1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(true), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 631 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 632 633 // To handle counter-based loop conditions. 634 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 635 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 638 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 639 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 640 641 // Comparisons that require checking two conditions. 642 if (Subtarget.hasSPE()) { 643 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 645 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 646 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 647 } 648 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 660 661 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 662 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 663 664 if (Subtarget.has64BitSupport()) { 665 // They also have instructions for converting between i64 and fp. 666 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 668 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 670 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 671 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 672 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 674 // This is just the low 32 bits of a (signed) fp->i64 conversion. 675 // We cannot do this with Promote because i64 is not a legal type. 676 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 679 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 } 683 } else { 684 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 685 if (Subtarget.hasSPE()) { 686 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 687 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 688 } else { 689 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 690 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 691 } 692 } 693 694 // With the instructions enabled under FPCVT, we can do everything. 695 if (Subtarget.hasFPCVT()) { 696 if (Subtarget.has64BitSupport()) { 697 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 699 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 700 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 701 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 702 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 703 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 704 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 705 } 706 707 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 709 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 710 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 711 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 712 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 713 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 714 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 715 } 716 717 if (Subtarget.use64BitRegs()) { 718 // 64-bit PowerPC implementations can support i64 types directly 719 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 720 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 721 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 722 // 64-bit PowerPC wants to expand i128 shifts itself. 723 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 724 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 725 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 726 } else { 727 // 32-bit PowerPC wants to expand i64 shifts itself. 728 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 729 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 730 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 731 } 732 733 // PowerPC has better expansions for funnel shifts than the generic 734 // TargetLowering::expandFunnelShift. 735 if (Subtarget.has64BitSupport()) { 736 setOperationAction(ISD::FSHL, MVT::i64, Custom); 737 setOperationAction(ISD::FSHR, MVT::i64, Custom); 738 } 739 setOperationAction(ISD::FSHL, MVT::i32, Custom); 740 setOperationAction(ISD::FSHR, MVT::i32, Custom); 741 742 if (Subtarget.hasVSX()) { 743 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 745 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 746 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 747 } 748 749 if (Subtarget.hasAltivec()) { 750 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 751 setOperationAction(ISD::SADDSAT, VT, Legal); 752 setOperationAction(ISD::SSUBSAT, VT, Legal); 753 setOperationAction(ISD::UADDSAT, VT, Legal); 754 setOperationAction(ISD::USUBSAT, VT, Legal); 755 } 756 // First set operation action for all vector types to expand. Then we 757 // will selectively turn on ones that can be effectively codegen'd. 758 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 759 // add/sub are legal for all supported vector VT's. 760 setOperationAction(ISD::ADD, VT, Legal); 761 setOperationAction(ISD::SUB, VT, Legal); 762 763 // For v2i64, these are only valid with P8Vector. This is corrected after 764 // the loop. 765 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 766 setOperationAction(ISD::SMAX, VT, Legal); 767 setOperationAction(ISD::SMIN, VT, Legal); 768 setOperationAction(ISD::UMAX, VT, Legal); 769 setOperationAction(ISD::UMIN, VT, Legal); 770 } 771 else { 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::SMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::UMIN, VT, Expand); 776 } 777 778 if (Subtarget.hasVSX()) { 779 setOperationAction(ISD::FMAXNUM, VT, Legal); 780 setOperationAction(ISD::FMINNUM, VT, Legal); 781 } 782 783 // Vector instructions introduced in P8 784 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 785 setOperationAction(ISD::CTPOP, VT, Legal); 786 setOperationAction(ISD::CTLZ, VT, Legal); 787 } 788 else { 789 setOperationAction(ISD::CTPOP, VT, Expand); 790 setOperationAction(ISD::CTLZ, VT, Expand); 791 } 792 793 // Vector instructions introduced in P9 794 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 795 setOperationAction(ISD::CTTZ, VT, Legal); 796 else 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 // We promote all shuffles to v16i8. 800 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 801 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 802 803 // We promote all non-typed operations to v4i32. 804 setOperationAction(ISD::AND , VT, Promote); 805 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 806 setOperationAction(ISD::OR , VT, Promote); 807 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 808 setOperationAction(ISD::XOR , VT, Promote); 809 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 810 setOperationAction(ISD::LOAD , VT, Promote); 811 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 812 setOperationAction(ISD::SELECT, VT, Promote); 813 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 814 setOperationAction(ISD::VSELECT, VT, Legal); 815 setOperationAction(ISD::SELECT_CC, VT, Promote); 816 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 817 setOperationAction(ISD::STORE, VT, Promote); 818 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 819 820 // No other operations are legal. 821 setOperationAction(ISD::MUL , VT, Expand); 822 setOperationAction(ISD::SDIV, VT, Expand); 823 setOperationAction(ISD::SREM, VT, Expand); 824 setOperationAction(ISD::UDIV, VT, Expand); 825 setOperationAction(ISD::UREM, VT, Expand); 826 setOperationAction(ISD::FDIV, VT, Expand); 827 setOperationAction(ISD::FREM, VT, Expand); 828 setOperationAction(ISD::FNEG, VT, Expand); 829 setOperationAction(ISD::FSQRT, VT, Expand); 830 setOperationAction(ISD::FLOG, VT, Expand); 831 setOperationAction(ISD::FLOG10, VT, Expand); 832 setOperationAction(ISD::FLOG2, VT, Expand); 833 setOperationAction(ISD::FEXP, VT, Expand); 834 setOperationAction(ISD::FEXP2, VT, Expand); 835 setOperationAction(ISD::FSIN, VT, Expand); 836 setOperationAction(ISD::FCOS, VT, Expand); 837 setOperationAction(ISD::FABS, VT, Expand); 838 setOperationAction(ISD::FFLOOR, VT, Expand); 839 setOperationAction(ISD::FCEIL, VT, Expand); 840 setOperationAction(ISD::FTRUNC, VT, Expand); 841 setOperationAction(ISD::FRINT, VT, Expand); 842 setOperationAction(ISD::FNEARBYINT, VT, Expand); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 844 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 845 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 846 setOperationAction(ISD::MULHU, VT, Expand); 847 setOperationAction(ISD::MULHS, VT, Expand); 848 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 849 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 850 setOperationAction(ISD::UDIVREM, VT, Expand); 851 setOperationAction(ISD::SDIVREM, VT, Expand); 852 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 853 setOperationAction(ISD::FPOW, VT, Expand); 854 setOperationAction(ISD::BSWAP, VT, Expand); 855 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 856 setOperationAction(ISD::ROTL, VT, Expand); 857 setOperationAction(ISD::ROTR, VT, Expand); 858 859 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 860 setTruncStoreAction(VT, InnerVT, Expand); 861 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 862 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 863 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 864 } 865 } 866 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 867 if (!Subtarget.hasP8Vector()) { 868 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 870 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 871 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 872 } 873 874 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 875 // with merges, splats, etc. 876 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 877 878 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 879 // are cheap, so handle them before they get expanded to scalar. 880 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 883 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 884 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 885 886 setOperationAction(ISD::AND , MVT::v4i32, Legal); 887 setOperationAction(ISD::OR , MVT::v4i32, Legal); 888 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 889 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 890 setOperationAction(ISD::SELECT, MVT::v4i32, 891 Subtarget.useCRBits() ? Legal : Expand); 892 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 895 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 896 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 897 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 898 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 900 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 901 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 902 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 903 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 904 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 905 906 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 907 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 908 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 909 if (Subtarget.hasAltivec()) 910 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 911 setOperationAction(ISD::ROTL, VT, Legal); 912 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 913 if (Subtarget.hasP8Altivec()) 914 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 915 916 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 918 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 919 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 920 921 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 922 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 923 924 if (Subtarget.hasVSX()) { 925 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 926 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 927 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 928 } 929 930 if (Subtarget.hasP8Altivec()) 931 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 932 else 933 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 934 935 if (Subtarget.isISA3_1()) { 936 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 938 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 939 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 940 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 941 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 942 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 943 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 944 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 945 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 946 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 947 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 948 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 949 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 950 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 951 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 952 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 953 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 954 } 955 956 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 957 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 961 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 965 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 966 967 // Altivec does not contain unordered floating-point compare instructions 968 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 970 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 971 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 972 973 if (Subtarget.hasVSX()) { 974 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 976 if (Subtarget.hasP8Vector()) { 977 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 978 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 979 } 980 if (Subtarget.hasDirectMove() && isPPC64) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 983 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 989 } 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 991 992 // The nearbyint variants are not allowed to raise the inexact exception 993 // so we can only code-gen them with unsafe math. 994 if (TM.Options.UnsafeFPMath) { 995 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 996 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 997 } 998 999 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1004 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1005 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1006 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1007 1008 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1010 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1011 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1012 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1013 1014 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1015 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1016 1017 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1019 1020 // Share the Altivec comparison restrictions. 1021 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1023 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1024 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1025 1026 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1028 1029 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1030 1031 if (Subtarget.hasP8Vector()) 1032 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1033 1034 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1035 1036 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1037 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1038 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1039 1040 if (Subtarget.hasP8Altivec()) { 1041 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1042 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1043 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1044 1045 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1046 // SRL, but not for SRA because of the instructions available: 1047 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1048 // doing 1049 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1050 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1051 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1052 1053 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1054 } 1055 else { 1056 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1057 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1058 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1061 1062 // VSX v2i64 only supports non-arithmetic operations. 