909                                            SelectionDAG &DAG) const {
10910   SDLoc dl(N);
10911   switch (N->getOpcode()) {
10912   default:
10913     llvm_unreachable("Do not know how to custom type legalize this operation!");
10914   case ISD::READCYCLECOUNTER: {
10915     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10916     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10917 
10918     Results.push_back(
10919         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10920     Results.push_back(RTB.getValue(2));
10921     break;
10922   }
10923   case ISD::INTRINSIC_W_CHAIN: {
10924     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10925         Intrinsic::loop_decrement)
10926       break;
10927 
10928     assert(N->getValueType(0) == MVT::i1 &&
10929            "Unexpected result type for CTR decrement intrinsic");
10930     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10931                                  N->getValueType(0));
10932     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10933     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10934                                  N->getOperand(1));
10935 
10936     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10937     Results.push_back(NewInt.getValue(1));
10938     break;
10939   }
10940   case ISD::VAARG: {
10941     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10942       return;
10943 
10944     EVT VT = N->getValueType(0);
10945 
10946     if (VT == MVT::i64) {
10947       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10948 
10949       Results.push_back(NewNode);
10950       Results.push_back(NewNode.getValue(1));
10951     }
10952     return;
10953   }
10954   case ISD::FP_TO_SINT:
10955   case ISD::FP_TO_UINT:
10956     // LowerFP_TO_INT() can only handle f32 and f64.
10957     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10958       return;
10959     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10960     return;
10961   case ISD::TRUNCATE: {
10962     EVT TrgVT = N->getValueType(0);
10963     EVT OpVT = N->getOperand(0).getValueType();
10964     if (TrgVT.isVector() &&
10965         isOperationCustom(N->getOpcode(), TrgVT) &&
10966         OpVT.getSizeInBits() <= 128 &&
10967         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10968       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10969     return;
10970   }
10971   case ISD::BITCAST:
10972     // Don't handle bitcast here.
10973     return;
10974   }
10975 }
10976 
10977 //===----------------------------------------------------------------------===//
10978 //  Other Lowering Code
10979 //===----------------------------------------------------------------------===//
10980 
10981 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10982   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10983   Function *Func = Intrinsic::getDeclaration(M, Id);
10984   return Builder.CreateCall(Func, {});
10985 }
10986 
10987 // The mappings for emitLeading/TrailingFence is taken from
10988 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10989 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10990                                                  Instruction *Inst,
10991                                                  AtomicOrdering Ord) const {
10992   if (Ord == AtomicOrdering::SequentiallyConsistent)
10993     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10994   if (isReleaseOrStronger(Ord))
10995     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10996   return nullptr;
10997 }
10998 
10999 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11000                                                   Instruction *Inst,
11001                                                   AtomicOrdering Ord) const {
11002   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11003     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11004     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11005     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11006     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11007       return Builder.CreateCall(
11008           Intrinsic::getDeclaration(
11009               Builder.GetInsertBlock()->getParent()->getParent(),
11010               Intrinsic::ppc_cfence, {Inst->getType()}),
11011           {Inst});
11012     // FIXME: Can use isync for rmw operation.
11013     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11014   }
11015   return nullptr;
11016 }
11017 
11018 MachineBasicBlock *
11019 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11020                                     unsigned AtomicSize,
11021                                     unsigned BinOpcode,
11022                                     unsigned CmpOpcode,
11023                                     unsigned CmpPred) const {
11024   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11025   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11026 
11027   auto LoadMnemonic = PPC::LDARX;
11028   auto StoreMnemonic = PPC::STDCX;
11029   switch (AtomicSize) {
11030   default:
11031     llvm_unreachable("Unexpected size of atomic entity");
11032   case 1:
11033     LoadMnemonic = PPC::LBARX;
11034     StoreMnemonic = PPC::STBCX;
11035     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11036     break;
11037   case 2:
11038     LoadMnemonic = PPC::LHARX;
11039     StoreMnemonic = PPC::STHCX;
11040     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11041     break;
11042   case 4:
11043     LoadMnemonic = PPC::LWARX;
11044     StoreMnemonic = PPC::STWCX;
11045     break;
11046   case 8:
11047     LoadMnemonic = PPC::LDARX;
11048     StoreMnemonic = PPC::STDCX;
11049     break;
11050   }
11051 
11052   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11053   MachineFunction *F = BB->getParent();
11054   MachineFunction::iterator It = ++BB->getIterator();
11055 
11056   Register dest = MI.getOperand(0).getReg();
11057   Register ptrA = MI.getOperand(1).getReg();
11058   Register ptrB = MI.getOperand(2).getReg();
11059   Register incr = MI.getOperand(3).getReg();
11060   DebugLoc dl = MI.getDebugLoc();
11061 
11062   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11063   MachineBasicBlock *loop2MBB =
11064     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11065   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11066   F->insert(It, loopMBB);
11067   if (CmpOpcode)
11068     F->insert(It, loop2MBB);
11069   F->insert(It, exitMBB);
11070   exitMBB->splice(exitMBB->begin(), BB,
11071                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11072   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11073 
11074   MachineRegisterInfo &RegInfo = F->getRegInfo();
11075   Register TmpReg = (!BinOpcode) ? incr :
11076     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11077                                            : &PPC::GPRCRegClass);
11078 
11079   //  thisMBB:
11080   //   ...
11081   //   fallthrough --> loopMBB
11082   BB->addSuccessor(loopMBB);
11083 
11084   //  loopMBB:
11085   //   l[wd]arx dest, ptr
11086   //   add r0, dest, incr
11087   //   st[wd]cx. r0, ptr
11088   //   bne- loopMBB
11089   //   fallthrough --> exitMBB
11090 
11091   // For max/min...
11092   //  loopMBB:
11093   //   l[wd]arx dest, ptr
11094   //   cmpl?[wd] incr, dest
11095   //   bgt exitMBB
11096   //  loop2MBB:
11097   //   st[wd]cx. dest, ptr
11098   //   bne- loopMBB
11099   //   fallthrough --> exitMBB
11100 
11101   BB = loopMBB;
11102   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11103     .addReg(ptrA).addReg(ptrB);
11104   if (BinOpcode)
11105     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11106   if (CmpOpcode) {
11107     // Signed comparisons of byte or halfword values must be sign-extended.
11108     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11109       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11110       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11111               ExtReg).addReg(dest);
11112       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11113         .addReg(incr).addReg(ExtReg);
11114     } else
11115       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11116         .addReg(incr).addReg(dest);
11117 
11118     BuildMI(BB, dl, TII->get(PPC::BCC))
11119       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11120     BB->addSuccessor(loop2MBB);
11121     BB->addSuccessor(exitMBB);
11122     BB = loop2MBB;
11123   }
11124   BuildMI(BB, dl, TII->get(StoreMnemonic))
11125     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11126   BuildMI(BB, dl, TII->get(PPC::BCC))
11127     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11128   BB->addSuccessor(loopMBB);
11129   BB->addSuccessor(exitMBB);
11130 
11131   //  exitMBB:
11132   //   ...
11133   BB = exitMBB;
11134   return BB;
11135 }
11136 
11137 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11138     MachineInstr &MI, MachineBasicBlock *BB,
11139     bool is8bit, // operation
11140     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11141   // If we support part-word atomic mnemonics, just use them
11142   if (Subtarget.hasPartwordAtomics())
11143     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11144                             CmpPred);
11145 
11146   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11147   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11148   // In 64 bit mode we have to use 64 bits for addresses, even though the
11149   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11150   // registers without caring whether they're 32 or 64, but here we're
11151   // doing actual arithmetic on the addresses.
11152   bool is64bit = Subtarget.isPPC64();
11153   bool isLittleEndian = Subtarget.isLittleEndian();
11154   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11155 
11156   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11157   MachineFunction *F = BB->getParent();
11158   MachineFunction::iterator It = ++BB->getIterator();
11159 
11160   Register dest = MI.getOperand(0).getReg();
11161   Register ptrA = MI.getOperand(1).getReg();
11162   Register ptrB = MI.getOperand(2).getReg();
11163   Register incr = MI.getOperand(3).getReg();
11164   DebugLoc dl = MI.getDebugLoc();
11165 
11166   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11167   MachineBasicBlock *loop2MBB =
11168       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11169   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11170   F->insert(It, loopMBB);
11171   if (CmpOpcode)
11172     F->insert(It, loop2MBB);
11173   F->insert(It, exitMBB);
11174   exitMBB->splice(exitMBB->begin(), BB,
11175                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11176   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11177 
11178   MachineRegisterInfo &RegInfo = F->getRegInfo();
11179   const TargetRegisterClass *RC =
11180       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11181   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11182 
11183   Register PtrReg = RegInfo.createVirtualRegister(RC);
11184   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11185   Register ShiftReg =
11186       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11187   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11188   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11189   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11190   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11191   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11192   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11193   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11194   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11195   Register Ptr1Reg;
11196   Register TmpReg =
11197       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11198 
11199   //  thisMBB:
11200   //   ...
11201   //   fallthrough --> loopMBB
11202   BB->addSuccessor(loopMBB);
11203 
11204   // The 4-byte load must be aligned, while a char or short may be
11205   // anywhere in the word.  Hence all this nasty bookkeeping code.
11206   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11207   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11208   //   xori shift, shift1, 24 [16]
11209   //   rlwinm ptr, ptr1, 0, 0, 29
11210   //   slw incr2, incr, shift
11211   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11212   //   slw mask, mask2, shift
11213   //  loopMBB:
11214   //   lwarx tmpDest, ptr
11215   //   add tmp, tmpDest, incr2
11216   //   andc tmp2, tmpDest, mask
11217   //   and tmp3, tmp, mask
11218   //   or tmp4, tmp3, tmp2
11219   //   stwcx. tmp4, ptr
11220   //   bne- loopMBB
11221   //   fallthrough --> exitMBB
11222   //   srw dest, tmpDest, shift
11223   if (ptrA != ZeroReg) {
11224     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11225     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11226         .addReg(ptrA)
11227         .addReg(ptrB);
11228   } else {
11229     Ptr1Reg = ptrB;
11230   }
11231   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11232   // mode.
11233   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11234       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11235       .addImm(3)
11236       .addImm(27)
11237       .addImm(is8bit ? 28 : 27);
11238   if (!isLittleEndian)
11239     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11240         .addReg(Shift1Reg)
11241         .addImm(is8bit ? 24 : 16);
11242   if (is64bit)
11243     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11244         .addReg(Ptr1Reg)
11245         .addImm(0)
11246         .addImm(61);
11247   else
11248     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11249         .addReg(Ptr1Reg)
11250         .addImm(0)
11251         .addImm(0)
11252         .addImm(29);
11253   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11254   if (is8bit)
11255     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11256   else {
11257     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11258     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11259         .addReg(Mask3Reg)
11260         .addImm(65535);
11261   }
11262   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11263       .addReg(Mask2Reg)
11264       .addReg(ShiftReg);
11265 
11266   BB = loopMBB;
11267   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11268       .addReg(ZeroReg)
11269       .addReg(PtrReg);
11270   if (BinOpcode)
11271     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11272         .addReg(Incr2Reg)
11273         .addReg(TmpDestReg);
11274   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11275       .addReg(TmpDestReg)
11276       .addReg(MaskReg);
11277   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11278   if (CmpOpcode) {
11279     // For unsigned comparisons, we can directly compare the shifted values.
11280     // For signed comparisons we shift and sign extend.
11281     Register SReg = RegInfo.createVirtualRegister(GPRC);
11282     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11283         .addReg(TmpDestReg)
11284         .addReg(MaskReg);
11285     unsigned ValueReg = SReg;
11286     unsigned CmpReg = Incr2Reg;
11287     if (CmpOpcode == PPC::CMPW) {
11288       ValueReg = RegInfo.createVirtualRegister(GPRC);
11289       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11290           .addReg(SReg)
11291           .addReg(ShiftReg);
11292       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11293       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11294           .addReg(ValueReg);
11295       ValueReg = ValueSReg;
11296       CmpReg = incr;
11297     }
11298     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11299         .addReg(CmpReg)
11300         .addReg(ValueReg);
11301     BuildMI(BB, dl, TII->get(PPC::BCC))
11302         .addImm(CmpPred)
11303         .addReg(PPC::CR0)
11304         .addMBB(exitMBB);
11305     BB->addSuccessor(loop2MBB);
11306     BB->addSuccessor(exitMBB);
11307     BB = loop2MBB;
11308   }
11309   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11310   BuildMI(BB, dl, TII->get(PPC::STWCX))
11311       .addReg(Tmp4Reg)
11312       .addReg(ZeroReg)
11313       .addReg(PtrReg);
11314   BuildMI(BB, dl, TII->get(PPC::BCC))
11315       .addImm(PPC::PRED_NE)
11316       .addReg(PPC::CR0)
11317       .addMBB(loopMBB);
11318   BB->addSuccessor(loopMBB);
11319   BB->addSuccessor(exitMBB);
11320 
11321   //  exitMBB:
11322   //   ...
11323   BB = exitMBB;
11324   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11325       .addReg(TmpDestReg)
11326       .addReg(ShiftReg);
11327   return BB;
11328 }
11329 
11330 llvm::MachineBasicBlock *
11331 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11332                                     MachineBasicBlock *MBB) const {
11333   DebugLoc DL = MI.getDebugLoc();
11334   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11335   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11336 
11337   MachineFunction *MF = MBB->getParent();
11338   MachineRegisterInfo &MRI = MF->getRegInfo();
11339 
11340   const BasicBlock *BB = MBB->getBasicBlock();
11341   MachineFunction::iterator I = ++MBB->getIterator();
11342 
11343   Register DstReg = MI.getOperand(0).getReg();
11344   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11345   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11346   Register mainDstReg = MRI.createVirtualRegister(RC);
11347   Register restoreDstReg = MRI.createVirtualRegister(RC);
11348 
11349   MVT PVT = getPointerTy(MF->getDataLayout());
11350   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11351          "Invalid Pointer Size!");
11352   // For v = setjmp(buf), we generate
11353   //
11354   // thisMBB:
11355   //  SjLjSetup mainMBB
11356   //  bl mainMBB
11357   //  v_restore = 1
11358   //  b sinkMBB
11359   //
11360   // mainMBB:
11361   //  buf[LabelOffset] = LR
11362   //  v_main = 0
11363   //
11364   // sinkMBB:
11365   //  v = phi(main, restore)
11366   //
11367 
11368   MachineBasicBlock *thisMBB = MBB;
11369   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11370   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11371   MF->insert(I, mainMBB);
11372   MF->insert(I, sinkMBB);
11373 
11374   MachineInstrBuilder MIB;
11375 
11376   // Transfer the remainder of BB and its successor edges to sinkMBB.
11377   sinkMBB->splice(sinkMBB->begin(), MBB,
11378                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11379   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11380 
11381   // Note that the structure of the jmp_buf used here is not compatible
11382   // with that used by libc, and is not designed to be. Specifically, it
11383   // stores only those 'reserved' registers that LLVM does not otherwise
11384   // understand how to spill. Also, by convention, by the time this
11385   // intrinsic is called, Clang has already stored the frame address in the
11386   // first slot of the buffer and stack address in the third. Following the
11387   // X86 target code, we'll store the jump address in the second slot. We also
11388   // need to save the TOC pointer (R2) to handle jumps between shared
11389   // libraries, and that will be stored in the fourth slot. The thread
11390   // identifier (R13) is not affected.
11391 
11392   // thisMBB:
11393   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11394   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11395   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11396 
11397   // Prepare IP either in reg.
11398   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11399   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11400   Register BufReg = MI.getOperand(1).getReg();
11401 
11402   if (Subtarget.is64BitELFABI()) {
11403     setUsesTOCBasePtr(*MBB->getParent());
11404     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11405               .addReg(PPC::X2)
11406               .addImm(TOCOffset)
11407               .addReg(BufReg)
11408               .cloneMemRefs(MI);
11409   }
11410 
11411   // Naked functions never have a base pointer, and so we use r1. For all
11412   // other functions, this decision must be delayed until during PEI.
11413   unsigned BaseReg;
11414   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11415     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11416   else
11417     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11418 
11419   MIB = BuildMI(*thisMBB, MI, DL,
11420                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11421             .addReg(BaseReg)
11422             .addImm(BPOffset)
11423             .addReg(BufReg)
11424             .cloneMemRefs(MI);
11425 
11426   // Setup
11427   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11428   MIB.addRegMask(TRI->getNoPreservedMask());
11429 
11430   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11431 
11432   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11433           .addMBB(mainMBB);
11434   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11435 
11436   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11437   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11438 
11439   // mainMBB:
11440   //  mainDstReg = 0
11441   MIB =
11442       BuildMI(mainMBB, DL,
11443               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11444 
11445   // Store IP
11446   if (Subtarget.isPPC64()) {
11447     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11448             .addReg(LabelReg)
11449             .addImm(LabelOffset)
11450             .addReg(BufReg);
11451   } else {
11452     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11453             .addReg(LabelReg)
11454             .addImm(LabelOffset)
11455             .addReg(BufReg);
11456   }
11457   MIB.cloneMemRefs(MI);
11458 
11459   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11460   mainMBB->addSuccessor(sinkMBB);
11461 
11462   // sinkMBB:
11463   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11464           TII->get(PPC::PHI), DstReg)
11465     .addReg(mainDstReg).addMBB(mainMBB)
11466     .addReg(restoreDstReg).addMBB(thisMBB);
11467 
11468   MI.eraseFromParent();
11469   return sinkMBB;
11470 }
11471 
11472 MachineBasicBlock *
11473 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11474                                      MachineBasicBlock *MBB) const {
11475   DebugLoc DL = MI.getDebugLoc();
11476   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11477 
11478   MachineFunction *MF = MBB->getParent();
11479   MachineRegisterInfo &MRI = MF->getRegInfo();
11480 
11481   MVT PVT = getPointerTy(MF->getDataLayout());
11482   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11483          "Invalid Pointer Size!");
11484 
11485   const TargetRegisterClass *RC =
11486     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11487   Register Tmp = MRI.createVirtualRegister(RC);
11488   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11489   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11490   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11491   unsigned BP =
11492       (PVT == MVT::i64)
11493           ? PPC::X30
11494           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11495                                                               : PPC::R30);
11496 
11497   MachineInstrBuilder MIB;
11498 
11499   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11500   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11501   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11502   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11503 
11504   Register BufReg = MI.getOperand(0).getReg();
11505 
11506   // Reload FP (the jumped-to function may not have had a
11507   // frame pointer, and if so, then its r31 will be restored
11508   // as necessary).
11509   if (PVT == MVT::i64) {
11510     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11511             .addImm(0)
11512             .addReg(BufReg);
11513   } else {
11514     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11515             .addImm(0)
11516             .addReg(BufReg);
11517   }
11518   MIB.cloneMemRefs(MI);
11519 
11520   // Reload IP
11521   if (PVT == MVT::i64) {
11522     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11523             .addImm(LabelOffset)
11524             .addReg(BufReg);
11525   } else {
11526     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11527             .addImm(LabelOffset)
11528             .addReg(BufReg);
11529   }
11530   MIB.cloneMemRefs(MI);
11531 
11532   // Reload SP
11533   if (PVT == MVT::i64) {
11534     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11535             .addImm(SPOffset)
11536             .addReg(BufReg);
11537   } else {
11538     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11539             .addImm(SPOffset)
11540             .addReg(BufReg);
11541   }
11542   MIB.cloneMemRefs(MI);
11543 
11544   // Reload BP
11545   if (PVT == MVT::i64) {
11546     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11547             .addImm(BPOffset)
11548             .addReg(BufReg);
11549   } else {
11550     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11551             .addImm(BPOffset)
11552             .addReg(BufReg);
11553   }
11554   MIB.cloneMemRefs(MI);
11555 
11556   // Reload TOC
11557   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11558     setUsesTOCBasePtr(*MBB->getParent());
11559     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11560               .addImm(TOCOffset)
11561               .addReg(BufReg)
11562               .cloneMemRefs(MI);
11563   }
11564 
11565   // Jump
11566   BuildMI(*MBB, MI, DL,
11567           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11568   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11569 
11570   MI.eraseFromParent();
11571   return MBB;
11572 }
11573 
11574 MachineBasicBlock *
11575 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11576                                                MachineBasicBlock *BB) const {
11577   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11578       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11579     if (Subtarget.is64BitELFABI() &&
11580         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11581         !Subtarget.isUsingPCRelativeCalls()) {
11582       // Call lowering should have added an r2 operand to indicate a dependence
11583       // on the TOC base pointer value. It can't however, because there is no
11584       // way to mark the dependence as implicit there, and so the stackmap code
11585       // will confuse it with a regular operand. Instead, add the dependence
11586       // here.
11587       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11588     }
11589 
11590     return emitPatchPoint(MI, BB);
11591   }
11592 
11593   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11594       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11595     return emitEHSjLjSetJmp(MI, BB);
11596   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11597              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11598     return emitEHSjLjLongJmp(MI, BB);
11599   }
11600 
11601   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11602 
11603   // To "insert" these instructions we actually have to insert their
11604   // control-flow patterns.
