1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "ppc-lowering"
100 
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
103 
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
112 
113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
114 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
115 
116 STATISTIC(NumTailCalls, "Number of tail calls");
117 STATISTIC(NumSiblingCalls, "Number of sibling calls");
118 
119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
120 
121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
122 
123 // FIXME: Remove this once the bug has been fixed!
124 extern cl::opt<bool> ANDIGlueBug;
125 
126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
127                                      const PPCSubtarget &STI)
128     : TargetLowering(TM), Subtarget(STI) {
129   // Use _setjmp/_longjmp instead of setjmp/longjmp.
130   setUseUnderscoreSetJmp(true);
131   setUseUnderscoreLongJmp(true);
132 
133   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
134   // arguments are at least 4/8 bytes aligned.
135   bool isPPC64 = Subtarget.isPPC64();
136   setMinStackArgumentAlignment(isPPC64 ? 8:4);
137 
138   // Set up the register classes.
139   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
140   if (!useSoftFloat()) {
141     if (hasSPE()) {
142       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
143       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
144     } else {
145       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
146       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
147     }
148   }
149 
150   // Match BITREVERSE to customized fast code sequence in the td file.
151   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
152   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
153 
154   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
155   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
156 
157   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
158   for (MVT VT : MVT::integer_valuetypes()) {
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
160     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
161   }
162 
163   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
164 
165   // PowerPC has pre-inc load and store's.
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
170   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
175   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
176   if (!Subtarget.hasSPE()) {
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
178     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
180     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
181   }
182 
183   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
184   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
185   for (MVT VT : ScalarIntVTs) {
186     setOperationAction(ISD::ADDC, VT, Legal);
187     setOperationAction(ISD::ADDE, VT, Legal);
188     setOperationAction(ISD::SUBC, VT, Legal);
189     setOperationAction(ISD::SUBE, VT, Legal);
190   }
191 
192   if (Subtarget.useCRBits()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
194 
195     if (isPPC64 || Subtarget.hasFPCVT()) {
196       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
197       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
198                          isPPC64 ? MVT::i64 : MVT::i32);
199       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
200       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
201                         isPPC64 ? MVT::i64 : MVT::i32);
202     } else {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
204       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
205     }
206 
207     // PowerPC does not support direct load/store of condition registers.
208     setOperationAction(ISD::LOAD, MVT::i1, Custom);
209     setOperationAction(ISD::STORE, MVT::i1, Custom);
210 
211     // FIXME: Remove this once the ANDI glue bug is fixed:
212     if (ANDIGlueBug)
213       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
214 
215     for (MVT VT : MVT::integer_valuetypes()) {
216       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
217       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
218       setTruncStoreAction(VT, MVT::i1, Expand);
219     }
220 
221     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
222   }
223 
224   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
225   // PPC (the libcall is not available).
226   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
227   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
228 
229   // We do not currently implement these libm ops for PowerPC.
230   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
231   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
232   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
233   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
234   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
235   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
236 
237   // PowerPC has no SREM/UREM instructions unless we are on P9
238   // On P9 we may use a hardware instruction to compute the remainder.
239   // The instructions are not legalized directly because in the cases where the
240   // result of both the remainder and the division is required it is more
241   // efficient to compute the remainder from the result of the division rather
242   // than use the remainder instruction.
243   if (Subtarget.isISA3_0()) {
244     setOperationAction(ISD::SREM, MVT::i32, Custom);
245     setOperationAction(ISD::UREM, MVT::i32, Custom);
246     setOperationAction(ISD::SREM, MVT::i64, Custom);
247     setOperationAction(ISD::UREM, MVT::i64, Custom);
248   } else {
249     setOperationAction(ISD::SREM, MVT::i32, Expand);
250     setOperationAction(ISD::UREM, MVT::i32, Expand);
251     setOperationAction(ISD::SREM, MVT::i64, Expand);
252     setOperationAction(ISD::UREM, MVT::i64, Expand);
253   }
254 
255   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
256   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
257   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
258   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
259   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
260   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
262   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
263   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
264 
265   // We don't support sin/cos/sqrt/fmod/pow
266   setOperationAction(ISD::FSIN , MVT::f64, Expand);
267   setOperationAction(ISD::FCOS , MVT::f64, Expand);
268   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
269   setOperationAction(ISD::FREM , MVT::f64, Expand);
270   setOperationAction(ISD::FPOW , MVT::f64, Expand);
271   setOperationAction(ISD::FSIN , MVT::f32, Expand);
272   setOperationAction(ISD::FCOS , MVT::f32, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
274   setOperationAction(ISD::FREM , MVT::f32, Expand);
275   setOperationAction(ISD::FPOW , MVT::f32, Expand);
276   if (Subtarget.hasSPE()) {
277     setOperationAction(ISD::FMA  , MVT::f64, Expand);
278     setOperationAction(ISD::FMA  , MVT::f32, Expand);
279   } else {
280     setOperationAction(ISD::FMA  , MVT::f64, Legal);
281     setOperationAction(ISD::FMA  , MVT::f32, Legal);
282   }
283 
284   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
285 
286   // If we're enabling GP optimizations, use hardware square root
287   if (!Subtarget.hasFSQRT() &&
288       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
289         Subtarget.hasFRE()))
290     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
291 
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
294         Subtarget.hasFRES()))
295     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
296 
297   if (Subtarget.hasFCPSGN()) {
298     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
299     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
300   } else {
301     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
302     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
303   }
304 
305   if (Subtarget.hasFPRND()) {
306     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
307     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
308     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
309     setOperationAction(ISD::FROUND, MVT::f64, Legal);
310 
311     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::FROUND, MVT::f32, Legal);
315   }
316 
317   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
318   // to speed up scalar BSWAP64.
319   // CTPOP or CTTZ were introduced in P8/P9 respectively
320   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
321   if (Subtarget.hasP9Vector())
322     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
323   else
324     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
325   if (Subtarget.isISA3_0()) {
326     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
327     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
328   } else {
329     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
330     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
331   }
332 
333   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
334     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
335     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
336   } else {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
339   }
340 
341   // PowerPC does not have ROTR
342   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
343   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
344 
345   if (!Subtarget.useCRBits()) {
346     // PowerPC does not have Select
347     setOperationAction(ISD::SELECT, MVT::i32, Expand);
348     setOperationAction(ISD::SELECT, MVT::i64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f64, Expand);
351   }
352 
353   // PowerPC wants to turn select_cc of FP into fsel when possible.
354   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
355   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
356 
357   // PowerPC wants to optimize integer setcc a bit
358   if (!Subtarget.useCRBits())
359     setOperationAction(ISD::SETCC, MVT::i32, Custom);
360 
361   // PowerPC does not have BRCOND which requires SetCC
362   if (!Subtarget.useCRBits())
363     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
364 
365   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
366 
367   if (Subtarget.hasSPE()) {
368     // SPE has built-in conversions
369     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
370     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
371     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
372   } else {
373     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
374     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
375 
376     // PowerPC does not have [U|S]INT_TO_FP
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
379   }
380 
381   if (Subtarget.hasDirectMove() && isPPC64) {
382     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
383     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
384     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
385     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
386   } else {
387     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
388     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
389     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
390     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
391   }
392 
393   // We cannot sextinreg(i1).  Expand to shifts.
394   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
395 
396   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
397   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
398   // support continuation, user-level threading, and etc.. As a result, no
399   // other SjLj exception interfaces are implemented and please don't build
400   // your own exception handling based on them.
401   // LLVM/Clang supports zero-cost DWARF exception handling.
402   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
403   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
404 
405   // We want to legalize GlobalAddress and ConstantPool nodes into the
406   // appropriate instructions to materialize the address.
407   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
408   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
409   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
410   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
411   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
412   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
413   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
414   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
415   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
416   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
417 
418   // TRAP is legal.
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420 
421   // TRAMPOLINE is custom lowered.
422   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
423   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
424 
425   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
426   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
427 
428   if (Subtarget.isSVR4ABI()) {
429     if (isPPC64) {
430       // VAARG always uses double-word chunks, so promote anything smaller.
431       setOperationAction(ISD::VAARG, MVT::i1, Promote);
432       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
433       setOperationAction(ISD::VAARG, MVT::i8, Promote);
434       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
435       setOperationAction(ISD::VAARG, MVT::i16, Promote);
436       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
437       setOperationAction(ISD::VAARG, MVT::i32, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::Other, Expand);
440     } else {
441       // VAARG is custom lowered with the 32-bit SVR4 ABI.
442       setOperationAction(ISD::VAARG, MVT::Other, Custom);
443       setOperationAction(ISD::VAARG, MVT::i64, Custom);
444     }
445   } else
446     setOperationAction(ISD::VAARG, MVT::Other, Expand);
447 
448   if (Subtarget.isSVR4ABI() && !isPPC64)
449     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
450     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
451   else
452     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
453 
454   // Use the default implementation.
455   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
456   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
457   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
458   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
459   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
460   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
461   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
462   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
463   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
464 
465   // We want to custom lower some of our intrinsics.
466   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
467 
468   // To handle counter-based loop conditions.
469   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
470 
471   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
472   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
473   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
475 
476   // Comparisons that require checking two conditions.
477   if (Subtarget.hasSPE()) {
478     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
479     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
480     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
481     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
482   }
483   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
484   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
485   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
486   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
487   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
488   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
489   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
495 
496   if (Subtarget.has64BitSupport()) {
497     // They also have instructions for converting between i64 and fp.
498     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
499     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
500     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
501     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
502     // This is just the low 32 bits of a (signed) fp->i64 conversion.
503     // We cannot do this with Promote because i64 is not a legal type.
504     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
505 
506     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
507       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
508   } else {
509     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
510     if (Subtarget.hasSPE())
511       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
512     else
513       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
514   }
515 
516   // With the instructions enabled under FPCVT, we can do everything.
517   if (Subtarget.hasFPCVT()) {
518     if (Subtarget.has64BitSupport()) {
519       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
520       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
521       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
522       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
523     }
524 
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
527     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
528     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
529   }
530 
531   if (Subtarget.use64BitRegs()) {
532     // 64-bit PowerPC implementations can support i64 types directly
533     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
534     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
535     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
536     // 64-bit PowerPC wants to expand i128 shifts itself.
537     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
538     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
539     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
540   } else {
541     // 32-bit PowerPC wants to expand i64 shifts itself.
542     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
543     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
544     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
545   }
546 
547   if (Subtarget.hasAltivec()) {
548     // First set operation action for all vector types to expand. Then we
549     // will selectively turn on ones that can be effectively codegen'd.
550     for (MVT VT : MVT::vector_valuetypes()) {
551       // add/sub are legal for all supported vector VT's.
552       setOperationAction(ISD::ADD, VT, Legal);
553       setOperationAction(ISD::SUB, VT, Legal);
554 
555       // Vector instructions introduced in P8
556       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
557         setOperationAction(ISD::CTPOP, VT, Legal);
558         setOperationAction(ISD::CTLZ, VT, Legal);
559       }
560       else {
561         setOperationAction(ISD::CTPOP, VT, Expand);
562         setOperationAction(ISD::CTLZ, VT, Expand);
563       }
564 
565       // Vector instructions introduced in P9
566       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
567         setOperationAction(ISD::CTTZ, VT, Legal);
568       else
569         setOperationAction(ISD::CTTZ, VT, Expand);
570 
571       // We promote all shuffles to v16i8.
572       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
573       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
574 
575       // We promote all non-typed operations to v4i32.
576       setOperationAction(ISD::AND   , VT, Promote);
577       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
578       setOperationAction(ISD::OR    , VT, Promote);
579       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
580       setOperationAction(ISD::XOR   , VT, Promote);
581       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
582       setOperationAction(ISD::LOAD  , VT, Promote);
583       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
584       setOperationAction(ISD::SELECT, VT, Promote);
585       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
586       setOperationAction(ISD::VSELECT, VT, Legal);
587       setOperationAction(ISD::SELECT_CC, VT, Promote);
588       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
589       setOperationAction(ISD::STORE, VT, Promote);
590       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
591 
592       // No other operations are legal.
593       setOperationAction(ISD::MUL , VT, Expand);
594       setOperationAction(ISD::SDIV, VT, Expand);
595       setOperationAction(ISD::SREM, VT, Expand);
596       setOperationAction(ISD::UDIV, VT, Expand);
597       setOperationAction(ISD::UREM, VT, Expand);
598       setOperationAction(ISD::FDIV, VT, Expand);
599       setOperationAction(ISD::FREM, VT, Expand);
600       setOperationAction(ISD::FNEG, VT, Expand);
601       setOperationAction(ISD::FSQRT, VT, Expand);
602       setOperationAction(ISD::FLOG, VT, Expand);
603       setOperationAction(ISD::FLOG10, VT, Expand);
604       setOperationAction(ISD::FLOG2, VT, Expand);
605       setOperationAction(ISD::FEXP, VT, Expand);
606       setOperationAction(ISD::FEXP2, VT, Expand);
607       setOperationAction(ISD::FSIN, VT, Expand);
608       setOperationAction(ISD::FCOS, VT, Expand);
609       setOperationAction(ISD::FABS, VT, Expand);
610       setOperationAction(ISD::FFLOOR, VT, Expand);
611       setOperationAction(ISD::FCEIL,  VT, Expand);
612       setOperationAction(ISD::FTRUNC, VT, Expand);
613       setOperationAction(ISD::FRINT,  VT, Expand);
614       setOperationAction(ISD::FNEARBYINT, VT, Expand);
615       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
616       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
617       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
618       setOperationAction(ISD::MULHU, VT, Expand);
619       setOperationAction(ISD::MULHS, VT, Expand);
620       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UDIVREM, VT, Expand);
623       setOperationAction(ISD::SDIVREM, VT, Expand);
624       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
625       setOperationAction(ISD::FPOW, VT, Expand);
626       setOperationAction(ISD::BSWAP, VT, Expand);
627       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
628       setOperationAction(ISD::ROTL, VT, Expand);
629       setOperationAction(ISD::ROTR, VT, Expand);
630 
631       for (MVT InnerVT : MVT::vector_valuetypes()) {
632         setTruncStoreAction(VT, InnerVT, Expand);
633         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
634         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
635         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
636       }
637     }
638 
639     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
640       setOperationAction(ISD::ABS, VT, Custom);
641 
642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643     // with merges, splats, etc.
644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645 
646     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
647     // are cheap, so handle them before they get expanded to scalar.
648     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
649     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
650     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
651     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
652     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
653 
654     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
655     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
656     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
657     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
658     setOperationAction(ISD::SELECT, MVT::v4i32,
659                        Subtarget.useCRBits() ? Legal : Expand);
660     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
661     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
662     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
663     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
664     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
665     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
666     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
667     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
668     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
669 
670     // Without hasP8Altivec set, v2i64 SMAX isn't available.
671     // But ABS custom lowering requires SMAX support.
672     if (!Subtarget.hasP8Altivec())
673       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
674 
675     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
676     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
677     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
678     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
679 
680     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
681     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
682 
683     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
684       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
685       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
686     }
687 
688     if (Subtarget.hasP8Altivec())
689       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
690     else
691       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
692 
693     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
694     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
695 
696     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
697     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
698 
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
700     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
701     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
702     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
703 
704     // Altivec does not contain unordered floating-point compare instructions
705     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
706     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
707     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
708     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
709 
710     if (Subtarget.hasVSX()) {
711       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
712       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
713       if (Subtarget.hasP8Vector()) {
714         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
715         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
716       }
717       if (Subtarget.hasDirectMove() && isPPC64) {
718         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
719         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
720         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
721         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
722         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
723         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
724         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
725         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
726       }
727       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
728 
729       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
730       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
731       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
732       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
733       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
734 
735       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
736 
737       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
738       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
739 
740       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
741       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
742 
743       // Share the Altivec comparison restrictions.
744       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
745       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
746       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
747       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
748 
749       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
750       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
751 
752       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
753 
754       if (Subtarget.hasP8Vector())
755         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
756 
757       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
758 
759       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
760       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
761       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
762 
763       if (Subtarget.hasP8Altivec()) {
764         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
765         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
766         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
767 
768         // 128 bit shifts can be accomplished via 3 instructions for SHL and
769         // SRL, but not for SRA because of the instructions available:
770         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
771         // doing
772         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
773         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
774         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
775 
776         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
777       }
778       else {
779         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
780         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
781         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
782 
783         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
784 
785         // VSX v2i64 only supports non-arithmetic operations.
786         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
787         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
788       }
789 
790       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
791       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
792       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
793       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
794 
795       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
796 
797       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
798       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
799       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
800       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
801 
802       // Custom handling for partial vectors of integers converted to
803       // floating point. We already have optimal handling for v2i32 through
804       // the DAG combine, so those aren't necessary.
805       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
806       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
807       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
808       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
809       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
810       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
811       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
812       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
813 
814       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
815       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
816       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
817       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
818 
819       if (Subtarget.hasDirectMove())
820         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
821       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
822 
823       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
824     }
825 
826     if (Subtarget.hasP8Altivec()) {
827       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
828       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
829     }
830 
831     if (Subtarget.hasP9Vector()) {
832       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
833       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
834 
835       // 128 bit shifts can be accomplished via 3 instructions for SHL and
836       // SRL, but not for SRA because of the instructions available:
837       // VS{RL} and VS{RL}O.
838       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
839       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
840       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841 
842       if (EnableQuadPrecision) {
843         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
844         setOperationAction(ISD::FADD, MVT::f128, Legal);
845         setOperationAction(ISD::FSUB, MVT::f128, Legal);
846         setOperationAction(ISD::FDIV, MVT::f128, Legal);
847         setOperationAction(ISD::FMUL, MVT::f128, Legal);
848         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
849         // No extending loads to f128 on PPC.
850         for (MVT FPT : MVT::fp_valuetypes())
851           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
852         setOperationAction(ISD::FMA, MVT::f128, Legal);
853         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
854         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
855         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
856         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
857         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
858         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
859 
860         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
861         setOperationAction(ISD::FRINT, MVT::f128, Legal);
862         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
863         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
864         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
865         setOperationAction(ISD::FROUND, MVT::f128, Legal);
866 
867         setOperationAction(ISD::SELECT, MVT::f128, Expand);
868         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
869         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
870         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
871         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
872         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
873         // No implementation for these ops for PowerPC.
874         setOperationAction(ISD::FSIN , MVT::f128, Expand);
875         setOperationAction(ISD::FCOS , MVT::f128, Expand);
876         setOperationAction(ISD::FPOW, MVT::f128, Expand);
877         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
878         setOperationAction(ISD::FREM, MVT::f128, Expand);
879       }
880 
881     }
882 
883     if (Subtarget.hasP9Altivec()) {
884       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
885       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
886     }
887   }
888 
889   if (Subtarget.hasQPX()) {
890     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
891     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
892     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
893     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
894 
895     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
896     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
897 
898     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
899     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
900 
901     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
902     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
903 
904     if (!Subtarget.useCRBits())
905       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
906     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
907 
908     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
909     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
910     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
911     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
912     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
914     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
915 
916     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
917     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
918 
919     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
920     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
921     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
922 
923     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
924     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
925     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
926     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
927     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
928     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
929     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
930     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
931     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
932     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
933 
934     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
935     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
936 
937     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
938     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
939 
940     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
941 
942     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
943     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
944     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
945     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
946 
947     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
948     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
949 
950     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
951     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
952 
953     if (!Subtarget.useCRBits())
954       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
955     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
956 
957     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
958     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
959     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
960     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
961     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
962     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
963     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
964 
965     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
966     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
967 
968     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
969     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
970     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
971     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
972     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
973     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
974     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
975     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
976     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
977     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
978 
979     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
980     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
981 
982     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
983     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
984 
985     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
986 
987     setOperationAction(ISD::AND , MVT::v4i1, Legal);
988     setOperationAction(ISD::OR , MVT::v4i1, Legal);
989     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
990 
991     if (!Subtarget.useCRBits())
992       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
993     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
994 
995     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
996     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
997 
998     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
999     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1000     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1001     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1002     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1003     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1004     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1005 
1006     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1007     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1008 
1009     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1010 
1011     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1012     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1013     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1015 
1016     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1017     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1018     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1019     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1020 
1021     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1022     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1023 
1024     // These need to set FE_INEXACT, and so cannot be vectorized here.
1025     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1026     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1027 
1028     if (TM.Options.UnsafeFPMath) {
1029       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1030       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1031 
1032       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1033       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1034     } else {
1035       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1036       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1037 
1038       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1039       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1040     }
1041   }
1042 
1043   if (Subtarget.has64BitSupport())
1044     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1045 
1046   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1047 
1048   if (!isPPC64) {
1049     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1050     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1051   }
1052 
1053   setBooleanContents(ZeroOrOneBooleanContent);
1054 
1055   if (Subtarget.hasAltivec()) {
1056     // Altivec instructions set fields to all zeros or all ones.
1057     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1058   }
1059 
1060   if (!isPPC64) {
1061     // These libcalls are not available in 32-bit.
1062     setLibcallName(RTLIB::SHL_I128, nullptr);
1063     setLibcallName(RTLIB::SRL_I128, nullptr);
1064     setLibcallName(RTLIB::SRA_I128, nullptr);
1065   }
1066 
1067   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1068 
1069   // We have target-specific dag combine patterns for the following nodes:
1070   setTargetDAGCombine(ISD::ADD);
1071   setTargetDAGCombine(ISD::SHL);
1072   setTargetDAGCombine(ISD::SRA);
1073   setTargetDAGCombine(ISD::SRL);
1074   setTargetDAGCombine(ISD::MUL);
1075   setTargetDAGCombine(ISD::SINT_TO_FP);
1076   setTargetDAGCombine(ISD::BUILD_VECTOR);
1077   if (Subtarget.hasFPCVT())
1078     setTargetDAGCombine(ISD::UINT_TO_FP);
1079   setTargetDAGCombine(ISD::LOAD);
1080   setTargetDAGCombine(ISD::STORE);
1081   setTargetDAGCombine(ISD::BR_CC);
1082   if (Subtarget.useCRBits())
1083     setTargetDAGCombine(ISD::BRCOND);
1084   setTargetDAGCombine(ISD::BSWAP);
1085   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1086   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1087   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1088 
1089   setTargetDAGCombine(ISD::SIGN_EXTEND);
1090   setTargetDAGCombine(ISD::ZERO_EXTEND);
1091   setTargetDAGCombine(ISD::ANY_EXTEND);
1092 
1093   setTargetDAGCombine(ISD::TRUNCATE);
1094 
1095   if (Subtarget.useCRBits()) {
1096     setTargetDAGCombine(ISD::TRUNCATE);
1097     setTargetDAGCombine(ISD::SETCC);
1098     setTargetDAGCombine(ISD::SELECT_CC);
1099   }
1100 
1101   // Use reciprocal estimates.
1102   if (TM.Options.UnsafeFPMath) {
1103     setTargetDAGCombine(ISD::FDIV);
1104     setTargetDAGCombine(ISD::FSQRT);
1105   }
1106 
1107   if (Subtarget.hasP9Altivec()) {
1108     setTargetDAGCombine(ISD::ABS);
1109     setTargetDAGCombine(ISD::VSELECT);
1110   }
1111 
1112   // Darwin long double math library functions have $LDBL128 appended.
1113   if (Subtarget.isDarwin()) {
1114     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1115     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1116     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1117     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1118     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1119     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1120     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1121     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1122     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1123     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1124   }
1125 
1126   if (EnableQuadPrecision) {
1127     setLibcallName(RTLIB::LOG_F128, "logf128");
1128     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1129     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1130     setLibcallName(RTLIB::EXP_F128, "expf128");
1131     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1132     setLibcallName(RTLIB::SIN_F128, "sinf128");
1133     setLibcallName(RTLIB::COS_F128, "cosf128");
1134     setLibcallName(RTLIB::POW_F128, "powf128");
1135     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1136     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1137     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1138     setLibcallName(RTLIB::REM_F128, "fmodf128");
1139   }
1140 
1141   // With 32 condition bits, we don't need to sink (and duplicate) compares
1142   // aggressively in CodeGenPrep.
1143   if (Subtarget.useCRBits()) {
1144     setHasMultipleConditionRegisters();
1145     setJumpIsExpensive();
1146   }
1147 
1148   setMinFunctionAlignment(2);
1149   if (Subtarget.isDarwin())
1150     setPrefFunctionAlignment(4);
1151 
1152   switch (Subtarget.getDarwinDirective()) {
1153   default: break;
1154   case PPC::DIR_970:
1155   case PPC::DIR_A2:
1156   case PPC::DIR_E500:
1157   case PPC::DIR_E500mc:
1158   case PPC::DIR_E5500:
1159   case PPC::DIR_PWR4:
1160   case PPC::DIR_PWR5:
1161   case PPC::DIR_PWR5X:
1162   case PPC::DIR_PWR6:
1163   case PPC::DIR_PWR6X:
1164   case PPC::DIR_PWR7:
1165   case PPC::DIR_PWR8:
1166   case PPC::DIR_PWR9:
1167     setPrefFunctionAlignment(4);
1168     setPrefLoopAlignment(4);
1169     break;
1170   }
1171 
1172   if (Subtarget.enableMachineScheduler())
1173     setSchedulingPreference(Sched::Source);
1174   else
1175     setSchedulingPreference(Sched::Hybrid);
1176 
1177   computeRegisterProperties(STI.getRegisterInfo());
1178 
1179   // The Freescale cores do better with aggressive inlining of memcpy and
1180   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1181   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1182       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1183     MaxStoresPerMemset = 32;
1184     MaxStoresPerMemsetOptSize = 16;
1185     MaxStoresPerMemcpy = 32;
1186     MaxStoresPerMemcpyOptSize = 8;
1187     MaxStoresPerMemmove = 32;
1188     MaxStoresPerMemmoveOptSize = 8;
1189   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1190     // The A2 also benefits from (very) aggressive inlining of memcpy and
1191     // friends. The overhead of a the function call, even when warm, can be
1192     // over one hundred cycles.
1193     MaxStoresPerMemset = 128;
1194     MaxStoresPerMemcpy = 128;
1195     MaxStoresPerMemmove = 128;
1196     MaxLoadsPerMemcmp = 128;
1197   } else {
1198     MaxLoadsPerMemcmp = 8;
1199     MaxLoadsPerMemcmpOptSize = 4;
1200   }
1201 }
1202 
1203 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1204 /// the desired ByVal argument alignment.
1205 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1206                              unsigned MaxMaxAlign) {
1207   if (MaxAlign == MaxMaxAlign)
1208     return;
1209   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1210     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1211       MaxAlign = 32;
1212     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1213       MaxAlign = 16;
1214   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1215     unsigned EltAlign = 0;
1216     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1217     if (EltAlign > MaxAlign)
1218       MaxAlign = EltAlign;
1219   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1220     for (auto *EltTy : STy->elements()) {
1221       unsigned EltAlign = 0;
1222       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1223       if (EltAlign > MaxAlign)
1224         MaxAlign = EltAlign;
1225       if (MaxAlign == MaxMaxAlign)
1226         break;
1227     }
1228   }
1229 }
1230 
1231 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1232 /// function arguments in the caller parameter area.
1233 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1234                                                   const DataLayout &DL) const {
1235   // Darwin passes everything on 4 byte boundary.
1236   if (Subtarget.isDarwin())
1237     return 4;
1238 
1239   // 16byte and wider vectors are passed on 16byte boundary.
1240   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1241   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1242   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1243     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1244   return Align;
1245 }
1246 
1247 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1248                                                           CallingConv:: ID CC,
1249                                                           EVT VT) const {
1250   if (Subtarget.hasSPE() && VT == MVT::f64)
1251     return 2;
1252   return PPCTargetLowering::getNumRegisters(Context, VT);
1253 }
1254 
1255 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1256                                                      CallingConv:: ID CC,
1257                                                      EVT VT) const {
1258   if (Subtarget.hasSPE() && VT == MVT::f64)
1259     return MVT::i32;
1260   return PPCTargetLowering::getRegisterType(Context, VT);
1261 }
1262 
1263 bool PPCTargetLowering::useSoftFloat() const {
1264   return Subtarget.useSoftFloat();
1265 }
1266 
1267 bool PPCTargetLowering::hasSPE() const {
1268   return Subtarget.hasSPE();
1269 }
1270 
1271 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1272   switch ((PPCISD::NodeType)Opcode) {
1273   case PPCISD::FIRST_NUMBER:    break;
1274   case PPCISD::FSEL:            return "PPCISD::FSEL";
1275   case PPCISD::FCFID:           return "PPCISD::FCFID";
1276   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1277   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1278   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1279   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1280   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1281   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1282   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1283   case PPCISD::FP_TO_UINT_IN_VSR:
1284                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1285   case PPCISD::FP_TO_SINT_IN_VSR:
1286                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1287   case PPCISD::FRE:             return "PPCISD::FRE";
1288   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1289   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1290   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1291   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1292   case PPCISD::VPERM:           return "PPCISD::VPERM";
1293   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1294   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1295   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1296   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1297   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1298   case PPCISD::CMPB:            return "PPCISD::CMPB";
1299   case PPCISD::Hi:              return "PPCISD::Hi";
1300   case PPCISD::Lo:              return "PPCISD::Lo";
1301   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1302   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1303   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1304   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1305   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1306   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1307   case PPCISD::SRL:             return "PPCISD::SRL";
1308   case PPCISD::SRA:             return "PPCISD::SRA";
1309   case PPCISD::SHL:             return "PPCISD::SHL";
1310   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1311   case PPCISD::CALL:            return "PPCISD::CALL";
1312   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1313   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1314   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1315   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1316   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1317   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1318   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1319   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1320   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1321   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1322   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1323   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1324   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1325   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1326   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1327   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1328   case PPCISD::VCMP:            return "PPCISD::VCMP";
1329   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1330   case PPCISD::LBRX:            return "PPCISD::LBRX";
1331   case PPCISD::STBRX:           return "PPCISD::STBRX";
1332   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1333   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1334   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1335   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1336   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1337   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1338   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1339   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1340   case PPCISD::ST_VSR_SCAL_INT:
1341                                 return "PPCISD::ST_VSR_SCAL_INT";
1342   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1343   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1344   case PPCISD::BDZ:             return "PPCISD::BDZ";
1345   case PPCISD::MFFS:            return "PPCISD::MFFS";
1346   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1347   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1348   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1349   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1350   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1351   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1352   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1353   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1354   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1355   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1356   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1357   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1358   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1359   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1360   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1361   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1362   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1363   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1364   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1365   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1366   case PPCISD::SC:              return "PPCISD::SC";
1367   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1368   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1369   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1370   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1371   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1372   case PPCISD::VABSD:           return "PPCISD::VABSD";
1373   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1374   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1375   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1376   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1377   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1378   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1379   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1380   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1381   }
1382   return nullptr;
1383 }
1384 
1385 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1386                                           EVT VT) const {
1387   if (!VT.isVector())
1388     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1389 
1390   if (Subtarget.hasQPX())
1391     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1392 
1393   return VT.changeVectorElementTypeToInteger();
1394 }
1395 
1396 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1397   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1398   return true;
1399 }
1400 
1401 //===----------------------------------------------------------------------===//
1402 // Node matching predicates, for use by the tblgen matching code.
1403 //===----------------------------------------------------------------------===//
1404 
1405 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1406 static bool isFloatingPointZero(SDValue Op) {
1407   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1408     return CFP->getValueAPF().isZero();
1409   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1410     // Maybe this has already been legalized into the constant pool?
1411     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1412       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1413         return CFP->getValueAPF().isZero();
1414   }
1415   return false;
1416 }
1417 
1418 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1419 /// true if Op is undef or if it matches the specified value.
1420 static bool isConstantOrUndef(int Op, int Val) {
1421   return Op < 0 || Op == Val;
1422 }
1423 
1424 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1425 /// VPKUHUM instruction.
1426 /// The ShuffleKind distinguishes between big-endian operations with
1427 /// two different inputs (0), either-endian operations with two identical
1428 /// inputs (1), and little-endian operations with two different inputs (2).
1429 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1430 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1431                                SelectionDAG &DAG) {
1432   bool IsLE = DAG.getDataLayout().isLittleEndian();
1433   if (ShuffleKind == 0) {
1434     if (IsLE)
1435       return false;
1436     for (unsigned i = 0; i != 16; ++i)
1437       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1438         return false;
1439   } else if (ShuffleKind == 2) {
1440     if (!IsLE)
1441       return false;
1442     for (unsigned i = 0; i != 16; ++i)
1443       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1444         return false;
1445   } else if (ShuffleKind == 1) {
1446     unsigned j = IsLE ? 0 : 1;
1447     for (unsigned i = 0; i != 8; ++i)
1448       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1449           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1450         return false;
1451   }
1452   return true;
1453 }
1454 
1455 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1456 /// VPKUWUM instruction.
1457 /// The ShuffleKind distinguishes between big-endian operations with
1458 /// two different inputs (0), either-endian operations with two identical
1459 /// inputs (1), and little-endian operations with two different inputs (2).
1460 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1461 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1462                                SelectionDAG &DAG) {
1463   bool IsLE = DAG.getDataLayout().isLittleEndian();
1464   if (ShuffleKind == 0) {
1465     if (IsLE)
1466       return false;
1467     for (unsigned i = 0; i != 16; i += 2)
1468       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1469           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1470         return false;
1471   } else if (ShuffleKind == 2) {
1472     if (!IsLE)
1473       return false;
1474     for (unsigned i = 0; i != 16; i += 2)
1475       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1476           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1477         return false;
1478   } else if (ShuffleKind == 1) {
1479     unsigned j = IsLE ? 0 : 2;
1480     for (unsigned i = 0; i != 8; i += 2)
1481       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1482           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1483           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1484           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1485         return false;
1486   }
1487   return true;
1488 }
1489 
1490 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1491 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1492 /// current subtarget.
1493 ///
1494 /// The ShuffleKind distinguishes between big-endian operations with
1495 /// two different inputs (0), either-endian operations with two identical
1496 /// inputs (1), and little-endian operations with two different inputs (2).
1497 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1498 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1499                                SelectionDAG &DAG) {
1500   const PPCSubtarget& Subtarget =
1501     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1502   if (!Subtarget.hasP8Vector())
1503     return false;
1504 
1505   bool IsLE = DAG.getDataLayout().isLittleEndian();
1506   if (ShuffleKind == 0) {
1507     if (IsLE)
1508       return false;
1509     for (unsigned i = 0; i != 16; i += 4)
1510       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1511           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1512           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1513           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1514         return false;
1515   } else if (ShuffleKind == 2) {
1516     if (!IsLE)
1517       return false;
1518     for (unsigned i = 0; i != 16; i += 4)
1519       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1520           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1521           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1522           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1523         return false;
1524   } else if (ShuffleKind == 1) {
1525     unsigned j = IsLE ? 0 : 4;
1526     for (unsigned i = 0; i != 8; i += 4)
1527       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1528           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1529           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1530           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1531           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1532           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1533           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1534           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1535         return false;
1536   }
1537   return true;
1538 }
1539 
1540 /// isVMerge - Common function, used to match vmrg* shuffles.
1541 ///
1542 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1543                      unsigned LHSStart, unsigned RHSStart) {
1544   if (N->getValueType(0) != MVT::v16i8)
1545     return false;
1546   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1547          "Unsupported merge size!");
1548 
1549   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1550     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1551       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1552                              LHSStart+j+i*UnitSize) ||
1553           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1554                              RHSStart+j+i*UnitSize))
1555         return false;
1556     }
1557   return true;
1558 }
1559 
1560 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1561 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1562 /// The ShuffleKind distinguishes between big-endian merges with two
1563 /// different inputs (0), either-endian merges with two identical inputs (1),
1564 /// and little-endian merges with two different inputs (2).  For the latter,
1565 /// the input operands are swapped (see PPCInstrAltivec.td).
1566 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1567                              unsigned ShuffleKind, SelectionDAG &DAG) {
1568   if (DAG.getDataLayout().isLittleEndian()) {
1569     if (ShuffleKind == 1) // unary
1570       return isVMerge(N, UnitSize, 0, 0);
1571     else if (ShuffleKind == 2) // swapped
1572       return isVMerge(N, UnitSize, 0, 16);
1573     else
1574       return false;
1575   } else {
1576     if (ShuffleKind == 1) // unary
1577       return isVMerge(N, UnitSize, 8, 8);
1578     else if (ShuffleKind == 0) // normal
1579       return isVMerge(N, UnitSize, 8, 24);
1580     else
1581       return false;
1582   }
1583 }
1584 
1585 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1586 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1587 /// The ShuffleKind distinguishes between big-endian merges with two
1588 /// different inputs (0), either-endian merges with two identical inputs (1),
1589 /// and little-endian merges with two different inputs (2).  For the latter,
1590 /// the input operands are swapped (see PPCInstrAltivec.td).
1591 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1592                              unsigned ShuffleKind, SelectionDAG &DAG) {
1593   if (DAG.getDataLayout().isLittleEndian()) {
1594     if (ShuffleKind == 1) // unary
1595       return isVMerge(N, UnitSize, 8, 8);
1596     else if (ShuffleKind == 2) // swapped
1597       return isVMerge(N, UnitSize, 8, 24);
1598     else
1599       return false;
1600   } else {
1601     if (ShuffleKind == 1) // unary
1602       return isVMerge(N, UnitSize, 0, 0);
1603     else if (ShuffleKind == 0) // normal
1604       return isVMerge(N, UnitSize, 0, 16);
1605     else
1606       return false;
1607   }
1608 }
1609 
1610 /**
1611  * Common function used to match vmrgew and vmrgow shuffles
1612  *
1613  * The indexOffset determines whether to look for even or odd words in
1614  * the shuffle mask. This is based on the of the endianness of the target
1615  * machine.
1616  *   - Little Endian:
1617  *     - Use offset of 0 to check for odd elements
1618  *     - Use offset of 4 to check for even elements
1619  *   - Big Endian:
1620  *     - Use offset of 0 to check for even elements
1621  *     - Use offset of 4 to check for odd elements
1622  * A detailed description of the vector element ordering for little endian and
1623  * big endian can be found at
1624  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1625  * Targeting your applications - what little endian and big endian IBM XL C/C++
1626  * compiler differences mean to you
1627  *
1628  * The mask to the shuffle vector instruction specifies the indices of the
1629  * elements from the two input vectors to place in the result. The elements are
1630  * numbered in array-access order, starting with the first vector. These vectors
1631  * are always of type v16i8, thus each vector will contain 16 elements of size
1632  * 8. More info on the shuffle vector can be found in the
1633  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1634  * Language Reference.
1635  *
1636  * The RHSStartValue indicates whether the same input vectors are used (unary)
1637  * or two different input vectors are used, based on the following:
1638  *   - If the instruction uses the same vector for both inputs, the range of the
1639  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1640  *     be 0.
1641  *   - If the instruction has two different vectors then the range of the
1642  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1643  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1644  *     to 31 specify elements in the second vector).
1645  *
1646  * \param[in] N The shuffle vector SD Node to analyze
1647  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1648  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1649  * vector to the shuffle_vector instruction
1650  * \return true iff this shuffle vector represents an even or odd word merge
1651  */
1652 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1653                      unsigned RHSStartValue) {
1654   if (N->getValueType(0) != MVT::v16i8)
1655     return false;
1656 
1657   for (unsigned i = 0; i < 2; ++i)
1658     for (unsigned j = 0; j < 4; ++j)
1659       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1660                              i*RHSStartValue+j+IndexOffset) ||
1661           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1662                              i*RHSStartValue+j+IndexOffset+8))
1663         return false;
1664   return true;
1665 }
1666 
1667 /**
1668  * Determine if the specified shuffle mask is suitable for the vmrgew or
1669  * vmrgow instructions.
1670  *
1671  * \param[in] N The shuffle vector SD Node to analyze
1672  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1673  * \param[in] ShuffleKind Identify the type of merge:
1674  *   - 0 = big-endian merge with two different inputs;
1675  *   - 1 = either-endian merge with two identical inputs;
1676  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1677  *     little-endian merges).
1678  * \param[in] DAG The current SelectionDAG
1679  * \return true iff this shuffle mask
1680  */
1681 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1682                               unsigned ShuffleKind, SelectionDAG &DAG) {
1683   if (DAG.getDataLayout().isLittleEndian()) {
1684     unsigned indexOffset = CheckEven ? 4 : 0;
1685     if (ShuffleKind == 1) // Unary
1686       return isVMerge(N, indexOffset, 0);
1687     else if (ShuffleKind == 2) // swapped
1688       return isVMerge(N, indexOffset, 16);
1689     else
1690       return false;
1691   }
1692   else {
1693     unsigned indexOffset = CheckEven ? 0 : 4;
1694     if (ShuffleKind == 1) // Unary
1695       return isVMerge(N, indexOffset, 0);
1696     else if (ShuffleKind == 0) // Normal
1697       return isVMerge(N, indexOffset, 16);
1698     else
1699       return false;
1700   }
1701   return false;
1702 }
1703 
1704 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1705 /// amount, otherwise return -1.
1706 /// The ShuffleKind distinguishes between big-endian operations with two
1707 /// different inputs (0), either-endian operations with two identical inputs
1708 /// (1), and little-endian operations with two different inputs (2).  For the
1709 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1710 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1711                              SelectionDAG &DAG) {
1712   if (N->getValueType(0) != MVT::v16i8)
1713     return -1;
1714 
1715   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1716 
1717   // Find the first non-undef value in the shuffle mask.
1718   unsigned i;
1719   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1720     /*search*/;
1721 
1722   if (i == 16) return -1;  // all undef.
1723 
1724   // Otherwise, check to see if the rest of the elements are consecutively
1725   // numbered from this value.
1726   unsigned ShiftAmt = SVOp->getMaskElt(i);
1727   if (ShiftAmt < i) return -1;
1728 
1729   ShiftAmt -= i;
1730   bool isLE = DAG.getDataLayout().isLittleEndian();
1731 
1732   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1733     // Check the rest of the elements to see if they are consecutive.
1734     for (++i; i != 16; ++i)
1735       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1736         return -1;
1737   } else if (ShuffleKind == 1) {
1738     // Check the rest of the elements to see if they are consecutive.
1739     for (++i; i != 16; ++i)
1740       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1741         return -1;
1742   } else
1743     return -1;
1744 
1745   if (isLE)
1746     ShiftAmt = 16 - ShiftAmt;
1747 
1748   return ShiftAmt;
1749 }
1750 
1751 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1752 /// specifies a splat of a single element that is suitable for input to
1753 /// VSPLTB/VSPLTH/VSPLTW.
1754 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1755   assert(N->getValueType(0) == MVT::v16i8 &&
1756          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1757 
1758   // The consecutive indices need to specify an element, not part of two
1759   // different elements.  So abandon ship early if this isn't the case.
1760   if (N->getMaskElt(0) % EltSize != 0)
1761     return false;
1762 
1763   // This is a splat operation if each element of the permute is the same, and
1764   // if the value doesn't reference the second vector.
1765   unsigned ElementBase = N->getMaskElt(0);
1766 
1767   // FIXME: Handle UNDEF elements too!
1768   if (ElementBase >= 16)
1769     return false;
1770 
1771   // Check that the indices are consecutive, in the case of a multi-byte element
1772   // splatted with a v16i8 mask.
1773   for (unsigned i = 1; i != EltSize; ++i)
1774     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1775       return false;
1776 
1777   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1778     if (N->getMaskElt(i) < 0) continue;
1779     for (unsigned j = 0; j != EltSize; ++j)
1780       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1781         return false;
1782   }
1783   return true;
1784 }
1785 
1786 /// Check that the mask is shuffling N byte elements. Within each N byte
1787 /// element of the mask, the indices could be either in increasing or
1788 /// decreasing order as long as they are consecutive.
1789 /// \param[in] N the shuffle vector SD Node to analyze
1790 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1791 /// Word/DoubleWord/QuadWord).
1792 /// \param[in] StepLen the delta indices number among the N byte element, if
1793 /// the mask is in increasing/decreasing order then it is 1/-1.
1794 /// \return true iff the mask is shuffling N byte elements.
1795 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1796                                    int StepLen) {
1797   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1798          "Unexpected element width.");
1799   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1800 
1801   unsigned NumOfElem = 16 / Width;
1802   unsigned MaskVal[16]; //  Width is never greater than 16
1803   for (unsigned i = 0; i < NumOfElem; ++i) {
1804     MaskVal[0] = N->getMaskElt(i * Width);
1805     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1806       return false;
1807     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1808       return false;
1809     }
1810 
1811     for (unsigned int j = 1; j < Width; ++j) {
1812       MaskVal[j] = N->getMaskElt(i * Width + j);
1813       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1814         return false;
1815       }
1816     }
1817   }
1818 
1819   return true;
1820 }
1821 
1822 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1823                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1824   if (!isNByteElemShuffleMask(N, 4, 1))
1825     return false;
1826 
1827   // Now we look at mask elements 0,4,8,12
1828   unsigned M0 = N->getMaskElt(0) / 4;
1829   unsigned M1 = N->getMaskElt(4) / 4;
1830   unsigned M2 = N->getMaskElt(8) / 4;
1831   unsigned M3 = N->getMaskElt(12) / 4;
1832   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1833   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1834 
1835   // Below, let H and L be arbitrary elements of the shuffle mask
1836   // where H is in the range [4,7] and L is in the range [0,3].
1837   // H, 1, 2, 3 or L, 5, 6, 7
1838   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1839       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1840     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1841     InsertAtByte = IsLE ? 12 : 0;
1842     Swap = M0 < 4;
1843     return true;
1844   }
1845   // 0, H, 2, 3 or 4, L, 6, 7
1846   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1847       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1848     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1849     InsertAtByte = IsLE ? 8 : 4;
1850     Swap = M1 < 4;
1851     return true;
1852   }
1853   // 0, 1, H, 3 or 4, 5, L, 7
1854   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1855       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1856     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1857     InsertAtByte = IsLE ? 4 : 8;
1858     Swap = M2 < 4;
1859     return true;
1860   }
1861   // 0, 1, 2, H or 4, 5, 6, L
1862   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1863       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1864     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1865     InsertAtByte = IsLE ? 0 : 12;
1866     Swap = M3 < 4;
1867     return true;
1868   }
1869 
1870   // If both vector operands for the shuffle are the same vector, the mask will
1871   // contain only elements from the first one and the second one will be undef.
1872   if (N->getOperand(1).isUndef()) {
1873     ShiftElts = 0;
1874     Swap = true;
1875     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1876     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1877       InsertAtByte = IsLE ? 12 : 0;
1878       return true;
1879     }
1880     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1881       InsertAtByte = IsLE ? 8 : 4;
1882       return true;
1883     }
1884     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1885       InsertAtByte = IsLE ? 4 : 8;
1886       return true;
1887     }
1888     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1889       InsertAtByte = IsLE ? 0 : 12;
1890       return true;
1891     }
1892   }
1893 
1894   return false;
1895 }
1896 
1897 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1898                                bool &Swap, bool IsLE) {
1899   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1900   // Ensure each byte index of the word is consecutive.
1901   if (!isNByteElemShuffleMask(N, 4, 1))
1902     return false;
1903 
1904   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1905   unsigned M0 = N->getMaskElt(0) / 4;
1906   unsigned M1 = N->getMaskElt(4) / 4;
1907   unsigned M2 = N->getMaskElt(8) / 4;
1908   unsigned M3 = N->getMaskElt(12) / 4;
1909 
1910   // If both vector operands for the shuffle are the same vector, the mask will
1911   // contain only elements from the first one and the second one will be undef.
1912   if (N->getOperand(1).isUndef()) {
1913     assert(M0 < 4 && "Indexing into an undef vector?");
1914     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1915       return false;
1916 
1917     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1918     Swap = false;
1919     return true;
1920   }
1921 
1922   // Ensure each word index of the ShuffleVector Mask is consecutive.
1923   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1924     return false;
1925 
1926   if (IsLE) {
1927     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1928       // Input vectors don't need to be swapped if the leading element
1929       // of the result is one of the 3 left elements of the second vector
1930       // (or if there is no shift to be done at all).
1931       Swap = false;
1932       ShiftElts = (8 - M0) % 8;
1933     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1934       // Input vectors need to be swapped if the leading element
1935       // of the result is one of the 3 left elements of the first vector
1936       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1937       Swap = true;
1938       ShiftElts = (4 - M0) % 4;
1939     }
1940 
1941     return true;
1942   } else {                                          // BE
1943     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1944       // Input vectors don't need to be swapped if the leading element
1945       // of the result is one of the 4 elements of the first vector.
1946       Swap = false;
1947       ShiftElts = M0;
1948     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1949       // Input vectors need to be swapped if the leading element
1950       // of the result is one of the 4 elements of the right vector.
1951       Swap = true;
1952       ShiftElts = M0 - 4;
1953     }
1954 
1955     return true;
1956   }
1957 }
1958 
1959 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1960   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1961 
1962   if (!isNByteElemShuffleMask(N, Width, -1))
1963     return false;
1964 
1965   for (int i = 0; i < 16; i += Width)
1966     if (N->getMaskElt(i) != i + Width - 1)
1967       return false;
1968 
1969   return true;
1970 }
1971 
1972 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1973   return isXXBRShuffleMaskHelper(N, 2);
1974 }
1975 
1976 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1977   return isXXBRShuffleMaskHelper(N, 4);
1978 }
1979 
1980 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1981   return isXXBRShuffleMaskHelper(N, 8);
1982 }
1983 
1984 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1985   return isXXBRShuffleMaskHelper(N, 16);
1986 }
1987 
1988 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1989 /// if the inputs to the instruction should be swapped and set \p DM to the
1990 /// value for the immediate.
1991 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1992 /// AND element 0 of the result comes from the first input (LE) or second input
1993 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1994 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1995 /// mask.
1996 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1997                                bool &Swap, bool IsLE) {
1998   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1999 
2000   // Ensure each byte index of the double word is consecutive.
2001   if (!isNByteElemShuffleMask(N, 8, 1))
2002     return false;
2003 
2004   unsigned M0 = N->getMaskElt(0) / 8;
2005   unsigned M1 = N->getMaskElt(8) / 8;
2006   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2007 
2008   // If both vector operands for the shuffle are the same vector, the mask will
2009   // contain only elements from the first one and the second one will be undef.
2010   if (N->getOperand(1).isUndef()) {
2011     if ((M0 | M1) < 2) {
2012       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2013       Swap = false;
2014       return true;
2015     } else
2016       return false;
2017   }
2018 
2019   if (IsLE) {
2020     if (M0 > 1 && M1 < 2) {
2021       Swap = false;
2022     } else if (M0 < 2 && M1 > 1) {
2023       M0 = (M0 + 2) % 4;
2024       M1 = (M1 + 2) % 4;
2025       Swap = true;
2026     } else
2027       return false;
2028 
2029     // Note: if control flow comes here that means Swap is already set above
2030     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2031     return true;
2032   } else { // BE
2033     if (M0 < 2 && M1 > 1) {
2034       Swap = false;
2035     } else if (M0 > 1 && M1 < 2) {
2036       M0 = (M0 + 2) % 4;
2037       M1 = (M1 + 2) % 4;
2038       Swap = true;
2039     } else
2040       return false;
2041 
2042     // Note: if control flow comes here that means Swap is already set above
2043     DM = (M0 << 1) + (M1 & 1);
2044     return true;
2045   }
2046 }
2047 
2048 
2049 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2050 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2051 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2052                                 SelectionDAG &DAG) {
2053   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2054   assert(isSplatShuffleMask(SVOp, EltSize));
2055   if (DAG.getDataLayout().isLittleEndian())
2056     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2057   else
2058     return SVOp->getMaskElt(0) / EltSize;
2059 }
2060 
2061 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2062 /// by using a vspltis[bhw] instruction of the specified element size, return
2063 /// the constant being splatted.  The ByteSize field indicates the number of
2064 /// bytes of each element [124] -> [bhw].
2065 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2066   SDValue OpVal(nullptr, 0);
2067 
2068   // If ByteSize of the splat is bigger than the element size of the
2069   // build_vector, then we have a case where we are checking for a splat where
2070   // multiple elements of the buildvector are folded together into a single
2071   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2072   unsigned EltSize = 16/N->getNumOperands();
2073   if (EltSize < ByteSize) {
2074     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2075     SDValue UniquedVals[4];
2076     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2077 
2078     // See if all of the elements in the buildvector agree across.
2079     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2080       if (N->getOperand(i).isUndef()) continue;
2081       // If the element isn't a constant, bail fully out.
2082       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2083 
2084       if (!UniquedVals[i&(Multiple-1)].getNode())
2085         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2086       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2087         return SDValue();  // no match.
2088     }
2089 
2090     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2091     // either constant or undef values that are identical for each chunk.  See
2092     // if these chunks can form into a larger vspltis*.
2093 
2094     // Check to see if all of the leading entries are either 0 or -1.  If
2095     // neither, then this won't fit into the immediate field.
2096     bool LeadingZero = true;
2097     bool LeadingOnes = true;
2098     for (unsigned i = 0; i != Multiple-1; ++i) {
2099       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2100 
2101       LeadingZero &= isNullConstant(UniquedVals[i]);
2102       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2103     }
2104     // Finally, check the least significant entry.
2105     if (LeadingZero) {
2106       if (!UniquedVals[Multiple-1].getNode())
2107         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2108       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2109       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2110         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2111     }
2112     if (LeadingOnes) {
2113       if (!UniquedVals[Multiple-1].getNode())
2114         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2115       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2116       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2117         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2118     }
2119 
2120     return SDValue();
2121   }
2122 
2123   // Check to see if this buildvec has a single non-undef value in its elements.
2124   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2125     if (N->getOperand(i).isUndef()) continue;
2126     if (!OpVal.getNode())
2127       OpVal = N->getOperand(i);
2128     else if (OpVal != N->getOperand(i))
2129       return SDValue();
2130   }
2131 
2132   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2133 
2134   unsigned ValSizeInBytes = EltSize;
2135   uint64_t Value = 0;
2136   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2137     Value = CN->getZExtValue();
2138   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2139     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2140     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2141   }
2142 
2143   // If the splat value is larger than the element value, then we can never do
2144   // this splat.  The only case that we could fit the replicated bits into our
2145   // immediate field for would be zero, and we prefer to use vxor for it.
2146   if (ValSizeInBytes < ByteSize) return SDValue();
2147 
2148   // If the element value is larger than the splat value, check if it consists
2149   // of a repeated bit pattern of size ByteSize.
2150   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2151     return SDValue();
2152 
2153   // Properly sign extend the value.
2154   int MaskVal = SignExtend32(Value, ByteSize * 8);
2155 
2156   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2157   if (MaskVal == 0) return SDValue();
2158 
2159   // Finally, if this value fits in a 5 bit sext field, return it
2160   if (SignExtend32<5>(MaskVal) == MaskVal)
2161     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2162   return SDValue();
2163 }
2164 
2165 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2166 /// amount, otherwise return -1.
2167 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2168   EVT VT = N->getValueType(0);
2169   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2170     return -1;
2171 
2172   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2173 
2174   // Find the first non-undef value in the shuffle mask.
2175   unsigned i;
2176   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2177     /*search*/;
2178 
2179   if (i == 4) return -1;  // all undef.
2180 
2181   // Otherwise, check to see if the rest of the elements are consecutively
2182   // numbered from this value.
2183   unsigned ShiftAmt = SVOp->getMaskElt(i);
2184   if (ShiftAmt < i) return -1;
2185   ShiftAmt -= i;
2186 
2187   // Check the rest of the elements to see if they are consecutive.