1063 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1065 } 1066 1067 if (Subtarget.isISA3_1()) 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1069 else 1070 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1071 1072 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1074 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1075 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1076 1077 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1078 1079 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1081 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1082 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1083 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1084 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1085 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1086 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1087 1088 // Custom handling for partial vectors of integers converted to 1089 // floating point. We already have optimal handling for v2i32 through 1090 // the DAG combine, so those aren't necessary. 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1093 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1094 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1097 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1098 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1101 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1102 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1105 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1106 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1107 1108 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1112 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1113 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1114 1115 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1116 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1117 1118 // Handle constrained floating-point operations of vector. 1119 // The predictor is `hasVSX` because altivec instruction has 1120 // no exception but VSX vector instruction has. 1121 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1134 1135 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1148 1149 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1150 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1151 1152 for (MVT FPT : MVT::fp_valuetypes()) 1153 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1154 1155 // Expand the SELECT to SELECT_CC 1156 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1157 1158 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1159 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1160 1161 // No implementation for these ops for PowerPC. 1162 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1163 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1164 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1165 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1166 setOperationAction(ISD::FREM, MVT::f128, Expand); 1167 } 1168 1169 if (Subtarget.hasP8Altivec()) { 1170 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1171 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1172 } 1173 1174 if (Subtarget.hasP9Vector()) { 1175 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1176 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1177 1178 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1179 // SRL, but not for SRA because of the instructions available: 1180 // VS{RL} and VS{RL}O. 1181 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1182 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1183 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1184 1185 setOperationAction(ISD::FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1188 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1189 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1190 1191 setOperationAction(ISD::FMA, MVT::f128, Legal); 1192 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1196 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1197 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1198 1199 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1200 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1201 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1202 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1203 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1204 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1207 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1208 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1209 1210 // Handle constrained floating-point operations of fp128 1211 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1217 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1218 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1219 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1220 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1224 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1225 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1226 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1227 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1229 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1230 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1231 } else if (Subtarget.hasVSX()) { 1232 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1233 setOperationAction(ISD::STORE, MVT::f128, Promote); 1234 1235 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1236 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1237 1238 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1239 // fp_to_uint and int_to_fp. 1240 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1241 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1242 1243 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1244 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1245 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1246 setOperationAction(ISD::FABS, MVT::f128, Expand); 1247 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1248 setOperationAction(ISD::FMA, MVT::f128, Expand); 1249 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1250 1251 // Expand the fp_extend if the target type is fp128. 1252 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1253 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1254 1255 // Expand the fp_round if the source type is fp128. 1256 for (MVT VT : {MVT::f32, MVT::f64}) { 1257 setOperationAction(ISD::FP_ROUND, VT, Custom); 1258 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1259 } 1260 1261 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1262 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1263 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1264 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1265 1266 // Lower following f128 select_cc pattern: 1267 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1268 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1269 1270 // We need to handle f128 SELECT_CC with integer result type. 1271 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1272 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1273 } 1274 1275 if (Subtarget.hasP9Altivec()) { 1276 if (Subtarget.isISA3_1()) { 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1279 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1281 } else { 1282 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1283 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1284 } 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1291 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1292 } 1293 1294 if (Subtarget.hasP10Vector()) { 1295 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1296 } 1297 } 1298 1299 if (Subtarget.pairedVectorMemops()) { 1300 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1301 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1302 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1303 } 1304 if (Subtarget.hasMMA()) { 1305 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1306 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1307 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1308 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1309 } 1310 1311 if (Subtarget.has64BitSupport()) 1312 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1313 1314 if (Subtarget.isISA3_1()) 1315 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1316 1317 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1318 1319 if (!isPPC64) { 1320 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1321 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1322 } 1323 1324 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1325 setMaxAtomicSizeInBitsSupported(128); 1326 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1327 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1328 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1329 } 1330 1331 setBooleanContents(ZeroOrOneBooleanContent); 1332 1333 if (Subtarget.hasAltivec()) { 1334 // Altivec instructions set fields to all zeros or all ones. 1335 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1336 } 1337 1338 setLibcallName(RTLIB::MULO_I128, nullptr); 1339 if (!isPPC64) { 1340 // These libcalls are not available in 32-bit. 1341 setLibcallName(RTLIB::SHL_I128, nullptr); 1342 setLibcallName(RTLIB::SRL_I128, nullptr); 1343 setLibcallName(RTLIB::SRA_I128, nullptr); 1344 setLibcallName(RTLIB::MUL_I128, nullptr); 1345 setLibcallName(RTLIB::MULO_I64, nullptr); 1346 } 1347 1348 if (!isPPC64) 1349 setMaxAtomicSizeInBitsSupported(32); 1350 1351 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1352 1353 // We have target-specific dag combine patterns for the following nodes: 1354 setTargetDAGCombine(ISD::ADD); 1355 setTargetDAGCombine(ISD::SHL); 1356 setTargetDAGCombine(ISD::SRA); 1357 setTargetDAGCombine(ISD::SRL); 1358 setTargetDAGCombine(ISD::MUL); 1359 setTargetDAGCombine(ISD::FMA); 1360 setTargetDAGCombine(ISD::SINT_TO_FP); 1361 setTargetDAGCombine(ISD::BUILD_VECTOR); 1362 if (Subtarget.hasFPCVT()) 1363 setTargetDAGCombine(ISD::UINT_TO_FP); 1364 setTargetDAGCombine(ISD::LOAD); 1365 setTargetDAGCombine(ISD::STORE); 1366 setTargetDAGCombine(ISD::BR_CC); 1367 if (Subtarget.useCRBits()) 1368 setTargetDAGCombine(ISD::BRCOND); 1369 setTargetDAGCombine(ISD::BSWAP); 1370 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1371 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1372 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1373 1374 setTargetDAGCombine(ISD::SIGN_EXTEND); 1375 setTargetDAGCombine(ISD::ZERO_EXTEND); 1376 setTargetDAGCombine(ISD::ANY_EXTEND); 1377 1378 setTargetDAGCombine(ISD::TRUNCATE); 1379 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1380 1381 1382 if (Subtarget.useCRBits()) { 1383 setTargetDAGCombine(ISD::TRUNCATE); 1384 setTargetDAGCombine(ISD::SETCC); 1385 setTargetDAGCombine(ISD::SELECT_CC); 1386 } 1387 1388 if (Subtarget.hasP9Altivec()) { 1389 setTargetDAGCombine(ISD::ABS); 1390 setTargetDAGCombine(ISD::VSELECT); 1391 } 1392 1393 setLibcallName(RTLIB::LOG_F128, "logf128"); 1394 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1395 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1396 setLibcallName(RTLIB::EXP_F128, "expf128"); 1397 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1398 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1399 setLibcallName(RTLIB::COS_F128, "cosf128"); 1400 setLibcallName(RTLIB::POW_F128, "powf128"); 1401 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1402 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1403 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1404 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1405 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1406 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1407 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1408 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1409 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1410 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1411 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1412 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1413 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1414 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1415 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1416 1417 // With 32 condition bits, we don't need to sink (and duplicate) compares 1418 // aggressively in CodeGenPrep. 1419 if (Subtarget.useCRBits()) { 1420 setHasMultipleConditionRegisters(); 1421 setJumpIsExpensive(); 1422 } 1423 1424 setMinFunctionAlignment(Align(4)); 1425 1426 switch (Subtarget.getCPUDirective()) { 1427 default: break; 1428 case PPC::DIR_970: 1429 case PPC::DIR_A2: 1430 case PPC::DIR_E500: 1431 case PPC::DIR_E500mc: 1432 case PPC::DIR_E5500: 1433 case PPC::DIR_PWR4: 1434 case PPC::DIR_PWR5: 1435 case PPC::DIR_PWR5X: 1436 case PPC::DIR_PWR6: 1437 case PPC::DIR_PWR6X: 1438 case PPC::DIR_PWR7: 1439 case PPC::DIR_PWR8: 1440 case PPC::DIR_PWR9: 1441 case PPC::DIR_PWR10: 1442 case PPC::DIR_PWR_FUTURE: 1443 setPrefLoopAlignment(Align(16)); 1444 setPrefFunctionAlignment(Align(16)); 1445 break; 1446 } 1447 1448 if (Subtarget.enableMachineScheduler()) 1449 setSchedulingPreference(Sched::Source); 1450 else 1451 setSchedulingPreference(Sched::Hybrid); 1452 1453 computeRegisterProperties(STI.getRegisterInfo()); 1454 1455 // The Freescale cores do better with aggressive inlining of memcpy and 1456 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1457 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1458 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1459 MaxStoresPerMemset = 32; 1460 MaxStoresPerMemsetOptSize = 16; 1461 MaxStoresPerMemcpy = 32; 1462 MaxStoresPerMemcpyOptSize = 8; 1463 MaxStoresPerMemmove = 32; 1464 MaxStoresPerMemmoveOptSize = 8; 1465 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1466 // The A2 also benefits from (very) aggressive inlining of memcpy and 1467 // friends. The overhead of a the function call, even when warm, can be 1468 // over one hundred cycles. 1469 MaxStoresPerMemset = 128; 1470 MaxStoresPerMemcpy = 128; 1471 MaxStoresPerMemmove = 128; 1472 MaxLoadsPerMemcmp = 128; 1473 } else { 1474 MaxLoadsPerMemcmp = 8; 1475 MaxLoadsPerMemcmpOptSize = 4; 1476 } 1477 1478 IsStrictFPEnabled = true; 1479 1480 // Let the subtarget (CPU) decide if a predictable select is more expensive 1481 // than the corresponding branch. This information is used in CGP to decide 1482 // when to convert selects into branches. 1483 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1484 } 1485 1486 // *********************************** NOTE ************************************ 1487 // For selecting load and store instructions, the addressing modes are defined 1488 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1489 // patterns to match the load the store instructions. 1490 // 1491 // The TD definitions for the addressing modes correspond to their respective 1492 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1493 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1494 // address mode flags of a particular node. Afterwards, the computed address 1495 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1496 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1497 // accordingly, based on the preferred addressing mode. 1498 // 1499 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1500 // MemOpFlags contains all the possible flags that can be used to compute the 1501 // optimal addressing mode for load and store instructions. 1502 // AddrMode contains all the possible load and store addressing modes available 1503 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1504 // 1505 // When adding new load and store instructions, it is possible that new address 1506 // flags may need to be added into MemOpFlags, and a new addressing mode will 1507 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1508 // of the minimal and main distinguishing address flags for the new load/store 1509 // instructions) will need to be added into initializeAddrModeMap() below. 