11605   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11606   MachineFunction::iterator It = ++BB->getIterator();
11607 
11608   MachineFunction *F = BB->getParent();
11609 
11610   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11611       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11612       MI.getOpcode() == PPC::SELECT_I8) {
11613     SmallVector<MachineOperand, 2> Cond;
11614     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11615         MI.getOpcode() == PPC::SELECT_CC_I8)
11616       Cond.push_back(MI.getOperand(4));
11617     else
11618       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11619     Cond.push_back(MI.getOperand(1));
11620 
11621     DebugLoc dl = MI.getDebugLoc();
11622     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11623                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11624   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11625              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11626              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11627              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11628              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11629              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11630              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11631              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11632              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11633              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11634              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11635              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11636              MI.getOpcode() == PPC::SELECT_F4 ||
11637              MI.getOpcode() == PPC::SELECT_F8 ||
11638              MI.getOpcode() == PPC::SELECT_F16 ||
11639              MI.getOpcode() == PPC::SELECT_QFRC ||
11640              MI.getOpcode() == PPC::SELECT_QSRC ||
11641              MI.getOpcode() == PPC::SELECT_QBRC ||
11642              MI.getOpcode() == PPC::SELECT_SPE ||
11643              MI.getOpcode() == PPC::SELECT_SPE4 ||
11644              MI.getOpcode() == PPC::SELECT_VRRC ||
11645              MI.getOpcode() == PPC::SELECT_VSFRC ||
11646              MI.getOpcode() == PPC::SELECT_VSSRC ||
11647              MI.getOpcode() == PPC::SELECT_VSRC) {
11648     // The incoming instruction knows the destination vreg to set, the
11649     // condition code register to branch on, the true/false values to
11650     // select between, and a branch opcode to use.
11651 
11652     //  thisMBB:
11653     //  ...
11654     //   TrueVal = ...
11655     //   cmpTY ccX, r1, r2
11656     //   bCC copy1MBB
11657     //   fallthrough --> copy0MBB
11658     MachineBasicBlock *thisMBB = BB;
11659     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11660     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11661     DebugLoc dl = MI.getDebugLoc();
11662     F->insert(It, copy0MBB);
11663     F->insert(It, sinkMBB);
11664 
11665     // Transfer the remainder of BB and its successor edges to sinkMBB.
11666     sinkMBB->splice(sinkMBB->begin(), BB,
11667                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11668     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11669 
11670     // Next, add the true and fallthrough blocks as its successors.
11671     BB->addSuccessor(copy0MBB);
11672     BB->addSuccessor(sinkMBB);
11673 
11674     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11675         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11676         MI.getOpcode() == PPC::SELECT_F16 ||
11677         MI.getOpcode() == PPC::SELECT_SPE4 ||
11678         MI.getOpcode() == PPC::SELECT_SPE ||
11679         MI.getOpcode() == PPC::SELECT_QFRC ||
11680         MI.getOpcode() == PPC::SELECT_QSRC ||
11681         MI.getOpcode() == PPC::SELECT_QBRC ||
11682         MI.getOpcode() == PPC::SELECT_VRRC ||
11683         MI.getOpcode() == PPC::SELECT_VSFRC ||
11684         MI.getOpcode() == PPC::SELECT_VSSRC ||
11685         MI.getOpcode() == PPC::SELECT_VSRC) {
11686       BuildMI(BB, dl, TII->get(PPC::BC))
11687           .addReg(MI.getOperand(1).getReg())
11688           .addMBB(sinkMBB);
11689     } else {
11690       unsigned SelectPred = MI.getOperand(4).getImm();
11691       BuildMI(BB, dl, TII->get(PPC::BCC))
11692           .addImm(SelectPred)
11693           .addReg(MI.getOperand(1).getReg())
11694           .addMBB(sinkMBB);
11695     }
11696 
11697     //  copy0MBB:
11698     //   %FalseValue = ...
11699     //   # fallthrough to sinkMBB
11700     BB = copy0MBB;
11701 
11702     // Update machine-CFG edges
11703     BB->addSuccessor(sinkMBB);
11704 
11705     //  sinkMBB:
11706     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11707     //  ...
11708     BB = sinkMBB;
11709     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11710         .addReg(MI.getOperand(3).getReg())
11711         .addMBB(copy0MBB)
11712         .addReg(MI.getOperand(2).getReg())
11713         .addMBB(thisMBB);
11714   } else if (MI.getOpcode() == PPC::ReadTB) {
11715     // To read the 64-bit time-base register on a 32-bit target, we read the
11716     // two halves. Should the counter have wrapped while it was being read, we
11717     // need to try again.
11718     // ...
11719     // readLoop:
11720     // mfspr Rx,TBU # load from TBU
11721     // mfspr Ry,TB  # load from TB
11722     // mfspr Rz,TBU # load from TBU
11723     // cmpw crX,Rx,Rz # check if 'old'='new'
11724     // bne readLoop   # branch if they're not equal
11725     // ...
11726 
11727     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11728     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11729     DebugLoc dl = MI.getDebugLoc();
11730     F->insert(It, readMBB);
11731     F->insert(It, sinkMBB);
11732 
11733     // Transfer the remainder of BB and its successor edges to sinkMBB.
11734     sinkMBB->splice(sinkMBB->begin(), BB,
11735                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11736     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11737 
11738     BB->addSuccessor(readMBB);
11739     BB = readMBB;
11740 
11741     MachineRegisterInfo &RegInfo = F->getRegInfo();
11742     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11743     Register LoReg = MI.getOperand(0).getReg();
11744     Register HiReg = MI.getOperand(1).getReg();
11745 
11746     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11747     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11748     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11749 
11750     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11751 
11752     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11753         .addReg(HiReg)
11754         .addReg(ReadAgainReg);
11755     BuildMI(BB, dl, TII->get(PPC::BCC))
11756         .addImm(PPC::PRED_NE)
11757         .addReg(CmpReg)
11758         .addMBB(readMBB);
11759 
11760     BB->addSuccessor(readMBB);
11761     BB->addSuccessor(sinkMBB);
11762   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11763     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11764   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11765     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11766   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11767     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11768   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11769     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11770 
11771   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11772     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11773   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11774     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11775   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11776     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11777   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11778     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11779 
11780   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11781     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11782   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11783     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11784   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11785     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11786   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11787     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11788 
11789   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11790     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11791   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11792     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11793   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11794     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11795   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11796     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11797 
11798   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11799     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11800   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11801     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11802   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11803     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11804   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11805     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11806 
11807   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11808     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11809   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11810     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11811   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11812     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11813   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11814     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11815 
11816   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11817     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11818   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11819     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11820   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11821     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11822   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11823     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11824 
11825   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11826     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11827   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11828     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11829   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11830     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11831   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11832     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11833 
11834   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11835     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11836   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11837     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11838   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11839     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11840   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11841     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11842 
11843   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11844     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11845   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11846     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11847   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11848     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11849   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11850     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11851 
11852   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11853     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11854   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11855     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11856   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11857     BB = EmitAtomicBinary(MI, BB, 4, 0);
11858   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11859     BB = EmitAtomicBinary(MI, BB, 8, 0);
11860   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11861            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11862            (Subtarget.hasPartwordAtomics() &&
11863             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11864            (Subtarget.hasPartwordAtomics() &&
11865             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11866     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11867 
11868     auto LoadMnemonic = PPC::LDARX;
11869     auto StoreMnemonic = PPC::STDCX;
11870     switch (MI.getOpcode()) {
11871     default:
11872       llvm_unreachable("Compare and swap of unknown size");
11873     case PPC::ATOMIC_CMP_SWAP_I8:
11874       LoadMnemonic = PPC::LBARX;
11875       StoreMnemonic = PPC::STBCX;
11876       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11877       break;
11878     case PPC::ATOMIC_CMP_SWAP_I16:
11879       LoadMnemonic = PPC::LHARX;
11880       StoreMnemonic = PPC::STHCX;
11881       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11882       break;
11883     case PPC::ATOMIC_CMP_SWAP_I32:
11884       LoadMnemonic = PPC::LWARX;
11885       StoreMnemonic = PPC::STWCX;
11886       break;
11887     case PPC::ATOMIC_CMP_SWAP_I64:
11888       LoadMnemonic = PPC::LDARX;
11889       StoreMnemonic = PPC::STDCX;
11890       break;
11891     }
11892     Register dest = MI.getOperand(0).getReg();
11893     Register ptrA = MI.getOperand(1).getReg();
11894     Register ptrB = MI.getOperand(2).getReg();
11895     Register oldval = MI.getOperand(3).getReg();
11896     Register newval = MI.getOperand(4).getReg();
11897     DebugLoc dl = MI.getDebugLoc();
11898 
11899     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11900     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11901     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11902     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11903     F->insert(It, loop1MBB);
11904     F->insert(It, loop2MBB);
11905     F->insert(It, midMBB);
11906     F->insert(It, exitMBB);
11907     exitMBB->splice(exitMBB->begin(), BB,
11908                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11909     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11910 
11911     //  thisMBB:
11912     //   ...
11913     //   fallthrough --> loopMBB
11914     BB->addSuccessor(loop1MBB);
11915 
11916     // loop1MBB:
11917     //   l[bhwd]arx dest, ptr
11918     //   cmp[wd] dest, oldval
11919     //   bne- midMBB
11920     // loop2MBB:
11921     //   st[bhwd]cx. newval, ptr
11922     //   bne- loopMBB
11923     //   b exitBB
11924     // midMBB:
11925     //   st[bhwd]cx. dest, ptr
11926     // exitBB:
11927     BB = loop1MBB;
11928     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11929     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11930         .addReg(oldval)
11931         .addReg(dest);
11932     BuildMI(BB, dl, TII->get(PPC::BCC))
11933         .addImm(PPC::PRED_NE)
11934         .addReg(PPC::CR0)
11935         .addMBB(midMBB);
11936     BB->addSuccessor(loop2MBB);
11937     BB->addSuccessor(midMBB);
11938 
11939     BB = loop2MBB;
11940     BuildMI(BB, dl, TII->get(StoreMnemonic))
11941         .addReg(newval)
11942         .addReg(ptrA)
11943         .addReg(ptrB);
11944     BuildMI(BB, dl, TII->get(PPC::BCC))
11945         .addImm(PPC::PRED_NE)
11946         .addReg(PPC::CR0)
11947         .addMBB(loop1MBB);
11948     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11949     BB->addSuccessor(loop1MBB);
11950     BB->addSuccessor(exitMBB);
11951 
11952     BB = midMBB;
11953     BuildMI(BB, dl, TII->get(StoreMnemonic))
11954         .addReg(dest)
11955         .addReg(ptrA)
11956         .addReg(ptrB);
11957     BB->addSuccessor(exitMBB);
11958 
11959     //  exitMBB:
11960     //   ...
11961     BB = exitMBB;
11962   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11963              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11964     // We must use 64-bit registers for addresses when targeting 64-bit,
11965     // since we're actually doing arithmetic on them.  Other registers
11966     // can be 32-bit.
11967     bool is64bit = Subtarget.isPPC64();
11968     bool isLittleEndian = Subtarget.isLittleEndian();
11969     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11970 
11971     Register dest = MI.getOperand(0).getReg();
11972     Register ptrA = MI.getOperand(1).getReg();
11973     Register ptrB = MI.getOperand(2).getReg();
11974     Register oldval = MI.getOperand(3).getReg();
11975     Register newval = MI.getOperand(4).getReg();
11976     DebugLoc dl = MI.getDebugLoc();
11977 
11978     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11979     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11980     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11981     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11982     F->insert(It, loop1MBB);
11983     F->insert(It, loop2MBB);
11984     F->insert(It, midMBB);
11985     F->insert(It, exitMBB);
11986     exitMBB->splice(exitMBB->begin(), BB,
11987                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11988     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11989 
11990     MachineRegisterInfo &RegInfo = F->getRegInfo();
11991     const TargetRegisterClass *RC =
11992         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11993     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11994 
11995     Register PtrReg = RegInfo.createVirtualRegister(RC);
11996     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11997     Register ShiftReg =
11998         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11999     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12000     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12001     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12002     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12003     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12004     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12005     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12006     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12007     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12008     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12009     Register Ptr1Reg;
12010     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12011     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12012     //  thisMBB:
12013     //   ...
12014     //   fallthrough --> loopMBB
12015     BB->addSuccessor(loop1MBB);
12016 
12017     // The 4-byte load must be aligned, while a char or short may be
12018     // anywhere in the word.  Hence all this nasty bookkeeping code.
12019     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12020     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12021     //   xori shift, shift1, 24 [16]
12022     //   rlwinm ptr, ptr1, 0, 0, 29
12023     //   slw newval2, newval, shift
12024     //   slw oldval2, oldval,shift
12025     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12026     //   slw mask, mask2, shift
12027     //   and newval3, newval2, mask
12028     //   and oldval3, oldval2, mask
12029     // loop1MBB:
12030     //   lwarx tmpDest, ptr
12031     //   and tmp, tmpDest, mask
12032     //   cmpw tmp, oldval3
12033     //   bne- midMBB
12034     // loop2MBB:
12035     //   andc tmp2, tmpDest, mask
12036     //   or tmp4, tmp2, newval3
12037     //   stwcx. tmp4, ptr
12038     //   bne- loop1MBB
12039     //   b exitBB
12040     // midMBB:
12041     //   stwcx. tmpDest, ptr
12042     // exitBB:
12043     //   srw dest, tmpDest, shift
12044     if (ptrA != ZeroReg) {
12045       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12046       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12047           .addReg(ptrA)
12048           .addReg(ptrB);
12049     } else {
12050       Ptr1Reg = ptrB;
12051     }
12052 
12053     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12054     // mode.
12055     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12056         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12057         .addImm(3)
12058         .addImm(27)
12059         .addImm(is8bit ? 28 : 27);
12060     if (!isLittleEndian)
12061       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12062           .addReg(Shift1Reg)
12063           .addImm(is8bit ? 24 : 16);
12064     if (is64bit)
12065       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12066           .addReg(Ptr1Reg)
12067           .addImm(0)
12068           .addImm(61);
12069     else
12070       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12071           .addReg(Ptr1Reg)
12072           .addImm(0)
12073           .addImm(0)
12074           .addImm(29);
12075     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12076         .addReg(newval)
12077         .addReg(ShiftReg);
12078     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12079         .addReg(oldval)
12080         .addReg(ShiftReg);
12081     if (is8bit)
12082       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12083     else {
12084       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12085       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12086           .addReg(Mask3Reg)
12087           .addImm(65535);
12088     }
12089     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12090         .addReg(Mask2Reg)
12091         .addReg(ShiftReg);
12092     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12093         .addReg(NewVal2Reg)
12094         .addReg(MaskReg);
12095     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12096         .addReg(OldVal2Reg)
12097         .addReg(MaskReg);
12098 
12099     BB = loop1MBB;
12100     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12101         .addReg(ZeroReg)
12102         .addReg(PtrReg);
12103     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12104         .addReg(TmpDestReg)
12105         .addReg(MaskReg);
12106     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12107         .addReg(TmpReg)
12108         .addReg(OldVal3Reg);
12109     BuildMI(BB, dl, TII->get(PPC::BCC))
12110         .addImm(PPC::PRED_NE)
12111         .addReg(PPC::CR0)
12112         .addMBB(midMBB);
12113     BB->addSuccessor(loop2MBB);
12114     BB->addSuccessor(midMBB);
12115 
12116     BB = loop2MBB;
12117     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12118         .addReg(TmpDestReg)
12119         .addReg(MaskReg);
12120     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12121         .addReg(Tmp2Reg)
12122         .addReg(NewVal3Reg);
12123     BuildMI(BB, dl, TII->get(PPC::STWCX))
12124         .addReg(Tmp4Reg)
12125         .addReg(ZeroReg)
12126         .addReg(PtrReg);
12127     BuildMI(BB, dl, TII->get(PPC::BCC))
12128         .addImm(PPC::PRED_NE)
12129         .addReg(PPC::CR0)
12130         .addMBB(loop1MBB);
12131     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12132     BB->addSuccessor(loop1MBB);
12133     BB->addSuccessor(exitMBB);
12134 
12135     BB = midMBB;
12136     BuildMI(BB, dl, TII->get(PPC::STWCX))
12137         .addReg(TmpDestReg)
12138         .addReg(ZeroReg)
12139         .addReg(PtrReg);
12140     BB->addSuccessor(exitMBB);
12141 
12142     //  exitMBB:
12143     //   ...
12144     BB = exitMBB;
12145     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12146         .addReg(TmpReg)
12147         .addReg(ShiftReg);
12148   } else if (MI.getOpcode() == PPC::FADDrtz) {
12149     // This pseudo performs an FADD with rounding mode temporarily forced
12150     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12151     // is not modeled at the SelectionDAG level.
12152     Register Dest = MI.getOperand(0).getReg();
12153     Register Src1 = MI.getOperand(1).getReg();
12154     Register Src2 = MI.getOperand(2).getReg();
12155     DebugLoc dl = MI.getDebugLoc();
12156 
12157     MachineRegisterInfo &RegInfo = F->getRegInfo();
12158     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12159 
12160     // Save FPSCR value.
12161     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12162 
12163     // Set rounding mode to round-to-zero.
12164     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
12165     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
12166 
12167     // Perform addition.
12168     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12169 
12170     // Restore FPSCR value.
12171     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12172   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12173              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12174              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12175              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12176     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12177                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12178                           ? PPC::ANDI8_rec
12179                           : PPC::ANDI_rec;
12180     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12181                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12182 
12183     MachineRegisterInfo &RegInfo = F->getRegInfo();
12184     Register Dest = RegInfo.createVirtualRegister(
12185         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12186 
12187     DebugLoc Dl = MI.getDebugLoc();
12188     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12189         .addReg(MI.getOperand(1).getReg())
12190         .addImm(1);
12191     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12192             MI.getOperand(0).getReg())
12193         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12194   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12195     DebugLoc Dl = MI.getDebugLoc();
12196     MachineRegisterInfo &RegInfo = F->getRegInfo();
12197     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12198     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12199     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12200             MI.getOperand(0).getReg())
12201         .addReg(CRReg);
12202   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12203     DebugLoc Dl = MI.getDebugLoc();
12204     unsigned Imm = MI.getOperand(1).getImm();
12205     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12206     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12207             MI.getOperand(0).getReg())
12208         .addReg(PPC::CR0EQ);
12209   } else if (MI.getOpcode() == PPC::SETRNDi) {
12210     DebugLoc dl = MI.getDebugLoc();
12211     Register OldFPSCRReg = MI.getOperand(0).getReg();
12212 
12213     // Save FPSCR value.
12214     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12215 
12216     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12217     // the following settings:
12218     //   00 Round to nearest
12219     //   01 Round to 0
12220     //   10 Round to +inf
12221     //   11 Round to -inf
12222 
12223     // When the operand is immediate, using the two least significant bits of
12224     // the immediate to set the bits 62:63 of FPSCR.
12225     unsigned Mode = MI.getOperand(1).getImm();
12226     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12227       .addImm(31);
12228 
12229     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12230       .addImm(30);
12231   } else if (MI.getOpcode() == PPC::SETRND) {
12232     DebugLoc dl = MI.getDebugLoc();
12233 
12234     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12235     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12236     // If the target doesn't have DirectMove, we should use stack to do the
12237     // conversion, because the target doesn't have the instructions like mtvsrd
12238     // or mfvsrd to do this conversion directly.
12239     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12240       if (Subtarget.hasDirectMove()) {
12241         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12242           .addReg(SrcReg);
12243       } else {
12244         // Use stack to do the register copy.
12245         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12246         MachineRegisterInfo &RegInfo = F->getRegInfo();
12247         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12248         if (RC == &PPC::F8RCRegClass) {
12249           // Copy register from F8RCRegClass to G8RCRegclass.
12250           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12251                  "Unsupported RegClass.");
12252 
12253           StoreOp = PPC::STFD;
12254           LoadOp = PPC::LD;
12255         } else {
12256           // Copy register from G8RCRegClass to F8RCRegclass.
12257           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12258                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12259                  "Unsupported RegClass.");
12260         }
12261 
12262         MachineFrameInfo &MFI = F->getFrameInfo();
12263         int FrameIdx = MFI.CreateStackObject(8, 8, false);
12264 
12265         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12266             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12267             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12268             MFI.getObjectAlign(FrameIdx));
12269 
12270         // Store the SrcReg into the stack.
12271         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12272           .addReg(SrcReg)
12273           .addImm(0)
12274           .addFrameIndex(FrameIdx)
12275           .addMemOperand(MMOStore);
12276 
12277         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12278             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12279             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12280             MFI.getObjectAlign(FrameIdx));
12281 
12282         // Load from the stack where SrcReg is stored, and save to DestReg,
12283         // so we have done the RegClass conversion from RegClass::SrcReg to
12284         // RegClass::DestReg.
12285         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12286           .addImm(0)
12287           .addFrameIndex(FrameIdx)
12288           .addMemOperand(MMOLoad);
12289       }
12290     };
12291 
12292     Register OldFPSCRReg = MI.getOperand(0).getReg();
12293 
12294     // Save FPSCR value.
12295     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12296 
12297     // When the operand is gprc register, use two least significant bits of the
12298     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12299     //
12300     // copy OldFPSCRTmpReg, OldFPSCRReg
12301     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12302     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12303     // copy NewFPSCRReg, NewFPSCRTmpReg
12304     // mtfsf 255, NewFPSCRReg
12305     MachineOperand SrcOp = MI.getOperand(1);
12306     MachineRegisterInfo &RegInfo = F->getRegInfo();
12307     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12308 
12309     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12310 
12311     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12312     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12313 
12314     // The first operand of INSERT_SUBREG should be a register which has
12315     // subregisters, we only care about its RegClass, so we should use an
12316     // IMPLICIT_DEF register.
12317     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12318     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12319       .addReg(ImDefReg)
12320       .add(SrcOp)
12321       .addImm(1);
12322 
12323     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12324     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12325       .addReg(OldFPSCRTmpReg)
12326       .addReg(ExtSrcReg)
12327       .addImm(0)
12328       .addImm(62);
12329 
12330     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12331     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12332 
12333     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12334     // bits of FPSCR.