2188   for (++i; i != 4; ++i)
2189     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2190       return -1;
2191 
2192   return ShiftAmt;
2193 }
2194 
2195 //===----------------------------------------------------------------------===//
2196 //  Addressing Mode Selection
2197 //===----------------------------------------------------------------------===//
2198 
2199 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2200 /// or 64-bit immediate, and if the value can be accurately represented as a
2201 /// sign extension from a 16-bit value.  If so, this returns true and the
2202 /// immediate.
2203 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2204   if (!isa<ConstantSDNode>(N))
2205     return false;
2206 
2207   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2208   if (N->getValueType(0) == MVT::i32)
2209     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2210   else
2211     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2212 }
2213 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2214   return isIntS16Immediate(Op.getNode(), Imm);
2215 }
2216 
2217 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2218 /// can be represented as an indexed [r+r] operation.  Returns false if it
2219 /// can be more efficiently represented with [r+imm].
2220 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2221                                             SDValue &Index,
2222                                             SelectionDAG &DAG) const {
2223   int16_t imm = 0;
2224   if (N.getOpcode() == ISD::ADD) {
2225     if (isIntS16Immediate(N.getOperand(1), imm))
2226       return false;    // r+i
2227     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2228       return false;    // r+i
2229 
2230     Base = N.getOperand(0);
2231     Index = N.getOperand(1);
2232     return true;
2233   } else if (N.getOpcode() == ISD::OR) {
2234     if (isIntS16Immediate(N.getOperand(1), imm))
2235       return false;    // r+i can fold it if we can.
2236 
2237     // If this is an or of disjoint bitfields, we can codegen this as an add
2238     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2239     // disjoint.
2240     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2241 
2242     if (LHSKnown.Zero.getBoolValue()) {
2243       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2244       // If all of the bits are known zero on the LHS or RHS, the add won't
2245       // carry.
2246       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2247         Base = N.getOperand(0);
2248         Index = N.getOperand(1);
2249         return true;
2250       }
2251     }
2252   }
2253 
2254   return false;
2255 }
2256 
2257 // If we happen to be doing an i64 load or store into a stack slot that has
2258 // less than a 4-byte alignment, then the frame-index elimination may need to
2259 // use an indexed load or store instruction (because the offset may not be a
2260 // multiple of 4). The extra register needed to hold the offset comes from the
2261 // register scavenger, and it is possible that the scavenger will need to use
2262 // an emergency spill slot. As a result, we need to make sure that a spill slot
2263 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2264 // stack slot.
2265 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2266   // FIXME: This does not handle the LWA case.
2267   if (VT != MVT::i64)
2268     return;
2269 
2270   // NOTE: We'll exclude negative FIs here, which come from argument
2271   // lowering, because there are no known test cases triggering this problem
2272   // using packed structures (or similar). We can remove this exclusion if
2273   // we find such a test case. The reason why this is so test-case driven is
2274   // because this entire 'fixup' is only to prevent crashes (from the
2275   // register scavenger) on not-really-valid inputs. For example, if we have:
2276   //   %a = alloca i1
2277   //   %b = bitcast i1* %a to i64*
2278   //   store i64* a, i64 b
2279   // then the store should really be marked as 'align 1', but is not. If it
2280   // were marked as 'align 1' then the indexed form would have been
2281   // instruction-selected initially, and the problem this 'fixup' is preventing
2282   // won't happen regardless.
2283   if (FrameIdx < 0)
2284     return;
2285 
2286   MachineFunction &MF = DAG.getMachineFunction();
2287   MachineFrameInfo &MFI = MF.getFrameInfo();
2288 
2289   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2290   if (Align >= 4)
2291     return;
2292 
2293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2294   FuncInfo->setHasNonRISpills();
2295 }
2296 
2297 /// Returns true if the address N can be represented by a base register plus
2298 /// a signed 16-bit displacement [r+imm], and if it is not better
2299 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2300 /// displacements that are multiples of that value.
2301 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2302                                             SDValue &Base,
2303                                             SelectionDAG &DAG,
2304                                             unsigned Alignment) const {
2305   // FIXME dl should come from parent load or store, not from address
2306   SDLoc dl(N);
2307   // If this can be more profitably realized as r+r, fail.
2308   if (SelectAddressRegReg(N, Disp, Base, DAG))
2309     return false;
2310 
2311   if (N.getOpcode() == ISD::ADD) {
2312     int16_t imm = 0;
2313     if (isIntS16Immediate(N.getOperand(1), imm) &&
2314         (!Alignment || (imm % Alignment) == 0)) {
2315       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2316       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2317         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2318         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2319       } else {
2320         Base = N.getOperand(0);
2321       }
2322       return true; // [r+i]
2323     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2324       // Match LOAD (ADD (X, Lo(G))).
2325       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2326              && "Cannot handle constant offsets yet!");
2327       Disp = N.getOperand(1).getOperand(0);  // The global address.
2328       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2329              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2330              Disp.getOpcode() == ISD::TargetConstantPool ||
2331              Disp.getOpcode() == ISD::TargetJumpTable);
2332       Base = N.getOperand(0);
2333       return true;  // [&g+r]
2334     }
2335   } else if (N.getOpcode() == ISD::OR) {
2336     int16_t imm = 0;
2337     if (isIntS16Immediate(N.getOperand(1), imm) &&
2338         (!Alignment || (imm % Alignment) == 0)) {
2339       // If this is an or of disjoint bitfields, we can codegen this as an add
2340       // (for better address arithmetic) if the LHS and RHS of the OR are
2341       // provably disjoint.
2342       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2343 
2344       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2345         // If all of the bits are known zero on the LHS or RHS, the add won't
2346         // carry.
2347         if (FrameIndexSDNode *FI =
2348               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2349           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2350           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2351         } else {
2352           Base = N.getOperand(0);
2353         }
2354         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2355         return true;
2356       }
2357     }
2358   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2359     // Loading from a constant address.
2360 
2361     // If this address fits entirely in a 16-bit sext immediate field, codegen
2362     // this as "d, 0"
2363     int16_t Imm;
2364     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2365       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2366       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2367                              CN->getValueType(0));
2368       return true;
2369     }
2370 
2371     // Handle 32-bit sext immediates with LIS + addr mode.
2372     if ((CN->getValueType(0) == MVT::i32 ||
2373          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2374         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2375       int Addr = (int)CN->getZExtValue();
2376 
2377       // Otherwise, break this down into an LIS + disp.
2378       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2379 
2380       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2381                                    MVT::i32);
2382       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2383       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2384       return true;
2385     }
2386   }
2387 
2388   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2389   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2390     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2391     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2392   } else
2393     Base = N;
2394   return true;      // [r+0]
2395 }
2396 
2397 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2398 /// represented as an indexed [r+r] operation.
2399 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2400                                                 SDValue &Index,
2401                                                 SelectionDAG &DAG) const {
2402   // Check to see if we can easily represent this as an [r+r] address.  This
2403   // will fail if it thinks that the address is more profitably represented as
2404   // reg+imm, e.g. where imm = 0.
2405   if (SelectAddressRegReg(N, Base, Index, DAG))
2406     return true;
2407 
2408   // If the address is the result of an add, we will utilize the fact that the
2409   // address calculation includes an implicit add.  However, we can reduce
2410   // register pressure if we do not materialize a constant just for use as the
2411   // index register.  We only get rid of the add if it is not an add of a
2412   // value and a 16-bit signed constant and both have a single use.
2413   int16_t imm = 0;
2414   if (N.getOpcode() == ISD::ADD &&
2415       (!isIntS16Immediate(N.getOperand(1), imm) ||
2416        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2417     Base = N.getOperand(0);
2418     Index = N.getOperand(1);
2419     return true;
2420   }
2421 
2422   // Otherwise, do it the hard way, using R0 as the base register.
2423   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2424                          N.getValueType());
2425   Index = N;
2426   return true;
2427 }
2428 
2429 /// Returns true if we should use a direct load into vector instruction
2430 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2431 static bool usePartialVectorLoads(SDNode *N) {
2432   if (!N->hasOneUse())
2433     return false;
2434 
2435   // If there are any other uses other than scalar to vector, then we should
2436   // keep it as a scalar load -> direct move pattern to prevent multiple
2437   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
2438   // efficiently, but no update equivalent.
2439   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2440     EVT MemVT = LD->getMemoryVT();
2441     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2442       SDNode *User = *(LD->use_begin());
2443       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2444         return true;
2445     }
2446   }
2447 
2448   return false;
2449 }
2450 
2451 /// getPreIndexedAddressParts - returns true by value, base pointer and
2452 /// offset pointer and addressing mode by reference if the node's address
2453 /// can be legally represented as pre-indexed load / store address.
2454 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2455                                                   SDValue &Offset,
2456                                                   ISD::MemIndexedMode &AM,
2457                                                   SelectionDAG &DAG) const {
2458   if (DisablePPCPreinc) return false;
2459 
2460   bool isLoad = true;
2461   SDValue Ptr;
2462   EVT VT;
2463   unsigned Alignment;
2464   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2465     Ptr = LD->getBasePtr();
2466     VT = LD->getMemoryVT();
2467     Alignment = LD->getAlignment();
2468   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2469     Ptr = ST->getBasePtr();
2470     VT  = ST->getMemoryVT();
2471     Alignment = ST->getAlignment();
2472     isLoad = false;
2473   } else
2474     return false;
2475 
2476   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2477   // instructions because we can fold these into a more efficient instruction
2478   // instead, (such as LXSD).
2479   if (isLoad && usePartialVectorLoads(N)) {
2480     return false;
2481   }
2482 
2483   // PowerPC doesn't have preinc load/store instructions for vectors (except
2484   // for QPX, which does have preinc r+r forms).
2485   if (VT.isVector()) {
2486     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2487       return false;
2488     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2489       AM = ISD::PRE_INC;
2490       return true;
2491     }
2492   }
2493 
2494   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2495     // Common code will reject creating a pre-inc form if the base pointer
2496     // is a frame index, or if N is a store and the base pointer is either
2497     // the same as or a predecessor of the value being stored.  Check for
2498     // those situations here, and try with swapped Base/Offset instead.
2499     bool Swap = false;
2500 
2501     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2502       Swap = true;
2503     else if (!isLoad) {
2504       SDValue Val = cast<StoreSDNode>(N)->getValue();
2505       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2506         Swap = true;
2507     }
2508 
2509     if (Swap)
2510       std::swap(Base, Offset);
2511 
2512     AM = ISD::PRE_INC;
2513     return true;
2514   }
2515 
2516   // LDU/STU can only handle immediates that are a multiple of 4.
2517   if (VT != MVT::i64) {
2518     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2519       return false;
2520   } else {
2521     // LDU/STU need an address with at least 4-byte alignment.
2522     if (Alignment < 4)
2523       return false;
2524 
2525     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2526       return false;
2527   }
2528 
2529   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2530     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2531     // sext i32 to i64 when addr mode is r+i.
2532     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2533         LD->getExtensionType() == ISD::SEXTLOAD &&
2534         isa<ConstantSDNode>(Offset))
2535       return false;
2536   }
2537 
2538   AM = ISD::PRE_INC;
2539   return true;
2540 }
2541 
2542 //===----------------------------------------------------------------------===//
2543 //  LowerOperation implementation
2544 //===----------------------------------------------------------------------===//
2545 
2546 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2547 /// and LoOpFlags to the target MO flags.
2548 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2549                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2550                                const GlobalValue *GV = nullptr) {
2551   HiOpFlags = PPCII::MO_HA;
2552   LoOpFlags = PPCII::MO_LO;
2553 
2554   // Don't use the pic base if not in PIC relocation model.
2555   if (IsPIC) {
2556     HiOpFlags |= PPCII::MO_PIC_FLAG;
2557     LoOpFlags |= PPCII::MO_PIC_FLAG;
2558   }
2559 
2560   // If this is a reference to a global value that requires a non-lazy-ptr, make
2561   // sure that instruction lowering adds it.
2562   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2563     HiOpFlags |= PPCII::MO_NLP_FLAG;
2564     LoOpFlags |= PPCII::MO_NLP_FLAG;
2565 
2566     if (GV->hasHiddenVisibility()) {
2567       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2568       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2569     }
2570   }
2571 }
2572 
2573 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2574                              SelectionDAG &DAG) {
2575   SDLoc DL(HiPart);
2576   EVT PtrVT = HiPart.getValueType();
2577   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2578 
2579   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2580   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2581 
2582   // With PIC, the first instruction is actually "GR+hi(&G)".
2583   if (isPIC)
2584     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2585                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2586 
2587   // Generate non-pic code that has direct accesses to the constant pool.
2588   // The address of the global is just (hi(&g)+lo(&g)).
2589   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2590 }
2591 
2592 static void setUsesTOCBasePtr(MachineFunction &MF) {
2593   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2594   FuncInfo->setUsesTOCBasePtr();
2595 }
2596 
2597 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2598   setUsesTOCBasePtr(DAG.getMachineFunction());
2599 }
2600 
2601 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2602                            SDValue GA) {
2603   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2604   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2605                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2606 
2607   SDValue Ops[] = { GA, Reg };
2608   return DAG.getMemIntrinsicNode(
2609       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2610       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2611       MachineMemOperand::MOLoad);
2612 }
2613 
2614 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2615                                              SelectionDAG &DAG) const {
2616   EVT PtrVT = Op.getValueType();
2617   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2618   const Constant *C = CP->getConstVal();
2619 
2620   // 64-bit SVR4 ABI code is always position-independent.
2621   // The actual address of the GlobalValue is stored in the TOC.
2622   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2623     setUsesTOCBasePtr(DAG);
2624     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2625     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2626   }
2627 
2628   unsigned MOHiFlag, MOLoFlag;
2629   bool IsPIC = isPositionIndependent();
2630   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2631 
2632   if (IsPIC && Subtarget.isSVR4ABI()) {
2633     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2634                                            PPCII::MO_PIC_FLAG);
2635     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2636   }
2637 
2638   SDValue CPIHi =
2639     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2640   SDValue CPILo =
2641     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2642   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2643 }
2644 
2645 // For 64-bit PowerPC, prefer the more compact relative encodings.
2646 // This trades 32 bits per jump table entry for one or two instructions
2647 // on the jump site.
2648 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2649   if (isJumpTableRelative())
2650     return MachineJumpTableInfo::EK_LabelDifference32;
2651 
2652   return TargetLowering::getJumpTableEncoding();
2653 }
2654 
2655 bool PPCTargetLowering::isJumpTableRelative() const {
2656   if (Subtarget.isPPC64())
2657     return true;
2658   return TargetLowering::isJumpTableRelative();
2659 }
2660 
2661 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2662                                                     SelectionDAG &DAG) const {
2663   if (!Subtarget.isPPC64())
2664     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2665 
2666   switch (getTargetMachine().getCodeModel()) {
2667   case CodeModel::Small:
2668   case CodeModel::Medium:
2669     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2670   default:
2671     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2672                        getPointerTy(DAG.getDataLayout()));
2673   }
2674 }
2675 
2676 const MCExpr *
2677 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2678                                                 unsigned JTI,
2679                                                 MCContext &Ctx) const {
2680   if (!Subtarget.isPPC64())
2681     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2682 
2683   switch (getTargetMachine().getCodeModel()) {
2684   case CodeModel::Small:
2685   case CodeModel::Medium:
2686     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2687   default:
2688     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2689   }
2690 }
2691 
2692 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2693   EVT PtrVT = Op.getValueType();
2694   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2695 
2696   // 64-bit SVR4 ABI code is always position-independent.
2697   // The actual address of the GlobalValue is stored in the TOC.
2698   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2699     setUsesTOCBasePtr(DAG);
2700     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2701     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2702   }
2703 
2704   unsigned MOHiFlag, MOLoFlag;
2705   bool IsPIC = isPositionIndependent();
2706   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2707 
2708   if (IsPIC && Subtarget.isSVR4ABI()) {
2709     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2710                                         PPCII::MO_PIC_FLAG);
2711     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2712   }
2713 
2714   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2715   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2716   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2717 }
2718 
2719 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2720                                              SelectionDAG &DAG) const {
2721   EVT PtrVT = Op.getValueType();
2722   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2723   const BlockAddress *BA = BASDN->getBlockAddress();
2724 
2725   // 64-bit SVR4 ABI code is always position-independent.
2726   // The actual BlockAddress is stored in the TOC.
2727   if (Subtarget.isSVR4ABI() &&
2728       (Subtarget.isPPC64() || isPositionIndependent())) {
2729     if (Subtarget.isPPC64())
2730       setUsesTOCBasePtr(DAG);
2731     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2732     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2733   }
2734 
2735   unsigned MOHiFlag, MOLoFlag;
2736   bool IsPIC = isPositionIndependent();
2737   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2738   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2739   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2740   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2741 }
2742 
2743 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2744                                               SelectionDAG &DAG) const {
2745   // FIXME: TLS addresses currently use medium model code sequences,
2746   // which is the most useful form.  Eventually support for small and
2747   // large models could be added if users need it, at the cost of
2748   // additional complexity.
2749   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2750   if (DAG.getTarget().useEmulatedTLS())
2751     return LowerToTLSEmulatedModel(GA, DAG);
2752 
2753   SDLoc dl(GA);
2754   const GlobalValue *GV = GA->getGlobal();
2755   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2756   bool is64bit = Subtarget.isPPC64();
2757   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2758   PICLevel::Level picLevel = M->getPICLevel();
2759 
2760   const TargetMachine &TM = getTargetMachine();
2761   TLSModel::Model Model = TM.getTLSModel(GV);
2762 
2763   if (Model == TLSModel::LocalExec) {
2764     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2765                                                PPCII::MO_TPREL_HA);
2766     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2767                                                PPCII::MO_TPREL_LO);
2768     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2769                              : DAG.getRegister(PPC::R2, MVT::i32);
2770 
2771     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2772     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2773   }
2774 
2775   if (Model == TLSModel::InitialExec) {
2776     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2777     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2778                                                 PPCII::MO_TLS);
2779     SDValue GOTPtr;
2780     if (is64bit) {
2781       setUsesTOCBasePtr(DAG);
2782       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2783       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2784                            PtrVT, GOTReg, TGA);
2785     } else {
2786       if (!TM.isPositionIndependent())
2787         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2788       else if (picLevel == PICLevel::SmallPIC)
2789         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2790       else
2791         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2792     }
2793     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2794                                    PtrVT, TGA, GOTPtr);
2795     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2796   }
2797 
2798   if (Model == TLSModel::GeneralDynamic) {
2799     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2800     SDValue GOTPtr;
2801     if (is64bit) {
2802       setUsesTOCBasePtr(DAG);
2803       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2804       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2805                                    GOTReg, TGA);
2806     } else {
2807       if (picLevel == PICLevel::SmallPIC)
2808         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2809       else
2810         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2811     }
2812     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2813                        GOTPtr, TGA, TGA);
2814   }
2815 
2816   if (Model == TLSModel::LocalDynamic) {
2817     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2818     SDValue GOTPtr;
2819     if (is64bit) {
2820       setUsesTOCBasePtr(DAG);
2821       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2822       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2823                            GOTReg, TGA);
2824     } else {
2825       if (picLevel == PICLevel::SmallPIC)
2826         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2827       else
2828         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2829     }
2830     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2831                                   PtrVT, GOTPtr, TGA, TGA);
2832     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2833                                       PtrVT, TLSAddr, TGA);
2834     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2835   }
2836 
2837   llvm_unreachable("Unknown TLS model!");
2838 }
2839 
2840 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2841                                               SelectionDAG &DAG) const {
2842   EVT PtrVT = Op.getValueType();
2843   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2844   SDLoc DL(GSDN);
2845   const GlobalValue *GV = GSDN->getGlobal();
2846 
2847   // 64-bit SVR4 ABI code is always position-independent.
2848   // The actual address of the GlobalValue is stored in the TOC.
2849   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2850     setUsesTOCBasePtr(DAG);
2851     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2852     return getTOCEntry(DAG, DL, true, GA);
2853   }
2854 
2855   unsigned MOHiFlag, MOLoFlag;
2856   bool IsPIC = isPositionIndependent();
2857   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2858 
2859   if (IsPIC && Subtarget.isSVR4ABI()) {
2860     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2861                                             GSDN->getOffset(),
2862                                             PPCII::MO_PIC_FLAG);
2863     return getTOCEntry(DAG, DL, false, GA);
2864   }
2865 
2866   SDValue GAHi =
2867     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2868   SDValue GALo =
2869     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2870 
2871   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2872 
2873   // If the global reference is actually to a non-lazy-pointer, we have to do an
2874   // extra load to get the address of the global.
2875   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2876     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2877   return Ptr;
2878 }
2879 
2880 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2881   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2882   SDLoc dl(Op);
2883 
2884   if (Op.getValueType() == MVT::v2i64) {
2885     // When the operands themselves are v2i64 values, we need to do something
2886     // special because VSX has no underlying comparison operations for these.
2887     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2888       // Equality can be handled by casting to the legal type for Altivec
2889       // comparisons, everything else needs to be expanded.
2890       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2891         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2892                  DAG.getSetCC(dl, MVT::v4i32,
2893                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2894                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2895                    CC));
2896       }
2897 
2898       return SDValue();
2899     }
2900 
2901     // We handle most of these in the usual way.
2902     return Op;
2903   }
2904 
2905   // If we're comparing for equality to zero, expose the fact that this is
2906   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2907   // fold the new nodes.
2908   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2909     return V;
2910 
2911   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2912     // Leave comparisons against 0 and -1 alone for now, since they're usually
2913     // optimized.  FIXME: revisit this when we can custom lower all setcc
2914     // optimizations.
2915     if (C->isAllOnesValue() || C->isNullValue())
2916       return SDValue();
2917   }
2918 
2919   // If we have an integer seteq/setne, turn it into a compare against zero
2920   // by xor'ing the rhs with the lhs, which is faster than setting a
2921   // condition register, reading it back out, and masking the correct bit.  The
2922   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2923   // the result to other bit-twiddling opportunities.
2924   EVT LHSVT = Op.getOperand(0).getValueType();
2925   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2926     EVT VT = Op.getValueType();
2927     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2928                                 Op.getOperand(1));
2929     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2930   }
2931   return SDValue();
2932 }
2933 
2934 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2935   SDNode *Node = Op.getNode();
2936   EVT VT = Node->getValueType(0);
2937   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2938   SDValue InChain = Node->getOperand(0);
2939   SDValue VAListPtr = Node->getOperand(1);
2940   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2941   SDLoc dl(Node);
2942 
2943   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2944 
2945   // gpr_index
2946   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2947                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2948   InChain = GprIndex.getValue(1);
2949 
2950   if (VT == MVT::i64) {
2951     // Check if GprIndex is even
2952     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2953                                  DAG.getConstant(1, dl, MVT::i32));
2954     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2955                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2956     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2957                                           DAG.getConstant(1, dl, MVT::i32));
2958     // Align GprIndex to be even if it isn't
2959     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2960                            GprIndex);
2961   }
2962 
2963   // fpr index is 1 byte after gpr
2964   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2965                                DAG.getConstant(1, dl, MVT::i32));
2966 
2967   // fpr
2968   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2969                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2970   InChain = FprIndex.getValue(1);
2971 
2972   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2973                                        DAG.getConstant(8, dl, MVT::i32));
2974 
2975   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2976                                         DAG.getConstant(4, dl, MVT::i32));
2977 
2978   // areas
2979   SDValue OverflowArea =
2980       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2981   InChain = OverflowArea.getValue(1);
2982 
2983   SDValue RegSaveArea =
2984       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2985   InChain = RegSaveArea.getValue(1);
2986 
2987   // select overflow_area if index > 8
2988   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2989                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2990 
2991   // adjustment constant gpr_index * 4/8
2992   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2993                                     VT.isInteger() ? GprIndex : FprIndex,
2994                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2995                                                     MVT::i32));
2996 
2997   // OurReg = RegSaveArea + RegConstant
2998   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2999                                RegConstant);
3000 
3001   // Floating types are 32 bytes into RegSaveArea
3002   if (VT.isFloatingPoint())
3003     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3004                          DAG.getConstant(32, dl, MVT::i32));
3005 
3006   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3007   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3008                                    VT.isInteger() ? GprIndex : FprIndex,
3009                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3010                                                    MVT::i32));
3011 
3012   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3013                               VT.isInteger() ? VAListPtr : FprPtr,
3014                               MachinePointerInfo(SV), MVT::i8);
3015 
3016   // determine if we should load from reg_save_area or overflow_area
3017   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3018 
3019   // increase overflow_area by 4/8 if gpr/fpr > 8
3020   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3021                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3022                                           dl, MVT::i32));
3023 
3024   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3025                              OverflowAreaPlusN);
3026 
3027   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3028                               MachinePointerInfo(), MVT::i32);
3029 
3030   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3031 }
3032 
3033 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3034   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3035 
3036   // We have to copy the entire va_list struct:
3037   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3038   return DAG.getMemcpy(Op.getOperand(0), Op,
3039                        Op.getOperand(1), Op.getOperand(2),
3040                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3041                        false, MachinePointerInfo(), MachinePointerInfo());
3042 }
3043 
3044 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3045                                                   SelectionDAG &DAG) const {
3046   return Op.getOperand(0);
3047 }
3048 
3049 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3050                                                 SelectionDAG &DAG) const {
3051   SDValue Chain = Op.getOperand(0);
3052   SDValue Trmp = Op.getOperand(1); // trampoline
3053   SDValue FPtr = Op.getOperand(2); // nested function
3054   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3055   SDLoc dl(Op);
3056 
3057   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3058   bool isPPC64 = (PtrVT == MVT::i64);
3059   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3060 
3061   TargetLowering::ArgListTy Args;
3062   TargetLowering::ArgListEntry Entry;
3063 
3064   Entry.Ty = IntPtrTy;
3065   Entry.Node = Trmp; Args.push_back(Entry);
3066 
3067   // TrampSize == (isPPC64 ? 48 : 40);
3068   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3069                                isPPC64 ? MVT::i64 : MVT::i32);
3070   Args.push_back(Entry);
3071 
3072   Entry.Node = FPtr; Args.push_back(Entry);
3073   Entry.Node = Nest; Args.push_back(Entry);
3074 
3075   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3076   TargetLowering::CallLoweringInfo CLI(DAG);
3077   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3078       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3079       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3080 
3081   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3082   return CallResult.second;
3083 }
3084 
3085 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3086   MachineFunction &MF = DAG.getMachineFunction();
3087   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3088   EVT PtrVT = getPointerTy(MF.getDataLayout());
3089 
3090   SDLoc dl(Op);
3091 
3092   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3093     // vastart just stores the address of the VarArgsFrameIndex slot into the
3094     // memory location argument.
3095     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3096     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3097     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3098                         MachinePointerInfo(SV));
3099   }
3100 
3101   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3102   // We suppose the given va_list is already allocated.
3103   //
3104   // typedef struct {
3105   //  char gpr;     /* index into the array of 8 GPRs
3106   //                 * stored in the register save area
3107   //                 * gpr=0 corresponds to r3,
3108   //                 * gpr=1 to r4, etc.
3109   //                 */
3110   //  char fpr;     /* index into the array of 8 FPRs
3111   //                 * stored in the register save area
3112   //                 * fpr=0 corresponds to f1,
3113   //                 * fpr=1 to f2, etc.
3114   //                 */
3115   //  char *overflow_arg_area;
3116   //                /* location on stack that holds
3117   //                 * the next overflow argument
3118   //                 */
3119   //  char *reg_save_area;
3120   //               /* where r3:r10 and f1:f8 (if saved)
3121   //                * are stored
3122   //                */
3123   // } va_list[1];
3124 
3125   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3126   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3127   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3128                                             PtrVT);
3129   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3130                                  PtrVT);
3131 
3132   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3133   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3134 
3135   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3136   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3137 
3138   uint64_t FPROffset = 1;
3139   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3140 
3141   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3142 
3143   // Store first byte : number of int regs
3144   SDValue firstStore =
3145       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3146                         MachinePointerInfo(SV), MVT::i8);
3147   uint64_t nextOffset = FPROffset;
3148   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3149                                   ConstFPROffset);
3150 
3151   // Store second byte : number of float regs
3152   SDValue secondStore =
3153       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3154                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3155   nextOffset += StackOffset;
3156   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3157 
3158   // Store second word : arguments given on stack
3159   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3160                                     MachinePointerInfo(SV, nextOffset));
3161   nextOffset += FrameOffset;
3162   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3163 
3164   // Store third word : arguments given in registers
3165   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3166                       MachinePointerInfo(SV, nextOffset));
3167 }
3168 
3169 /// FPR - The set of FP registers that should be allocated for arguments,
3170 /// on Darwin.
3171 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3172                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3173                                 PPC::F11, PPC::F12, PPC::F13};
3174 
3175 /// QFPR - The set of QPX registers that should be allocated for arguments.
3176 static const MCPhysReg QFPR[] = {
3177     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3178     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3179 
3180 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3181 /// the stack.
3182 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3183                                        unsigned PtrByteSize) {
3184   unsigned ArgSize = ArgVT.getStoreSize();
3185   if (Flags.isByVal())
3186     ArgSize = Flags.getByValSize();
3187 
3188   // Round up to multiples of the pointer size, except for array members,
3189   // which are always packed.
3190   if (!Flags.isInConsecutiveRegs())
3191     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3192 
3193   return ArgSize;
3194 }
3195 
3196 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3197 /// on the stack.
3198 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3199                                             ISD::ArgFlagsTy Flags,
3200                                             unsigned PtrByteSize) {
3201   unsigned Align = PtrByteSize;
3202 
3203   // Altivec parameters are padded to a 16 byte boundary.
3204   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3205       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3206       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3207       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3208     Align = 16;
3209   // QPX vector types stored in double-precision are padded to a 32 byte
3210   // boundary.
3211   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3212     Align = 32;
3213 
3214   // ByVal parameters are aligned as requested.
3215   if (Flags.isByVal()) {
3216     unsigned BVAlign = Flags.getByValAlign();
3217     if (BVAlign > PtrByteSize) {
3218       if (BVAlign % PtrByteSize != 0)
3219           llvm_unreachable(
3220             "ByVal alignment is not a multiple of the pointer size");
3221 
3222       Align = BVAlign;
3223     }
3224   }
3225 
3226   // Array members are always packed to their original alignment.
3227   if (Flags.isInConsecutiveRegs()) {
3228     // If the array member was split into multiple registers, the first
3229     // needs to be aligned to the size of the full type.  (Except for
3230     // ppcf128, which is only aligned as its f64 components.)
3231     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3232       Align = OrigVT.getStoreSize();
3233     else
3234       Align = ArgVT.getStoreSize();
3235   }
3236 
3237   return Align;
3238 }
3239 
3240 /// CalculateStackSlotUsed - Return whether this argument will use its
3241 /// stack slot (instead of being passed in registers).  ArgOffset,
3242 /// AvailableFPRs, and AvailableVRs must hold the current argument
3243 /// position, and will be updated to account for this argument.
3244 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3245                                    ISD::ArgFlagsTy Flags,
3246                                    unsigned PtrByteSize,
3247                                    unsigned LinkageSize,
3248                                    unsigned ParamAreaSize,
3249                                    unsigned &ArgOffset,
3250                                    unsigned &AvailableFPRs,
3251                                    unsigned &AvailableVRs, bool HasQPX) {
3252   bool UseMemory = false;
3253 
3254   // Respect alignment of argument on the stack.
3255   unsigned Align =
3256     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3257   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3258   // If there's no space left in the argument save area, we must
3259   // use memory (this check also catches zero-sized arguments).
3260   if (ArgOffset >= LinkageSize + ParamAreaSize)
3261     UseMemory = true;
3262 
3263   // Allocate argument on the stack.
3264   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3265   if (Flags.isInConsecutiveRegsLast())
3266     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3267   // If we overran the argument save area, we must use memory
3268   // (this check catches arguments passed partially in memory)
3269   if (ArgOffset > LinkageSize + ParamAreaSize)
3270     UseMemory = true;
3271 
3272   // However, if the argument is actually passed in an FPR or a VR,
3273   // we don't use memory after all.
3274   if (!Flags.isByVal()) {
3275     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3276         // QPX registers overlap with the scalar FP registers.
3277         (HasQPX && (ArgVT == MVT::v4f32 ||
3278                     ArgVT == MVT::v4f64 ||
3279                     ArgVT == MVT::v4i1)))
3280       if (AvailableFPRs > 0) {
3281         --AvailableFPRs;
3282         return false;
3283       }
3284     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3285         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3286         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3287         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3288       if (AvailableVRs > 0) {
3289         --AvailableVRs;
3290         return false;
3291       }
3292   }
3293 
3294   return UseMemory;
3295 }
3296 
3297 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3298 /// ensure minimum alignment required for target.
3299 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3300                                      unsigned NumBytes) {
3301   unsigned TargetAlign = Lowering->getStackAlignment();
3302   unsigned AlignMask = TargetAlign - 1;
3303   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3304   return NumBytes;
3305 }
3306 
3307 SDValue PPCTargetLowering::LowerFormalArguments(
3308     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3309     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3310     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3311   if (Subtarget.isSVR4ABI()) {
3312     if (Subtarget.isPPC64())
3313       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3314                                          dl, DAG, InVals);
3315     else
3316       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3317                                          dl, DAG, InVals);
3318   } else {
3319     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3320                                        dl, DAG, InVals);
3321   }
3322 }
3323 
3324 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3325     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3326     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3327     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3328 
3329   // 32-bit SVR4 ABI Stack Frame Layout:
3330   //              +-----------------------------------+
3331   //        +-->  |            Back chain             |
3332   //        |     +-----------------------------------+
3333   //        |     | Floating-point register save area |
3334   //        |     +-----------------------------------+
3335   //        |     |    General register save area     |
3336   //        |     +-----------------------------------+
3337   //        |     |          CR save word             |
3338   //        |     +-----------------------------------+
3339   //        |     |         VRSAVE save word          |
3340   //        |     +-----------------------------------+
3341   //        |     |         Alignment padding         |
3342   //        |     +-----------------------------------+
3343   //        |     |     Vector register save area     |
3344   //        |     +-----------------------------------+
3345   //        |     |       Local variable space        |
3346   //        |     +-----------------------------------+
3347   //        |     |        Parameter list area        |
3348   //        |     +-----------------------------------+
3349   //        |     |           LR save word            |
3350   //        |     +-----------------------------------+
3351   // SP-->  +---  |            Back chain             |
3352   //              +-----------------------------------+
3353   //
3354   // Specifications:
3355   //   System V Application Binary Interface PowerPC Processor Supplement
3356   //   AltiVec Technology Programming Interface Manual
3357 
3358   MachineFunction &MF = DAG.getMachineFunction();
3359   MachineFrameInfo &MFI = MF.getFrameInfo();
3360   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3361 
3362   EVT PtrVT = getPointerTy(MF.getDataLayout());
3363   // Potential tail calls could cause overwriting of argument stack slots.
3364   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3365                        (CallConv == CallingConv::Fast));
3366   unsigned PtrByteSize = 4;
3367 
3368   // Assign locations to all of the incoming arguments.
3369   SmallVector<CCValAssign, 16> ArgLocs;
3370   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3371                  *DAG.getContext());
3372 
3373   // Reserve space for the linkage area on the stack.
3374   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3375   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3376   if (useSoftFloat() || hasSPE())
3377     CCInfo.PreAnalyzeFormalArguments(Ins);
3378 
3379   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3380   CCInfo.clearWasPPCF128();
3381 
3382   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3383     CCValAssign &VA = ArgLocs[i];
3384 
3385     // Arguments stored in registers.
3386     if (VA.isRegLoc()) {
3387       const TargetRegisterClass *RC;
3388       EVT ValVT = VA.getValVT();
3389 
3390       switch (ValVT.getSimpleVT().SimpleTy) {
3391         default:
3392           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3393         case MVT::i1:
3394         case MVT::i32:
3395           RC = &PPC::GPRCRegClass;
3396           break;
3397         case MVT::f32:
3398           if (Subtarget.hasP8Vector())
3399             RC = &PPC::VSSRCRegClass;
3400           else if (Subtarget.hasSPE())
3401             RC = &PPC::SPE4RCRegClass;
3402           else
3403             RC = &PPC::F4RCRegClass;
3404           break;
3405         case MVT::f64:
3406           if (Subtarget.hasVSX())
3407             RC = &PPC::VSFRCRegClass;
3408           else if (Subtarget.hasSPE())
3409             RC = &PPC::SPERCRegClass;
3410           else
3411             RC = &PPC::F8RCRegClass;
3412           break;
3413         case MVT::v16i8:
3414         case MVT::v8i16:
3415         case MVT::v4i32:
3416           RC = &PPC::VRRCRegClass;
3417           break;
3418         case MVT::v4f32:
3419           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3420           break;
3421         case MVT::v2f64:
3422         case MVT::v2i64:
3423           RC = &PPC::VRRCRegClass;
3424           break;
3425         case MVT::v4f64:
3426           RC = &PPC::QFRCRegClass;
3427           break;
3428         case MVT::v4i1:
3429           RC = &PPC::QBRCRegClass;
3430           break;
3431       }
3432 
3433       // Transform the arguments stored in physical registers into virtual ones.
3434       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3435       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3436                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3437 
3438       if (ValVT == MVT::i1)
3439         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3440 
3441       InVals.push_back(ArgValue);
3442     } else {
3443       // Argument stored in memory.
3444       assert(VA.isMemLoc());
3445 
3446       // Get the extended size of the argument type in stack
3447       unsigned ArgSize = VA.getLocVT().getStoreSize();
3448       // Get the actual size of the argument type
3449       unsigned ObjSize = VA.getValVT().getStoreSize();
3450       unsigned ArgOffset = VA.getLocMemOffset();
3451       // Stack objects in PPC32 are right justified.
3452       ArgOffset += ArgSize - ObjSize;
3453       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3454 
3455       // Create load nodes to retrieve arguments from the stack.
3456       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3457       InVals.push_back(
3458           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3459     }
3460   }
3461 
3462   // Assign locations to all of the incoming aggregate by value arguments.
3463   // Aggregates passed by value are stored in the local variable space of the
3464   // caller's stack frame, right above the parameter list area.
3465   SmallVector<CCValAssign, 16> ByValArgLocs;
3466   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3467                       ByValArgLocs, *DAG.getContext());
3468 
3469   // Reserve stack space for the allocations in CCInfo.
3470   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3471 
3472   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3473 
3474   // Area that is at least reserved in the caller of this function.
3475   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3476   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3477 
3478   // Set the size that is at least reserved in caller of this function.  Tail
3479   // call optimized function's reserved stack space needs to be aligned so that
3480   // taking the difference between two stack areas will result in an aligned
3481   // stack.
3482   MinReservedArea =
3483       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3484   FuncInfo->setMinReservedArea(MinReservedArea);
3485 
3486   SmallVector<SDValue, 8> MemOps;
3487 
3488   // If the function takes variable number of arguments, make a frame index for
3489   // the start of the first vararg value... for expansion of llvm.va_start.
3490   if (isVarArg) {
3491     static const MCPhysReg GPArgRegs[] = {
3492       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3493       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3494     };
3495     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3496 
3497     static const MCPhysReg FPArgRegs[] = {
3498       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3499       PPC::F8
3500     };
3501     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3502 
3503     if (useSoftFloat() || hasSPE())
3504        NumFPArgRegs = 0;
3505 
3506     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3507     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3508 
3509     // Make room for NumGPArgRegs and NumFPArgRegs.
3510     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3511                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3512 
3513     FuncInfo->setVarArgsStackOffset(
3514       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3515                             CCInfo.getNextStackOffset(), true));
3516 
3517     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3518     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3519 
3520     // The fixed integer arguments of a variadic function are stored to the
3521     // VarArgsFrameIndex on the stack so that they may be loaded by
3522     // dereferencing the result of va_next.
3523     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3524       // Get an existing live-in vreg, or add a new one.
3525       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3526       if (!VReg)
3527         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3528 
3529       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3530       SDValue Store =
3531           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3532       MemOps.push_back(Store);
3533       // Increment the address by four for the next argument to store
3534       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3535       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3536     }
3537 
3538     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3539     // is set.
3540     // The double arguments are stored to the VarArgsFrameIndex
3541     // on the stack.
3542     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3543       // Get an existing live-in vreg, or add a new one.
3544       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3545       if (!VReg)
3546         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3547 
3548       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3549       SDValue Store =
3550           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3551       MemOps.push_back(Store);
3552       // Increment the address by eight for the next argument to store
3553       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3554                                          PtrVT);
3555       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3556     }
3557   }
3558 
3559   if (!MemOps.empty())
3560     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3561 
3562   return Chain;
3563 }
3564 
3565 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3566 // value to MVT::i64 and then truncate to the correct register size.
3567 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3568                                              EVT ObjectVT, SelectionDAG &DAG,
3569                                              SDValue ArgVal,
3570                                              const SDLoc &dl) const {
3571   if (Flags.isSExt())
3572     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3573                          DAG.getValueType(ObjectVT));
3574   else if (Flags.isZExt())
3575     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3576                          DAG.getValueType(ObjectVT));
3577 
3578   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3579 }
3580 
3581 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3582     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3583     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3584     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3585   // TODO: add description of PPC stack frame format, or at least some docs.
3586   //
3587   bool isELFv2ABI = Subtarget.isELFv2ABI();
3588   bool isLittleEndian = Subtarget.isLittleEndian();
3589   MachineFunction &MF = DAG.getMachineFunction();
3590   MachineFrameInfo &MFI = MF.getFrameInfo();
3591   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3592 
3593   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3594          "fastcc not supported on varargs functions");
3595 
3596   EVT PtrVT = getPointerTy(MF.getDataLayout());
3597   // Potential tail calls could cause overwriting of argument stack slots.
3598   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3599                        (CallConv == CallingConv::Fast));
3600   unsigned PtrByteSize = 8;
3601   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3602 
3603   static const MCPhysReg GPR[] = {
3604     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3605     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3606   };
3607   static const MCPhysReg VR[] = {
3608     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3609     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3610   };
3611 
3612   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3613   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3614   const unsigned Num_VR_Regs  = array_lengthof(VR);
3615   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3616 
3617   // Do a first pass over the arguments to determine whether the ABI
3618   // guarantees that our caller has allocated the parameter save area
3619   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3620   // in the ELFv2 ABI, it is true if this is a vararg function or if
3621   // any parameter is located in a stack slot.
3622 
3623   bool HasParameterArea = !isELFv2ABI || isVarArg;
3624   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3625   unsigned NumBytes = LinkageSize;
3626   unsigned AvailableFPRs = Num_FPR_Regs;
3627   unsigned AvailableVRs = Num_VR_Regs;
3628   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3629     if (Ins[i].Flags.isNest())
3630       continue;
3631 
3632     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3633                                PtrByteSize, LinkageSize, ParamAreaSize,
3634                                NumBytes, AvailableFPRs, AvailableVRs,
3635                                Subtarget.hasQPX()))
3636       HasParameterArea = true;
3637   }
3638 
3639   // Add DAG nodes to load the arguments or copy them out of registers.  On
3640   // entry to a function on PPC, the arguments start after the linkage area,
3641   // although the first ones are often in registers.
3642 
3643   unsigned ArgOffset = LinkageSize;
3644   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3645   unsigned &QFPR_idx = FPR_idx;
3646   SmallVector<SDValue, 8> MemOps;
3647   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3648   unsigned CurArgIdx = 0;
3649   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3650     SDValue ArgVal;
3651     bool needsLoad = false;
3652     EVT ObjectVT = Ins[ArgNo].VT;
3653     EVT OrigVT = Ins[ArgNo].ArgVT;
3654     unsigned ObjSize = ObjectVT.getStoreSize();
3655     unsigned ArgSize = ObjSize;
3656     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3657     if (Ins[ArgNo].isOrigArg()) {
3658       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3659       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3660     }
3661     // We re-align the argument offset for each argument, except when using the
3662     // fast calling convention, when we need to make sure we do that only when
3663     // we'll actually use a stack slot.
3664     unsigned CurArgOffset, Align;
3665     auto ComputeArgOffset = [&]() {
3666       /* Respect alignment of argument on the stack.  */
3667       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3668       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3669       CurArgOffset = ArgOffset;
3670     };
3671 
3672     if (CallConv != CallingConv::Fast) {
3673       ComputeArgOffset();
3674 
3675       /* Compute GPR index associated with argument offset.  */
3676       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3677       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3678     }
3679 
3680     // FIXME the codegen can be much improved in some cases.
3681     // We do not have to keep everything in memory.
3682     if (Flags.isByVal()) {
3683       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3684 
3685       if (CallConv == CallingConv::Fast)
3686         ComputeArgOffset();
3687 
3688       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3689       ObjSize = Flags.getByValSize();
3690       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3691       // Empty aggregate parameters do not take up registers.  Examples:
3692       //   struct { } a;
3693       //   union  { } b;
3694       //   int c[0];
3695       // etc.  However, we have to provide a place-holder in InVals, so
3696       // pretend we have an 8-byte item at the current address for that
3697       // purpose.
3698       if (!ObjSize) {
3699         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3700         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3701         InVals.push_back(FIN);
3702         continue;
3703       }
3704 
3705       // Create a stack object covering all stack doublewords occupied
3706       // by the argument.  If the argument is (fully or partially) on
3707       // the stack, or if the argument is fully in registers but the
3708       // caller has allocated the parameter save anyway, we can refer
3709       // directly to the caller's stack frame.  Otherwise, create a
3710       // local copy in our own frame.
3711       int FI;
3712       if (HasParameterArea ||
3713           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3714         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3715       else
3716         FI = MFI.CreateStackObject(ArgSize, Align, false);
3717       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3718 
3719       // Handle aggregates smaller than 8 bytes.
3720       if (ObjSize < PtrByteSize) {
3721         // The value of the object is its address, which differs from the
3722         // address of the enclosing doubleword on big-endian systems.
3723         SDValue Arg = FIN;
3724         if (!isLittleEndian) {
3725           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3726           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3727         }
3728         InVals.push_back(Arg);
3729 
3730         if (GPR_idx != Num_GPR_Regs) {
3731           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3732           FuncInfo->addLiveInAttr(VReg, Flags);
3733           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3734           SDValue Store;
3735 
3736           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3737             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3738                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3739             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3740                                       MachinePointerInfo(&*FuncArg), ObjType);
3741           } else {
3742             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3743             // store the whole register as-is to the parameter save area
3744             // slot.
3745             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3746                                  MachinePointerInfo(&*FuncArg));
3747           }
3748 
3749           MemOps.push_back(Store);
3750         }
3751         // Whether we copied from a register or not, advance the offset
3752         // into the parameter save area by a full doubleword.
3753         ArgOffset += PtrByteSize;
3754         continue;
3755       }
3756 
3757       // The value of the object is its address, which is the address of
3758       // its first stack doubleword.
3759       InVals.push_back(FIN);
3760 
3761       // Store whatever pieces of the object are in registers to memory.
3762       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3763         if (GPR_idx == Num_GPR_Regs)
3764           break;
3765 
3766         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3767         FuncInfo->addLiveInAttr(VReg, Flags);
3768         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3769         SDValue Addr = FIN;
3770         if (j) {
3771           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3772           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3773         }
3774         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3775                                      MachinePointerInfo(&*FuncArg, j));
3776         MemOps.push_back(Store);
3777         ++GPR_idx;
3778       }
3779       ArgOffset += ArgSize;
3780       continue;
3781     }
3782 
3783     switch (ObjectVT.getSimpleVT().SimpleTy) {
3784     default: llvm_unreachable("Unhandled argument type!");
3785     case MVT::i1:
3786     case MVT::i32:
3787     case MVT::i64:
3788       if (Flags.isNest()) {
3789         // The 'nest' parameter, if any, is passed in R11.
3790         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3791         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3792 
3793         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3794           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3795 
3796         break;
3797       }
3798 
3799       // These can be scalar arguments or elements of an integer array type
3800       // passed directly.  Clang may use those instead of "byval" aggregate
3801       // types to avoid forcing arguments to memory unnecessarily.
3802       if (GPR_idx != Num_GPR_Regs) {
3803         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3804         FuncInfo->addLiveInAttr(VReg, Flags);
3805         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3806 
3807         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3808           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3809           // value to MVT::i64 and then truncate to the correct register size.
3810           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3811       } else {
3812         if (CallConv == CallingConv::Fast)
3813           ComputeArgOffset();
3814 
3815         needsLoad = true;
3816         ArgSize = PtrByteSize;
3817       }
3818       if (CallConv != CallingConv::Fast || needsLoad)
3819         ArgOffset += 8;
3820       break;
3821 
3822     case MVT::f32:
3823     case MVT::f64:
3824       // These can be scalar arguments or elements of a float array type
3825       // passed directly.  The latter are used to implement ELFv2 homogenous
3826       // float aggregates.
3827       if (FPR_idx != Num_FPR_Regs) {
3828         unsigned VReg;
3829 
3830         if (ObjectVT == MVT::f32)
3831           VReg = MF.addLiveIn(FPR[FPR_idx],
3832                               Subtarget.hasP8Vector()
3833                                   ? &PPC::VSSRCRegClass
3834                                   : &PPC::F4RCRegClass);
3835         else
3836           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3837                                                 ? &PPC::VSFRCRegClass
3838                                                 : &PPC::F8RCRegClass);
3839 
3840         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3841         ++FPR_idx;
3842       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3843         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3844         // once we support fp <-> gpr moves.
3845 
3846         // This can only ever happen in the presence of f32 array types,
3847         // since otherwise we never run out of FPRs before running out
3848         // of GPRs.
3849         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3850         FuncInfo->addLiveInAttr(VReg, Flags);
3851         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3852 
3853         if (ObjectVT == MVT::f32) {
3854           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3855             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3856                                  DAG.getConstant(32, dl, MVT::i32));
3857           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3858         }
3859 
3860         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3861       } else {
3862         if (CallConv == CallingConv::Fast)
3863           ComputeArgOffset();
3864 
3865         needsLoad = true;
3866       }
3867 
3868       // When passing an array of floats, the array occupies consecutive
3869       // space in the argument area; only round up to the next doubleword
3870       // at the end of the array.  Otherwise, each float takes 8 bytes.
3871       if (CallConv != CallingConv::Fast || needsLoad) {
3872         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3873         ArgOffset += ArgSize;
3874         if (Flags.isInConsecutiveRegsLast())
3875           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3876       }
3877       break;
3878     case MVT::v4f32:
3879     case MVT::v4i32:
3880     case MVT::v8i16:
3881     case MVT::v16i8:
3882     case MVT::v2f64:
3883     case MVT::v2i64:
3884     case MVT::v1i128:
3885     case MVT::f128:
3886       if (!Subtarget.hasQPX()) {
3887         // These can be scalar arguments or elements of a vector array type
3888         // passed directly.  The latter are used to implement ELFv2 homogenous
3889         // vector aggregates.
3890         if (VR_idx != Num_VR_Regs) {
3891           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3892           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3893           ++VR_idx;
3894         } else {
3895           if (CallConv == CallingConv::Fast)
3896             ComputeArgOffset();
3897           needsLoad = true;
3898         }
3899         if (CallConv != CallingConv::Fast || needsLoad)
3900           ArgOffset += 16;
3901         break;
3902       } // not QPX
3903 
3904       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3905              "Invalid QPX parameter type");
3906       LLVM_FALLTHROUGH;
3907 
3908     case MVT::v4f64:
3909     case MVT::v4i1:
3910       // QPX vectors are treated like their scalar floating-point subregisters
3911       // (except that they're larger).
3912       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3913       if (QFPR_idx != Num_QFPR_Regs) {
3914         const TargetRegisterClass *RC;
3915         switch (ObjectVT.getSimpleVT().SimpleTy) {
3916         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3917         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3918         default:         RC = &PPC::QBRCRegClass; break;
3919         }
3920 
3921         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3922         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3923         ++QFPR_idx;
3924       } else {
3925         if (CallConv == CallingConv::Fast)
3926           ComputeArgOffset();
3927         needsLoad = true;
3928       }
3929       if (CallConv != CallingConv::Fast || needsLoad)
3930         ArgOffset += Sz;
3931       break;
3932     }
3933 
3934     // We need to load the argument to a virtual register if we determined
3935     // above that we ran out of physical registers of the appropriate type.
3936     if (needsLoad) {
3937       if (ObjSize < ArgSize && !isLittleEndian)
3938         CurArgOffset += ArgSize - ObjSize;
3939       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3940       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3941       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3942     }
3943 
3944     InVals.push_back(ArgVal);
3945   }
3946 
3947   // Area that is at least reserved in the caller of this function.
3948   unsigned MinReservedArea;
3949   if (HasParameterArea)
3950     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3951   else
3952     MinReservedArea = LinkageSize;
3953 
3954   // Set the size that is at least reserved in caller of this function.  Tail
3955   // call optimized functions' reserved stack space needs to be aligned so that
3956   // taking the difference between two stack areas will result in an aligned
3957   // stack.
3958   MinReservedArea =
3959       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3960   FuncInfo->setMinReservedArea(MinReservedArea);
3961 
3962   // If the function takes variable number of arguments, make a frame index for
3963   // the start of the first vararg value... for expansion of llvm.va_start.
3964   if (isVarArg) {
3965     int Depth = ArgOffset;
3966 
3967     FuncInfo->setVarArgsFrameIndex(
3968       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3969     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3970 
3971     // If this function is vararg, store any remaining integer argument regs
3972     // to their spots on the stack so that they may be loaded by dereferencing
3973     // the result of va_next.
3974     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3975          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3976       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3977       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3978       SDValue Store =
3979           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3980       MemOps.push_back(Store);
3981       // Increment the address by four for the next argument to store
3982       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3983       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3984     }
3985   }
3986 
3987   if (!MemOps.empty())
3988     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3989 
3990   return Chain;
3991 }
3992 
3993 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3994     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3995     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3996     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3997   // TODO: add description of PPC stack frame format, or at least some docs.
3998   //
3999   MachineFunction &MF = DAG.getMachineFunction();
4000   MachineFrameInfo &MFI = MF.getFrameInfo();
4001   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4002 
4003   EVT PtrVT = getPointerTy(MF.getDataLayout());
4004   bool isPPC64 = PtrVT == MVT::i64;
4005   // Potential tail calls could cause overwriting of argument stack slots.
4006   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4007                        (CallConv == CallingConv::Fast));
4008   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4009   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4010   unsigned ArgOffset = LinkageSize;
4011   // Area that is at least reserved in caller of this function.
4012   unsigned MinReservedArea = ArgOffset;
4013 
4014   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4015     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4016     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4017   };
4018   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4019     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4020     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4021   };
4022   static const MCPhysReg VR[] = {
4023     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4024     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4025   };
4026 
4027   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4028   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4029   const unsigned Num_VR_Regs  = array_lengthof( VR);
4030 
4031   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4032 
4033   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4034 
4035   // In 32-bit non-varargs functions, the stack space for vectors is after the
4036   // stack space for non-vectors.  We do not use this space unless we have
4037   // too many vectors to fit in registers, something that only occurs in
4038   // constructed examples:), but we have to walk the arglist to figure
4039   // that out...for the pathological case, compute VecArgOffset as the
4040   // start of the vector parameter area.  Computing VecArgOffset is the
4041   // entire point of the following loop.