1510 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1511 // need to be updated to account for selecting the optimal addressing mode. 1512 // ***************************************************************************** 1513 /// Initialize the map that relates the different addressing modes of the load 1514 /// and store instructions to a set of flags. This ensures the load/store 1515 /// instruction is correctly matched during instruction selection. 1516 void PPCTargetLowering::initializeAddrModeMap() { 1517 AddrModesMap[PPC::AM_DForm] = { 1518 // LWZ, STW 1519 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1520 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1521 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1522 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1523 // LBZ, LHZ, STB, STH 1524 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1525 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1526 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1527 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1528 // LHA 1529 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1530 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1531 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1532 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1533 // LFS, LFD, STFS, STFD 1534 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1535 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1536 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1537 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1538 }; 1539 AddrModesMap[PPC::AM_DSForm] = { 1540 // LWA 1541 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1542 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1543 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1544 // LD, STD 1545 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1546 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1547 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1548 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1549 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1550 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1551 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1552 }; 1553 AddrModesMap[PPC::AM_DQForm] = { 1554 // LXV, STXV 1555 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1556 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1557 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1558 }; 1559 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1560 PPC::MOF_SubtargetP10}; 1561 // TODO: Add mapping for quadword load/store. 1562 } 1563 1564 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1565 /// the desired ByVal argument alignment. 1566 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1567 if (MaxAlign == MaxMaxAlign) 1568 return; 1569 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1570 if (MaxMaxAlign >= 32 && 1571 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1572 MaxAlign = Align(32); 1573 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1574 MaxAlign < 16) 1575 MaxAlign = Align(16); 1576 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1577 Align EltAlign; 1578 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1579 if (EltAlign > MaxAlign) 1580 MaxAlign = EltAlign; 1581 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1582 for (auto *EltTy : STy->elements()) { 1583 Align EltAlign; 1584 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1585 if (EltAlign > MaxAlign) 1586 MaxAlign = EltAlign; 1587 if (MaxAlign == MaxMaxAlign) 1588 break; 1589 } 1590 } 1591 } 1592 1593 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1594 /// function arguments in the caller parameter area. 1595 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1596 const DataLayout &DL) const { 1597 // 16byte and wider vectors are passed on 16byte boundary. 1598 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1599 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1600 if (Subtarget.hasAltivec()) 1601 getMaxByValAlign(Ty, Alignment, Align(16)); 1602 return Alignment.value(); 1603 } 1604 1605 bool PPCTargetLowering::useSoftFloat() const { 1606 return Subtarget.useSoftFloat(); 1607 } 1608 1609 bool PPCTargetLowering::hasSPE() const { 1610 return Subtarget.hasSPE(); 1611 } 1612 1613 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1614 return VT.isScalarInteger(); 1615 } 1616 1617 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1618 switch ((PPCISD::NodeType)Opcode) { 1619 case PPCISD::FIRST_NUMBER: break; 1620 case PPCISD::FSEL: return "PPCISD::FSEL"; 1621 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1622 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1623 case PPCISD::FCFID: return "PPCISD::FCFID"; 1624 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1625 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1626 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1627 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1628 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1629 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1630 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1631 case PPCISD::FP_TO_UINT_IN_VSR: 1632 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1633 case PPCISD::FP_TO_SINT_IN_VSR: 1634 return "PPCISD::FP_TO_SINT_IN_VSR"; 1635 case PPCISD::FRE: return "PPCISD::FRE"; 1636 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1637 case PPCISD::FTSQRT: 1638 return "PPCISD::FTSQRT"; 1639 case PPCISD::FSQRT: 1640 return "PPCISD::FSQRT"; 1641 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1642 case PPCISD::VPERM: return "PPCISD::VPERM"; 1643 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1644 case PPCISD::XXSPLTI_SP_TO_DP: 1645 return "PPCISD::XXSPLTI_SP_TO_DP"; 1646 case PPCISD::XXSPLTI32DX: 1647 return "PPCISD::XXSPLTI32DX"; 1648 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1649 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1650 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1651 case PPCISD::CMPB: return "PPCISD::CMPB"; 1652 case PPCISD::Hi: return "PPCISD::Hi"; 1653 case PPCISD::Lo: return "PPCISD::Lo"; 1654 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1655 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1656 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1657 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1658 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1659 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1660 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1661 case PPCISD::SRL: return "PPCISD::SRL"; 1662 case PPCISD::SRA: return "PPCISD::SRA"; 1663 case PPCISD::SHL: return "PPCISD::SHL"; 1664 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1665 case PPCISD::CALL: return "PPCISD::CALL"; 1666 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1667 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1668 case PPCISD::CALL_RM: 1669 return "PPCISD::CALL_RM"; 1670 case PPCISD::CALL_NOP_RM: 1671 return "PPCISD::CALL_NOP_RM"; 1672 case PPCISD::CALL_NOTOC_RM: 1673 return "PPCISD::CALL_NOTOC_RM"; 1674 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1675 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1676 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1677 case PPCISD::BCTRL_RM: 1678 return "PPCISD::BCTRL_RM"; 1679 case PPCISD::BCTRL_LOAD_TOC_RM: 1680 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1681 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1682 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1683 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1684 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1685 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1686 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1687 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1688 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1689 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1690 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1691 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1692 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1693 case PPCISD::ANDI_rec_1_EQ_BIT: 1694 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1695 case PPCISD::ANDI_rec_1_GT_BIT: 1696 return "PPCISD::ANDI_rec_1_GT_BIT"; 1697 case PPCISD::VCMP: return "PPCISD::VCMP"; 1698 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1699 case PPCISD::LBRX: return "PPCISD::LBRX"; 1700 case PPCISD::STBRX: return "PPCISD::STBRX"; 1701 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1702 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1703 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1704 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1705 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1706 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1707 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1708 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1709 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1710 case PPCISD::ST_VSR_SCAL_INT: 1711 return "PPCISD::ST_VSR_SCAL_INT"; 1712 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1713 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1714 case PPCISD::BDZ: return "PPCISD::BDZ"; 1715 case PPCISD::MFFS: return "PPCISD::MFFS"; 1716 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1717 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1718 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1719 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1720 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1721 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1722 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1723 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1724 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1725 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1726 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1727 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1728 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1729 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1730 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1731 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1732 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1733 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1734 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1735 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1736 case PPCISD::PADDI_DTPREL: 1737 return "PPCISD::PADDI_DTPREL"; 1738 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1739 case PPCISD::SC: return "PPCISD::SC"; 1740 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1741 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1742 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1743 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1744 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1745 case PPCISD::VABSD: return "PPCISD::VABSD"; 1746 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1747 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1748 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1749 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1750 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1751 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1752 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1753 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1754 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1755 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1756 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1757 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1758 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1759 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1760 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1761 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1762 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1763 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1764 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1765 case PPCISD::STRICT_FADDRTZ: 1766 return "PPCISD::STRICT_FADDRTZ"; 1767 case PPCISD::STRICT_FCTIDZ: 1768 return "PPCISD::STRICT_FCTIDZ"; 1769 case PPCISD::STRICT_FCTIWZ: 1770 return "PPCISD::STRICT_FCTIWZ"; 1771 case PPCISD::STRICT_FCTIDUZ: 1772 return "PPCISD::STRICT_FCTIDUZ"; 1773 case PPCISD::STRICT_FCTIWUZ: 1774 return "PPCISD::STRICT_FCTIWUZ"; 1775 case PPCISD::STRICT_FCFID: 1776 return "PPCISD::STRICT_FCFID"; 1777 case PPCISD::STRICT_FCFIDU: 1778 return "PPCISD::STRICT_FCFIDU"; 1779 case PPCISD::STRICT_FCFIDS: 1780 return "PPCISD::STRICT_FCFIDS"; 1781 case PPCISD::STRICT_FCFIDUS: 1782 return "PPCISD::STRICT_FCFIDUS"; 1783 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1784 } 1785 return nullptr; 1786 } 1787 1788 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1789 EVT VT) const { 1790 if (!VT.isVector()) 1791 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1792 1793 return VT.changeVectorElementTypeToInteger(); 1794 } 1795 1796 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1797 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1798 return true; 1799 } 1800 1801 //===----------------------------------------------------------------------===// 1802 // Node matching predicates, for use by the tblgen matching code. 1803 //===----------------------------------------------------------------------===// 1804 1805 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1806 static bool isFloatingPointZero(SDValue Op) { 1807 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1808 return CFP->getValueAPF().isZero(); 1809 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1810 // Maybe this has already been legalized into the constant pool? 1811 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1812 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1813 return CFP->getValueAPF().isZero(); 1814 } 1815 return false; 1816 } 1817 1818 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1819 /// true if Op is undef or if it matches the specified value. 1820 static bool isConstantOrUndef(int Op, int Val) { 1821 return Op < 0 || Op == Val; 1822 } 1823 1824 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1825 /// VPKUHUM instruction. 1826 /// The ShuffleKind distinguishes between big-endian operations with 1827 /// two different inputs (0), either-endian operations with two identical 1828 /// inputs (1), and little-endian operations with two different inputs (2). 1829 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1830 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1831 SelectionDAG &DAG) { 1832 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1833 if (ShuffleKind == 0) { 1834 if (IsLE) 1835 return false; 1836 for (unsigned i = 0; i != 16; ++i) 1837 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1838 return false; 1839 } else if (ShuffleKind == 2) { 1840 if (!IsLE) 1841 return false; 1842 for (unsigned i = 0; i != 16; ++i) 1843 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1844 return false; 1845 } else if (ShuffleKind == 1) { 1846 unsigned j = IsLE ? 0 : 1; 1847 for (unsigned i = 0; i != 8; ++i) 1848 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1849 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1850 return false; 1851 } 1852 return true; 1853 } 1854 1855 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1856 /// VPKUWUM instruction. 1857 /// The ShuffleKind distinguishes between big-endian operations with 1858 /// two different inputs (0), either-endian operations with two identical 1859 /// inputs (1), and little-endian operations with two different inputs (2). 1860 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1861 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1862 SelectionDAG &DAG) { 1863 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1864 if (ShuffleKind == 0) { 1865 if (IsLE) 1866 return false; 1867 for (unsigned i = 0; i != 16; i += 2) 1868 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1869 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1870 return false; 1871 } else if (ShuffleKind == 2) { 1872 if (!IsLE) 1873 return false; 1874 for (unsigned i = 0; i != 16; i += 2) 1875 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1876 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1877 return false; 1878 } else if (ShuffleKind == 1) { 1879 unsigned j = IsLE ? 