12335     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12336       .addImm(255)
12337       .addReg(NewFPSCRReg)
12338       .addImm(0)
12339       .addImm(0);
12340   } else {
12341     llvm_unreachable("Unexpected instr type to insert");
12342   }
12343 
12344   MI.eraseFromParent(); // The pseudo instruction is gone now.
12345   return BB;
12346 }
12347 
12348 //===----------------------------------------------------------------------===//
12349 // Target Optimization Hooks
12350 //===----------------------------------------------------------------------===//
12351 
12352 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12353   // For the estimates, convergence is quadratic, so we essentially double the
12354   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12355   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12356   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12357   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12358   if (VT.getScalarType() == MVT::f64)
12359     RefinementSteps++;
12360   return RefinementSteps;
12361 }
12362 
12363 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12364                                            int Enabled, int &RefinementSteps,
12365                                            bool &UseOneConstNR,
12366                                            bool Reciprocal) const {
12367   EVT VT = Operand.getValueType();
12368   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12369       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12370       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12371       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12372       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12373       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12374     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12375       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12376 
12377     // The Newton-Raphson computation with a single constant does not provide
12378     // enough accuracy on some CPUs.
12379     UseOneConstNR = !Subtarget.needsTwoConstNR();
12380     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12381   }
12382   return SDValue();
12383 }
12384 
12385 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12386                                             int Enabled,
12387                                             int &RefinementSteps) const {
12388   EVT VT = Operand.getValueType();
12389   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12390       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12391       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12392       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12393       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12394       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12395     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12396       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12397     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12398   }
12399   return SDValue();
12400 }
12401 
12402 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12403   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12404   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12405   // enabled for division), this functionality is redundant with the default
12406   // combiner logic (once the division -> reciprocal/multiply transformation
12407   // has taken place). As a result, this matters more for older cores than for
12408   // newer ones.
12409 
12410   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12411   // reciprocal if there are two or more FDIVs (for embedded cores with only
12412   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12413   switch (Subtarget.getCPUDirective()) {
12414   default:
12415     return 3;
12416   case PPC::DIR_440:
12417   case PPC::DIR_A2:
12418   case PPC::DIR_E500:
12419   case PPC::DIR_E500mc:
12420   case PPC::DIR_E5500:
12421     return 2;
12422   }
12423 }
12424 
12425 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12426 // collapsed, and so we need to look through chains of them.
12427 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12428                                      int64_t& Offset, SelectionDAG &DAG) {
12429   if (DAG.isBaseWithConstantOffset(Loc)) {
12430     Base = Loc.getOperand(0);
12431     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12432 
12433     // The base might itself be a base plus an offset, and if so, accumulate
12434     // that as well.
12435     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12436   }
12437 }
12438 
12439 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12440                             unsigned Bytes, int Dist,
12441                             SelectionDAG &DAG) {
12442   if (VT.getSizeInBits() / 8 != Bytes)
12443     return false;
12444 
12445   SDValue BaseLoc = Base->getBasePtr();
12446   if (Loc.getOpcode() == ISD::FrameIndex) {
12447     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12448       return false;
12449     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12450     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12451     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12452     int FS  = MFI.getObjectSize(FI);
12453     int BFS = MFI.getObjectSize(BFI);
12454     if (FS != BFS || FS != (int)Bytes) return false;
12455     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12456   }
12457 
12458   SDValue Base1 = Loc, Base2 = BaseLoc;
12459   int64_t Offset1 = 0, Offset2 = 0;
12460   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12461   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12462   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12463     return true;
12464 
12465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12466   const GlobalValue *GV1 = nullptr;
12467   const GlobalValue *GV2 = nullptr;
12468   Offset1 = 0;
12469   Offset2 = 0;
12470   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12471   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12472   if (isGA1 && isGA2 && GV1 == GV2)
12473     return Offset1 == (Offset2 + Dist*Bytes);
12474   return false;
12475 }
12476 
12477 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12478 // not enforce equality of the chain operands.
12479 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12480                             unsigned Bytes, int Dist,
12481                             SelectionDAG &DAG) {
12482   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12483     EVT VT = LS->getMemoryVT();
12484     SDValue Loc = LS->getBasePtr();
12485     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12486   }
12487 
12488   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12489     EVT VT;
12490     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12491     default: return false;
12492     case Intrinsic::ppc_qpx_qvlfd:
12493     case Intrinsic::ppc_qpx_qvlfda:
12494       VT = MVT::v4f64;
12495       break;
12496     case Intrinsic::ppc_qpx_qvlfs:
12497     case Intrinsic::ppc_qpx_qvlfsa:
12498       VT = MVT::v4f32;
12499       break;
12500     case Intrinsic::ppc_qpx_qvlfcd:
12501     case Intrinsic::ppc_qpx_qvlfcda:
12502       VT = MVT::v2f64;
12503       break;
12504     case Intrinsic::ppc_qpx_qvlfcs:
12505     case Intrinsic::ppc_qpx_qvlfcsa:
12506       VT = MVT::v2f32;
12507       break;
12508     case Intrinsic::ppc_qpx_qvlfiwa:
12509     case Intrinsic::ppc_qpx_qvlfiwz:
12510     case Intrinsic::ppc_altivec_lvx:
12511     case Intrinsic::ppc_altivec_lvxl:
12512     case Intrinsic::ppc_vsx_lxvw4x:
12513     case Intrinsic::ppc_vsx_lxvw4x_be:
12514       VT = MVT::v4i32;
12515       break;
12516     case Intrinsic::ppc_vsx_lxvd2x:
12517     case Intrinsic::ppc_vsx_lxvd2x_be:
12518       VT = MVT::v2f64;
12519       break;
12520     case Intrinsic::ppc_altivec_lvebx:
12521       VT = MVT::i8;
12522       break;
12523     case Intrinsic::ppc_altivec_lvehx:
12524       VT = MVT::i16;
12525       break;
12526     case Intrinsic::ppc_altivec_lvewx:
12527       VT = MVT::i32;
12528       break;
12529     }
12530 
12531     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12532   }
12533 
12534   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12535     EVT VT;
12536     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12537     default: return false;
12538     case Intrinsic::ppc_qpx_qvstfd:
12539     case Intrinsic::ppc_qpx_qvstfda:
12540       VT = MVT::v4f64;
12541       break;
12542     case Intrinsic::ppc_qpx_qvstfs:
12543     case Intrinsic::ppc_qpx_qvstfsa:
12544       VT = MVT::v4f32;
12545       break;
12546     case Intrinsic::ppc_qpx_qvstfcd:
12547     case Intrinsic::ppc_qpx_qvstfcda:
12548       VT = MVT::v2f64;
12549       break;
12550     case Intrinsic::ppc_qpx_qvstfcs:
12551     case Intrinsic::ppc_qpx_qvstfcsa:
12552       VT = MVT::v2f32;
12553       break;
12554     case Intrinsic::ppc_qpx_qvstfiw:
12555     case Intrinsic::ppc_qpx_qvstfiwa:
12556     case Intrinsic::ppc_altivec_stvx:
12557     case Intrinsic::ppc_altivec_stvxl:
12558     case Intrinsic::ppc_vsx_stxvw4x:
12559       VT = MVT::v4i32;
12560       break;
12561     case Intrinsic::ppc_vsx_stxvd2x:
12562       VT = MVT::v2f64;
12563       break;
12564     case Intrinsic::ppc_vsx_stxvw4x_be:
12565       VT = MVT::v4i32;
12566       break;
12567     case Intrinsic::ppc_vsx_stxvd2x_be:
12568       VT = MVT::v2f64;
12569       break;
12570     case Intrinsic::ppc_altivec_stvebx:
12571       VT = MVT::i8;
12572       break;
12573     case Intrinsic::ppc_altivec_stvehx:
12574       VT = MVT::i16;
12575       break;
12576     case Intrinsic::ppc_altivec_stvewx:
12577       VT = MVT::i32;
12578       break;
12579     }
12580 
12581     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12582   }
12583 
12584   return false;
12585 }
12586 
12587 // Return true is there is a nearyby consecutive load to the one provided
12588 // (regardless of alignment). We search up and down the chain, looking though
12589 // token factors and other loads (but nothing else). As a result, a true result
12590 // indicates that it is safe to create a new consecutive load adjacent to the
12591 // load provided.
12592 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12593   SDValue Chain = LD->getChain();
12594   EVT VT = LD->getMemoryVT();
12595 
12596   SmallSet<SDNode *, 16> LoadRoots;
12597   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12598   SmallSet<SDNode *, 16> Visited;
12599 
12600   // First, search up the chain, branching to follow all token-factor operands.
12601   // If we find a consecutive load, then we're done, otherwise, record all
12602   // nodes just above the top-level loads and token factors.
12603   while (!Queue.empty()) {
12604     SDNode *ChainNext = Queue.pop_back_val();
12605     if (!Visited.insert(ChainNext).second)
12606       continue;
12607 
12608     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12609       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12610         return true;
12611 
12612       if (!Visited.count(ChainLD->getChain().getNode()))
12613         Queue.push_back(ChainLD->getChain().getNode());
12614     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12615       for (const SDUse &O : ChainNext->ops())
12616         if (!Visited.count(O.getNode()))
12617           Queue.push_back(O.getNode());
12618     } else
12619       LoadRoots.insert(ChainNext);
12620   }
12621 
12622   // Second, search down the chain, starting from the top-level nodes recorded
12623   // in the first phase. These top-level nodes are the nodes just above all
12624   // loads and token factors. Starting with their uses, recursively look though
12625   // all loads (just the chain uses) and token factors to find a consecutive
12626   // load.
12627   Visited.clear();
12628   Queue.clear();
12629 
12630   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12631        IE = LoadRoots.end(); I != IE; ++I) {
12632     Queue.push_back(*I);
12633 
12634     while (!Queue.empty()) {
12635       SDNode *LoadRoot = Queue.pop_back_val();
12636       if (!Visited.insert(LoadRoot).second)
12637         continue;
12638 
12639       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12640         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12641           return true;
12642 
12643       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12644            UE = LoadRoot->use_end(); UI != UE; ++UI)
12645         if (((isa<MemSDNode>(*UI) &&
12646             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12647             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12648           Queue.push_back(*UI);
12649     }
12650   }
12651 
12652   return false;
12653 }
12654 
12655 /// This function is called when we have proved that a SETCC node can be replaced
12656 /// by subtraction (and other supporting instructions) so that the result of
12657 /// comparison is kept in a GPR instead of CR. This function is purely for
12658 /// codegen purposes and has some flags to guide the codegen process.
12659 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12660                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12661   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12662 
12663   // Zero extend the operands to the largest legal integer. Originally, they
12664   // must be of a strictly smaller size.
12665   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12666                          DAG.getConstant(Size, DL, MVT::i32));
12667   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12668                          DAG.getConstant(Size, DL, MVT::i32));
12669 
12670   // Swap if needed. Depends on the condition code.
12671   if (Swap)
12672     std::swap(Op0, Op1);
12673 
12674   // Subtract extended integers.
12675   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12676 
12677   // Move the sign bit to the least significant position and zero out the rest.
12678   // Now the least significant bit carries the result of original comparison.
12679   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12680                              DAG.getConstant(Size - 1, DL, MVT::i32));
12681   auto Final = Shifted;
12682 
12683   // Complement the result if needed. Based on the condition code.
12684   if (Complement)
12685     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12686                         DAG.getConstant(1, DL, MVT::i64));
12687 
12688   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12689 }
12690 
12691 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12692                                                   DAGCombinerInfo &DCI) const {
12693   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12694 
12695   SelectionDAG &DAG = DCI.DAG;
12696   SDLoc DL(N);
12697 
12698   // Size of integers being compared has a critical role in the following
12699   // analysis, so we prefer to do this when all types are legal.
12700   if (!DCI.isAfterLegalizeDAG())
12701     return SDValue();
12702 
12703   // If all users of SETCC extend its value to a legal integer type
12704   // then we replace SETCC with a subtraction
12705   for (SDNode::use_iterator UI = N->use_begin(),
12706        UE = N->use_end(); UI != UE; ++UI) {
12707     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12708       return SDValue();
12709   }
12710 
12711   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12712   auto OpSize = N->getOperand(0).getValueSizeInBits();
12713 
12714   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12715 
12716   if (OpSize < Size) {
12717     switch (CC) {
12718     default: break;
12719     case ISD::SETULT:
12720       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12721     case ISD::SETULE:
12722       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12723     case ISD::SETUGT:
12724       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12725     case ISD::SETUGE:
12726       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12727     }
12728   }
12729 
12730   return SDValue();
12731 }
12732 
12733 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12734                                                   DAGCombinerInfo &DCI) const {
12735   SelectionDAG &DAG = DCI.DAG;
12736   SDLoc dl(N);
12737 
12738   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12739   // If we're tracking CR bits, we need to be careful that we don't have:
12740   //   trunc(binary-ops(zext(x), zext(y)))
12741   // or
12742   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12743   // such that we're unnecessarily moving things into GPRs when it would be
12744   // better to keep them in CR bits.
12745 
12746   // Note that trunc here can be an actual i1 trunc, or can be the effective
12747   // truncation that comes from a setcc or select_cc.
12748   if (N->getOpcode() == ISD::TRUNCATE &&
12749       N->getValueType(0) != MVT::i1)
12750     return SDValue();
12751 
12752   if (N->getOperand(0).getValueType() != MVT::i32 &&
12753       N->getOperand(0).getValueType() != MVT::i64)
12754     return SDValue();
12755 
12756   if (N->getOpcode() == ISD::SETCC ||
12757       N->getOpcode() == ISD::SELECT_CC) {
12758     // If we're looking at a comparison, then we need to make sure that the
12759     // high bits (all except for the first) don't matter the result.
12760     ISD::CondCode CC =
12761       cast<CondCodeSDNode>(N->getOperand(
12762         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12763     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12764 
12765     if (ISD::isSignedIntSetCC(CC)) {
12766       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12767           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12768         return SDValue();
12769     } else if (ISD::isUnsignedIntSetCC(CC)) {
12770       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12771                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12772           !DAG.MaskedValueIsZero(N->getOperand(1),
12773                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12774         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12775                                              : SDValue());
12776     } else {
12777       // This is neither a signed nor an unsigned comparison, just make sure
12778       // that the high bits are equal.
12779       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12780       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12781 
12782       // We don't really care about what is known about the first bit (if
12783       // anything), so clear it in all masks prior to comparing them.
12784       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12785       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12786 
12787       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12788         return SDValue();
12789     }
12790   }
12791 
12792   // We now know that the higher-order bits are irrelevant, we just need to
12793   // make sure that all of the intermediate operations are bit operations, and
12794   // all inputs are extensions.
12795   if (N->getOperand(0).getOpcode() != ISD::AND &&
12796       N->getOperand(0).getOpcode() != ISD::OR  &&
12797       N->getOperand(0).getOpcode() != ISD::XOR &&
12798       N->getOperand(0).getOpcode() != ISD::SELECT &&
12799       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12800       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12801       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12802       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12803       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12804     return SDValue();
12805 
12806   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12807       N->getOperand(1).getOpcode() != ISD::AND &&
12808       N->getOperand(1).getOpcode() != ISD::OR  &&
12809       N->getOperand(1).getOpcode() != ISD::XOR &&
12810       N->getOperand(1).getOpcode() != ISD::SELECT &&
12811       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12812       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12813       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12814       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12815       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12816     return SDValue();
12817 
12818   SmallVector<SDValue, 4> Inputs;
12819   SmallVector<SDValue, 8> BinOps, PromOps;
12820   SmallPtrSet<SDNode *, 16> Visited;
12821 
12822   for (unsigned i = 0; i < 2; ++i) {
12823     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12824           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12825           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12826           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12827         isa<ConstantSDNode>(N->getOperand(i)))
12828       Inputs.push_back(N->getOperand(i));
12829     else
12830       BinOps.push_back(N->getOperand(i));
12831 
12832     if (N->getOpcode() == ISD::TRUNCATE)
12833       break;
12834   }
12835 
12836   // Visit all inputs, collect all binary operations (and, or, xor and
12837   // select) that are all fed by extensions.
12838   while (!BinOps.empty()) {
12839     SDValue BinOp = BinOps.back();
12840     BinOps.pop_back();
12841 
12842     if (!Visited.insert(BinOp.getNode()).second)
12843       continue;
12844 
12845     PromOps.push_back(BinOp);
12846 
12847     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12848       // The condition of the select is not promoted.
12849       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12850         continue;
12851       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12852         continue;
12853 
12854       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12855             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12856             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12857            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12858           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12859         Inputs.push_back(BinOp.getOperand(i));
12860       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12861                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12862                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12863                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12864                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12865                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12866                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12867                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12868                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12869         BinOps.push_back(BinOp.getOperand(i));
12870       } else {
12871         // We have an input that is not an extension or another binary
12872         // operation; we'll abort this transformation.
12873         return SDValue();
12874       }
12875     }
12876   }
12877 
12878   // Make sure that this is a self-contained cluster of operations (which
12879   // is not quite the same thing as saying that everything has only one
12880   // use).
12881   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12882     if (isa<ConstantSDNode>(Inputs[i]))
12883       continue;
12884 
12885     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12886                               UE = Inputs[i].getNode()->use_end();
12887          UI != UE; ++UI) {
12888       SDNode *User = *UI;
12889       if (User != N && !Visited.count(User))
12890         return SDValue();
12891 
12892       // Make sure that we're not going to promote the non-output-value
12893       // operand(s) or SELECT or SELECT_CC.
12894       // FIXME: Although we could sometimes handle this, and it does occur in
12895       // practice that one of the condition inputs to the select is also one of
12896       // the outputs, we currently can't deal with this.
12897       if (User->getOpcode() == ISD::SELECT) {
12898         if (User->getOperand(0) == Inputs[i])
12899           return SDValue();
12900       } else if (User->getOpcode() == ISD::SELECT_CC) {
12901         if (User->getOperand(0) == Inputs[i] ||
12902             User->getOperand(1) == Inputs[i])
12903           return SDValue();
12904       }
12905     }
12906   }
12907 
12908   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12909     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12910                               UE = PromOps[i].getNode()->use_end();
12911          UI != UE; ++UI) {
12912       SDNode *User = *UI;
12913       if (User != N && !Visited.count(User))
12914         return SDValue();
12915 
12916       // Make sure that we're not going to promote the non-output-value
12917       // operand(s) or SELECT or SELECT_CC.
12918       // FIXME: Although we could sometimes handle this, and it does occur in
12919       // practice that one of the condition inputs to the select is also one of
12920       // the outputs, we currently can't deal with this.
12921       if (User->getOpcode() == ISD::SELECT) {
12922         if (User->getOperand(0) == PromOps[i])
12923           return SDValue();
12924       } else if (User->getOpcode() == ISD::SELECT_CC) {
12925         if (User->getOperand(0) == PromOps[i] ||
12926             User->getOperand(1) == PromOps[i])
12927           return SDValue();
12928       }
12929     }
12930   }
12931 
12932   // Replace all inputs with the extension operand.
12933   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12934     // Constants may have users outside the cluster of to-be-promoted nodes,
12935     // and so we need to replace those as we do the promotions.
12936     if (isa<ConstantSDNode>(Inputs[i]))
12937       continue;
12938     else
12939       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12940   }
12941 
12942   std::list<HandleSDNode> PromOpHandles;
12943   for (auto &PromOp : PromOps)
12944     PromOpHandles.emplace_back(PromOp);
12945 
12946   // Replace all operations (these are all the same, but have a different
12947   // (i1) return type). DAG.getNode will validate that the types of
12948   // a binary operator match, so go through the list in reverse so that
12949   // we've likely promoted both operands first. Any intermediate truncations or
12950   // extensions disappear.
12951   while (!PromOpHandles.empty()) {
12952     SDValue PromOp = PromOpHandles.back().getValue();
12953     PromOpHandles.pop_back();
12954 
12955     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12956         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12957         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12958         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12959       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12960           PromOp.getOperand(0).getValueType() != MVT::i1) {
12961         // The operand is not yet ready (see comment below).
12962         PromOpHandles.emplace_front(PromOp);
12963         continue;
12964       }
12965 
12966       SDValue RepValue = PromOp.getOperand(0);
12967       if (isa<ConstantSDNode>(RepValue))
12968         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12969 
12970       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12971       continue;
12972     }
12973 
12974     unsigned C;
12975     switch (PromOp.getOpcode()) {
12976     default:             C = 0; break;
12977     case ISD::SELECT:    C = 1; break;
12978     case ISD::SELECT_CC: C = 2; break;
12979     }
12980 
12981     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12982          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12983         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12984          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12985       // The to-be-promoted operands of this node have not yet been
12986       // promoted (this should be rare because we're going through the
12987       // list backward, but if one of the operands has several users in
12988       // this cluster of to-be-promoted nodes, it is possible).
12989       PromOpHandles.emplace_front(PromOp);
12990       continue;
12991     }
12992 
12993     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12994                                 PromOp.getNode()->op_end());
12995 
12996     // If there are any constant inputs, make sure they're replaced now.
12997     for (unsigned i = 0; i < 2; ++i)
12998       if (isa<ConstantSDNode>(Ops[C+i]))
12999         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13000 
13001     DAG.ReplaceAllUsesOfValueWith(PromOp,
13002       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13003   }
13004 
13005   // Now we're left with the initial truncation itself.