4042   unsigned VecArgOffset = ArgOffset;
4043   if (!isVarArg && !isPPC64) {
4044     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4045          ++ArgNo) {
4046       EVT ObjectVT = Ins[ArgNo].VT;
4047       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4048 
4049       if (Flags.isByVal()) {
4050         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4051         unsigned ObjSize = Flags.getByValSize();
4052         unsigned ArgSize =
4053                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4054         VecArgOffset += ArgSize;
4055         continue;
4056       }
4057 
4058       switch(ObjectVT.getSimpleVT().SimpleTy) {
4059       default: llvm_unreachable("Unhandled argument type!");
4060       case MVT::i1:
4061       case MVT::i32:
4062       case MVT::f32:
4063         VecArgOffset += 4;
4064         break;
4065       case MVT::i64:  // PPC64
4066       case MVT::f64:
4067         // FIXME: We are guaranteed to be !isPPC64 at this point.
4068         // Does MVT::i64 apply?
4069         VecArgOffset += 8;
4070         break;
4071       case MVT::v4f32:
4072       case MVT::v4i32:
4073       case MVT::v8i16:
4074       case MVT::v16i8:
4075         // Nothing to do, we're only looking at Nonvector args here.
4076         break;
4077       }
4078     }
4079   }
4080   // We've found where the vector parameter area in memory is.  Skip the
4081   // first 12 parameters; these don't use that memory.
4082   VecArgOffset = ((VecArgOffset+15)/16)*16;
4083   VecArgOffset += 12*16;
4084 
4085   // Add DAG nodes to load the arguments or copy them out of registers.  On
4086   // entry to a function on PPC, the arguments start after the linkage area,
4087   // although the first ones are often in registers.
4088 
4089   SmallVector<SDValue, 8> MemOps;
4090   unsigned nAltivecParamsAtEnd = 0;
4091   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4092   unsigned CurArgIdx = 0;
4093   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4094     SDValue ArgVal;
4095     bool needsLoad = false;
4096     EVT ObjectVT = Ins[ArgNo].VT;
4097     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4098     unsigned ArgSize = ObjSize;
4099     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4100     if (Ins[ArgNo].isOrigArg()) {
4101       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4102       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4103     }
4104     unsigned CurArgOffset = ArgOffset;
4105 
4106     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4107     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4108         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4109       if (isVarArg || isPPC64) {
4110         MinReservedArea = ((MinReservedArea+15)/16)*16;
4111         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4112                                                   Flags,
4113                                                   PtrByteSize);
4114       } else  nAltivecParamsAtEnd++;
4115     } else
4116       // Calculate min reserved area.
4117       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4118                                                 Flags,
4119                                                 PtrByteSize);
4120 
4121     // FIXME the codegen can be much improved in some cases.
4122     // We do not have to keep everything in memory.
4123     if (Flags.isByVal()) {
4124       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4125 
4126       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4127       ObjSize = Flags.getByValSize();
4128       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4129       // Objects of size 1 and 2 are right justified, everything else is
4130       // left justified.  This means the memory address is adjusted forwards.
4131       if (ObjSize==1 || ObjSize==2) {
4132         CurArgOffset = CurArgOffset + (4 - ObjSize);
4133       }
4134       // The value of the object is its address.
4135       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4136       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4137       InVals.push_back(FIN);
4138       if (ObjSize==1 || ObjSize==2) {
4139         if (GPR_idx != Num_GPR_Regs) {
4140           unsigned VReg;
4141           if (isPPC64)
4142             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4143           else
4144             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4145           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4146           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4147           SDValue Store =
4148               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4149                                 MachinePointerInfo(&*FuncArg), ObjType);
4150           MemOps.push_back(Store);
4151           ++GPR_idx;
4152         }
4153 
4154         ArgOffset += PtrByteSize;
4155 
4156         continue;
4157       }
4158       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4159         // Store whatever pieces of the object are in registers
4160         // to memory.  ArgOffset will be the address of the beginning
4161         // of the object.
4162         if (GPR_idx != Num_GPR_Regs) {
4163           unsigned VReg;
4164           if (isPPC64)
4165             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4166           else
4167             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4168           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4169           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4170           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4171           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4172                                        MachinePointerInfo(&*FuncArg, j));
4173           MemOps.push_back(Store);
4174           ++GPR_idx;
4175           ArgOffset += PtrByteSize;
4176         } else {
4177           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4178           break;
4179         }
4180       }
4181       continue;
4182     }
4183 
4184     switch (ObjectVT.getSimpleVT().SimpleTy) {
4185     default: llvm_unreachable("Unhandled argument type!");
4186     case MVT::i1:
4187     case MVT::i32:
4188       if (!isPPC64) {
4189         if (GPR_idx != Num_GPR_Regs) {
4190           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4191           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4192 
4193           if (ObjectVT == MVT::i1)
4194             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4195 
4196           ++GPR_idx;
4197         } else {
4198           needsLoad = true;
4199           ArgSize = PtrByteSize;
4200         }
4201         // All int arguments reserve stack space in the Darwin ABI.
4202         ArgOffset += PtrByteSize;
4203         break;
4204       }
4205       LLVM_FALLTHROUGH;
4206     case MVT::i64:  // PPC64
4207       if (GPR_idx != Num_GPR_Regs) {
4208         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4209         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4210 
4211         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4212           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4213           // value to MVT::i64 and then truncate to the correct register size.
4214           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4215 
4216         ++GPR_idx;
4217       } else {
4218         needsLoad = true;
4219         ArgSize = PtrByteSize;
4220       }
4221       // All int arguments reserve stack space in the Darwin ABI.
4222       ArgOffset += 8;
4223       break;
4224 
4225     case MVT::f32:
4226     case MVT::f64:
4227       // Every 4 bytes of argument space consumes one of the GPRs available for
4228       // argument passing.
4229       if (GPR_idx != Num_GPR_Regs) {
4230         ++GPR_idx;
4231         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4232           ++GPR_idx;
4233       }
4234       if (FPR_idx != Num_FPR_Regs) {
4235         unsigned VReg;
4236 
4237         if (ObjectVT == MVT::f32)
4238           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4239         else
4240           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4241 
4242         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4243         ++FPR_idx;
4244       } else {
4245         needsLoad = true;
4246       }
4247 
4248       // All FP arguments reserve stack space in the Darwin ABI.
4249       ArgOffset += isPPC64 ? 8 : ObjSize;
4250       break;
4251     case MVT::v4f32:
4252     case MVT::v4i32:
4253     case MVT::v8i16:
4254     case MVT::v16i8:
4255       // Note that vector arguments in registers don't reserve stack space,
4256       // except in varargs functions.
4257       if (VR_idx != Num_VR_Regs) {
4258         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4259         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4260         if (isVarArg) {
4261           while ((ArgOffset % 16) != 0) {
4262             ArgOffset += PtrByteSize;
4263             if (GPR_idx != Num_GPR_Regs)
4264               GPR_idx++;
4265           }
4266           ArgOffset += 16;
4267           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4268         }
4269         ++VR_idx;
4270       } else {
4271         if (!isVarArg && !isPPC64) {
4272           // Vectors go after all the nonvectors.
4273           CurArgOffset = VecArgOffset;
4274           VecArgOffset += 16;
4275         } else {
4276           // Vectors are aligned.
4277           ArgOffset = ((ArgOffset+15)/16)*16;
4278           CurArgOffset = ArgOffset;
4279           ArgOffset += 16;
4280         }
4281         needsLoad = true;
4282       }
4283       break;
4284     }
4285 
4286     // We need to load the argument to a virtual register if we determined above
4287     // that we ran out of physical registers of the appropriate type.
4288     if (needsLoad) {
4289       int FI = MFI.CreateFixedObject(ObjSize,
4290                                      CurArgOffset + (ArgSize - ObjSize),
4291                                      isImmutable);
4292       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4293       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4294     }
4295 
4296     InVals.push_back(ArgVal);
4297   }
4298 
4299   // Allow for Altivec parameters at the end, if needed.
4300   if (nAltivecParamsAtEnd) {
4301     MinReservedArea = ((MinReservedArea+15)/16)*16;
4302     MinReservedArea += 16*nAltivecParamsAtEnd;
4303   }
4304 
4305   // Area that is at least reserved in the caller of this function.
4306   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4307 
4308   // Set the size that is at least reserved in caller of this function.  Tail
4309   // call optimized functions' reserved stack space needs to be aligned so that
4310   // taking the difference between two stack areas will result in an aligned
4311   // stack.
4312   MinReservedArea =
4313       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4314   FuncInfo->setMinReservedArea(MinReservedArea);
4315 
4316   // If the function takes variable number of arguments, make a frame index for
4317   // the start of the first vararg value... for expansion of llvm.va_start.
4318   if (isVarArg) {
4319     int Depth = ArgOffset;
4320 
4321     FuncInfo->setVarArgsFrameIndex(
4322       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4323                             Depth, true));
4324     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4325 
4326     // If this function is vararg, store any remaining integer argument regs
4327     // to their spots on the stack so that they may be loaded by dereferencing
4328     // the result of va_next.
4329     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4330       unsigned VReg;
4331 
4332       if (isPPC64)
4333         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4334       else
4335         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4336 
4337       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4338       SDValue Store =
4339           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4340       MemOps.push_back(Store);
4341       // Increment the address by four for the next argument to store
4342       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4343       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4344     }
4345   }
4346 
4347   if (!MemOps.empty())
4348     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4349 
4350   return Chain;
4351 }
4352 
4353 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4354 /// adjusted to accommodate the arguments for the tailcall.
4355 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4356                                    unsigned ParamSize) {
4357 
4358   if (!isTailCall) return 0;
4359 
4360   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4361   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4362   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4363   // Remember only if the new adjustment is bigger.
4364   if (SPDiff < FI->getTailCallSPDelta())
4365     FI->setTailCallSPDelta(SPDiff);
4366 
4367   return SPDiff;
4368 }
4369 
4370 static bool isFunctionGlobalAddress(SDValue Callee);
4371 
4372 static bool
4373 callsShareTOCBase(const Function *Caller, SDValue Callee,
4374                     const TargetMachine &TM) {
4375   // If !G, Callee can be an external symbol.
4376   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4377   if (!G)
4378     return false;
4379 
4380   // The medium and large code models are expected to provide a sufficiently
4381   // large TOC to provide all data addressing needs of a module with a
4382   // single TOC. Since each module will be addressed with a single TOC then we
4383   // only need to check that caller and callee don't cross dso boundaries.
4384   if (CodeModel::Medium == TM.getCodeModel() ||
4385       CodeModel::Large == TM.getCodeModel())
4386     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4387 
4388   // Otherwise we need to ensure callee and caller are in the same section,
4389   // since the linker may allocate multiple TOCs, and we don't know which
4390   // sections will belong to the same TOC base.
4391 
4392   const GlobalValue *GV = G->getGlobal();
4393   if (!GV->isStrongDefinitionForLinker())
4394     return false;
4395 
4396   // Any explicitly-specified sections and section prefixes must also match.
4397   // Also, if we're using -ffunction-sections, then each function is always in
4398   // a different section (the same is true for COMDAT functions).
4399   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4400       GV->getSection() != Caller->getSection())
4401     return false;
4402   if (const auto *F = dyn_cast<Function>(GV)) {
4403     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4404       return false;
4405   }
4406 
4407   // If the callee might be interposed, then we can't assume the ultimate call
4408   // target will be in the same section. Even in cases where we can assume that
4409   // interposition won't happen, in any case where the linker might insert a
4410   // stub to allow for interposition, we must generate code as though
4411   // interposition might occur. To understand why this matters, consider a
4412   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4413   // in the same section, but a is in a different module (i.e. has a different
4414   // TOC base pointer). If the linker allows for interposition between b and c,
4415   // then it will generate a stub for the call edge between b and c which will
4416   // save the TOC pointer into the designated stack slot allocated by b. If we
4417   // return true here, and therefore allow a tail call between b and c, that
4418   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4419   // pointer into the stack slot allocated by a (where the a -> b stub saved
4420   // a's TOC base pointer). If we're not considering a tail call, but rather,
4421   // whether a nop is needed after the call instruction in b, because the linker
4422   // will insert a stub, it might complain about a missing nop if we omit it
4423   // (although many don't complain in this case).
4424   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4425     return false;
4426 
4427   return true;
4428 }
4429 
4430 static bool
4431 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4432                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4433   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4434 
4435   const unsigned PtrByteSize = 8;
4436   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4437 
4438   static const MCPhysReg GPR[] = {
4439     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4440     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4441   };
4442   static const MCPhysReg VR[] = {
4443     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4444     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4445   };
4446 
4447   const unsigned NumGPRs = array_lengthof(GPR);
4448   const unsigned NumFPRs = 13;
4449   const unsigned NumVRs = array_lengthof(VR);
4450   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4451 
4452   unsigned NumBytes = LinkageSize;
4453   unsigned AvailableFPRs = NumFPRs;
4454   unsigned AvailableVRs = NumVRs;
4455 
4456   for (const ISD::OutputArg& Param : Outs) {
4457     if (Param.Flags.isNest()) continue;
4458 
4459     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4460                                PtrByteSize, LinkageSize, ParamAreaSize,
4461                                NumBytes, AvailableFPRs, AvailableVRs,
4462                                Subtarget.hasQPX()))
4463       return true;
4464   }
4465   return false;
4466 }
4467 
4468 static bool
4469 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4470   if (CS.arg_size() != CallerFn->arg_size())
4471     return false;
4472 
4473   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4474   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4475   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4476 
4477   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4478     const Value* CalleeArg = *CalleeArgIter;
4479     const Value* CallerArg = &(*CallerArgIter);
4480     if (CalleeArg == CallerArg)
4481       continue;
4482 
4483     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4484     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4485     //      }
4486     // 1st argument of callee is undef and has the same type as caller.
4487     if (CalleeArg->getType() == CallerArg->getType() &&
4488         isa<UndefValue>(CalleeArg))
4489       continue;
4490 
4491     return false;
4492   }
4493 
4494   return true;
4495 }
4496 
4497 // Returns true if TCO is possible between the callers and callees
4498 // calling conventions.
4499 static bool
4500 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4501                                     CallingConv::ID CalleeCC) {
4502   // Tail calls are possible with fastcc and ccc.
4503   auto isTailCallableCC  = [] (CallingConv::ID CC){
4504       return  CC == CallingConv::C || CC == CallingConv::Fast;
4505   };
4506   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4507     return false;
4508 
4509   // We can safely tail call both fastcc and ccc callees from a c calling
4510   // convention caller. If the caller is fastcc, we may have less stack space
4511   // than a non-fastcc caller with the same signature so disable tail-calls in
4512   // that case.
4513   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4514 }
4515 
4516 bool
4517 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4518                                     SDValue Callee,
4519                                     CallingConv::ID CalleeCC,
4520                                     ImmutableCallSite CS,
4521                                     bool isVarArg,
4522                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4523                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4524                                     SelectionDAG& DAG) const {
4525   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4526 
4527   if (DisableSCO && !TailCallOpt) return false;
4528 
4529   // Variadic argument functions are not supported.
4530   if (isVarArg) return false;
4531 
4532   auto &Caller = DAG.getMachineFunction().getFunction();
4533   // Check that the calling conventions are compatible for tco.
4534   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4535     return false;
4536 
4537   // Caller contains any byval parameter is not supported.
4538   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4539     return false;
4540 
4541   // Callee contains any byval parameter is not supported, too.
4542   // Note: This is a quick work around, because in some cases, e.g.
4543   // caller's stack size > callee's stack size, we are still able to apply
4544   // sibling call optimization. For example, gcc is able to do SCO for caller1
4545   // in the following example, but not for caller2.
4546   //   struct test {
4547   //     long int a;
4548   //     char ary[56];
4549   //   } gTest;
4550   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4551   //     b->a = v.a;
4552   //     return 0;
4553   //   }
4554   //   void caller1(struct test a, struct test c, struct test *b) {
4555   //     callee(gTest, b); }
4556   //   void caller2(struct test *b) { callee(gTest, b); }
4557   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4558     return false;
4559 
4560   // If callee and caller use different calling conventions, we cannot pass
4561   // parameters on stack since offsets for the parameter area may be different.
4562   if (Caller.getCallingConv() != CalleeCC &&
4563       needStackSlotPassParameters(Subtarget, Outs))
4564     return false;
4565 
4566   // No TCO/SCO on indirect call because Caller have to restore its TOC
4567   if (!isFunctionGlobalAddress(Callee) &&
4568       !isa<ExternalSymbolSDNode>(Callee))
4569     return false;
4570 
4571   // If the caller and callee potentially have different TOC bases then we
4572   // cannot tail call since we need to restore the TOC pointer after the call.
4573   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4574   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4575     return false;
4576 
4577   // TCO allows altering callee ABI, so we don't have to check further.
4578   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4579     return true;
4580 
4581   if (DisableSCO) return false;
4582 
4583   // If callee use the same argument list that caller is using, then we can
4584   // apply SCO on this case. If it is not, then we need to check if callee needs
4585   // stack for passing arguments.
4586   if (!hasSameArgumentList(&Caller, CS) &&
4587       needStackSlotPassParameters(Subtarget, Outs)) {
4588     return false;
4589   }
4590 
4591   return true;
4592 }
4593 
4594 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4595 /// for tail call optimization. Targets which want to do tail call
4596 /// optimization should implement this function.
4597 bool
4598 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4599                                                      CallingConv::ID CalleeCC,
4600                                                      bool isVarArg,
4601                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4602                                                      SelectionDAG& DAG) const {
4603   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4604     return false;
4605 
4606   // Variable argument functions are not supported.
4607   if (isVarArg)
4608     return false;
4609 
4610   MachineFunction &MF = DAG.getMachineFunction();
4611   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4612   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4613     // Functions containing by val parameters are not supported.
4614     for (unsigned i = 0; i != Ins.size(); i++) {
4615        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4616        if (Flags.isByVal()) return false;
4617     }
4618 
4619     // Non-PIC/GOT tail calls are supported.
4620     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4621       return true;
4622 
4623     // At the moment we can only do local tail calls (in same module, hidden
4624     // or protected) if we are generating PIC.
4625     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4626       return G->getGlobal()->hasHiddenVisibility()
4627           || G->getGlobal()->hasProtectedVisibility();
4628   }
4629 
4630   return false;
4631 }
4632 
4633 /// isCallCompatibleAddress - Return the immediate to use if the specified
4634 /// 32-bit value is representable in the immediate field of a BxA instruction.
4635 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4636   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4637   if (!C) return nullptr;
4638 
4639   int Addr = C->getZExtValue();
4640   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4641       SignExtend32<26>(Addr) != Addr)
4642     return nullptr;  // Top 6 bits have to be sext of immediate.
4643 
4644   return DAG
4645       .getConstant(
4646           (int)C->getZExtValue() >> 2, SDLoc(Op),
4647           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4648       .getNode();
4649 }
4650 
4651 namespace {
4652 
4653 struct TailCallArgumentInfo {
4654   SDValue Arg;
4655   SDValue FrameIdxOp;
4656   int FrameIdx = 0;
4657 
4658   TailCallArgumentInfo() = default;
4659 };
4660 
4661 } // end anonymous namespace
4662 
4663 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4664 static void StoreTailCallArgumentsToStackSlot(
4665     SelectionDAG &DAG, SDValue Chain,
4666     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4667     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4668   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4669     SDValue Arg = TailCallArgs[i].Arg;
4670     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4671     int FI = TailCallArgs[i].FrameIdx;
4672     // Store relative to framepointer.
4673     MemOpChains.push_back(DAG.getStore(
4674         Chain, dl, Arg, FIN,
4675         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4676   }
4677 }
4678 
4679 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4680 /// the appropriate stack slot for the tail call optimized function call.
4681 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4682                                              SDValue OldRetAddr, SDValue OldFP,
4683                                              int SPDiff, const SDLoc &dl) {
4684   if (SPDiff) {
4685     // Calculate the new stack slot for the return address.
4686     MachineFunction &MF = DAG.getMachineFunction();
4687     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4688     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4689     bool isPPC64 = Subtarget.isPPC64();
4690     int SlotSize = isPPC64 ? 8 : 4;
4691     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4692     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4693                                                          NewRetAddrLoc, true);
4694     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4695     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4696     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4697                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4698 
4699     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4700     // slot as the FP is never overwritten.
4701     if (Subtarget.isDarwinABI()) {
4702       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4703       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4704                                                          true);
4705       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4706       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4707                            MachinePointerInfo::getFixedStack(
4708                                DAG.getMachineFunction(), NewFPIdx));
4709     }
4710   }
4711   return Chain;
4712 }
4713 
4714 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4715 /// the position of the argument.
4716 static void
4717 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4718                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4719                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4720   int Offset = ArgOffset + SPDiff;
4721   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4722   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4723   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4724   SDValue FIN = DAG.getFrameIndex(FI, VT);
4725   TailCallArgumentInfo Info;
4726   Info.Arg = Arg;
4727   Info.FrameIdxOp = FIN;
4728   Info.FrameIdx = FI;
4729   TailCallArguments.push_back(Info);
4730 }
4731 
4732 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4733 /// stack slot. Returns the chain as result and the loaded frame pointers in
4734 /// LROpOut/FPOpout. Used when tail calling.
4735 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4736     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4737     SDValue &FPOpOut, const SDLoc &dl) const {
4738   if (SPDiff) {
4739     // Load the LR and FP stack slot for later adjusting.
4740     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4741     LROpOut = getReturnAddrFrameIndex(DAG);
4742     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4743     Chain = SDValue(LROpOut.getNode(), 1);
4744 
4745     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4746     // slot as the FP is never overwritten.
4747     if (Subtarget.isDarwinABI()) {
4748       FPOpOut = getFramePointerFrameIndex(DAG);
4749       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4750       Chain = SDValue(FPOpOut.getNode(), 1);
4751     }
4752   }
4753   return Chain;
4754 }
4755 
4756 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4757 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4758 /// specified by the specific parameter attribute. The copy will be passed as
4759 /// a byval function parameter.
4760 /// Sometimes what we are copying is the end of a larger object, the part that
4761 /// does not fit in registers.
4762 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4763                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4764                                          SelectionDAG &DAG, const SDLoc &dl) {
4765   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4766   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4767                        false, false, false, MachinePointerInfo(),
4768                        MachinePointerInfo());
4769 }
4770 
4771 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4772 /// tail calls.
4773 static void LowerMemOpCallTo(
4774     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4775     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4776     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4777     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4778   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4779   if (!isTailCall) {
4780     if (isVector) {
4781       SDValue StackPtr;
4782       if (isPPC64)
4783         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4784       else
4785         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4786       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4787                            DAG.getConstant(ArgOffset, dl, PtrVT));
4788     }
4789     MemOpChains.push_back(
4790         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4791     // Calculate and remember argument location.
4792   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4793                                   TailCallArguments);
4794 }
4795 
4796 static void
4797 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4798                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4799                 SDValue FPOp,
4800                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4801   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4802   // might overwrite each other in case of tail call optimization.
4803   SmallVector<SDValue, 8> MemOpChains2;
4804   // Do not flag preceding copytoreg stuff together with the following stuff.
4805   InFlag = SDValue();
4806   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4807                                     MemOpChains2, dl);
4808   if (!MemOpChains2.empty())
4809     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4810 
4811   // Store the return address to the appropriate stack slot.
4812   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4813 
4814   // Emit callseq_end just before tailcall node.
4815   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4816                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4817   InFlag = Chain.getValue(1);
4818 }
4819 
4820 // Is this global address that of a function that can be called by name? (as
4821 // opposed to something that must hold a descriptor for an indirect call).
4822 static bool isFunctionGlobalAddress(SDValue Callee) {
4823   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4824     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4825         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4826       return false;
4827 
4828     return G->getGlobal()->getValueType()->isFunctionTy();
4829   }
4830 
4831   return false;
4832 }
4833 
4834 static unsigned
4835 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4836             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4837             bool isPatchPoint, bool hasNest,
4838             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4839             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4840             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4841   bool isPPC64 = Subtarget.isPPC64();
4842   bool isSVR4ABI = Subtarget.isSVR4ABI();
4843   bool isELFv2ABI = Subtarget.isELFv2ABI();
4844 
4845   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4846   NodeTys.push_back(MVT::Other);   // Returns a chain
4847   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4848 
4849   unsigned CallOpc = PPCISD::CALL;
4850 
4851   bool needIndirectCall = true;
4852   if (!isSVR4ABI || !isPPC64)
4853     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4854       // If this is an absolute destination address, use the munged value.
4855       Callee = SDValue(Dest, 0);
4856       needIndirectCall = false;
4857     }
4858 
4859   // PC-relative references to external symbols should go through $stub, unless
4860   // we're building with the leopard linker or later, which automatically
4861   // synthesizes these stubs.
4862   const TargetMachine &TM = DAG.getTarget();
4863   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4864   const GlobalValue *GV = nullptr;
4865   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4866     GV = G->getGlobal();
4867   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4868   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4869 
4870   if (isFunctionGlobalAddress(Callee)) {
4871     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4872     // A call to a TLS address is actually an indirect call to a
4873     // thread-specific pointer.
4874     unsigned OpFlags = 0;
4875     if (UsePlt)
4876       OpFlags = PPCII::MO_PLT;
4877 
4878     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4879     // every direct call is) turn it into a TargetGlobalAddress /
4880     // TargetExternalSymbol node so that legalize doesn't hack it.
4881     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4882                                         Callee.getValueType(), 0, OpFlags);
4883     needIndirectCall = false;
4884   }
4885 
4886   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4887     unsigned char OpFlags = 0;
4888 
4889     if (UsePlt)
4890       OpFlags = PPCII::MO_PLT;
4891 
4892     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4893                                          OpFlags);
4894     needIndirectCall = false;
4895   }
4896 
4897   if (isPatchPoint) {
4898     // We'll form an invalid direct call when lowering a patchpoint; the full
4899     // sequence for an indirect call is complicated, and many of the
4900     // instructions introduced might have side effects (and, thus, can't be
4901     // removed later). The call itself will be removed as soon as the
4902     // argument/return lowering is complete, so the fact that it has the wrong
4903     // kind of operands should not really matter.
4904     needIndirectCall = false;
4905   }
4906 
4907   if (needIndirectCall) {
4908     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4909     // to do the call, we can't use PPCISD::CALL.
4910     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4911 
4912     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4913       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4914       // entry point, but to the function descriptor (the function entry point
4915       // address is part of the function descriptor though).
4916       // The function descriptor is a three doubleword structure with the
4917       // following fields: function entry point, TOC base address and
4918       // environment pointer.
4919       // Thus for a call through a function pointer, the following actions need
4920       // to be performed:
4921       //   1. Save the TOC of the caller in the TOC save area of its stack
4922       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4923       //   2. Load the address of the function entry point from the function
4924       //      descriptor.
4925       //   3. Load the TOC of the callee from the function descriptor into r2.
4926       //   4. Load the environment pointer from the function descriptor into
4927       //      r11.
4928       //   5. Branch to the function entry point address.
4929       //   6. On return of the callee, the TOC of the caller needs to be
4930       //      restored (this is done in FinishCall()).
4931       //
4932       // The loads are scheduled at the beginning of the call sequence, and the
4933       // register copies are flagged together to ensure that no other
4934       // operations can be scheduled in between. E.g. without flagging the
4935       // copies together, a TOC access in the caller could be scheduled between
4936       // the assignment of the callee TOC and the branch to the callee, which
4937       // results in the TOC access going through the TOC of the callee instead
4938       // of going through the TOC of the caller, which leads to incorrect code.
4939 
4940       // Load the address of the function entry point from the function
4941       // descriptor.
4942       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4943       if (LDChain.getValueType() == MVT::Glue)
4944         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4945 
4946       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4947                           ? (MachineMemOperand::MODereferenceable |
4948                              MachineMemOperand::MOInvariant)
4949                           : MachineMemOperand::MONone;
4950 
4951       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4952       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4953                                         /* Alignment = */ 8, MMOFlags);
4954 
4955       // Load environment pointer into r11.
4956       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4957       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4958       SDValue LoadEnvPtr =
4959           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4960                       /* Alignment = */ 8, MMOFlags);
4961 
4962       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4963       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4964       SDValue TOCPtr =
4965           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4966                       /* Alignment = */ 8, MMOFlags);
4967 
4968       setUsesTOCBasePtr(DAG);
4969       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4970                                         InFlag);
4971       Chain = TOCVal.getValue(0);
4972       InFlag = TOCVal.getValue(1);
4973 
4974       // If the function call has an explicit 'nest' parameter, it takes the
4975       // place of the environment pointer.
4976       if (!hasNest) {
4977         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4978                                           InFlag);
4979 
4980         Chain = EnvVal.getValue(0);
4981         InFlag = EnvVal.getValue(1);
4982       }
4983 
4984       MTCTROps[0] = Chain;
4985       MTCTROps[1] = LoadFuncPtr;
4986       MTCTROps[2] = InFlag;
4987     }
4988 
4989     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4990                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4991     InFlag = Chain.getValue(1);
4992 
4993     NodeTys.clear();
4994     NodeTys.push_back(MVT::Other);
4995     NodeTys.push_back(MVT::Glue);
4996     Ops.push_back(Chain);
4997     CallOpc = PPCISD::BCTRL;
4998     Callee.setNode(nullptr);
4999     // Add use of X11 (holding environment pointer)
5000     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5001       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5002     // Add CTR register as callee so a bctr can be emitted later.
5003     if (isTailCall)
5004       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5005   }
5006 
5007   // If this is a direct call, pass the chain and the callee.
5008   if (Callee.getNode()) {
5009     Ops.push_back(Chain);
5010     Ops.push_back(Callee);
5011   }
5012   // If this is a tail call add stack pointer delta.
5013   if (isTailCall)
5014     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5015 
5016   // Add argument registers to the end of the list so that they are known live
5017   // into the call.
5018   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5019     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5020                                   RegsToPass[i].second.getValueType()));
5021 
5022   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5023   // into the call.
5024   // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5025   if (isSVR4ABI && isPPC64) {
5026     setUsesTOCBasePtr(DAG);
5027 
5028     // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5029     // way to mark dependencies as implicit here. We will add the X2 dependency
5030     // in EmitInstrWithCustomInserter.
5031     if (!isPatchPoint)
5032       Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5033   }
5034 
5035   return CallOpc;
5036 }
5037 
5038 SDValue PPCTargetLowering::LowerCallResult(
5039     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5040     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5041     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5042   SmallVector<CCValAssign, 16> RVLocs;
5043   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5044                     *DAG.getContext());
5045 
5046   CCRetInfo.AnalyzeCallResult(
5047       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5048                ? RetCC_PPC_Cold
5049                : RetCC_PPC);
5050 
5051   // Copy all of the result registers out of their specified physreg.
5052   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5053     CCValAssign &VA = RVLocs[i];
5054     assert(VA.isRegLoc() && "Can only return in registers!");
5055 
5056     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5057                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5058     Chain = Val.getValue(1);
5059     InFlag = Val.getValue(2);
5060 
5061     switch (VA.getLocInfo()) {
5062     default: llvm_unreachable("Unknown loc info!");
5063     case CCValAssign::Full: break;
5064     case CCValAssign::AExt:
5065       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5066       break;
5067     case CCValAssign::ZExt:
5068       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5069                         DAG.getValueType(VA.getValVT()));
5070       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5071       break;
5072     case CCValAssign::SExt:
5073       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5074                         DAG.getValueType(VA.getValVT()));
5075       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5076       break;
5077     }
5078 
5079     InVals.push_back(Val);
5080   }
5081 
5082   return Chain;
5083 }
5084 
5085 SDValue PPCTargetLowering::FinishCall(
5086     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5087     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5088     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5089     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5090     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5091     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5092   std::vector<EVT> NodeTys;
5093   SmallVector<SDValue, 8> Ops;
5094   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5095                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5096                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5097 
5098   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5099   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5100     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5101 
5102   // When performing tail call optimization the callee pops its arguments off
5103   // the stack. Account for this here so these bytes can be pushed back on in
5104   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5105   int BytesCalleePops =
5106     (CallConv == CallingConv::Fast &&
5107      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5108 
5109   // Add a register mask operand representing the call-preserved registers.
5110   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5111   const uint32_t *Mask =
5112       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5113   assert(Mask && "Missing call preserved mask for calling convention");
5114   Ops.push_back(DAG.getRegisterMask(Mask));
5115 
5116   if (InFlag.getNode())
5117     Ops.push_back(InFlag);
5118 
5119   // Emit tail call.
5120   if (isTailCall) {
5121     assert(((Callee.getOpcode() == ISD::Register &&
5122              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5123             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5124             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5125             isa<ConstantSDNode>(Callee)) &&
5126     "Expecting an global address, external symbol, absolute value or register");
5127 
5128     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5129     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5130   }
5131 
5132   // Add a NOP immediately after the branch instruction when using the 64-bit
5133   // SVR4 ABI. At link time, if caller and callee are in a different module and
5134   // thus have a different TOC, the call will be replaced with a call to a stub
5135   // function which saves the current TOC, loads the TOC of the callee and
5136   // branches to the callee. The NOP will be replaced with a load instruction
5137   // which restores the TOC of the caller from the TOC save slot of the current
5138   // stack frame. If caller and callee belong to the same module (and have the
5139   // same TOC), the NOP will remain unchanged.
5140 
5141   MachineFunction &MF = DAG.getMachineFunction();
5142   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5143       !isPatchPoint) {
5144     if (CallOpc == PPCISD::BCTRL) {
5145       // This is a call through a function pointer.
5146       // Restore the caller TOC from the save area into R2.
5147       // See PrepareCall() for more information about calls through function
5148       // pointers in the 64-bit SVR4 ABI.
5149       // We are using a target-specific load with r2 hard coded, because the
5150       // result of a target-independent load would never go directly into r2,
5151       // since r2 is a reserved register (which prevents the register allocator
5152       // from allocating it), resulting in an additional register being
5153       // allocated and an unnecessary move instruction being generated.
5154       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5155 
5156       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5157       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5158       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5159       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5160       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5161 
5162       // The address needs to go after the chain input but before the flag (or
5163       // any other variadic arguments).
5164       Ops.insert(std::next(Ops.begin()), AddTOC);
5165     } else if (CallOpc == PPCISD::CALL &&
5166       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5167       // Otherwise insert NOP for non-local calls.
5168       CallOpc = PPCISD::CALL_NOP;
5169     }
5170   }
5171 
5172   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5173   InFlag = Chain.getValue(1);
5174 
5175   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5176                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5177                              InFlag, dl);
5178   if (!Ins.empty())
5179     InFlag = Chain.getValue(1);
5180 
5181   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5182                          Ins, dl, DAG, InVals);
5183 }
5184 
5185 SDValue
5186 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5187                              SmallVectorImpl<SDValue> &InVals) const {
5188   SelectionDAG &DAG                     = CLI.DAG;
5189   SDLoc &dl                             = CLI.DL;
5190   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5191   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5192   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5193   SDValue Chain                         = CLI.Chain;
5194   SDValue Callee                        = CLI.Callee;
5195   bool &isTailCall                      = CLI.IsTailCall;
5196   CallingConv::ID CallConv              = CLI.CallConv;
5197   bool isVarArg                         = CLI.IsVarArg;
5198   bool isPatchPoint                     = CLI.IsPatchPoint;
5199   ImmutableCallSite CS                  = CLI.CS;
5200 
5201   if (isTailCall) {
5202     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5203       isTailCall = false;
5204     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5205       isTailCall =
5206         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5207                                                  isVarArg, Outs, Ins, DAG);
5208     else
5209       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5210                                                      Ins, DAG);
5211     if (isTailCall) {
5212       ++NumTailCalls;
5213       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5214         ++NumSiblingCalls;
5215 
5216       assert(isa<GlobalAddressSDNode>(Callee) &&
5217              "Callee should be an llvm::Function object.");
5218       LLVM_DEBUG(
5219           const GlobalValue *GV =
5220               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5221           const unsigned Width =
5222               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5223           dbgs() << "TCO caller: "
5224                  << left_justify(DAG.getMachineFunction().getName(), Width)
5225                  << ", callee linkage: " << GV->getVisibility() << ", "
5226                  << GV->getLinkage() << "\n");
5227     }
5228   }
5229 
5230   if (!isTailCall && CS && CS.isMustTailCall())
5231     report_fatal_error("failed to perform tail call elimination on a call "
5232                        "site marked musttail");
5233 
5234   // When long calls (i.e. indirect calls) are always used, calls are always
5235   // made via function pointer. If we have a function name, first translate it
5236   // into a pointer.
5237   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5238       !isTailCall)
5239     Callee = LowerGlobalAddress(Callee, DAG);
5240 
5241   if (Subtarget.isSVR4ABI()) {
5242     if (Subtarget.isPPC64())
5243       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5244                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5245                               dl, DAG, InVals, CS);
5246     else
5247       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5248                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5249                               dl, DAG, InVals, CS);
5250   }
5251 
5252   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5253                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5254                           dl, DAG, InVals, CS);
5255 }
5256 
5257 SDValue PPCTargetLowering::LowerCall_32SVR4(
5258     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5259     bool isTailCall, bool isPatchPoint,
5260     const SmallVectorImpl<ISD::OutputArg> &Outs,
5261     const SmallVectorImpl<SDValue> &OutVals,
5262     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5263     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5264     ImmutableCallSite CS) const {
5265   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5266   // of the 32-bit SVR4 ABI stack frame layout.
5267 
5268   assert((CallConv == CallingConv::C ||
5269           CallConv == CallingConv::Cold ||
5270           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5271 
5272   unsigned PtrByteSize = 4;
5273 
5274   MachineFunction &MF = DAG.getMachineFunction();
5275 
5276   // Mark this function as potentially containing a function that contains a
5277   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5278   // and restoring the callers stack pointer in this functions epilog. This is
5279   // done because by tail calling the called function might overwrite the value
5280   // in this function's (MF) stack pointer stack slot 0(SP).
5281   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5282       CallConv == CallingConv::Fast)
5283     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5284 
5285   // Count how many bytes are to be pushed on the stack, including the linkage
5286   // area, parameter list area and the part of the local variable space which
5287   // contains copies of aggregates which are passed by value.
5288 
5289   // Assign locations to all of the outgoing arguments.
5290   SmallVector<CCValAssign, 16> ArgLocs;
5291   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5292 
5293   // Reserve space for the linkage area on the stack.
5294   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5295                        PtrByteSize);
5296   if (useSoftFloat())
5297     CCInfo.PreAnalyzeCallOperands(Outs);
5298 
5299   if (isVarArg) {
5300     // Handle fixed and variable vector arguments differently.
5301     // Fixed vector arguments go into registers as long as registers are
5302     // available. Variable vector arguments always go into memory.
5303     unsigned NumArgs = Outs.size();
5304 
5305     for (unsigned i = 0; i != NumArgs; ++i) {
5306       MVT ArgVT = Outs[i].VT;
5307       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5308       bool Result;
5309 
5310       if (Outs[i].IsFixed) {
5311         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5312                                CCInfo);
5313       } else {
5314         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5315                                       ArgFlags, CCInfo);
5316       }
5317 
5318       if (Result) {
5319 #ifndef NDEBUG
5320         errs() << "Call operand #" << i << " has unhandled type "
5321              << EVT(ArgVT).getEVTString() << "\n";
5322 #endif
5323         llvm_unreachable(nullptr);
5324       }
5325     }
5326   } else {
5327     // All arguments are treated the same.
5328     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5329   }
5330   CCInfo.clearWasPPCF128();
5331 
5332   // Assign locations to all of the outgoing aggregate by value arguments.
5333   SmallVector<CCValAssign, 16> ByValArgLocs;
5334   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5335 
5336   // Reserve stack space for the allocations in CCInfo.
5337   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5338 
5339   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5340 
5341   // Size of the linkage area, parameter list area and the part of the local
5342   // space variable where copies of aggregates which are passed by value are
5343   // stored.
5344   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5345 
5346   // Calculate by how many bytes the stack has to be adjusted in case of tail
5347   // call optimization.
5348   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5349 
5350   // Adjust the stack pointer for the new arguments...
5351   // These operations are automatically eliminated by the prolog/epilog pass
5352   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5353   SDValue CallSeqStart = Chain;
5354 
5355   // Load the return address and frame pointer so it can be moved somewhere else
5356   // later.
5357   SDValue LROp, FPOp;
5358   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5359 
5360   // Set up a copy of the stack pointer for use loading and storing any
5361   // arguments that may not fit in the registers available for argument
5362   // passing.
5363   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5364 
5365   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5366   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5367   SmallVector<SDValue, 8> MemOpChains;
5368 
5369   bool seenFloatArg = false;
5370   // Walk the register/memloc assignments, inserting copies/loads.
5371   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5372        i != e;
5373        ++i) {
5374     CCValAssign &VA = ArgLocs[i];
5375     SDValue Arg = OutVals[i];
5376     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5377 
5378     if (Flags.isByVal()) {
5379       // Argument is an aggregate which is passed by value, thus we need to
5380       // create a copy of it in the local variable space of the current stack
5381       // frame (which is the stack frame of the caller) and pass the address of
5382       // this copy to the callee.
5383       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5384       CCValAssign &ByValVA = ByValArgLocs[j++];
5385       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5386 
5387       // Memory reserved in the local variable space of the callers stack frame.
5388       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5389 
5390       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5391       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5392                            StackPtr, PtrOff);
5393 
5394       // Create a copy of the argument in the local area of the current
5395       // stack frame.
5396       SDValue MemcpyCall =
5397         CreateCopyOfByValArgument(Arg, PtrOff,
5398                                   CallSeqStart.getNode()->getOperand(0),
5399                                   Flags, DAG, dl);
5400 
5401       // This must go outside the CALLSEQ_START..END.
5402       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5403                                                      SDLoc(MemcpyCall));
5404       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5405                              NewCallSeqStart.getNode());
5406       Chain = CallSeqStart = NewCallSeqStart;
5407 
5408       // Pass the address of the aggregate copy on the stack either in a
5409       // physical register or in the parameter list area of the current stack
5410       // frame to the callee.
5411       Arg = PtrOff;
5412     }
5413 
5414     // When useCRBits() is true, there can be i1 arguments.
5415     // It is because getRegisterType(MVT::i1) => MVT::i1,
5416     // and for other integer types getRegisterType() => MVT::i32.
5417     // Extend i1 and ensure callee will get i32.
5418     if (Arg.getValueType() == MVT::i1)
5419       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5420                         dl, MVT::i32, Arg);
5421 
5422     if (VA.isRegLoc()) {
5423       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5424       // Put argument in a physical register.
5425       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5426     } else {
5427       // Put argument in the parameter list area of the current stack frame.
5428       assert(VA.isMemLoc());
5429       unsigned LocMemOffset = VA.getLocMemOffset();
5430 
5431       if (!isTailCall) {
5432         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5433         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5434                              StackPtr, PtrOff);
5435 
5436         MemOpChains.push_back(
5437             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5438       } else {
5439         // Calculate and remember argument location.
5440         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5441                                  TailCallArguments);
5442       }
5443     }
5444   }
5445 
5446   if (!MemOpChains.empty())
5447     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5448 
5449   // Build a sequence of copy-to-reg nodes chained together with token chain
5450   // and flag operands which copy the outgoing args into the appropriate regs.
5451   SDValue InFlag;
5452   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5453     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5454                              RegsToPass[i].second, InFlag);
5455     InFlag = Chain.getValue(1);
5456   }
5457 
5458   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5459   // registers.
5460   if (isVarArg) {
5461     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5462     SDValue Ops[] = { Chain, InFlag };
5463 
5464     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5465                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5466 
5467     InFlag = Chain.getValue(1);
5468   }
5469 
5470   if (isTailCall)
5471     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5472                     TailCallArguments);
5473 
5474   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5475                     /* unused except on PPC64 ELFv1 */ false, DAG,
5476                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5477                     NumBytes, Ins, InVals, CS);
5478 }
5479 
5480 // Copy an argument into memory, being careful to do this outside the
5481 // call sequence for the call to which the argument belongs.
5482 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5483     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5484     SelectionDAG &DAG, const SDLoc &dl) const {
5485   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5486                         CallSeqStart.getNode()->getOperand(0),
5487                         Flags, DAG, dl);
5488   // The MEMCPY must go outside the CALLSEQ_START..END.
5489   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5490   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5491                                                  SDLoc(MemcpyCall));
5492   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5493                          NewCallSeqStart.getNode());
5494   return NewCallSeqStart;
5495 }
5496 
5497 SDValue PPCTargetLowering::LowerCall_64SVR4(
5498     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5499     bool isTailCall, bool isPatchPoint,
5500     const SmallVectorImpl<ISD::OutputArg> &Outs,
5501     const SmallVectorImpl<SDValue> &OutVals,
5502     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5503     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5504     ImmutableCallSite CS) const {
5505   bool isELFv2ABI = Subtarget.isELFv2ABI();
5506   bool isLittleEndian = Subtarget.isLittleEndian();
5507   unsigned NumOps = Outs.size();
5508   bool hasNest = false;
5509   bool IsSibCall = false;
5510 
5511   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5512   unsigned PtrByteSize = 8;
5513 
5514   MachineFunction &MF = DAG.getMachineFunction();
5515 
5516   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5517     IsSibCall = true;
5518 
5519   // Mark this function as potentially containing a function that contains a
5520   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5521   // and restoring the callers stack pointer in this functions epilog. This is
5522   // done because by tail calling the called function might overwrite the value
5523   // in this function's (MF) stack pointer stack slot 0(SP).
5524   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5525       CallConv == CallingConv::Fast)
5526     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5527 
5528   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5529          "fastcc not supported on varargs functions");
5530 
5531   // Count how many bytes are to be pushed on the stack, including the linkage
5532   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5533   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5534   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5535   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5536   unsigned NumBytes = LinkageSize;
5537   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5538   unsigned &QFPR_idx = FPR_idx;
5539 
5540   static const MCPhysReg GPR[] = {
5541     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5542     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5543   };
5544   static const MCPhysReg VR[] = {
5545     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5546     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5547   };
5548 
5549   const unsigned NumGPRs = array_lengthof(GPR);
5550   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5551   const unsigned NumVRs  = array_lengthof(VR);
5552   const unsigned NumQFPRs = NumFPRs;
5553 
5554   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5555   // can be passed to the callee in registers.
5556   // For the fast calling convention, there is another check below.
5557   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5558   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5559   if (!HasParameterArea) {
5560     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5561     unsigned AvailableFPRs = NumFPRs;
5562     unsigned AvailableVRs = NumVRs;
5563     unsigned NumBytesTmp = NumBytes;
5564     for (unsigned i = 0; i != NumOps; ++i) {
5565       if (Outs[i].Flags.isNest()) continue;
5566       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5567                                 PtrByteSize, LinkageSize, ParamAreaSize,
5568                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5569                                 Subtarget.hasQPX()))
5570         HasParameterArea = true;
5571     }
5572   }
5573 
5574   // When using the fast calling convention, we don't provide backing for
5575   // arguments that will be in registers.
5576   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5577 
5578   // Avoid allocating parameter area for fastcc functions if all the arguments
5579   // can be passed in the registers.
5580   if (CallConv == CallingConv::Fast)
5581     HasParameterArea = false;
5582 
5583   // Add up all the space actually used.
5584   for (unsigned i = 0; i != NumOps; ++i) {
5585     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5586     EVT ArgVT = Outs[i].VT;
5587     EVT OrigVT = Outs[i].ArgVT;
5588 
5589     if (Flags.isNest())
5590       continue;
5591 
5592     if (CallConv == CallingConv::Fast) {
5593       if (Flags.isByVal()) {
5594         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5595         if (NumGPRsUsed > NumGPRs)
5596           HasParameterArea = true;
5597       } else {
5598         switch (ArgVT.getSimpleVT().SimpleTy) {
5599         default: llvm_unreachable("Unexpected ValueType for argument!");
5600         case MVT::i1:
5601         case MVT::i32:
5602         case MVT::i64:
5603           if (++NumGPRsUsed <= NumGPRs)
5604             continue;
5605           break;
5606         case MVT::v4i32:
5607         case MVT::v8i16:
5608         case MVT::v16i8:
5609         case MVT::v2f64:
5610         case MVT::v2i64:
5611         case MVT::v1i128:
5612         case MVT::f128:
5613           if (++NumVRsUsed <= NumVRs)
5614             continue;
5615           break;
5616         case MVT::v4f32:
5617           // When using QPX, this is handled like a FP register, otherwise, it
5618           // is an Altivec register.
5619           if (Subtarget.hasQPX()) {
5620             if (++NumFPRsUsed <= NumFPRs)
5621               continue;
5622           } else {
5623             if (++NumVRsUsed <= NumVRs)
5624               continue;
5625           }
5626           break;
5627         case MVT::f32:
5628         case MVT::f64:
5629         case MVT::v4f64: // QPX
5630         case MVT::v4i1:  // QPX
5631           if (++NumFPRsUsed <= NumFPRs)
5632             continue;
5633           break;
5634         }
5635         HasParameterArea = true;
5636       }
5637     }
5638 
5639     /* Respect alignment of argument on the stack.  */
5640     unsigned Align =
5641       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5642     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5643 
5644     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5645     if (Flags.isInConsecutiveRegsLast())
5646       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5647   }
5648 
5649   unsigned NumBytesActuallyUsed = NumBytes;
5650 
5651   // In the old ELFv1 ABI,
5652   // the prolog code of the callee may store up to 8 GPR argument registers to
5653   // the stack, allowing va_start to index over them in memory if its varargs.
5654   // Because we cannot tell if this is needed on the caller side, we have to
5655   // conservatively assume that it is needed.  As such, make sure we have at
5656   // least enough stack space for the caller to store the 8 GPRs.
5657   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5658   // really requires memory operands, e.g. a vararg function.
5659   if (HasParameterArea)
5660     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5661   else
5662     NumBytes = LinkageSize;
5663 
5664   // Tail call needs the stack to be aligned.
5665   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5666       CallConv == CallingConv::Fast)
5667     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5668 
5669   int SPDiff = 0;
5670 
5671   // Calculate by how many bytes the stack has to be adjusted in case of tail
5672   // call optimization.
5673   if (!IsSibCall)
5674     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5675 
5676   // To protect arguments on the stack from being clobbered in a tail call,
5677   // force all the loads to happen before doing any other lowering.
5678   if (isTailCall)
5679     Chain = DAG.getStackArgumentTokenFactor(Chain);
5680 
5681   // Adjust the stack pointer for the new arguments...
5682   // These operations are automatically eliminated by the prolog/epilog pass
5683   if (!IsSibCall)
5684     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5685   SDValue CallSeqStart = Chain;
5686 
5687   // Load the return address and frame pointer so it can be move somewhere else
5688   // later.
5689   SDValue LROp, FPOp;
5690   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5691 
5692   // Set up a copy of the stack pointer for use loading and storing any
5693   // arguments that may not fit in the registers available for argument
5694   // passing.
5695   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5696 
5697   // Figure out which arguments are going to go in registers, and which in
5698   // memory.  Also, if this is a vararg function, floating point operations
5699   // must be stored to our stack, and loaded into integer regs as well, if
5700   // any integer regs are available for argument passing.
5701   unsigned ArgOffset = LinkageSize;
5702 
5703   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5704   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5705 
5706   SmallVector<SDValue, 8> MemOpChains;
5707   for (unsigned i = 0; i != NumOps; ++i) {
5708     SDValue Arg = OutVals[i];
5709     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5710     EVT ArgVT = Outs[i].VT;
5711     EVT OrigVT = Outs[i].ArgVT;
5712 
5713     // PtrOff will be used to store the current argument to the stack if a
5714     // register cannot be found for it.
5715     SDValue PtrOff;
5716 
5717     // We re-align the argument offset for each argument, except when using the
5718     // fast calling convention, when we need to make sure we do that only when
5719     // we'll actually use a stack slot.
5720     auto ComputePtrOff = [&]() {
5721       /* Respect alignment of argument on the stack.  */
5722       unsigned Align =
5723         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5724       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5725 
5726       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5727 
5728       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5729     };
5730 
5731     if (CallConv != CallingConv::Fast) {
5732       ComputePtrOff();
5733 
5734       /* Compute GPR index associated with argument offset.  */
5735       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5736       GPR_idx = std::min(GPR_idx, NumGPRs);
5737     }
5738 
5739     // Promote integers to 64-bit values.
5740     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5741       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5742       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5743       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5744     }
5745 
5746     // FIXME memcpy is used way more than necessary.  Correctness first.
5747     // Note: "by value" is code for passing a structure by value, not
5748     // basic types.
5749     if (Flags.isByVal()) {
5750       // Note: Size includes alignment padding, so
5751       //   struct x { short a; char b; }
5752       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5753       // These are the proper values we need for right-justifying the
5754       // aggregate in a parameter register.
5755       unsigned Size = Flags.getByValSize();
5756 
5757       // An empty aggregate parameter takes up no storage and no
5758       // registers.
5759       if (Size == 0)
5760         continue;
5761 
5762       if (CallConv == CallingConv::Fast)
5763         ComputePtrOff();
5764 
5765       // All aggregates smaller than 8 bytes must be passed right-justified.
5766       if (Size==1 || Size==2 || Size==4) {
5767         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5768         if (GPR_idx != NumGPRs) {
5769           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5770                                         MachinePointerInfo(), VT);
5771           MemOpChains.push_back(Load.getValue(1));
5772           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5773 
5774           ArgOffset += PtrByteSize;
5775           continue;
5776         }
5777       }
5778 
5779       if (GPR_idx == NumGPRs && Size < 8) {
5780         SDValue AddPtr = PtrOff;
5781         if (!isLittleEndian) {
5782           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5783                                           PtrOff.getValueType());
5784           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5785         }
5786         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5787                                                           CallSeqStart,
5788                                                           Flags, DAG, dl);
5789         ArgOffset += PtrByteSize;
5790         continue;
5791       }
5792       // Copy entire object into memory.  There are cases where gcc-generated
5793       // code assumes it is there, even if it could be put entirely into
5794       // registers.  (This is not what the doc says.)
5795 
5796       // FIXME: The above statement is likely due to a misunderstanding of the
5797       // documents.  All arguments must be copied into the parameter area BY
5798       // THE CALLEE in the event that the callee takes the address of any
5799       // formal argument.  That has not yet been implemented.  However, it is
5800       // reasonable to use the stack area as a staging area for the register
5801       // load.
5802 
5803       // Skip this for small aggregates, as we will use the same slot for a
5804       // right-justified copy, below.
5805       if (Size >= 8)
5806         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5807                                                           CallSeqStart,
5808                                                           Flags, DAG, dl);
5809 
5810       // When a register is available, pass a small aggregate right-justified.
5811       if (Size < 8 && GPR_idx != NumGPRs) {
5812         // The easiest way to get this right-justified in a register
5813         // is to copy the structure into the rightmost portion of a
5814         // local variable slot, then load the whole slot into the
5815         // register.
5816         // FIXME: The memcpy seems to produce pretty awful code for
5817         // small aggregates, particularly for packed ones.
5818         // FIXME: It would be preferable to use the slot in the
5819         // parameter save area instead of a new local variable.
5820         SDValue AddPtr = PtrOff;
5821         if (!isLittleEndian) {
5822           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5823           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5824         }
5825         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5826                                                           CallSeqStart,
5827                                                           Flags, DAG, dl);
5828 
5829         // Load the slot into the register.