0 : 2; 1880 for (unsigned i = 0; i != 8; i += 2) 1881 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1882 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1883 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1884 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1885 return false; 1886 } 1887 return true; 1888 } 1889 1890 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1891 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1892 /// current subtarget. 1893 /// 1894 /// The ShuffleKind distinguishes between big-endian operations with 1895 /// two different inputs (0), either-endian operations with two identical 1896 /// inputs (1), and little-endian operations with two different inputs (2). 1897 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1898 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1899 SelectionDAG &DAG) { 1900 const PPCSubtarget& Subtarget = 1901 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1902 if (!Subtarget.hasP8Vector()) 1903 return false; 1904 1905 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1906 if (ShuffleKind == 0) { 1907 if (IsLE) 1908 return false; 1909 for (unsigned i = 0; i != 16; i += 4) 1910 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1911 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1912 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1913 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1914 return false; 1915 } else if (ShuffleKind == 2) { 1916 if (!IsLE) 1917 return false; 1918 for (unsigned i = 0; i != 16; i += 4) 1919 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1920 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1921 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1922 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1923 return false; 1924 } else if (ShuffleKind == 1) { 1925 unsigned j = IsLE ? 0 : 4; 1926 for (unsigned i = 0; i != 8; i += 4) 1927 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1928 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1929 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1930 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1931 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1932 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1933 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1934 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1935 return false; 1936 } 1937 return true; 1938 } 1939 1940 /// isVMerge - Common function, used to match vmrg* shuffles. 1941 /// 1942 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1943 unsigned LHSStart, unsigned RHSStart) { 1944 if (N->getValueType(0) != MVT::v16i8) 1945 return false; 1946 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1947 "Unsupported merge size!"); 1948 1949 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1950 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1951 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1952 LHSStart+j+i*UnitSize) || 1953 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1954 RHSStart+j+i*UnitSize)) 1955 return false; 1956 } 1957 return true; 1958 } 1959 1960 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1961 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1962 /// The ShuffleKind distinguishes between big-endian merges with two 1963 /// different inputs (0), either-endian merges with two identical inputs (1), 1964 /// and little-endian merges with two different inputs (2). For the latter, 1965 /// the input operands are swapped (see PPCInstrAltivec.td). 1966 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1967 unsigned ShuffleKind, SelectionDAG &DAG) { 1968 if (DAG.getDataLayout().isLittleEndian()) { 1969 if (ShuffleKind == 1) // unary 1970 return isVMerge(N, UnitSize, 0, 0); 1971 else if (ShuffleKind == 2) // swapped 1972 return isVMerge(N, UnitSize, 0, 16); 1973 else 1974 return false; 1975 } else { 1976 if (ShuffleKind == 1) // unary 1977 return isVMerge(N, UnitSize, 8, 8); 1978 else if (ShuffleKind == 0) // normal 1979 return isVMerge(N, UnitSize, 8, 24); 1980 else 1981 return false; 1982 } 1983 } 1984 1985 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1986 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1987 /// The ShuffleKind distinguishes between big-endian merges with two 1988 /// different inputs (0), either-endian merges with two identical inputs (1), 1989 /// and little-endian merges with two different inputs (2). For the latter, 1990 /// the input operands are swapped (see PPCInstrAltivec.td). 1991 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1992 unsigned ShuffleKind, SelectionDAG &DAG) { 1993 if (DAG.getDataLayout().isLittleEndian()) { 1994 if (ShuffleKind == 1) // unary 1995 return isVMerge(N, UnitSize, 8, 8); 1996 else if (ShuffleKind == 2) // swapped 1997 return isVMerge(N, UnitSize, 8, 24); 1998 else 1999 return false; 2000 } else { 2001 if (ShuffleKind == 1) // unary 2002 return isVMerge(N, UnitSize, 0, 0); 2003 else if (ShuffleKind == 0) // normal 2004 return isVMerge(N, UnitSize, 0, 16); 2005 else 2006 return false; 2007 } 2008 } 2009 2010 /** 2011 * Common function used to match vmrgew and vmrgow shuffles 2012 * 2013 * The indexOffset determines whether to look for even or odd words in 2014 * the shuffle mask. This is based on the of the endianness of the target 2015 * machine. 2016 * - Little Endian: 2017 * - Use offset of 0 to check for odd elements 2018 * - Use offset of 4 to check for even elements 2019 * - Big Endian: 2020 * - Use offset of 0 to check for even elements 2021 * - Use offset of 4 to check for odd elements 2022 * A detailed description of the vector element ordering for little endian and 2023 * big endian can be found at 2024 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2025 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2026 * compiler differences mean to you 2027 * 2028 * The mask to the shuffle vector instruction specifies the indices of the 2029 * elements from the two input vectors to place in the result. The elements are 2030 * numbered in array-access order, starting with the first vector. These vectors 2031 * are always of type v16i8, thus each vector will contain 16 elements of size 2032 * 8. More info on the shuffle vector can be found in the 2033 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2034 * Language Reference. 2035 * 2036 * The RHSStartValue indicates whether the same input vectors are used (unary) 2037 * or two different input vectors are used, based on the following: 2038 * - If the instruction uses the same vector for both inputs, the range of the 2039 * indices will be 0 to 15. In this case, the RHSStart value passed should 2040 * be 0. 2041 * - If the instruction has two different vectors then the range of the 2042 * indices will be 0 to 31. In this case, the RHSStart value passed should 2043 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2044 * to 31 specify elements in the second vector). 2045 * 2046 * \param[in] N The shuffle vector SD Node to analyze 2047 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2048 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2049 * vector to the shuffle_vector instruction 2050 * \return true iff this shuffle vector represents an even or odd word merge 2051 */ 2052 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2053 unsigned RHSStartValue) { 2054 if (N->getValueType(0) != MVT::v16i8) 2055 return false; 2056 2057 for (unsigned i = 0; i < 2; ++i) 2058 for (unsigned j = 0; j < 4; ++j) 2059 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2060 i*RHSStartValue+j+IndexOffset) || 2061 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2062 i*RHSStartValue+j+IndexOffset+8)) 2063 return false; 2064 return true; 2065 } 2066 2067 /** 2068 * Determine if the specified shuffle mask is suitable for the vmrgew or 2069 * vmrgow instructions. 2070 * 2071 * \param[in] N The shuffle vector SD Node to analyze 2072 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2073 * \param[in] ShuffleKind Identify the type of merge: 2074 * - 0 = big-endian merge with two different inputs; 2075 * - 1 = either-endian merge with two identical inputs; 2076 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2077 * little-endian merges). 2078 * \param[in] DAG The current SelectionDAG 2079 * \return true iff this shuffle mask 2080 */ 2081 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2082 unsigned ShuffleKind, SelectionDAG &DAG) { 2083 if (DAG.getDataLayout().isLittleEndian()) { 2084 unsigned indexOffset = CheckEven ? 4 : 0; 2085 if (ShuffleKind == 1) // Unary 2086 return isVMerge(N, indexOffset, 0); 2087 else if (ShuffleKind == 2) // swapped 2088 return isVMerge(N, indexOffset, 16); 2089 else 2090 return false; 2091 } 2092 else { 2093 unsigned indexOffset = CheckEven ? 0 : 4; 2094 if (ShuffleKind == 1) // Unary 2095 return isVMerge(N, indexOffset, 0); 2096 else if (ShuffleKind == 0) // Normal 2097 return isVMerge(N, indexOffset, 16); 2098 else 2099 return false; 2100 } 2101 return false; 2102 } 2103 2104 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2105 /// amount, otherwise return -1. 2106 /// The ShuffleKind distinguishes between big-endian operations with two 2107 /// different inputs (0), either-endian operations with two identical inputs 2108 /// (1), and little-endian operations with two different inputs (2). For the 2109 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2110 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2111 SelectionDAG &DAG) { 2112 if (N->getValueType(0) != MVT::v16i8) 2113 return -1; 2114 2115 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2116 2117 // Find the first non-undef value in the shuffle mask. 2118 unsigned i; 2119 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2120 /*search*/; 2121 2122 if (i == 16) return -1; // all undef. 2123 2124 // Otherwise, check to see if the rest of the elements are consecutively 2125 // numbered from this value. 2126 unsigned ShiftAmt = SVOp->getMaskElt(i); 2127 if (ShiftAmt < i) return -1; 2128 2129 ShiftAmt -= i; 2130 bool isLE = DAG.getDataLayout().isLittleEndian(); 2131 2132 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2133 // Check the rest of the elements to see if they are consecutive. 2134 for (++i; i != 16; ++i) 2135 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2136 return -1; 2137 } else if (ShuffleKind == 1) { 2138 // Check the rest of the elements to see if they are consecutive. 2139 for (++i; i != 16; ++i) 2140 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2141 return -1; 2142 } else 2143 return -1; 2144 2145 if (isLE) 2146 ShiftAmt = 16 - ShiftAmt; 2147 2148 return ShiftAmt; 2149 } 2150 2151 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2152 /// specifies a splat of a single element that is suitable for input to 2153 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2154 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2155 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2156 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2157 2158 // The consecutive indices need to specify an element, not part of two 2159 // different elements. So abandon ship early if this isn't the case. 2160 if (N->getMaskElt(0) % EltSize != 0) 2161 return false; 2162 2163 // This is a splat operation if each element of the permute is the same, and 2164 // if the value doesn't reference the second vector. 2165 unsigned ElementBase = N->getMaskElt(0); 2166 2167 // FIXME: Handle UNDEF elements too! 2168 if (ElementBase >= 16) 2169 return false; 2170 2171 // Check that the indices are consecutive, in the case of a multi-byte element 2172 // splatted with a v16i8 mask. 2173 for (unsigned i = 1; i != EltSize; ++i) 2174 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2175 return false; 2176 2177 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2178 if (N->getMaskElt(i) < 0) continue; 2179 for (unsigned j = 0; j != EltSize; ++j) 2180 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2181 return false; 2182 } 2183 return true; 2184 } 2185 2186 /// Check that the mask is shuffling N byte elements. Within each N byte 2187 /// element of the mask, the indices could be either in increasing or 2188 /// decreasing order as long as they are consecutive. 2189 /// \param[in] N the shuffle vector SD Node to analyze 2190 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2191 /// Word/DoubleWord/QuadWord). 2192 /// \param[in] StepLen the delta indices number among the N byte element, if 2193 /// the mask is in increasing/decreasing order then it is 1/-1. 2194 /// \return true iff the mask is shuffling N byte elements. 2195 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2196 int StepLen) { 2197 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2198 "Unexpected element width."); 2199 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2200 2201 unsigned NumOfElem = 16 / Width; 2202 unsigned MaskVal[16]; // Width is never greater than 16 2203 for (unsigned i = 0; i < NumOfElem; ++i) { 2204 MaskVal[0] = N->getMaskElt(i * Width); 2205 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2206 return false; 2207 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2208 return false; 2209 } 2210 2211 for (unsigned int j = 1; j < Width; ++j) { 2212 MaskVal[j] = N->getMaskElt(i * Width + j); 2213 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2214 return false; 2215 } 2216 } 2217 } 2218 2219 return true; 2220 } 2221 2222 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2223 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2224 if (!isNByteElemShuffleMask(N, 4, 1)) 2225 return false; 2226 2227 // Now we look at mask elements 0,4,8,12 2228 unsigned M0 = N->getMaskElt(0) / 4; 2229 unsigned M1 = N->getMaskElt(4) / 4; 2230 unsigned M2 = N->getMaskElt(8) / 4; 2231 unsigned M3 = N->getMaskElt(12) / 4; 2232 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2233 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2234 2235 // Below, let H and L be arbitrary elements of the shuffle mask 2236 // where H is in the range [4,7] and L is in the range [0,3]. 2237 // H, 1, 2, 3 or L, 5, 6, 7 2238 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2239 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2240 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2241 InsertAtByte = IsLE ? 12 : 0; 2242 Swap = M0 < 4; 2243 return true; 2244 } 2245 // 0, H, 2, 3 or 4, L, 6, 7 2246 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2247 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2248 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2249 InsertAtByte = IsLE ? 8 : 4; 2250 Swap = M1 < 4; 2251 return true; 2252 } 2253 // 0, 1, H, 3 or 4, 5, L, 7 2254 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2255 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2256 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2257 InsertAtByte = IsLE ? 4 : 8; 2258 Swap = M2 < 4; 2259 return true; 2260 } 2261 // 0, 1, 2, H or 4, 5, 6, L 2262 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2263 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2264 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2265 InsertAtByte = IsLE ? 0 : 12; 2266 Swap = M3 < 4; 2267 return true; 2268 } 2269 2270 // If both vector operands for the shuffle are the same vector, the mask will 2271 // contain only elements from the first one and the second one will be undef. 2272 if (N->getOperand(1).isUndef()) { 2273 ShiftElts = 0; 2274 Swap = true; 2275 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2276 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2277 InsertAtByte = IsLE ? 12 : 0; 2278 return true; 2279 } 2280 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2281 InsertAtByte = IsLE ? 8 : 4; 2282 return true; 2283 } 2284 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2285 InsertAtByte = IsLE ? 4 : 8; 2286 return true; 2287 } 2288 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2289 InsertAtByte = IsLE ? 0 : 12; 2290 return true; 2291 } 2292 } 2293 2294 return false; 2295 } 2296 2297 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2298 bool &Swap, bool IsLE) { 2299 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2300 // Ensure each byte index of the word is consecutive. 