13006   if (N->getOpcode() == ISD::TRUNCATE)
13007     return N->getOperand(0);
13008 
13009   // Otherwise, this is a comparison. The operands to be compared have just
13010   // changed type (to i1), but everything else is the same.
13011   return SDValue(N, 0);
13012 }
13013 
13014 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13015                                                   DAGCombinerInfo &DCI) const {
13016   SelectionDAG &DAG = DCI.DAG;
13017   SDLoc dl(N);
13018 
13019   // If we're tracking CR bits, we need to be careful that we don't have:
13020   //   zext(binary-ops(trunc(x), trunc(y)))
13021   // or
13022   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13023   // such that we're unnecessarily moving things into CR bits that can more
13024   // efficiently stay in GPRs. Note that if we're not certain that the high
13025   // bits are set as required by the final extension, we still may need to do
13026   // some masking to get the proper behavior.
13027 
13028   // This same functionality is important on PPC64 when dealing with
13029   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13030   // the return values of functions. Because it is so similar, it is handled
13031   // here as well.
13032 
13033   if (N->getValueType(0) != MVT::i32 &&
13034       N->getValueType(0) != MVT::i64)
13035     return SDValue();
13036 
13037   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13038         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13039     return SDValue();
13040 
13041   if (N->getOperand(0).getOpcode() != ISD::AND &&
13042       N->getOperand(0).getOpcode() != ISD::OR  &&
13043       N->getOperand(0).getOpcode() != ISD::XOR &&
13044       N->getOperand(0).getOpcode() != ISD::SELECT &&
13045       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13046     return SDValue();
13047 
13048   SmallVector<SDValue, 4> Inputs;
13049   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13050   SmallPtrSet<SDNode *, 16> Visited;
13051 
13052   // Visit all inputs, collect all binary operations (and, or, xor and
13053   // select) that are all fed by truncations.
13054   while (!BinOps.empty()) {
13055     SDValue BinOp = BinOps.back();
13056     BinOps.pop_back();
13057 
13058     if (!Visited.insert(BinOp.getNode()).second)
13059       continue;
13060 
13061     PromOps.push_back(BinOp);
13062 
13063     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13064       // The condition of the select is not promoted.
13065       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13066         continue;
13067       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13068         continue;
13069 
13070       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13071           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13072         Inputs.push_back(BinOp.getOperand(i));
13073       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13074                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13075                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13076                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13077                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13078         BinOps.push_back(BinOp.getOperand(i));
13079       } else {
13080         // We have an input that is not a truncation or another binary
13081         // operation; we'll abort this transformation.
13082         return SDValue();
13083       }
13084     }
13085   }
13086 
13087   // The operands of a select that must be truncated when the select is
13088   // promoted because the operand is actually part of the to-be-promoted set.
13089   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13090 
13091   // Make sure that this is a self-contained cluster of operations (which
13092   // is not quite the same thing as saying that everything has only one
13093   // use).
13094   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13095     if (isa<ConstantSDNode>(Inputs[i]))
13096       continue;
13097 
13098     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13099                               UE = Inputs[i].getNode()->use_end();
13100          UI != UE; ++UI) {
13101       SDNode *User = *UI;
13102       if (User != N && !Visited.count(User))
13103         return SDValue();
13104 
13105       // If we're going to promote the non-output-value operand(s) or SELECT or
13106       // SELECT_CC, record them for truncation.
13107       if (User->getOpcode() == ISD::SELECT) {
13108         if (User->getOperand(0) == Inputs[i])
13109           SelectTruncOp[0].insert(std::make_pair(User,
13110                                     User->getOperand(0).getValueType()));
13111       } else if (User->getOpcode() == ISD::SELECT_CC) {
13112         if (User->getOperand(0) == Inputs[i])
13113           SelectTruncOp[0].insert(std::make_pair(User,
13114                                     User->getOperand(0).getValueType()));
13115         if (User->getOperand(1) == Inputs[i])
13116           SelectTruncOp[1].insert(std::make_pair(User,
13117                                     User->getOperand(1).getValueType()));
13118       }
13119     }
13120   }
13121 
13122   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13123     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13124                               UE = PromOps[i].getNode()->use_end();
13125          UI != UE; ++UI) {
13126       SDNode *User = *UI;
13127       if (User != N && !Visited.count(User))
13128         return SDValue();
13129 
13130       // If we're going to promote the non-output-value operand(s) or SELECT or
13131       // SELECT_CC, record them for truncation.
13132       if (User->getOpcode() == ISD::SELECT) {
13133         if (User->getOperand(0) == PromOps[i])
13134           SelectTruncOp[0].insert(std::make_pair(User,
13135                                     User->getOperand(0).getValueType()));
13136       } else if (User->getOpcode() == ISD::SELECT_CC) {
13137         if (User->getOperand(0) == PromOps[i])
13138           SelectTruncOp[0].insert(std::make_pair(User,
13139                                     User->getOperand(0).getValueType()));
13140         if (User->getOperand(1) == PromOps[i])
13141           SelectTruncOp[1].insert(std::make_pair(User,
13142                                     User->getOperand(1).getValueType()));
13143       }
13144     }
13145   }
13146 
13147   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13148   bool ReallyNeedsExt = false;
13149   if (N->getOpcode() != ISD::ANY_EXTEND) {
13150     // If all of the inputs are not already sign/zero extended, then
13151     // we'll still need to do that at the end.
13152     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13153       if (isa<ConstantSDNode>(Inputs[i]))
13154         continue;
13155 
13156       unsigned OpBits =
13157         Inputs[i].getOperand(0).getValueSizeInBits();
13158       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13159 
13160       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13161            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13162                                   APInt::getHighBitsSet(OpBits,
13163                                                         OpBits-PromBits))) ||
13164           (N->getOpcode() == ISD::SIGN_EXTEND &&
13165            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13166              (OpBits-(PromBits-1)))) {
13167         ReallyNeedsExt = true;
13168         break;
13169       }
13170     }
13171   }
13172 
13173   // Replace all inputs, either with the truncation operand, or a
13174   // truncation or extension to the final output type.
13175   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13176     // Constant inputs need to be replaced with the to-be-promoted nodes that
13177     // use them because they might have users outside of the cluster of
13178     // promoted nodes.
13179     if (isa<ConstantSDNode>(Inputs[i]))
13180       continue;
13181 
13182     SDValue InSrc = Inputs[i].getOperand(0);
13183     if (Inputs[i].getValueType() == N->getValueType(0))
13184       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13185     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13186       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13187         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13188     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13189       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13190         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13191     else
13192       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13193         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13194   }
13195 
13196   std::list<HandleSDNode> PromOpHandles;
13197   for (auto &PromOp : PromOps)
13198     PromOpHandles.emplace_back(PromOp);
13199 
13200   // Replace all operations (these are all the same, but have a different
13201   // (promoted) return type). DAG.getNode will validate that the types of
13202   // a binary operator match, so go through the list in reverse so that
13203   // we've likely promoted both operands first.
13204   while (!PromOpHandles.empty()) {
13205     SDValue PromOp = PromOpHandles.back().getValue();
13206     PromOpHandles.pop_back();
13207 
13208     unsigned C;
13209     switch (PromOp.getOpcode()) {
13210     default:             C = 0; break;
13211     case ISD::SELECT:    C = 1; break;
13212     case ISD::SELECT_CC: C = 2; break;
13213     }
13214 
13215     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13216          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13217         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13218          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13219       // The to-be-promoted operands of this node have not yet been
13220       // promoted (this should be rare because we're going through the
13221       // list backward, but if one of the operands has several users in
13222       // this cluster of to-be-promoted nodes, it is possible).
13223       PromOpHandles.emplace_front(PromOp);
13224       continue;
13225     }
13226 
13227     // For SELECT and SELECT_CC nodes, we do a similar check for any
13228     // to-be-promoted comparison inputs.
13229     if (PromOp.getOpcode() == ISD::SELECT ||
13230         PromOp.getOpcode() == ISD::SELECT_CC) {
13231       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13232            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13233           (SelectTruncOp[1].count(PromOp.getNode()) &&
13234            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13235         PromOpHandles.emplace_front(PromOp);
13236         continue;
13237       }
13238     }
13239 
13240     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13241                                 PromOp.getNode()->op_end());
13242 
13243     // If this node has constant inputs, then they'll need to be promoted here.
13244     for (unsigned i = 0; i < 2; ++i) {
13245       if (!isa<ConstantSDNode>(Ops[C+i]))
13246         continue;
13247       if (Ops[C+i].getValueType() == N->getValueType(0))
13248         continue;
13249 
13250       if (N->getOpcode() == ISD::SIGN_EXTEND)
13251         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13252       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13253         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13254       else
13255         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13256     }
13257 
13258     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13259     // truncate them again to the original value type.
13260     if (PromOp.getOpcode() == ISD::SELECT ||
13261         PromOp.getOpcode() == ISD::SELECT_CC) {
13262       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13263       if (SI0 != SelectTruncOp[0].end())
13264         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13265       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13266       if (SI1 != SelectTruncOp[1].end())
13267         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13268     }
13269 
13270     DAG.ReplaceAllUsesOfValueWith(PromOp,
13271       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13272   }
13273 
13274   // Now we're left with the initial extension itself.
13275   if (!ReallyNeedsExt)
13276     return N->getOperand(0);
13277 
13278   // To zero extend, just mask off everything except for the first bit (in the
13279   // i1 case).
13280   if (N->getOpcode() == ISD::ZERO_EXTEND)
13281     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13282                        DAG.getConstant(APInt::getLowBitsSet(
13283                                          N->getValueSizeInBits(0), PromBits),
13284                                        dl, N->getValueType(0)));
13285 
13286   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13287          "Invalid extension type");
13288   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13289   SDValue ShiftCst =
13290       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13291   return DAG.getNode(
13292       ISD::SRA, dl, N->getValueType(0),
13293       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13294       ShiftCst);
13295 }
13296 
13297 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13298                                         DAGCombinerInfo &DCI) const {
13299   assert(N->getOpcode() == ISD::SETCC &&
13300          "Should be called with a SETCC node");
13301 
13302   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13303   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13304     SDValue LHS = N->getOperand(0);
13305     SDValue RHS = N->getOperand(1);
13306 
13307     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13308     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13309         LHS.hasOneUse())
13310       std::swap(LHS, RHS);
13311 
13312     // x == 0-y --> x+y == 0
13313     // x != 0-y --> x+y != 0
13314     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13315         RHS.hasOneUse()) {
13316       SDLoc DL(N);
13317       SelectionDAG &DAG = DCI.DAG;
13318       EVT VT = N->getValueType(0);
13319       EVT OpVT = LHS.getValueType();
13320       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13321       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13322     }
13323   }
13324 
13325   return DAGCombineTruncBoolExt(N, DCI);
13326 }
13327 
13328 // Is this an extending load from an f32 to an f64?
13329 static bool isFPExtLoad(SDValue Op) {
13330   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13331     return LD->getExtensionType() == ISD::EXTLOAD &&
13332       Op.getValueType() == MVT::f64;
13333   return false;
13334 }
13335 
13336 /// Reduces the number of fp-to-int conversion when building a vector.
13337 ///
13338 /// If this vector is built out of floating to integer conversions,
13339 /// transform it to a vector built out of floating point values followed by a
13340 /// single floating to integer conversion of the vector.
13341 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13342 /// becomes (fptosi (build_vector ($A, $B, ...)))
13343 SDValue PPCTargetLowering::
13344 combineElementTruncationToVectorTruncation(SDNode *N,
13345                                            DAGCombinerInfo &DCI) const {
13346   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13347          "Should be called with a BUILD_VECTOR node");
13348 
13349   SelectionDAG &DAG = DCI.DAG;
13350   SDLoc dl(N);
13351 
13352   SDValue FirstInput = N->getOperand(0);
13353   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13354          "The input operand must be an fp-to-int conversion.");
13355 
13356   // This combine happens after legalization so the fp_to_[su]i nodes are
13357   // already converted to PPCSISD nodes.
13358   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13359   if (FirstConversion == PPCISD::FCTIDZ ||
13360       FirstConversion == PPCISD::FCTIDUZ ||
13361       FirstConversion == PPCISD::FCTIWZ ||
13362       FirstConversion == PPCISD::FCTIWUZ) {
13363     bool IsSplat = true;
13364     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13365       FirstConversion == PPCISD::FCTIWUZ;
13366     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13367     SmallVector<SDValue, 4> Ops;
13368     EVT TargetVT = N->getValueType(0);
13369     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13370       SDValue NextOp = N->getOperand(i);
13371       if (NextOp.getOpcode() != PPCISD::MFVSR)
13372         return SDValue();
13373       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13374       if (NextConversion != FirstConversion)
13375         return SDValue();
13376       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13377       // This is not valid if the input was originally double precision. It is
13378       // also not profitable to do unless this is an extending load in which
13379       // case doing this combine will allow us to combine consecutive loads.
13380       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13381         return SDValue();
13382       if (N->getOperand(i) != FirstInput)
13383         IsSplat = false;
13384     }
13385 
13386     // If this is a splat, we leave it as-is since there will be only a single
13387     // fp-to-int conversion followed by a splat of the integer. This is better
13388     // for 32-bit and smaller ints and neutral for 64-bit ints.
13389     if (IsSplat)
13390       return SDValue();
13391 
13392     // Now that we know we have the right type of node, get its operands
13393     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13394       SDValue In = N->getOperand(i).getOperand(0);
13395       if (Is32Bit) {
13396         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13397         // here, we know that all inputs are extending loads so this is safe).
13398         if (In.isUndef())
13399           Ops.push_back(DAG.getUNDEF(SrcVT));
13400         else {
13401           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13402                                       MVT::f32, In.getOperand(0),
13403                                       DAG.getIntPtrConstant(1, dl));
13404           Ops.push_back(Trunc);
13405         }
13406       } else
13407         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13408     }
13409 
13410     unsigned Opcode;
13411     if (FirstConversion == PPCISD::FCTIDZ ||
13412         FirstConversion == PPCISD::FCTIWZ)
13413       Opcode = ISD::FP_TO_SINT;
13414     else
13415       Opcode = ISD::FP_TO_UINT;
13416 
13417     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13418     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13419     return DAG.getNode(Opcode, dl, TargetVT, BV);
13420   }
13421   return SDValue();
13422 }
13423 
13424 /// Reduce the number of loads when building a vector.
13425 ///
13426 /// Building a vector out of multiple loads can be converted to a load
13427 /// of the vector type if the loads are consecutive. If the loads are
13428 /// consecutive but in descending order, a shuffle is added at the end
13429 /// to reorder the vector.
13430 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13431   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13432          "Should be called with a BUILD_VECTOR node");
13433 
13434   SDLoc dl(N);
13435 
13436   // Return early for non byte-sized type, as they can't be consecutive.
13437   if (!N->getValueType(0).getVectorElementType().isByteSized())
13438     return SDValue();
13439 
13440   bool InputsAreConsecutiveLoads = true;
13441   bool InputsAreReverseConsecutive = true;
13442   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13443   SDValue FirstInput = N->getOperand(0);
13444   bool IsRoundOfExtLoad = false;
13445 
13446   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13447       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13448     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13449     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13450   }
13451   // Not a build vector of (possibly fp_rounded) loads.
13452   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13453       N->getNumOperands() == 1)
13454     return SDValue();
13455 
13456   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13457     // If any inputs are fp_round(extload), they all must be.
13458     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13459       return SDValue();
13460 
13461     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13462       N->getOperand(i);
13463     if (NextInput.getOpcode() != ISD::LOAD)
13464       return SDValue();
13465 
13466     SDValue PreviousInput =
13467       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13468     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13469     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13470 
13471     // If any inputs are fp_round(extload), they all must be.
13472     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13473       return SDValue();
13474 
13475     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13476       InputsAreConsecutiveLoads = false;
13477     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13478       InputsAreReverseConsecutive = false;
13479 
13480     // Exit early if the loads are neither consecutive nor reverse consecutive.
13481     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13482       return SDValue();
13483   }
13484 
13485   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13486          "The loads cannot be both consecutive and reverse consecutive.");
13487 
13488   SDValue FirstLoadOp =
13489     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13490   SDValue LastLoadOp =
13491     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13492                        N->getOperand(N->getNumOperands()-1);
13493 
13494   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13495   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13496   if (InputsAreConsecutiveLoads) {
13497     assert(LD1 && "Input needs to be a LoadSDNode.");
13498     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13499                        LD1->getBasePtr(), LD1->getPointerInfo(),
13500                        LD1->getAlignment());
13501   }
13502   if (InputsAreReverseConsecutive) {
13503     assert(LDL && "Input needs to be a LoadSDNode.");
13504     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13505                                LDL->getBasePtr(), LDL->getPointerInfo(),
13506                                LDL->getAlignment());
13507     SmallVector<int, 16> Ops;
13508     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13509       Ops.push_back(i);
13510 
13511     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13512                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13513   }
13514   return SDValue();
13515 }
13516 
13517 // This function adds the required vector_shuffle needed to get
13518 // the elements of the vector extract in the correct position
13519 // as specified by the CorrectElems encoding.
13520 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13521                                       SDValue Input, uint64_t Elems,
13522                                       uint64_t CorrectElems) {
13523   SDLoc dl(N);
13524 
13525   unsigned NumElems = Input.getValueType().getVectorNumElements();
13526   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13527 
13528   // Knowing the element indices being extracted from the original
13529   // vector and the order in which they're being inserted, just put
13530   // them at element indices required for the instruction.
13531   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13532     if (DAG.getDataLayout().isLittleEndian())
13533       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13534     else
13535       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13536     CorrectElems = CorrectElems >> 8;
13537     Elems = Elems >> 8;
13538   }
13539 
13540   SDValue Shuffle =
13541       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13542                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13543 
13544   EVT VT = N->getValueType(0);
13545   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13546 
13547   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13548                                Input.getValueType().getVectorElementType(),
13549                                VT.getVectorNumElements());
13550   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13551                      DAG.getValueType(ExtVT));
13552 }
13553 
13554 // Look for build vector patterns where input operands come from sign
13555 // extended vector_extract elements of specific indices. If the correct indices
13556 // aren't used, add a vector shuffle to fix up the indices and create
13557 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13558 // during instruction selection.
13559 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13560   // This array encodes the indices that the vector sign extend instructions
13561   // extract from when extending from one type to another for both BE and LE.
13562   // The right nibble of each byte corresponds to the LE incides.
13563   // and the left nibble of each byte corresponds to the BE incides.
13564   // For example: 0x3074B8FC  byte->word
13565   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13566   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13567   // For example: 0x000070F8  byte->double word
13568   // For LE: the allowed indices are: 0x0,0x8
13569   // For BE: the allowed indices are: 0x7,0xF
13570   uint64_t TargetElems[] = {
13571       0x3074B8FC, // b->w
13572       0x000070F8, // b->d
13573       0x10325476, // h->w
13574       0x00003074, // h->d
13575       0x00001032, // w->d
13576   };
13577 
13578   uint64_t Elems = 0;
13579   int Index;
13580   SDValue Input;
13581 
13582   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13583     if (!Op)
13584       return false;
13585     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13586         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13587       return false;
13588 
13589     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13590     // of the right width.
13591     SDValue Extract = Op.getOperand(0);
13592     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13593       Extract = Extract.getOperand(0);
13594     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13595       return false;
13596 
13597     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13598     if (!ExtOp)
13599       return false;
13600 
13601     Index = ExtOp->getZExtValue();
13602     if (Input && Input != Extract.getOperand(0))
13603       return false;
13604 
13605     if (!Input)
13606       Input = Extract.getOperand(0);
13607 
13608     Elems = Elems << 8;
13609     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13610     Elems |= Index;
13611 
13612     return true;
13613   };
13614 
13615   // If the build vector operands aren't sign extended vector extracts,
13616   // of the same input vector, then return.
13617   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13618     if (!isSExtOfVecExtract(N->getOperand(i))) {
13619       return SDValue();
13620     }
13621   }
13622 
13623   // If the vector extract indicies are not correct, add the appropriate
13624   // vector_shuffle.
13625   int TgtElemArrayIdx;
13626   int InputSize = Input.getValueType().getScalarSizeInBits();
13627   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13628   if (InputSize + OutputSize == 40)
13629     TgtElemArrayIdx = 0;
13630   else if (InputSize + OutputSize == 72)
13631     TgtElemArrayIdx = 1;
13632   else if (InputSize + OutputSize == 48)
13633     TgtElemArrayIdx = 2;
13634   else if (InputSize + OutputSize == 80)
13635     TgtElemArrayIdx = 3;
13636   else if (InputSize + OutputSize == 96)
13637     TgtElemArrayIdx = 4;
13638   else
13639     return SDValue();
13640 
13641   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13642   CorrectElems = DAG.getDataLayout().isLittleEndian()
13643                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13644                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13645   if (Elems != CorrectElems) {
13646     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13647   }
13648 
13649   // Regular lowering will catch cases where a shuffle is not needed.
13650   return SDValue();
13651 }
13652 
13653 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13654                                                  DAGCombinerInfo &DCI) const {
13655   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13656          "Should be called with a BUILD_VECTOR node");
13657 
13658   SelectionDAG &DAG = DCI.DAG;
13659   SDLoc dl(N);
13660 
13661   if (!Subtarget.hasVSX())
13662     return SDValue();
13663 
13664   // The target independent DAG combiner will leave a build_vector of
13665   // float-to-int conversions intact. We can generate MUCH better code for
13666   // a float-to-int conversion of a vector of floats.