5830         SDValue Load =
5831             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5832         MemOpChains.push_back(Load.getValue(1));
5833         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5834 
5835         // Done with this argument.
5836         ArgOffset += PtrByteSize;
5837         continue;
5838       }
5839 
5840       // For aggregates larger than PtrByteSize, copy the pieces of the
5841       // object that fit into registers from the parameter save area.
5842       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5843         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5844         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5845         if (GPR_idx != NumGPRs) {
5846           SDValue Load =
5847               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5848           MemOpChains.push_back(Load.getValue(1));
5849           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5850           ArgOffset += PtrByteSize;
5851         } else {
5852           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5853           break;
5854         }
5855       }
5856       continue;
5857     }
5858 
5859     switch (Arg.getSimpleValueType().SimpleTy) {
5860     default: llvm_unreachable("Unexpected ValueType for argument!");
5861     case MVT::i1:
5862     case MVT::i32:
5863     case MVT::i64:
5864       if (Flags.isNest()) {
5865         // The 'nest' parameter, if any, is passed in R11.
5866         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5867         hasNest = true;
5868         break;
5869       }
5870 
5871       // These can be scalar arguments or elements of an integer array type
5872       // passed directly.  Clang may use those instead of "byval" aggregate
5873       // types to avoid forcing arguments to memory unnecessarily.
5874       if (GPR_idx != NumGPRs) {
5875         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5876       } else {
5877         if (CallConv == CallingConv::Fast)
5878           ComputePtrOff();
5879 
5880         assert(HasParameterArea &&
5881                "Parameter area must exist to pass an argument in memory.");
5882         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5883                          true, isTailCall, false, MemOpChains,
5884                          TailCallArguments, dl);
5885         if (CallConv == CallingConv::Fast)
5886           ArgOffset += PtrByteSize;
5887       }
5888       if (CallConv != CallingConv::Fast)
5889         ArgOffset += PtrByteSize;
5890       break;
5891     case MVT::f32:
5892     case MVT::f64: {
5893       // These can be scalar arguments or elements of a float array type
5894       // passed directly.  The latter are used to implement ELFv2 homogenous
5895       // float aggregates.
5896 
5897       // Named arguments go into FPRs first, and once they overflow, the
5898       // remaining arguments go into GPRs and then the parameter save area.
5899       // Unnamed arguments for vararg functions always go to GPRs and
5900       // then the parameter save area.  For now, put all arguments to vararg
5901       // routines always in both locations (FPR *and* GPR or stack slot).
5902       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5903       bool NeededLoad = false;
5904 
5905       // First load the argument into the next available FPR.
5906       if (FPR_idx != NumFPRs)
5907         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5908 
5909       // Next, load the argument into GPR or stack slot if needed.
5910       if (!NeedGPROrStack)
5911         ;
5912       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5913         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5914         // once we support fp <-> gpr moves.
5915 
5916         // In the non-vararg case, this can only ever happen in the
5917         // presence of f32 array types, since otherwise we never run
5918         // out of FPRs before running out of GPRs.
5919         SDValue ArgVal;
5920 
5921         // Double values are always passed in a single GPR.
5922         if (Arg.getValueType() != MVT::f32) {
5923           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5924 
5925         // Non-array float values are extended and passed in a GPR.
5926         } else if (!Flags.isInConsecutiveRegs()) {
5927           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5928           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5929 
5930         // If we have an array of floats, we collect every odd element
5931         // together with its predecessor into one GPR.
5932         } else if (ArgOffset % PtrByteSize != 0) {
5933           SDValue Lo, Hi;
5934           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5935           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5936           if (!isLittleEndian)
5937             std::swap(Lo, Hi);
5938           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5939 
5940         // The final element, if even, goes into the first half of a GPR.
5941         } else if (Flags.isInConsecutiveRegsLast()) {
5942           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5943           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5944           if (!isLittleEndian)
5945             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5946                                  DAG.getConstant(32, dl, MVT::i32));
5947 
5948         // Non-final even elements are skipped; they will be handled
5949         // together the with subsequent argument on the next go-around.
5950         } else
5951           ArgVal = SDValue();
5952 
5953         if (ArgVal.getNode())
5954           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5955       } else {
5956         if (CallConv == CallingConv::Fast)
5957           ComputePtrOff();
5958 
5959         // Single-precision floating-point values are mapped to the
5960         // second (rightmost) word of the stack doubleword.
5961         if (Arg.getValueType() == MVT::f32 &&
5962             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5963           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5964           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5965         }
5966 
5967         assert(HasParameterArea &&
5968                "Parameter area must exist to pass an argument in memory.");
5969         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5970                          true, isTailCall, false, MemOpChains,
5971                          TailCallArguments, dl);
5972 
5973         NeededLoad = true;
5974       }
5975       // When passing an array of floats, the array occupies consecutive
5976       // space in the argument area; only round up to the next doubleword
5977       // at the end of the array.  Otherwise, each float takes 8 bytes.
5978       if (CallConv != CallingConv::Fast || NeededLoad) {
5979         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5980                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5981         if (Flags.isInConsecutiveRegsLast())
5982           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5983       }
5984       break;
5985     }
5986     case MVT::v4f32:
5987     case MVT::v4i32:
5988     case MVT::v8i16:
5989     case MVT::v16i8:
5990     case MVT::v2f64:
5991     case MVT::v2i64:
5992     case MVT::v1i128:
5993     case MVT::f128:
5994       if (!Subtarget.hasQPX()) {
5995       // These can be scalar arguments or elements of a vector array type
5996       // passed directly.  The latter are used to implement ELFv2 homogenous
5997       // vector aggregates.
5998 
5999       // For a varargs call, named arguments go into VRs or on the stack as
6000       // usual; unnamed arguments always go to the stack or the corresponding
6001       // GPRs when within range.  For now, we always put the value in both
6002       // locations (or even all three).
6003       if (isVarArg) {
6004         assert(HasParameterArea &&
6005                "Parameter area must exist if we have a varargs call.");
6006         // We could elide this store in the case where the object fits
6007         // entirely in R registers.  Maybe later.
6008         SDValue Store =
6009             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6010         MemOpChains.push_back(Store);
6011         if (VR_idx != NumVRs) {
6012           SDValue Load =
6013               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6014           MemOpChains.push_back(Load.getValue(1));
6015           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6016         }
6017         ArgOffset += 16;
6018         for (unsigned i=0; i<16; i+=PtrByteSize) {
6019           if (GPR_idx == NumGPRs)
6020             break;
6021           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6022                                    DAG.getConstant(i, dl, PtrVT));
6023           SDValue Load =
6024               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6025           MemOpChains.push_back(Load.getValue(1));
6026           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6027         }
6028         break;
6029       }
6030 
6031       // Non-varargs Altivec params go into VRs or on the stack.
6032       if (VR_idx != NumVRs) {
6033         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6034       } else {
6035         if (CallConv == CallingConv::Fast)
6036           ComputePtrOff();
6037 
6038         assert(HasParameterArea &&
6039                "Parameter area must exist to pass an argument in memory.");
6040         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6041                          true, isTailCall, true, MemOpChains,
6042                          TailCallArguments, dl);
6043         if (CallConv == CallingConv::Fast)
6044           ArgOffset += 16;
6045       }
6046 
6047       if (CallConv != CallingConv::Fast)
6048         ArgOffset += 16;
6049       break;
6050       } // not QPX
6051 
6052       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6053              "Invalid QPX parameter type");
6054 
6055       LLVM_FALLTHROUGH;
6056     case MVT::v4f64:
6057     case MVT::v4i1: {
6058       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6059       if (isVarArg) {
6060         assert(HasParameterArea &&
6061                "Parameter area must exist if we have a varargs call.");
6062         // We could elide this store in the case where the object fits
6063         // entirely in R registers.  Maybe later.
6064         SDValue Store =
6065             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6066         MemOpChains.push_back(Store);
6067         if (QFPR_idx != NumQFPRs) {
6068           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6069                                      PtrOff, MachinePointerInfo());
6070           MemOpChains.push_back(Load.getValue(1));
6071           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6072         }
6073         ArgOffset += (IsF32 ? 16 : 32);
6074         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6075           if (GPR_idx == NumGPRs)
6076             break;
6077           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6078                                    DAG.getConstant(i, dl, PtrVT));
6079           SDValue Load =
6080               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6081           MemOpChains.push_back(Load.getValue(1));
6082           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6083         }
6084         break;
6085       }
6086 
6087       // Non-varargs QPX params go into registers or on the stack.
6088       if (QFPR_idx != NumQFPRs) {
6089         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6090       } else {
6091         if (CallConv == CallingConv::Fast)
6092           ComputePtrOff();
6093 
6094         assert(HasParameterArea &&
6095                "Parameter area must exist to pass an argument in memory.");
6096         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6097                          true, isTailCall, true, MemOpChains,
6098                          TailCallArguments, dl);
6099         if (CallConv == CallingConv::Fast)
6100           ArgOffset += (IsF32 ? 16 : 32);
6101       }
6102 
6103       if (CallConv != CallingConv::Fast)
6104         ArgOffset += (IsF32 ? 16 : 32);
6105       break;
6106       }
6107     }
6108   }
6109 
6110   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6111          "mismatch in size of parameter area");
6112   (void)NumBytesActuallyUsed;
6113 
6114   if (!MemOpChains.empty())
6115     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6116 
6117   // Check if this is an indirect call (MTCTR/BCTRL).
6118   // See PrepareCall() for more information about calls through function
6119   // pointers in the 64-bit SVR4 ABI.
6120   if (!isTailCall && !isPatchPoint &&
6121       !isFunctionGlobalAddress(Callee) &&
6122       !isa<ExternalSymbolSDNode>(Callee)) {
6123     // Load r2 into a virtual register and store it to the TOC save area.
6124     setUsesTOCBasePtr(DAG);
6125     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6126     // TOC save area offset.
6127     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6128     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6129     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6130     Chain = DAG.getStore(
6131         Val.getValue(1), dl, Val, AddPtr,
6132         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6133     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6134     // This does not mean the MTCTR instruction must use R12; it's easier
6135     // to model this as an extra parameter, so do that.
6136     if (isELFv2ABI && !isPatchPoint)
6137       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6138   }
6139 
6140   // Build a sequence of copy-to-reg nodes chained together with token chain
6141   // and flag operands which copy the outgoing args into the appropriate regs.
6142   SDValue InFlag;
6143   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6144     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6145                              RegsToPass[i].second, InFlag);
6146     InFlag = Chain.getValue(1);
6147   }
6148 
6149   if (isTailCall && !IsSibCall)
6150     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6151                     TailCallArguments);
6152 
6153   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6154                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6155                     SPDiff, NumBytes, Ins, InVals, CS);
6156 }
6157 
6158 SDValue PPCTargetLowering::LowerCall_Darwin(
6159     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6160     bool isTailCall, bool isPatchPoint,
6161     const SmallVectorImpl<ISD::OutputArg> &Outs,
6162     const SmallVectorImpl<SDValue> &OutVals,
6163     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6164     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6165     ImmutableCallSite CS) const {
6166   unsigned NumOps = Outs.size();
6167 
6168   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6169   bool isPPC64 = PtrVT == MVT::i64;
6170   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6171 
6172   MachineFunction &MF = DAG.getMachineFunction();
6173 
6174   // Mark this function as potentially containing a function that contains a
6175   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6176   // and restoring the callers stack pointer in this functions epilog. This is
6177   // done because by tail calling the called function might overwrite the value
6178   // in this function's (MF) stack pointer stack slot 0(SP).
6179   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6180       CallConv == CallingConv::Fast)
6181     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6182 
6183   // Count how many bytes are to be pushed on the stack, including the linkage
6184   // area, and parameter passing area.  We start with 24/48 bytes, which is
6185   // prereserved space for [SP][CR][LR][3 x unused].
6186   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6187   unsigned NumBytes = LinkageSize;
6188 
6189   // Add up all the space actually used.
6190   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6191   // they all go in registers, but we must reserve stack space for them for
6192   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6193   // assigned stack space in order, with padding so Altivec parameters are
6194   // 16-byte aligned.
6195   unsigned nAltivecParamsAtEnd = 0;
6196   for (unsigned i = 0; i != NumOps; ++i) {
6197     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6198     EVT ArgVT = Outs[i].VT;
6199     // Varargs Altivec parameters are padded to a 16 byte boundary.
6200     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6201         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6202         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6203       if (!isVarArg && !isPPC64) {
6204         // Non-varargs Altivec parameters go after all the non-Altivec
6205         // parameters; handle those later so we know how much padding we need.
6206         nAltivecParamsAtEnd++;
6207         continue;
6208       }
6209       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6210       NumBytes = ((NumBytes+15)/16)*16;
6211     }
6212     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6213   }
6214 
6215   // Allow for Altivec parameters at the end, if needed.
6216   if (nAltivecParamsAtEnd) {
6217     NumBytes = ((NumBytes+15)/16)*16;
6218     NumBytes += 16*nAltivecParamsAtEnd;
6219   }
6220 
6221   // The prolog code of the callee may store up to 8 GPR argument registers to
6222   // the stack, allowing va_start to index over them in memory if its varargs.
6223   // Because we cannot tell if this is needed on the caller side, we have to
6224   // conservatively assume that it is needed.  As such, make sure we have at
6225   // least enough stack space for the caller to store the 8 GPRs.
6226   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6227 
6228   // Tail call needs the stack to be aligned.
6229   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6230       CallConv == CallingConv::Fast)
6231     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6232 
6233   // Calculate by how many bytes the stack has to be adjusted in case of tail
6234   // call optimization.
6235   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6236 
6237   // To protect arguments on the stack from being clobbered in a tail call,
6238   // force all the loads to happen before doing any other lowering.
6239   if (isTailCall)
6240     Chain = DAG.getStackArgumentTokenFactor(Chain);
6241 
6242   // Adjust the stack pointer for the new arguments...
6243   // These operations are automatically eliminated by the prolog/epilog pass
6244   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6245   SDValue CallSeqStart = Chain;
6246 
6247   // Load the return address and frame pointer so it can be move somewhere else
6248   // later.
6249   SDValue LROp, FPOp;
6250   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6251 
6252   // Set up a copy of the stack pointer for use loading and storing any
6253   // arguments that may not fit in the registers available for argument
6254   // passing.
6255   SDValue StackPtr;
6256   if (isPPC64)
6257     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6258   else
6259     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6260 
6261   // Figure out which arguments are going to go in registers, and which in
6262   // memory.  Also, if this is a vararg function, floating point operations
6263   // must be stored to our stack, and loaded into integer regs as well, if
6264   // any integer regs are available for argument passing.
6265   unsigned ArgOffset = LinkageSize;
6266   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6267 
6268   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6269     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6270     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6271   };
6272   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6273     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6274     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6275   };
6276   static const MCPhysReg VR[] = {
6277     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6278     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6279   };
6280   const unsigned NumGPRs = array_lengthof(GPR_32);
6281   const unsigned NumFPRs = 13;
6282   const unsigned NumVRs  = array_lengthof(VR);
6283 
6284   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6285 
6286   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6287   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6288 
6289   SmallVector<SDValue, 8> MemOpChains;
6290   for (unsigned i = 0; i != NumOps; ++i) {
6291     SDValue Arg = OutVals[i];
6292     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6293 
6294     // PtrOff will be used to store the current argument to the stack if a
6295     // register cannot be found for it.
6296     SDValue PtrOff;
6297 
6298     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6299 
6300     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6301 
6302     // On PPC64, promote integers to 64-bit values.
6303     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6304       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6305       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6306       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6307     }
6308 
6309     // FIXME memcpy is used way more than necessary.  Correctness first.
6310     // Note: "by value" is code for passing a structure by value, not
6311     // basic types.
6312     if (Flags.isByVal()) {
6313       unsigned Size = Flags.getByValSize();
6314       // Very small objects are passed right-justified.  Everything else is
6315       // passed left-justified.
6316       if (Size==1 || Size==2) {
6317         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6318         if (GPR_idx != NumGPRs) {
6319           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6320                                         MachinePointerInfo(), VT);
6321           MemOpChains.push_back(Load.getValue(1));
6322           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6323 
6324           ArgOffset += PtrByteSize;
6325         } else {
6326           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6327                                           PtrOff.getValueType());
6328           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6329           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6330                                                             CallSeqStart,
6331                                                             Flags, DAG, dl);
6332           ArgOffset += PtrByteSize;
6333         }
6334         continue;
6335       }
6336       // Copy entire object into memory.  There are cases where gcc-generated
6337       // code assumes it is there, even if it could be put entirely into
6338       // registers.  (This is not what the doc says.)
6339       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6340                                                         CallSeqStart,
6341                                                         Flags, DAG, dl);
6342 
6343       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6344       // copy the pieces of the object that fit into registers from the
6345       // parameter save area.
6346       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6347         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6348         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6349         if (GPR_idx != NumGPRs) {
6350           SDValue Load =
6351               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6352           MemOpChains.push_back(Load.getValue(1));
6353           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6354           ArgOffset += PtrByteSize;
6355         } else {
6356           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6357           break;
6358         }
6359       }
6360       continue;
6361     }
6362 
6363     switch (Arg.getSimpleValueType().SimpleTy) {
6364     default: llvm_unreachable("Unexpected ValueType for argument!");
6365     case MVT::i1:
6366     case MVT::i32:
6367     case MVT::i64:
6368       if (GPR_idx != NumGPRs) {
6369         if (Arg.getValueType() == MVT::i1)
6370           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6371 
6372         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6373       } else {
6374         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6375                          isPPC64, isTailCall, false, MemOpChains,
6376                          TailCallArguments, dl);
6377       }
6378       ArgOffset += PtrByteSize;
6379       break;
6380     case MVT::f32:
6381     case MVT::f64:
6382       if (FPR_idx != NumFPRs) {
6383         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6384 
6385         if (isVarArg) {
6386           SDValue Store =
6387               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6388           MemOpChains.push_back(Store);
6389 
6390           // Float varargs are always shadowed in available integer registers
6391           if (GPR_idx != NumGPRs) {
6392             SDValue Load =
6393                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6394             MemOpChains.push_back(Load.getValue(1));
6395             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6396           }
6397           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6398             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6399             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6400             SDValue Load =
6401                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6402             MemOpChains.push_back(Load.getValue(1));
6403             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6404           }
6405         } else {
6406           // If we have any FPRs remaining, we may also have GPRs remaining.
6407           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6408           // GPRs.
6409           if (GPR_idx != NumGPRs)
6410             ++GPR_idx;
6411           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6412               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6413             ++GPR_idx;
6414         }
6415       } else
6416         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6417                          isPPC64, isTailCall, false, MemOpChains,
6418                          TailCallArguments, dl);
6419       if (isPPC64)
6420         ArgOffset += 8;
6421       else
6422         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6423       break;
6424     case MVT::v4f32:
6425     case MVT::v4i32:
6426     case MVT::v8i16:
6427     case MVT::v16i8:
6428       if (isVarArg) {
6429         // These go aligned on the stack, or in the corresponding R registers
6430         // when within range.  The Darwin PPC ABI doc claims they also go in
6431         // V registers; in fact gcc does this only for arguments that are
6432         // prototyped, not for those that match the ...  We do it for all
6433         // arguments, seems to work.
6434         while (ArgOffset % 16 !=0) {
6435           ArgOffset += PtrByteSize;
6436           if (GPR_idx != NumGPRs)
6437             GPR_idx++;
6438         }
6439         // We could elide this store in the case where the object fits
6440         // entirely in R registers.  Maybe later.
6441         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6442                              DAG.getConstant(ArgOffset, dl, PtrVT));
6443         SDValue Store =
6444             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6445         MemOpChains.push_back(Store);
6446         if (VR_idx != NumVRs) {
6447           SDValue Load =
6448               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6449           MemOpChains.push_back(Load.getValue(1));
6450           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6451         }
6452         ArgOffset += 16;
6453         for (unsigned i=0; i<16; i+=PtrByteSize) {
6454           if (GPR_idx == NumGPRs)
6455             break;
6456           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6457                                    DAG.getConstant(i, dl, PtrVT));
6458           SDValue Load =
6459               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6460           MemOpChains.push_back(Load.getValue(1));
6461           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6462         }
6463         break;
6464       }
6465 
6466       // Non-varargs Altivec params generally go in registers, but have
6467       // stack space allocated at the end.
6468       if (VR_idx != NumVRs) {
6469         // Doesn't have GPR space allocated.
6470         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6471       } else if (nAltivecParamsAtEnd==0) {
6472         // We are emitting Altivec params in order.
6473         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6474                          isPPC64, isTailCall, true, MemOpChains,
6475                          TailCallArguments, dl);
6476         ArgOffset += 16;
6477       }
6478       break;
6479     }
6480   }
6481   // If all Altivec parameters fit in registers, as they usually do,
6482   // they get stack space following the non-Altivec parameters.  We
6483   // don't track this here because nobody below needs it.
6484   // If there are more Altivec parameters than fit in registers emit
6485   // the stores here.
6486   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6487     unsigned j = 0;
6488     // Offset is aligned; skip 1st 12 params which go in V registers.
6489     ArgOffset = ((ArgOffset+15)/16)*16;
6490     ArgOffset += 12*16;
6491     for (unsigned i = 0; i != NumOps; ++i) {
6492       SDValue Arg = OutVals[i];
6493       EVT ArgType = Outs[i].VT;
6494       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6495           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6496         if (++j > NumVRs) {
6497           SDValue PtrOff;
6498           // We are emitting Altivec params in order.
6499           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6500                            isPPC64, isTailCall, true, MemOpChains,
6501                            TailCallArguments, dl);
6502           ArgOffset += 16;
6503         }
6504       }
6505     }
6506   }
6507 
6508   if (!MemOpChains.empty())
6509     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6510 
6511   // On Darwin, R12 must contain the address of an indirect callee.  This does
6512   // not mean the MTCTR instruction must use R12; it's easier to model this as
6513   // an extra parameter, so do that.
6514   if (!isTailCall &&
6515       !isFunctionGlobalAddress(Callee) &&
6516       !isa<ExternalSymbolSDNode>(Callee) &&
6517       !isBLACompatibleAddress(Callee, DAG))
6518     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6519                                                    PPC::R12), Callee));
6520 
6521   // Build a sequence of copy-to-reg nodes chained together with token chain
6522   // and flag operands which copy the outgoing args into the appropriate regs.
6523   SDValue InFlag;
6524   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6525     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6526                              RegsToPass[i].second, InFlag);
6527     InFlag = Chain.getValue(1);
6528   }
6529 
6530   if (isTailCall)
6531     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6532                     TailCallArguments);
6533 
6534   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6535                     /* unused except on PPC64 ELFv1 */ false, DAG,
6536                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6537                     NumBytes, Ins, InVals, CS);
6538 }
6539 
6540 bool
6541 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6542                                   MachineFunction &MF, bool isVarArg,
6543                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6544                                   LLVMContext &Context) const {
6545   SmallVector<CCValAssign, 16> RVLocs;
6546   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6547   return CCInfo.CheckReturn(
6548       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6549                 ? RetCC_PPC_Cold
6550                 : RetCC_PPC);
6551 }
6552 
6553 SDValue
6554 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6555                                bool isVarArg,
6556                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6557                                const SmallVectorImpl<SDValue> &OutVals,
6558                                const SDLoc &dl, SelectionDAG &DAG) const {
6559   SmallVector<CCValAssign, 16> RVLocs;
6560   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6561                  *DAG.getContext());
6562   CCInfo.AnalyzeReturn(Outs,
6563                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6564                            ? RetCC_PPC_Cold
6565                            : RetCC_PPC);
6566 
6567   SDValue Flag;
6568   SmallVector<SDValue, 4> RetOps(1, Chain);
6569 
6570   // Copy the result values into the output registers.
6571   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6572     CCValAssign &VA = RVLocs[i];
6573     assert(VA.isRegLoc() && "Can only return in registers!");
6574 
6575     SDValue Arg = OutVals[i];
6576 
6577     switch (VA.getLocInfo()) {
6578     default: llvm_unreachable("Unknown loc info!");
6579     case CCValAssign::Full: break;
6580     case CCValAssign::AExt:
6581       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6582       break;
6583     case CCValAssign::ZExt:
6584       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6585       break;
6586     case CCValAssign::SExt:
6587       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6588       break;
6589     }
6590 
6591     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6592     Flag = Chain.getValue(1);
6593     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6594   }
6595 
6596   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6597   const MCPhysReg *I =
6598     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6599   if (I) {
6600     for (; *I; ++I) {
6601 
6602       if (PPC::G8RCRegClass.contains(*I))
6603         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6604       else if (PPC::F8RCRegClass.contains(*I))
6605         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6606       else if (PPC::CRRCRegClass.contains(*I))
6607         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6608       else if (PPC::VRRCRegClass.contains(*I))
6609         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6610       else
6611         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6612     }
6613   }
6614 
6615   RetOps[0] = Chain;  // Update chain.
6616 
6617   // Add the flag if we have it.
6618   if (Flag.getNode())
6619     RetOps.push_back(Flag);
6620 
6621   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6622 }
6623 
6624 SDValue
6625 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6626                                                 SelectionDAG &DAG) const {
6627   SDLoc dl(Op);
6628 
6629   // Get the correct type for integers.
6630   EVT IntVT = Op.getValueType();
6631 
6632   // Get the inputs.
6633   SDValue Chain = Op.getOperand(0);
6634   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6635   // Build a DYNAREAOFFSET node.
6636   SDValue Ops[2] = {Chain, FPSIdx};
6637   SDVTList VTs = DAG.getVTList(IntVT);
6638   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6639 }
6640 
6641 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6642                                              SelectionDAG &DAG) const {
6643   // When we pop the dynamic allocation we need to restore the SP link.
6644   SDLoc dl(Op);
6645 
6646   // Get the correct type for pointers.
6647   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6648 
6649   // Construct the stack pointer operand.
6650   bool isPPC64 = Subtarget.isPPC64();
6651   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6652   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6653 
6654   // Get the operands for the STACKRESTORE.
6655   SDValue Chain = Op.getOperand(0);
6656   SDValue SaveSP = Op.getOperand(1);
6657 
6658   // Load the old link SP.
6659   SDValue LoadLinkSP =
6660       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6661 
6662   // Restore the stack pointer.
6663   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6664 
6665   // Store the old link SP.
6666   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6667 }
6668 
6669 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6670   MachineFunction &MF = DAG.getMachineFunction();
6671   bool isPPC64 = Subtarget.isPPC64();
6672   EVT PtrVT = getPointerTy(MF.getDataLayout());
6673 
6674   // Get current frame pointer save index.  The users of this index will be
6675   // primarily DYNALLOC instructions.
6676   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6677   int RASI = FI->getReturnAddrSaveIndex();
6678 
6679   // If the frame pointer save index hasn't been defined yet.
6680   if (!RASI) {
6681     // Find out what the fix offset of the frame pointer save area.
6682     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6683     // Allocate the frame index for frame pointer save area.
6684     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6685     // Save the result.
6686     FI->setReturnAddrSaveIndex(RASI);
6687   }
6688   return DAG.getFrameIndex(RASI, PtrVT);
6689 }
6690 
6691 SDValue
6692 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6693   MachineFunction &MF = DAG.getMachineFunction();
6694   bool isPPC64 = Subtarget.isPPC64();
6695   EVT PtrVT = getPointerTy(MF.getDataLayout());
6696 
6697   // Get current frame pointer save index.  The users of this index will be
6698   // primarily DYNALLOC instructions.
6699   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6700   int FPSI = FI->getFramePointerSaveIndex();
6701 
6702   // If the frame pointer save index hasn't been defined yet.
6703   if (!FPSI) {
6704     // Find out what the fix offset of the frame pointer save area.
6705     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6706     // Allocate the frame index for frame pointer save area.
6707     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6708     // Save the result.
6709     FI->setFramePointerSaveIndex(FPSI);
6710   }
6711   return DAG.getFrameIndex(FPSI, PtrVT);
6712 }
6713 
6714 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6715                                                    SelectionDAG &DAG) const {
6716   // Get the inputs.
6717   SDValue Chain = Op.getOperand(0);
6718   SDValue Size  = Op.getOperand(1);
6719   SDLoc dl(Op);
6720 
6721   // Get the correct type for pointers.
6722   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6723   // Negate the size.
6724   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6725                                 DAG.getConstant(0, dl, PtrVT), Size);
6726   // Construct a node for the frame pointer save index.
6727   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6728   // Build a DYNALLOC node.
6729   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6730   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6731   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6732 }
6733 
6734 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6735                                                      SelectionDAG &DAG) const {
6736   MachineFunction &MF = DAG.getMachineFunction();
6737 
6738   bool isPPC64 = Subtarget.isPPC64();
6739   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6740 
6741   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6742   return DAG.getFrameIndex(FI, PtrVT);
6743 }
6744 
6745 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6746                                                SelectionDAG &DAG) const {
6747   SDLoc DL(Op);
6748   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6749                      DAG.getVTList(MVT::i32, MVT::Other),
6750                      Op.getOperand(0), Op.getOperand(1));
6751 }
6752 
6753 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6754                                                 SelectionDAG &DAG) const {
6755   SDLoc DL(Op);
6756   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6757                      Op.getOperand(0), Op.getOperand(1));
6758 }
6759 
6760 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6761   if (Op.getValueType().isVector())
6762     return LowerVectorLoad(Op, DAG);
6763 
6764   assert(Op.getValueType() == MVT::i1 &&
6765          "Custom lowering only for i1 loads");
6766 
6767   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6768 
6769   SDLoc dl(Op);
6770   LoadSDNode *LD = cast<LoadSDNode>(Op);
6771 
6772   SDValue Chain = LD->getChain();
6773   SDValue BasePtr = LD->getBasePtr();
6774   MachineMemOperand *MMO = LD->getMemOperand();
6775 
6776   SDValue NewLD =
6777       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6778                      BasePtr, MVT::i8, MMO);
6779   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6780 
6781   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6782   return DAG.getMergeValues(Ops, dl);
6783 }
6784 
6785 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6786   if (Op.getOperand(1).getValueType().isVector())
6787     return LowerVectorStore(Op, DAG);
6788 
6789   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6790          "Custom lowering only for i1 stores");
6791 
6792   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6793 
6794   SDLoc dl(Op);
6795   StoreSDNode *ST = cast<StoreSDNode>(Op);
6796 
6797   SDValue Chain = ST->getChain();
6798   SDValue BasePtr = ST->getBasePtr();
6799   SDValue Value = ST->getValue();
6800   MachineMemOperand *MMO = ST->getMemOperand();
6801 
6802   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6803                       Value);
6804   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6805 }
6806 
6807 // FIXME: Remove this once the ANDI glue bug is fixed:
6808 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6809   assert(Op.getValueType() == MVT::i1 &&
6810          "Custom lowering only for i1 results");
6811 
6812   SDLoc DL(Op);
6813   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6814                      Op.getOperand(0));
6815 }
6816 
6817 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
6818                                                SelectionDAG &DAG) const {
6819 
6820   // Implements a vector truncate that fits in a vector register as a shuffle.
6821   // We want to legalize vector truncates down to where the source fits in
6822   // a vector register (and target is therefore smaller than vector register
6823   // size).  At that point legalization will try to custom lower the sub-legal
6824   // result and get here - where we can contain the truncate as a single target
6825   // operation.
6826 
6827   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
6828   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
6829   //
6830   // We will implement it for big-endian ordering as this (where x denotes
6831   // undefined):
6832   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
6833   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
6834   //
6835   // The same operation in little-endian ordering will be:
6836   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
6837   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
6838 
6839   assert(Op.getValueType().isVector() && "Vector type expected.");
6840 
6841   SDLoc DL(Op);
6842   SDValue N1 = Op.getOperand(0);
6843   unsigned SrcSize = N1.getValueType().getSizeInBits();
6844   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
6845   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
6846 
6847   EVT TrgVT = Op.getValueType();
6848   unsigned TrgNumElts = TrgVT.getVectorNumElements();
6849   EVT EltVT = TrgVT.getVectorElementType();
6850   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
6851   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
6852 
6853   // First list the elements we want to keep.
6854   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
6855   SmallVector<int, 16> ShuffV;
6856   if (Subtarget.isLittleEndian())
6857     for (unsigned i = 0; i < TrgNumElts; ++i)
6858       ShuffV.push_back(i * SizeMult);
6859   else
6860     for (unsigned i = 1; i <= TrgNumElts; ++i)
6861       ShuffV.push_back(i * SizeMult - 1);
6862 
6863   // Populate the remaining elements with undefs.
6864   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
6865     // ShuffV.push_back(i + WideNumElts);
6866     ShuffV.push_back(WideNumElts + 1);
6867 
6868   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
6869   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
6870 }
6871 
6872 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6873 /// possible.
6874 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6875   // Not FP? Not a fsel.
6876   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6877       !Op.getOperand(2).getValueType().isFloatingPoint())
6878     return Op;
6879 
6880   // We might be able to do better than this under some circumstances, but in
6881   // general, fsel-based lowering of select is a finite-math-only optimization.
6882   // For more information, see section F.3 of the 2.06 ISA specification.
6883   if (!DAG.getTarget().Options.NoInfsFPMath ||
6884       !DAG.getTarget().Options.NoNaNsFPMath)
6885     return Op;
6886   // TODO: Propagate flags from the select rather than global settings.
6887   SDNodeFlags Flags;
6888   Flags.setNoInfs(true);
6889   Flags.setNoNaNs(true);
6890 
6891   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6892 
6893   EVT ResVT = Op.getValueType();
6894   EVT CmpVT = Op.getOperand(0).getValueType();
6895   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6896   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6897   SDLoc dl(Op);
6898 
6899   // If the RHS of the comparison is a 0.0, we don't need to do the
6900   // subtraction at all.
6901   SDValue Sel1;
6902   if (isFloatingPointZero(RHS))
6903     switch (CC) {
6904     default: break;       // SETUO etc aren't handled by fsel.
6905     case ISD::SETNE:
6906       std::swap(TV, FV);
6907       LLVM_FALLTHROUGH;
6908     case ISD::SETEQ:
6909       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6910         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6911       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6912       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6913         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6914       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6915                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6916     case ISD::SETULT:
6917     case ISD::SETLT:
6918       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6919       LLVM_FALLTHROUGH;
6920     case ISD::SETOGE:
6921     case ISD::SETGE:
6922       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6923         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6924       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6925     case ISD::SETUGT:
6926     case ISD::SETGT:
6927       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6928       LLVM_FALLTHROUGH;
6929     case ISD::SETOLE:
6930     case ISD::SETLE:
6931       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6932         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6933       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6934                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6935     }
6936 
6937   SDValue Cmp;
6938   switch (CC) {
6939   default: break;       // SETUO etc aren't handled by fsel.
6940   case ISD::SETNE:
6941     std::swap(TV, FV);
6942     LLVM_FALLTHROUGH;
6943   case ISD::SETEQ:
6944     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6945     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6946       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6947     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6948     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6949       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6950     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6951                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6952   case ISD::SETULT:
6953   case ISD::SETLT:
6954     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6955     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6956       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6957     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6958   case ISD::SETOGE:
6959   case ISD::SETGE:
6960     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6961     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6962       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6963     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6964   case ISD::SETUGT:
6965   case ISD::SETGT:
6966     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6967     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6968       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6969     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6970   case ISD::SETOLE:
6971   case ISD::SETLE:
6972     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6973     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6974       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6975     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6976   }
6977   return Op;
6978 }
6979 
6980 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6981                                                SelectionDAG &DAG,
6982                                                const SDLoc &dl) const {
6983   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6984   SDValue Src = Op.getOperand(0);
6985   if (Src.getValueType() == MVT::f32)
6986     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6987 
6988   SDValue Tmp;
6989   switch (Op.getSimpleValueType().SimpleTy) {
6990   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6991   case MVT::i32:
6992     Tmp = DAG.getNode(
6993         Op.getOpcode() == ISD::FP_TO_SINT
6994             ? PPCISD::FCTIWZ
6995             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6996         dl, MVT::f64, Src);
6997     break;
6998   case MVT::i64:
6999     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7000            "i64 FP_TO_UINT is supported only with FPCVT");
7001     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7002                                                         PPCISD::FCTIDUZ,
7003                       dl, MVT::f64, Src);
7004     break;
7005   }
7006 
7007   // Convert the FP value to an int value through memory.
7008   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7009     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7010   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7011   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7012   MachinePointerInfo MPI =
7013       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7014 
7015   // Emit a store to the stack slot.
7016   SDValue Chain;
7017   if (i32Stack) {
7018     MachineFunction &MF = DAG.getMachineFunction();
7019     MachineMemOperand *MMO =
7020       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7021     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7022     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7023               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7024   } else
7025     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7026 
7027   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7028   // add in a bias on big endian.
7029   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7030     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7031                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7032     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7033   }
7034 
7035   RLI.Chain = Chain;
7036   RLI.Ptr = FIPtr;
7037   RLI.MPI = MPI;
7038 }
7039 
7040 /// Custom lowers floating point to integer conversions to use
7041 /// the direct move instructions available in ISA 2.07 to avoid the
7042 /// need for load/store combinations.
7043 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7044                                                     SelectionDAG &DAG,
7045                                                     const SDLoc &dl) const {
7046   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7047   SDValue Src = Op.getOperand(0);
7048 
7049   if (Src.getValueType() == MVT::f32)
7050     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7051 
7052   SDValue Tmp;
7053   switch (Op.getSimpleValueType().SimpleTy) {
7054   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7055   case MVT::i32:
7056     Tmp = DAG.getNode(
7057         Op.getOpcode() == ISD::FP_TO_SINT
7058             ? PPCISD::FCTIWZ
7059             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7060         dl, MVT::f64, Src);
7061     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7062     break;
7063   case MVT::i64:
7064     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7065            "i64 FP_TO_UINT is supported only with FPCVT");
7066     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7067                                                         PPCISD::FCTIDUZ,
7068                       dl, MVT::f64, Src);
7069     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7070     break;
7071   }
7072   return Tmp;
7073 }
7074 
7075 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7076                                           const SDLoc &dl) const {
7077 
7078   // FP to INT conversions are legal for f128.
7079   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7080     return Op;
7081 
7082   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7083   // PPC (the libcall is not available).
7084   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7085     if (Op.getValueType() == MVT::i32) {
7086       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7087         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7088                                  MVT::f64, Op.getOperand(0),
7089                                  DAG.getIntPtrConstant(0, dl));
7090         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7091                                  MVT::f64, Op.getOperand(0),
7092                                  DAG.getIntPtrConstant(1, dl));
7093 
7094         // Add the two halves of the long double in round-to-zero mode.
7095         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7096 
7097         // Now use a smaller FP_TO_SINT.
7098         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7099       }
7100       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7101         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7102         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7103         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7104         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7105         // FIXME: generated code sucks.
7106         // TODO: Are there fast-math-flags to propagate to this FSUB?
7107         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7108                                    Op.getOperand(0), Tmp);
7109         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7110         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7111                            DAG.getConstant(0x80000000, dl, MVT::i32));
7112         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7113                                     Op.getOperand(0));
7114         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7115                                ISD::SETGE);
7116       }
7117     }
7118 
7119     return SDValue();
7120   }
7121 
7122   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7123     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7124 
7125   ReuseLoadInfo RLI;
7126   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7127 
7128   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7129                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7130 }
7131 
7132 // We're trying to insert a regular store, S, and then a load, L. If the
7133 // incoming value, O, is a load, we might just be able to have our load use the
7134 // address used by O. However, we don't know if anything else will store to
7135 // that address before we can load from it. To prevent this situation, we need
7136 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7137 // the same chain operand as O, we create a token factor from the chain results
7138 // of O and L, and we replace all uses of O's chain result with that token
7139 // factor (see spliceIntoChain below for this last part).
7140 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7141                                             ReuseLoadInfo &RLI,
7142                                             SelectionDAG &DAG,
7143                                             ISD::LoadExtType ET) const {
7144   SDLoc dl(Op);
7145   if (ET == ISD::NON_EXTLOAD &&
7146       (Op.getOpcode() == ISD::FP_TO_UINT ||
7147        Op.getOpcode() == ISD::FP_TO_SINT) &&
7148       isOperationLegalOrCustom(Op.getOpcode(),
7149                                Op.getOperand(0).getValueType())) {
7150 
7151     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7152     return true;
7153   }
7154 
7155   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7156   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7157       LD->isNonTemporal())
7158     return false;
7159   if (LD->getMemoryVT() != MemVT)
7160     return false;
7161 
7162   RLI.Ptr = LD->getBasePtr();
7163   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7164     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7165            "Non-pre-inc AM on PPC?");
7166     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7167                           LD->getOffset());
7168   }
7169 
7170   RLI.Chain = LD->getChain();
7171   RLI.MPI = LD->getPointerInfo();
7172   RLI.IsDereferenceable = LD->isDereferenceable();
7173   RLI.IsInvariant = LD->isInvariant();
7174   RLI.Alignment = LD->getAlignment();
7175   RLI.AAInfo = LD->getAAInfo();
7176   RLI.Ranges = LD->getRanges();
7177 
7178   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7179   return true;
7180 }
7181 
7182 // Given the head of the old chain, ResChain, insert a token factor containing
7183 // it and NewResChain, and make users of ResChain now be users of that token
7184 // factor.
7185 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7186 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7187                                         SDValue NewResChain,
7188                                         SelectionDAG &DAG) const {
7189   if (!ResChain)
7190     return;
7191 
7192   SDLoc dl(NewResChain);
7193 
7194   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7195                            NewResChain, DAG.getUNDEF(MVT::Other));
7196   assert(TF.getNode() != NewResChain.getNode() &&
7197          "A new TF really is required here");
7198 
7199   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7200   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7201 }
7202 
7203 /// Analyze profitability of direct move
7204 /// prefer float load to int load plus direct move
7205 /// when there is no integer use of int load
7206 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7207   SDNode *Origin = Op.getOperand(0).getNode();
7208   if (Origin->getOpcode() != ISD::LOAD)
7209     return true;
7210 
7211   // If there is no LXSIBZX/LXSIHZX, like Power8,
7212   // prefer direct move if the memory size is 1 or 2 bytes.
7213   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7214   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7215     return true;
7216 
7217   for (SDNode::use_iterator UI = Origin->use_begin(),
7218                             UE = Origin->use_end();
7219        UI != UE; ++UI) {
7220 
7221     // Only look at the users of the loaded value.
7222     if (UI.getUse().get().getResNo() != 0)
7223       continue;
7224 
7225     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7226         UI->getOpcode() != ISD::UINT_TO_FP)
7227       return true;
7228   }
7229 
7230   return false;
7231 }
7232 
7233 /// Custom lowers integer to floating point conversions to use
7234 /// the direct move instructions available in ISA 2.07 to avoid the
7235 /// need for load/store combinations.
7236 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7237                                                     SelectionDAG &DAG,
7238                                                     const SDLoc &dl) const {
7239   assert((Op.getValueType() == MVT::f32 ||
7240           Op.getValueType() == MVT::f64) &&
7241          "Invalid floating point type as target of conversion");
7242   assert(Subtarget.hasFPCVT() &&
7243          "Int to FP conversions with direct moves require FPCVT");
7244   SDValue FP;
7245   SDValue Src = Op.getOperand(0);
7246   bool SinglePrec = Op.getValueType() == MVT::f32;
7247   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7248   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7249   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7250                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7251 
7252   if (WordInt) {
7253     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7254                      dl, MVT::f64, Src);
7255     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7256   }
7257   else {
7258     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7259     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7260   }
7261 
7262   return FP;
7263 }
7264 
7265 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7266 
7267   EVT VecVT = Vec.getValueType();
7268   assert(VecVT.isVector() && "Expected a vector type.");
7269   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7270 
7271   EVT EltVT = VecVT.getVectorElementType();
7272   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7273   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7274 
7275   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7276   SmallVector<SDValue, 16> Ops(NumConcat);
7277   Ops[0] = Vec;
7278   SDValue UndefVec = DAG.getUNDEF(VecVT);
7279   for (unsigned i = 1; i < NumConcat; ++i)
7280     Ops[i] = UndefVec;
7281 
7282   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7283 }
7284 
7285 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7286                                                 const SDLoc &dl) const {
7287 
7288   unsigned Opc = Op.getOpcode();
7289   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7290          "Unexpected conversion type");
7291   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7292          "Supports conversions to v2f64/v4f32 only.");
7293 
7294   bool SignedConv = Opc == ISD::SINT_TO_FP;
7295   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7296 
7297   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7298   EVT WideVT = Wide.getValueType();
7299   unsigned WideNumElts = WideVT.getVectorNumElements();
7300   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7301 
7302   SmallVector<int, 16> ShuffV;
7303   for (unsigned i = 0; i < WideNumElts; ++i)
7304     ShuffV.push_back(i + WideNumElts);
7305 
7306   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7307   int SaveElts = FourEltRes ? 4 : 2;
7308   if (Subtarget.isLittleEndian())
7309     for (int i = 0; i < SaveElts; i++)
7310       ShuffV[i * Stride] = i;
7311   else
7312     for (int i = 1; i <= SaveElts; i++)
7313       ShuffV[i * Stride - 1] = i - 1;
7314 
7315   SDValue ShuffleSrc2 =
7316       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7317   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7318   unsigned ExtendOp =
7319       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7320 
7321   SDValue Extend;
7322   if (!Subtarget.hasP9Altivec() && SignedConv) {
7323     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7324     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7325                          DAG.getValueType(Op.getOperand(0).getValueType()));
7326   } else
7327     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7328 
7329   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7330 }
7331 
7332 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7333                                           SelectionDAG &DAG) const {
7334   SDLoc dl(Op);
7335 
7336   EVT InVT = Op.getOperand(0).getValueType();
7337   EVT OutVT = Op.getValueType();
7338   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7339       isOperationCustom(Op.getOpcode(), InVT))
7340     return LowerINT_TO_FPVector(Op, DAG, dl);
7341 
7342   // Conversions to f128 are legal.
7343   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7344     return Op;
7345 
7346   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7347     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7348       return SDValue();
7349 
7350     SDValue Value = Op.getOperand(0);
7351     // The values are now known to be -1 (false) or 1 (true). To convert this
7352     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7353     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7354     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7355 
7356     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7357 
7358     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7359 
7360     if (Op.getValueType() != MVT::v4f64)
7361       Value = DAG.getNode(ISD::FP_ROUND, dl,
7362                           Op.getValueType(), Value,
7363                           DAG.getIntPtrConstant(1, dl));
7364     return Value;
7365   }
7366 
7367   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7368   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7369     return SDValue();
7370 
7371   if (Op.getOperand(0).getValueType() == MVT::i1)
7372     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7373                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7374                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7375 
7376   // If we have direct moves, we can do all the conversion, skip the store/load
7377   // however, without FPCVT we can't do most conversions.
7378   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7379       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7380     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7381 
7382   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7383          "UINT_TO_FP is supported only with FPCVT");
7384 
7385   // If we have FCFIDS, then use it when converting to single-precision.
7386   // Otherwise, convert to double-precision and then round.
7387   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7388                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7389                                                             : PPCISD::FCFIDS)
7390                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7391                                                             : PPCISD::FCFID);
7392   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7393                   ? MVT::f32
7394                   : MVT::f64;
7395 
7396   if (Op.getOperand(0).getValueType() == MVT::i64) {
7397     SDValue SINT = Op.getOperand(0);
7398     // When converting to single-precision, we actually need to convert
7399     // to double-precision first and then round to single-precision.
7400     // To avoid double-rounding effects during that operation, we have
7401     // to prepare the input operand.  Bits that might be truncated when
7402     // converting to double-precision are replaced by a bit that won't
7403     // be lost at this stage, but is below the single-precision rounding
7404     // position.
7405     //
7406     // However, if -enable-unsafe-fp-math is in effect, accept double
7407     // rounding to avoid the extra overhead.
7408     if (Op.getValueType() == MVT::f32 &&
7409         !Subtarget.hasFPCVT() &&
7410         !DAG.getTarget().Options.UnsafeFPMath) {
7411 
7412       // Twiddle input to make sure the low 11 bits are zero.  (If this
7413       // is the case, we are guaranteed the value will fit into the 53 bit
7414       // mantissa of an IEEE double-precision value without rounding.)
7415       // If any of those low 11 bits were not zero originally, make sure
7416       // bit 12 (value 2048) is set instead, so that the final rounding
7417       // to single-precision gets the correct result.
7418       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7419                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7420       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7421                           Round, DAG.getConstant(2047, dl, MVT::i64));
7422       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7423       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7424                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7425 
7426       // However, we cannot use that value unconditionally: if the magnitude
7427       // of the input value is small, the bit-twiddling we did above might
7428       // end up visibly changing the output.  Fortunately, in that case, we
7429       // don't need to twiddle bits since the original input will convert
7430       // exactly to double-precision floating-point already.  Therefore,
7431       // construct a conditional to use the original value if the top 11
7432       // bits are all sign-bit copies, and use the rounded value computed
7433       // above otherwise.
7434       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7435                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7436       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7437                          Cond, DAG.getConstant(1, dl, MVT::i64));
7438       Cond = DAG.getSetCC(dl, MVT::i32,
7439                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7440 
7441       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7442     }
7443 
7444     ReuseLoadInfo RLI;
7445     SDValue Bits;
7446 
7447     MachineFunction &MF = DAG.getMachineFunction();
7448     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7449       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7450                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7451       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7452     } else if (Subtarget.hasLFIWAX() &&
7453                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7454       MachineMemOperand *MMO =
7455         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7456                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7457       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7458       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7459                                      DAG.getVTList(MVT::f64, MVT::Other),
7460                                      Ops, MVT::i32, MMO);
7461       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7462     } else if (Subtarget.hasFPCVT() &&
7463                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7464       MachineMemOperand *MMO =
7465         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7466                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7467       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7468       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7469                                      DAG.getVTList(MVT::f64, MVT::Other),
7470                                      Ops, MVT::i32, MMO);
7471       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7472     } else if (((Subtarget.hasLFIWAX() &&
7473                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7474                 (Subtarget.hasFPCVT() &&
7475                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7476                SINT.getOperand(0).getValueType() == MVT::i32) {
7477       MachineFrameInfo &MFI = MF.getFrameInfo();
7478       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7479 
7480       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7481       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7482 
7483       SDValue Store =
7484           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7485                        MachinePointerInfo::getFixedStack(
7486                            DAG.getMachineFunction(), FrameIdx));
7487 
7488       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7489              "Expected an i32 store");
7490 
7491       RLI.Ptr = FIdx;
7492       RLI.Chain = Store;
7493       RLI.MPI =
7494           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7495       RLI.Alignment = 4;
7496 
7497       MachineMemOperand *MMO =
7498         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7499                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7500       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7501       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7502                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7503                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7504                                      Ops, MVT::i32, MMO);
7505     } else
7506       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7507 
7508     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7509 
7510     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7511       FP = DAG.getNode(ISD::FP_ROUND, dl,
7512                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7513     return FP;
7514   }
7515 
7516   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7517          "Unhandled INT_TO_FP type in custom expander!");
7518   // Since we only generate this in 64-bit mode, we can take advantage of
7519   // 64-bit registers.  In particular, sign extend the input value into the
7520   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7521   // then lfd it and fcfid it.
7522   MachineFunction &MF = DAG.getMachineFunction();
7523   MachineFrameInfo &MFI = MF.getFrameInfo();
7524   EVT PtrVT = getPointerTy(MF.getDataLayout());
7525 
7526   SDValue Ld;
7527   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7528     ReuseLoadInfo RLI;
7529     bool ReusingLoad;
7530     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7531                                             DAG))) {
7532       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7533       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7534 
7535       SDValue Store =
7536           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7537                        MachinePointerInfo::getFixedStack(
7538                            DAG.getMachineFunction(), FrameIdx));
7539 
7540       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7541              "Expected an i32 store");
7542 
7543       RLI.Ptr = FIdx;
7544       RLI.Chain = Store;
7545       RLI.MPI =
7546           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7547       RLI.Alignment = 4;
7548     }
7549 
7550     MachineMemOperand *MMO =
7551       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7552                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7553     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7554     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7555                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7556                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7557                                  Ops, MVT::i32, MMO);
7558     if (ReusingLoad)
7559       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7560   } else {
7561     assert(Subtarget.isPPC64() &&
7562            "i32->FP without LFIWAX supported only on PPC64");
7563 
7564     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7565     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7566 
7567     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7568                                 Op.getOperand(0));
7569 
7570     // STD the extended value into the stack slot.
7571     SDValue Store = DAG.getStore(
7572         DAG.getEntryNode(), dl, Ext64, FIdx,
7573         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7574 
7575     // Load the value as a double.
7576     Ld = DAG.getLoad(
7577         MVT::f64, dl, Store, FIdx,
7578         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7579   }
7580 
7581   // FCFID it and return it.
7582   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7583   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7584     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7585                      DAG.getIntPtrConstant(0, dl));
7586   return FP;
7587 }
7588 
7589 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7590                                             SelectionDAG &DAG) const {
7591   SDLoc dl(Op);
7592   /*
7593    The rounding mode is in bits 30:31 of FPSR, and has the following
7594    settings:
7595      00 Round to nearest
7596      01 Round to 0
7597      10 Round to +inf
7598      11 Round to -inf
7599 
7600   FLT_ROUNDS, on the other hand, expects the following:
7601     -1 Undefined
7602      0 Round to 0
7603      1 Round to nearest
7604      2 Round to +inf
7605      3 Round to -inf
7606 
7607   To perform the conversion, we do:
7608     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7609   */
7610 
7611   MachineFunction &MF = DAG.getMachineFunction();
7612   EVT VT = Op.getValueType();
7613   EVT PtrVT = getPointerTy(MF.getDataLayout());
7614 
7615   // Save FP Control Word to register
7616   EVT NodeTys[] = {
7617     MVT::f64,    // return register
7618     MVT::Glue    // unused in this context
7619   };
7620   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7621 
7622   // Save FP register to stack slot
7623   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7624   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7625   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7626                                MachinePointerInfo());
7627 
7628   // Load FP Control Word from low 32 bits of stack slot.
7629   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7630   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7631   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7632 
7633   // Transform as necessary
7634   SDValue CWD1 =
7635     DAG.getNode(ISD::AND, dl, MVT::i32,
7636                 CWD, DAG.getConstant(3, dl, MVT::i32));
7637   SDValue CWD2 =
7638     DAG.getNode(ISD::SRL, dl, MVT::i32,
7639                 DAG.getNode(ISD::AND, dl, MVT::i32,
7640                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7641                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7642                             DAG.getConstant(3, dl, MVT::i32)),
7643                 DAG.getConstant(1, dl, MVT::i32));
7644 
7645   SDValue RetVal =
7646     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7647 
7648   return DAG.getNode((VT.getSizeInBits() < 16 ?
7649                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7650 }
7651 
7652 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7653   EVT VT = Op.getValueType();
7654   unsigned BitWidth = VT.getSizeInBits();
7655   SDLoc dl(Op);
7656   assert(Op.getNumOperands() == 3 &&
7657          VT == Op.getOperand(1).getValueType() &&
7658          "Unexpected SHL!");
7659 
7660   // Expand into a bunch of logical ops.  Note that these ops
7661   // depend on the PPC behavior for oversized shift amounts.