2301 if (!isNByteElemShuffleMask(N, 4, 1)) 2302 return false; 2303 2304 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2305 unsigned M0 = N->getMaskElt(0) / 4; 2306 unsigned M1 = N->getMaskElt(4) / 4; 2307 unsigned M2 = N->getMaskElt(8) / 4; 2308 unsigned M3 = N->getMaskElt(12) / 4; 2309 2310 // If both vector operands for the shuffle are the same vector, the mask will 2311 // contain only elements from the first one and the second one will be undef. 2312 if (N->getOperand(1).isUndef()) { 2313 assert(M0 < 4 && "Indexing into an undef vector?"); 2314 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2315 return false; 2316 2317 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2318 Swap = false; 2319 return true; 2320 } 2321 2322 // Ensure each word index of the ShuffleVector Mask is consecutive. 2323 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2324 return false; 2325 2326 if (IsLE) { 2327 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2328 // Input vectors don't need to be swapped if the leading element 2329 // of the result is one of the 3 left elements of the second vector 2330 // (or if there is no shift to be done at all). 2331 Swap = false; 2332 ShiftElts = (8 - M0) % 8; 2333 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2334 // Input vectors need to be swapped if the leading element 2335 // of the result is one of the 3 left elements of the first vector 2336 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2337 Swap = true; 2338 ShiftElts = (4 - M0) % 4; 2339 } 2340 2341 return true; 2342 } else { // BE 2343 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2344 // Input vectors don't need to be swapped if the leading element 2345 // of the result is one of the 4 elements of the first vector. 2346 Swap = false; 2347 ShiftElts = M0; 2348 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2349 // Input vectors need to be swapped if the leading element 2350 // of the result is one of the 4 elements of the right vector. 2351 Swap = true; 2352 ShiftElts = M0 - 4; 2353 } 2354 2355 return true; 2356 } 2357 } 2358 2359 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2360 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2361 2362 if (!isNByteElemShuffleMask(N, Width, -1)) 2363 return false; 2364 2365 for (int i = 0; i < 16; i += Width) 2366 if (N->getMaskElt(i) != i + Width - 1) 2367 return false; 2368 2369 return true; 2370 } 2371 2372 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2373 return isXXBRShuffleMaskHelper(N, 2); 2374 } 2375 2376 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2377 return isXXBRShuffleMaskHelper(N, 4); 2378 } 2379 2380 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2381 return isXXBRShuffleMaskHelper(N, 8); 2382 } 2383 2384 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2385 return isXXBRShuffleMaskHelper(N, 16); 2386 } 2387 2388 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2389 /// if the inputs to the instruction should be swapped and set \p DM to the 2390 /// value for the immediate. 2391 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2392 /// AND element 0 of the result comes from the first input (LE) or second input 2393 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2394 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2395 /// mask. 2396 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2397 bool &Swap, bool IsLE) { 2398 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2399 2400 // Ensure each byte index of the double word is consecutive. 2401 if (!isNByteElemShuffleMask(N, 8, 1)) 2402 return false; 2403 2404 unsigned M0 = N->getMaskElt(0) / 8; 2405 unsigned M1 = N->getMaskElt(8) / 8; 2406 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2407 2408 // If both vector operands for the shuffle are the same vector, the mask will 2409 // contain only elements from the first one and the second one will be undef. 2410 if (N->getOperand(1).isUndef()) { 2411 if ((M0 | M1) < 2) { 2412 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2413 Swap = false; 2414 return true; 2415 } else 2416 return false; 2417 } 2418 2419 if (IsLE) { 2420 if (M0 > 1 && M1 < 2) { 2421 Swap = false; 2422 } else if (M0 < 2 && M1 > 1) { 2423 M0 = (M0 + 2) % 4; 2424 M1 = (M1 + 2) % 4; 2425 Swap = true; 2426 } else 2427 return false; 2428 2429 // Note: if control flow comes here that means Swap is already set above 2430 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2431 return true; 2432 } else { // BE 2433 if (M0 < 2 && M1 > 1) { 2434 Swap = false; 2435 } else if (M0 > 1 && M1 < 2) { 2436 M0 = (M0 + 2) % 4; 2437 M1 = (M1 + 2) % 4; 2438 Swap = true; 2439 } else 2440 return false; 2441 2442 // Note: if control flow comes here that means Swap is already set above 2443 DM = (M0 << 1) + (M1 & 1); 2444 return true; 2445 } 2446 } 2447 2448 2449 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2450 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2451 /// elements are counted from the left of the vector register). 2452 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2453 SelectionDAG &DAG) { 2454 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2455 assert(isSplatShuffleMask(SVOp, EltSize)); 2456 if (DAG.getDataLayout().isLittleEndian()) 2457 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2458 else 2459 return SVOp->getMaskElt(0) / EltSize; 2460 } 2461 2462 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2463 /// by using a vspltis[bhw] instruction of the specified element size, return 2464 /// the constant being splatted. The ByteSize field indicates the number of 2465 /// bytes of each element [124] -> [bhw]. 2466 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2467 SDValue OpVal; 2468 2469 // If ByteSize of the splat is bigger than the element size of the 2470 // build_vector, then we have a case where we are checking for a splat where 2471 // multiple elements of the buildvector are folded together into a single 2472 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2473 unsigned EltSize = 16/N->getNumOperands(); 2474 if (EltSize < ByteSize) { 2475 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2476 SDValue UniquedVals[4]; 2477 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2478 2479 // See if all of the elements in the buildvector agree across. 2480 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2481 if (N->getOperand(i).isUndef()) continue; 2482 // If the element isn't a constant, bail fully out. 2483 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2484 2485 if (!UniquedVals[i&(Multiple-1)].getNode()) 2486 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2487 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2488 return SDValue(); // no match. 2489 } 2490 2491 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2492 // either constant or undef values that are identical for each chunk. See 2493 // if these chunks can form into a larger vspltis*. 2494 2495 // Check to see if all of the leading entries are either 0 or -1. If 2496 // neither, then this won't fit into the immediate field. 2497 bool LeadingZero = true; 2498 bool LeadingOnes = true; 2499 for (unsigned i = 0; i != Multiple-1; ++i) { 2500 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2501 2502 LeadingZero &= isNullConstant(UniquedVals[i]); 2503 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2504 } 2505 // Finally, check the least significant entry. 2506 if (LeadingZero) { 2507 if (!UniquedVals[Multiple-1].getNode()) 2508 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2509 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2510 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2511 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2512 } 2513 if (LeadingOnes) { 2514 if (!UniquedVals[Multiple-1].getNode()) 2515 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2516 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2517 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2518 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2519 } 2520 2521 return SDValue(); 2522 } 2523 2524 // Check to see if this buildvec has a single non-undef value in its elements. 2525 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2526 if (N->getOperand(i).isUndef()) continue; 2527 if (!OpVal.getNode()) 2528 OpVal = N->getOperand(i); 2529 else if (OpVal != N->getOperand(i)) 2530 return SDValue(); 2531 } 2532 2533 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2534 2535 unsigned ValSizeInBytes = EltSize; 2536 uint64_t Value = 0; 2537 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2538 Value = CN->getZExtValue(); 2539 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2540 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2541 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2542 } 2543 2544 // If the splat value is larger than the element value, then we can never do 2545 // this splat. The only case that we could fit the replicated bits into our 2546 // immediate field for would be zero, and we prefer to use vxor for it. 2547 if (ValSizeInBytes < ByteSize) return SDValue(); 2548 2549 // If the element value is larger than the splat value, check if it consists 2550 // of a repeated bit pattern of size ByteSize. 2551 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2552 return SDValue(); 2553 2554 // Properly sign extend the value. 2555 int MaskVal = SignExtend32(Value, ByteSize * 8); 2556 2557 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2558 if (MaskVal == 0) return SDValue(); 2559 2560 // Finally, if this value fits in a 5 bit sext field, return it 2561 if (SignExtend32<5>(MaskVal) == MaskVal) 2562 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2563 return SDValue(); 2564 } 2565 2566 //===----------------------------------------------------------------------===// 2567 // Addressing Mode Selection 2568 //===----------------------------------------------------------------------===// 2569 2570 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2571 /// or 64-bit immediate, and if the value can be accurately represented as a 2572 /// sign extension from a 16-bit value. If so, this returns true and the 2573 /// immediate. 2574 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2575 if (!isa<ConstantSDNode>(N)) 2576 return false; 2577 2578 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2579 if (N->getValueType(0) == MVT::i32) 2580 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2581 else 2582 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2583 } 2584 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2585 return isIntS16Immediate(Op.getNode(), Imm); 2586 } 2587 2588 /// Used when computing address flags for selecting loads and stores. 2589 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2590 /// An OR of two provably disjoint values is equivalent to an ADD. 2591 /// Most PPC load/store instructions compute the effective address as a sum, 2592 /// so doing this conversion is useful. 2593 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2594 if (N.getOpcode() != ISD::OR) 2595 return false; 2596 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2597 if (!LHSKnown.Zero.getBoolValue()) 2598 return false; 2599 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2600 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2601 } 2602 2603 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2604 /// be represented as an indexed [r+r] operation. 2605 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2606 SDValue &Index, 2607 SelectionDAG &DAG) const { 2608 for (SDNode *U : N->uses()) { 2609 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2610 if (Memop->getMemoryVT() == MVT::f64) { 2611 Base = N.getOperand(0); 2612 Index = N.getOperand(1); 2613 return true; 2614 } 2615 } 2616 } 2617 return false; 2618 } 2619 2620 /// isIntS34Immediate - This method tests if value of node given can be 2621 /// accurately represented as a sign extension from a 34-bit value. If so, 2622 /// this returns true and the immediate. 2623 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2624 if (!isa<ConstantSDNode>(N)) 2625 return false; 2626 2627 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2628 return isInt<34>(Imm); 2629 } 2630 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2631 return isIntS34Immediate(Op.getNode(), Imm); 2632 } 2633 2634 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2635 /// can be represented as an indexed [r+r] operation. Returns false if it 2636 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2637 /// non-zero and N can be represented by a base register plus a signed 16-bit 2638 /// displacement, make a more precise judgement by checking (displacement % \p 2639 /// EncodingAlignment). 2640 bool PPCTargetLowering::SelectAddressRegReg( 2641 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2642 MaybeAlign EncodingAlignment) const { 2643 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2644 // a [pc+imm]. 2645 if (SelectAddressPCRel(N, Base)) 2646 return false; 2647 2648 int16_t Imm = 0; 2649 if (N.getOpcode() == ISD::ADD) { 2650 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2651 // SPE load/store can only handle 8-bit offsets. 2652 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2653 return true; 2654 if (isIntS16Immediate(N.getOperand(1), Imm) && 2655 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2656 return false; // r+i 2657 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2658 return false; // r+i 2659 2660 Base = N.getOperand(0); 2661 Index = N.getOperand(1); 2662 return true; 2663 } else if (N.getOpcode() == ISD::OR) { 2664 if (isIntS16Immediate(N.getOperand(1), Imm) && 2665 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2666 return false; // r+i can fold it if we can. 2667 2668 // If this is an or of disjoint bitfields, we can codegen this as an add 2669 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2670 // disjoint. 2671 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2672 2673 if (LHSKnown.Zero.getBoolValue()) { 2674 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2675 // If all of the bits are known zero on the LHS or RHS, the add won't 2676 // carry. 2677 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2678 Base = N.getOperand(0); 2679 Index = N.getOperand(1); 2680 return true; 2681 } 2682 } 2683 } 2684 2685 return false; 2686 } 2687 2688 // If we happen to be doing an i64 load or store into a stack slot that has 2689 // less than a 4-byte alignment, then the frame-index elimination may need to 2690 // use an indexed load or store instruction (because the offset may not be a 2691 // multiple of 4). The extra register needed to hold the offset comes from the 2692 // register scavenger, and it is possible that the scavenger will need to use 2693 // an emergency spill slot. As a result, we need to make sure that a spill slot 2694 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2695 // stack slot. 2696 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2697 // FIXME: This does not handle the LWA case. 2698 if (VT != MVT::i64) 2699 return; 2700 2701 // NOTE: We'll exclude negative FIs here, which come from argument 2702 // lowering, because there are no known test cases triggering this problem 2703 // using packed structures (or similar). We can remove this exclusion if 2704 // we find such a test case. The reason why this is so test-case driven is 2705 // because this entire 'fixup' is only to prevent crashes (from the 2706 // register scavenger) on not-really-valid inputs. For example, if we have: 2707 // %a = alloca i1 2708 // %b = bitcast i1* %a to i64* 2709 // store i64* a, i64 b 2710 // then the store should really be marked as 'align 1', but is not. If it 2711 // were marked as 'align 1' then the indexed form would have been 2712 // instruction-selected initially, and the problem this 'fixup' is preventing 2713 // won't happen regardless. 2714 if (FrameIdx < 0) 2715 return; 2716 2717 MachineFunction &MF = DAG.getMachineFunction(); 2718 MachineFrameInfo &MFI = MF.getFrameInfo(); 2719 2720 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2721 return; 2722 2723 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2724 FuncInfo->setHasNonRISpills(); 2725 } 2726 2727 /// Returns true if the address N can be represented by a base register plus 2728 /// a signed 16-bit displacement [r+imm], and if it is not better 2729 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2730 /// displacements that are multiples of that value. 