13667   SDValue FirstInput = N->getOperand(0);
13668   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13669     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13670     if (Reduced)
13671       return Reduced;
13672   }
13673 
13674   // If we're building a vector out of consecutive loads, just load that
13675   // vector type.
13676   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13677   if (Reduced)
13678     return Reduced;
13679 
13680   // If we're building a vector out of extended elements from another vector
13681   // we have P9 vector integer extend instructions. The code assumes legal
13682   // input types (i.e. it can't handle things like v4i16) so do not run before
13683   // legalization.
13684   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13685     Reduced = combineBVOfVecSExt(N, DAG);
13686     if (Reduced)
13687       return Reduced;
13688   }
13689 
13690 
13691   if (N->getValueType(0) != MVT::v2f64)
13692     return SDValue();
13693 
13694   // Looking for:
13695   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13696   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13697       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13698     return SDValue();
13699   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13700       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13701     return SDValue();
13702   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13703     return SDValue();
13704 
13705   SDValue Ext1 = FirstInput.getOperand(0);
13706   SDValue Ext2 = N->getOperand(1).getOperand(0);
13707   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13708      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13709     return SDValue();
13710 
13711   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13712   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13713   if (!Ext1Op || !Ext2Op)
13714     return SDValue();
13715   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13716       Ext1.getOperand(0) != Ext2.getOperand(0))
13717     return SDValue();
13718 
13719   int FirstElem = Ext1Op->getZExtValue();
13720   int SecondElem = Ext2Op->getZExtValue();
13721   int SubvecIdx;
13722   if (FirstElem == 0 && SecondElem == 1)
13723     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13724   else if (FirstElem == 2 && SecondElem == 3)
13725     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13726   else
13727     return SDValue();
13728 
13729   SDValue SrcVec = Ext1.getOperand(0);
13730   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13731     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13732   return DAG.getNode(NodeType, dl, MVT::v2f64,
13733                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13734 }
13735 
13736 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13737                                               DAGCombinerInfo &DCI) const {
13738   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13739           N->getOpcode() == ISD::UINT_TO_FP) &&
13740          "Need an int -> FP conversion node here");
13741 
13742   if (useSoftFloat() || !Subtarget.has64BitSupport())
13743     return SDValue();
13744 
13745   SelectionDAG &DAG = DCI.DAG;
13746   SDLoc dl(N);
13747   SDValue Op(N, 0);
13748 
13749   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13750   // from the hardware.
13751   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13752     return SDValue();
13753   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13754       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13755     return SDValue();
13756 
13757   SDValue FirstOperand(Op.getOperand(0));
13758   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13759     (FirstOperand.getValueType() == MVT::i8 ||
13760      FirstOperand.getValueType() == MVT::i16);
13761   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13762     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13763     bool DstDouble = Op.getValueType() == MVT::f64;
13764     unsigned ConvOp = Signed ?
13765       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13766       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13767     SDValue WidthConst =
13768       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13769                             dl, false);
13770     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13771     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13772     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13773                                          DAG.getVTList(MVT::f64, MVT::Other),
13774                                          Ops, MVT::i8, LDN->getMemOperand());
13775 
13776     // For signed conversion, we need to sign-extend the value in the VSR
13777     if (Signed) {
13778       SDValue ExtOps[] = { Ld, WidthConst };
13779       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13780       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13781     } else
13782       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13783   }
13784 
13785 
13786   // For i32 intermediate values, unfortunately, the conversion functions
13787   // leave the upper 32 bits of the value are undefined. Within the set of
13788   // scalar instructions, we have no method for zero- or sign-extending the
13789   // value. Thus, we cannot handle i32 intermediate values here.
13790   if (Op.getOperand(0).getValueType() == MVT::i32)
13791     return SDValue();
13792 
13793   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13794          "UINT_TO_FP is supported only with FPCVT");
13795 
13796   // If we have FCFIDS, then use it when converting to single-precision.
13797   // Otherwise, convert to double-precision and then round.
13798   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13799                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13800                                                             : PPCISD::FCFIDS)
13801                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13802                                                             : PPCISD::FCFID);
13803   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13804                   ? MVT::f32
13805                   : MVT::f64;
13806 
13807   // If we're converting from a float, to an int, and back to a float again,
13808   // then we don't need the store/load pair at all.
13809   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13810        Subtarget.hasFPCVT()) ||
13811       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13812     SDValue Src = Op.getOperand(0).getOperand(0);
13813     if (Src.getValueType() == MVT::f32) {
13814       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13815       DCI.AddToWorklist(Src.getNode());
13816     } else if (Src.getValueType() != MVT::f64) {
13817       // Make sure that we don't pick up a ppc_fp128 source value.
13818       return SDValue();
13819     }
13820 
13821     unsigned FCTOp =
13822       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13823                                                         PPCISD::FCTIDUZ;
13824 
13825     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13826     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13827 
13828     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13829       FP = DAG.getNode(ISD::FP_ROUND, dl,
13830                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13831       DCI.AddToWorklist(FP.getNode());
13832     }
13833 
13834     return FP;
13835   }
13836 
13837   return SDValue();
13838 }
13839 
13840 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13841 // builtins) into loads with swaps.
13842 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13843                                               DAGCombinerInfo &DCI) const {
13844   SelectionDAG &DAG = DCI.DAG;
13845   SDLoc dl(N);
13846   SDValue Chain;
13847   SDValue Base;
13848   MachineMemOperand *MMO;
13849 
13850   switch (N->getOpcode()) {
13851   default:
13852     llvm_unreachable("Unexpected opcode for little endian VSX load");
13853   case ISD::LOAD: {
13854     LoadSDNode *LD = cast<LoadSDNode>(N);
13855     Chain = LD->getChain();
13856     Base = LD->getBasePtr();
13857     MMO = LD->getMemOperand();
13858     // If the MMO suggests this isn't a load of a full vector, leave
13859     // things alone.  For a built-in, we have to make the change for
13860     // correctness, so if there is a size problem that will be a bug.
13861     if (MMO->getSize() < 16)
13862       return SDValue();
13863     break;
13864   }
13865   case ISD::INTRINSIC_W_CHAIN: {
13866     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13867     Chain = Intrin->getChain();
13868     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13869     // us what we want. Get operand 2 instead.
13870     Base = Intrin->getOperand(2);
13871     MMO = Intrin->getMemOperand();
13872     break;
13873   }
13874   }
13875 
13876   MVT VecTy = N->getValueType(0).getSimpleVT();
13877 
13878   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13879   // aligned and the type is a vector with elements up to 4 bytes
13880   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13881       VecTy.getScalarSizeInBits() <= 32) {
13882     return SDValue();
13883   }
13884 
13885   SDValue LoadOps[] = { Chain, Base };
13886   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13887                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13888                                          LoadOps, MVT::v2f64, MMO);
13889 
13890   DCI.AddToWorklist(Load.getNode());
13891   Chain = Load.getValue(1);
13892   SDValue Swap = DAG.getNode(
13893       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13894   DCI.AddToWorklist(Swap.getNode());
13895 
13896   // Add a bitcast if the resulting load type doesn't match v2f64.
13897   if (VecTy != MVT::v2f64) {
13898     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13899     DCI.AddToWorklist(N.getNode());
13900     // Package {bitcast value, swap's chain} to match Load's shape.
13901     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13902                        N, Swap.getValue(1));
13903   }
13904 
13905   return Swap;
13906 }
13907 
13908 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13909 // builtins) into stores with swaps.
13910 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13911                                                DAGCombinerInfo &DCI) const {
13912   SelectionDAG &DAG = DCI.DAG;
13913   SDLoc dl(N);
13914   SDValue Chain;
13915   SDValue Base;
13916   unsigned SrcOpnd;
13917   MachineMemOperand *MMO;
13918 
13919   switch (N->getOpcode()) {
13920   default:
13921     llvm_unreachable("Unexpected opcode for little endian VSX store");
13922   case ISD::STORE: {
13923     StoreSDNode *ST = cast<StoreSDNode>(N);
13924     Chain = ST->getChain();
13925     Base = ST->getBasePtr();
13926     MMO = ST->getMemOperand();
13927     SrcOpnd = 1;
13928     // If the MMO suggests this isn't a store of a full vector, leave
13929     // things alone.  For a built-in, we have to make the change for
13930     // correctness, so if there is a size problem that will be a bug.
13931     if (MMO->getSize() < 16)
13932       return SDValue();
13933     break;
13934   }
13935   case ISD::INTRINSIC_VOID: {
13936     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13937     Chain = Intrin->getChain();
13938     // Intrin->getBasePtr() oddly does not get what we want.
13939     Base = Intrin->getOperand(3);
13940     MMO = Intrin->getMemOperand();
13941     SrcOpnd = 2;
13942     break;
13943   }
13944   }
13945 
13946   SDValue Src = N->getOperand(SrcOpnd);
13947   MVT VecTy = Src.getValueType().getSimpleVT();
13948 
13949   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13950   // aligned and the type is a vector with elements up to 4 bytes
13951   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13952       VecTy.getScalarSizeInBits() <= 32) {
13953     return SDValue();
13954   }
13955 
13956   // All stores are done as v2f64 and possible bit cast.
13957   if (VecTy != MVT::v2f64) {
13958     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13959     DCI.AddToWorklist(Src.getNode());
13960   }
13961 
13962   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13963                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13964   DCI.AddToWorklist(Swap.getNode());
13965   Chain = Swap.getValue(1);
13966   SDValue StoreOps[] = { Chain, Swap, Base };
13967   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13968                                           DAG.getVTList(MVT::Other),
13969                                           StoreOps, VecTy, MMO);
13970   DCI.AddToWorklist(Store.getNode());
13971   return Store;
13972 }
13973 
13974 // Handle DAG combine for STORE (FP_TO_INT F).
13975 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13976                                                DAGCombinerInfo &DCI) const {
13977 
13978   SelectionDAG &DAG = DCI.DAG;
13979   SDLoc dl(N);
13980   unsigned Opcode = N->getOperand(1).getOpcode();
13981 
13982   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13983          && "Not a FP_TO_INT Instruction!");
13984 
13985   SDValue Val = N->getOperand(1).getOperand(0);
13986   EVT Op1VT = N->getOperand(1).getValueType();
13987   EVT ResVT = Val.getValueType();
13988 
13989   // Floating point types smaller than 32 bits are not legal on Power.
13990   if (ResVT.getScalarSizeInBits() < 32)
13991     return SDValue();
13992 
13993   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13994   bool ValidTypeForStoreFltAsInt =
13995         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13996          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13997 
13998   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13999       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14000     return SDValue();
14001 
14002   // Extend f32 values to f64
14003   if (ResVT.getScalarSizeInBits() == 32) {
14004     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14005     DCI.AddToWorklist(Val.getNode());
14006   }
14007 
14008   // Set signed or unsigned conversion opcode.
14009   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14010                           PPCISD::FP_TO_SINT_IN_VSR :
14011                           PPCISD::FP_TO_UINT_IN_VSR;
14012 
14013   Val = DAG.getNode(ConvOpcode,
14014                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14015   DCI.AddToWorklist(Val.getNode());
14016 
14017   // Set number of bytes being converted.
14018   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14019   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14020                     DAG.getIntPtrConstant(ByteSize, dl, false),
14021                     DAG.getValueType(Op1VT) };
14022 
14023   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14024           DAG.getVTList(MVT::Other), Ops,
14025           cast<StoreSDNode>(N)->getMemoryVT(),
14026           cast<StoreSDNode>(N)->getMemOperand());
14027 
14028   DCI.AddToWorklist(Val.getNode());
14029   return Val;
14030 }
14031 
14032 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14033                                                 LSBaseSDNode *LSBase,
14034                                                 DAGCombinerInfo &DCI) const {
14035   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14036         "Not a reverse memop pattern!");
14037 
14038   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14039     auto Mask = SVN->getMask();
14040     int i = 0;
14041     auto I = Mask.rbegin();
14042     auto E = Mask.rend();
14043 
14044     for (; I != E; ++I) {
14045       if (*I != i)
14046         return false;
14047       i++;
14048     }
14049     return true;
14050   };
14051 
14052   SelectionDAG &DAG = DCI.DAG;
14053   EVT VT = SVN->getValueType(0);
14054 
14055   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14056     return SDValue();
14057 
14058   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14059   // See comment in PPCVSXSwapRemoval.cpp.
14060   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14061   if (!Subtarget.hasP9Vector())
14062     return SDValue();
14063 
14064   if(!IsElementReverse(SVN))
14065     return SDValue();
14066 
14067   if (LSBase->getOpcode() == ISD::LOAD) {
14068     SDLoc dl(SVN);
14069     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14070     return DAG.getMemIntrinsicNode(
14071         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14072         LSBase->getMemoryVT(), LSBase->getMemOperand());
14073   }
14074 
14075   if (LSBase->getOpcode() == ISD::STORE) {
14076     SDLoc dl(LSBase);
14077     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14078                           LSBase->getBasePtr()};
14079     return DAG.getMemIntrinsicNode(
14080         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14081         LSBase->getMemoryVT(), LSBase->getMemOperand());
14082   }
14083 
14084   llvm_unreachable("Expected a load or store node here");
14085 }
14086 
14087 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14088                                              DAGCombinerInfo &DCI) const {
14089   SelectionDAG &DAG = DCI.DAG;
14090   SDLoc dl(N);
14091   switch (N->getOpcode()) {
14092   default: break;
14093   case ISD::ADD:
14094     return combineADD(N, DCI);
14095   case ISD::SHL:
14096     return combineSHL(N, DCI);
14097   case ISD::SRA:
14098     return combineSRA(N, DCI);
14099   case ISD::SRL:
14100     return combineSRL(N, DCI);
14101   case ISD::MUL:
14102     return combineMUL(N, DCI);
14103   case PPCISD::SHL:
14104     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14105         return N->getOperand(0);
14106     break;
14107   case PPCISD::SRL:
14108     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14109         return N->getOperand(0);
14110     break;
14111   case PPCISD::SRA:
14112     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14113       if (C->isNullValue() ||   //  0 >>s V -> 0.
14114           C->isAllOnesValue())    // -1 >>s V -> -1.
14115         return N->getOperand(0);
14116     }
14117     break;
14118   case ISD::SIGN_EXTEND:
14119   case ISD::ZERO_EXTEND:
14120   case ISD::ANY_EXTEND:
14121     return DAGCombineExtBoolTrunc(N, DCI);
14122   case ISD::TRUNCATE:
14123     return combineTRUNCATE(N, DCI);
14124   case ISD::SETCC:
14125     if (SDValue CSCC = combineSetCC(N, DCI))
14126       return CSCC;
14127     LLVM_FALLTHROUGH;
14128   case ISD::SELECT_CC:
14129     return DAGCombineTruncBoolExt(N, DCI);
14130   case ISD::SINT_TO_FP:
14131   case ISD::UINT_TO_FP:
14132     return combineFPToIntToFP(N, DCI);
14133   case ISD::VECTOR_SHUFFLE:
14134     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14135       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14136       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14137     }
14138     break;
14139   case ISD::STORE: {
14140 
14141     EVT Op1VT = N->getOperand(1).getValueType();
14142     unsigned Opcode = N->getOperand(1).getOpcode();
14143 
14144     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14145       SDValue Val= combineStoreFPToInt(N, DCI);
14146       if (Val)
14147         return Val;
14148     }
14149 
14150     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14151       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14152       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14153       if (Val)
14154         return Val;
14155     }
14156 
14157     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14158     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14159         N->getOperand(1).getNode()->hasOneUse() &&
14160         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14161          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14162 
14163       // STBRX can only handle simple types and it makes no sense to store less
14164       // two bytes in byte-reversed order.
14165       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14166       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14167         break;
14168 
14169       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14170       // Do an any-extend to 32-bits if this is a half-word input.
14171       if (BSwapOp.getValueType() == MVT::i16)
14172         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14173 
14174       // If the type of BSWAP operand is wider than stored memory width
14175       // it need to be shifted to the right side before STBRX.
14176       if (Op1VT.bitsGT(mVT)) {
14177         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14178         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14179                               DAG.getConstant(Shift, dl, MVT::i32));
14180         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14181         if (Op1VT == MVT::i64)
14182           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14183       }
14184 
14185       SDValue Ops[] = {
14186         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14187       };
14188       return
14189         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14190                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14191                                 cast<StoreSDNode>(N)->getMemOperand());
14192     }
14193 
14194     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14195     // So it can increase the chance of CSE constant construction.
14196     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14197         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14198       // Need to sign-extended to 64-bits to handle negative values.
14199       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14200       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14201                                     MemVT.getSizeInBits());
14202       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14203 
14204       // DAG.getTruncStore() can't be used here because it doesn't accept
14205       // the general (base + offset) addressing mode.
14206       // So we use UpdateNodeOperands and setTruncatingStore instead.
14207       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14208                              N->getOperand(3));
14209       cast<StoreSDNode>(N)->setTruncatingStore(true);
14210       return SDValue(N, 0);
14211     }
14212 
14213     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14214     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14215     if (Op1VT.isSimple()) {
14216       MVT StoreVT = Op1VT.getSimpleVT();
14217       if (Subtarget.needsSwapsForVSXMemOps() &&
14218           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14219            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14220         return expandVSXStoreForLE(N, DCI);
14221     }
14222     break;
14223   }
14224   case ISD::LOAD: {
14225     LoadSDNode *LD = cast<LoadSDNode>(N);
14226     EVT VT = LD->getValueType(0);
14227 
14228     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14229     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14230     if (VT.isSimple()) {
14231       MVT LoadVT = VT.getSimpleVT();
14232       if (Subtarget.needsSwapsForVSXMemOps() &&
14233           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14234            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14235         return expandVSXLoadForLE(N, DCI);
14236     }
14237 
14238     // We sometimes end up with a 64-bit integer load, from which we extract
14239     // two single-precision floating-point numbers. This happens with
14240     // std::complex<float>, and other similar structures, because of the way we
14241     // canonicalize structure copies. However, if we lack direct moves,
14242     // then the final bitcasts from the extracted integer values to the
14243     // floating-point numbers turn into store/load pairs. Even with direct moves,
14244     // just loading the two floating-point numbers is likely better.
14245     auto ReplaceTwoFloatLoad = [&]() {
14246       if (VT != MVT::i64)
14247         return false;
14248 
14249       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14250           LD->isVolatile())
14251         return false;
14252 
14253       //  We're looking for a sequence like this:
14254       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14255       //      t16: i64 = srl t13, Constant:i32<32>
14256       //    t17: i32 = truncate t16
14257       //  t18: f32 = bitcast t17
14258       //    t19: i32 = truncate t13
14259       //  t20: f32 = bitcast t19
14260 
14261       if (!LD->hasNUsesOfValue(2, 0))
14262         return false;
14263 
14264       auto UI = LD->use_begin();
14265       while (UI.getUse().getResNo() != 0) ++UI;
14266       SDNode *Trunc = *UI++;
14267       while (UI.getUse().getResNo() != 0) ++UI;
14268       SDNode *RightShift = *UI;
14269       if (Trunc->getOpcode() != ISD::TRUNCATE)
14270         std::swap(Trunc, RightShift);
14271 
14272       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14273           Trunc->getValueType(0) != MVT::i32 ||
14274           !Trunc->hasOneUse())
14275         return false;
14276       if (RightShift->getOpcode() != ISD::SRL ||
14277           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14278           RightShift->getConstantOperandVal(1) != 32 ||
14279           !RightShift->hasOneUse())
14280         return false;
14281 
14282       SDNode *Trunc2 = *RightShift->use_begin();
14283       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14284           Trunc2->getValueType(0) != MVT::i32 ||
14285           !Trunc2->hasOneUse())
14286         return false;
14287 
14288       SDNode *Bitcast = *Trunc->use_begin();
14289       SDNode *Bitcast2 = *Trunc2->use_begin();
14290 
14291       if (Bitcast->getOpcode() != ISD::BITCAST ||
14292           Bitcast->getValueType(0) != MVT::f32)
14293         return false;
14294       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14295           Bitcast2->getValueType(0) != MVT::f32)
14296         return false;
14297 
14298       if (Subtarget.isLittleEndian())
14299         std::swap(Bitcast, Bitcast2);
14300 
14301       // Bitcast has the second float (in memory-layout order) and Bitcast2
14302       // has the first one.
14303 
14304       SDValue BasePtr = LD->getBasePtr();
14305       if (LD->isIndexed()) {
14306         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14307                "Non-pre-inc AM on PPC?");
14308         BasePtr =
14309           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14310                       LD->getOffset());
14311       }
14312 
14313       auto MMOFlags =
14314           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14315       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14316                                       LD->getPointerInfo(), LD->getAlignment(),
14317                                       MMOFlags, LD->getAAInfo());
14318       SDValue AddPtr =
14319         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14320                     BasePtr, DAG.getIntPtrConstant(4, dl));
14321       SDValue FloatLoad2 = DAG.getLoad(
14322           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14323           LD->getPointerInfo().getWithOffset(4),
14324           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14325 
14326       if (LD->isIndexed()) {
14327         // Note that DAGCombine should re-form any pre-increment load(s) from
14328         // what is produced here if that makes sense.
14329         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14330       }
14331 
14332       DCI.CombineTo(Bitcast2, FloatLoad);
14333       DCI.CombineTo(Bitcast, FloatLoad2);
14334 
14335       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14336                                     SDValue(FloatLoad2.getNode(), 1));
14337       return true;
14338     };
14339 
14340     if (ReplaceTwoFloatLoad())
14341       return SDValue(N, 0);
14342 
14343     EVT MemVT = LD->getMemoryVT();
14344     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14345     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
14346     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
14347     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
14348     if (LD->isUnindexed() && VT.isVector() &&
14349         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14350           // P8 and later hardware should just use LOAD.