7662   SDValue Lo = Op.getOperand(0);
7663   SDValue Hi = Op.getOperand(1);
7664   SDValue Amt = Op.getOperand(2);
7665   EVT AmtVT = Amt.getValueType();
7666 
7667   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7668                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7669   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7670   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7671   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7672   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7673                              DAG.getConstant(-BitWidth, dl, AmtVT));
7674   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7675   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7676   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7677   SDValue OutOps[] = { OutLo, OutHi };
7678   return DAG.getMergeValues(OutOps, dl);
7679 }
7680 
7681 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7682   EVT VT = Op.getValueType();
7683   SDLoc dl(Op);
7684   unsigned BitWidth = VT.getSizeInBits();
7685   assert(Op.getNumOperands() == 3 &&
7686          VT == Op.getOperand(1).getValueType() &&
7687          "Unexpected SRL!");
7688 
7689   // Expand into a bunch of logical ops.  Note that these ops
7690   // depend on the PPC behavior for oversized shift amounts.
7691   SDValue Lo = Op.getOperand(0);
7692   SDValue Hi = Op.getOperand(1);
7693   SDValue Amt = Op.getOperand(2);
7694   EVT AmtVT = Amt.getValueType();
7695 
7696   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7697                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7698   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7699   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7700   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7701   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7702                              DAG.getConstant(-BitWidth, dl, AmtVT));
7703   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7704   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7705   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7706   SDValue OutOps[] = { OutLo, OutHi };
7707   return DAG.getMergeValues(OutOps, dl);
7708 }
7709 
7710 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7711   SDLoc dl(Op);
7712   EVT VT = Op.getValueType();
7713   unsigned BitWidth = VT.getSizeInBits();
7714   assert(Op.getNumOperands() == 3 &&
7715          VT == Op.getOperand(1).getValueType() &&
7716          "Unexpected SRA!");
7717 
7718   // Expand into a bunch of logical ops, followed by a select_cc.
7719   SDValue Lo = Op.getOperand(0);
7720   SDValue Hi = Op.getOperand(1);
7721   SDValue Amt = Op.getOperand(2);
7722   EVT AmtVT = Amt.getValueType();
7723 
7724   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7725                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7726   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7727   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7728   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7729   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7730                              DAG.getConstant(-BitWidth, dl, AmtVT));
7731   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7732   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7733   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7734                                   Tmp4, Tmp6, ISD::SETLE);
7735   SDValue OutOps[] = { OutLo, OutHi };
7736   return DAG.getMergeValues(OutOps, dl);
7737 }
7738 
7739 //===----------------------------------------------------------------------===//
7740 // Vector related lowering.
7741 //
7742 
7743 /// BuildSplatI - Build a canonical splati of Val with an element size of
7744 /// SplatSize.  Cast the result to VT.
7745 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7746                            SelectionDAG &DAG, const SDLoc &dl) {
7747   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7748 
7749   static const MVT VTys[] = { // canonical VT to use for each size.
7750     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7751   };
7752 
7753   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7754 
7755   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7756   if (Val == -1)
7757     SplatSize = 1;
7758 
7759   EVT CanonicalVT = VTys[SplatSize-1];
7760 
7761   // Build a canonical splat for this value.
7762   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7763 }
7764 
7765 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7766 /// specified intrinsic ID.
7767 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7768                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7769   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7770   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7771                      DAG.getConstant(IID, dl, MVT::i32), Op);
7772 }
7773 
7774 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7775 /// specified intrinsic ID.
7776 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7777                                 SelectionDAG &DAG, const SDLoc &dl,
7778                                 EVT DestVT = MVT::Other) {
7779   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7780   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7781                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7782 }
7783 
7784 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7785 /// specified intrinsic ID.
7786 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7787                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7788                                 EVT DestVT = MVT::Other) {
7789   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7790   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7791                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7792 }
7793 
7794 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7795 /// amount.  The result has the specified value type.
7796 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7797                            SelectionDAG &DAG, const SDLoc &dl) {
7798   // Force LHS/RHS to be the right type.
7799   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7800   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7801 
7802   int Ops[16];
7803   for (unsigned i = 0; i != 16; ++i)
7804     Ops[i] = i + Amt;
7805   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7806   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7807 }
7808 
7809 /// Do we have an efficient pattern in a .td file for this node?
7810 ///
7811 /// \param V - pointer to the BuildVectorSDNode being matched
7812 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7813 ///
7814 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7815 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7816 /// the opposite is true (expansion is beneficial) are:
7817 /// - The node builds a vector out of integers that are not 32 or 64-bits
7818 /// - The node builds a vector out of constants
7819 /// - The node is a "load-and-splat"
7820 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7821 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7822                                             bool HasDirectMove,
7823                                             bool HasP8Vector) {
7824   EVT VecVT = V->getValueType(0);
7825   bool RightType = VecVT == MVT::v2f64 ||
7826     (HasP8Vector && VecVT == MVT::v4f32) ||
7827     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7828   if (!RightType)
7829     return false;
7830 
7831   bool IsSplat = true;
7832   bool IsLoad = false;
7833   SDValue Op0 = V->getOperand(0);
7834 
7835   // This function is called in a block that confirms the node is not a constant
7836   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7837   // different constants.
7838   if (V->isConstant())
7839     return false;
7840   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7841     if (V->getOperand(i).isUndef())
7842       return false;
7843     // We want to expand nodes that represent load-and-splat even if the
7844     // loaded value is a floating point truncation or conversion to int.
7845     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7846         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7847          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7848         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7849          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7850         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7851          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7852       IsLoad = true;
7853     // If the operands are different or the input is not a load and has more
7854     // uses than just this BV node, then it isn't a splat.
7855     if (V->getOperand(i) != Op0 ||
7856         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7857       IsSplat = false;
7858   }
7859   return !(IsSplat && IsLoad);
7860 }
7861 
7862 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7863 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7864 
7865   SDLoc dl(Op);
7866   SDValue Op0 = Op->getOperand(0);
7867 
7868   if (!EnableQuadPrecision ||
7869       (Op.getValueType() != MVT::f128 ) ||
7870       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7871       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7872       (Op0.getOperand(1).getValueType() != MVT::i64))
7873     return SDValue();
7874 
7875   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7876                      Op0.getOperand(1));
7877 }
7878 
7879 // If this is a case we can't handle, return null and let the default
7880 // expansion code take care of it.  If we CAN select this case, and if it
7881 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7882 // this case more efficiently than a constant pool load, lower it to the
7883 // sequence of ops that should be used.
7884 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7885                                              SelectionDAG &DAG) const {
7886   SDLoc dl(Op);
7887   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7888   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7889 
7890   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7891     // We first build an i32 vector, load it into a QPX register,
7892     // then convert it to a floating-point vector and compare it
7893     // to a zero vector to get the boolean result.
7894     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7895     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7896     MachinePointerInfo PtrInfo =
7897         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7898     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7899     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7900 
7901     assert(BVN->getNumOperands() == 4 &&
7902       "BUILD_VECTOR for v4i1 does not have 4 operands");
7903 
7904     bool IsConst = true;
7905     for (unsigned i = 0; i < 4; ++i) {
7906       if (BVN->getOperand(i).isUndef()) continue;
7907       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7908         IsConst = false;
7909         break;
7910       }
7911     }
7912 
7913     if (IsConst) {
7914       Constant *One =
7915         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7916       Constant *NegOne =
7917         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7918 
7919       Constant *CV[4];
7920       for (unsigned i = 0; i < 4; ++i) {
7921         if (BVN->getOperand(i).isUndef())
7922           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7923         else if (isNullConstant(BVN->getOperand(i)))
7924           CV[i] = NegOne;
7925         else
7926           CV[i] = One;
7927       }
7928 
7929       Constant *CP = ConstantVector::get(CV);
7930       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7931                                           16 /* alignment */);
7932 
7933       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7934       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7935       return DAG.getMemIntrinsicNode(
7936           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7937           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7938     }
7939 
7940     SmallVector<SDValue, 4> Stores;
7941     for (unsigned i = 0; i < 4; ++i) {
7942       if (BVN->getOperand(i).isUndef()) continue;
7943 
7944       unsigned Offset = 4*i;
7945       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7946       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7947 
7948       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7949       if (StoreSize > 4) {
7950         Stores.push_back(
7951             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7952                               PtrInfo.getWithOffset(Offset), MVT::i32));
7953       } else {
7954         SDValue StoreValue = BVN->getOperand(i);
7955         if (StoreSize < 4)
7956           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7957 
7958         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7959                                       PtrInfo.getWithOffset(Offset)));
7960       }
7961     }
7962 
7963     SDValue StoreChain;
7964     if (!Stores.empty())
7965       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7966     else
7967       StoreChain = DAG.getEntryNode();
7968 
7969     // Now load from v4i32 into the QPX register; this will extend it to
7970     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7971     // is typed as v4f64 because the QPX register integer states are not
7972     // explicitly represented.
7973 
7974     SDValue Ops[] = {StoreChain,
7975                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7976                      FIdx};
7977     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7978 
7979     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7980       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7981     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7982       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7983       LoadedVect);
7984 
7985     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7986 
7987     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7988   }
7989 
7990   // All other QPX vectors are handled by generic code.
7991   if (Subtarget.hasQPX())
7992     return SDValue();
7993 
7994   // Check if this is a splat of a constant value.
7995   APInt APSplatBits, APSplatUndef;
7996   unsigned SplatBitSize;
7997   bool HasAnyUndefs;
7998   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7999                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8000       SplatBitSize > 32) {
8001     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8002     // lowered to VSX instructions under certain conditions.
8003     // Without VSX, there is no pattern more efficient than expanding the node.
8004     if (Subtarget.hasVSX() &&
8005         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8006                                         Subtarget.hasP8Vector()))
8007       return Op;
8008     return SDValue();
8009   }
8010 
8011   unsigned SplatBits = APSplatBits.getZExtValue();
8012   unsigned SplatUndef = APSplatUndef.getZExtValue();
8013   unsigned SplatSize = SplatBitSize / 8;
8014 
8015   // First, handle single instruction cases.
8016 
8017   // All zeros?
8018   if (SplatBits == 0) {
8019     // Canonicalize all zero vectors to be v4i32.
8020     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8021       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8022       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8023     }
8024     return Op;
8025   }
8026 
8027   // We have XXSPLTIB for constant splats one byte wide
8028   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8029     // This is a splat of 1-byte elements with some elements potentially undef.
8030     // Rather than trying to match undef in the SDAG patterns, ensure that all
8031     // elements are the same constant.
8032     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8033       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8034                                                        dl, MVT::i32));
8035       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8036       if (Op.getValueType() != MVT::v16i8)
8037         return DAG.getBitcast(Op.getValueType(), NewBV);
8038       return NewBV;
8039     }
8040 
8041     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8042     // detect that constant splats like v8i16: 0xABAB are really just splats
8043     // of a 1-byte constant. In this case, we need to convert the node to a
8044     // splat of v16i8 and a bitcast.
8045     if (Op.getValueType() != MVT::v16i8)
8046       return DAG.getBitcast(Op.getValueType(),
8047                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8048 
8049     return Op;
8050   }
8051 
8052   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8053   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8054                     (32-SplatBitSize));
8055   if (SextVal >= -16 && SextVal <= 15)
8056     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8057 
8058   // Two instruction sequences.
8059 
8060   // If this value is in the range [-32,30] and is even, use:
8061   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8062   // If this value is in the range [17,31] and is odd, use:
8063   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8064   // If this value is in the range [-31,-17] and is odd, use:
8065   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8066   // Note the last two are three-instruction sequences.
8067   if (SextVal >= -32 && SextVal <= 31) {
8068     // To avoid having these optimizations undone by constant folding,
8069     // we convert to a pseudo that will be expanded later into one of
8070     // the above forms.
8071     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8072     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8073               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8074     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8075     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8076     if (VT == Op.getValueType())
8077       return RetVal;
8078     else
8079       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8080   }
8081 
8082   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8083   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8084   // for fneg/fabs.
8085   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8086     // Make -1 and vspltisw -1:
8087     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8088 
8089     // Make the VSLW intrinsic, computing 0x8000_0000.
8090     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8091                                    OnesV, DAG, dl);
8092 
8093     // xor by OnesV to invert it.
8094     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8095     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8096   }
8097 
8098   // Check to see if this is a wide variety of vsplti*, binop self cases.
8099   static const signed char SplatCsts[] = {
8100     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8101     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8102   };
8103 
8104   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8105     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8106     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8107     int i = SplatCsts[idx];
8108 
8109     // Figure out what shift amount will be used by altivec if shifted by i in
8110     // this splat size.
8111     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8112 
8113     // vsplti + shl self.
8114     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8115       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8116       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8117         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8118         Intrinsic::ppc_altivec_vslw
8119       };
8120       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8121       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8122     }
8123 
8124     // vsplti + srl self.
8125     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8126       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8127       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8128         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8129         Intrinsic::ppc_altivec_vsrw
8130       };
8131       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8132       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8133     }
8134 
8135     // vsplti + sra self.
8136     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8137       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8138       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8139         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8140         Intrinsic::ppc_altivec_vsraw
8141       };
8142       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8143       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8144     }
8145 
8146     // vsplti + rol self.
8147     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8148                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8149       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8150       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8151         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8152         Intrinsic::ppc_altivec_vrlw
8153       };
8154       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8155       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8156     }
8157 
8158     // t = vsplti c, result = vsldoi t, t, 1
8159     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8160       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8161       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8162       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8163     }
8164     // t = vsplti c, result = vsldoi t, t, 2
8165     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8166       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8167       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8168       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8169     }
8170     // t = vsplti c, result = vsldoi t, t, 3
8171     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8172       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8173       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8174       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8175     }
8176   }
8177 
8178   return SDValue();
8179 }
8180 
8181 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8182 /// the specified operations to build the shuffle.
8183 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8184                                       SDValue RHS, SelectionDAG &DAG,
8185                                       const SDLoc &dl) {
8186   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8187   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8188   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8189 
8190   enum {
8191     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8192     OP_VMRGHW,
8193     OP_VMRGLW,
8194     OP_VSPLTISW0,
8195     OP_VSPLTISW1,
8196     OP_VSPLTISW2,
8197     OP_VSPLTISW3,
8198     OP_VSLDOI4,
8199     OP_VSLDOI8,
8200     OP_VSLDOI12
8201   };
8202 
8203   if (OpNum == OP_COPY) {
8204     if (LHSID == (1*9+2)*9+3) return LHS;
8205     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8206     return RHS;
8207   }
8208 
8209   SDValue OpLHS, OpRHS;
8210   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8211   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8212 
8213   int ShufIdxs[16];
8214   switch (OpNum) {
8215   default: llvm_unreachable("Unknown i32 permute!");
8216   case OP_VMRGHW:
8217     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8218     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8219     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8220     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8221     break;
8222   case OP_VMRGLW:
8223     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8224     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8225     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8226     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8227     break;
8228   case OP_VSPLTISW0:
8229     for (unsigned i = 0; i != 16; ++i)
8230       ShufIdxs[i] = (i&3)+0;
8231     break;
8232   case OP_VSPLTISW1:
8233     for (unsigned i = 0; i != 16; ++i)
8234       ShufIdxs[i] = (i&3)+4;
8235     break;
8236   case OP_VSPLTISW2:
8237     for (unsigned i = 0; i != 16; ++i)
8238       ShufIdxs[i] = (i&3)+8;
8239     break;
8240   case OP_VSPLTISW3:
8241     for (unsigned i = 0; i != 16; ++i)
8242       ShufIdxs[i] = (i&3)+12;
8243     break;
8244   case OP_VSLDOI4:
8245     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8246   case OP_VSLDOI8:
8247     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8248   case OP_VSLDOI12:
8249     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8250   }
8251   EVT VT = OpLHS.getValueType();
8252   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8253   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8254   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8255   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8256 }
8257 
8258 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8259 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8260 /// SDValue.
8261 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8262                                            SelectionDAG &DAG) const {
8263   const unsigned BytesInVector = 16;
8264   bool IsLE = Subtarget.isLittleEndian();
8265   SDLoc dl(N);
8266   SDValue V1 = N->getOperand(0);
8267   SDValue V2 = N->getOperand(1);
8268   unsigned ShiftElts = 0, InsertAtByte = 0;
8269   bool Swap = false;
8270 
8271   // Shifts required to get the byte we want at element 7.
8272   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8273                                    0, 15, 14, 13, 12, 11, 10, 9};
8274   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8275                                 1, 2,  3,  4,  5,  6,  7,  8};
8276 
8277   ArrayRef<int> Mask = N->getMask();
8278   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8279 
8280   // For each mask element, find out if we're just inserting something
8281   // from V2 into V1 or vice versa.
8282   // Possible permutations inserting an element from V2 into V1:
8283   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8284   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8285   //   ...
8286   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8287   // Inserting from V1 into V2 will be similar, except mask range will be
8288   // [16,31].
8289 
8290   bool FoundCandidate = false;
8291   // If both vector operands for the shuffle are the same vector, the mask
8292   // will contain only elements from the first one and the second one will be
8293   // undef.
8294   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8295   // Go through the mask of half-words to find an element that's being moved
8296   // from one vector to the other.
8297   for (unsigned i = 0; i < BytesInVector; ++i) {
8298     unsigned CurrentElement = Mask[i];
8299     // If 2nd operand is undefined, we should only look for element 7 in the
8300     // Mask.
8301     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8302       continue;
8303 
8304     bool OtherElementsInOrder = true;
8305     // Examine the other elements in the Mask to see if they're in original
8306     // order.
8307     for (unsigned j = 0; j < BytesInVector; ++j) {
8308       if (j == i)
8309         continue;
8310       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8311       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8312       // in which we always assume we're always picking from the 1st operand.
8313       int MaskOffset =
8314           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8315       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8316         OtherElementsInOrder = false;
8317         break;
8318       }
8319     }
8320     // If other elements are in original order, we record the number of shifts
8321     // we need to get the element we want into element 7. Also record which byte
8322     // in the vector we should insert into.
8323     if (OtherElementsInOrder) {
8324       // If 2nd operand is undefined, we assume no shifts and no swapping.
8325       if (V2.isUndef()) {
8326         ShiftElts = 0;
8327         Swap = false;
8328       } else {
8329         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8330         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8331                          : BigEndianShifts[CurrentElement & 0xF];
8332         Swap = CurrentElement < BytesInVector;
8333       }
8334       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8335       FoundCandidate = true;
8336       break;
8337     }
8338   }
8339 
8340   if (!FoundCandidate)
8341     return SDValue();
8342 
8343   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8344   // optionally with VECSHL if shift is required.
8345   if (Swap)
8346     std::swap(V1, V2);
8347   if (V2.isUndef())
8348     V2 = V1;
8349   if (ShiftElts) {
8350     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8351                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8352     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8353                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8354   }
8355   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8356                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8357 }
8358 
8359 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8360 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8361 /// SDValue.
8362 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8363                                            SelectionDAG &DAG) const {
8364   const unsigned NumHalfWords = 8;
8365   const unsigned BytesInVector = NumHalfWords * 2;
8366   // Check that the shuffle is on half-words.
8367   if (!isNByteElemShuffleMask(N, 2, 1))
8368     return SDValue();
8369 
8370   bool IsLE = Subtarget.isLittleEndian();
8371   SDLoc dl(N);
8372   SDValue V1 = N->getOperand(0);
8373   SDValue V2 = N->getOperand(1);
8374   unsigned ShiftElts = 0, InsertAtByte = 0;
8375   bool Swap = false;
8376 
8377   // Shifts required to get the half-word we want at element 3.
8378   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8379   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8380 
8381   uint32_t Mask = 0;
8382   uint32_t OriginalOrderLow = 0x1234567;
8383   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8384   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8385   // 32-bit space, only need 4-bit nibbles per element.
8386   for (unsigned i = 0; i < NumHalfWords; ++i) {
8387     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8388     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8389   }
8390 
8391   // For each mask element, find out if we're just inserting something
8392   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8393   // from V2 into V1:
8394   //   X, 1, 2, 3, 4, 5, 6, 7
8395   //   0, X, 2, 3, 4, 5, 6, 7
8396   //   0, 1, X, 3, 4, 5, 6, 7
8397   //   0, 1, 2, X, 4, 5, 6, 7
8398   //   0, 1, 2, 3, X, 5, 6, 7
8399   //   0, 1, 2, 3, 4, X, 6, 7
8400   //   0, 1, 2, 3, 4, 5, X, 7
8401   //   0, 1, 2, 3, 4, 5, 6, X
8402   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8403 
8404   bool FoundCandidate = false;
8405   // Go through the mask of half-words to find an element that's being moved
8406   // from one vector to the other.
8407   for (unsigned i = 0; i < NumHalfWords; ++i) {
8408     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8409     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8410     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8411     uint32_t TargetOrder = 0x0;
8412 
8413     // If both vector operands for the shuffle are the same vector, the mask
8414     // will contain only elements from the first one and the second one will be
8415     // undef.
8416     if (V2.isUndef()) {
8417       ShiftElts = 0;
8418       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8419       TargetOrder = OriginalOrderLow;
8420       Swap = false;
8421       // Skip if not the correct element or mask of other elements don't equal
8422       // to our expected order.
8423       if (MaskOneElt == VINSERTHSrcElem &&
8424           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8425         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8426         FoundCandidate = true;
8427         break;
8428       }
8429     } else { // If both operands are defined.
8430       // Target order is [8,15] if the current mask is between [0,7].
8431       TargetOrder =
8432           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8433       // Skip if mask of other elements don't equal our expected order.
8434       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8435         // We only need the last 3 bits for the number of shifts.
8436         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8437                          : BigEndianShifts[MaskOneElt & 0x7];
8438         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8439         Swap = MaskOneElt < NumHalfWords;
8440         FoundCandidate = true;
8441         break;
8442       }
8443     }
8444   }
8445 
8446   if (!FoundCandidate)
8447     return SDValue();
8448 
8449   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8450   // optionally with VECSHL if shift is required.
8451   if (Swap)
8452     std::swap(V1, V2);
8453   if (V2.isUndef())
8454     V2 = V1;
8455   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8456   if (ShiftElts) {
8457     // Double ShiftElts because we're left shifting on v16i8 type.
8458     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8459                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8460     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8461     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8462                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8463     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8464   }
8465   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8466   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8467                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8468   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8469 }
8470 
8471 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8472 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8473 /// return the code it can be lowered into.  Worst case, it can always be
8474 /// lowered into a vperm.
8475 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8476                                                SelectionDAG &DAG) const {
8477   SDLoc dl(Op);
8478   SDValue V1 = Op.getOperand(0);
8479   SDValue V2 = Op.getOperand(1);
8480   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8481   EVT VT = Op.getValueType();
8482   bool isLittleEndian = Subtarget.isLittleEndian();
8483 
8484   unsigned ShiftElts, InsertAtByte;
8485   bool Swap = false;
8486   if (Subtarget.hasP9Vector() &&
8487       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8488                            isLittleEndian)) {
8489     if (Swap)
8490       std::swap(V1, V2);
8491     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8492     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8493     if (ShiftElts) {
8494       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8495                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8496       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8497                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8498       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8499     }
8500     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8501                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8502     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8503   }
8504 
8505   if (Subtarget.hasP9Altivec()) {
8506     SDValue NewISDNode;
8507     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8508       return NewISDNode;
8509 
8510     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8511       return NewISDNode;
8512   }
8513 
8514   if (Subtarget.hasVSX() &&
8515       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8516     if (Swap)
8517       std::swap(V1, V2);
8518     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8519     SDValue Conv2 =
8520         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8521 
8522     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8523                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8524     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8525   }
8526 
8527   if (Subtarget.hasVSX() &&
8528     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8529     if (Swap)
8530       std::swap(V1, V2);
8531     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8532     SDValue Conv2 =
8533         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8534 
8535     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8536                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8537     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8538   }
8539 
8540   if (Subtarget.hasP9Vector()) {
8541      if (PPC::isXXBRHShuffleMask(SVOp)) {
8542       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8543       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8544       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8545     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8546       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8547       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8548       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8549     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8550       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8551       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8552       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8553     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8554       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8555       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8556       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8557     }
8558   }
8559 
8560   if (Subtarget.hasVSX()) {
8561     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8562       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8563 
8564       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8565       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8566                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8567       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8568     }
8569 
8570     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8571     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8572       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8573       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8574       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8575     }
8576   }
8577 
8578   if (Subtarget.hasQPX()) {
8579     if (VT.getVectorNumElements() != 4)
8580       return SDValue();
8581 
8582     if (V2.isUndef()) V2 = V1;
8583 
8584     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8585     if (AlignIdx != -1) {
8586       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8587                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8588     } else if (SVOp->isSplat()) {
8589       int SplatIdx = SVOp->getSplatIndex();
8590       if (SplatIdx >= 4) {
8591         std::swap(V1, V2);
8592         SplatIdx -= 4;
8593       }
8594 
8595       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8596                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8597     }
8598 
8599     // Lower this into a qvgpci/qvfperm pair.
8600 
8601     // Compute the qvgpci literal
8602     unsigned idx = 0;
8603     for (unsigned i = 0; i < 4; ++i) {
8604       int m = SVOp->getMaskElt(i);
8605       unsigned mm = m >= 0 ? (unsigned) m : i;
8606       idx |= mm << (3-i)*3;
8607     }
8608 
8609     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8610                              DAG.getConstant(idx, dl, MVT::i32));
8611     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8612   }
8613 
8614   // Cases that are handled by instructions that take permute immediates
8615   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8616   // selected by the instruction selector.
8617   if (V2.isUndef()) {
8618     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8619         PPC::isSplatShuffleMask(SVOp, 2) ||
8620         PPC::isSplatShuffleMask(SVOp, 4) ||
8621         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8622         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8623         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8624         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8625         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8626         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8627         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8628         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8629         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8630         (Subtarget.hasP8Altivec() && (
8631          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8632          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8633          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8634       return Op;
8635     }
8636   }
8637 
8638   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8639   // and produce a fixed permutation.  If any of these match, do not lower to
8640   // VPERM.
8641   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8642   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8643       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8644       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8645       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8646       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8647       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8648       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8649       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8650       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8651       (Subtarget.hasP8Altivec() && (
8652        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8653        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8654        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8655     return Op;
8656 
8657   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8658   // perfect shuffle table to emit an optimal matching sequence.
8659   ArrayRef<int> PermMask = SVOp->getMask();
8660 
8661   unsigned PFIndexes[4];
8662   bool isFourElementShuffle = true;
8663   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8664     unsigned EltNo = 8;   // Start out undef.
8665     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8666       if (PermMask[i*4+j] < 0)
8667         continue;   // Undef, ignore it.
8668 
8669       unsigned ByteSource = PermMask[i*4+j];
8670       if ((ByteSource & 3) != j) {
8671         isFourElementShuffle = false;
8672         break;
8673       }
8674 
8675       if (EltNo == 8) {
8676         EltNo = ByteSource/4;
8677       } else if (EltNo != ByteSource/4) {
8678         isFourElementShuffle = false;
8679         break;
8680       }
8681     }
8682     PFIndexes[i] = EltNo;
8683   }
8684 
8685   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8686   // perfect shuffle vector to determine if it is cost effective to do this as
8687   // discrete instructions, or whether we should use a vperm.
8688   // For now, we skip this for little endian until such time as we have a
8689   // little-endian perfect shuffle table.
8690   if (isFourElementShuffle && !isLittleEndian) {
8691     // Compute the index in the perfect shuffle table.
8692     unsigned PFTableIndex =
8693       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8694 
8695     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8696     unsigned Cost  = (PFEntry >> 30);
8697 
8698     // Determining when to avoid vperm is tricky.  Many things affect the cost
8699     // of vperm, particularly how many times the perm mask needs to be computed.
8700     // For example, if the perm mask can be hoisted out of a loop or is already
8701     // used (perhaps because there are multiple permutes with the same shuffle
8702     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8703     // the loop requires an extra register.
8704     //
8705     // As a compromise, we only emit discrete instructions if the shuffle can be
8706     // generated in 3 or fewer operations.  When we have loop information
8707     // available, if this block is within a loop, we should avoid using vperm
8708     // for 3-operation perms and use a constant pool load instead.
8709     if (Cost < 3)
8710       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8711   }
8712 
8713   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8714   // vector that will get spilled to the constant pool.
8715   if (V2.isUndef()) V2 = V1;
8716 
8717   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8718   // that it is in input element units, not in bytes.  Convert now.
8719 
8720   // For little endian, the order of the input vectors is reversed, and
8721   // the permutation mask is complemented with respect to 31.  This is
8722   // necessary to produce proper semantics with the big-endian-biased vperm
8723   // instruction.
8724   EVT EltVT = V1.getValueType().getVectorElementType();
8725   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8726 
8727   SmallVector<SDValue, 16> ResultMask;
8728   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8729     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8730 
8731     for (unsigned j = 0; j != BytesPerElement; ++j)
8732       if (isLittleEndian)
8733         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8734                                              dl, MVT::i32));
8735       else
8736         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8737                                              MVT::i32));
8738   }
8739 
8740   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8741   if (isLittleEndian)
8742     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8743                        V2, V1, VPermMask);
8744   else
8745     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8746                        V1, V2, VPermMask);
8747 }
8748 
8749 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8750 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8751 /// information about the intrinsic.
8752 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8753                                  bool &isDot, const PPCSubtarget &Subtarget) {
8754   unsigned IntrinsicID =
8755       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8756   CompareOpc = -1;
8757   isDot = false;
8758   switch (IntrinsicID) {
8759   default:
8760     return false;
8761   // Comparison predicates.
8762   case Intrinsic::ppc_altivec_vcmpbfp_p:
8763     CompareOpc = 966;
8764     isDot = true;
8765     break;
8766   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8767     CompareOpc = 198;
8768     isDot = true;
8769     break;
8770   case Intrinsic::ppc_altivec_vcmpequb_p:
8771     CompareOpc = 6;
8772     isDot = true;
8773     break;
8774   case Intrinsic::ppc_altivec_vcmpequh_p:
8775     CompareOpc = 70;
8776     isDot = true;
8777     break;
8778   case Intrinsic::ppc_altivec_vcmpequw_p:
8779     CompareOpc = 134;
8780     isDot = true;
8781     break;
8782   case Intrinsic::ppc_altivec_vcmpequd_p:
8783     if (Subtarget.hasP8Altivec()) {
8784       CompareOpc = 199;
8785       isDot = true;
8786     } else
8787       return false;
8788     break;
8789   case Intrinsic::ppc_altivec_vcmpneb_p:
8790   case Intrinsic::ppc_altivec_vcmpneh_p:
8791   case Intrinsic::ppc_altivec_vcmpnew_p:
8792   case Intrinsic::ppc_altivec_vcmpnezb_p:
8793   case Intrinsic::ppc_altivec_vcmpnezh_p:
8794   case Intrinsic::ppc_altivec_vcmpnezw_p:
8795     if (Subtarget.hasP9Altivec()) {
8796       switch (IntrinsicID) {
8797       default:
8798         llvm_unreachable("Unknown comparison intrinsic.");
8799       case Intrinsic::ppc_altivec_vcmpneb_p:
8800         CompareOpc = 7;
8801         break;
8802       case Intrinsic::ppc_altivec_vcmpneh_p:
8803         CompareOpc = 71;
8804         break;
8805       case Intrinsic::ppc_altivec_vcmpnew_p:
8806         CompareOpc = 135;
8807         break;
8808       case Intrinsic::ppc_altivec_vcmpnezb_p:
8809         CompareOpc = 263;
8810         break;
8811       case Intrinsic::ppc_altivec_vcmpnezh_p:
8812         CompareOpc = 327;
8813         break;
8814       case Intrinsic::ppc_altivec_vcmpnezw_p:
8815         CompareOpc = 391;
8816         break;
8817       }
8818       isDot = true;
8819     } else
8820       return false;
8821     break;
8822   case Intrinsic::ppc_altivec_vcmpgefp_p:
8823     CompareOpc = 454;
8824     isDot = true;
8825     break;
8826   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8827     CompareOpc = 710;
8828     isDot = true;
8829     break;
8830   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8831     CompareOpc = 774;
8832     isDot = true;
8833     break;
8834   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8835     CompareOpc = 838;
8836     isDot = true;
8837     break;
8838   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8839     CompareOpc = 902;
8840     isDot = true;
8841     break;
8842   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8843     if (Subtarget.hasP8Altivec()) {
8844       CompareOpc = 967;
8845       isDot = true;
8846     } else
8847       return false;
8848     break;
8849   case Intrinsic::ppc_altivec_vcmpgtub_p:
8850     CompareOpc = 518;
8851     isDot = true;
8852     break;
8853   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8854     CompareOpc = 582;
8855     isDot = true;
8856     break;
8857   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8858     CompareOpc = 646;
8859     isDot = true;
8860     break;
8861   case Intrinsic::ppc_altivec_vcmpgtud_p:
8862     if (Subtarget.hasP8Altivec()) {
8863       CompareOpc = 711;
8864       isDot = true;
8865     } else
8866       return false;
8867     break;
8868 
8869   // VSX predicate comparisons use the same infrastructure
8870   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8871   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8872   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8873   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8874   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8875   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8876     if (Subtarget.hasVSX()) {
8877       switch (IntrinsicID) {
8878       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8879         CompareOpc = 99;
8880         break;
8881       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8882         CompareOpc = 115;
8883         break;
8884       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8885         CompareOpc = 107;
8886         break;
8887       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8888         CompareOpc = 67;
8889         break;
8890       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8891         CompareOpc = 83;
8892         break;
8893       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8894         CompareOpc = 75;
8895         break;
8896       }
8897       isDot = true;
8898     } else
8899       return false;
8900     break;
8901 
8902   // Normal Comparisons.
8903   case Intrinsic::ppc_altivec_vcmpbfp:
8904     CompareOpc = 966;
8905     break;
8906   case Intrinsic::ppc_altivec_vcmpeqfp:
8907     CompareOpc = 198;
8908     break;
8909   case Intrinsic::ppc_altivec_vcmpequb:
8910     CompareOpc = 6;
8911     break;
8912   case Intrinsic::ppc_altivec_vcmpequh:
8913     CompareOpc = 70;
8914     break;
8915   case Intrinsic::ppc_altivec_vcmpequw:
8916     CompareOpc = 134;
8917     break;
8918   case Intrinsic::ppc_altivec_vcmpequd:
8919     if (Subtarget.hasP8Altivec())
8920       CompareOpc = 199;
8921     else
8922       return false;
8923     break;
8924   case Intrinsic::ppc_altivec_vcmpneb:
8925   case Intrinsic::ppc_altivec_vcmpneh:
8926   case Intrinsic::ppc_altivec_vcmpnew:
8927   case Intrinsic::ppc_altivec_vcmpnezb:
8928   case Intrinsic::ppc_altivec_vcmpnezh:
8929   case Intrinsic::ppc_altivec_vcmpnezw:
8930     if (Subtarget.hasP9Altivec())
8931       switch (IntrinsicID) {
8932       default:
8933         llvm_unreachable("Unknown comparison intrinsic.");
8934       case Intrinsic::ppc_altivec_vcmpneb:
8935         CompareOpc = 7;
8936         break;
8937       case Intrinsic::ppc_altivec_vcmpneh:
8938         CompareOpc = 71;
8939         break;
8940       case Intrinsic::ppc_altivec_vcmpnew:
8941         CompareOpc = 135;
8942         break;
8943       case Intrinsic::ppc_altivec_vcmpnezb:
8944         CompareOpc = 263;
8945         break;
8946       case Intrinsic::ppc_altivec_vcmpnezh:
8947         CompareOpc = 327;
8948         break;
8949       case Intrinsic::ppc_altivec_vcmpnezw:
8950         CompareOpc = 391;
8951         break;
8952       }
8953     else
8954       return false;
8955     break;
8956   case Intrinsic::ppc_altivec_vcmpgefp:
8957     CompareOpc = 454;
8958     break;
8959   case Intrinsic::ppc_altivec_vcmpgtfp:
8960     CompareOpc = 710;
8961     break;
8962   case Intrinsic::ppc_altivec_vcmpgtsb:
8963     CompareOpc = 774;
8964     break;
8965   case Intrinsic::ppc_altivec_vcmpgtsh:
8966     CompareOpc = 838;
8967     break;
8968   case Intrinsic::ppc_altivec_vcmpgtsw:
8969     CompareOpc = 902;
8970     break;
8971   case Intrinsic::ppc_altivec_vcmpgtsd:
8972     if (Subtarget.hasP8Altivec())
8973       CompareOpc = 967;
8974     else
8975       return false;
8976     break;
8977   case Intrinsic::ppc_altivec_vcmpgtub:
8978     CompareOpc = 518;
8979     break;
8980   case Intrinsic::ppc_altivec_vcmpgtuh:
8981     CompareOpc = 582;
8982     break;
8983   case Intrinsic::ppc_altivec_vcmpgtuw:
8984     CompareOpc = 646;
8985     break;
8986   case Intrinsic::ppc_altivec_vcmpgtud:
8987     if (Subtarget.hasP8Altivec())
8988       CompareOpc = 711;
8989     else
8990       return false;
8991     break;
8992   }
8993   return true;
8994 }
8995 
8996 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8997 /// lower, do it, otherwise return null.
8998 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8999                                                    SelectionDAG &DAG) const {
9000   unsigned IntrinsicID =
9001     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9002 
9003   SDLoc dl(Op);
9004 
9005   if (IntrinsicID == Intrinsic::thread_pointer) {
9006     // Reads the thread pointer register, used for __builtin_thread_pointer.
9007     if (Subtarget.isPPC64())
9008       return DAG.getRegister(PPC::X13, MVT::i64);
9009     return DAG.getRegister(PPC::R2, MVT::i32);
9010   }
9011 
9012   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9013   // opcode number of the comparison.
9014   int CompareOpc;
9015   bool isDot;
9016   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9017     return SDValue();    // Don't custom lower most intrinsics.
9018 
9019   // If this is a non-dot comparison, make the VCMP node and we are done.
9020   if (!isDot) {
9021     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9022                               Op.getOperand(1), Op.getOperand(2),
9023                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9024     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9025   }
9026 
9027   // Create the PPCISD altivec 'dot' comparison node.
9028   SDValue Ops[] = {
9029     Op.getOperand(2),  // LHS
9030     Op.getOperand(3),  // RHS
9031     DAG.getConstant(CompareOpc, dl, MVT::i32)
9032   };
9033   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9034   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9035 
9036   // Now that we have the comparison, emit a copy from the CR to a GPR.
9037   // This is flagged to the above dot comparison.
9038   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9039                                 DAG.getRegister(PPC::CR6, MVT::i32),
9040                                 CompNode.getValue(1));
9041 
9042   // Unpack the result based on how the target uses it.
9043   unsigned BitNo;   // Bit # of CR6.
9044   bool InvertBit;   // Invert result?
9045   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9046   default:  // Can't happen, don't crash on invalid number though.
9047   case 0:   // Return the value of the EQ bit of CR6.
9048     BitNo = 0; InvertBit = false;
9049     break;
9050   case 1:   // Return the inverted value of the EQ bit of CR6.
9051     BitNo = 0; InvertBit = true;
9052     break;
9053   case 2:   // Return the value of the LT bit of CR6.
9054     BitNo = 2; InvertBit = false;
9055     break;
9056   case 3:   // Return the inverted value of the LT bit of CR6.
9057     BitNo = 2; InvertBit = true;
9058     break;
9059   }
9060 
9061   // Shift the bit into the low position.
9062   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9063                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9064   // Isolate the bit.
9065   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9066                       DAG.getConstant(1, dl, MVT::i32));
9067 
9068   // If we are supposed to, toggle the bit.
9069   if (InvertBit)
9070     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9071                         DAG.getConstant(1, dl, MVT::i32));
9072   return Flags;
9073 }
9074 
9075 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9076                                                SelectionDAG &DAG) const {
9077   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9078   // the beginning of the argument list.
9079   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9080   SDLoc DL(Op);
9081   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9082   case Intrinsic::ppc_cfence: {
9083     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9084     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9085     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9086                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9087                                                   Op.getOperand(ArgStart + 1)),
9088                                       Op.getOperand(0)),
9089                    0);
9090   }
9091   default:
9092     break;
9093   }
9094   return SDValue();
9095 }
9096 
9097 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9098   // Check for a DIV with the same operands as this REM.
9099   for (auto UI : Op.getOperand(1)->uses()) {
9100     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9101         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9102       if (UI->getOperand(0) == Op.getOperand(0) &&
9103           UI->getOperand(1) == Op.getOperand(1))
9104         return SDValue();
9105   }
9106   return Op;
9107 }
9108 
9109 // Lower scalar BSWAP64 to xxbrd.
9110 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9111   SDLoc dl(Op);
9112   // MTVSRDD
9113   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9114                    Op.getOperand(0));
9115   // XXBRD
9116   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9117   // MFVSRD
9118   int VectorIndex = 0;
9119   if (Subtarget.isLittleEndian())
9120     VectorIndex = 1;
9121   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9122                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9123   return Op;
9124 }
9125 
9126 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9127 // compared to a value that is atomically loaded (atomic loads zero-extend).
9128 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9129                                                 SelectionDAG &DAG) const {
9130   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9131          "Expecting an atomic compare-and-swap here.");
9132   SDLoc dl(Op);
9133   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9134   EVT MemVT = AtomicNode->getMemoryVT();
9135   if (MemVT.getSizeInBits() >= 32)
9136     return Op;
9137 
9138   SDValue CmpOp = Op.getOperand(2);
9139   // If this is already correctly zero-extended, leave it alone.
9140   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9141   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9142     return Op;
9143 
9144   // Clear the high bits of the compare operand.
9145   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9146   SDValue NewCmpOp =
9147     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9148                 DAG.getConstant(MaskVal, dl, MVT::i32));
9149 
9150   // Replace the existing compare operand with the properly zero-extended one.
9151   SmallVector<SDValue, 4> Ops;
9152   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9153     Ops.push_back(AtomicNode->getOperand(i));
9154   Ops[2] = NewCmpOp;
9155   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9156   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9157   auto NodeTy =
9158     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9159   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9160 }
9161 
9162 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9163                                                  SelectionDAG &DAG) const {
9164   SDLoc dl(Op);
9165   // Create a stack slot that is 16-byte aligned.
9166   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9167   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9168   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9169   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9170 
9171   // Store the input value into Value#0 of the stack slot.
9172   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9173                                MachinePointerInfo());
9174   // Load it out.
9175   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9176 }
9177 
9178 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9179                                                   SelectionDAG &DAG) const {
9180   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9181          "Should only be called for ISD::INSERT_VECTOR_ELT");
9182 
9183   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9184   // We have legal lowering for constant indices but not for variable ones.
9185   if (!C)
9186     return SDValue();
9187 
9188   EVT VT = Op.getValueType();
9189   SDLoc dl(Op);
9190   SDValue V1 = Op.getOperand(0);
9191   SDValue V2 = Op.getOperand(1);
9192   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9193   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9194     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9195     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9196     unsigned InsertAtElement = C->getZExtValue();
9197     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9198     if (Subtarget.isLittleEndian()) {
9199       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9200     }
9201     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9202                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9203   }
9204   return Op;
9205 }
9206 
9207 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9208                                                    SelectionDAG &DAG) const {
9209   SDLoc dl(Op);
9210   SDNode *N = Op.getNode();
9211 
9212   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9213          "Unknown extract_vector_elt type");
9214 
9215   SDValue Value = N->getOperand(0);
9216 
9217   // The first part of this is like the store lowering except that we don't
9218   // need to track the chain.
9219 
9220   // The values are now known to be -1 (false) or 1 (true). To convert this
9221   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9222   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9223   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9224 
9225   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9226   // understand how to form the extending load.
9227   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9228 
9229   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9230 
9231   // Now convert to an integer and store.
9232   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9233     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9234     Value);
9235 
9236   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9237   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9238   MachinePointerInfo PtrInfo =
9239       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9240   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9241   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9242 
9243   SDValue StoreChain = DAG.getEntryNode();
9244   SDValue Ops[] = {StoreChain,
9245                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9246                    Value, FIdx};
9247   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9248 
9249   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9250     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9251 
9252   // Extract the value requested.
9253   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9254   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9255   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9256 
9257   SDValue IntVal =
9258       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9259 
9260   if (!Subtarget.useCRBits())
9261     return IntVal;
9262 
9263   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9264 }
9265 
9266 /// Lowering for QPX v4i1 loads
9267 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9268                                            SelectionDAG &DAG) const {
9269   SDLoc dl(Op);
9270   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9271   SDValue LoadChain = LN->getChain();
9272   SDValue BasePtr = LN->getBasePtr();
9273 
9274   if (Op.getValueType() == MVT::v4f64 ||
9275       Op.getValueType() == MVT::v4f32) {
9276     EVT MemVT = LN->getMemoryVT();
9277     unsigned Alignment = LN->getAlignment();
9278 
9279     // If this load is properly aligned, then it is legal.
9280     if (Alignment >= MemVT.getStoreSize())
9281       return Op;
9282 
9283     EVT ScalarVT = Op.getValueType().getScalarType(),
9284         ScalarMemVT = MemVT.getScalarType();
9285     unsigned Stride = ScalarMemVT.getStoreSize();
9286 
9287     SDValue Vals[4], LoadChains[4];
9288     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9289       SDValue Load;
9290       if (ScalarVT != ScalarMemVT)
9291         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9292                               BasePtr,
9293                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9294                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9295                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9296       else
9297         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9298                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9299                            MinAlign(Alignment, Idx * Stride),
9300                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9301 
9302       if (Idx == 0 && LN->isIndexed()) {
9303         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9304                "Unknown addressing mode on vector load");
9305         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9306                                   LN->getAddressingMode());
9307       }
9308 
9309       Vals[Idx] = Load;
9310       LoadChains[Idx] = Load.getValue(1);
9311 
9312       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9313                             DAG.getConstant(Stride, dl,
9314                                             BasePtr.getValueType()));
9315     }
9316 
9317     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9318     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9319 
9320     if (LN->isIndexed()) {
9321       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9322       return DAG.getMergeValues(RetOps, dl);
9323     }
9324 
9325     SDValue RetOps[] = { Value, TF };
9326     return DAG.getMergeValues(RetOps, dl);
9327   }
9328 
9329   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9330   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9331 
9332   // To lower v4i1 from a byte array, we load the byte elements of the
9333   // vector and then reuse the BUILD_VECTOR logic.
9334 
9335   SDValue VectElmts[4], VectElmtChains[4];
9336   for (unsigned i = 0; i < 4; ++i) {
9337     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9338     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9339 
9340     VectElmts[i] = DAG.getExtLoad(
9341         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9342         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9343         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9344     VectElmtChains[i] = VectElmts[i].getValue(1);
9345   }
9346 
9347   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9348   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9349 
9350   SDValue RVals[] = { Value, LoadChain };
9351   return DAG.getMergeValues(RVals, dl);
9352 }
9353 
9354 /// Lowering for QPX v4i1 stores
9355 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9356                                             SelectionDAG &DAG) const {
9357   SDLoc dl(Op);
9358   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9359   SDValue StoreChain = SN->getChain();
9360   SDValue BasePtr = SN->getBasePtr();
9361   SDValue Value = SN->getValue();
9362 
9363   if (Value.getValueType() == MVT::v4f64 ||
9364       Value.getValueType() == MVT::v4f32) {
9365     EVT MemVT = SN->getMemoryVT();
9366     unsigned Alignment = SN->getAlignment();
9367 
9368     // If this store is properly aligned, then it is legal.
9369     if (Alignment >= MemVT.getStoreSize())
9370       return Op;
9371 
9372     EVT ScalarVT = Value.getValueType().getScalarType(),
9373         ScalarMemVT = MemVT.getScalarType();
9374     unsigned Stride = ScalarMemVT.getStoreSize();
9375 
9376     SDValue Stores[4];
9377     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9378       SDValue Ex = DAG.getNode(
9379           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9380           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9381       SDValue Store;
9382       if (ScalarVT != ScalarMemVT)
9383         Store =
9384             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9385                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9386                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9387                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9388       else
9389         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9390                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9391                              MinAlign(Alignment, Idx * Stride),
9392                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9393 
9394       if (Idx == 0 && SN->isIndexed()) {
9395         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9396                "Unknown addressing mode on vector store");
9397         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9398                                     SN->getAddressingMode());
9399       }
9400 
9401       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9402                             DAG.getConstant(Stride, dl,
9403                                             BasePtr.getValueType()));
9404       Stores[Idx] = Store;
9405     }
9406 
9407     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9408 
9409     if (SN->isIndexed()) {
9410       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9411       return DAG.getMergeValues(RetOps, dl);
9412     }
9413 
9414     return TF;
9415   }
9416 
9417   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9418   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9419 
9420   // The values are now known to be -1 (false) or 1 (true). To convert this
9421   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9422   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9423   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9424 
9425   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9426   // understand how to form the extending load.
9427   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9428 
9429   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9430 
9431   // Now convert to an integer and store.
9432   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9433     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9434     Value);
9435 
9436   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9437   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9438   MachinePointerInfo PtrInfo =
9439       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9440   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9441   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9442 
9443   SDValue Ops[] = {StoreChain,
9444                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9445                    Value, FIdx};
9446   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9447 
9448   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9449     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9450 
9451   // Move data into the byte array.
9452   SDValue Loads[4], LoadChains[4];
9453   for (unsigned i = 0; i < 4; ++i) {
9454     unsigned Offset = 4*i;
9455     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9456     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9457 
9458     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9459                            PtrInfo.getWithOffset(Offset));
9460     LoadChains[i] = Loads[i].getValue(1);
9461   }
9462 
9463   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9464 
9465   SDValue Stores[4];
9466   for (unsigned i = 0; i < 4; ++i) {
9467     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9468     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9469 
9470     Stores[i] = DAG.getTruncStore(
9471         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9472         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9473         SN->getAAInfo());
9474   }
9475 
9476   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9477 
9478   return StoreChain;
9479 }
9480 
9481 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9482   SDLoc dl(Op);
9483   if (Op.getValueType() == MVT::v4i32) {
9484     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9485 
9486     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9487     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9488 
9489     SDValue RHSSwap =   // = vrlw RHS, 16
9490       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9491 
9492     // Shrinkify inputs to v8i16.
9493     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9494     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9495     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9496 
9497     // Low parts multiplied together, generating 32-bit results (we ignore the
9498     // top parts).
9499     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9500                                         LHS, RHS, DAG, dl, MVT::v4i32);
9501 
9502     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9503                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9504     // Shift the high parts up 16 bits.
9505     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9506                               Neg16, DAG, dl);
9507     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9508   } else if (Op.getValueType() == MVT::v8i16) {
9509     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9510 
9511     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9512 
9513     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9514                             LHS, RHS, Zero, DAG, dl);
9515   } else if (Op.getValueType() == MVT::v16i8) {
9516     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9517     bool isLittleEndian = Subtarget.isLittleEndian();
9518 
9519     // Multiply the even 8-bit parts, producing 16-bit sums.
9520     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9521                                            LHS, RHS, DAG, dl, MVT::v8i16);
9522     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9523 
9524     // Multiply the odd 8-bit parts, producing 16-bit sums.
9525     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9526                                           LHS, RHS, DAG, dl, MVT::v8i16);
9527     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9528 
9529     // Merge the results together.  Because vmuleub and vmuloub are
9530     // instructions with a big-endian bias, we must reverse the
9531     // element numbering and reverse the meaning of "odd" and "even"
9532     // when generating little endian code.
9533     int Ops[16];
9534     for (unsigned i = 0; i != 8; ++i) {
9535       if (isLittleEndian) {
9536         Ops[i*2  ] = 2*i;
9537         Ops[i*2+1] = 2*i+16;
9538       } else {
9539         Ops[i*2  ] = 2*i+1;
9540         Ops[i*2+1] = 2*i+1+16;
9541       }
9542     }
9543     if (isLittleEndian)
9544       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9545     else
9546       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9547   } else {
9548     llvm_unreachable("Unknown mul to lower!");
9549   }
9550 }
9551 
9552 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9553 
9554   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9555 
9556   EVT VT = Op.getValueType();
9557   assert(VT.isVector() &&
9558          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9559   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9560           VT == MVT::v16i8) &&
9561          "Unexpected vector element type!");
9562   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9563          "Current subtarget doesn't support smax v2i64!");
9564 
9565   // For vector abs, it can be lowered to:
9566   // abs x
9567   // ==>
9568   // y = -x
9569   // smax(x, y)
9570 
9571   SDLoc dl(Op);
9572   SDValue X = Op.getOperand(0);
9573   SDValue Zero = DAG.getConstant(0, dl, VT);
9574   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9575 
9576   // SMAX patch https://reviews.llvm.org/D47332
9577   // hasn't landed yet, so use intrinsic first here.
9578   // TODO: Should use SMAX directly once SMAX patch landed
9579   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9580   if (VT == MVT::v2i64)
9581     BifID = Intrinsic::ppc_altivec_vmaxsd;
9582   else if (VT == MVT::v8i16)
9583     BifID = Intrinsic::ppc_altivec_vmaxsh;
9584   else if (VT == MVT::v16i8)
9585     BifID = Intrinsic::ppc_altivec_vmaxsb;
9586 
9587   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9588 }
9589 
9590 /// LowerOperation - Provide custom lowering hooks for some operations.
9591 ///
9592 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9593   switch (Op.getOpcode()) {
9594   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9595   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9596   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9597   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9598   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9599   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9600   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9601   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9602   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9603 
9604   // Variable argument lowering.
9605   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9606   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9607   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9608 
9609   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9610   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9611   case ISD::GET_DYNAMIC_AREA_OFFSET:
9612     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9613 
9614   // Exception handling lowering.
9615   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9616   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9617   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9618 
9619   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9620   case ISD::STORE:              return LowerSTORE(Op, DAG);
9621   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9622   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9623   case ISD::FP_TO_UINT:
9624   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9625   case ISD::UINT_TO_FP:
9626   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9627   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9628 
9629   // Lower 64-bit shifts.
9630   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9631   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9632   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9633 
9634   // Vector-related lowering.
9635   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9636   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9637   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9638   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9639   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9640   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9641   case ISD::MUL:                return LowerMUL(Op, DAG);
9642   case ISD::ABS:                return LowerABS(Op, DAG);
9643 
9644   // For counter-based loop handling.
9645   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9646 
9647   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9648 
9649   // Frame & Return address.
9650   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9651   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9652 
9653   case ISD::INTRINSIC_VOID:
9654     return LowerINTRINSIC_VOID(Op, DAG);
9655   case ISD::SREM:
9656   case ISD::UREM:
9657     return LowerREM(Op, DAG);
9658   case ISD::BSWAP:
9659     return LowerBSWAP(Op, DAG);
9660   case ISD::ATOMIC_CMP_SWAP:
9661     return LowerATOMIC_CMP_SWAP(Op, DAG);
9662   }
9663 }
9664 
9665 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9666                                            SmallVectorImpl<SDValue>&Results,
9667                                            SelectionDAG &DAG) const {
9668   SDLoc dl(N);
9669   switch (N->getOpcode()) {
9670   default:
9671     llvm_unreachable("Do not know how to custom type legalize this operation!");
9672   case ISD::READCYCLECOUNTER: {
9673     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9674     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9675 
9676     Results.push_back(RTB);
9677     Results.push_back(RTB.getValue(1));
9678     Results.push_back(RTB.getValue(2));
9679     break;
9680   }
9681   case ISD::INTRINSIC_W_CHAIN: {
9682     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9683         Intrinsic::ppc_is_decremented_ctr_nonzero)
9684       break;
9685 
9686     assert(N->getValueType(0) == MVT::i1 &&
9687            "Unexpected result type for CTR decrement intrinsic");
9688     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9689                                  N->getValueType(0));
9690     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9691     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9692                                  N->getOperand(1));
9693 
9694     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9695     Results.push_back(NewInt.getValue(1));
9696     break;
9697   }
9698   case ISD::VAARG: {
9699     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9700       return;
9701 
9702     EVT VT = N->getValueType(0);
9703 
9704     if (VT == MVT::i64) {
9705       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9706 
9707       Results.push_back(NewNode);
9708       Results.push_back(NewNode.getValue(1));
9709     }
9710     return;
9711   }
9712   case ISD::FP_TO_SINT:
9713   case ISD::FP_TO_UINT:
9714     // LowerFP_TO_INT() can only handle f32 and f64.