2731 bool PPCTargetLowering::SelectAddressRegImm( 2732 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2733 MaybeAlign EncodingAlignment) const { 2734 // FIXME dl should come from parent load or store, not from address 2735 SDLoc dl(N); 2736 2737 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2738 // a [pc+imm]. 2739 if (SelectAddressPCRel(N, Base)) 2740 return false; 2741 2742 // If this can be more profitably realized as r+r, fail. 2743 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2744 return false; 2745 2746 if (N.getOpcode() == ISD::ADD) { 2747 int16_t imm = 0; 2748 if (isIntS16Immediate(N.getOperand(1), imm) && 2749 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2750 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2751 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2752 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2753 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2754 } else { 2755 Base = N.getOperand(0); 2756 } 2757 return true; // [r+i] 2758 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2759 // Match LOAD (ADD (X, Lo(G))). 2760 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2761 && "Cannot handle constant offsets yet!"); 2762 Disp = N.getOperand(1).getOperand(0); // The global address. 2763 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2764 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2765 Disp.getOpcode() == ISD::TargetConstantPool || 2766 Disp.getOpcode() == ISD::TargetJumpTable); 2767 Base = N.getOperand(0); 2768 return true; // [&g+r] 2769 } 2770 } else if (N.getOpcode() == ISD::OR) { 2771 int16_t imm = 0; 2772 if (isIntS16Immediate(N.getOperand(1), imm) && 2773 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2774 // If this is an or of disjoint bitfields, we can codegen this as an add 2775 // (for better address arithmetic) if the LHS and RHS of the OR are 2776 // provably disjoint. 2777 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2778 2779 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2780 // If all of the bits are known zero on the LHS or RHS, the add won't 2781 // carry. 2782 if (FrameIndexSDNode *FI = 2783 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2784 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2785 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2786 } else { 2787 Base = N.getOperand(0); 2788 } 2789 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2790 return true; 2791 } 2792 } 2793 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2794 // Loading from a constant address. 2795 2796 // If this address fits entirely in a 16-bit sext immediate field, codegen 2797 // this as "d, 0" 2798 int16_t Imm; 2799 if (isIntS16Immediate(CN, Imm) && 2800 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2801 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2802 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2803 CN->getValueType(0)); 2804 return true; 2805 } 2806 2807 // Handle 32-bit sext immediates with LIS + addr mode. 2808 if ((CN->getValueType(0) == MVT::i32 || 2809 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2810 (!EncodingAlignment || 2811 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2812 int Addr = (int)CN->getZExtValue(); 2813 2814 // Otherwise, break this down into an LIS + disp. 2815 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2816 2817 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2818 MVT::i32); 2819 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2820 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2821 return true; 2822 } 2823 } 2824 2825 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2826 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2827 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2828 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2829 } else 2830 Base = N; 2831 return true; // [r+0] 2832 } 2833 2834 /// Similar to the 16-bit case but for instructions that take a 34-bit 2835 /// displacement field (prefixed loads/stores). 2836 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2837 SDValue &Base, 2838 SelectionDAG &DAG) const { 2839 // Only on 64-bit targets. 2840 if (N.getValueType() != MVT::i64) 2841 return false; 2842 2843 SDLoc dl(N); 2844 int64_t Imm = 0; 2845 2846 if (N.getOpcode() == ISD::ADD) { 2847 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2848 return false; 2849 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2850 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2851 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2852 else 2853 Base = N.getOperand(0); 2854 return true; 2855 } 2856 2857 if (N.getOpcode() == ISD::OR) { 2858 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2859 return false; 2860 // If this is an or of disjoint bitfields, we can codegen this as an add 2861 // (for better address arithmetic) if the LHS and RHS of the OR are 2862 // provably disjoint. 2863 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2864 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2865 return false; 2866 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2867 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2868 else 2869 Base = N.getOperand(0); 2870 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2871 return true; 2872 } 2873 2874 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2875 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2876 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2877 return true; 2878 } 2879 2880 return false; 2881 } 2882 2883 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2884 /// represented as an indexed [r+r] operation. 2885 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2886 SDValue &Index, 2887 SelectionDAG &DAG) const { 2888 // Check to see if we can easily represent this as an [r+r] address. This 2889 // will fail if it thinks that the address is more profitably represented as 2890 // reg+imm, e.g. where imm = 0. 2891 if (SelectAddressRegReg(N, Base, Index, DAG)) 2892 return true; 2893 2894 // If the address is the result of an add, we will utilize the fact that the 2895 // address calculation includes an implicit add. However, we can reduce 2896 // register pressure if we do not materialize a constant just for use as the 2897 // index register. We only get rid of the add if it is not an add of a 2898 // value and a 16-bit signed constant and both have a single use. 2899 int16_t imm = 0; 2900 if (N.getOpcode() == ISD::ADD && 2901 (!isIntS16Immediate(N.getOperand(1), imm) || 2902 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2903 Base = N.getOperand(0); 2904 Index = N.getOperand(1); 2905 return true; 2906 } 2907 2908 // Otherwise, do it the hard way, using R0 as the base register. 2909 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2910 N.getValueType()); 2911 Index = N; 2912 return true; 2913 } 2914 2915 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2916 Ty *PCRelCand = dyn_cast<Ty>(N); 2917 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2918 } 2919 2920 /// Returns true if this address is a PC Relative address. 2921 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2922 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2923 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2924 // This is a materialize PC Relative node. Always select this as PC Relative. 2925 Base = N; 2926 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2927 return true; 2928 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2929 isValidPCRelNode<GlobalAddressSDNode>(N) || 2930 isValidPCRelNode<JumpTableSDNode>(N) || 2931 isValidPCRelNode<BlockAddressSDNode>(N)) 2932 return true; 2933 return false; 2934 } 2935 2936 /// Returns true if we should use a direct load into vector instruction 2937 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2938 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2939 2940 // If there are any other uses other than scalar to vector, then we should 2941 // keep it as a scalar load -> direct move pattern to prevent multiple 2942 // loads. 2943 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2944 if (!LD) 2945 return false; 2946 2947 EVT MemVT = LD->getMemoryVT(); 2948 if (!MemVT.isSimple()) 2949 return false; 2950 switch(MemVT.getSimpleVT().SimpleTy) { 2951 case MVT::i64: 2952 break; 2953 case MVT::i32: 2954 if (!ST.hasP8Vector()) 2955 return false; 2956 break; 2957 case MVT::i16: 2958 case MVT::i8: 2959 if (!ST.hasP9Vector()) 2960 return false; 2961 break; 2962 default: 2963 return false; 2964 } 2965 2966 SDValue LoadedVal(N, 0); 2967 if (!LoadedVal.hasOneUse()) 2968 return false; 2969 2970 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2971 UI != UE; ++UI) 2972 if (UI.getUse().get().getResNo() == 0 && 2973 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2974 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2975 return false; 2976 2977 return true; 2978 } 2979 2980 /// getPreIndexedAddressParts - returns true by value, base pointer and 2981 /// offset pointer and addressing mode by reference if the node's address 2982 /// can be legally represented as pre-indexed load / store address. 2983 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2984 SDValue &Offset, 2985 ISD::MemIndexedMode &AM, 2986 SelectionDAG &DAG) const { 2987 if (DisablePPCPreinc) return false; 2988 2989 bool isLoad = true; 2990 SDValue Ptr; 2991 EVT VT; 2992 unsigned Alignment; 2993 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2994 Ptr = LD->getBasePtr(); 2995 VT = LD->getMemoryVT(); 2996 Alignment = LD->getAlignment(); 2997 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2998 Ptr = ST->getBasePtr(); 2999 VT = ST->getMemoryVT(); 3000 Alignment = ST->getAlignment(); 3001 isLoad = false; 3002 } else 3003 return false; 3004 3005 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3006 // instructions because we can fold these into a more efficient instruction 3007 // instead, (such as LXSD). 3008 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3009 return false; 3010 } 3011 3012 // PowerPC doesn't have preinc load/store instructions for vectors 3013 if (VT.isVector()) 3014 return false; 3015 3016 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3017 // Common code will reject creating a pre-inc form if the base pointer 3018 // is a frame index, or if N is a store and the base pointer is either 3019 // the same as or a predecessor of the value being stored. Check for 3020 // those situations here, and try with swapped Base/Offset instead. 3021 bool Swap = false; 3022 3023 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3024 Swap = true; 3025 else if (!isLoad) { 3026 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3027 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3028 Swap = true; 3029 } 3030 3031 if (Swap) 3032 std::swap(Base, Offset); 3033 3034 AM = ISD::PRE_INC; 3035 return true; 3036 } 3037 3038 // LDU/STU can only handle immediates that are a multiple of 4. 3039 if (VT != MVT::i64) { 3040 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3041 return false; 3042 } else { 3043 // LDU/STU need an address with at least 4-byte alignment. 3044 if (Alignment < 4) 3045 return false; 3046 3047 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3048 return false; 3049 } 3050 3051 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3052 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3053 // sext i32 to i64 when addr mode is r+i. 3054 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3055 LD->getExtensionType() == ISD::SEXTLOAD && 3056 isa<ConstantSDNode>(Offset)) 3057 return false; 3058 } 3059 3060 AM = ISD::PRE_INC; 3061 return true; 3062 } 3063 3064 //===----------------------------------------------------------------------===// 3065 // LowerOperation implementation 3066 //===----------------------------------------------------------------------===// 3067 3068 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3069 /// and LoOpFlags to the target MO flags. 3070 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3071 unsigned &HiOpFlags, unsigned &LoOpFlags, 3072 const GlobalValue *GV = nullptr) { 3073 HiOpFlags = PPCII::MO_HA; 3074 LoOpFlags = PPCII::MO_LO; 3075 3076 // Don't use the pic base if not in PIC relocation model. 3077 if (IsPIC) { 3078 HiOpFlags |= PPCII::MO_PIC_FLAG; 3079 LoOpFlags |= PPCII::MO_PIC_FLAG; 3080 } 3081 } 3082 3083 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3084 SelectionDAG &DAG) { 3085 SDLoc DL(HiPart); 3086 EVT PtrVT = HiPart.getValueType(); 3087 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3088 3089 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3090 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3091 3092 // With PIC, the first instruction is actually "GR+hi(&G)". 3093 if (isPIC) 3094 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3095 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3096 3097 // Generate non-pic code that has direct accesses to the constant pool. 3098 // The address of the global is just (hi(&g)+lo(&g)). 3099 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3100 } 3101 3102 static void setUsesTOCBasePtr(MachineFunction &MF) { 3103 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3104 FuncInfo->setUsesTOCBasePtr(); 3105 } 3106 3107 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3108 setUsesTOCBasePtr(DAG.getMachineFunction()); 3109 } 3110 3111 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3112 SDValue GA) const { 3113 const bool Is64Bit = Subtarget.isPPC64(); 3114 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3115 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3116 : Subtarget.isAIXABI() 3117 ? DAG.getRegister(PPC::R2, VT) 3118 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3119 SDValue Ops[] = { GA, Reg }; 3120 return DAG.getMemIntrinsicNode( 3121 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3122 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3123 MachineMemOperand::MOLoad); 3124 } 3125 3126 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3127 SelectionDAG &DAG) const { 3128 EVT PtrVT = Op.getValueType(); 3129 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3130 const Constant *C = CP->getConstVal(); 3131 3132 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3133 // The actual address of the GlobalValue is stored in the TOC. 3134 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3135 if (Subtarget.isUsingPCRelativeCalls()) { 3136 SDLoc DL(CP); 3137 EVT Ty = getPointerTy(DAG.getDataLayout()); 3138 SDValue ConstPool = DAG.getTargetConstantPool( 3139 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3140 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3141 } 3142 setUsesTOCBasePtr(DAG); 3143 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3144 return getTOCEntry(DAG, SDLoc(CP), GA); 3145 } 3146 3147 unsigned MOHiFlag, MOLoFlag; 3148 bool IsPIC = isPositionIndependent(); 3149 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3150 3151 if (IsPIC && Subtarget.isSVR4ABI()) { 3152 SDValue GA = 3153 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3154 return getTOCEntry(DAG, SDLoc(CP), GA); 3155 } 3156 3157 SDValue CPIHi = 3158 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3159 SDValue CPILo = 3160 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3161 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3162 } 3163 3164 // For 64-bit PowerPC, prefer the more compact relative encodings. 