14351           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
14352                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
14353          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
14354           LD->getAlignment() >= ScalarABIAlignment)) &&
14355         LD->getAlignment() < ABIAlignment) {
14356       // This is a type-legal unaligned Altivec or QPX load.
14357       SDValue Chain = LD->getChain();
14358       SDValue Ptr = LD->getBasePtr();
14359       bool isLittleEndian = Subtarget.isLittleEndian();
14360 
14361       // This implements the loading of unaligned vectors as described in
14362       // the venerable Apple Velocity Engine overview. Specifically:
14363       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14364       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14365       //
14366       // The general idea is to expand a sequence of one or more unaligned
14367       // loads into an alignment-based permutation-control instruction (lvsl
14368       // or lvsr), a series of regular vector loads (which always truncate
14369       // their input address to an aligned address), and a series of
14370       // permutations.  The results of these permutations are the requested
14371       // loaded values.  The trick is that the last "extra" load is not taken
14372       // from the address you might suspect (sizeof(vector) bytes after the
14373       // last requested load), but rather sizeof(vector) - 1 bytes after the
14374       // last requested vector. The point of this is to avoid a page fault if
14375       // the base address happened to be aligned. This works because if the
14376       // base address is aligned, then adding less than a full vector length
14377       // will cause the last vector in the sequence to be (re)loaded.
14378       // Otherwise, the next vector will be fetched as you might suspect was
14379       // necessary.
14380 
14381       // We might be able to reuse the permutation generation from
14382       // a different base address offset from this one by an aligned amount.
14383       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14384       // optimization later.
14385       Intrinsic::ID Intr, IntrLD, IntrPerm;
14386       MVT PermCntlTy, PermTy, LDTy;
14387       if (Subtarget.hasAltivec()) {
14388         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14389                                  Intrinsic::ppc_altivec_lvsl;
14390         IntrLD = Intrinsic::ppc_altivec_lvx;
14391         IntrPerm = Intrinsic::ppc_altivec_vperm;
14392         PermCntlTy = MVT::v16i8;
14393         PermTy = MVT::v4i32;
14394         LDTy = MVT::v4i32;
14395       } else {
14396         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14397                                        Intrinsic::ppc_qpx_qvlpcls;
14398         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14399                                        Intrinsic::ppc_qpx_qvlfs;
14400         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14401         PermCntlTy = MVT::v4f64;
14402         PermTy = MVT::v4f64;
14403         LDTy = MemVT.getSimpleVT();
14404       }
14405 
14406       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14407 
14408       // Create the new MMO for the new base load. It is like the original MMO,
14409       // but represents an area in memory almost twice the vector size centered
14410       // on the original address. If the address is unaligned, we might start
14411       // reading up to (sizeof(vector)-1) bytes below the address of the
14412       // original unaligned load.
14413       MachineFunction &MF = DAG.getMachineFunction();
14414       MachineMemOperand *BaseMMO =
14415         MF.getMachineMemOperand(LD->getMemOperand(),
14416                                 -(long)MemVT.getStoreSize()+1,
14417                                 2*MemVT.getStoreSize()-1);
14418 
14419       // Create the new base load.
14420       SDValue LDXIntID =
14421           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14422       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14423       SDValue BaseLoad =
14424         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14425                                 DAG.getVTList(PermTy, MVT::Other),
14426                                 BaseLoadOps, LDTy, BaseMMO);
14427 
14428       // Note that the value of IncOffset (which is provided to the next
14429       // load's pointer info offset value, and thus used to calculate the
14430       // alignment), and the value of IncValue (which is actually used to
14431       // increment the pointer value) are different! This is because we
14432       // require the next load to appear to be aligned, even though it
14433       // is actually offset from the base pointer by a lesser amount.
14434       int IncOffset = VT.getSizeInBits() / 8;
14435       int IncValue = IncOffset;
14436 
14437       // Walk (both up and down) the chain looking for another load at the real
14438       // (aligned) offset (the alignment of the other load does not matter in
14439       // this case). If found, then do not use the offset reduction trick, as
14440       // that will prevent the loads from being later combined (as they would
14441       // otherwise be duplicates).
14442       if (!findConsecutiveLoad(LD, DAG))
14443         --IncValue;
14444 
14445       SDValue Increment =
14446           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14447       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14448 
14449       MachineMemOperand *ExtraMMO =
14450         MF.getMachineMemOperand(LD->getMemOperand(),
14451                                 1, 2*MemVT.getStoreSize()-1);
14452       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14453       SDValue ExtraLoad =
14454         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14455                                 DAG.getVTList(PermTy, MVT::Other),
14456                                 ExtraLoadOps, LDTy, ExtraMMO);
14457 
14458       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14459         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14460 
14461       // Because vperm has a big-endian bias, we must reverse the order
14462       // of the input vectors and complement the permute control vector
14463       // when generating little endian code.  We have already handled the
14464       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14465       // and ExtraLoad here.
14466       SDValue Perm;
14467       if (isLittleEndian)
14468         Perm = BuildIntrinsicOp(IntrPerm,
14469                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14470       else
14471         Perm = BuildIntrinsicOp(IntrPerm,
14472                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14473 
14474       if (VT != PermTy)
14475         Perm = Subtarget.hasAltivec() ?
14476                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14477                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14478                                DAG.getTargetConstant(1, dl, MVT::i64));
14479                                // second argument is 1 because this rounding
14480                                // is always exact.
14481 
14482       // The output of the permutation is our loaded result, the TokenFactor is
14483       // our new chain.
14484       DCI.CombineTo(N, Perm, TF);
14485       return SDValue(N, 0);
14486     }
14487     }
14488     break;
14489     case ISD::INTRINSIC_WO_CHAIN: {
14490       bool isLittleEndian = Subtarget.isLittleEndian();
14491       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14492       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14493                                            : Intrinsic::ppc_altivec_lvsl);
14494       if ((IID == Intr ||
14495            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14496            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14497         N->getOperand(1)->getOpcode() == ISD::ADD) {
14498         SDValue Add = N->getOperand(1);
14499 
14500         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14501                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14502 
14503         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14504                                   APInt::getAllOnesValue(Bits /* alignment */)
14505                                       .zext(Add.getScalarValueSizeInBits()))) {
14506           SDNode *BasePtr = Add->getOperand(0).getNode();
14507           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14508                                     UE = BasePtr->use_end();
14509                UI != UE; ++UI) {
14510             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14511                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14512               // We've found another LVSL/LVSR, and this address is an aligned
14513               // multiple of that one. The results will be the same, so use the
14514               // one we've just found instead.
14515 
14516               return SDValue(*UI, 0);
14517             }
14518           }
14519         }
14520 
14521         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14522           SDNode *BasePtr = Add->getOperand(0).getNode();
14523           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14524                UE = BasePtr->use_end(); UI != UE; ++UI) {
14525             if (UI->getOpcode() == ISD::ADD &&
14526                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14527                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14528                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14529                 (1ULL << Bits) == 0) {
14530               SDNode *OtherAdd = *UI;
14531               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14532                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14533                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14534                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14535                   return SDValue(*VI, 0);
14536                 }
14537               }
14538             }
14539           }
14540         }
14541       }
14542 
14543       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14544       // Expose the vabsduw/h/b opportunity for down stream
14545       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14546           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14547            IID == Intrinsic::ppc_altivec_vmaxsh ||
14548            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14549         SDValue V1 = N->getOperand(1);
14550         SDValue V2 = N->getOperand(2);
14551         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14552              V1.getSimpleValueType() == MVT::v8i16 ||
14553              V1.getSimpleValueType() == MVT::v16i8) &&
14554             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14555           // (0-a, a)
14556           if (V1.getOpcode() == ISD::SUB &&
14557               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14558               V1.getOperand(1) == V2) {
14559             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14560           }
14561           // (a, 0-a)
14562           if (V2.getOpcode() == ISD::SUB &&
14563               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14564               V2.getOperand(1) == V1) {
14565             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14566           }
14567           // (x-y, y-x)
14568           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14569               V1.getOperand(0) == V2.getOperand(1) &&
14570               V1.getOperand(1) == V2.getOperand(0)) {
14571             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14572           }
14573         }
14574       }
14575     }
14576 
14577     break;
14578   case ISD::INTRINSIC_W_CHAIN:
14579     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14580     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14581     if (Subtarget.needsSwapsForVSXMemOps()) {
14582       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14583       default:
14584         break;
14585       case Intrinsic::ppc_vsx_lxvw4x:
14586       case Intrinsic::ppc_vsx_lxvd2x:
14587         return expandVSXLoadForLE(N, DCI);
14588       }
14589     }
14590     break;
14591   case ISD::INTRINSIC_VOID:
14592     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14593     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14594     if (Subtarget.needsSwapsForVSXMemOps()) {
14595       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14596       default:
14597         break;
14598       case Intrinsic::ppc_vsx_stxvw4x:
14599       case Intrinsic::ppc_vsx_stxvd2x:
14600         return expandVSXStoreForLE(N, DCI);
14601       }
14602     }
14603     break;
14604   case ISD::BSWAP:
14605     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14606     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14607         N->getOperand(0).hasOneUse() &&
14608         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14609          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14610           N->getValueType(0) == MVT::i64))) {
14611       SDValue Load = N->getOperand(0);
14612       LoadSDNode *LD = cast<LoadSDNode>(Load);
14613       // Create the byte-swapping load.
14614       SDValue Ops[] = {
14615         LD->getChain(),    // Chain
14616         LD->getBasePtr(),  // Ptr
14617         DAG.getValueType(N->getValueType(0)) // VT
14618       };
14619       SDValue BSLoad =
14620         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14621                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14622                                               MVT::i64 : MVT::i32, MVT::Other),
14623                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14624 
14625       // If this is an i16 load, insert the truncate.
14626       SDValue ResVal = BSLoad;
14627       if (N->getValueType(0) == MVT::i16)
14628         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14629 
14630       // First, combine the bswap away.  This makes the value produced by the
14631       // load dead.
14632       DCI.CombineTo(N, ResVal);
14633 
14634       // Next, combine the load away, we give it a bogus result value but a real
14635       // chain result.  The result value is dead because the bswap is dead.
14636       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14637 
14638       // Return N so it doesn't get rechecked!
14639       return SDValue(N, 0);
14640     }
14641     break;
14642   case PPCISD::VCMP:
14643     // If a VCMPo node already exists with exactly the same operands as this
14644     // node, use its result instead of this node (VCMPo computes both a CR6 and
14645     // a normal output).
14646     //
14647     if (!N->getOperand(0).hasOneUse() &&
14648         !N->getOperand(1).hasOneUse() &&
14649         !N->getOperand(2).hasOneUse()) {
14650 
14651       // Scan all of the users of the LHS, looking for VCMPo's that match.
14652       SDNode *VCMPoNode = nullptr;
14653 
14654       SDNode *LHSN = N->getOperand(0).getNode();
14655       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14656            UI != E; ++UI)
14657         if (UI->getOpcode() == PPCISD::VCMPo &&
14658             UI->getOperand(1) == N->getOperand(1) &&
14659             UI->getOperand(2) == N->getOperand(2) &&
14660             UI->getOperand(0) == N->getOperand(0)) {
14661           VCMPoNode = *UI;
14662           break;
14663         }
14664 
14665       // If there is no VCMPo node, or if the flag value has a single use, don't
14666       // transform this.
14667       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14668         break;
14669 
14670       // Look at the (necessarily single) use of the flag value.  If it has a
14671       // chain, this transformation is more complex.  Note that multiple things
14672       // could use the value result, which we should ignore.
14673       SDNode *FlagUser = nullptr;
14674       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14675            FlagUser == nullptr; ++UI) {
14676         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14677         SDNode *User = *UI;
14678         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14679           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14680             FlagUser = User;
14681             break;
14682           }
14683         }
14684       }
14685 
14686       // If the user is a MFOCRF instruction, we know this is safe.
14687       // Otherwise we give up for right now.
14688       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14689         return SDValue(VCMPoNode, 0);
14690     }
14691     break;
14692   case ISD::BRCOND: {
14693     SDValue Cond = N->getOperand(1);
14694     SDValue Target = N->getOperand(2);
14695 
14696     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14697         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14698           Intrinsic::loop_decrement) {
14699 
14700       // We now need to make the intrinsic dead (it cannot be instruction
14701       // selected).
14702       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14703       assert(Cond.getNode()->hasOneUse() &&
14704              "Counter decrement has more than one use");
14705 
14706       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14707                          N->getOperand(0), Target);
14708     }
14709   }
14710   break;
14711   case ISD::BR_CC: {
14712     // If this is a branch on an altivec predicate comparison, lower this so
14713     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14714     // lowering is done pre-legalize, because the legalizer lowers the predicate
14715     // compare down to code that is difficult to reassemble.
14716     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14717     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14718 
14719     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14720     // value. If so, pass-through the AND to get to the intrinsic.
14721     if (LHS.getOpcode() == ISD::AND &&
14722         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14723         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14724           Intrinsic::loop_decrement &&
14725         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14726         !isNullConstant(LHS.getOperand(1)))
14727       LHS = LHS.getOperand(0);
14728 
14729     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14730         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14731           Intrinsic::loop_decrement &&
14732         isa<ConstantSDNode>(RHS)) {
14733       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14734              "Counter decrement comparison is not EQ or NE");
14735 
14736       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14737       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14738                     (CC == ISD::SETNE && !Val);
14739 
14740       // We now need to make the intrinsic dead (it cannot be instruction
14741       // selected).
14742       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14743       assert(LHS.getNode()->hasOneUse() &&
14744              "Counter decrement has more than one use");
14745 
14746       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14747                          N->getOperand(0), N->getOperand(4));
14748     }
14749 
14750     int CompareOpc;
14751     bool isDot;
14752 
14753     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14754         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14755         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14756       assert(isDot && "Can't compare against a vector result!");
14757 
14758       // If this is a comparison against something other than 0/1, then we know
14759       // that the condition is never/always true.
14760       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14761       if (Val != 0 && Val != 1) {
14762         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14763           return N->getOperand(0);
14764         // Always !=, turn it into an unconditional branch.
14765         return DAG.getNode(ISD::BR, dl, MVT::Other,
14766                            N->getOperand(0), N->getOperand(4));
14767       }
14768 
14769       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14770 
14771       // Create the PPCISD altivec 'dot' comparison node.
14772       SDValue Ops[] = {
14773         LHS.getOperand(2),  // LHS of compare
14774         LHS.getOperand(3),  // RHS of compare
14775         DAG.getConstant(CompareOpc, dl, MVT::i32)
14776       };
14777       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14778       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14779 
14780       // Unpack the result based on how the target uses it.
14781       PPC::Predicate CompOpc;
14782       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14783       default:  // Can't happen, don't crash on invalid number though.
14784       case 0:   // Branch on the value of the EQ bit of CR6.
14785         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14786         break;
14787       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14788         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14789         break;
14790       case 2:   // Branch on the value of the LT bit of CR6.
14791         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14792         break;
14793       case 3:   // Branch on the inverted value of the LT bit of CR6.
14794         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14795         break;
14796       }
14797 
14798       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14799                          DAG.getConstant(CompOpc, dl, MVT::i32),
14800                          DAG.getRegister(PPC::CR6, MVT::i32),
14801                          N->getOperand(4), CompNode.getValue(1));
14802     }
14803     break;
14804   }
14805   case ISD::BUILD_VECTOR:
14806     return DAGCombineBuildVector(N, DCI);
14807   case ISD::ABS:
14808     return combineABS(N, DCI);
14809   case ISD::VSELECT:
14810     return combineVSelect(N, DCI);
14811   }
14812 
14813   return SDValue();
14814 }
14815 
14816 SDValue
14817 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14818                                  SelectionDAG &DAG,
14819                                  SmallVectorImpl<SDNode *> &Created) const {
14820   // fold (sdiv X, pow2)
14821   EVT VT = N->getValueType(0);
14822   if (VT == MVT::i64 && !Subtarget.isPPC64())
14823     return SDValue();
14824   if ((VT != MVT::i32 && VT != MVT::i64) ||
14825       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14826     return SDValue();
14827 
14828   SDLoc DL(N);
14829   SDValue N0 = N->getOperand(0);
14830 
14831   bool IsNegPow2 = (-Divisor).isPowerOf2();
14832   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14833   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14834 
14835   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14836   Created.push_back(Op.getNode());
14837 
14838   if (IsNegPow2) {
14839     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14840     Created.push_back(Op.getNode());
14841   }
14842 
14843   return Op;
14844 }
14845 
14846 //===----------------------------------------------------------------------===//
14847 // Inline Assembly Support
14848 //===----------------------------------------------------------------------===//
14849 
14850 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14851                                                       KnownBits &Known,
14852                                                       const APInt &DemandedElts,
14853                                                       const SelectionDAG &DAG,
14854                                                       unsigned Depth) const {
14855   Known.resetAll();
14856   switch (Op.getOpcode()) {
14857   default: break;
14858   case PPCISD::LBRX: {
14859     // lhbrx is known to have the top bits cleared out.
14860     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14861       Known.Zero = 0xFFFF0000;
14862     break;
14863   }
14864   case ISD::INTRINSIC_WO_CHAIN: {
14865     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14866     default: break;
14867     case Intrinsic::ppc_altivec_vcmpbfp_p:
14868     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14869     case Intrinsic::ppc_altivec_vcmpequb_p:
14870     case Intrinsic::ppc_altivec_vcmpequh_p:
14871     case Intrinsic::ppc_altivec_vcmpequw_p:
14872     case Intrinsic::ppc_altivec_vcmpequd_p:
14873     case Intrinsic::ppc_altivec_vcmpgefp_p:
14874     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14875     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14876     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14877     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14878     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14879     case Intrinsic::ppc_altivec_vcmpgtub_p:
14880     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14881     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14882     case Intrinsic::ppc_altivec_vcmpgtud_p:
14883       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14884       break;
14885     }
14886   }
14887   }
14888 }
14889 
14890 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14891   switch (Subtarget.getCPUDirective()) {
14892   default: break;
14893   case PPC::DIR_970:
14894   case PPC::DIR_PWR4:
14895   case PPC::DIR_PWR5:
14896   case PPC::DIR_PWR5X:
14897   case PPC::DIR_PWR6:
14898   case PPC::DIR_PWR6X:
14899   case PPC::DIR_PWR7:
14900   case PPC::DIR_PWR8:
14901   case PPC::DIR_PWR9:
14902   case PPC::DIR_PWR_FUTURE: {
14903     if (!ML)
14904       break;
14905 
14906     if (!DisableInnermostLoopAlign32) {
14907       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14908       // so that we can decrease cache misses and branch-prediction misses.
14909       // Actual alignment of the loop will depend on the hotness check and other
14910       // logic in alignBlocks.
14911       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14912         return Align(32);
14913     }
14914 
14915     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14916 
14917     // For small loops (between 5 and 8 instructions), align to a 32-byte
14918     // boundary so that the entire loop fits in one instruction-cache line.
14919     uint64_t LoopSize = 0;
14920     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14921       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14922         LoopSize += TII->getInstSizeInBytes(*J);
14923         if (LoopSize > 32)
14924           break;
14925       }
14926 
14927     if (LoopSize > 16 && LoopSize <= 32)
14928       return Align(32);
14929 
14930     break;
14931   }
14932   }
14933 
14934   return TargetLowering::getPrefLoopAlignment(ML);
14935 }
14936 
14937 /// getConstraintType - Given a constraint, return the type of
14938 /// constraint it is for this target.
14939 PPCTargetLowering::ConstraintType
14940 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14941   if (Constraint.size() == 1) {
14942     switch (Constraint[0]) {
14943     default: break;
14944     case 'b':
14945     case 'r':
14946     case 'f':
14947     case 'd':
14948     case 'v':
14949     case 'y':
14950       return C_RegisterClass;
14951     case 'Z':
14952       // FIXME: While Z does indicate a memory constraint, it specifically
14953       // indicates an r+r address (used in conjunction with the 'y' modifier
14954       // in the replacement string). Currently, we're forcing the base
14955       // register to be r0 in the asm printer (which is interpreted as zero)
14956       // and forming the complete address in the second register. This is
14957       // suboptimal.
14958       return C_Memory;
14959     }
14960   } else if (Constraint == "wc") { // individual CR bits.
14961     return C_RegisterClass;
14962   } else if (Constraint == "wa" || Constraint == "wd" ||
14963              Constraint == "wf" || Constraint == "ws" ||
14964              Constraint == "wi" || Constraint == "ww") {
14965     return C_RegisterClass; // VSX registers.
14966   }
14967   return TargetLowering::getConstraintType(Constraint);
14968 }
14969 
14970 /// Examine constraint type and operand type and determine a weight value.
14971 /// This object must already have been set up with the operand type
14972 /// and the current alternative constraint selected.
14973 TargetLowering::ConstraintWeight
14974 PPCTargetLowering::getSingleConstraintMatchWeight(
14975     AsmOperandInfo &info, const char *constraint) const {
14976   ConstraintWeight weight = CW_Invalid;
14977   Value *CallOperandVal = info.CallOperandVal;
14978     // If we don't have a value, we can't do a match,
14979     // but allow it at the lowest weight.
14980   if (!CallOperandVal)
14981     return CW_Default;
14982   Type *type = CallOperandVal->getType();
14983 
14984   // Look at the constraint type.
14985   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14986     return CW_Register; // an individual CR bit.