9715     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9716       return;
9717     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9718     return;
9719   case ISD::TRUNCATE: {
9720     EVT TrgVT = N->getValueType(0);
9721     if (TrgVT.isVector() &&
9722         isOperationCustom(N->getOpcode(), TrgVT) &&
9723         N->getOperand(0).getValueType().getSizeInBits() <= 128)
9724       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
9725     return;
9726   }
9727   case ISD::BITCAST:
9728     // Don't handle bitcast here.
9729     return;
9730   }
9731 }
9732 
9733 //===----------------------------------------------------------------------===//
9734 //  Other Lowering Code
9735 //===----------------------------------------------------------------------===//
9736 
9737 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9738   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9739   Function *Func = Intrinsic::getDeclaration(M, Id);
9740   return Builder.CreateCall(Func, {});
9741 }
9742 
9743 // The mappings for emitLeading/TrailingFence is taken from
9744 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9745 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9746                                                  Instruction *Inst,
9747                                                  AtomicOrdering Ord) const {
9748   if (Ord == AtomicOrdering::SequentiallyConsistent)
9749     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9750   if (isReleaseOrStronger(Ord))
9751     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9752   return nullptr;
9753 }
9754 
9755 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9756                                                   Instruction *Inst,
9757                                                   AtomicOrdering Ord) const {
9758   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9759     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9760     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9761     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9762     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9763       return Builder.CreateCall(
9764           Intrinsic::getDeclaration(
9765               Builder.GetInsertBlock()->getParent()->getParent(),
9766               Intrinsic::ppc_cfence, {Inst->getType()}),
9767           {Inst});
9768     // FIXME: Can use isync for rmw operation.
9769     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9770   }
9771   return nullptr;
9772 }
9773 
9774 MachineBasicBlock *
9775 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9776                                     unsigned AtomicSize,
9777                                     unsigned BinOpcode,
9778                                     unsigned CmpOpcode,
9779                                     unsigned CmpPred) const {
9780   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9781   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9782 
9783   auto LoadMnemonic = PPC::LDARX;
9784   auto StoreMnemonic = PPC::STDCX;
9785   switch (AtomicSize) {
9786   default:
9787     llvm_unreachable("Unexpected size of atomic entity");
9788   case 1:
9789     LoadMnemonic = PPC::LBARX;
9790     StoreMnemonic = PPC::STBCX;
9791     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9792     break;
9793   case 2:
9794     LoadMnemonic = PPC::LHARX;
9795     StoreMnemonic = PPC::STHCX;
9796     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9797     break;
9798   case 4:
9799     LoadMnemonic = PPC::LWARX;
9800     StoreMnemonic = PPC::STWCX;
9801     break;
9802   case 8:
9803     LoadMnemonic = PPC::LDARX;
9804     StoreMnemonic = PPC::STDCX;
9805     break;
9806   }
9807 
9808   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9809   MachineFunction *F = BB->getParent();
9810   MachineFunction::iterator It = ++BB->getIterator();
9811 
9812   unsigned dest = MI.getOperand(0).getReg();
9813   unsigned ptrA = MI.getOperand(1).getReg();
9814   unsigned ptrB = MI.getOperand(2).getReg();
9815   unsigned incr = MI.getOperand(3).getReg();
9816   DebugLoc dl = MI.getDebugLoc();
9817 
9818   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9819   MachineBasicBlock *loop2MBB =
9820     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9821   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9822   F->insert(It, loopMBB);
9823   if (CmpOpcode)
9824     F->insert(It, loop2MBB);
9825   F->insert(It, exitMBB);
9826   exitMBB->splice(exitMBB->begin(), BB,
9827                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9828   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9829 
9830   MachineRegisterInfo &RegInfo = F->getRegInfo();
9831   unsigned TmpReg = (!BinOpcode) ? incr :
9832     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9833                                            : &PPC::GPRCRegClass);
9834 
9835   //  thisMBB:
9836   //   ...
9837   //   fallthrough --> loopMBB
9838   BB->addSuccessor(loopMBB);
9839 
9840   //  loopMBB:
9841   //   l[wd]arx dest, ptr
9842   //   add r0, dest, incr
9843   //   st[wd]cx. r0, ptr
9844   //   bne- loopMBB
9845   //   fallthrough --> exitMBB
9846 
9847   // For max/min...
9848   //  loopMBB:
9849   //   l[wd]arx dest, ptr
9850   //   cmpl?[wd] incr, dest
9851   //   bgt exitMBB
9852   //  loop2MBB:
9853   //   st[wd]cx. dest, ptr
9854   //   bne- loopMBB
9855   //   fallthrough --> exitMBB
9856 
9857   BB = loopMBB;
9858   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9859     .addReg(ptrA).addReg(ptrB);
9860   if (BinOpcode)
9861     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9862   if (CmpOpcode) {
9863     // Signed comparisons of byte or halfword values must be sign-extended.
9864     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9865       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9866       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9867               ExtReg).addReg(dest);
9868       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9869         .addReg(incr).addReg(ExtReg);
9870     } else
9871       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9872         .addReg(incr).addReg(dest);
9873 
9874     BuildMI(BB, dl, TII->get(PPC::BCC))
9875       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9876     BB->addSuccessor(loop2MBB);
9877     BB->addSuccessor(exitMBB);
9878     BB = loop2MBB;
9879   }
9880   BuildMI(BB, dl, TII->get(StoreMnemonic))
9881     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9882   BuildMI(BB, dl, TII->get(PPC::BCC))
9883     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9884   BB->addSuccessor(loopMBB);
9885   BB->addSuccessor(exitMBB);
9886 
9887   //  exitMBB:
9888   //   ...
9889   BB = exitMBB;
9890   return BB;
9891 }
9892 
9893 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9894     MachineInstr &MI, MachineBasicBlock *BB,
9895     bool is8bit, // operation
9896     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9897   // If we support part-word atomic mnemonics, just use them
9898   if (Subtarget.hasPartwordAtomics())
9899     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9900                             CmpPred);
9901 
9902   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9903   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9904   // In 64 bit mode we have to use 64 bits for addresses, even though the
9905   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9906   // registers without caring whether they're 32 or 64, but here we're
9907   // doing actual arithmetic on the addresses.
9908   bool is64bit = Subtarget.isPPC64();
9909   bool isLittleEndian = Subtarget.isLittleEndian();
9910   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9911 
9912   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9913   MachineFunction *F = BB->getParent();
9914   MachineFunction::iterator It = ++BB->getIterator();
9915 
9916   unsigned dest = MI.getOperand(0).getReg();
9917   unsigned ptrA = MI.getOperand(1).getReg();
9918   unsigned ptrB = MI.getOperand(2).getReg();
9919   unsigned incr = MI.getOperand(3).getReg();
9920   DebugLoc dl = MI.getDebugLoc();
9921 
9922   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9923   MachineBasicBlock *loop2MBB =
9924       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9925   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9926   F->insert(It, loopMBB);
9927   if (CmpOpcode)
9928     F->insert(It, loop2MBB);
9929   F->insert(It, exitMBB);
9930   exitMBB->splice(exitMBB->begin(), BB,
9931                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9932   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9933 
9934   MachineRegisterInfo &RegInfo = F->getRegInfo();
9935   const TargetRegisterClass *RC =
9936       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9937   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9938 
9939   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9940   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9941   unsigned ShiftReg =
9942       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9943   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9944   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9945   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9946   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9947   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9948   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9949   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9950   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9951   unsigned Ptr1Reg;
9952   unsigned TmpReg =
9953       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9954 
9955   //  thisMBB:
9956   //   ...
9957   //   fallthrough --> loopMBB
9958   BB->addSuccessor(loopMBB);
9959 
9960   // The 4-byte load must be aligned, while a char or short may be
9961   // anywhere in the word.  Hence all this nasty bookkeeping code.
9962   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9963   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9964   //   xori shift, shift1, 24 [16]
9965   //   rlwinm ptr, ptr1, 0, 0, 29
9966   //   slw incr2, incr, shift
9967   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9968   //   slw mask, mask2, shift
9969   //  loopMBB:
9970   //   lwarx tmpDest, ptr
9971   //   add tmp, tmpDest, incr2
9972   //   andc tmp2, tmpDest, mask
9973   //   and tmp3, tmp, mask
9974   //   or tmp4, tmp3, tmp2
9975   //   stwcx. tmp4, ptr
9976   //   bne- loopMBB
9977   //   fallthrough --> exitMBB
9978   //   srw dest, tmpDest, shift
9979   if (ptrA != ZeroReg) {
9980     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9981     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9982         .addReg(ptrA)
9983         .addReg(ptrB);
9984   } else {
9985     Ptr1Reg = ptrB;
9986   }
9987   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
9988   // mode.
9989   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
9990       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
9991       .addImm(3)
9992       .addImm(27)
9993       .addImm(is8bit ? 28 : 27);
9994   if (!isLittleEndian)
9995     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
9996         .addReg(Shift1Reg)
9997         .addImm(is8bit ? 24 : 16);
9998   if (is64bit)
9999     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10000         .addReg(Ptr1Reg)
10001         .addImm(0)
10002         .addImm(61);
10003   else
10004     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10005         .addReg(Ptr1Reg)
10006         .addImm(0)
10007         .addImm(0)
10008         .addImm(29);
10009   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10010   if (is8bit)
10011     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10012   else {
10013     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10014     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10015         .addReg(Mask3Reg)
10016         .addImm(65535);
10017   }
10018   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10019       .addReg(Mask2Reg)
10020       .addReg(ShiftReg);
10021 
10022   BB = loopMBB;
10023   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10024       .addReg(ZeroReg)
10025       .addReg(PtrReg);
10026   if (BinOpcode)
10027     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10028         .addReg(Incr2Reg)
10029         .addReg(TmpDestReg);
10030   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10031       .addReg(TmpDestReg)
10032       .addReg(MaskReg);
10033   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10034   if (CmpOpcode) {
10035     // For unsigned comparisons, we can directly compare the shifted values.
10036     // For signed comparisons we shift and sign extend.
10037     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10038     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10039         .addReg(TmpDestReg)
10040         .addReg(MaskReg);
10041     unsigned ValueReg = SReg;
10042     unsigned CmpReg = Incr2Reg;
10043     if (CmpOpcode == PPC::CMPW) {
10044       ValueReg = RegInfo.createVirtualRegister(GPRC);
10045       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10046           .addReg(SReg)
10047           .addReg(ShiftReg);
10048       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10049       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10050           .addReg(ValueReg);
10051       ValueReg = ValueSReg;
10052       CmpReg = incr;
10053     }
10054     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10055         .addReg(CmpReg)
10056         .addReg(ValueReg);
10057     BuildMI(BB, dl, TII->get(PPC::BCC))
10058         .addImm(CmpPred)
10059         .addReg(PPC::CR0)
10060         .addMBB(exitMBB);
10061     BB->addSuccessor(loop2MBB);
10062     BB->addSuccessor(exitMBB);
10063     BB = loop2MBB;
10064   }
10065   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10066   BuildMI(BB, dl, TII->get(PPC::STWCX))
10067       .addReg(Tmp4Reg)
10068       .addReg(ZeroReg)
10069       .addReg(PtrReg);
10070   BuildMI(BB, dl, TII->get(PPC::BCC))
10071       .addImm(PPC::PRED_NE)
10072       .addReg(PPC::CR0)
10073       .addMBB(loopMBB);
10074   BB->addSuccessor(loopMBB);
10075   BB->addSuccessor(exitMBB);
10076 
10077   //  exitMBB:
10078   //   ...
10079   BB = exitMBB;
10080   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10081       .addReg(TmpDestReg)
10082       .addReg(ShiftReg);
10083   return BB;
10084 }
10085 
10086 llvm::MachineBasicBlock *
10087 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10088                                     MachineBasicBlock *MBB) const {
10089   DebugLoc DL = MI.getDebugLoc();
10090   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10091   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10092 
10093   MachineFunction *MF = MBB->getParent();
10094   MachineRegisterInfo &MRI = MF->getRegInfo();
10095 
10096   const BasicBlock *BB = MBB->getBasicBlock();
10097   MachineFunction::iterator I = ++MBB->getIterator();
10098 
10099   unsigned DstReg = MI.getOperand(0).getReg();
10100   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10101   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10102   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10103   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10104 
10105   MVT PVT = getPointerTy(MF->getDataLayout());
10106   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10107          "Invalid Pointer Size!");
10108   // For v = setjmp(buf), we generate
10109   //
10110   // thisMBB:
10111   //  SjLjSetup mainMBB
10112   //  bl mainMBB
10113   //  v_restore = 1
10114   //  b sinkMBB
10115   //
10116   // mainMBB:
10117   //  buf[LabelOffset] = LR
10118   //  v_main = 0
10119   //
10120   // sinkMBB:
10121   //  v = phi(main, restore)
10122   //
10123 
10124   MachineBasicBlock *thisMBB = MBB;
10125   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10126   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10127   MF->insert(I, mainMBB);
10128   MF->insert(I, sinkMBB);
10129 
10130   MachineInstrBuilder MIB;
10131 
10132   // Transfer the remainder of BB and its successor edges to sinkMBB.
10133   sinkMBB->splice(sinkMBB->begin(), MBB,
10134                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10135   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10136 
10137   // Note that the structure of the jmp_buf used here is not compatible
10138   // with that used by libc, and is not designed to be. Specifically, it
10139   // stores only those 'reserved' registers that LLVM does not otherwise
10140   // understand how to spill. Also, by convention, by the time this
10141   // intrinsic is called, Clang has already stored the frame address in the
10142   // first slot of the buffer and stack address in the third. Following the
10143   // X86 target code, we'll store the jump address in the second slot. We also
10144   // need to save the TOC pointer (R2) to handle jumps between shared
10145   // libraries, and that will be stored in the fourth slot. The thread
10146   // identifier (R13) is not affected.
10147 
10148   // thisMBB:
10149   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10150   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10151   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10152 
10153   // Prepare IP either in reg.
10154   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10155   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10156   unsigned BufReg = MI.getOperand(1).getReg();
10157 
10158   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10159     setUsesTOCBasePtr(*MBB->getParent());
10160     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10161               .addReg(PPC::X2)
10162               .addImm(TOCOffset)
10163               .addReg(BufReg)
10164               .cloneMemRefs(MI);
10165   }
10166 
10167   // Naked functions never have a base pointer, and so we use r1. For all
10168   // other functions, this decision must be delayed until during PEI.
10169   unsigned BaseReg;
10170   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10171     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10172   else
10173     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10174 
10175   MIB = BuildMI(*thisMBB, MI, DL,
10176                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10177             .addReg(BaseReg)
10178             .addImm(BPOffset)
10179             .addReg(BufReg)
10180             .cloneMemRefs(MI);
10181 
10182   // Setup
10183   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10184   MIB.addRegMask(TRI->getNoPreservedMask());
10185 
10186   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10187 
10188   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10189           .addMBB(mainMBB);
10190   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10191 
10192   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10193   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10194 
10195   // mainMBB:
10196   //  mainDstReg = 0
10197   MIB =
10198       BuildMI(mainMBB, DL,
10199               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10200 
10201   // Store IP
10202   if (Subtarget.isPPC64()) {
10203     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10204             .addReg(LabelReg)
10205             .addImm(LabelOffset)
10206             .addReg(BufReg);
10207   } else {
10208     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10209             .addReg(LabelReg)
10210             .addImm(LabelOffset)
10211             .addReg(BufReg);
10212   }
10213   MIB.cloneMemRefs(MI);
10214 
10215   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10216   mainMBB->addSuccessor(sinkMBB);
10217 
10218   // sinkMBB:
10219   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10220           TII->get(PPC::PHI), DstReg)
10221     .addReg(mainDstReg).addMBB(mainMBB)
10222     .addReg(restoreDstReg).addMBB(thisMBB);
10223 
10224   MI.eraseFromParent();
10225   return sinkMBB;
10226 }
10227 
10228 MachineBasicBlock *
10229 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10230                                      MachineBasicBlock *MBB) const {
10231   DebugLoc DL = MI.getDebugLoc();
10232   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10233 
10234   MachineFunction *MF = MBB->getParent();
10235   MachineRegisterInfo &MRI = MF->getRegInfo();
10236 
10237   MVT PVT = getPointerTy(MF->getDataLayout());
10238   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10239          "Invalid Pointer Size!");
10240 
10241   const TargetRegisterClass *RC =
10242     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10243   unsigned Tmp = MRI.createVirtualRegister(RC);
10244   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10245   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10246   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10247   unsigned BP =
10248       (PVT == MVT::i64)
10249           ? PPC::X30
10250           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10251                                                               : PPC::R30);
10252 
10253   MachineInstrBuilder MIB;
10254 
10255   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10256   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10257   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10258   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10259 
10260   unsigned BufReg = MI.getOperand(0).getReg();
10261 
10262   // Reload FP (the jumped-to function may not have had a
10263   // frame pointer, and if so, then its r31 will be restored
10264   // as necessary).
10265   if (PVT == MVT::i64) {
10266     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10267             .addImm(0)
10268             .addReg(BufReg);
10269   } else {
10270     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10271             .addImm(0)
10272             .addReg(BufReg);
10273   }
10274   MIB.cloneMemRefs(MI);
10275 
10276   // Reload IP
10277   if (PVT == MVT::i64) {
10278     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10279             .addImm(LabelOffset)
10280             .addReg(BufReg);
10281   } else {
10282     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10283             .addImm(LabelOffset)
10284             .addReg(BufReg);
10285   }
10286   MIB.cloneMemRefs(MI);
10287 
10288   // Reload SP
10289   if (PVT == MVT::i64) {
10290     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10291             .addImm(SPOffset)
10292             .addReg(BufReg);
10293   } else {
10294     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10295             .addImm(SPOffset)
10296             .addReg(BufReg);
10297   }
10298   MIB.cloneMemRefs(MI);
10299 
10300   // Reload BP
10301   if (PVT == MVT::i64) {
10302     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10303             .addImm(BPOffset)
10304             .addReg(BufReg);
10305   } else {
10306     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10307             .addImm(BPOffset)
10308             .addReg(BufReg);
10309   }
10310   MIB.cloneMemRefs(MI);
10311 
10312   // Reload TOC
10313   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10314     setUsesTOCBasePtr(*MBB->getParent());
10315     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10316               .addImm(TOCOffset)
10317               .addReg(BufReg)
10318               .cloneMemRefs(MI);
10319   }
10320 
10321   // Jump
10322   BuildMI(*MBB, MI, DL,
10323           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10324   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10325 
10326   MI.eraseFromParent();
10327   return MBB;
10328 }
10329 
10330 MachineBasicBlock *
10331 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10332                                                MachineBasicBlock *BB) const {
10333   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10334       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10335     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10336         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10337       // Call lowering should have added an r2 operand to indicate a dependence
10338       // on the TOC base pointer value. It can't however, because there is no
10339       // way to mark the dependence as implicit there, and so the stackmap code
10340       // will confuse it with a regular operand. Instead, add the dependence
10341       // here.
10342       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10343     }
10344 
10345     return emitPatchPoint(MI, BB);
10346   }
10347 
10348   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10349       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10350     return emitEHSjLjSetJmp(MI, BB);
10351   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10352              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10353     return emitEHSjLjLongJmp(MI, BB);
10354   }
10355 
10356   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10357 
10358   // To "insert" these instructions we actually have to insert their
10359   // control-flow patterns.
10360   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10361   MachineFunction::iterator It = ++BB->getIterator();
10362 
10363   MachineFunction *F = BB->getParent();
10364 
10365   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10366       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10367       MI.getOpcode() == PPC::SELECT_I8) {
10368     SmallVector<MachineOperand, 2> Cond;
10369     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10370         MI.getOpcode() == PPC::SELECT_CC_I8)
10371       Cond.push_back(MI.getOperand(4));
10372     else
10373       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10374     Cond.push_back(MI.getOperand(1));
10375 
10376     DebugLoc dl = MI.getDebugLoc();
10377     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10378                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10379   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10380              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10381              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10382              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10383              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10384              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10385              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10386              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10387              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10388              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10389              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10390              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10391              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10392              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10393              MI.getOpcode() == PPC::SELECT_I4 ||
10394              MI.getOpcode() == PPC::SELECT_I8 ||
10395              MI.getOpcode() == PPC::SELECT_F4 ||
10396              MI.getOpcode() == PPC::SELECT_F8 ||
10397              MI.getOpcode() == PPC::SELECT_F16 ||
10398              MI.getOpcode() == PPC::SELECT_QFRC ||
10399              MI.getOpcode() == PPC::SELECT_QSRC ||
10400              MI.getOpcode() == PPC::SELECT_QBRC ||
10401              MI.getOpcode() == PPC::SELECT_SPE ||
10402              MI.getOpcode() == PPC::SELECT_SPE4 ||
10403              MI.getOpcode() == PPC::SELECT_VRRC ||
10404              MI.getOpcode() == PPC::SELECT_VSFRC ||
10405              MI.getOpcode() == PPC::SELECT_VSSRC ||
10406              MI.getOpcode() == PPC::SELECT_VSRC) {
10407     // The incoming instruction knows the destination vreg to set, the
10408     // condition code register to branch on, the true/false values to
10409     // select between, and a branch opcode to use.
10410 
10411     //  thisMBB:
10412     //  ...
10413     //   TrueVal = ...
10414     //   cmpTY ccX, r1, r2
10415     //   bCC copy1MBB
10416     //   fallthrough --> copy0MBB
10417     MachineBasicBlock *thisMBB = BB;
10418     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10419     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10420     DebugLoc dl = MI.getDebugLoc();
10421     F->insert(It, copy0MBB);
10422     F->insert(It, sinkMBB);
10423 
10424     // Transfer the remainder of BB and its successor edges to sinkMBB.
10425     sinkMBB->splice(sinkMBB->begin(), BB,
10426                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10427     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10428 
10429     // Next, add the true and fallthrough blocks as its successors.
10430     BB->addSuccessor(copy0MBB);
10431     BB->addSuccessor(sinkMBB);
10432 
10433     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10434         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10435         MI.getOpcode() == PPC::SELECT_F16 ||
10436         MI.getOpcode() == PPC::SELECT_SPE4 ||
10437         MI.getOpcode() == PPC::SELECT_SPE ||
10438         MI.getOpcode() == PPC::SELECT_QFRC ||
10439         MI.getOpcode() == PPC::SELECT_QSRC ||
10440         MI.getOpcode() == PPC::SELECT_QBRC ||
10441         MI.getOpcode() == PPC::SELECT_VRRC ||
10442         MI.getOpcode() == PPC::SELECT_VSFRC ||
10443         MI.getOpcode() == PPC::SELECT_VSSRC ||
10444         MI.getOpcode() == PPC::SELECT_VSRC) {
10445       BuildMI(BB, dl, TII->get(PPC::BC))
10446           .addReg(MI.getOperand(1).getReg())
10447           .addMBB(sinkMBB);
10448     } else {
10449       unsigned SelectPred = MI.getOperand(4).getImm();
10450       BuildMI(BB, dl, TII->get(PPC::BCC))
10451           .addImm(SelectPred)
10452           .addReg(MI.getOperand(1).getReg())
10453           .addMBB(sinkMBB);
10454     }
10455 
10456     //  copy0MBB:
10457     //   %FalseValue = ...
10458     //   # fallthrough to sinkMBB
10459     BB = copy0MBB;
10460 
10461     // Update machine-CFG edges
10462     BB->addSuccessor(sinkMBB);
10463 
10464     //  sinkMBB:
10465     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10466     //  ...
10467     BB = sinkMBB;
10468     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10469         .addReg(MI.getOperand(3).getReg())
10470         .addMBB(copy0MBB)
10471         .addReg(MI.getOperand(2).getReg())
10472         .addMBB(thisMBB);
10473   } else if (MI.getOpcode() == PPC::ReadTB) {
10474     // To read the 64-bit time-base register on a 32-bit target, we read the
10475     // two halves. Should the counter have wrapped while it was being read, we
10476     // need to try again.
10477     // ...
10478     // readLoop:
10479     // mfspr Rx,TBU # load from TBU
10480     // mfspr Ry,TB  # load from TB
10481     // mfspr Rz,TBU # load from TBU
10482     // cmpw crX,Rx,Rz # check if 'old'='new'
10483     // bne readLoop   # branch if they're not equal
10484     // ...
10485 
10486     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10487     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10488     DebugLoc dl = MI.getDebugLoc();
10489     F->insert(It, readMBB);
10490     F->insert(It, sinkMBB);
10491 
10492     // Transfer the remainder of BB and its successor edges to sinkMBB.
10493     sinkMBB->splice(sinkMBB->begin(), BB,
10494                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10495     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10496 
10497     BB->addSuccessor(readMBB);
10498     BB = readMBB;
10499 
10500     MachineRegisterInfo &RegInfo = F->getRegInfo();
10501     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10502     unsigned LoReg = MI.getOperand(0).getReg();
10503     unsigned HiReg = MI.getOperand(1).getReg();
10504 
10505     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10506     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10507     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10508 
10509     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10510 
10511     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10512         .addReg(HiReg)
10513         .addReg(ReadAgainReg);
10514     BuildMI(BB, dl, TII->get(PPC::BCC))
10515         .addImm(PPC::PRED_NE)
10516         .addReg(CmpReg)
10517         .addMBB(readMBB);
10518 
10519     BB->addSuccessor(readMBB);
10520     BB->addSuccessor(sinkMBB);
10521   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10522     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10523   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10524     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10525   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10526     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10527   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10528     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10529 
10530   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10531     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10532   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10533     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10534   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10535     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10536   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10537     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10538 
10539   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10540     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10541   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10542     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10544     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10546     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10547 
10548   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10549     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10550   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10551     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10553     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10555     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10556 
10557   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10558     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10559   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10560     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10562     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10564     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10565 
10566   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10567     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10568   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10569     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10571     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10573     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10574 
10575   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10576     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10577   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10578     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10580     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10582     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10583 
10584   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10585     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10586   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10587     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10589     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10591     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10592 
10593   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10594     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10595   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10596     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10598     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10600     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10601 
10602   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10603     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10604   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10605     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10606   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10607     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10608   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10609     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10610 
10611   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10612     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10613   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10614     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10615   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10616     BB = EmitAtomicBinary(MI, BB, 4, 0);
10617   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10618     BB = EmitAtomicBinary(MI, BB, 8, 0);
10619   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10620            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10621            (Subtarget.hasPartwordAtomics() &&
10622             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10623            (Subtarget.hasPartwordAtomics() &&
10624             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10625     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10626 
10627     auto LoadMnemonic = PPC::LDARX;
10628     auto StoreMnemonic = PPC::STDCX;
10629     switch (MI.getOpcode()) {
10630     default:
10631       llvm_unreachable("Compare and swap of unknown size");
10632     case PPC::ATOMIC_CMP_SWAP_I8:
10633       LoadMnemonic = PPC::LBARX;
10634       StoreMnemonic = PPC::STBCX;
10635       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10636       break;
10637     case PPC::ATOMIC_CMP_SWAP_I16:
10638       LoadMnemonic = PPC::LHARX;
10639       StoreMnemonic = PPC::STHCX;
10640       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10641       break;
10642     case PPC::ATOMIC_CMP_SWAP_I32:
10643       LoadMnemonic = PPC::LWARX;
10644       StoreMnemonic = PPC::STWCX;
10645       break;
10646     case PPC::ATOMIC_CMP_SWAP_I64:
10647       LoadMnemonic = PPC::LDARX;
10648       StoreMnemonic = PPC::STDCX;
10649       break;
10650     }
10651     unsigned dest = MI.getOperand(0).getReg();
10652     unsigned ptrA = MI.getOperand(1).getReg();
10653     unsigned ptrB = MI.getOperand(2).getReg();
10654     unsigned oldval = MI.getOperand(3).getReg();
10655     unsigned newval = MI.getOperand(4).getReg();
10656     DebugLoc dl = MI.getDebugLoc();
10657 
10658     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10659     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10660     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10661     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10662     F->insert(It, loop1MBB);
10663     F->insert(It, loop2MBB);
10664     F->insert(It, midMBB);
10665     F->insert(It, exitMBB);
10666     exitMBB->splice(exitMBB->begin(), BB,
10667                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10668     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10669 
10670     //  thisMBB:
10671     //   ...
10672     //   fallthrough --> loopMBB
10673     BB->addSuccessor(loop1MBB);
10674 
10675     // loop1MBB:
10676     //   l[bhwd]arx dest, ptr
10677     //   cmp[wd] dest, oldval
10678     //   bne- midMBB
10679     // loop2MBB:
10680     //   st[bhwd]cx. newval, ptr
10681     //   bne- loopMBB
10682     //   b exitBB
10683     // midMBB:
10684     //   st[bhwd]cx. dest, ptr
10685     // exitBB:
10686     BB = loop1MBB;
10687     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10688     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10689         .addReg(oldval)
10690         .addReg(dest);
10691     BuildMI(BB, dl, TII->get(PPC::BCC))
10692         .addImm(PPC::PRED_NE)
10693         .addReg(PPC::CR0)
10694         .addMBB(midMBB);
10695     BB->addSuccessor(loop2MBB);
10696     BB->addSuccessor(midMBB);
10697 
10698     BB = loop2MBB;
10699     BuildMI(BB, dl, TII->get(StoreMnemonic))
10700         .addReg(newval)
10701         .addReg(ptrA)
10702         .addReg(ptrB);
10703     BuildMI(BB, dl, TII->get(PPC::BCC))
10704         .addImm(PPC::PRED_NE)
10705         .addReg(PPC::CR0)
10706         .addMBB(loop1MBB);
10707     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10708     BB->addSuccessor(loop1MBB);
10709     BB->addSuccessor(exitMBB);
10710 
10711     BB = midMBB;
10712     BuildMI(BB, dl, TII->get(StoreMnemonic))
10713         .addReg(dest)
10714         .addReg(ptrA)
10715         .addReg(ptrB);
10716     BB->addSuccessor(exitMBB);
10717 
10718     //  exitMBB:
10719     //   ...
10720     BB = exitMBB;
10721   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10722              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10723     // We must use 64-bit registers for addresses when targeting 64-bit,
10724     // since we're actually doing arithmetic on them.  Other registers
10725     // can be 32-bit.
10726     bool is64bit = Subtarget.isPPC64();
10727     bool isLittleEndian = Subtarget.isLittleEndian();
10728     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10729 
10730     unsigned dest = MI.getOperand(0).getReg();
10731     unsigned ptrA = MI.getOperand(1).getReg();
10732     unsigned ptrB = MI.getOperand(2).getReg();
10733     unsigned oldval = MI.getOperand(3).getReg();
10734     unsigned newval = MI.getOperand(4).getReg();
10735     DebugLoc dl = MI.getDebugLoc();
10736 
10737     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10738     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10739     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10740     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10741     F->insert(It, loop1MBB);
10742     F->insert(It, loop2MBB);
10743     F->insert(It, midMBB);
10744     F->insert(It, exitMBB);
10745     exitMBB->splice(exitMBB->begin(), BB,
10746                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10747     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10748 
10749     MachineRegisterInfo &RegInfo = F->getRegInfo();
10750     const TargetRegisterClass *RC =
10751         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10752     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10753 
10754     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10755     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10756     unsigned ShiftReg =
10757         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10758     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10759     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10760     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10761     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10762     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10763     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10764     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10765     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10766     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10767     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10768     unsigned Ptr1Reg;
10769     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10770     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10771     //  thisMBB:
10772     //   ...
10773     //   fallthrough --> loopMBB
10774     BB->addSuccessor(loop1MBB);
10775 
10776     // The 4-byte load must be aligned, while a char or short may be
10777     // anywhere in the word.  Hence all this nasty bookkeeping code.
10778     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10779     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10780     //   xori shift, shift1, 24 [16]
10781     //   rlwinm ptr, ptr1, 0, 0, 29
10782     //   slw newval2, newval, shift
10783     //   slw oldval2, oldval,shift
10784     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10785     //   slw mask, mask2, shift
10786     //   and newval3, newval2, mask
10787     //   and oldval3, oldval2, mask
10788     // loop1MBB:
10789     //   lwarx tmpDest, ptr
10790     //   and tmp, tmpDest, mask
10791     //   cmpw tmp, oldval3
10792     //   bne- midMBB
10793     // loop2MBB:
10794     //   andc tmp2, tmpDest, mask
10795     //   or tmp4, tmp2, newval3
10796     //   stwcx. tmp4, ptr
10797     //   bne- loop1MBB
10798     //   b exitBB
10799     // midMBB:
10800     //   stwcx. tmpDest, ptr
10801     // exitBB:
10802     //   srw dest, tmpDest, shift
10803     if (ptrA != ZeroReg) {
10804       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10805       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10806           .addReg(ptrA)
10807           .addReg(ptrB);
10808     } else {
10809       Ptr1Reg = ptrB;
10810     }
10811 
10812     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10813     // mode.
10814     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10815         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10816         .addImm(3)
10817         .addImm(27)
10818         .addImm(is8bit ? 28 : 27);
10819     if (!isLittleEndian)
10820       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10821           .addReg(Shift1Reg)
10822           .addImm(is8bit ? 24 : 16);
10823     if (is64bit)
10824       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10825           .addReg(Ptr1Reg)
10826           .addImm(0)
10827           .addImm(61);
10828     else
10829       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10830           .addReg(Ptr1Reg)
10831           .addImm(0)
10832           .addImm(0)
10833           .addImm(29);
10834     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10835         .addReg(newval)
10836         .addReg(ShiftReg);
10837     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10838         .addReg(oldval)
10839         .addReg(ShiftReg);
10840     if (is8bit)
10841       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10842     else {
10843       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10844       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10845           .addReg(Mask3Reg)
10846           .addImm(65535);
10847     }
10848     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10849         .addReg(Mask2Reg)
10850         .addReg(ShiftReg);
10851     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10852         .addReg(NewVal2Reg)
10853         .addReg(MaskReg);
10854     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10855         .addReg(OldVal2Reg)
10856         .addReg(MaskReg);
10857 
10858     BB = loop1MBB;
10859     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10860         .addReg(ZeroReg)
10861         .addReg(PtrReg);
10862     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10863         .addReg(TmpDestReg)
10864         .addReg(MaskReg);
10865     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10866         .addReg(TmpReg)
10867         .addReg(OldVal3Reg);
10868     BuildMI(BB, dl, TII->get(PPC::BCC))
10869         .addImm(PPC::PRED_NE)
10870         .addReg(PPC::CR0)
10871         .addMBB(midMBB);
10872     BB->addSuccessor(loop2MBB);
10873     BB->addSuccessor(midMBB);
10874 
10875     BB = loop2MBB;
10876     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10877         .addReg(TmpDestReg)
10878         .addReg(MaskReg);
10879     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10880         .addReg(Tmp2Reg)
10881         .addReg(NewVal3Reg);
10882     BuildMI(BB, dl, TII->get(PPC::STWCX))
10883         .addReg(Tmp4Reg)
10884         .addReg(ZeroReg)
10885         .addReg(PtrReg);
10886     BuildMI(BB, dl, TII->get(PPC::BCC))
10887         .addImm(PPC::PRED_NE)
10888         .addReg(PPC::CR0)
10889         .addMBB(loop1MBB);
10890     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10891     BB->addSuccessor(loop1MBB);
10892     BB->addSuccessor(exitMBB);
10893 
10894     BB = midMBB;
10895     BuildMI(BB, dl, TII->get(PPC::STWCX))
10896         .addReg(TmpDestReg)
10897         .addReg(ZeroReg)
10898         .addReg(PtrReg);
10899     BB->addSuccessor(exitMBB);
10900 
10901     //  exitMBB:
10902     //   ...
10903     BB = exitMBB;
10904     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10905         .addReg(TmpReg)
10906         .addReg(ShiftReg);
10907   } else if (MI.getOpcode() == PPC::FADDrtz) {
10908     // This pseudo performs an FADD with rounding mode temporarily forced
10909     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10910     // is not modeled at the SelectionDAG level.
10911     unsigned Dest = MI.getOperand(0).getReg();
10912     unsigned Src1 = MI.getOperand(1).getReg();
10913     unsigned Src2 = MI.getOperand(2).getReg();
10914     DebugLoc dl = MI.getDebugLoc();
10915 
10916     MachineRegisterInfo &RegInfo = F->getRegInfo();
10917     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10918 
10919     // Save FPSCR value.
10920     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10921 
10922     // Set rounding mode to round-to-zero.
10923     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10924     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10925 
10926     // Perform addition.
10927     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10928 
10929     // Restore FPSCR value.
10930     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10931   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10932              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10933              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10934              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10935     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10936                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10937                           ? PPC::ANDIo8
10938                           : PPC::ANDIo;
10939     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10940                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10941 
10942     MachineRegisterInfo &RegInfo = F->getRegInfo();
10943     unsigned Dest = RegInfo.createVirtualRegister(
10944         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10945 
10946     DebugLoc dl = MI.getDebugLoc();
10947     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10948         .addReg(MI.getOperand(1).getReg())
10949         .addImm(1);
10950     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10951             MI.getOperand(0).getReg())
10952         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10953   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10954     DebugLoc Dl = MI.getDebugLoc();
10955     MachineRegisterInfo &RegInfo = F->getRegInfo();
10956     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10957     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10958     return BB;
10959   } else if (MI.getOpcode() == PPC::SETRNDi) {
10960     DebugLoc dl = MI.getDebugLoc();
10961     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
10962 
10963     // Save FPSCR value.
10964     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
10965 
10966     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
10967     // the following settings:
10968     //   00 Round to nearest
10969     //   01 Round to 0
10970     //   10 Round to +inf
10971     //   11 Round to -inf
10972 
10973     // When the operand is immediate, using the two least significant bits of
10974     // the immediate to set the bits 62:63 of FPSCR.
10975     unsigned Mode = MI.getOperand(1).getImm();
10976     BuildMI(*BB, MI, dl, TII->get(Mode & 1 ? PPC::MTFSB1 : PPC::MTFSB0))
10977       .addImm(31);
10978 
10979     BuildMI(*BB, MI, dl, TII->get(Mode & 2 ? PPC::MTFSB1 : PPC::MTFSB0))
10980       .addImm(30);
10981   } else if (MI.getOpcode() == PPC::SETRND) {
10982     DebugLoc dl = MI.getDebugLoc();
10983 
10984     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
10985     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
10986     // If the target doesn't have DirectMove, we should use stack to do the
10987     // conversion, because the target doesn't have the instructions like mtvsrd
10988     // or mfvsrd to do this conversion directly.
10989     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
10990       if (Subtarget.hasDirectMove()) {
10991         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
10992           .addReg(SrcReg);
10993       } else {
10994         // Use stack to do the register copy.
10995         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
10996         MachineRegisterInfo &RegInfo = F->getRegInfo();
10997         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
10998         if (RC == &PPC::F8RCRegClass) {
10999           // Copy register from F8RCRegClass to G8RCRegclass.
11000           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11001                  "Unsupported RegClass.");
11002 
11003           StoreOp = PPC::STFD;
11004           LoadOp = PPC::LD;
11005         } else {
11006           // Copy register from G8RCRegClass to F8RCRegclass.
11007           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11008                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11009                  "Unsupported RegClass.");
11010         }
11011 
11012         MachineFrameInfo &MFI = F->getFrameInfo();
11013         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11014 
11015         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11016           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11017           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11018           MFI.getObjectAlignment(FrameIdx));
11019 
11020         // Store the SrcReg into the stack.
11021         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11022           .addReg(SrcReg)
11023           .addImm(0)
11024           .addFrameIndex(FrameIdx)
11025           .addMemOperand(MMOStore);
11026 
11027         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11028           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11029           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11030           MFI.getObjectAlignment(FrameIdx));
11031 
11032         // Load from the stack where SrcReg is stored, and save to DestReg,
11033         // so we have done the RegClass conversion from RegClass::SrcReg to
11034         // RegClass::DestReg.
11035         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11036           .addImm(0)
11037           .addFrameIndex(FrameIdx)
11038           .addMemOperand(MMOLoad);
11039       }
11040     };
11041 
11042     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11043 
11044     // Save FPSCR value.
11045     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11046 
11047     // When the operand is gprc register, use two least significant bits of the
11048     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11049     //
11050     // copy OldFPSCRTmpReg, OldFPSCRReg
11051     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11052     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11053     // copy NewFPSCRReg, NewFPSCRTmpReg
11054     // mtfsf 255, NewFPSCRReg
11055     MachineOperand SrcOp = MI.getOperand(1);
11056     MachineRegisterInfo &RegInfo = F->getRegInfo();
11057     unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11058 
11059     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11060 
11061     unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11062     unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11063 
11064     // The first operand of INSERT_SUBREG should be a register which has
11065     // subregisters, we only care about its RegClass, so we should use an
11066     // IMPLICIT_DEF register.
11067     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11068     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11069       .addReg(ImDefReg)
11070       .add(SrcOp)
11071       .addImm(1);
11072 
11073     unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11074     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11075       .addReg(OldFPSCRTmpReg)
11076       .addReg(ExtSrcReg)
11077       .addImm(0)
11078       .addImm(62);
11079 
11080     unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11081     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11082 
11083     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11084     // bits of FPSCR.
11085     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11086       .addImm(255)
11087       .addReg(NewFPSCRReg)
11088       .addImm(0)
11089       .addImm(0);
11090   } else {
11091     llvm_unreachable("Unexpected instr type to insert");
11092   }
11093 
11094   MI.eraseFromParent(); // The pseudo instruction is gone now.
11095   return BB;
11096 }
11097 
11098 //===----------------------------------------------------------------------===//
11099 // Target Optimization Hooks
11100 //===----------------------------------------------------------------------===//
11101 
11102 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11103   // For the estimates, convergence is quadratic, so we essentially double the
11104   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11105   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11106   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11107   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11108   if (VT.getScalarType() == MVT::f64)
11109     RefinementSteps++;
11110   return RefinementSteps;
11111 }
11112 
11113 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11114                                            int Enabled, int &RefinementSteps,
11115                                            bool &UseOneConstNR,
11116                                            bool Reciprocal) const {
11117   EVT VT = Operand.getValueType();
11118   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11119       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11120       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11121       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11122       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11123       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11124     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11125       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11126 
11127     UseOneConstNR = true;
11128     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11129   }
11130   return SDValue();
11131 }
11132 
11133 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11134                                             int Enabled,
11135                                             int &RefinementSteps) const {
11136   EVT VT = Operand.getValueType();
11137   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11138       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11139       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11140       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11141       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11142       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11143     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11144       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11145     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11146   }
11147   return SDValue();
11148 }
11149 
11150 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11151   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11152   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11153   // enabled for division), this functionality is redundant with the default
11154   // combiner logic (once the division -> reciprocal/multiply transformation
11155   // has taken place). As a result, this matters more for older cores than for
11156   // newer ones.
11157 
11158   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11159   // reciprocal if there are two or more FDIVs (for embedded cores with only
11160   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11161   switch (Subtarget.getDarwinDirective()) {
11162   default:
11163     return 3;
11164   case PPC::DIR_440:
11165   case PPC::DIR_A2:
11166   case PPC::DIR_E500:
11167   case PPC::DIR_E500mc:
11168   case PPC::DIR_E5500:
11169     return 2;
11170   }
11171 }
11172 
11173 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11174 // collapsed, and so we need to look through chains of them.
11175 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11176                                      int64_t& Offset, SelectionDAG &DAG) {
11177   if (DAG.isBaseWithConstantOffset(Loc)) {
11178     Base = Loc.getOperand(0);
11179     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11180 
11181     // The base might itself be a base plus an offset, and if so, accumulate
11182     // that as well.
11183     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11184   }
11185 }
11186 
11187 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11188                             unsigned Bytes, int Dist,
11189                             SelectionDAG &DAG) {
11190   if (VT.getSizeInBits() / 8 != Bytes)
11191     return false;
11192 
11193   SDValue BaseLoc = Base->getBasePtr();
11194   if (Loc.getOpcode() == ISD::FrameIndex) {
11195     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11196       return false;
11197     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11198     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11199     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11200     int FS  = MFI.getObjectSize(FI);
11201     int BFS = MFI.getObjectSize(BFI);
11202     if (FS != BFS || FS != (int)Bytes) return false;
11203     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11204   }
11205 
11206   SDValue Base1 = Loc, Base2 = BaseLoc;
11207   int64_t Offset1 = 0, Offset2 = 0;
11208   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11209   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11210   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11211     return true;
11212 
11213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11214   const GlobalValue *GV1 = nullptr;
11215   const GlobalValue *GV2 = nullptr;
11216   Offset1 = 0;
11217   Offset2 = 0;
11218   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11219   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11220   if (isGA1 && isGA2 && GV1 == GV2)
11221     return Offset1 == (Offset2 + Dist*Bytes);
11222   return false;
11223 }
11224 
11225 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11226 // not enforce equality of the chain operands.
11227 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11228                             unsigned Bytes, int Dist,
11229                             SelectionDAG &DAG) {
11230   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11231     EVT VT = LS->getMemoryVT();
11232     SDValue Loc = LS->getBasePtr();
11233     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11234   }
11235 
11236   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11237     EVT VT;
11238     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11239     default: return false;
11240     case Intrinsic::ppc_qpx_qvlfd:
11241     case Intrinsic::ppc_qpx_qvlfda:
11242       VT = MVT::v4f64;
11243       break;
11244     case Intrinsic::ppc_qpx_qvlfs:
11245     case Intrinsic::ppc_qpx_qvlfsa:
11246       VT = MVT::v4f32;
11247       break;
11248     case Intrinsic::ppc_qpx_qvlfcd:
11249     case Intrinsic::ppc_qpx_qvlfcda:
11250       VT = MVT::v2f64;
11251       break;
11252     case Intrinsic::ppc_qpx_qvlfcs:
11253     case Intrinsic::ppc_qpx_qvlfcsa:
11254       VT = MVT::v2f32;
11255       break;
11256     case Intrinsic::ppc_qpx_qvlfiwa:
11257     case Intrinsic::ppc_qpx_qvlfiwz:
11258     case Intrinsic::ppc_altivec_lvx:
11259     case Intrinsic::ppc_altivec_lvxl:
11260     case Intrinsic::ppc_vsx_lxvw4x:
11261     case Intrinsic::ppc_vsx_lxvw4x_be:
11262       VT = MVT::v4i32;
11263       break;
11264     case Intrinsic::ppc_vsx_lxvd2x:
11265     case Intrinsic::ppc_vsx_lxvd2x_be:
11266       VT = MVT::v2f64;
11267       break;
11268     case Intrinsic::ppc_altivec_lvebx:
11269       VT = MVT::i8;
11270       break;
11271     case Intrinsic::ppc_altivec_lvehx:
11272       VT = MVT::i16;
11273       break;
11274     case Intrinsic::ppc_altivec_lvewx:
11275       VT = MVT::i32;
11276       break;
11277     }
11278 
11279     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11280   }
11281 
11282   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11283     EVT VT;
11284     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11285     default: return false;
11286     case Intrinsic::ppc_qpx_qvstfd:
11287     case Intrinsic::ppc_qpx_qvstfda:
11288       VT = MVT::v4f64;
11289       break;
11290     case Intrinsic::ppc_qpx_qvstfs:
11291     case Intrinsic::ppc_qpx_qvstfsa:
11292       VT = MVT::v4f32;
11293       break;
11294     case Intrinsic::ppc_qpx_qvstfcd:
11295     case Intrinsic::ppc_qpx_qvstfcda:
11296       VT = MVT::v2f64;
11297       break;
11298     case Intrinsic::ppc_qpx_qvstfcs:
11299     case Intrinsic::ppc_qpx_qvstfcsa:
11300       VT = MVT::v2f32;
11301       break;
11302     case Intrinsic::ppc_qpx_qvstfiw:
11303     case Intrinsic::ppc_qpx_qvstfiwa:
11304     case Intrinsic::ppc_altivec_stvx:
11305     case Intrinsic::ppc_altivec_stvxl:
11306     case Intrinsic::ppc_vsx_stxvw4x:
11307       VT = MVT::v4i32;
11308       break;
11309     case Intrinsic::ppc_vsx_stxvd2x:
11310       VT = MVT::v2f64;
11311       break;
11312     case Intrinsic::ppc_vsx_stxvw4x_be:
11313       VT = MVT::v4i32;
11314       break;
11315     case Intrinsic::ppc_vsx_stxvd2x_be:
11316       VT = MVT::v2f64;
11317       break;
11318     case Intrinsic::ppc_altivec_stvebx:
11319       VT = MVT::i8;
11320       break;
11321     case Intrinsic::ppc_altivec_stvehx:
11322       VT = MVT::i16;
11323       break;
11324     case Intrinsic::ppc_altivec_stvewx:
11325       VT = MVT::i32;
11326       break;
11327     }
11328 
11329     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11330   }
11331 
11332   return false;
11333 }
11334 
11335 // Return true is there is a nearyby consecutive load to the one provided
11336 // (regardless of alignment). We search up and down the chain, looking though
11337 // token factors and other loads (but nothing else). As a result, a true result
11338 // indicates that it is safe to create a new consecutive load adjacent to the
11339 // load provided.
11340 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11341   SDValue Chain = LD->getChain();
11342   EVT VT = LD->getMemoryVT();
11343 
11344   SmallSet<SDNode *, 16> LoadRoots;
11345   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11346   SmallSet<SDNode *, 16> Visited;
11347 
11348   // First, search up the chain, branching to follow all token-factor operands.
11349   // If we find a consecutive load, then we're done, otherwise, record all
11350   // nodes just above the top-level loads and token factors.
11351   while (!Queue.empty()) {
11352     SDNode *ChainNext = Queue.pop_back_val();
11353     if (!Visited.insert(ChainNext).second)
11354       continue;
11355 
11356     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11357       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11358         return true;
11359 
11360       if (!Visited.count(ChainLD->getChain().getNode()))
11361         Queue.push_back(ChainLD->getChain().getNode());
11362     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11363       for (const SDUse &O : ChainNext->ops())
11364         if (!Visited.count(O.getNode()))
11365           Queue.push_back(O.getNode());
11366     } else
11367       LoadRoots.insert(ChainNext);
11368   }
11369 
11370   // Second, search down the chain, starting from the top-level nodes recorded
11371   // in the first phase. These top-level nodes are the nodes just above all
11372   // loads and token factors. Starting with their uses, recursively look though
11373   // all loads (just the chain uses) and token factors to find a consecutive
11374   // load.
11375   Visited.clear();
11376   Queue.clear();
11377 
11378   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11379        IE = LoadRoots.end(); I != IE; ++I) {
11380     Queue.push_back(*I);
11381 
11382     while (!Queue.empty()) {
11383       SDNode *LoadRoot = Queue.pop_back_val();
11384       if (!Visited.insert(LoadRoot).second)
11385         continue;
11386 
11387       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11388         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11389           return true;
11390 
11391       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11392            UE = LoadRoot->use_end(); UI != UE; ++UI)
11393         if (((isa<MemSDNode>(*UI) &&
11394             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11395             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11396           Queue.push_back(*UI);
11397     }
11398   }
11399 
11400   return false;
11401 }
11402 
11403 /// This function is called when we have proved that a SETCC node can be replaced
11404 /// by subtraction (and other supporting instructions) so that the result of
11405 /// comparison is kept in a GPR instead of CR. This function is purely for
11406 /// codegen purposes and has some flags to guide the codegen process.
11407 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11408                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11409   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11410 
11411   // Zero extend the operands to the largest legal integer. Originally, they
11412   // must be of a strictly smaller size.
11413   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11414                          DAG.getConstant(Size, DL, MVT::i32));
11415   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11416                          DAG.getConstant(Size, DL, MVT::i32));
11417 
11418   // Swap if needed. Depends on the condition code.
11419   if (Swap)
11420     std::swap(Op0, Op1);
11421 
11422   // Subtract extended integers.
11423   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11424 
11425   // Move the sign bit to the least significant position and zero out the rest.
11426   // Now the least significant bit carries the result of original comparison.
11427   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11428                              DAG.getConstant(Size - 1, DL, MVT::i32));
11429   auto Final = Shifted;
11430 
11431   // Complement the result if needed. Based on the condition code.
11432   if (Complement)
11433     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11434                         DAG.getConstant(1, DL, MVT::i64));
11435 
11436   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11437 }
11438 
11439 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11440                                                   DAGCombinerInfo &DCI) const {
11441   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11442 
11443   SelectionDAG &DAG = DCI.DAG;
11444   SDLoc DL(N);
11445 
11446   // Size of integers being compared has a critical role in the following
11447   // analysis, so we prefer to do this when all types are legal.
11448   if (!DCI.isAfterLegalizeDAG())
11449     return SDValue();
11450 
11451   // If all users of SETCC extend its value to a legal integer type
11452   // then we replace SETCC with a subtraction
11453   for (SDNode::use_iterator UI = N->use_begin(),
11454        UE = N->use_end(); UI != UE; ++UI) {
11455     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11456       return SDValue();
11457   }
11458 
11459   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11460   auto OpSize = N->getOperand(0).getValueSizeInBits();
11461 
11462   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11463 
11464   if (OpSize < Size) {
11465     switch (CC) {
11466     default: break;
11467     case ISD::SETULT:
11468       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11469     case ISD::SETULE:
11470       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11471     case ISD::SETUGT:
11472       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11473     case ISD::SETUGE:
11474       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11475     }
11476   }
11477 
11478   return SDValue();
11479 }
11480 
11481 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11482                                                   DAGCombinerInfo &DCI) const {
11483   SelectionDAG &DAG = DCI.DAG;
11484   SDLoc dl(N);
11485 
11486   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11487   // If we're tracking CR bits, we need to be careful that we don't have:
11488   //   trunc(binary-ops(zext(x), zext(y)))
11489   // or
11490   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11491   // such that we're unnecessarily moving things into GPRs when it would be
11492   // better to keep them in CR bits.
11493 
11494   // Note that trunc here can be an actual i1 trunc, or can be the effective
11495   // truncation that comes from a setcc or select_cc.
11496   if (N->getOpcode() == ISD::TRUNCATE &&
11497       N->getValueType(0) != MVT::i1)
11498     return SDValue();
11499 
11500   if (N->getOperand(0).getValueType() != MVT::i32 &&
11501       N->getOperand(0).getValueType() != MVT::i64)
11502     return SDValue();
11503 
11504   if (N->getOpcode() == ISD::SETCC ||
11505       N->getOpcode() == ISD::SELECT_CC) {
11506     // If we're looking at a comparison, then we need to make sure that the
11507     // high bits (all except for the first) don't matter the result.