3165 // This trades 32 bits per jump table entry for one or two instructions 3166 // on the jump site. 3167 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3168 if (isJumpTableRelative()) 3169 return MachineJumpTableInfo::EK_LabelDifference32; 3170 3171 return TargetLowering::getJumpTableEncoding(); 3172 } 3173 3174 bool PPCTargetLowering::isJumpTableRelative() const { 3175 if (UseAbsoluteJumpTables) 3176 return false; 3177 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3178 return true; 3179 return TargetLowering::isJumpTableRelative(); 3180 } 3181 3182 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3183 SelectionDAG &DAG) const { 3184 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3185 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3186 3187 switch (getTargetMachine().getCodeModel()) { 3188 case CodeModel::Small: 3189 case CodeModel::Medium: 3190 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3191 default: 3192 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3193 getPointerTy(DAG.getDataLayout())); 3194 } 3195 } 3196 3197 const MCExpr * 3198 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3199 unsigned JTI, 3200 MCContext &Ctx) const { 3201 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3202 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3203 3204 switch (getTargetMachine().getCodeModel()) { 3205 case CodeModel::Small: 3206 case CodeModel::Medium: 3207 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3208 default: 3209 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3210 } 3211 } 3212 3213 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3214 EVT PtrVT = Op.getValueType(); 3215 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3216 3217 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3218 if (Subtarget.isUsingPCRelativeCalls()) { 3219 SDLoc DL(JT); 3220 EVT Ty = getPointerTy(DAG.getDataLayout()); 3221 SDValue GA = 3222 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3223 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3224 return MatAddr; 3225 } 3226 3227 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3228 // The actual address of the GlobalValue is stored in the TOC. 3229 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3230 setUsesTOCBasePtr(DAG); 3231 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3232 return getTOCEntry(DAG, SDLoc(JT), GA); 3233 } 3234 3235 unsigned MOHiFlag, MOLoFlag; 3236 bool IsPIC = isPositionIndependent(); 3237 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3238 3239 if (IsPIC && Subtarget.isSVR4ABI()) { 3240 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3241 PPCII::MO_PIC_FLAG); 3242 return getTOCEntry(DAG, SDLoc(GA), GA); 3243 } 3244 3245 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3246 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3247 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3248 } 3249 3250 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3251 SelectionDAG &DAG) const { 3252 EVT PtrVT = Op.getValueType(); 3253 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3254 const BlockAddress *BA = BASDN->getBlockAddress(); 3255 3256 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3257 if (Subtarget.isUsingPCRelativeCalls()) { 3258 SDLoc DL(BASDN); 3259 EVT Ty = getPointerTy(DAG.getDataLayout()); 3260 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3261 PPCII::MO_PCREL_FLAG); 3262 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3263 return MatAddr; 3264 } 3265 3266 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3267 // The actual BlockAddress is stored in the TOC. 3268 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3269 setUsesTOCBasePtr(DAG); 3270 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3271 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3272 } 3273 3274 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3275 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3276 return getTOCEntry( 3277 DAG, SDLoc(BASDN), 3278 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3279 3280 unsigned MOHiFlag, MOLoFlag; 3281 bool IsPIC = isPositionIndependent(); 3282 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3283 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3284 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3285 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3286 } 3287 3288 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3289 SelectionDAG &DAG) const { 3290 if (Subtarget.isAIXABI()) 3291 return LowerGlobalTLSAddressAIX(Op, DAG); 3292 3293 return LowerGlobalTLSAddressLinux(Op, DAG); 3294 } 3295 3296 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3297 SelectionDAG &DAG) const { 3298 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3299 3300 if (DAG.getTarget().useEmulatedTLS()) 3301 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3302 3303 SDLoc dl(GA); 3304 const GlobalValue *GV = GA->getGlobal(); 3305 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3306 3307 // The general-dynamic model is the only access model supported for now, so 3308 // all the GlobalTLSAddress nodes are lowered with this model. 3309 // We need to generate two TOC entries, one for the variable offset, one for 3310 // the region handle. The global address for the TOC entry of the region 3311 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3312 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3313 SDValue VariableOffsetTGA = 3314 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3315 SDValue RegionHandleTGA = 3316 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3317 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3318 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3319 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3320 RegionHandle); 3321 } 3322 3323 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3324 SelectionDAG &DAG) const { 3325 // FIXME: TLS addresses currently use medium model code sequences, 3326 // which is the most useful form. Eventually support for small and 3327 // large models could be added if users need it, at the cost of 3328 // additional complexity. 3329 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3330 if (DAG.getTarget().useEmulatedTLS()) 3331 return LowerToTLSEmulatedModel(GA, DAG); 3332 3333 SDLoc dl(GA); 3334 const GlobalValue *GV = GA->getGlobal(); 3335 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3336 bool is64bit = Subtarget.isPPC64(); 3337 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3338 PICLevel::Level picLevel = M->getPICLevel(); 3339 3340 const TargetMachine &TM = getTargetMachine(); 3341 TLSModel::Model Model = TM.getTLSModel(GV); 3342 3343 if (Model == TLSModel::LocalExec) { 3344 if (Subtarget.isUsingPCRelativeCalls()) { 3345 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3346 SDValue TGA = DAG.getTargetGlobalAddress( 3347 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3348 SDValue MatAddr = 3349 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3350 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3351 } 3352 3353 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3354 PPCII::MO_TPREL_HA); 3355 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3356 PPCII::MO_TPREL_LO); 3357 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3358 : DAG.getRegister(PPC::R2, MVT::i32); 3359 3360 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3361 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3362 } 3363 3364 if (Model == TLSModel::InitialExec) { 3365 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3366 SDValue TGA = DAG.getTargetGlobalAddress( 3367 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3368 SDValue TGATLS = DAG.getTargetGlobalAddress( 3369 GV, dl, PtrVT, 0, 3370 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3371 SDValue TPOffset; 3372 if (IsPCRel) { 3373 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3374 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3375 MachinePointerInfo()); 3376 } else { 3377 SDValue GOTPtr; 3378 if (is64bit) { 3379 setUsesTOCBasePtr(DAG); 3380 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3381 GOTPtr = 3382 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3383 } else { 3384 if (!TM.isPositionIndependent()) 3385 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3386 else if (picLevel == PICLevel::SmallPIC) 3387 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3388 else 3389 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3390 } 3391 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3392 } 3393 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3394 } 3395 3396 if (Model == TLSModel::GeneralDynamic) { 3397 if (Subtarget.isUsingPCRelativeCalls()) { 3398 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3399 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3400 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3401 } 3402 3403 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3404 SDValue GOTPtr; 3405 if (is64bit) { 3406 setUsesTOCBasePtr(DAG); 3407 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3408 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3409 GOTReg, TGA); 3410 } else { 3411 if (picLevel == PICLevel::SmallPIC) 3412 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3413 else 3414 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3415 } 3416 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3417 GOTPtr, TGA, TGA); 3418 } 3419 3420 if (Model == TLSModel::LocalDynamic) { 3421 if (Subtarget.isUsingPCRelativeCalls()) { 3422 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3423 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3424 SDValue MatPCRel = 3425 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3426 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3427 } 3428 3429 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3430 SDValue GOTPtr; 3431 if (is64bit) { 3432 setUsesTOCBasePtr(DAG); 3433 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3434 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3435 GOTReg, TGA); 3436 } else { 3437 if (picLevel == PICLevel::SmallPIC) 3438 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3439 else 3440 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3441 } 3442 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3443 PtrVT, GOTPtr, TGA, TGA); 3444 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3445 PtrVT, TLSAddr, TGA); 3446 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3447 } 3448 3449 llvm_unreachable("Unknown TLS model!"); 3450 } 3451 3452 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3453 SelectionDAG &DAG) const { 3454 EVT PtrVT = Op.getValueType(); 3455 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3456 SDLoc DL(GSDN); 3457 const GlobalValue *GV = GSDN->getGlobal(); 3458 3459 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3460 // The actual address of the GlobalValue is stored in the TOC. 3461 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3462 if (Subtarget.isUsingPCRelativeCalls()) { 3463 EVT Ty = getPointerTy(DAG.getDataLayout()); 3464 if (isAccessedAsGotIndirect(Op)) { 3465 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3466 PPCII::MO_PCREL_FLAG | 3467 PPCII::MO_GOT_FLAG); 3468 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3469 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3470 MachinePointerInfo()); 3471 return Load; 3472 } else { 3473 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3474 PPCII::MO_PCREL_FLAG); 3475 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3476 } 3477 } 3478 setUsesTOCBasePtr(DAG); 3479 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3480 return getTOCEntry(DAG, DL, GA); 3481 } 3482 3483 unsigned MOHiFlag, MOLoFlag; 3484 bool IsPIC = isPositionIndependent(); 3485 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3486 3487 if (IsPIC && Subtarget.isSVR4ABI()) { 3488 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3489 GSDN->getOffset(), 3490 PPCII::MO_PIC_FLAG); 3491 return getTOCEntry(DAG, DL, GA); 3492 } 3493 3494 SDValue GAHi = 3495 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3496 SDValue GALo = 3497 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3498 3499 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3500 } 3501 3502 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3503 bool IsStrict = Op->isStrictFPOpcode(); 3504 ISD::CondCode CC = 3505 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3506 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3507 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3508 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3509 EVT LHSVT = LHS.getValueType(); 3510 SDLoc dl(Op); 3511 3512 // Soften the setcc with libcall if it is fp128. 3513 if (LHSVT == MVT::f128) { 3514 assert(!Subtarget.hasP9Vector() && 3515 "SETCC for f128 is already legal under Power9!"); 3516 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3517 Op->getOpcode() == ISD::STRICT_FSETCCS); 3518 if (RHS.getNode()) 3519 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3520 DAG.getCondCode(CC)); 3521 if (IsStrict) 3522 return DAG.getMergeValues({LHS, Chain}, dl); 3523 return LHS; 3524 } 3525 3526 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3527 3528 if (Op.getValueType() == MVT::v2i64) { 3529 // When the operands themselves are v2i64 values, we need to do something 3530 // special because VSX has no underlying comparison operations for these. 3531 if (LHS.getValueType() == MVT::v2i64) { 3532 // Equality can be handled by casting to the legal type for Altivec 3533 // comparisons, everything else needs to be expanded. 3534 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3535 return SDValue(); 3536 SDValue SetCC32 = DAG.getSetCC( 3537 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3538 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3539 int ShuffV[] = {1, 0, 3, 2}; 3540 SDValue Shuff = 3541 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3542 return DAG.getBitcast(MVT::v2i64, 3543 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3544 dl, MVT::v4i32, Shuff, SetCC32)); 3545 } 3546 3547 // We handle most of these in the usual way. 3548 return Op; 3549 } 3550 3551 // If we're comparing for equality to zero, expose the fact that this is 3552 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3553 // fold the new nodes. 3554 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3555 return V; 3556 3557 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3558 // Leave comparisons against 0 and -1 alone for now, since they're usually 3559 // optimized. FIXME: revisit this when we can custom lower all setcc 3560 // optimizations. 3561 if (C->isAllOnes() || C->isZero()) 3562 return SDValue(); 3563 } 3564 3565 // If we have an integer seteq/setne, turn it into a compare against zero 3566 // by xor'ing the rhs with the lhs, which is faster than setting a 3567 // condition register, reading it back out, and masking the correct bit. The 3568 // normal approach here uses sub to do this instead of xor. Using xor exposes 3569 // the result to other bit-twiddling opportunities. 3570 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3571 EVT VT = Op.getValueType(); 3572 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3573 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3574 } 3575 return SDValue(); 3576 } 3577 3578 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3579 SDNode *Node = Op.getNode(); 3580 EVT VT = Node->getValueType(0); 3581 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3582 SDValue InChain = Node->getOperand(0); 3583 SDValue VAListPtr = Node->getOperand(1); 3584 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3585 SDLoc dl(Node); 3586 3587 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3588 3589 // gpr_index 3590 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3591 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3592 InChain = GprIndex.getValue(1); 3593 3594 if (VT == MVT::i64) { 3595 // Check if GprIndex is even 3596 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3597 DAG.getConstant(1, dl, MVT::i32)); 3598 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3599 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3600 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3601 DAG.getConstant(1, dl, MVT::i32)); 3602 // Align GprIndex to be even if it isn't 3603 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3604 GprIndex); 3605 } 3606 3607 // fpr index is 1 byte after gpr 3608 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3609 DAG.getConstant(1, dl, MVT::i32)); 3610 3611 // fpr 3612 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3613 FprPtr, MachinePointerInfo(SV), MVT::i8); 3614 InChain = FprIndex.getValue(1); 3615 3616 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3617 DAG.getConstant(8, dl, MVT::i32)); 3618 3619 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3620 DAG.getConstant(4, dl, MVT::i32)); 3621 3622 // areas 3623 SDValue OverflowArea = 3624 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3625 InChain = OverflowArea.getValue(1); 3626 3627 SDValue RegSaveArea = 3628 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3629 InChain = RegSaveArea.getValue(1); 3630 3631 // select overflow_area if index > 8 3632 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3633 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3634 3635 // adjustment constant gpr_index * 4/8 3636 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3637 VT.isInteger() ? GprIndex : FprIndex, 3638 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3639 MVT::i32)); 3640 3641 // OurReg = RegSaveArea + RegConstant 3642 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3643 RegConstant); 3644 3645 // Floating types are 32 bytes into RegSaveArea 3646 if (VT.isFloatingPoint()) 3647 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3648 DAG.getConstant(32, dl, MVT::i32)); 3649 3650 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3651 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3652 VT.isInteger() ? GprIndex : FprIndex, 3653 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3654 MVT::i32)); 3655 3656 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3657 VT.isInteger() ? VAListPtr : FprPtr, 3658 MachinePointerInfo(SV), MVT::i8); 3659 3660 // determine if we should load from reg_save_area or overflow_area 3661 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3662 3663 // increase overflow_area by 4/8 if gpr/fpr > 8 3664 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3665 DAG.getConstant(VT.isInteger() ? 