14987   else if ((StringRef(constraint) == "wa" ||
14988             StringRef(constraint) == "wd" ||
14989             StringRef(constraint) == "wf") &&
14990            type->isVectorTy())
14991     return CW_Register;
14992   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14993     return CW_Register; // just hold 64-bit integers data.
14994   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14995     return CW_Register;
14996   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14997     return CW_Register;
14998 
14999   switch (*constraint) {
15000   default:
15001     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15002     break;
15003   case 'b':
15004     if (type->isIntegerTy())
15005       weight = CW_Register;
15006     break;
15007   case 'f':
15008     if (type->isFloatTy())
15009       weight = CW_Register;
15010     break;
15011   case 'd':
15012     if (type->isDoubleTy())
15013       weight = CW_Register;
15014     break;
15015   case 'v':
15016     if (type->isVectorTy())
15017       weight = CW_Register;
15018     break;
15019   case 'y':
15020     weight = CW_Register;
15021     break;
15022   case 'Z':
15023     weight = CW_Memory;
15024     break;
15025   }
15026   return weight;
15027 }
15028 
15029 std::pair<unsigned, const TargetRegisterClass *>
15030 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15031                                                 StringRef Constraint,
15032                                                 MVT VT) const {
15033   if (Constraint.size() == 1) {
15034     // GCC RS6000 Constraint Letters
15035     switch (Constraint[0]) {
15036     case 'b':   // R1-R31
15037       if (VT == MVT::i64 && Subtarget.isPPC64())
15038         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15039       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15040     case 'r':   // R0-R31
15041       if (VT == MVT::i64 && Subtarget.isPPC64())
15042         return std::make_pair(0U, &PPC::G8RCRegClass);
15043       return std::make_pair(0U, &PPC::GPRCRegClass);
15044     // 'd' and 'f' constraints are both defined to be "the floating point
15045     // registers", where one is for 32-bit and the other for 64-bit. We don't
15046     // really care overly much here so just give them all the same reg classes.
15047     case 'd':
15048     case 'f':
15049       if (Subtarget.hasSPE()) {
15050         if (VT == MVT::f32 || VT == MVT::i32)
15051           return std::make_pair(0U, &PPC::GPRCRegClass);
15052         if (VT == MVT::f64 || VT == MVT::i64)
15053           return std::make_pair(0U, &PPC::SPERCRegClass);
15054       } else {
15055         if (VT == MVT::f32 || VT == MVT::i32)
15056           return std::make_pair(0U, &PPC::F4RCRegClass);
15057         if (VT == MVT::f64 || VT == MVT::i64)
15058           return std::make_pair(0U, &PPC::F8RCRegClass);
15059         if (VT == MVT::v4f64 && Subtarget.hasQPX())
15060           return std::make_pair(0U, &PPC::QFRCRegClass);
15061         if (VT == MVT::v4f32 && Subtarget.hasQPX())
15062           return std::make_pair(0U, &PPC::QSRCRegClass);
15063       }
15064       break;
15065     case 'v':
15066       if (VT == MVT::v4f64 && Subtarget.hasQPX())
15067         return std::make_pair(0U, &PPC::QFRCRegClass);
15068       if (VT == MVT::v4f32 && Subtarget.hasQPX())
15069         return std::make_pair(0U, &PPC::QSRCRegClass);
15070       if (Subtarget.hasAltivec())
15071         return std::make_pair(0U, &PPC::VRRCRegClass);
15072       break;
15073     case 'y':   // crrc
15074       return std::make_pair(0U, &PPC::CRRCRegClass);
15075     }
15076   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15077     // An individual CR bit.
15078     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15079   } else if ((Constraint == "wa" || Constraint == "wd" ||
15080              Constraint == "wf" || Constraint == "wi") &&
15081              Subtarget.hasVSX()) {
15082     return std::make_pair(0U, &PPC::VSRCRegClass);
15083   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15084     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15085       return std::make_pair(0U, &PPC::VSSRCRegClass);
15086     else
15087       return std::make_pair(0U, &PPC::VSFRCRegClass);
15088   }
15089 
15090   // If we name a VSX register, we can't defer to the base class because it
15091   // will not recognize the correct register (their names will be VSL{0-31}
15092   // and V{0-31} so they won't match). So we match them here.
15093   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15094     int VSNum = atoi(Constraint.data() + 3);
15095     assert(VSNum >= 0 && VSNum <= 63 &&
15096            "Attempted to access a vsr out of range");
15097     if (VSNum < 32)
15098       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15099     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15100   }
15101   std::pair<unsigned, const TargetRegisterClass *> R =
15102       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15103 
15104   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15105   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15106   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15107   // register.
15108   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15109   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15110   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15111       PPC::GPRCRegClass.contains(R.first))
15112     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15113                             PPC::sub_32, &PPC::G8RCRegClass),
15114                           &PPC::G8RCRegClass);
15115 
15116   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15117   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15118     R.first = PPC::CR0;
15119     R.second = &PPC::CRRCRegClass;
15120   }
15121 
15122   return R;
15123 }
15124 
15125 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15126 /// vector.  If it is invalid, don't add anything to Ops.
15127 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15128                                                      std::string &Constraint,
15129                                                      std::vector<SDValue>&Ops,
15130                                                      SelectionDAG &DAG) const {
15131   SDValue Result;
15132 
15133   // Only support length 1 constraints.
15134   if (Constraint.length() > 1) return;
15135 
15136   char Letter = Constraint[0];
15137   switch (Letter) {
15138   default: break;
15139   case 'I':
15140   case 'J':
15141   case 'K':
15142   case 'L':
15143   case 'M':
15144   case 'N':
15145   case 'O':
15146   case 'P': {
15147     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15148     if (!CST) return; // Must be an immediate to match.
15149     SDLoc dl(Op);
15150     int64_t Value = CST->getSExtValue();
15151     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15152                          // numbers are printed as such.
15153     switch (Letter) {
15154     default: llvm_unreachable("Unknown constraint letter!");
15155     case 'I':  // "I" is a signed 16-bit constant.
15156       if (isInt<16>(Value))
15157         Result = DAG.getTargetConstant(Value, dl, TCVT);
15158       break;
15159     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15160       if (isShiftedUInt<16, 16>(Value))
15161         Result = DAG.getTargetConstant(Value, dl, TCVT);
15162       break;
15163     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15164       if (isShiftedInt<16, 16>(Value))
15165         Result = DAG.getTargetConstant(Value, dl, TCVT);
15166       break;
15167     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15168       if (isUInt<16>(Value))
15169         Result = DAG.getTargetConstant(Value, dl, TCVT);
15170       break;
15171     case 'M':  // "M" is a constant that is greater than 31.
15172       if (Value > 31)
15173         Result = DAG.getTargetConstant(Value, dl, TCVT);
15174       break;
15175     case 'N':  // "N" is a positive constant that is an exact power of two.
15176       if (Value > 0 && isPowerOf2_64(Value))
15177         Result = DAG.getTargetConstant(Value, dl, TCVT);
15178       break;
15179     case 'O':  // "O" is the constant zero.
15180       if (Value == 0)
15181         Result = DAG.getTargetConstant(Value, dl, TCVT);
15182       break;
15183     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15184       if (isInt<16>(-Value))
15185         Result = DAG.getTargetConstant(Value, dl, TCVT);
15186       break;
15187     }
15188     break;
15189   }
15190   }
15191 
15192   if (Result.getNode()) {
15193     Ops.push_back(Result);
15194     return;
15195   }
15196 
15197   // Handle standard constraint letters.
15198   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15199 }
15200 
15201 // isLegalAddressingMode - Return true if the addressing mode represented
15202 // by AM is legal for this target, for a load/store of the specified type.
15203 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15204                                               const AddrMode &AM, Type *Ty,
15205                                               unsigned AS, Instruction *I) const {
15206   // PPC does not allow r+i addressing modes for vectors!
15207   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15208     return false;
15209 
15210   // PPC allows a sign-extended 16-bit immediate field.
15211   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15212     return false;
15213 
15214   // No global is ever allowed as a base.
15215   if (AM.BaseGV)
15216     return false;
15217 
15218   // PPC only support r+r,
15219   switch (AM.Scale) {
15220   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15221     break;
15222   case 1:
15223     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15224       return false;
15225     // Otherwise we have r+r or r+i.
15226     break;
15227   case 2:
15228     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15229       return false;
15230     // Allow 2*r as r+r.
15231     break;
15232   default:
15233     // No other scales are supported.
15234     return false;
15235   }
15236 
15237   return true;
15238 }
15239 
15240 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15241                                            SelectionDAG &DAG) const {
15242   MachineFunction &MF = DAG.getMachineFunction();
15243   MachineFrameInfo &MFI = MF.getFrameInfo();
15244   MFI.setReturnAddressIsTaken(true);
15245 
15246   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15247     return SDValue();
15248 
15249   SDLoc dl(Op);
15250   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15251 
15252   // Make sure the function does not optimize away the store of the RA to
15253   // the stack.
15254   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15255   FuncInfo->setLRStoreRequired();
15256   bool isPPC64 = Subtarget.isPPC64();
15257   auto PtrVT = getPointerTy(MF.getDataLayout());
15258 
15259   if (Depth > 0) {
15260     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15261     SDValue Offset =
15262         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15263                         isPPC64 ? MVT::i64 : MVT::i32);
15264     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15265                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15266                        MachinePointerInfo());
15267   }
15268 
15269   // Just load the return address off the stack.
15270   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15271   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15272                      MachinePointerInfo());
15273 }
15274 
15275 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15276                                           SelectionDAG &DAG) const {
15277   SDLoc dl(Op);
15278   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15279 
15280   MachineFunction &MF = DAG.getMachineFunction();
15281   MachineFrameInfo &MFI = MF.getFrameInfo();
15282   MFI.setFrameAddressIsTaken(true);
15283 
15284   EVT PtrVT = getPointerTy(MF.getDataLayout());
15285   bool isPPC64 = PtrVT == MVT::i64;
15286 
15287   // Naked functions never have a frame pointer, and so we use r1. For all
15288   // other functions, this decision must be delayed until during PEI.
15289   unsigned FrameReg;
15290   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15291     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15292   else
15293     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15294 
15295   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15296                                          PtrVT);
15297   while (Depth--)
15298     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15299                             FrameAddr, MachinePointerInfo());
15300   return FrameAddr;
15301 }
15302 
15303 // FIXME? Maybe this could be a TableGen attribute on some registers and
15304 // this table could be generated automatically from RegInfo.
15305 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15306                                               const MachineFunction &MF) const {
15307   bool isPPC64 = Subtarget.isPPC64();
15308 
15309   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15310   if (!is64Bit && VT != LLT::scalar(32))
15311     report_fatal_error("Invalid register global variable type");
15312 
15313   Register Reg = StringSwitch<Register>(RegName)
15314                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15315                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15316                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15317                      .Default(Register());
15318 
15319   if (Reg)
15320     return Reg;
15321   report_fatal_error("Invalid register name global variable");
15322 }
15323 
15324 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15325   // 32-bit SVR4 ABI access everything as got-indirect.
15326   if (Subtarget.is32BitELFABI())
15327     return true;
15328 
15329   // AIX accesses everything indirectly through the TOC, which is similar to
15330   // the GOT.
15331   if (Subtarget.isAIXABI())
15332     return true;
15333 
15334   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15335   // If it is small or large code model, module locals are accessed
15336   // indirectly by loading their address from .toc/.got.
15337   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15338     return true;
15339 
15340   // JumpTable and BlockAddress are accessed as got-indirect.
15341   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15342     return true;
15343 
15344   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15345     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15346 
15347   return false;
15348 }
15349 
15350 bool
15351 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15352   // The PowerPC target isn't yet aware of offsets.
15353   return false;
15354 }
15355 
15356 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15357                                            const CallInst &I,
15358                                            MachineFunction &MF,
15359                                            unsigned Intrinsic) const {
15360   switch (Intrinsic) {
15361   case Intrinsic::ppc_qpx_qvlfd:
15362   case Intrinsic::ppc_qpx_qvlfs:
15363   case Intrinsic::ppc_qpx_qvlfcd:
15364   case Intrinsic::ppc_qpx_qvlfcs:
15365   case Intrinsic::ppc_qpx_qvlfiwa:
15366   case Intrinsic::ppc_qpx_qvlfiwz:
15367   case Intrinsic::ppc_altivec_lvx:
15368   case Intrinsic::ppc_altivec_lvxl:
15369   case Intrinsic::ppc_altivec_lvebx:
15370   case Intrinsic::ppc_altivec_lvehx:
15371   case Intrinsic::ppc_altivec_lvewx:
15372   case Intrinsic::ppc_vsx_lxvd2x:
15373   case Intrinsic::ppc_vsx_lxvw4x: {
15374     EVT VT;
15375     switch (Intrinsic) {
15376     case Intrinsic::ppc_altivec_lvebx:
15377       VT = MVT::i8;
15378       break;
15379     case Intrinsic::ppc_altivec_lvehx:
15380       VT = MVT::i16;
15381       break;
15382     case Intrinsic::ppc_altivec_lvewx:
15383       VT = MVT::i32;
15384       break;
15385     case Intrinsic::ppc_vsx_lxvd2x:
15386       VT = MVT::v2f64;
15387       break;
15388     case Intrinsic::ppc_qpx_qvlfd:
15389       VT = MVT::v4f64;
15390       break;
15391     case Intrinsic::ppc_qpx_qvlfs:
15392       VT = MVT::v4f32;
15393       break;
15394     case Intrinsic::ppc_qpx_qvlfcd:
15395       VT = MVT::v2f64;
15396       break;
15397     case Intrinsic::ppc_qpx_qvlfcs:
15398       VT = MVT::v2f32;
15399       break;
15400     default:
15401       VT = MVT::v4i32;
15402       break;
15403     }
15404 
15405     Info.opc = ISD::INTRINSIC_W_CHAIN;
15406     Info.memVT = VT;
15407     Info.ptrVal = I.getArgOperand(0);
15408     Info.offset = -VT.getStoreSize()+1;
15409     Info.size = 2*VT.getStoreSize()-1;
15410     Info.align = Align(1);
15411     Info.flags = MachineMemOperand::MOLoad;
15412     return true;
15413   }
15414   case Intrinsic::ppc_qpx_qvlfda:
15415   case Intrinsic::ppc_qpx_qvlfsa:
15416   case Intrinsic::ppc_qpx_qvlfcda:
15417   case Intrinsic::ppc_qpx_qvlfcsa:
15418   case Intrinsic::ppc_qpx_qvlfiwaa:
15419   case Intrinsic::ppc_qpx_qvlfiwza: {
15420     EVT VT;
15421     switch (Intrinsic) {
15422     case Intrinsic::ppc_qpx_qvlfda:
15423       VT = MVT::v4f64;
15424       break;
15425     case Intrinsic::ppc_qpx_qvlfsa:
15426       VT = MVT::v4f32;
15427       break;
15428     case Intrinsic::ppc_qpx_qvlfcda:
15429       VT = MVT::v2f64;
15430       break;
15431     case Intrinsic::ppc_qpx_qvlfcsa:
15432       VT = MVT::v2f32;
15433       break;
15434     default:
15435       VT = MVT::v4i32;
15436       break;
15437     }
15438 
15439     Info.opc = ISD::INTRINSIC_W_CHAIN;
15440     Info.memVT = VT;
15441     Info.ptrVal = I.getArgOperand(0);
15442     Info.offset = 0;
15443     Info.size = VT.getStoreSize();
15444     Info.align = Align(1);
15445     Info.flags = MachineMemOperand::MOLoad;
15446     return true;
15447   }
15448   case Intrinsic::ppc_qpx_qvstfd:
15449   case Intrinsic::ppc_qpx_qvstfs:
15450   case Intrinsic::ppc_qpx_qvstfcd:
15451   case Intrinsic::ppc_qpx_qvstfcs:
15452   case Intrinsic::ppc_qpx_qvstfiw:
15453   case Intrinsic::ppc_altivec_stvx:
15454   case Intrinsic::ppc_altivec_stvxl:
15455   case Intrinsic::ppc_altivec_stvebx:
15456   case Intrinsic::ppc_altivec_stvehx:
15457   case Intrinsic::ppc_altivec_stvewx:
15458   case Intrinsic::ppc_vsx_stxvd2x:
15459   case Intrinsic::ppc_vsx_stxvw4x: {
15460     EVT VT;
15461     switch (Intrinsic) {
15462     case Intrinsic::ppc_altivec_stvebx:
15463       VT = MVT::i8;
15464       break;
15465     case Intrinsic::ppc_altivec_stvehx:
15466       VT = MVT::i16;
15467       break;
15468     case Intrinsic::ppc_altivec_stvewx:
15469       VT = MVT::i32;
15470       break;
15471     case Intrinsic::ppc_vsx_stxvd2x:
15472       VT = MVT::v2f64;
15473       break;
15474     case Intrinsic::ppc_qpx_qvstfd:
15475       VT = MVT::v4f64;
15476       break;
15477     case Intrinsic::ppc_qpx_qvstfs:
15478       VT = MVT::v4f32;
15479       break;
15480     case Intrinsic::ppc_qpx_qvstfcd:
15481       VT = MVT::v2f64;
15482       break;
15483     case Intrinsic::ppc_qpx_qvstfcs:
15484       VT = MVT::v2f32;
15485       break;
15486     default:
15487       VT = MVT::v4i32;
15488       break;
15489     }
15490 
15491     Info.opc = ISD::INTRINSIC_VOID;
15492     Info.memVT = VT;
15493     Info.ptrVal = I.getArgOperand(1);
15494     Info.offset = -VT.getStoreSize()+1;
15495     Info.size = 2*VT.getStoreSize()-1;
15496     Info.align = Align(1);
15497     Info.flags = MachineMemOperand::MOStore;
15498     return true;
15499   }
15500   case Intrinsic::ppc_qpx_qvstfda:
15501   case Intrinsic::ppc_qpx_qvstfsa:
15502   case Intrinsic::ppc_qpx_qvstfcda:
15503   case Intrinsic::ppc_qpx_qvstfcsa:
15504   case Intrinsic::ppc_qpx_qvstfiwa: {
15505     EVT VT;
15506     switch (Intrinsic) {
15507     case Intrinsic::ppc_qpx_qvstfda:
15508       VT = MVT::v4f64;
15509       break;
15510     case Intrinsic::ppc_qpx_qvstfsa:
15511       VT = MVT::v4f32;
15512       break;
15513     case Intrinsic::ppc_qpx_qvstfcda:
15514       VT = MVT::v2f64;
15515       break;
15516     case Intrinsic::ppc_qpx_qvstfcsa:
15517       VT = MVT::v2f32;
15518       break;
15519     default:
15520       VT = MVT::v4i32;
15521       break;
15522     }
15523 
15524     Info.opc = ISD::INTRINSIC_VOID;
15525     Info.memVT = VT;
15526     Info.ptrVal = I.getArgOperand(1);
15527     Info.offset = 0;
15528     Info.size = VT.getStoreSize();
15529     Info.align = Align(1);
15530     Info.flags = MachineMemOperand::MOStore;
15531     return true;
15532   }
15533   default:
15534     break;
15535   }
15536 
15537   return false;
15538 }
15539 
15540 /// It returns EVT::Other if the type should be determined using generic
15541 /// target-independent logic.
15542 EVT PPCTargetLowering::getOptimalMemOpType(
15543     const MemOp &Op, const AttributeList &FuncAttributes) const {
15544   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15545     // When expanding a memset, require at least two QPX instructions to cover
15546     // the cost of loading the value to be stored from the constant pool.
15547     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15548         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15549         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15550       return MVT::v4f64;
15551     }
15552 
15553     // We should use Altivec/VSX loads and stores when available. For unaligned
15554     // addresses, unaligned VSX loads are only fast starting with the P8.
15555     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15556         (Op.isAligned(Align(16)) ||
15557          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15558       return MVT::v4i32;
15559   }
15560 
15561   if (Subtarget.isPPC64()) {
15562     return MVT::i64;
15563   }
15564 
15565   return MVT::i32;
15566 }
15567 
15568 /// Returns true if it is beneficial to convert a load of a constant
15569 /// to just the constant itself.
15570 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15571                                                           Type *Ty) const {
15572   assert(Ty->isIntegerTy());
15573 
15574   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15575   return !(BitSize == 0 || BitSize > 64);
15576 }
15577 
15578 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15579   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15580     return false;
15581   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15582   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15583   return NumBits1 == 64 && NumBits2 == 32;
15584 }
15585 
15586 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15587   if (!VT1.isInteger() || !VT2.isInteger())
15588     return false;
15589   unsigned NumBits1 = VT1.getSizeInBits();
15590   unsigned NumBits2 = VT2.getSizeInBits();
15591   return NumBits1 == 64 && NumBits2 == 32;
15592 }
15593 
15594 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15595   // Generally speaking, zexts are not free, but they are free when they can be
15596   // folded with other operations.
15597   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15598     EVT MemVT = LD->getMemoryVT();
15599     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15600          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15601         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15602          LD->getExtensionType() == ISD::ZEXTLOAD))
15603       return true;
15604   }
15605 
15606   // FIXME: Add other cases...
15607   //  - 32-bit shifts with a zext to i64
15608   //  - zext after ctlz, bswap, etc.
15609   //  - zext after and by a constant mask
15610 
15611   return TargetLowering::isZExtFree(Val, VT2);
15612 }
15613 
15614 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15615   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15616          "invalid fpext types");
15617   // Extending to float128 is not free.