11508     ISD::CondCode CC =
11509       cast<CondCodeSDNode>(N->getOperand(
11510         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11511     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11512 
11513     if (ISD::isSignedIntSetCC(CC)) {
11514       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11515           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11516         return SDValue();
11517     } else if (ISD::isUnsignedIntSetCC(CC)) {
11518       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11519                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11520           !DAG.MaskedValueIsZero(N->getOperand(1),
11521                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11522         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11523                                              : SDValue());
11524     } else {
11525       // This is neither a signed nor an unsigned comparison, just make sure
11526       // that the high bits are equal.
11527       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11528       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11529 
11530       // We don't really care about what is known about the first bit (if
11531       // anything), so clear it in all masks prior to comparing them.
11532       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11533       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11534 
11535       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11536         return SDValue();
11537     }
11538   }
11539 
11540   // We now know that the higher-order bits are irrelevant, we just need to
11541   // make sure that all of the intermediate operations are bit operations, and
11542   // all inputs are extensions.
11543   if (N->getOperand(0).getOpcode() != ISD::AND &&
11544       N->getOperand(0).getOpcode() != ISD::OR  &&
11545       N->getOperand(0).getOpcode() != ISD::XOR &&
11546       N->getOperand(0).getOpcode() != ISD::SELECT &&
11547       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11548       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11549       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11550       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11551       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11552     return SDValue();
11553 
11554   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11555       N->getOperand(1).getOpcode() != ISD::AND &&
11556       N->getOperand(1).getOpcode() != ISD::OR  &&
11557       N->getOperand(1).getOpcode() != ISD::XOR &&
11558       N->getOperand(1).getOpcode() != ISD::SELECT &&
11559       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11560       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11561       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11562       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11563       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11564     return SDValue();
11565 
11566   SmallVector<SDValue, 4> Inputs;
11567   SmallVector<SDValue, 8> BinOps, PromOps;
11568   SmallPtrSet<SDNode *, 16> Visited;
11569 
11570   for (unsigned i = 0; i < 2; ++i) {
11571     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11572           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11573           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11574           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11575         isa<ConstantSDNode>(N->getOperand(i)))
11576       Inputs.push_back(N->getOperand(i));
11577     else
11578       BinOps.push_back(N->getOperand(i));
11579 
11580     if (N->getOpcode() == ISD::TRUNCATE)
11581       break;
11582   }
11583 
11584   // Visit all inputs, collect all binary operations (and, or, xor and
11585   // select) that are all fed by extensions.
11586   while (!BinOps.empty()) {
11587     SDValue BinOp = BinOps.back();
11588     BinOps.pop_back();
11589 
11590     if (!Visited.insert(BinOp.getNode()).second)
11591       continue;
11592 
11593     PromOps.push_back(BinOp);
11594 
11595     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11596       // The condition of the select is not promoted.
11597       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11598         continue;
11599       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11600         continue;
11601 
11602       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11603             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11604             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11605            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11606           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11607         Inputs.push_back(BinOp.getOperand(i));
11608       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11609                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11610                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11611                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11612                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11613                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11614                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11615                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11616                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11617         BinOps.push_back(BinOp.getOperand(i));
11618       } else {
11619         // We have an input that is not an extension or another binary
11620         // operation; we'll abort this transformation.
11621         return SDValue();
11622       }
11623     }
11624   }
11625 
11626   // Make sure that this is a self-contained cluster of operations (which
11627   // is not quite the same thing as saying that everything has only one
11628   // use).
11629   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11630     if (isa<ConstantSDNode>(Inputs[i]))
11631       continue;
11632 
11633     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11634                               UE = Inputs[i].getNode()->use_end();
11635          UI != UE; ++UI) {
11636       SDNode *User = *UI;
11637       if (User != N && !Visited.count(User))
11638         return SDValue();
11639 
11640       // Make sure that we're not going to promote the non-output-value
11641       // operand(s) or SELECT or SELECT_CC.
11642       // FIXME: Although we could sometimes handle this, and it does occur in
11643       // practice that one of the condition inputs to the select is also one of
11644       // the outputs, we currently can't deal with this.
11645       if (User->getOpcode() == ISD::SELECT) {
11646         if (User->getOperand(0) == Inputs[i])
11647           return SDValue();
11648       } else if (User->getOpcode() == ISD::SELECT_CC) {
11649         if (User->getOperand(0) == Inputs[i] ||
11650             User->getOperand(1) == Inputs[i])
11651           return SDValue();
11652       }
11653     }
11654   }
11655 
11656   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11657     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11658                               UE = PromOps[i].getNode()->use_end();
11659          UI != UE; ++UI) {
11660       SDNode *User = *UI;
11661       if (User != N && !Visited.count(User))
11662         return SDValue();
11663 
11664       // Make sure that we're not going to promote the non-output-value
11665       // operand(s) or SELECT or SELECT_CC.
11666       // FIXME: Although we could sometimes handle this, and it does occur in
11667       // practice that one of the condition inputs to the select is also one of
11668       // the outputs, we currently can't deal with this.
11669       if (User->getOpcode() == ISD::SELECT) {
11670         if (User->getOperand(0) == PromOps[i])
11671           return SDValue();
11672       } else if (User->getOpcode() == ISD::SELECT_CC) {
11673         if (User->getOperand(0) == PromOps[i] ||
11674             User->getOperand(1) == PromOps[i])
11675           return SDValue();
11676       }
11677     }
11678   }
11679 
11680   // Replace all inputs with the extension operand.
11681   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11682     // Constants may have users outside the cluster of to-be-promoted nodes,
11683     // and so we need to replace those as we do the promotions.
11684     if (isa<ConstantSDNode>(Inputs[i]))
11685       continue;
11686     else
11687       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11688   }
11689 
11690   std::list<HandleSDNode> PromOpHandles;
11691   for (auto &PromOp : PromOps)
11692     PromOpHandles.emplace_back(PromOp);
11693 
11694   // Replace all operations (these are all the same, but have a different
11695   // (i1) return type). DAG.getNode will validate that the types of
11696   // a binary operator match, so go through the list in reverse so that
11697   // we've likely promoted both operands first. Any intermediate truncations or
11698   // extensions disappear.
11699   while (!PromOpHandles.empty()) {
11700     SDValue PromOp = PromOpHandles.back().getValue();
11701     PromOpHandles.pop_back();
11702 
11703     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11704         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11705         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11706         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11707       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11708           PromOp.getOperand(0).getValueType() != MVT::i1) {
11709         // The operand is not yet ready (see comment below).
11710         PromOpHandles.emplace_front(PromOp);
11711         continue;
11712       }
11713 
11714       SDValue RepValue = PromOp.getOperand(0);
11715       if (isa<ConstantSDNode>(RepValue))
11716         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11717 
11718       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11719       continue;
11720     }
11721 
11722     unsigned C;
11723     switch (PromOp.getOpcode()) {
11724     default:             C = 0; break;
11725     case ISD::SELECT:    C = 1; break;
11726     case ISD::SELECT_CC: C = 2; break;
11727     }
11728 
11729     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11730          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11731         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11732          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11733       // The to-be-promoted operands of this node have not yet been
11734       // promoted (this should be rare because we're going through the
11735       // list backward, but if one of the operands has several users in
11736       // this cluster of to-be-promoted nodes, it is possible).
11737       PromOpHandles.emplace_front(PromOp);
11738       continue;
11739     }
11740 
11741     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11742                                 PromOp.getNode()->op_end());
11743 
11744     // If there are any constant inputs, make sure they're replaced now.
11745     for (unsigned i = 0; i < 2; ++i)
11746       if (isa<ConstantSDNode>(Ops[C+i]))
11747         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11748 
11749     DAG.ReplaceAllUsesOfValueWith(PromOp,
11750       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11751   }
11752 
11753   // Now we're left with the initial truncation itself.
11754   if (N->getOpcode() == ISD::TRUNCATE)
11755     return N->getOperand(0);
11756 
11757   // Otherwise, this is a comparison. The operands to be compared have just
11758   // changed type (to i1), but everything else is the same.
11759   return SDValue(N, 0);
11760 }
11761 
11762 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11763                                                   DAGCombinerInfo &DCI) const {
11764   SelectionDAG &DAG = DCI.DAG;
11765   SDLoc dl(N);
11766 
11767   // If we're tracking CR bits, we need to be careful that we don't have:
11768   //   zext(binary-ops(trunc(x), trunc(y)))
11769   // or
11770   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11771   // such that we're unnecessarily moving things into CR bits that can more
11772   // efficiently stay in GPRs. Note that if we're not certain that the high
11773   // bits are set as required by the final extension, we still may need to do
11774   // some masking to get the proper behavior.
11775 
11776   // This same functionality is important on PPC64 when dealing with
11777   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11778   // the return values of functions. Because it is so similar, it is handled
11779   // here as well.
11780 
11781   if (N->getValueType(0) != MVT::i32 &&
11782       N->getValueType(0) != MVT::i64)
11783     return SDValue();
11784 
11785   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11786         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11787     return SDValue();
11788 
11789   if (N->getOperand(0).getOpcode() != ISD::AND &&
11790       N->getOperand(0).getOpcode() != ISD::OR  &&
11791       N->getOperand(0).getOpcode() != ISD::XOR &&
11792       N->getOperand(0).getOpcode() != ISD::SELECT &&
11793       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11794     return SDValue();
11795 
11796   SmallVector<SDValue, 4> Inputs;
11797   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11798   SmallPtrSet<SDNode *, 16> Visited;
11799 
11800   // Visit all inputs, collect all binary operations (and, or, xor and
11801   // select) that are all fed by truncations.
11802   while (!BinOps.empty()) {
11803     SDValue BinOp = BinOps.back();
11804     BinOps.pop_back();
11805 
11806     if (!Visited.insert(BinOp.getNode()).second)
11807       continue;
11808 
11809     PromOps.push_back(BinOp);
11810 
11811     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11812       // The condition of the select is not promoted.
11813       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11814         continue;
11815       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11816         continue;
11817 
11818       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11819           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11820         Inputs.push_back(BinOp.getOperand(i));
11821       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11822                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11823                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11824                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11825                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11826         BinOps.push_back(BinOp.getOperand(i));
11827       } else {
11828         // We have an input that is not a truncation or another binary
11829         // operation; we'll abort this transformation.
11830         return SDValue();
11831       }
11832     }
11833   }
11834 
11835   // The operands of a select that must be truncated when the select is
11836   // promoted because the operand is actually part of the to-be-promoted set.
11837   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11838 
11839   // Make sure that this is a self-contained cluster of operations (which
11840   // is not quite the same thing as saying that everything has only one
11841   // use).
11842   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11843     if (isa<ConstantSDNode>(Inputs[i]))
11844       continue;
11845 
11846     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11847                               UE = Inputs[i].getNode()->use_end();
11848          UI != UE; ++UI) {
11849       SDNode *User = *UI;
11850       if (User != N && !Visited.count(User))
11851         return SDValue();
11852 
11853       // If we're going to promote the non-output-value operand(s) or SELECT or
11854       // SELECT_CC, record them for truncation.
11855       if (User->getOpcode() == ISD::SELECT) {
11856         if (User->getOperand(0) == Inputs[i])
11857           SelectTruncOp[0].insert(std::make_pair(User,
11858                                     User->getOperand(0).getValueType()));
11859       } else if (User->getOpcode() == ISD::SELECT_CC) {
11860         if (User->getOperand(0) == Inputs[i])
11861           SelectTruncOp[0].insert(std::make_pair(User,
11862                                     User->getOperand(0).getValueType()));
11863         if (User->getOperand(1) == Inputs[i])
11864           SelectTruncOp[1].insert(std::make_pair(User,
11865                                     User->getOperand(1).getValueType()));
11866       }
11867     }
11868   }
11869 
11870   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11871     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11872                               UE = PromOps[i].getNode()->use_end();
11873          UI != UE; ++UI) {
11874       SDNode *User = *UI;
11875       if (User != N && !Visited.count(User))
11876         return SDValue();
11877 
11878       // If we're going to promote the non-output-value operand(s) or SELECT or
11879       // SELECT_CC, record them for truncation.
11880       if (User->getOpcode() == ISD::SELECT) {
11881         if (User->getOperand(0) == PromOps[i])
11882           SelectTruncOp[0].insert(std::make_pair(User,
11883                                     User->getOperand(0).getValueType()));
11884       } else if (User->getOpcode() == ISD::SELECT_CC) {
11885         if (User->getOperand(0) == PromOps[i])
11886           SelectTruncOp[0].insert(std::make_pair(User,
11887                                     User->getOperand(0).getValueType()));
11888         if (User->getOperand(1) == PromOps[i])
11889           SelectTruncOp[1].insert(std::make_pair(User,
11890                                     User->getOperand(1).getValueType()));
11891       }
11892     }
11893   }
11894 
11895   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11896   bool ReallyNeedsExt = false;
11897   if (N->getOpcode() != ISD::ANY_EXTEND) {
11898     // If all of the inputs are not already sign/zero extended, then
11899     // we'll still need to do that at the end.
11900     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11901       if (isa<ConstantSDNode>(Inputs[i]))
11902         continue;
11903 
11904       unsigned OpBits =
11905         Inputs[i].getOperand(0).getValueSizeInBits();
11906       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11907 
11908       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11909            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11910                                   APInt::getHighBitsSet(OpBits,
11911                                                         OpBits-PromBits))) ||
11912           (N->getOpcode() == ISD::SIGN_EXTEND &&
11913            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11914              (OpBits-(PromBits-1)))) {
11915         ReallyNeedsExt = true;
11916         break;
11917       }
11918     }
11919   }
11920 
11921   // Replace all inputs, either with the truncation operand, or a
11922   // truncation or extension to the final output type.
11923   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11924     // Constant inputs need to be replaced with the to-be-promoted nodes that
11925     // use them because they might have users outside of the cluster of
11926     // promoted nodes.
11927     if (isa<ConstantSDNode>(Inputs[i]))
11928       continue;
11929 
11930     SDValue InSrc = Inputs[i].getOperand(0);
11931     if (Inputs[i].getValueType() == N->getValueType(0))
11932       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11933     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11934       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11935         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11936     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11937       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11938         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11939     else
11940       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11941         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11942   }
11943 
11944   std::list<HandleSDNode> PromOpHandles;
11945   for (auto &PromOp : PromOps)
11946     PromOpHandles.emplace_back(PromOp);
11947 
11948   // Replace all operations (these are all the same, but have a different
11949   // (promoted) return type). DAG.getNode will validate that the types of
11950   // a binary operator match, so go through the list in reverse so that
11951   // we've likely promoted both operands first.
11952   while (!PromOpHandles.empty()) {
11953     SDValue PromOp = PromOpHandles.back().getValue();
11954     PromOpHandles.pop_back();
11955 
11956     unsigned C;
11957     switch (PromOp.getOpcode()) {
11958     default:             C = 0; break;
11959     case ISD::SELECT:    C = 1; break;
11960     case ISD::SELECT_CC: C = 2; break;
11961     }
11962 
11963     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11964          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11965         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11966          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11967       // The to-be-promoted operands of this node have not yet been
11968       // promoted (this should be rare because we're going through the
11969       // list backward, but if one of the operands has several users in
11970       // this cluster of to-be-promoted nodes, it is possible).
11971       PromOpHandles.emplace_front(PromOp);
11972       continue;
11973     }
11974 
11975     // For SELECT and SELECT_CC nodes, we do a similar check for any
11976     // to-be-promoted comparison inputs.
11977     if (PromOp.getOpcode() == ISD::SELECT ||
11978         PromOp.getOpcode() == ISD::SELECT_CC) {
11979       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11980            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11981           (SelectTruncOp[1].count(PromOp.getNode()) &&
11982            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11983         PromOpHandles.emplace_front(PromOp);
11984         continue;
11985       }
11986     }
11987 
11988     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11989                                 PromOp.getNode()->op_end());
11990 
11991     // If this node has constant inputs, then they'll need to be promoted here.
11992     for (unsigned i = 0; i < 2; ++i) {
11993       if (!isa<ConstantSDNode>(Ops[C+i]))
11994         continue;
11995       if (Ops[C+i].getValueType() == N->getValueType(0))
11996         continue;
11997 
11998       if (N->getOpcode() == ISD::SIGN_EXTEND)
11999         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12000       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12001         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12002       else
12003         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12004     }
12005 
12006     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12007     // truncate them again to the original value type.
12008     if (PromOp.getOpcode() == ISD::SELECT ||
12009         PromOp.getOpcode() == ISD::SELECT_CC) {
12010       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12011       if (SI0 != SelectTruncOp[0].end())
12012         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12013       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12014       if (SI1 != SelectTruncOp[1].end())
12015         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12016     }
12017 
12018     DAG.ReplaceAllUsesOfValueWith(PromOp,
12019       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12020   }
12021 
12022   // Now we're left with the initial extension itself.
12023   if (!ReallyNeedsExt)
12024     return N->getOperand(0);
12025 
12026   // To zero extend, just mask off everything except for the first bit (in the
12027   // i1 case).
12028   if (N->getOpcode() == ISD::ZERO_EXTEND)
12029     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12030                        DAG.getConstant(APInt::getLowBitsSet(
12031                                          N->getValueSizeInBits(0), PromBits),
12032                                        dl, N->getValueType(0)));
12033 
12034   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12035          "Invalid extension type");
12036   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12037   SDValue ShiftCst =
12038       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12039   return DAG.getNode(
12040       ISD::SRA, dl, N->getValueType(0),
12041       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12042       ShiftCst);
12043 }
12044 
12045 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12046                                         DAGCombinerInfo &DCI) const {
12047   assert(N->getOpcode() == ISD::SETCC &&
12048          "Should be called with a SETCC node");
12049 
12050   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12051   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12052     SDValue LHS = N->getOperand(0);
12053     SDValue RHS = N->getOperand(1);
12054 
12055     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12056     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12057         LHS.hasOneUse())
12058       std::swap(LHS, RHS);
12059 
12060     // x == 0-y --> x+y == 0
12061     // x != 0-y --> x+y != 0
12062     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12063         RHS.hasOneUse()) {
12064       SDLoc DL(N);
12065       SelectionDAG &DAG = DCI.DAG;
12066       EVT VT = N->getValueType(0);
12067       EVT OpVT = LHS.getValueType();
12068       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12069       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12070     }
12071   }
12072 
12073   return DAGCombineTruncBoolExt(N, DCI);
12074 }
12075 
12076 // Is this an extending load from an f32 to an f64?
12077 static bool isFPExtLoad(SDValue Op) {
12078   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12079     return LD->getExtensionType() == ISD::EXTLOAD &&
12080       Op.getValueType() == MVT::f64;
12081   return false;
12082 }
12083 
12084 /// Reduces the number of fp-to-int conversion when building a vector.
12085 ///
12086 /// If this vector is built out of floating to integer conversions,
12087 /// transform it to a vector built out of floating point values followed by a
12088 /// single floating to integer conversion of the vector.
12089 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12090 /// becomes (fptosi (build_vector ($A, $B, ...)))
12091 SDValue PPCTargetLowering::
12092 combineElementTruncationToVectorTruncation(SDNode *N,
12093                                            DAGCombinerInfo &DCI) const {
12094   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12095          "Should be called with a BUILD_VECTOR node");
12096 
12097   SelectionDAG &DAG = DCI.DAG;
12098   SDLoc dl(N);
12099 
12100   SDValue FirstInput = N->getOperand(0);
12101   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12102          "The input operand must be an fp-to-int conversion.");
12103 
12104   // This combine happens after legalization so the fp_to_[su]i nodes are
12105   // already converted to PPCSISD nodes.
12106   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12107   if (FirstConversion == PPCISD::FCTIDZ ||
12108       FirstConversion == PPCISD::FCTIDUZ ||
12109       FirstConversion == PPCISD::FCTIWZ ||
12110       FirstConversion == PPCISD::FCTIWUZ) {
12111     bool IsSplat = true;
12112     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12113       FirstConversion == PPCISD::FCTIWUZ;
12114     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12115     SmallVector<SDValue, 4> Ops;
12116     EVT TargetVT = N->getValueType(0);
12117     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12118       SDValue NextOp = N->getOperand(i);
12119       if (NextOp.getOpcode() != PPCISD::MFVSR)
12120         return SDValue();
12121       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12122       if (NextConversion != FirstConversion)
12123         return SDValue();
12124       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12125       // This is not valid if the input was originally double precision. It is
12126       // also not profitable to do unless this is an extending load in which
12127       // case doing this combine will allow us to combine consecutive loads.
12128       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12129         return SDValue();
12130       if (N->getOperand(i) != FirstInput)
12131         IsSplat = false;
12132     }
12133 
12134     // If this is a splat, we leave it as-is since there will be only a single
12135     // fp-to-int conversion followed by a splat of the integer. This is better
12136     // for 32-bit and smaller ints and neutral for 64-bit ints.
12137     if (IsSplat)
12138       return SDValue();
12139 
12140     // Now that we know we have the right type of node, get its operands
12141     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12142       SDValue In = N->getOperand(i).getOperand(0);
12143       if (Is32Bit) {
12144         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12145         // here, we know that all inputs are extending loads so this is safe).
12146         if (In.isUndef())
12147           Ops.push_back(DAG.getUNDEF(SrcVT));
12148         else {
12149           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12150                                       MVT::f32, In.getOperand(0),
12151                                       DAG.getIntPtrConstant(1, dl));
12152           Ops.push_back(Trunc);
12153         }
12154       } else
12155         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12156     }
12157 
12158     unsigned Opcode;
12159     if (FirstConversion == PPCISD::FCTIDZ ||
12160         FirstConversion == PPCISD::FCTIWZ)
12161       Opcode = ISD::FP_TO_SINT;
12162     else
12163       Opcode = ISD::FP_TO_UINT;
12164 
12165     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12166     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12167     return DAG.getNode(Opcode, dl, TargetVT, BV);
12168   }
12169   return SDValue();
12170 }
12171 
12172 /// Reduce the number of loads when building a vector.
12173 ///
12174 /// Building a vector out of multiple loads can be converted to a load
12175 /// of the vector type if the loads are consecutive. If the loads are
12176 /// consecutive but in descending order, a shuffle is added at the end
12177 /// to reorder the vector.
12178 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12179   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12180          "Should be called with a BUILD_VECTOR node");
12181 
12182   SDLoc dl(N);
12183   bool InputsAreConsecutiveLoads = true;
12184   bool InputsAreReverseConsecutive = true;
12185   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12186   SDValue FirstInput = N->getOperand(0);
12187   bool IsRoundOfExtLoad = false;
12188 
12189   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12190       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12191     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12192     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12193   }
12194   // Not a build vector of (possibly fp_rounded) loads.
12195   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12196       N->getNumOperands() == 1)
12197     return SDValue();
12198 
12199   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12200     // If any inputs are fp_round(extload), they all must be.
12201     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12202       return SDValue();
12203 
12204     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12205       N->getOperand(i);
12206     if (NextInput.getOpcode() != ISD::LOAD)
12207       return SDValue();
12208 
12209     SDValue PreviousInput =
12210       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12211     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12212     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12213 
12214     // If any inputs are fp_round(extload), they all must be.
12215     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12216       return SDValue();
12217 
12218     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12219       InputsAreConsecutiveLoads = false;
12220     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12221       InputsAreReverseConsecutive = false;
12222 
12223     // Exit early if the loads are neither consecutive nor reverse consecutive.
12224     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12225       return SDValue();
12226   }
12227 
12228   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12229          "The loads cannot be both consecutive and reverse consecutive.");
12230 
12231   SDValue FirstLoadOp =
12232     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12233   SDValue LastLoadOp =
12234     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12235                        N->getOperand(N->getNumOperands()-1);
12236 
12237   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12238   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12239   if (InputsAreConsecutiveLoads) {
12240     assert(LD1 && "Input needs to be a LoadSDNode.");
12241     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12242                        LD1->getBasePtr(), LD1->getPointerInfo(),
12243                        LD1->getAlignment());
12244   }
12245   if (InputsAreReverseConsecutive) {
12246     assert(LDL && "Input needs to be a LoadSDNode.");
12247     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12248                                LDL->getBasePtr(), LDL->getPointerInfo(),
12249                                LDL->getAlignment());
12250     SmallVector<int, 16> Ops;
12251     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12252       Ops.push_back(i);
12253 
12254     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12255                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12256   }
12257   return SDValue();
12258 }
12259 
12260 // This function adds the required vector_shuffle needed to get
12261 // the elements of the vector extract in the correct position
12262 // as specified by the CorrectElems encoding.
12263 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12264                                       SDValue Input, uint64_t Elems,
12265                                       uint64_t CorrectElems) {
12266   SDLoc dl(N);
12267 
12268   unsigned NumElems = Input.getValueType().getVectorNumElements();
12269   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12270 
12271   // Knowing the element indices being extracted from the original
12272   // vector and the order in which they're being inserted, just put
12273   // them at element indices required for the instruction.
12274   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12275     if (DAG.getDataLayout().isLittleEndian())
12276       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12277     else
12278       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12279     CorrectElems = CorrectElems >> 8;
12280     Elems = Elems >> 8;
12281   }
12282 
12283   SDValue Shuffle =
12284       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12285                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12286 
12287   EVT Ty = N->getValueType(0);
12288   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12289   return BV;
12290 }
12291 
12292 // Look for build vector patterns where input operands come from sign
12293 // extended vector_extract elements of specific indices. If the correct indices
12294 // aren't used, add a vector shuffle to fix up the indices and create a new
12295 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12296 // during instruction selection.
12297 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12298   // This array encodes the indices that the vector sign extend instructions
12299   // extract from when extending from one type to another for both BE and LE.
12300   // The right nibble of each byte corresponds to the LE incides.
12301   // and the left nibble of each byte corresponds to the BE incides.
12302   // For example: 0x3074B8FC  byte->word
12303   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12304   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12305   // For example: 0x000070F8  byte->double word
12306   // For LE: the allowed indices are: 0x0,0x8
12307   // For BE: the allowed indices are: 0x7,0xF
12308   uint64_t TargetElems[] = {
12309       0x3074B8FC, // b->w
12310       0x000070F8, // b->d
12311       0x10325476, // h->w
12312       0x00003074, // h->d
12313       0x00001032, // w->d
12314   };
12315 
12316   uint64_t Elems = 0;
12317   int Index;
12318   SDValue Input;
12319 
12320   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12321     if (!Op)
12322       return false;
12323     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12324         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12325       return false;
12326 
12327     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12328     // of the right width.
12329     SDValue Extract = Op.getOperand(0);
12330     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12331       Extract = Extract.getOperand(0);
12332     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12333       return false;
12334 
12335     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12336     if (!ExtOp)
12337       return false;
12338 
12339     Index = ExtOp->getZExtValue();
12340     if (Input && Input != Extract.getOperand(0))
12341       return false;
12342 
12343     if (!Input)
12344       Input = Extract.getOperand(0);
12345 
12346     Elems = Elems << 8;
12347     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12348     Elems |= Index;
12349 
12350     return true;
12351   };
12352 
12353   // If the build vector operands aren't sign extended vector extracts,
12354   // of the same input vector, then return.
12355   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12356     if (!isSExtOfVecExtract(N->getOperand(i))) {
12357       return SDValue();
12358     }
12359   }
12360 
12361   // If the vector extract indicies are not correct, add the appropriate
12362   // vector_shuffle.
12363   int TgtElemArrayIdx;
12364   int InputSize = Input.getValueType().getScalarSizeInBits();
12365   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12366   if (InputSize + OutputSize == 40)
12367     TgtElemArrayIdx = 0;
12368   else if (InputSize + OutputSize == 72)
12369     TgtElemArrayIdx = 1;
12370   else if (InputSize + OutputSize == 48)
12371     TgtElemArrayIdx = 2;
12372   else if (InputSize + OutputSize == 80)
12373     TgtElemArrayIdx = 3;
12374   else if (InputSize + OutputSize == 96)
12375     TgtElemArrayIdx = 4;
12376   else
12377     return SDValue();
12378 
12379   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12380   CorrectElems = DAG.getDataLayout().isLittleEndian()
12381                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12382                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12383   if (Elems != CorrectElems) {
12384     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12385   }
12386 
12387   // Regular lowering will catch cases where a shuffle is not needed.
12388   return SDValue();
12389 }
12390 
12391 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12392                                                  DAGCombinerInfo &DCI) const {
12393   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12394          "Should be called with a BUILD_VECTOR node");
12395 
12396   SelectionDAG &DAG = DCI.DAG;
12397   SDLoc dl(N);
12398 
12399   if (!Subtarget.hasVSX())
12400     return SDValue();
12401 
12402   // The target independent DAG combiner will leave a build_vector of
12403   // float-to-int conversions intact. We can generate MUCH better code for
12404   // a float-to-int conversion of a vector of floats.
12405   SDValue FirstInput = N->getOperand(0);
12406   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12407     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12408     if (Reduced)
12409       return Reduced;
12410   }
12411 
12412   // If we're building a vector out of consecutive loads, just load that
12413   // vector type.
12414   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12415   if (Reduced)
12416     return Reduced;
12417 
12418   // If we're building a vector out of extended elements from another vector
12419   // we have P9 vector integer extend instructions. The code assumes legal
12420   // input types (i.e. it can't handle things like v4i16) so do not run before
12421   // legalization.
12422   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12423     Reduced = combineBVOfVecSExt(N, DAG);
12424     if (Reduced)
12425       return Reduced;
12426   }
12427 
12428 
12429   if (N->getValueType(0) != MVT::v2f64)
12430     return SDValue();
12431 
12432   // Looking for:
12433   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12434   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12435       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12436     return SDValue();
12437   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12438       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12439     return SDValue();
12440   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12441     return SDValue();
12442 
12443   SDValue Ext1 = FirstInput.getOperand(0);
12444   SDValue Ext2 = N->getOperand(1).getOperand(0);
12445   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12446      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12447     return SDValue();
12448 
12449   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12450   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12451   if (!Ext1Op || !Ext2Op)
12452     return SDValue();
12453   if (Ext1.getValueType() != MVT::i32 ||
12454       Ext2.getValueType() != MVT::i32)
12455   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12456     return SDValue();
12457 
12458   int FirstElem = Ext1Op->getZExtValue();
12459   int SecondElem = Ext2Op->getZExtValue();
12460   int SubvecIdx;
12461   if (FirstElem == 0 && SecondElem == 1)
12462     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12463   else if (FirstElem == 2 && SecondElem == 3)
12464     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12465   else
12466     return SDValue();
12467 
12468   SDValue SrcVec = Ext1.getOperand(0);
12469   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12470     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12471   return DAG.getNode(NodeType, dl, MVT::v2f64,
12472                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12473 }
12474 
12475 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12476                                               DAGCombinerInfo &DCI) const {
12477   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12478           N->getOpcode() == ISD::UINT_TO_FP) &&
12479          "Need an int -> FP conversion node here");
12480 
12481   if (useSoftFloat() || !Subtarget.has64BitSupport())
12482     return SDValue();
12483 
12484   SelectionDAG &DAG = DCI.DAG;
12485   SDLoc dl(N);
12486   SDValue Op(N, 0);
12487 
12488   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12489   // from the hardware.
12490   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12491     return SDValue();
12492   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12493       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12494     return SDValue();
12495 
12496   SDValue FirstOperand(Op.getOperand(0));
12497   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12498     (FirstOperand.getValueType() == MVT::i8 ||
12499      FirstOperand.getValueType() == MVT::i16);
12500   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12501     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12502     bool DstDouble = Op.getValueType() == MVT::f64;
12503     unsigned ConvOp = Signed ?
12504       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12505       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12506     SDValue WidthConst =
12507       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12508                             dl, false);
12509     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12510     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12511     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12512                                          DAG.getVTList(MVT::f64, MVT::Other),
12513                                          Ops, MVT::i8, LDN->getMemOperand());
12514 
12515     // For signed conversion, we need to sign-extend the value in the VSR
12516     if (Signed) {
12517       SDValue ExtOps[] = { Ld, WidthConst };
12518       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12519       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12520     } else
12521       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12522   }
12523 
12524 
12525   // For i32 intermediate values, unfortunately, the conversion functions
12526   // leave the upper 32 bits of the value are undefined. Within the set of
12527   // scalar instructions, we have no method for zero- or sign-extending the
12528   // value. Thus, we cannot handle i32 intermediate values here.
12529   if (Op.getOperand(0).getValueType() == MVT::i32)
12530     return SDValue();
12531 
12532   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12533          "UINT_TO_FP is supported only with FPCVT");
12534 
12535   // If we have FCFIDS, then use it when converting to single-precision.
12536   // Otherwise, convert to double-precision and then round.
12537   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12538                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12539                                                             : PPCISD::FCFIDS)
12540                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12541                                                             : PPCISD::FCFID);
12542   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12543                   ? MVT::f32
12544                   : MVT::f64;
12545 
12546   // If we're converting from a float, to an int, and back to a float again,
12547   // then we don't need the store/load pair at all.
12548   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12549        Subtarget.hasFPCVT()) ||
12550       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12551     SDValue Src = Op.getOperand(0).getOperand(0);
12552     if (Src.getValueType() == MVT::f32) {
12553       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12554       DCI.AddToWorklist(Src.getNode());
12555     } else if (Src.getValueType() != MVT::f64) {
12556       // Make sure that we don't pick up a ppc_fp128 source value.
12557       return SDValue();
12558     }
12559 
12560     unsigned FCTOp =
12561       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12562                                                         PPCISD::FCTIDUZ;
12563 
12564     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12565     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12566 
12567     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12568       FP = DAG.getNode(ISD::FP_ROUND, dl,
12569                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12570       DCI.AddToWorklist(FP.getNode());
12571     }
12572 
12573     return FP;
12574   }
12575 
12576   return SDValue();
12577 }
12578 
12579 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12580 // builtins) into loads with swaps.
12581 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12582                                               DAGCombinerInfo &DCI) const {
12583   SelectionDAG &DAG = DCI.DAG;
12584   SDLoc dl(N);
12585   SDValue Chain;
12586   SDValue Base;
12587   MachineMemOperand *MMO;
12588 
12589   switch (N->getOpcode()) {
12590   default:
12591     llvm_unreachable("Unexpected opcode for little endian VSX load");
12592   case ISD::LOAD: {
12593     LoadSDNode *LD = cast<LoadSDNode>(N);
12594     Chain = LD->getChain();
12595     Base = LD->getBasePtr();
12596     MMO = LD->getMemOperand();
12597     // If the MMO suggests this isn't a load of a full vector, leave
12598     // things alone.  For a built-in, we have to make the change for
12599     // correctness, so if there is a size problem that will be a bug.
12600     if (MMO->getSize() < 16)
12601       return SDValue();
12602     break;
12603   }
12604   case ISD::INTRINSIC_W_CHAIN: {
12605     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12606     Chain = Intrin->getChain();
12607     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12608     // us what we want. Get operand 2 instead.
12609     Base = Intrin->getOperand(2);
12610     MMO = Intrin->getMemOperand();
12611     break;
12612   }
12613   }
12614 
12615   MVT VecTy = N->getValueType(0).getSimpleVT();
12616 
12617   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12618   // aligned and the type is a vector with elements up to 4 bytes
12619   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12620       && VecTy.getScalarSizeInBits() <= 32 ) {
12621     return SDValue();
12622   }
12623 
12624   SDValue LoadOps[] = { Chain, Base };
12625   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12626                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12627                                          LoadOps, MVT::v2f64, MMO);
12628 
12629   DCI.AddToWorklist(Load.getNode());
12630   Chain = Load.getValue(1);
12631   SDValue Swap = DAG.getNode(
12632       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12633   DCI.AddToWorklist(Swap.getNode());
12634 
12635   // Add a bitcast if the resulting load type doesn't match v2f64.
12636   if (VecTy != MVT::v2f64) {
12637     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12638     DCI.AddToWorklist(N.getNode());
12639     // Package {bitcast value, swap's chain} to match Load's shape.
12640     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12641                        N, Swap.getValue(1));
12642   }
12643 
12644   return Swap;
12645 }
12646 
12647 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12648 // builtins) into stores with swaps.
12649 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12650                                                DAGCombinerInfo &DCI) const {
12651   SelectionDAG &DAG = DCI.DAG;
12652   SDLoc dl(N);
12653   SDValue Chain;
12654   SDValue Base;
12655   unsigned SrcOpnd;
12656   MachineMemOperand *MMO;
12657 
12658   switch (N->getOpcode()) {
12659   default:
12660     llvm_unreachable("Unexpected opcode for little endian VSX store");
12661   case ISD::STORE: {
12662     StoreSDNode *ST = cast<StoreSDNode>(N);
12663     Chain = ST->getChain();
12664     Base = ST->getBasePtr();
12665     MMO = ST->getMemOperand();
12666     SrcOpnd = 1;
12667     // If the MMO suggests this isn't a store of a full vector, leave
12668     // things alone.  For a built-in, we have to make the change for
12669     // correctness, so if there is a size problem that will be a bug.
12670     if (MMO->getSize() < 16)
12671       return SDValue();
12672     break;
12673   }
12674   case ISD::INTRINSIC_VOID: {
12675     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12676     Chain = Intrin->getChain();
12677     // Intrin->getBasePtr() oddly does not get what we want.
12678     Base = Intrin->getOperand(3);
12679     MMO = Intrin->getMemOperand();
12680     SrcOpnd = 2;
12681     break;
12682   }
12683   }
12684 
12685   SDValue Src = N->getOperand(SrcOpnd);
12686   MVT VecTy = Src.getValueType().getSimpleVT();
12687 
12688   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12689   // aligned and the type is a vector with elements up to 4 bytes
12690   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12691       && VecTy.getScalarSizeInBits() <= 32 ) {
12692     return SDValue();
12693   }
12694 
12695   // All stores are done as v2f64 and possible bit cast.
12696   if (VecTy != MVT::v2f64) {
12697     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12698     DCI.AddToWorklist(Src.getNode());
12699   }
12700 
12701   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12702                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12703   DCI.AddToWorklist(Swap.getNode());
12704   Chain = Swap.getValue(1);
12705   SDValue StoreOps[] = { Chain, Swap, Base };
12706   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12707                                           DAG.getVTList(MVT::Other),
12708                                           StoreOps, VecTy, MMO);
12709   DCI.AddToWorklist(Store.getNode());
12710   return Store;
12711 }
12712 
12713 // Handle DAG combine for STORE (FP_TO_INT F).
12714 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12715                                                DAGCombinerInfo &DCI) const {
12716 
12717   SelectionDAG &DAG = DCI.DAG;
12718   SDLoc dl(N);
12719   unsigned Opcode = N->getOperand(1).getOpcode();
12720 
12721   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12722          && "Not a FP_TO_INT Instruction!");
12723 
12724   SDValue Val = N->getOperand(1).getOperand(0);
12725   EVT Op1VT = N->getOperand(1).getValueType();
12726   EVT ResVT = Val.getValueType();
12727 
12728   // Floating point types smaller than 32 bits are not legal on Power.
12729   if (ResVT.getScalarSizeInBits() < 32)
12730     return SDValue();
12731 
12732   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12733   bool ValidTypeForStoreFltAsInt =
12734         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12735          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12736 
12737   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12738       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12739     return SDValue();
12740 
12741   // Extend f32 values to f64
12742   if (ResVT.getScalarSizeInBits() == 32) {
12743     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12744     DCI.AddToWorklist(Val.getNode());
12745   }
12746 
12747   // Set signed or unsigned conversion opcode.
12748   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12749                           PPCISD::FP_TO_SINT_IN_VSR :
12750                           PPCISD::FP_TO_UINT_IN_VSR;
12751 
12752   Val = DAG.getNode(ConvOpcode,
12753                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12754   DCI.AddToWorklist(Val.getNode());
12755 
12756   // Set number of bytes being converted.
12757   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12758   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12759                     DAG.getIntPtrConstant(ByteSize, dl, false),
12760                     DAG.getValueType(Op1VT) };
12761 
12762   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12763           DAG.getVTList(MVT::Other), Ops,
12764           cast<StoreSDNode>(N)->getMemoryVT(),
12765           cast<StoreSDNode>(N)->getMemOperand());
12766 
12767   DCI.AddToWorklist(Val.getNode());
12768   return Val;
12769 }
12770 
12771 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12772                                              DAGCombinerInfo &DCI) const {
12773   SelectionDAG &DAG = DCI.DAG;
12774   SDLoc dl(N);
12775   switch (N->getOpcode()) {
12776   default: break;
12777   case ISD::ADD:
12778     return combineADD(N, DCI);
12779   case ISD::SHL:
12780     return combineSHL(N, DCI);
12781   case ISD::SRA:
12782     return combineSRA(N, DCI);
12783   case ISD::SRL:
12784     return combineSRL(N, DCI);
12785   case ISD::MUL:
12786     return combineMUL(N, DCI);
12787   case PPCISD::SHL:
12788     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12789         return N->getOperand(0);
12790     break;
12791   case PPCISD::SRL:
12792     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12793         return N->getOperand(0);
12794     break;
12795   case PPCISD::SRA:
12796     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12797       if (C->isNullValue() ||   //  0 >>s V -> 0.
12798           C->isAllOnesValue())    // -1 >>s V -> -1.
12799         return N->getOperand(0);
12800     }
12801     break;
12802   case ISD::SIGN_EXTEND:
12803   case ISD::ZERO_EXTEND:
12804   case ISD::ANY_EXTEND:
12805     return DAGCombineExtBoolTrunc(N, DCI);
12806   case ISD::TRUNCATE:
12807     return combineTRUNCATE(N, DCI);
12808   case ISD::SETCC:
12809     if (SDValue CSCC = combineSetCC(N, DCI))
12810       return CSCC;
12811     LLVM_FALLTHROUGH;
12812   case ISD::SELECT_CC:
12813     return DAGCombineTruncBoolExt(N, DCI);
12814   case ISD::SINT_TO_FP:
12815   case ISD::UINT_TO_FP:
12816     return combineFPToIntToFP(N, DCI);
12817   case ISD::STORE: {
12818 
12819     EVT Op1VT = N->getOperand(1).getValueType();
12820     unsigned Opcode = N->getOperand(1).getOpcode();
12821 
12822     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12823       SDValue Val= combineStoreFPToInt(N, DCI);
12824       if (Val)
12825         return Val;
12826     }
12827 
12828     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12829     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12830         N->getOperand(1).getNode()->hasOneUse() &&
12831         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12832          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12833 
12834       // STBRX can only handle simple types and it makes no sense to store less
12835       // two bytes in byte-reversed order.
12836       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12837       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12838         break;
12839 
12840       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12841       // Do an any-extend to 32-bits if this is a half-word input.
12842       if (BSwapOp.getValueType() == MVT::i16)
12843         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12844 
12845       // If the type of BSWAP operand is wider than stored memory width
12846       // it need to be shifted to the right side before STBRX.
12847       if (Op1VT.bitsGT(mVT)) {
12848         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12849         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12850                               DAG.getConstant(Shift, dl, MVT::i32));
12851         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12852         if (Op1VT == MVT::i64)
12853           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12854       }
12855 
12856       SDValue Ops[] = {
12857         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12858       };
12859       return
12860         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12861                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12862                                 cast<StoreSDNode>(N)->getMemOperand());
12863     }
12864 
12865     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12866     // So it can increase the chance of CSE constant construction.
12867     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12868         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12869       // Need to sign-extended to 64-bits to handle negative values.
12870       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12871       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12872                                     MemVT.getSizeInBits());
12873       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12874 
12875       // DAG.getTruncStore() can't be used here because it doesn't accept
12876       // the general (base + offset) addressing mode.
12877       // So we use UpdateNodeOperands and setTruncatingStore instead.
12878       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12879                              N->getOperand(3));
12880       cast<StoreSDNode>(N)->setTruncatingStore(true);
12881       return SDValue(N, 0);
12882     }
12883 
12884     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12885     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12886     if (Op1VT.isSimple()) {
12887       MVT StoreVT = Op1VT.getSimpleVT();
12888       if (Subtarget.needsSwapsForVSXMemOps() &&
12889           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12890            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12891         return expandVSXStoreForLE(N, DCI);
12892     }
12893     break;
12894   }
12895   case ISD::LOAD: {
12896     LoadSDNode *LD = cast<LoadSDNode>(N);
12897     EVT VT = LD->getValueType(0);
12898 
12899     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12900     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12901     if (VT.isSimple()) {
12902       MVT LoadVT = VT.getSimpleVT();
12903       if (Subtarget.needsSwapsForVSXMemOps() &&
12904           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12905            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12906         return expandVSXLoadForLE(N, DCI);
12907     }
12908 
12909     // We sometimes end up with a 64-bit integer load, from which we extract
12910     // two single-precision floating-point numbers. This happens with
12911     // std::complex<float>, and other similar structures, because of the way we
12912     // canonicalize structure copies. However, if we lack direct moves,
12913     // then the final bitcasts from the extracted integer values to the
12914     // floating-point numbers turn into store/load pairs. Even with direct moves,
12915     // just loading the two floating-point numbers is likely better.
12916     auto ReplaceTwoFloatLoad = [&]() {
12917       if (VT != MVT::i64)
12918         return false;
12919 
12920       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12921           LD->isVolatile())
12922         return false;
12923 
12924       //  We're looking for a sequence like this:
12925       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12926       //      t16: i64 = srl t13, Constant:i32<32>
12927       //    t17: i32 = truncate t16
12928       //  t18: f32 = bitcast t17
12929       //    t19: i32 = truncate t13
12930       //  t20: f32 = bitcast t19
12931 
12932       if (!LD->hasNUsesOfValue(2, 0))
12933         return false;
12934 
12935       auto UI = LD->use_begin();
12936       while (UI.getUse().getResNo() != 0) ++UI;
12937       SDNode *Trunc = *UI++;
12938       while (UI.getUse().getResNo() != 0) ++UI;
12939       SDNode *RightShift = *UI;
12940       if (Trunc->getOpcode() != ISD::TRUNCATE)
12941         std::swap(Trunc, RightShift);
12942 
12943       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12944           Trunc->getValueType(0) != MVT::i32 ||
12945           !Trunc->hasOneUse())
12946         return false;
12947       if (RightShift->getOpcode() != ISD::SRL ||
12948           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12949           RightShift->getConstantOperandVal(1) != 32 ||
12950           !RightShift->hasOneUse())
12951         return false;
12952 
12953       SDNode *Trunc2 = *RightShift->use_begin();
12954       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12955           Trunc2->getValueType(0) != MVT::i32 ||
12956           !Trunc2->hasOneUse())
12957         return false;
12958 
12959       SDNode *Bitcast = *Trunc->use_begin();
12960       SDNode *Bitcast2 = *Trunc2->use_begin();
12961 
12962       if (Bitcast->getOpcode() != ISD::BITCAST ||
12963           Bitcast->getValueType(0) != MVT::f32)
12964         return false;
12965       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12966           Bitcast2->getValueType(0) != MVT::f32)
12967         return false;
12968 
12969       if (Subtarget.isLittleEndian())
12970         std::swap(Bitcast, Bitcast2);
12971 
12972       // Bitcast has the second float (in memory-layout order) and Bitcast2
12973       // has the first one.
12974 
12975       SDValue BasePtr = LD->getBasePtr();
12976       if (LD->isIndexed()) {
12977         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12978                "Non-pre-inc AM on PPC?");
12979         BasePtr =
12980           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12981                       LD->getOffset());
12982       }
12983 
12984       auto MMOFlags =
12985           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12986       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12987                                       LD->getPointerInfo(), LD->getAlignment(),
12988                                       MMOFlags, LD->getAAInfo());
12989       SDValue AddPtr =
12990         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12991                     BasePtr, DAG.getIntPtrConstant(4, dl));
12992       SDValue FloatLoad2 = DAG.getLoad(
12993           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12994           LD->getPointerInfo().getWithOffset(4),
12995           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12996 
12997       if (LD->isIndexed()) {
12998         // Note that DAGCombine should re-form any pre-increment load(s) from
12999         // what is produced here if that makes sense.
13000         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13001       }
13002 
13003       DCI.CombineTo(Bitcast2, FloatLoad);
13004       DCI.CombineTo(Bitcast, FloatLoad2);
13005 
13006       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13007                                     SDValue(FloatLoad2.getNode(), 1));
13008       return true;
13009     };
13010 
13011     if (ReplaceTwoFloatLoad())
13012       return SDValue(N, 0);
13013 
13014     EVT MemVT = LD->getMemoryVT();
13015     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13016     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13017     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13018     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13019     if (LD->isUnindexed() && VT.isVector() &&
13020         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13021           // P8 and later hardware should just use LOAD.
13022           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13023                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13024          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13025           LD->getAlignment() >= ScalarABIAlignment)) &&
13026         LD->getAlignment() < ABIAlignment) {
13027       // This is a type-legal unaligned Altivec or QPX load.
13028       SDValue Chain = LD->getChain();
13029       SDValue Ptr = LD->getBasePtr();
13030       bool isLittleEndian = Subtarget.isLittleEndian();
13031 
13032       // This implements the loading of unaligned vectors as described in
13033       // the venerable Apple Velocity Engine overview. Specifically:
13034       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13035       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13036       //
13037       // The general idea is to expand a sequence of one or more unaligned
13038       // loads into an alignment-based permutation-control instruction (lvsl
13039       // or lvsr), a series of regular vector loads (which always truncate
13040       // their input address to an aligned address), and a series of
13041       // permutations.  The results of these permutations are the requested
13042       // loaded values.  The trick is that the last "extra" load is not taken
13043       // from the address you might suspect (sizeof(vector) bytes after the
13044       // last requested load), but rather sizeof(vector) - 1 bytes after the
13045       // last requested vector. The point of this is to avoid a page fault if
13046       // the base address happened to be aligned. This works because if the
13047       // base address is aligned, then adding less than a full vector length
13048       // will cause the last vector in the sequence to be (re)loaded.
13049       // Otherwise, the next vector will be fetched as you might suspect was
13050       // necessary.
13051 
13052       // We might be able to reuse the permutation generation from
13053       // a different base address offset from this one by an aligned amount.
13054       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13055       // optimization later.
13056       Intrinsic::ID Intr, IntrLD, IntrPerm;
13057       MVT PermCntlTy, PermTy, LDTy;
13058       if (Subtarget.hasAltivec()) {
13059         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13060                                  Intrinsic::ppc_altivec_lvsl;
13061         IntrLD = Intrinsic::ppc_altivec_lvx;
13062         IntrPerm = Intrinsic::ppc_altivec_vperm;
13063         PermCntlTy = MVT::v16i8;
13064         PermTy = MVT::v4i32;
13065         LDTy = MVT::v4i32;
13066       } else {
13067         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13068                                        Intrinsic::ppc_qpx_qvlpcls;
13069         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13070                                        Intrinsic::ppc_qpx_qvlfs;
13071         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13072         PermCntlTy = MVT::v4f64;
13073         PermTy = MVT::v4f64;
13074         LDTy = MemVT.getSimpleVT();
13075       }
13076 
13077       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13078 
13079       // Create the new MMO for the new base load. It is like the original MMO,
13080       // but represents an area in memory almost twice the vector size centered
13081       // on the original address. If the address is unaligned, we might start
13082       // reading up to (sizeof(vector)-1) bytes below the address of the
13083       // original unaligned load.
13084       MachineFunction &MF = DAG.getMachineFunction();
13085       MachineMemOperand *BaseMMO =
13086         MF.getMachineMemOperand(LD->getMemOperand(),
13087                                 -(long)MemVT.getStoreSize()+1,
13088                                 2*MemVT.getStoreSize()-1);
13089 
13090       // Create the new base load.
13091       SDValue LDXIntID =
13092           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13093       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13094       SDValue BaseLoad =
13095         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13096                                 DAG.getVTList(PermTy, MVT::Other),
13097                                 BaseLoadOps, LDTy, BaseMMO);
13098 
13099       // Note that the value of IncOffset (which is provided to the next
13100       // load's pointer info offset value, and thus used to calculate the
13101       // alignment), and the value of IncValue (which is actually used to
13102       // increment the pointer value) are different! This is because we
13103       // require the next load to appear to be aligned, even though it
13104       // is actually offset from the base pointer by a lesser amount.
13105       int IncOffset = VT.getSizeInBits() / 8;
13106       int IncValue = IncOffset;
13107 
13108       // Walk (both up and down) the chain looking for another load at the real
13109       // (aligned) offset (the alignment of the other load does not matter in
13110       // this case). If found, then do not use the offset reduction trick, as
13111       // that will prevent the loads from being later combined (as they would
13112       // otherwise be duplicates).
13113       if (!findConsecutiveLoad(LD, DAG))
13114         --IncValue;
13115 
13116       SDValue Increment =
13117           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13118       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13119 
13120       MachineMemOperand *ExtraMMO =
13121         MF.getMachineMemOperand(LD->getMemOperand(),
13122                                 1, 2*MemVT.getStoreSize()-1);
13123       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13124       SDValue ExtraLoad =
13125         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13126                                 DAG.getVTList(PermTy, MVT::Other),
13127                                 ExtraLoadOps, LDTy, ExtraMMO);
13128 
13129       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13130         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13131 
13132       // Because vperm has a big-endian bias, we must reverse the order
13133       // of the input vectors and complement the permute control vector
13134       // when generating little endian code.  We have already handled the
13135       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13136       // and ExtraLoad here.
13137       SDValue Perm;
13138       if (isLittleEndian)
13139         Perm = BuildIntrinsicOp(IntrPerm,
13140                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13141       else
13142         Perm = BuildIntrinsicOp(IntrPerm,
13143                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13144 
13145       if (VT != PermTy)
13146         Perm = Subtarget.hasAltivec() ?
13147                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13148                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13149                                DAG.getTargetConstant(1, dl, MVT::i64));
13150                                // second argument is 1 because this rounding
13151                                // is always exact.
13152 
13153       // The output of the permutation is our loaded result, the TokenFactor is
13154       // our new chain.
13155       DCI.CombineTo(N, Perm, TF);
13156       return SDValue(N, 0);
13157     }
13158     }
13159     break;
13160     case ISD::INTRINSIC_WO_CHAIN: {
13161       bool isLittleEndian = Subtarget.isLittleEndian();
13162       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13163       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13164                                            : Intrinsic::ppc_altivec_lvsl);
13165       if ((IID == Intr ||
13166            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13167            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13168         N->getOperand(1)->getOpcode() == ISD::ADD) {
13169         SDValue Add = N->getOperand(1);
13170 
13171         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13172                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13173 
13174         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13175                                   APInt::getAllOnesValue(Bits /* alignment */)
13176                                       .zext(Add.getScalarValueSizeInBits()))) {
13177           SDNode *BasePtr = Add->getOperand(0).getNode();
13178           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13179                                     UE = BasePtr->use_end();
13180                UI != UE; ++UI) {
13181             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13182                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13183               // We've found another LVSL/LVSR, and this address is an aligned
13184               // multiple of that one. The results will be the same, so use the
13185               // one we've just found instead.