15618   if (DestVT == MVT::f128)
15619     return false;
15620   return true;
15621 }
15622 
15623 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15624   return isInt<16>(Imm) || isUInt<16>(Imm);
15625 }
15626 
15627 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15628   return isInt<16>(Imm) || isUInt<16>(Imm);
15629 }
15630 
15631 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15632                                                        unsigned,
15633                                                        unsigned,
15634                                                        MachineMemOperand::Flags,
15635                                                        bool *Fast) const {
15636   if (DisablePPCUnaligned)
15637     return false;
15638 
15639   // PowerPC supports unaligned memory access for simple non-vector types.
15640   // Although accessing unaligned addresses is not as efficient as accessing
15641   // aligned addresses, it is generally more efficient than manual expansion,
15642   // and generally only traps for software emulation when crossing page
15643   // boundaries.
15644 
15645   if (!VT.isSimple())
15646     return false;
15647 
15648   if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess())
15649     return false;
15650 
15651   if (VT.getSimpleVT().isVector()) {
15652     if (Subtarget.hasVSX()) {
15653       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15654           VT != MVT::v4f32 && VT != MVT::v4i32)
15655         return false;
15656     } else {
15657       return false;
15658     }
15659   }
15660 
15661   if (VT == MVT::ppcf128)
15662     return false;
15663 
15664   if (Fast)
15665     *Fast = true;
15666 
15667   return true;
15668 }
15669 
15670 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15671                                                    EVT VT) const {
15672   return isFMAFasterThanFMulAndFAdd(
15673       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15674 }
15675 
15676 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15677                                                    Type *Ty) const {
15678   switch (Ty->getScalarType()->getTypeID()) {
15679   case Type::FloatTyID:
15680   case Type::DoubleTyID:
15681     return true;
15682   case Type::FP128TyID:
15683     return EnableQuadPrecision && Subtarget.hasP9Vector();
15684   default:
15685     return false;
15686   }
15687 }
15688 
15689 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
15690 // FIXME: add more patterns which are profitable to hoist.
15691 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15692   if (I->getOpcode() != Instruction::FMul)
15693     return true;
15694 
15695   if (!I->hasOneUse())
15696     return true;
15697 
15698   Instruction *User = I->user_back();
15699   assert(User && "A single use instruction with no uses.");
15700 
15701   if (User->getOpcode() != Instruction::FSub &&
15702       User->getOpcode() != Instruction::FAdd)
15703     return true;
15704 
15705   const TargetOptions &Options = getTargetMachine().Options;
15706   const Function *F = I->getFunction();
15707   const DataLayout &DL = F->getParent()->getDataLayout();
15708   Type *Ty = User->getOperand(0)->getType();
15709 
15710   return !(
15711       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15712       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15713       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15714 }
15715 
15716 const MCPhysReg *
15717 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15718   // LR is a callee-save register, but we must treat it as clobbered by any call
15719   // site. Hence we include LR in the scratch registers, which are in turn added
15720   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15721   // to CTR, which is used by any indirect call.
15722   static const MCPhysReg ScratchRegs[] = {
15723     PPC::X12, PPC::LR8, PPC::CTR8, 0
15724   };
15725 
15726   return ScratchRegs;
15727 }
15728 
15729 Register PPCTargetLowering::getExceptionPointerRegister(
15730     const Constant *PersonalityFn) const {
15731   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15732 }
15733 
15734 Register PPCTargetLowering::getExceptionSelectorRegister(
15735     const Constant *PersonalityFn) const {
15736   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15737 }
15738 
15739 bool
15740 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15741                      EVT VT , unsigned DefinedValues) const {
15742   if (VT == MVT::v2i64)
15743     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15744 
15745   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15746     return true;
15747 
15748   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15749 }
15750 
15751 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15752   if (DisableILPPref || Subtarget.enableMachineScheduler())
15753     return TargetLowering::getSchedulingPreference(N);
15754 
15755   return Sched::ILP;
15756 }
15757 
15758 // Create a fast isel object.
15759 FastISel *
15760 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15761                                   const TargetLibraryInfo *LibInfo) const {
15762   return PPC::createFastISel(FuncInfo, LibInfo);
15763 }
15764 
15765 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15766   if (!Subtarget.isPPC64()) return;
15767 
15768   // Update IsSplitCSR in PPCFunctionInfo
15769   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15770   PFI->setIsSplitCSR(true);
15771 }
15772 
15773 void PPCTargetLowering::insertCopiesSplitCSR(
15774   MachineBasicBlock *Entry,
15775   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15776   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15777   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15778   if (!IStart)
15779     return;
15780 
15781   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15782   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15783   MachineBasicBlock::iterator MBBI = Entry->begin();
15784   for (const MCPhysReg *I = IStart; *I; ++I) {
15785     const TargetRegisterClass *RC = nullptr;
15786     if (PPC::G8RCRegClass.contains(*I))
15787       RC = &PPC::G8RCRegClass;
15788     else if (PPC::F8RCRegClass.contains(*I))
15789       RC = &PPC::F8RCRegClass;
15790     else if (PPC::CRRCRegClass.contains(*I))
15791       RC = &PPC::CRRCRegClass;
15792     else if (PPC::VRRCRegClass.contains(*I))
15793       RC = &PPC::VRRCRegClass;
15794     else
15795       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15796 
15797     Register NewVR = MRI->createVirtualRegister(RC);
15798     // Create copy from CSR to a virtual register.
15799     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15800     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15801     // nounwind. If we want to generalize this later, we may need to emit
15802     // CFI pseudo-instructions.
15803     assert(Entry->getParent()->getFunction().hasFnAttribute(
15804              Attribute::NoUnwind) &&
15805            "Function should be nounwind in insertCopiesSplitCSR!");
15806     Entry->addLiveIn(*I);
15807     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15808       .addReg(*I);
15809 
15810     // Insert the copy-back instructions right before the terminator.
15811     for (auto *Exit : Exits)
15812       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15813               TII->get(TargetOpcode::COPY), *I)
15814         .addReg(NewVR);
15815   }
15816 }
15817 
15818 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15819 bool PPCTargetLowering::useLoadStackGuardNode() const {
15820   if (!Subtarget.isTargetLinux())
15821     return TargetLowering::useLoadStackGuardNode();
15822   return true;
15823 }
15824 
15825 // Override to disable global variable loading on Linux.
15826 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15827   if (!Subtarget.isTargetLinux())
15828     return TargetLowering::insertSSPDeclarations(M);
15829 }
15830 
15831 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15832                                      bool ForCodeSize) const {
15833   if (!VT.isSimple() || !Subtarget.hasVSX())
15834     return false;
15835 
15836   switch(VT.getSimpleVT().SimpleTy) {
15837   default:
15838     // For FP types that are currently not supported by PPC backend, return
15839     // false. Examples: f16, f80.
15840     return false;
15841   case MVT::f32:
15842   case MVT::f64:
15843   case MVT::ppcf128:
15844     return Imm.isPosZero();
15845   }
15846 }
15847 
15848 // For vector shift operation op, fold
15849 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15850 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15851                                   SelectionDAG &DAG) {
15852   SDValue N0 = N->getOperand(0);
15853   SDValue N1 = N->getOperand(1);
15854   EVT VT = N0.getValueType();
15855   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15856   unsigned Opcode = N->getOpcode();
15857   unsigned TargetOpcode;
15858 
15859   switch (Opcode) {
15860   default:
15861     llvm_unreachable("Unexpected shift operation");
15862   case ISD::SHL:
15863     TargetOpcode = PPCISD::SHL;
15864     break;
15865   case ISD::SRL:
15866     TargetOpcode = PPCISD::SRL;
15867     break;
15868   case ISD::SRA:
15869     TargetOpcode = PPCISD::SRA;
15870     break;
15871   }
15872 
15873   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15874       N1->getOpcode() == ISD::AND)
15875     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15876       if (Mask->getZExtValue() == OpSizeInBits - 1)
15877         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15878 
15879   return SDValue();
15880 }
15881 
15882 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15883   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15884     return Value;
15885 
15886   SDValue N0 = N->getOperand(0);
15887   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15888   if (!Subtarget.isISA3_0() ||
15889       N0.getOpcode() != ISD::SIGN_EXTEND ||
15890       N0.getOperand(0).getValueType() != MVT::i32 ||
15891       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15892     return SDValue();
15893 
15894   // We can't save an operation here if the value is already extended, and
15895   // the existing shift is easier to combine.
15896   SDValue ExtsSrc = N0.getOperand(0);
15897   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15898       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15899     return SDValue();
15900 
15901   SDLoc DL(N0);
15902   SDValue ShiftBy = SDValue(CN1, 0);
15903   // We want the shift amount to be i32 on the extswli, but the shift could
15904   // have an i64.
15905   if (ShiftBy.getValueType() == MVT::i64)
15906     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15907 
15908   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15909                          ShiftBy);
15910 }
15911 
15912 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15913   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15914     return Value;
15915 
15916   return SDValue();
15917 }
15918 
15919 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15920   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15921     return Value;
15922 
15923   return SDValue();
15924 }
15925 
15926 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15927 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15928 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15929 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15930 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15931                                  const PPCSubtarget &Subtarget) {
15932   if (!Subtarget.isPPC64())
15933     return SDValue();
15934 
15935   SDValue LHS = N->getOperand(0);
15936   SDValue RHS = N->getOperand(1);
15937 
15938   auto isZextOfCompareWithConstant = [](SDValue Op) {
15939     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15940         Op.getValueType() != MVT::i64)
15941       return false;
15942 
15943     SDValue Cmp = Op.getOperand(0);
15944     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15945         Cmp.getOperand(0).getValueType() != MVT::i64)
15946       return false;
15947 
15948     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15949       int64_t NegConstant = 0 - Constant->getSExtValue();
15950       // Due to the limitations of the addi instruction,
15951       // -C is required to be [-32768, 32767].
15952       return isInt<16>(NegConstant);
15953     }
15954 
15955     return false;
15956   };
15957 
15958   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15959   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15960 
15961   // If there is a pattern, canonicalize a zext operand to the RHS.
15962   if (LHSHasPattern && !RHSHasPattern)
15963     std::swap(LHS, RHS);
15964   else if (!LHSHasPattern && !RHSHasPattern)
15965     return SDValue();
15966 
15967   SDLoc DL(N);
15968   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15969   SDValue Cmp = RHS.getOperand(0);
15970   SDValue Z = Cmp.getOperand(0);
15971   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15972 
15973   assert(Constant && "Constant Should not be a null pointer.");
15974   int64_t NegConstant = 0 - Constant->getSExtValue();
15975 
15976   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15977   default: break;
15978   case ISD::SETNE: {
15979     //                                 when C == 0
15980     //                             --> addze X, (addic Z, -1).carry
15981     //                            /
15982     // add X, (zext(setne Z, C))--
15983     //                            \    when -32768 <= -C <= 32767 && C != 0
15984     //                             --> addze X, (addic (addi Z, -C), -1).carry
15985     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15986                               DAG.getConstant(NegConstant, DL, MVT::i64));
15987     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15988     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15989                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15990     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15991                        SDValue(Addc.getNode(), 1));
15992     }
15993   case ISD::SETEQ: {
15994     //                                 when C == 0
15995     //                             --> addze X, (subfic Z, 0).carry
15996     //                            /
15997     // add X, (zext(sete  Z, C))--
15998     //                            \    when -32768 <= -C <= 32767 && C != 0
15999     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16000     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16001                               DAG.getConstant(NegConstant, DL, MVT::i64));
16002     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16003     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16004                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16005     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16006                        SDValue(Subc.getNode(), 1));
16007     }
16008   }
16009 
16010   return SDValue();
16011 }
16012 
16013 // Transform
16014 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16015 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16016 // In this case both C1 and C2 must be known constants.
16017 // C1+C2 must fit into a 34 bit signed integer.
16018 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16019                                           const PPCSubtarget &Subtarget) {
16020   if (!Subtarget.isUsingPCRelativeCalls())
16021     return SDValue();
16022 
16023   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16024   // If we find that node try to cast the Global Address and the Constant.
16025   SDValue LHS = N->getOperand(0);
16026   SDValue RHS = N->getOperand(1);
16027 
16028   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16029     std::swap(LHS, RHS);
16030 
16031   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16032     return SDValue();
16033 
16034   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16035   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16036   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16037 
16038   // Check that both casts succeeded.
16039   if (!GSDN || !ConstNode)
16040     return SDValue();
16041 
16042   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16043   SDLoc DL(GSDN);
16044 
16045   // The signed int offset needs to fit in 34 bits.
16046   if (!isInt<34>(NewOffset))
16047     return SDValue();
16048 
16049   // The new global address is a copy of the old global address except
16050   // that it has the updated Offset.
16051   SDValue GA =
16052       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16053                                  NewOffset, GSDN->getTargetFlags());
16054   SDValue MatPCRel =
16055       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16056   return MatPCRel;
16057 }
16058 
16059 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16060   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16061     return Value;
16062 
16063   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16064     return Value;
16065 
16066   return SDValue();
16067 }
16068 
16069 // Detect TRUNCATE operations on bitcasts of float128 values.
16070 // What we are looking for here is the situtation where we extract a subset
16071 // of bits from a 128 bit float.
16072 // This can be of two forms:
16073 // 1) BITCAST of f128 feeding TRUNCATE
16074 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16075 // The reason this is required is because we do not have a legal i128 type
16076 // and so we want to prevent having to store the f128 and then reload part
16077 // of it.
16078 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16079                                            DAGCombinerInfo &DCI) const {
16080   // If we are using CRBits then try that first.
16081   if (Subtarget.useCRBits()) {
16082     // Check if CRBits did anything and return that if it did.
16083     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16084       return CRTruncValue;
16085   }
16086 
16087   SDLoc dl(N);
16088   SDValue Op0 = N->getOperand(0);
16089 
16090   // Looking for a truncate of i128 to i64.
16091   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16092     return SDValue();
16093 
16094   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16095 
16096   // SRL feeding TRUNCATE.
16097   if (Op0.getOpcode() == ISD::SRL) {
16098     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16099     // The right shift has to be by 64 bits.
16100     if (!ConstNode || ConstNode->getZExtValue() != 64)
16101       return SDValue();
16102 
16103     // Switch the element number to extract.
16104     EltToExtract = EltToExtract ? 0 : 1;
16105     // Update Op0 past the SRL.
16106     Op0 = Op0.getOperand(0);
16107   }
16108 
16109   // BITCAST feeding a TRUNCATE possibly via SRL.
16110   if (Op0.getOpcode() == ISD::BITCAST &&
16111       Op0.getValueType() == MVT::i128 &&
16112       Op0.getOperand(0).getValueType() == MVT::f128) {
16113     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16114     return DCI.DAG.getNode(
16115         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16116         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16117   }
16118   return SDValue();
16119 }
16120 
16121 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16122   SelectionDAG &DAG = DCI.DAG;
16123 
16124   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16125   if (!ConstOpOrElement)
16126     return SDValue();
16127 
16128   // An imul is usually smaller than the alternative sequence for legal type.
16129   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16130       isOperationLegal(ISD::MUL, N->getValueType(0)))
16131     return SDValue();
16132 
16133   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16134     switch (this->Subtarget.getCPUDirective()) {
16135     default:
16136       // TODO: enhance the condition for subtarget before pwr8
16137       return false;
16138     case PPC::DIR_PWR8:
16139       //  type        mul     add    shl
16140       // scalar        4       1      1
16141       // vector        7       2      2
16142       return true;
16143     case PPC::DIR_PWR9:
16144     case PPC::DIR_PWR_FUTURE:
16145       //  type        mul     add    shl
16146       // scalar        5       2      2
16147       // vector        7       2      2
16148 
16149       // The cycle RATIO of related operations are showed as a table above.
16150       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16151       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16152       // are 4, it is always profitable; but for 3 instrs patterns
16153       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16154       // So we should only do it for vector type.
16155       return IsAddOne && IsNeg ? VT.isVector() : true;
16156     }
16157   };
16158 
16159   EVT VT = N->getValueType(0);
16160   SDLoc DL(N);
16161 
16162   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16163   bool IsNeg = MulAmt.isNegative();
16164   APInt MulAmtAbs = MulAmt.abs();
16165 
16166   if ((MulAmtAbs - 1).isPowerOf2()) {
16167     // (mul x, 2^N + 1) => (add (shl x, N), x)
16168     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16169 
16170     if (!IsProfitable(IsNeg, true, VT))
16171       return SDValue();
16172 
16173     SDValue Op0 = N->getOperand(0);
16174     SDValue Op1 =
16175         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16176                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16177     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16178 
16179     if (!IsNeg)
16180       return Res;
16181 
16182     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16183   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16184     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16185     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16186 
16187     if (!IsProfitable(IsNeg, false, VT))
16188       return SDValue();
16189 
16190     SDValue Op0 = N->getOperand(0);
16191     SDValue Op1 =
16192         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16193                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16194 
16195     if (!IsNeg)
16196       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16197     else
16198       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16199 
16200   } else {
16201     return SDValue();
16202   }
16203 }
16204 
16205 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16206   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16207   if (!Subtarget.is64BitELFABI())
16208     return false;
16209 
16210   // If not a tail call then no need to proceed.
16211   if (!CI->isTailCall())
16212     return false;
16213 
16214   // If sibling calls have been disabled and tail-calls aren't guaranteed
16215   // there is no reason to duplicate.
16216   auto &TM = getTargetMachine();
16217   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16218     return false;
16219 
16220   // Can't tail call a function called indirectly, or if it has variadic args.
16221   const Function *Callee = CI->getCalledFunction();
16222   if (!Callee || Callee->isVarArg())
16223     return false;
16224 
16225   // Make sure the callee and caller calling conventions are eligible for tco.
16226   const Function *Caller = CI->getParent()->getParent();
16227   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16228                                            CI->getCallingConv()))
16229       return false;
16230 
16231   // If the function is local then we have a good chance at tail-calling it
16232   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16233 }
16234 
16235 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16236   if (!Subtarget.hasVSX())
16237     return false;
16238   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16239     return true;
16240   return VT == MVT::f32 || VT == MVT::f64 ||
16241     VT == MVT::v4f32 || VT == MVT::v2f64;
16242 }
16243 
16244 bool PPCTargetLowering::
16245 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16246   const Value *Mask = AndI.getOperand(1);
16247   // If the mask is suitable for andi. or andis. we should sink the and.
16248   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16249     // Can't handle constants wider than 64-bits.
16250     if (CI->getBitWidth() > 64)
16251       return false;
16252     int64_t ConstVal = CI->getZExtValue();
16253     return isUInt<16>(ConstVal) ||
16254       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16255   }
16256 
16257   // For non-constant masks, we can always use the record-form and.
16258   return true;
16259 }
16260 
16261 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16262 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16263 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16264 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16265 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16266 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16267   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16268   assert(Subtarget.hasP9Altivec() &&
16269          "Only combine this when P9 altivec supported!");
16270   EVT VT = N->getValueType(0);
16271   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16272     return SDValue();
16273 
16274   SelectionDAG &DAG = DCI.DAG;
16275   SDLoc dl(N);
16276   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16277     // Even for signed integers, if it's known to be positive (as signed
16278     // integer) due to zero-extended inputs.
16279     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16280     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16281     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16282          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16283         (SubOpcd1 == ISD::ZERO_EXTEND ||
16284          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16285       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16286                          N->getOperand(0)->getOperand(0),
16287                          N->getOperand(0)->getOperand(1),
16288                          DAG.getTargetConstant(0, dl, MVT::i32));
16289     }
16290 
16291     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16292     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16293         N->getOperand(0).hasOneUse()) {
16294       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16295                          N->getOperand(0)->getOperand(0),
16296                          N->getOperand(0)->getOperand(1),
16297                          DAG.getTargetConstant(1, dl, MVT::i32));
16298     }
16299   }
16300 
16301   return SDValue();
16302 }
16303 
16304 // For type v4i32/v8ii16/v16i8, transform
16305 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16306 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16307 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16308 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16309 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16310                                           DAGCombinerInfo &DCI) const {
16311   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16312   assert(Subtarget.hasP9Altivec() &&
16313          "Only combine this when P9 altivec supported!");
16314 
16315   SelectionDAG &DAG = DCI.DAG;
16316   SDLoc dl(N);
16317   SDValue Cond = N->getOperand(0);
16318   SDValue TrueOpnd = N->getOperand(1);
16319   SDValue FalseOpnd = N->getOperand(2);
16320   EVT VT = N->getOperand(1).getValueType();
16321 
16322   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16323       FalseOpnd.getOpcode() != ISD::SUB)
16324     return SDValue();
16325 
16326   // ABSD only available for type v4i32/v8i16/v16i8
16327   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16328     return SDValue();
16329 
16330   // At least to save one more dependent computation
16331   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16332     return SDValue();
16333 
16334   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16335 
16336   // Can only handle unsigned comparison here
16337   switch (CC) {
16338   default:
16339     return SDValue();
16340   case ISD::SETUGT:
16341   case ISD::SETUGE:
16342     break;
16343   case ISD::SETULT:
16344   case ISD::SETULE:
16345     std::swap(TrueOpnd, FalseOpnd);
16346     break;
16347   }
16348 
16349   SDValue CmpOpnd1 = Cond.getOperand(0);
16350   SDValue CmpOpnd2 = Cond.getOperand(1);
16351 
16352   // SETCC CmpOpnd1 CmpOpnd2 cond
16353   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16354   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16355   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16356       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16357       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16358       FalseOpnd.getOperand(1) == CmpOpnd1) {
16359     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16360                        CmpOpnd1, CmpOpnd2,
16361                        DAG.getTargetConstant(0, dl, MVT::i32));
16362   }
16363 
16364   return SDValue();
16365 }
16366