13186 
13187               return SDValue(*UI, 0);
13188             }
13189           }
13190         }
13191 
13192         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13193           SDNode *BasePtr = Add->getOperand(0).getNode();
13194           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13195                UE = BasePtr->use_end(); UI != UE; ++UI) {
13196             if (UI->getOpcode() == ISD::ADD &&
13197                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13198                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13199                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13200                 (1ULL << Bits) == 0) {
13201               SDNode *OtherAdd = *UI;
13202               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13203                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13204                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13205                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13206                   return SDValue(*VI, 0);
13207                 }
13208               }
13209             }
13210           }
13211         }
13212       }
13213 
13214       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13215       // Expose the vabsduw/h/b opportunity for down stream
13216       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13217           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13218            IID == Intrinsic::ppc_altivec_vmaxsh ||
13219            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13220         SDValue V1 = N->getOperand(1);
13221         SDValue V2 = N->getOperand(2);
13222         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13223              V1.getSimpleValueType() == MVT::v8i16 ||
13224              V1.getSimpleValueType() == MVT::v16i8) &&
13225             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13226           // (0-a, a)
13227           if (V1.getOpcode() == ISD::SUB &&
13228               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13229               V1.getOperand(1) == V2) {
13230             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13231           }
13232           // (a, 0-a)
13233           if (V2.getOpcode() == ISD::SUB &&
13234               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13235               V2.getOperand(1) == V1) {
13236             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13237           }
13238           // (x-y, y-x)
13239           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13240               V1.getOperand(0) == V2.getOperand(1) &&
13241               V1.getOperand(1) == V2.getOperand(0)) {
13242             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13243           }
13244         }
13245       }
13246     }
13247 
13248     break;
13249   case ISD::INTRINSIC_W_CHAIN:
13250     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13251     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13252     if (Subtarget.needsSwapsForVSXMemOps()) {
13253       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13254       default:
13255         break;
13256       case Intrinsic::ppc_vsx_lxvw4x:
13257       case Intrinsic::ppc_vsx_lxvd2x:
13258         return expandVSXLoadForLE(N, DCI);
13259       }
13260     }
13261     break;
13262   case ISD::INTRINSIC_VOID:
13263     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13264     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13265     if (Subtarget.needsSwapsForVSXMemOps()) {
13266       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13267       default:
13268         break;
13269       case Intrinsic::ppc_vsx_stxvw4x:
13270       case Intrinsic::ppc_vsx_stxvd2x:
13271         return expandVSXStoreForLE(N, DCI);
13272       }
13273     }
13274     break;
13275   case ISD::BSWAP:
13276     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13277     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13278         N->getOperand(0).hasOneUse() &&
13279         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13280          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13281           N->getValueType(0) == MVT::i64))) {
13282       SDValue Load = N->getOperand(0);
13283       LoadSDNode *LD = cast<LoadSDNode>(Load);
13284       // Create the byte-swapping load.
13285       SDValue Ops[] = {
13286         LD->getChain(),    // Chain
13287         LD->getBasePtr(),  // Ptr
13288         DAG.getValueType(N->getValueType(0)) // VT
13289       };
13290       SDValue BSLoad =
13291         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13292                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13293                                               MVT::i64 : MVT::i32, MVT::Other),
13294                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13295 
13296       // If this is an i16 load, insert the truncate.
13297       SDValue ResVal = BSLoad;
13298       if (N->getValueType(0) == MVT::i16)
13299         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13300 
13301       // First, combine the bswap away.  This makes the value produced by the
13302       // load dead.
13303       DCI.CombineTo(N, ResVal);
13304 
13305       // Next, combine the load away, we give it a bogus result value but a real
13306       // chain result.  The result value is dead because the bswap is dead.
13307       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13308 
13309       // Return N so it doesn't get rechecked!
13310       return SDValue(N, 0);
13311     }
13312     break;
13313   case PPCISD::VCMP:
13314     // If a VCMPo node already exists with exactly the same operands as this
13315     // node, use its result instead of this node (VCMPo computes both a CR6 and
13316     // a normal output).
13317     //
13318     if (!N->getOperand(0).hasOneUse() &&
13319         !N->getOperand(1).hasOneUse() &&
13320         !N->getOperand(2).hasOneUse()) {
13321 
13322       // Scan all of the users of the LHS, looking for VCMPo's that match.
13323       SDNode *VCMPoNode = nullptr;
13324 
13325       SDNode *LHSN = N->getOperand(0).getNode();
13326       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13327            UI != E; ++UI)
13328         if (UI->getOpcode() == PPCISD::VCMPo &&
13329             UI->getOperand(1) == N->getOperand(1) &&
13330             UI->getOperand(2) == N->getOperand(2) &&
13331             UI->getOperand(0) == N->getOperand(0)) {
13332           VCMPoNode = *UI;
13333           break;
13334         }
13335 
13336       // If there is no VCMPo node, or if the flag value has a single use, don't
13337       // transform this.
13338       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13339         break;
13340 
13341       // Look at the (necessarily single) use of the flag value.  If it has a
13342       // chain, this transformation is more complex.  Note that multiple things
13343       // could use the value result, which we should ignore.
13344       SDNode *FlagUser = nullptr;
13345       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13346            FlagUser == nullptr; ++UI) {
13347         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13348         SDNode *User = *UI;
13349         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13350           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13351             FlagUser = User;
13352             break;
13353           }
13354         }
13355       }
13356 
13357       // If the user is a MFOCRF instruction, we know this is safe.
13358       // Otherwise we give up for right now.
13359       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13360         return SDValue(VCMPoNode, 0);
13361     }
13362     break;
13363   case ISD::BRCOND: {
13364     SDValue Cond = N->getOperand(1);
13365     SDValue Target = N->getOperand(2);
13366 
13367     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13368         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13369           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13370 
13371       // We now need to make the intrinsic dead (it cannot be instruction
13372       // selected).
13373       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13374       assert(Cond.getNode()->hasOneUse() &&
13375              "Counter decrement has more than one use");
13376 
13377       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13378                          N->getOperand(0), Target);
13379     }
13380   }
13381   break;
13382   case ISD::BR_CC: {
13383     // If this is a branch on an altivec predicate comparison, lower this so
13384     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13385     // lowering is done pre-legalize, because the legalizer lowers the predicate
13386     // compare down to code that is difficult to reassemble.
13387     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13388     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13389 
13390     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13391     // value. If so, pass-through the AND to get to the intrinsic.
13392     if (LHS.getOpcode() == ISD::AND &&
13393         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13394         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13395           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13396         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13397         !isNullConstant(LHS.getOperand(1)))
13398       LHS = LHS.getOperand(0);
13399 
13400     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13401         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13402           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13403         isa<ConstantSDNode>(RHS)) {
13404       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13405              "Counter decrement comparison is not EQ or NE");
13406 
13407       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13408       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13409                     (CC == ISD::SETNE && !Val);
13410 
13411       // We now need to make the intrinsic dead (it cannot be instruction
13412       // selected).
13413       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13414       assert(LHS.getNode()->hasOneUse() &&
13415              "Counter decrement has more than one use");
13416 
13417       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13418                          N->getOperand(0), N->getOperand(4));
13419     }
13420 
13421     int CompareOpc;
13422     bool isDot;
13423 
13424     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13425         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13426         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13427       assert(isDot && "Can't compare against a vector result!");
13428 
13429       // If this is a comparison against something other than 0/1, then we know
13430       // that the condition is never/always true.
13431       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13432       if (Val != 0 && Val != 1) {
13433         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13434           return N->getOperand(0);
13435         // Always !=, turn it into an unconditional branch.
13436         return DAG.getNode(ISD::BR, dl, MVT::Other,
13437                            N->getOperand(0), N->getOperand(4));
13438       }
13439 
13440       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13441 
13442       // Create the PPCISD altivec 'dot' comparison node.
13443       SDValue Ops[] = {
13444         LHS.getOperand(2),  // LHS of compare
13445         LHS.getOperand(3),  // RHS of compare
13446         DAG.getConstant(CompareOpc, dl, MVT::i32)
13447       };
13448       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13449       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13450 
13451       // Unpack the result based on how the target uses it.
13452       PPC::Predicate CompOpc;
13453       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13454       default:  // Can't happen, don't crash on invalid number though.
13455       case 0:   // Branch on the value of the EQ bit of CR6.
13456         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13457         break;
13458       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13459         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13460         break;
13461       case 2:   // Branch on the value of the LT bit of CR6.
13462         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13463         break;
13464       case 3:   // Branch on the inverted value of the LT bit of CR6.
13465         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13466         break;
13467       }
13468 
13469       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13470                          DAG.getConstant(CompOpc, dl, MVT::i32),
13471                          DAG.getRegister(PPC::CR6, MVT::i32),
13472                          N->getOperand(4), CompNode.getValue(1));
13473     }
13474     break;
13475   }
13476   case ISD::BUILD_VECTOR:
13477     return DAGCombineBuildVector(N, DCI);
13478   case ISD::ABS:
13479     return combineABS(N, DCI);
13480   case ISD::VSELECT:
13481     return combineVSelect(N, DCI);
13482   }
13483 
13484   return SDValue();
13485 }
13486 
13487 SDValue
13488 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13489                                  SelectionDAG &DAG,
13490                                  SmallVectorImpl<SDNode *> &Created) const {
13491   // fold (sdiv X, pow2)
13492   EVT VT = N->getValueType(0);
13493   if (VT == MVT::i64 && !Subtarget.isPPC64())
13494     return SDValue();
13495   if ((VT != MVT::i32 && VT != MVT::i64) ||
13496       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13497     return SDValue();
13498 
13499   SDLoc DL(N);
13500   SDValue N0 = N->getOperand(0);
13501 
13502   bool IsNegPow2 = (-Divisor).isPowerOf2();
13503   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13504   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13505 
13506   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13507   Created.push_back(Op.getNode());
13508 
13509   if (IsNegPow2) {
13510     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13511     Created.push_back(Op.getNode());
13512   }
13513 
13514   return Op;
13515 }
13516 
13517 //===----------------------------------------------------------------------===//
13518 // Inline Assembly Support
13519 //===----------------------------------------------------------------------===//
13520 
13521 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13522                                                       KnownBits &Known,
13523                                                       const APInt &DemandedElts,
13524                                                       const SelectionDAG &DAG,
13525                                                       unsigned Depth) const {
13526   Known.resetAll();
13527   switch (Op.getOpcode()) {
13528   default: break;
13529   case PPCISD::LBRX: {
13530     // lhbrx is known to have the top bits cleared out.
13531     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13532       Known.Zero = 0xFFFF0000;
13533     break;
13534   }
13535   case ISD::INTRINSIC_WO_CHAIN: {
13536     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13537     default: break;
13538     case Intrinsic::ppc_altivec_vcmpbfp_p:
13539     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13540     case Intrinsic::ppc_altivec_vcmpequb_p:
13541     case Intrinsic::ppc_altivec_vcmpequh_p:
13542     case Intrinsic::ppc_altivec_vcmpequw_p:
13543     case Intrinsic::ppc_altivec_vcmpequd_p:
13544     case Intrinsic::ppc_altivec_vcmpgefp_p:
13545     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13546     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13547     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13548     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13549     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13550     case Intrinsic::ppc_altivec_vcmpgtub_p:
13551     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13552     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13553     case Intrinsic::ppc_altivec_vcmpgtud_p:
13554       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13555       break;
13556     }
13557   }
13558   }
13559 }
13560 
13561 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13562   switch (Subtarget.getDarwinDirective()) {
13563   default: break;
13564   case PPC::DIR_970:
13565   case PPC::DIR_PWR4:
13566   case PPC::DIR_PWR5:
13567   case PPC::DIR_PWR5X:
13568   case PPC::DIR_PWR6:
13569   case PPC::DIR_PWR6X:
13570   case PPC::DIR_PWR7:
13571   case PPC::DIR_PWR8:
13572   case PPC::DIR_PWR9: {
13573     if (!ML)
13574       break;
13575 
13576     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13577 
13578     // For small loops (between 5 and 8 instructions), align to a 32-byte
13579     // boundary so that the entire loop fits in one instruction-cache line.
13580     uint64_t LoopSize = 0;
13581     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13582       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13583         LoopSize += TII->getInstSizeInBytes(*J);
13584         if (LoopSize > 32)
13585           break;
13586       }
13587 
13588     if (LoopSize > 16 && LoopSize <= 32)
13589       return 5;
13590 
13591     break;
13592   }
13593   }
13594 
13595   return TargetLowering::getPrefLoopAlignment(ML);
13596 }
13597 
13598 /// getConstraintType - Given a constraint, return the type of
13599 /// constraint it is for this target.
13600 PPCTargetLowering::ConstraintType
13601 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13602   if (Constraint.size() == 1) {
13603     switch (Constraint[0]) {
13604     default: break;
13605     case 'b':
13606     case 'r':
13607     case 'f':
13608     case 'd':
13609     case 'v':
13610     case 'y':
13611       return C_RegisterClass;
13612     case 'Z':
13613       // FIXME: While Z does indicate a memory constraint, it specifically
13614       // indicates an r+r address (used in conjunction with the 'y' modifier
13615       // in the replacement string). Currently, we're forcing the base
13616       // register to be r0 in the asm printer (which is interpreted as zero)
13617       // and forming the complete address in the second register. This is
13618       // suboptimal.
13619       return C_Memory;
13620     }
13621   } else if (Constraint == "wc") { // individual CR bits.
13622     return C_RegisterClass;
13623   } else if (Constraint == "wa" || Constraint == "wd" ||
13624              Constraint == "wf" || Constraint == "ws" ||
13625              Constraint == "wi") {
13626     return C_RegisterClass; // VSX registers.
13627   }
13628   return TargetLowering::getConstraintType(Constraint);
13629 }
13630 
13631 /// Examine constraint type and operand type and determine a weight value.
13632 /// This object must already have been set up with the operand type
13633 /// and the current alternative constraint selected.
13634 TargetLowering::ConstraintWeight
13635 PPCTargetLowering::getSingleConstraintMatchWeight(
13636     AsmOperandInfo &info, const char *constraint) const {
13637   ConstraintWeight weight = CW_Invalid;
13638   Value *CallOperandVal = info.CallOperandVal;
13639     // If we don't have a value, we can't do a match,
13640     // but allow it at the lowest weight.
13641   if (!CallOperandVal)
13642     return CW_Default;
13643   Type *type = CallOperandVal->getType();
13644 
13645   // Look at the constraint type.
13646   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13647     return CW_Register; // an individual CR bit.
13648   else if ((StringRef(constraint) == "wa" ||
13649             StringRef(constraint) == "wd" ||
13650             StringRef(constraint) == "wf") &&
13651            type->isVectorTy())
13652     return CW_Register;
13653   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13654     return CW_Register;
13655   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13656     return CW_Register; // just hold 64-bit integers data.
13657 
13658   switch (*constraint) {
13659   default:
13660     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13661     break;
13662   case 'b':
13663     if (type->isIntegerTy())
13664       weight = CW_Register;
13665     break;
13666   case 'f':
13667     if (type->isFloatTy())
13668       weight = CW_Register;
13669     break;
13670   case 'd':
13671     if (type->isDoubleTy())
13672       weight = CW_Register;
13673     break;
13674   case 'v':
13675     if (type->isVectorTy())
13676       weight = CW_Register;
13677     break;
13678   case 'y':
13679     weight = CW_Register;
13680     break;
13681   case 'Z':
13682     weight = CW_Memory;
13683     break;
13684   }
13685   return weight;
13686 }
13687 
13688 std::pair<unsigned, const TargetRegisterClass *>
13689 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13690                                                 StringRef Constraint,
13691                                                 MVT VT) const {
13692   if (Constraint.size() == 1) {
13693     // GCC RS6000 Constraint Letters
13694     switch (Constraint[0]) {
13695     case 'b':   // R1-R31
13696       if (VT == MVT::i64 && Subtarget.isPPC64())
13697         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13698       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13699     case 'r':   // R0-R31
13700       if (VT == MVT::i64 && Subtarget.isPPC64())
13701         return std::make_pair(0U, &PPC::G8RCRegClass);
13702       return std::make_pair(0U, &PPC::GPRCRegClass);
13703     // 'd' and 'f' constraints are both defined to be "the floating point
13704     // registers", where one is for 32-bit and the other for 64-bit. We don't
13705     // really care overly much here so just give them all the same reg classes.
13706     case 'd':
13707     case 'f':
13708       if (Subtarget.hasSPE()) {
13709         if (VT == MVT::f32 || VT == MVT::i32)
13710           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13711         if (VT == MVT::f64 || VT == MVT::i64)
13712           return std::make_pair(0U, &PPC::SPERCRegClass);
13713       } else {
13714         if (VT == MVT::f32 || VT == MVT::i32)
13715           return std::make_pair(0U, &PPC::F4RCRegClass);
13716         if (VT == MVT::f64 || VT == MVT::i64)
13717           return std::make_pair(0U, &PPC::F8RCRegClass);
13718         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13719           return std::make_pair(0U, &PPC::QFRCRegClass);
13720         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13721           return std::make_pair(0U, &PPC::QSRCRegClass);
13722       }
13723       break;
13724     case 'v':
13725       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13726         return std::make_pair(0U, &PPC::QFRCRegClass);
13727       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13728         return std::make_pair(0U, &PPC::QSRCRegClass);
13729       if (Subtarget.hasAltivec())
13730         return std::make_pair(0U, &PPC::VRRCRegClass);
13731       break;
13732     case 'y':   // crrc
13733       return std::make_pair(0U, &PPC::CRRCRegClass);
13734     }
13735   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13736     // An individual CR bit.
13737     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13738   } else if ((Constraint == "wa" || Constraint == "wd" ||
13739              Constraint == "wf" || Constraint == "wi") &&
13740              Subtarget.hasVSX()) {
13741     return std::make_pair(0U, &PPC::VSRCRegClass);
13742   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13743     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13744       return std::make_pair(0U, &PPC::VSSRCRegClass);
13745     else
13746       return std::make_pair(0U, &PPC::VSFRCRegClass);
13747   }
13748 
13749   std::pair<unsigned, const TargetRegisterClass *> R =
13750       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13751 
13752   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13753   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13754   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13755   // register.
13756   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13757   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13758   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13759       PPC::GPRCRegClass.contains(R.first))
13760     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13761                             PPC::sub_32, &PPC::G8RCRegClass),
13762                           &PPC::G8RCRegClass);
13763 
13764   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13765   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13766     R.first = PPC::CR0;
13767     R.second = &PPC::CRRCRegClass;
13768   }
13769 
13770   return R;
13771 }
13772 
13773 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13774 /// vector.  If it is invalid, don't add anything to Ops.
13775 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13776                                                      std::string &Constraint,
13777                                                      std::vector<SDValue>&Ops,
13778                                                      SelectionDAG &DAG) const {
13779   SDValue Result;
13780 
13781   // Only support length 1 constraints.
13782   if (Constraint.length() > 1) return;
13783 
13784   char Letter = Constraint[0];
13785   switch (Letter) {
13786   default: break;
13787   case 'I':
13788   case 'J':
13789   case 'K':
13790   case 'L':
13791   case 'M':
13792   case 'N':
13793   case 'O':
13794   case 'P': {
13795     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13796     if (!CST) return; // Must be an immediate to match.
13797     SDLoc dl(Op);
13798     int64_t Value = CST->getSExtValue();
13799     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13800                          // numbers are printed as such.
13801     switch (Letter) {
13802     default: llvm_unreachable("Unknown constraint letter!");
13803     case 'I':  // "I" is a signed 16-bit constant.
13804       if (isInt<16>(Value))
13805         Result = DAG.getTargetConstant(Value, dl, TCVT);
13806       break;
13807     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13808       if (isShiftedUInt<16, 16>(Value))
13809         Result = DAG.getTargetConstant(Value, dl, TCVT);
13810       break;
13811     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13812       if (isShiftedInt<16, 16>(Value))
13813         Result = DAG.getTargetConstant(Value, dl, TCVT);
13814       break;
13815     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13816       if (isUInt<16>(Value))
13817         Result = DAG.getTargetConstant(Value, dl, TCVT);
13818       break;
13819     case 'M':  // "M" is a constant that is greater than 31.
13820       if (Value > 31)
13821         Result = DAG.getTargetConstant(Value, dl, TCVT);
13822       break;
13823     case 'N':  // "N" is a positive constant that is an exact power of two.
13824       if (Value > 0 && isPowerOf2_64(Value))
13825         Result = DAG.getTargetConstant(Value, dl, TCVT);
13826       break;
13827     case 'O':  // "O" is the constant zero.
13828       if (Value == 0)
13829         Result = DAG.getTargetConstant(Value, dl, TCVT);
13830       break;
13831     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13832       if (isInt<16>(-Value))
13833         Result = DAG.getTargetConstant(Value, dl, TCVT);
13834       break;
13835     }
13836     break;
13837   }
13838   }
13839 
13840   if (Result.getNode()) {
13841     Ops.push_back(Result);
13842     return;
13843   }
13844 
13845   // Handle standard constraint letters.
13846   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13847 }
13848 
13849 // isLegalAddressingMode - Return true if the addressing mode represented
13850 // by AM is legal for this target, for a load/store of the specified type.
13851 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13852                                               const AddrMode &AM, Type *Ty,
13853                                               unsigned AS, Instruction *I) const {
13854   // PPC does not allow r+i addressing modes for vectors!
13855   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13856     return false;
13857 
13858   // PPC allows a sign-extended 16-bit immediate field.
13859   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13860     return false;
13861 
13862   // No global is ever allowed as a base.
13863   if (AM.BaseGV)
13864     return false;
13865 
13866   // PPC only support r+r,
13867   switch (AM.Scale) {
13868   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13869     break;
13870   case 1:
13871     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13872       return false;
13873     // Otherwise we have r+r or r+i.
13874     break;
13875   case 2:
13876     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13877       return false;
13878     // Allow 2*r as r+r.
13879     break;
13880   default:
13881     // No other scales are supported.
13882     return false;
13883   }
13884 
13885   return true;
13886 }
13887 
13888 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13889                                            SelectionDAG &DAG) const {
13890   MachineFunction &MF = DAG.getMachineFunction();
13891   MachineFrameInfo &MFI = MF.getFrameInfo();
13892   MFI.setReturnAddressIsTaken(true);
13893 
13894   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13895     return SDValue();
13896 
13897   SDLoc dl(Op);
13898   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13899 
13900   // Make sure the function does not optimize away the store of the RA to
13901   // the stack.
13902   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13903   FuncInfo->setLRStoreRequired();
13904   bool isPPC64 = Subtarget.isPPC64();
13905   auto PtrVT = getPointerTy(MF.getDataLayout());
13906 
13907   if (Depth > 0) {
13908     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13909     SDValue Offset =
13910         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13911                         isPPC64 ? MVT::i64 : MVT::i32);
13912     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13913                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13914                        MachinePointerInfo());
13915   }
13916 
13917   // Just load the return address off the stack.
13918   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13919   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13920                      MachinePointerInfo());
13921 }
13922 
13923 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13924                                           SelectionDAG &DAG) const {
13925   SDLoc dl(Op);
13926   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13927 
13928   MachineFunction &MF = DAG.getMachineFunction();
13929   MachineFrameInfo &MFI = MF.getFrameInfo();
13930   MFI.setFrameAddressIsTaken(true);
13931 
13932   EVT PtrVT = getPointerTy(MF.getDataLayout());
13933   bool isPPC64 = PtrVT == MVT::i64;
13934 
13935   // Naked functions never have a frame pointer, and so we use r1. For all
13936   // other functions, this decision must be delayed until during PEI.
13937   unsigned FrameReg;
13938   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13939     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13940   else
13941     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13942 
13943   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13944                                          PtrVT);
13945   while (Depth--)
13946     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13947                             FrameAddr, MachinePointerInfo());
13948   return FrameAddr;
13949 }
13950 
13951 // FIXME? Maybe this could be a TableGen attribute on some registers and
13952 // this table could be generated automatically from RegInfo.
13953 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13954                                               SelectionDAG &DAG) const {
13955   bool isPPC64 = Subtarget.isPPC64();
13956   bool isDarwinABI = Subtarget.isDarwinABI();
13957 
13958   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13959       (!isPPC64 && VT != MVT::i32))
13960     report_fatal_error("Invalid register global variable type");
13961 
13962   bool is64Bit = isPPC64 && VT == MVT::i64;
13963   unsigned Reg = StringSwitch<unsigned>(RegName)
13964                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13965                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13966                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13967                                   (is64Bit ? PPC::X13 : PPC::R13))
13968                    .Default(0);
13969 
13970   if (Reg)
13971     return Reg;
13972   report_fatal_error("Invalid register name global variable");
13973 }
13974 
13975 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
13976   // 32-bit SVR4 ABI access everything as got-indirect.
13977   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
13978     return true;
13979 
13980   CodeModel::Model CModel = getTargetMachine().getCodeModel();
13981   // If it is small or large code model, module locals are accessed
13982   // indirectly by loading their address from .toc/.got. The difference
13983   // is that for large code model we have ADDISTocHa + LDtocL and for
13984   // small code model we simply have LDtoc.
13985   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
13986     return true;
13987 
13988   // JumpTable and BlockAddress are accessed as got-indirect.
13989   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
13990     return true;
13991 
13992   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
13993     const GlobalValue *GV = G->getGlobal();
13994     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
13995     // The NLP flag indicates that a global access has to use an
13996     // extra indirection.
13997     if (GVFlags & PPCII::MO_NLP_FLAG)
13998       return true;
13999   }
14000 
14001   return false;
14002 }
14003 
14004 bool
14005 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14006   // The PowerPC target isn't yet aware of offsets.
14007   return false;
14008 }
14009 
14010 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14011                                            const CallInst &I,
14012                                            MachineFunction &MF,
14013                                            unsigned Intrinsic) const {
14014   switch (Intrinsic) {
14015   case Intrinsic::ppc_qpx_qvlfd:
14016   case Intrinsic::ppc_qpx_qvlfs:
14017   case Intrinsic::ppc_qpx_qvlfcd:
14018   case Intrinsic::ppc_qpx_qvlfcs:
14019   case Intrinsic::ppc_qpx_qvlfiwa:
14020   case Intrinsic::ppc_qpx_qvlfiwz:
14021   case Intrinsic::ppc_altivec_lvx:
14022   case Intrinsic::ppc_altivec_lvxl:
14023   case Intrinsic::ppc_altivec_lvebx:
14024   case Intrinsic::ppc_altivec_lvehx:
14025   case Intrinsic::ppc_altivec_lvewx:
14026   case Intrinsic::ppc_vsx_lxvd2x:
14027   case Intrinsic::ppc_vsx_lxvw4x: {
14028     EVT VT;
14029     switch (Intrinsic) {
14030     case Intrinsic::ppc_altivec_lvebx:
14031       VT = MVT::i8;
14032       break;
14033     case Intrinsic::ppc_altivec_lvehx:
14034       VT = MVT::i16;
14035       break;
14036     case Intrinsic::ppc_altivec_lvewx:
14037       VT = MVT::i32;
14038       break;
14039     case Intrinsic::ppc_vsx_lxvd2x:
14040       VT = MVT::v2f64;
14041       break;
14042     case Intrinsic::ppc_qpx_qvlfd:
14043       VT = MVT::v4f64;
14044       break;
14045     case Intrinsic::ppc_qpx_qvlfs:
14046       VT = MVT::v4f32;
14047       break;
14048     case Intrinsic::ppc_qpx_qvlfcd:
14049       VT = MVT::v2f64;
14050       break;
14051     case Intrinsic::ppc_qpx_qvlfcs:
14052       VT = MVT::v2f32;
14053       break;
14054     default:
14055       VT = MVT::v4i32;
14056       break;
14057     }
14058 
14059     Info.opc = ISD::INTRINSIC_W_CHAIN;
14060     Info.memVT = VT;
14061     Info.ptrVal = I.getArgOperand(0);
14062     Info.offset = -VT.getStoreSize()+1;
14063     Info.size = 2*VT.getStoreSize()-1;
14064     Info.align = 1;
14065     Info.flags = MachineMemOperand::MOLoad;
14066     return true;
14067   }
14068   case Intrinsic::ppc_qpx_qvlfda:
14069   case Intrinsic::ppc_qpx_qvlfsa:
14070   case Intrinsic::ppc_qpx_qvlfcda:
14071   case Intrinsic::ppc_qpx_qvlfcsa:
14072   case Intrinsic::ppc_qpx_qvlfiwaa:
14073   case Intrinsic::ppc_qpx_qvlfiwza: {
14074     EVT VT;
14075     switch (Intrinsic) {
14076     case Intrinsic::ppc_qpx_qvlfda:
14077       VT = MVT::v4f64;
14078       break;
14079     case Intrinsic::ppc_qpx_qvlfsa:
14080       VT = MVT::v4f32;
14081       break;
14082     case Intrinsic::ppc_qpx_qvlfcda:
14083       VT = MVT::v2f64;
14084       break;
14085     case Intrinsic::ppc_qpx_qvlfcsa:
14086       VT = MVT::v2f32;
14087       break;
14088     default:
14089       VT = MVT::v4i32;
14090       break;
14091     }
14092 
14093     Info.opc = ISD::INTRINSIC_W_CHAIN;
14094     Info.memVT = VT;
14095     Info.ptrVal = I.getArgOperand(0);
14096     Info.offset = 0;
14097     Info.size = VT.getStoreSize();
14098     Info.align = 1;
14099     Info.flags = MachineMemOperand::MOLoad;
14100     return true;
14101   }
14102   case Intrinsic::ppc_qpx_qvstfd:
14103   case Intrinsic::ppc_qpx_qvstfs:
14104   case Intrinsic::ppc_qpx_qvstfcd:
14105   case Intrinsic::ppc_qpx_qvstfcs:
14106   case Intrinsic::ppc_qpx_qvstfiw:
14107   case Intrinsic::ppc_altivec_stvx:
14108   case Intrinsic::ppc_altivec_stvxl:
14109   case Intrinsic::ppc_altivec_stvebx:
14110   case Intrinsic::ppc_altivec_stvehx:
14111   case Intrinsic::ppc_altivec_stvewx:
14112   case Intrinsic::ppc_vsx_stxvd2x:
14113   case Intrinsic::ppc_vsx_stxvw4x: {
14114     EVT VT;
14115     switch (Intrinsic) {
14116     case Intrinsic::ppc_altivec_stvebx:
14117       VT = MVT::i8;
14118       break;
14119     case Intrinsic::ppc_altivec_stvehx:
14120       VT = MVT::i16;
14121       break;
14122     case Intrinsic::ppc_altivec_stvewx:
14123       VT = MVT::i32;
14124       break;
14125     case Intrinsic::ppc_vsx_stxvd2x:
14126       VT = MVT::v2f64;
14127       break;
14128     case Intrinsic::ppc_qpx_qvstfd:
14129       VT = MVT::v4f64;
14130       break;
14131     case Intrinsic::ppc_qpx_qvstfs:
14132       VT = MVT::v4f32;
14133       break;
14134     case Intrinsic::ppc_qpx_qvstfcd:
14135       VT = MVT::v2f64;
14136       break;
14137     case Intrinsic::ppc_qpx_qvstfcs:
14138       VT = MVT::v2f32;
14139       break;
14140     default:
14141       VT = MVT::v4i32;
14142       break;
14143     }
14144 
14145     Info.opc = ISD::INTRINSIC_VOID;
14146     Info.memVT = VT;
14147     Info.ptrVal = I.getArgOperand(1);
14148     Info.offset = -VT.getStoreSize()+1;
14149     Info.size = 2*VT.getStoreSize()-1;
14150     Info.align = 1;
14151     Info.flags = MachineMemOperand::MOStore;
14152     return true;
14153   }
14154   case Intrinsic::ppc_qpx_qvstfda:
14155   case Intrinsic::ppc_qpx_qvstfsa:
14156   case Intrinsic::ppc_qpx_qvstfcda:
14157   case Intrinsic::ppc_qpx_qvstfcsa:
14158   case Intrinsic::ppc_qpx_qvstfiwa: {
14159     EVT VT;
14160     switch (Intrinsic) {
14161     case Intrinsic::ppc_qpx_qvstfda:
14162       VT = MVT::v4f64;
14163       break;
14164     case Intrinsic::ppc_qpx_qvstfsa:
14165       VT = MVT::v4f32;
14166       break;
14167     case Intrinsic::ppc_qpx_qvstfcda:
14168       VT = MVT::v2f64;
14169       break;
14170     case Intrinsic::ppc_qpx_qvstfcsa:
14171       VT = MVT::v2f32;
14172       break;
14173     default:
14174       VT = MVT::v4i32;
14175       break;
14176     }
14177 
14178     Info.opc = ISD::INTRINSIC_VOID;
14179     Info.memVT = VT;
14180     Info.ptrVal = I.getArgOperand(1);
14181     Info.offset = 0;
14182     Info.size = VT.getStoreSize();
14183     Info.align = 1;
14184     Info.flags = MachineMemOperand::MOStore;
14185     return true;
14186   }
14187   default:
14188     break;
14189   }
14190 
14191   return false;
14192 }
14193 
14194 /// getOptimalMemOpType - Returns the target specific optimal type for load
14195 /// and store operations as a result of memset, memcpy, and memmove
14196 /// lowering. If DstAlign is zero that means it's safe to destination
14197 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14198 /// means there isn't a need to check it against alignment requirement,
14199 /// probably because the source does not need to be loaded. If 'IsMemset' is
14200 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14201 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14202 /// source is constant so it does not need to be loaded.
14203 /// It returns EVT::Other if the type should be determined using generic
14204 /// target-independent logic.
14205 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
14206                                            unsigned DstAlign, unsigned SrcAlign,
14207                                            bool IsMemset, bool ZeroMemset,
14208                                            bool MemcpyStrSrc,
14209                                            MachineFunction &MF) const {
14210   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14211     const Function &F = MF.getFunction();
14212     // When expanding a memset, require at least two QPX instructions to cover
14213     // the cost of loading the value to be stored from the constant pool.
14214     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14215        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14216         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
14217       return MVT::v4f64;
14218     }
14219 
14220     // We should use Altivec/VSX loads and stores when available. For unaligned
14221     // addresses, unaligned VSX loads are only fast starting with the P8.
14222     if (Subtarget.hasAltivec() && Size >= 16 &&
14223         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14224          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14225       return MVT::v4i32;
14226   }
14227 
14228   if (Subtarget.isPPC64()) {
14229     return MVT::i64;
14230   }
14231 
14232   return MVT::i32;
14233 }
14234 
14235 /// Returns true if it is beneficial to convert a load of a constant
14236 /// to just the constant itself.
14237 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14238                                                           Type *Ty) const {
14239   assert(Ty->isIntegerTy());
14240 
14241   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14242   return !(BitSize == 0 || BitSize > 64);
14243 }
14244 
14245 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14246   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14247     return false;
14248   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14249   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14250   return NumBits1 == 64 && NumBits2 == 32;
14251 }
14252 
14253 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14254   if (!VT1.isInteger() || !VT2.isInteger())
14255     return false;
14256   unsigned NumBits1 = VT1.getSizeInBits();
14257   unsigned NumBits2 = VT2.getSizeInBits();
14258   return NumBits1 == 64 && NumBits2 == 32;
14259 }
14260 
14261 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14262   // Generally speaking, zexts are not free, but they are free when they can be
14263   // folded with other operations.
14264   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14265     EVT MemVT = LD->getMemoryVT();
14266     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14267          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14268         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14269          LD->getExtensionType() == ISD::ZEXTLOAD))
14270       return true;
14271   }
14272 
14273   // FIXME: Add other cases...
14274   //  - 32-bit shifts with a zext to i64
14275   //  - zext after ctlz, bswap, etc.
14276   //  - zext after and by a constant mask
14277 
14278   return TargetLowering::isZExtFree(Val, VT2);
14279 }
14280 
14281 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14282   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14283          "invalid fpext types");
14284   // Extending to float128 is not free.
14285   if (DestVT == MVT::f128)
14286     return false;
14287   return true;
14288 }
14289 
14290 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14291   return isInt<16>(Imm) || isUInt<16>(Imm);
14292 }
14293 
14294 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14295   return isInt<16>(Imm) || isUInt<16>(Imm);
14296 }
14297 
14298 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14299                                                        unsigned,
14300                                                        unsigned,
14301                                                        bool *Fast) const {
14302   if (DisablePPCUnaligned)
14303     return false;
14304 
14305   // PowerPC supports unaligned memory access for simple non-vector types.
14306   // Although accessing unaligned addresses is not as efficient as accessing
14307   // aligned addresses, it is generally more efficient than manual expansion,
14308   // and generally only traps for software emulation when crossing page
14309   // boundaries.
14310 
14311   if (!VT.isSimple())
14312     return false;
14313 
14314   if (VT.getSimpleVT().isVector()) {
14315     if (Subtarget.hasVSX()) {
14316       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14317           VT != MVT::v4f32 && VT != MVT::v4i32)
14318         return false;
14319     } else {
14320       return false;
14321     }
14322   }
14323 
14324   if (VT == MVT::ppcf128)
14325     return false;
14326 
14327   if (Fast)
14328     *Fast = true;
14329 
14330   return true;
14331 }
14332 
14333 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14334   VT = VT.getScalarType();
14335 
14336   if (!VT.isSimple())
14337     return false;
14338 
14339   switch (VT.getSimpleVT().SimpleTy) {
14340   case MVT::f32:
14341   case MVT::f64:
14342     return true;
14343   case MVT::f128:
14344     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14345   default:
14346     break;
14347   }
14348 
14349   return false;
14350 }
14351 
14352 const MCPhysReg *
14353 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14354   // LR is a callee-save register, but we must treat it as clobbered by any call
14355   // site. Hence we include LR in the scratch registers, which are in turn added
14356   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14357   // to CTR, which is used by any indirect call.
14358   static const MCPhysReg ScratchRegs[] = {
14359     PPC::X12, PPC::LR8, PPC::CTR8, 0
14360   };
14361 
14362   return ScratchRegs;
14363 }
14364 
14365 unsigned PPCTargetLowering::getExceptionPointerRegister(
14366     const Constant *PersonalityFn) const {
14367   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14368 }
14369 
14370 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14371     const Constant *PersonalityFn) const {
14372   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14373 }
14374 
14375 bool
14376 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14377                      EVT VT , unsigned DefinedValues) const {
14378   if (VT == MVT::v2i64)
14379     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14380 
14381   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14382     return true;
14383 
14384   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14385 }
14386 
14387 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14388   if (DisableILPPref || Subtarget.enableMachineScheduler())
14389     return TargetLowering::getSchedulingPreference(N);
14390 
14391   return Sched::ILP;
14392 }
14393 
14394 // Create a fast isel object.
14395 FastISel *
14396 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14397                                   const TargetLibraryInfo *LibInfo) const {
14398   return PPC::createFastISel(FuncInfo, LibInfo);
14399 }
14400 
14401 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14402   if (Subtarget.isDarwinABI()) return;
14403   if (!Subtarget.isPPC64()) return;
14404 
14405   // Update IsSplitCSR in PPCFunctionInfo
14406   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14407   PFI->setIsSplitCSR(true);
14408 }
14409 
14410 void PPCTargetLowering::insertCopiesSplitCSR(
14411   MachineBasicBlock *Entry,
14412   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14413   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14414   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14415   if (!IStart)
14416     return;
14417 
14418   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14419   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14420   MachineBasicBlock::iterator MBBI = Entry->begin();
14421   for (const MCPhysReg *I = IStart; *I; ++I) {
14422     const TargetRegisterClass *RC = nullptr;
14423     if (PPC::G8RCRegClass.contains(*I))
14424       RC = &PPC::G8RCRegClass;
14425     else if (PPC::F8RCRegClass.contains(*I))
14426       RC = &PPC::F8RCRegClass;
14427     else if (PPC::CRRCRegClass.contains(*I))
14428       RC = &PPC::CRRCRegClass;
14429     else if (PPC::VRRCRegClass.contains(*I))
14430       RC = &PPC::VRRCRegClass;
14431     else
14432       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14433 
14434     unsigned NewVR = MRI->createVirtualRegister(RC);
14435     // Create copy from CSR to a virtual register.
14436     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14437     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14438     // nounwind. If we want to generalize this later, we may need to emit
14439     // CFI pseudo-instructions.
14440     assert(Entry->getParent()->getFunction().hasFnAttribute(
14441              Attribute::NoUnwind) &&
14442            "Function should be nounwind in insertCopiesSplitCSR!");
14443     Entry->addLiveIn(*I);
14444     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14445       .addReg(*I);
14446 
14447     // Insert the copy-back instructions right before the terminator.
14448     for (auto *Exit : Exits)
14449       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14450               TII->get(TargetOpcode::COPY), *I)
14451         .addReg(NewVR);
14452   }
14453 }
14454 
14455 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14456 bool PPCTargetLowering::useLoadStackGuardNode() const {
14457   if (!Subtarget.isTargetLinux())
14458     return TargetLowering::useLoadStackGuardNode();
14459   return true;
14460 }
14461 
14462 // Override to disable global variable loading on Linux.
14463 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14464   if (!Subtarget.isTargetLinux())
14465     return TargetLowering::insertSSPDeclarations(M);
14466 }
14467 
14468 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14469                                      bool ForCodeSize) const {
14470   if (!VT.isSimple() || !Subtarget.hasVSX())
14471     return false;
14472 
14473   switch(VT.getSimpleVT().SimpleTy) {
14474   default:
14475     // For FP types that are currently not supported by PPC backend, return
14476     // false. Examples: f16, f80.
14477     return false;
14478   case MVT::f32:
14479   case MVT::f64:
14480   case MVT::ppcf128:
14481     return Imm.isPosZero();
14482   }
14483 }
14484 
14485 // For vector shift operation op, fold
14486 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14487 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14488                                   SelectionDAG &DAG) {
14489   SDValue N0 = N->getOperand(0);
14490   SDValue N1 = N->getOperand(1);
14491   EVT VT = N0.getValueType();
14492   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14493   unsigned Opcode = N->getOpcode();
14494   unsigned TargetOpcode;
14495 
14496   switch (Opcode) {
14497   default:
14498     llvm_unreachable("Unexpected shift operation");
14499   case ISD::SHL:
14500     TargetOpcode = PPCISD::SHL;
14501     break;
14502   case ISD::SRL:
14503     TargetOpcode = PPCISD::SRL;
14504     break;
14505   case ISD::SRA:
14506     TargetOpcode = PPCISD::SRA;
14507     break;
14508   }
14509 
14510   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14511       N1->getOpcode() == ISD::AND)
14512     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14513       if (Mask->getZExtValue() == OpSizeInBits - 1)
14514         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14515 
14516   return SDValue();
14517 }
14518 
14519 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14520   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14521     return Value;
14522 
14523   SDValue N0 = N->getOperand(0);
14524   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14525   if (!Subtarget.isISA3_0() ||
14526       N0.getOpcode() != ISD::SIGN_EXTEND ||
14527       N0.getOperand(0).getValueType() != MVT::i32 ||
14528       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14529     return SDValue();
14530 
14531   // We can't save an operation here if the value is already extended, and
14532   // the existing shift is easier to combine.
14533   SDValue ExtsSrc = N0.getOperand(0);
14534   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14535       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14536     return SDValue();
14537 
14538   SDLoc DL(N0);
14539   SDValue ShiftBy = SDValue(CN1, 0);
14540   // We want the shift amount to be i32 on the extswli, but the shift could
14541   // have an i64.
14542   if (ShiftBy.getValueType() == MVT::i64)
14543     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14544 
14545   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14546                          ShiftBy);
14547 }
14548 
14549 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14550   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14551     return Value;
14552 
14553   return SDValue();
14554 }
14555 
14556 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14557   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14558     return Value;
14559 
14560   return SDValue();
14561 }
14562 
14563 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14564 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14565 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14566 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14567 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14568                                  const PPCSubtarget &Subtarget) {
14569   if (!Subtarget.isPPC64())
14570     return SDValue();
14571 
14572   SDValue LHS = N->getOperand(0);
14573   SDValue RHS = N->getOperand(1);
14574 
14575   auto isZextOfCompareWithConstant = [](SDValue Op) {
14576     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14577         Op.getValueType() != MVT::i64)
14578       return false;
14579 
14580     SDValue Cmp = Op.getOperand(0);
14581     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14582         Cmp.getOperand(0).getValueType() != MVT::i64)
14583       return false;
14584 
14585     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14586       int64_t NegConstant = 0 - Constant->getSExtValue();
14587       // Due to the limitations of the addi instruction,
14588       // -C is required to be [-32768, 32767].
14589       return isInt<16>(NegConstant);
14590     }
14591 
14592     return false;
14593   };
14594 
14595   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14596   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14597 
14598   // If there is a pattern, canonicalize a zext operand to the RHS.
14599   if (LHSHasPattern && !RHSHasPattern)
14600     std::swap(LHS, RHS);
14601   else if (!LHSHasPattern && !RHSHasPattern)
14602     return SDValue();
14603 
14604   SDLoc DL(N);
14605   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14606   SDValue Cmp = RHS.getOperand(0);
14607   SDValue Z = Cmp.getOperand(0);
14608   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14609 
14610   assert(Constant && "Constant Should not be a null pointer.");
14611   int64_t NegConstant = 0 - Constant->getSExtValue();
14612 
14613   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14614   default: break;
14615   case ISD::SETNE: {
14616     //                                 when C == 0
14617     //                             --> addze X, (addic Z, -1).carry
14618     //                            /
14619     // add X, (zext(setne Z, C))--
14620     //                            \    when -32768 <= -C <= 32767 && C != 0
14621     //                             --> addze X, (addic (addi Z, -C), -1).carry
14622     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14623                               DAG.getConstant(NegConstant, DL, MVT::i64));
14624     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14625     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14626                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14627     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14628                        SDValue(Addc.getNode(), 1));
14629     }
14630   case ISD::SETEQ: {
14631     //                                 when C == 0
14632     //                             --> addze X, (subfic Z, 0).carry
14633     //                            /
14634     // add X, (zext(sete  Z, C))--
14635     //                            \    when -32768 <= -C <= 32767 && C != 0
14636     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14637     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14638                               DAG.getConstant(NegConstant, DL, MVT::i64));
14639     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14640     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14641                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14642     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14643                        SDValue(Subc.getNode(), 1));
14644     }
14645   }
14646 
14647   return SDValue();
14648 }
14649 
14650 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14651   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14652     return Value;
14653 
14654   return SDValue();
14655 }
14656 
14657 // Detect TRUNCATE operations on bitcasts of float128 values.
14658 // What we are looking for here is the situtation where we extract a subset
14659 // of bits from a 128 bit float.
14660 // This can be of two forms:
14661 // 1) BITCAST of f128 feeding TRUNCATE
14662 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14663 // The reason this is required is because we do not have a legal i128 type
14664 // and so we want to prevent having to store the f128 and then reload part
14665 // of it.
14666 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14667                                            DAGCombinerInfo &DCI) const {
14668   // If we are using CRBits then try that first.
14669   if (Subtarget.useCRBits()) {
14670     // Check if CRBits did anything and return that if it did.
14671     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14672       return CRTruncValue;
14673   }
14674 
14675   SDLoc dl(N);
14676   SDValue Op0 = N->getOperand(0);
14677 
14678   // Looking for a truncate of i128 to i64.
14679   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14680     return SDValue();
14681 
14682   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14683 
14684   // SRL feeding TRUNCATE.
14685   if (Op0.getOpcode() == ISD::SRL) {
14686     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14687     // The right shift has to be by 64 bits.
14688     if (!ConstNode || ConstNode->getZExtValue() != 64)
14689       return SDValue();
14690 
14691     // Switch the element number to extract.
14692     EltToExtract = EltToExtract ? 0 : 1;
14693     // Update Op0 past the SRL.
14694     Op0 = Op0.getOperand(0);
14695   }
14696 
14697   // BITCAST feeding a TRUNCATE possibly via SRL.
14698   if (Op0.getOpcode() == ISD::BITCAST &&
14699       Op0.getValueType() == MVT::i128 &&
14700       Op0.getOperand(0).getValueType() == MVT::f128) {
14701     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14702     return DCI.DAG.getNode(
14703         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14704         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14705   }
14706   return SDValue();
14707 }
14708 
14709 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
14710   SelectionDAG &DAG = DCI.DAG;
14711 
14712   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
14713   if (!ConstOpOrElement)
14714     return SDValue();
14715 
14716   // An imul is usually smaller than the alternative sequence for legal type.
14717   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
14718       isOperationLegal(ISD::MUL, N->getValueType(0)))
14719     return SDValue();
14720 
14721   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
14722     switch (this->Subtarget.getDarwinDirective()) {
14723     default:
14724       // TODO: enhance the condition for subtarget before pwr8
14725       return false;
14726     case PPC::DIR_PWR8:
14727       //  type        mul     add    shl
14728       // scalar        4       1      1
14729       // vector        7       2      2
14730       return true;
14731     case PPC::DIR_PWR9:
14732       //  type        mul     add    shl
14733       // scalar        5       2      2
14734       // vector        7       2      2
14735 
14736       // The cycle RATIO of related operations are showed as a table above.
14737       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
14738       // scalar and vector type. For 2 instrs patterns, add/sub + shl
14739       // are 4, it is always profitable; but for 3 instrs patterns
14740       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
14741       // So we should only do it for vector type.
14742       return IsAddOne && IsNeg ? VT.isVector() : true;
14743     }
14744   };
14745 
14746   EVT VT = N->getValueType(0);
14747   SDLoc DL(N);
14748 
14749   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
14750   bool IsNeg = MulAmt.isNegative();
14751   APInt MulAmtAbs = MulAmt.abs();
14752 
14753   if ((MulAmtAbs - 1).isPowerOf2()) {
14754     // (mul x, 2^N + 1) => (add (shl x, N), x)
14755     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
14756 
14757     if (!IsProfitable(IsNeg, true, VT))
14758       return SDValue();
14759 
14760     SDValue Op0 = N->getOperand(0);
14761     SDValue Op1 =
14762         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14763                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
14764     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
14765 
14766     if (!IsNeg)
14767       return Res;
14768 
14769     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
14770   } else if ((MulAmtAbs + 1).isPowerOf2()) {
14771     // (mul x, 2^N - 1) => (sub (shl x, N), x)
14772     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14773 
14774     if (!IsProfitable(IsNeg, false, VT))
14775       return SDValue();
14776 
14777     SDValue Op0 = N->getOperand(0);
14778     SDValue Op1 =
14779         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14780                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
14781 
14782     if (!IsNeg)
14783       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
14784     else
14785       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
14786 
14787   } else {
14788     return SDValue();
14789   }
14790 }
14791 
14792 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14793   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14794   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14795     return false;
14796 
14797   // If not a tail call then no need to proceed.
14798   if (!CI->isTailCall())
14799     return false;
14800 
14801   // If tail calls are disabled for the caller then we are done.
14802   const Function *Caller = CI->getParent()->getParent();
14803   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14804   if (Attr.getValueAsString() == "true")
14805     return false;
14806 
14807   // If sibling calls have been disabled and tail-calls aren't guaranteed
14808   // there is no reason to duplicate.
14809   auto &TM = getTargetMachine();
14810   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14811     return false;
14812 
14813   // Can't tail call a function called indirectly, or if it has variadic args.
14814   const Function *Callee = CI->getCalledFunction();
14815   if (!Callee || Callee->isVarArg())
14816     return false;
14817 
14818   // Make sure the callee and caller calling conventions are eligible for tco.
14819   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14820                                            CI->getCallingConv()))
14821       return false;
14822 
14823   // If the function is local then we have a good chance at tail-calling it
14824   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14825 }
14826 
14827 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14828   if (!Subtarget.hasVSX())
14829     return false;
14830   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14831     return true;
14832   return VT == MVT::f32 || VT == MVT::f64 ||
14833     VT == MVT::v4f32 || VT == MVT::v2f64;
14834 }
14835 
14836 bool PPCTargetLowering::
14837 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14838   const Value *Mask = AndI.getOperand(1);
14839   // If the mask is suitable for andi. or andis. we should sink the and.
14840   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14841     // Can't handle constants wider than 64-bits.
14842     if (CI->getBitWidth() > 64)
14843       return false;
14844     int64_t ConstVal = CI->getZExtValue();
14845     return isUInt<16>(ConstVal) ||
14846       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14847   }
14848 
14849   // For non-constant masks, we can always use the record-form and.
14850   return true;
14851 }
14852 
14853 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14854 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14855 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14856 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14857 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
14858 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14859   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14860   assert(Subtarget.hasP9Altivec() &&
14861          "Only combine this when P9 altivec supported!");
14862   EVT VT = N->getValueType(0);
14863   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14864     return SDValue();
14865 
14866   SelectionDAG &DAG = DCI.DAG;
14867   SDLoc dl(N);
14868   if (N->getOperand(0).getOpcode() == ISD::SUB) {
14869     // Even for signed integers, if it's known to be positive (as signed
14870     // integer) due to zero-extended inputs.
14871     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14872     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14873     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14874          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14875         (SubOpcd1 == ISD::ZERO_EXTEND ||
14876          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14877       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14878                          N->getOperand(0)->getOperand(0),
14879                          N->getOperand(0)->getOperand(1),
14880                          DAG.getTargetConstant(0, dl, MVT::i32));
14881     }
14882 
14883     // For type v4i32, it can be optimized with xvnegsp + vabsduw
14884     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14885         N->getOperand(0).hasOneUse()) {
14886       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14887                          N->getOperand(0)->getOperand(0),
14888                          N->getOperand(0)->getOperand(1),
14889                          DAG.getTargetConstant(1, dl, MVT::i32));
14890     }
14891   }
14892 
14893   return SDValue();
14894 }
14895 
14896 // For type v4i32/v8ii16/v16i8, transform
14897 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14898 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14899 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14900 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
14901 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14902                                           DAGCombinerInfo &DCI) const {
14903   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14904   assert(Subtarget.hasP9Altivec() &&
14905          "Only combine this when P9 altivec supported!");
14906 
14907   SelectionDAG &DAG = DCI.DAG;
14908   SDLoc dl(N);
14909   SDValue Cond = N->getOperand(0);
14910   SDValue TrueOpnd = N->getOperand(1);
14911   SDValue FalseOpnd = N->getOperand(2);
14912   EVT VT = N->getOperand(1).getValueType();
14913 
14914   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14915       FalseOpnd.getOpcode() != ISD::SUB)
14916     return SDValue();
14917 
14918   // ABSD only available for type v4i32/v8i16/v16i8
14919   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14920     return SDValue();
14921 
14922   // At least to save one more dependent computation
14923   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14924     return SDValue();
14925 
14926   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14927 
14928   // Can only handle unsigned comparison here
14929   switch (CC) {
14930   default:
14931     return SDValue();
14932   case ISD::SETUGT:
14933   case ISD::SETUGE:
14934     break;
14935   case ISD::SETULT:
14936   case ISD::SETULE:
14937     std::swap(TrueOpnd, FalseOpnd);
14938     break;
14939   }
14940 
14941   SDValue CmpOpnd1 = Cond.getOperand(0);
14942   SDValue CmpOpnd2 = Cond.getOperand(1);
14943 
14944   // SETCC CmpOpnd1 CmpOpnd2 cond
14945   // TrueOpnd = CmpOpnd1 - CmpOpnd2
14946   // FalseOpnd = CmpOpnd2 - CmpOpnd1
14947   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14948       TrueOpnd.getOperand(1) == CmpOpnd2 &&
14949       FalseOpnd.getOperand(0) == CmpOpnd2 &&
14950       FalseOpnd.getOperand(1) == CmpOpnd1) {
14951     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14952                        CmpOpnd1, CmpOpnd2,
14953                        DAG.getTargetConstant(0, dl, MVT::i32));
14954   }
14955 
14956   return SDValue();
14957 }
14958