4 : 8, 3666 dl, MVT::i32)); 3667 3668 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3669 OverflowAreaPlusN); 3670 3671 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3672 MachinePointerInfo(), MVT::i32); 3673 3674 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3675 } 3676 3677 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3678 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3679 3680 // We have to copy the entire va_list struct: 3681 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3682 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3683 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3684 false, true, false, MachinePointerInfo(), 3685 MachinePointerInfo()); 3686 } 3687 3688 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3689 SelectionDAG &DAG) const { 3690 if (Subtarget.isAIXABI()) 3691 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3692 3693 return Op.getOperand(0); 3694 } 3695 3696 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3697 MachineFunction &MF = DAG.getMachineFunction(); 3698 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3699 3700 assert((Op.getOpcode() == ISD::INLINEASM || 3701 Op.getOpcode() == ISD::INLINEASM_BR) && 3702 "Expecting Inline ASM node."); 3703 3704 // If an LR store is already known to be required then there is not point in 3705 // checking this ASM as well. 3706 if (MFI.isLRStoreRequired()) 3707 return Op; 3708 3709 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3710 // type MVT::Glue. We want to ignore this last operand if that is the case. 3711 unsigned NumOps = Op.getNumOperands(); 3712 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3713 --NumOps; 3714 3715 // Check all operands that may contain the LR. 3716 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3717 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3718 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3719 ++i; // Skip the ID value. 3720 3721 switch (InlineAsm::getKind(Flags)) { 3722 default: 3723 llvm_unreachable("Bad flags!"); 3724 case InlineAsm::Kind_RegUse: 3725 case InlineAsm::Kind_Imm: 3726 case InlineAsm::Kind_Mem: 3727 i += NumVals; 3728 break; 3729 case InlineAsm::Kind_Clobber: 3730 case InlineAsm::Kind_RegDef: 3731 case InlineAsm::Kind_RegDefEarlyClobber: { 3732 for (; NumVals; --NumVals, ++i) { 3733 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3734 if (Reg != PPC::LR && Reg != PPC::LR8) 3735 continue; 3736 MFI.setLRStoreRequired(); 3737 return Op; 3738 } 3739 break; 3740 } 3741 } 3742 } 3743 3744 return Op; 3745 } 3746 3747 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3748 SelectionDAG &DAG) const { 3749 if (Subtarget.isAIXABI()) 3750 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3751 3752 SDValue Chain = Op.getOperand(0); 3753 SDValue Trmp = Op.getOperand(1); // trampoline 3754 SDValue FPtr = Op.getOperand(2); // nested function 3755 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3756 SDLoc dl(Op); 3757 3758 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3759 bool isPPC64 = (PtrVT == MVT::i64); 3760 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3761 3762 TargetLowering::ArgListTy Args; 3763 TargetLowering::ArgListEntry Entry; 3764 3765 Entry.Ty = IntPtrTy; 3766 Entry.Node = Trmp; Args.push_back(Entry); 3767 3768 // TrampSize == (isPPC64 ? 48 : 40); 3769 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3770 isPPC64 ? MVT::i64 : MVT::i32); 3771 Args.push_back(Entry); 3772 3773 Entry.Node = FPtr; Args.push_back(Entry); 3774 Entry.Node = Nest; Args.push_back(Entry); 3775 3776 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3777 TargetLowering::CallLoweringInfo CLI(DAG); 3778 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3779 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3780 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3781 3782 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3783 return CallResult.second; 3784 } 3785 3786 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3787 MachineFunction &MF = DAG.getMachineFunction(); 3788 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3789 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3790 3791 SDLoc dl(Op); 3792 3793 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3794 // vastart just stores the address of the VarArgsFrameIndex slot into the 3795 // memory location argument. 3796 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3797 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3798 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3799 MachinePointerInfo(SV)); 3800 } 3801 3802 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3803 // We suppose the given va_list is already allocated. 3804 // 3805 // typedef struct { 3806 // char gpr; /* index into the array of 8 GPRs 3807 // * stored in the register save area 3808 // * gpr=0 corresponds to r3, 3809 // * gpr=1 to r4, etc. 3810 // */ 3811 // char fpr; /* index into the array of 8 FPRs 3812 // * stored in the register save area 3813 // * fpr=0 corresponds to f1, 3814 // * fpr=1 to f2, etc. 3815 // */ 3816 // char *overflow_arg_area; 3817 // /* location on stack that holds 3818 // * the next overflow argument 3819 // */ 3820 // char *reg_save_area; 3821 // /* where r3:r10 and f1:f8 (if saved) 3822 // * are stored 3823 // */ 3824 // } va_list[1]; 3825 3826 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3827 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3828 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3829 PtrVT); 3830 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3831 PtrVT); 3832 3833 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3834 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3835 3836 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3837 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3838 3839 uint64_t FPROffset = 1; 3840 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3841 3842 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3843 3844 // Store first byte : number of int regs 3845 SDValue firstStore = 3846 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3847 MachinePointerInfo(SV), MVT::i8); 3848 uint64_t nextOffset = FPROffset; 3849 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3850 ConstFPROffset); 3851 3852 // Store second byte : number of float regs 3853 SDValue secondStore = 3854 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3855 MachinePointerInfo(SV, nextOffset), MVT::i8); 3856 nextOffset += StackOffset; 3857 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3858 3859 // Store second word : arguments given on stack 3860 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3861 MachinePointerInfo(SV, nextOffset)); 3862 nextOffset += FrameOffset; 3863 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3864 3865 // Store third word : arguments given in registers 3866 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3867 MachinePointerInfo(SV, nextOffset)); 3868 } 3869 3870 /// FPR - The set of FP registers that should be allocated for arguments 3871 /// on Darwin and AIX. 3872 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3873 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3874 PPC::F11, PPC::F12, PPC::F13}; 3875 3876 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3877 /// the stack. 3878 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3879 unsigned PtrByteSize) { 3880 unsigned ArgSize = ArgVT.getStoreSize(); 3881 if (Flags.isByVal()) 3882 ArgSize = Flags.getByValSize(); 3883 3884 // Round up to multiples of the pointer size, except for array members, 3885 // which are always packed. 3886 if (!Flags.isInConsecutiveRegs()) 3887 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3888 3889 return ArgSize; 3890 } 3891 3892 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3893 /// on the stack. 3894 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3895 ISD::ArgFlagsTy Flags, 3896 unsigned PtrByteSize) { 3897 Align Alignment(PtrByteSize); 3898 3899 // Altivec parameters are padded to a 16 byte boundary. 3900 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3901 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3902 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3903 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3904 Alignment = Align(16); 3905 3906 // ByVal parameters are aligned as requested. 3907 if (Flags.isByVal()) { 3908 auto BVAlign = Flags.getNonZeroByValAlign(); 3909 if (BVAlign > PtrByteSize) { 3910 if (BVAlign.value() % PtrByteSize != 0) 3911 llvm_unreachable( 3912 "ByVal alignment is not a multiple of the pointer size"); 3913 3914 Alignment = BVAlign; 3915 } 3916 } 3917 3918 // Array members are always packed to their original alignment. 3919 if (Flags.isInConsecutiveRegs()) { 3920 // If the array member was split into multiple registers, the first 3921 // needs to be aligned to the size of the full type. (Except for 3922 // ppcf128, which is only aligned as its f64 components.) 3923 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3924 Alignment = Align(OrigVT.getStoreSize()); 3925 else 3926 Alignment = Align(ArgVT.getStoreSize()); 3927 } 3928 3929 return Alignment; 3930 } 3931 3932 /// CalculateStackSlotUsed - Return whether this argument will use its 3933 /// stack slot (instead of being passed in registers). ArgOffset, 3934 /// AvailableFPRs, and AvailableVRs must hold the current argument 3935 /// position, and will be updated to account for this argument. 3936 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3937 unsigned PtrByteSize, unsigned LinkageSize, 3938 unsigned ParamAreaSize, unsigned &ArgOffset, 3939 unsigned &AvailableFPRs, 3940 unsigned &AvailableVRs) { 3941 bool UseMemory = false; 3942 3943 // Respect alignment of argument on the stack. 3944 Align Alignment = 3945 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3946 ArgOffset = alignTo(ArgOffset, Alignment); 3947 // If there's no space left in the argument save area, we must 3948 // use memory (this check also catches zero-sized arguments). 3949 if (ArgOffset >= LinkageSize + ParamAreaSize) 3950 UseMemory = true; 3951 3952 // Allocate argument on the stack. 3953 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3954 if (Flags.isInConsecutiveRegsLast()) 3955 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3956 // If we overran the argument save area, we must use memory 3957 // (this check catches arguments passed partially in memory) 3958 if (ArgOffset > LinkageSize + ParamAreaSize) 3959 UseMemory = true; 3960 3961 // However, if the argument is actually passed in an FPR or a VR, 3962 // we don't use memory after all. 3963 if (!Flags.isByVal()) { 3964 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3965 if (AvailableFPRs > 0) { 3966 --AvailableFPRs; 3967 return false; 3968 } 3969 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3970 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3971 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3972 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3973 if (AvailableVRs > 0) { 3974 --AvailableVRs; 3975 return false; 3976 } 3977 } 3978 3979 return UseMemory; 3980 } 3981 3982 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3983 /// ensure minimum alignment required for target. 3984 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3985 unsigned NumBytes) { 3986 return alignTo(NumBytes, Lowering->getStackAlign()); 3987 } 3988 3989 SDValue PPCTargetLowering::LowerFormalArguments( 3990 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3991 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3992 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3993 if (Subtarget.isAIXABI()) 3994 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3995 InVals); 3996 if (Subtarget.is64BitELFABI()) 3997 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3998 InVals); 3999 assert(Subtarget.is32BitELFABI()); 4000 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 4001 InVals); 4002 } 4003 4004 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4005 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4006 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4007 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4008 4009 // 32-bit SVR4 ABI Stack Frame Layout: 4010 // +-----------------------------------+ 4011 // +--> | Back chain | 4012 // | +-----------------------------------+ 4013 // | | Floating-point register save area | 4014 // | +-----------------------------------+ 4015 // | | General register save area | 4016 // | +-----------------------------------+ 4017 // | | CR save word | 4018 // | +-----------------------------------+ 4019 // | | VRSAVE save word | 4020 // | +-----------------------------------+ 4021 // | | Alignment padding | 4022 // | +-----------------------------------+ 4023 // | | Vector register save area | 4024 // | +-----------------------------------+ 4025 // | | Local variable space | 4026 // | +-----------------------------------+ 4027 // | | Parameter list area | 4028 // | +-----------------------------------+ 4029 // | | LR save word | 4030 // | +-----------------------------------+ 4031 // SP--> +--- | Back chain | 4032 // +-----------------------------------+ 4033 // 4034 // Specifications: 4035 // System V Application Binary Interface PowerPC Processor Supplement 4036 // AltiVec Technology Programming Interface Manual 4037 4038 MachineFunction &MF = DAG.getMachineFunction(); 4039 MachineFrameInfo &MFI = MF.getFrameInfo(); 4040 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4041 4042 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4043 // Potential tail calls could cause overwriting of argument stack slots. 4044 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4045 (CallConv == CallingConv::Fast)); 4046 const Align PtrAlign(4); 4047 4048 // Assign locations to all of the incoming arguments. 4049 SmallVector<CCValAssign, 16> ArgLocs; 4050 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4051 *DAG.getContext()); 4052 4053 // Reserve space for the linkage area on the stack. 4054 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4055 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4056 if (useSoftFloat()) 4057 CCInfo.PreAnalyzeFormalArguments(Ins); 4058 4059 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4060 CCInfo.clearWasPPCF128(); 4061 4062 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4063 CCValAssign &VA = ArgLocs[i]; 4064 4065 // Arguments stored in registers. 4066 if (VA.isRegLoc()) { 4067 const TargetRegisterClass *RC; 4068 EVT ValVT = VA.getValVT(); 4069 4070 switch (ValVT.getSimpleVT().SimpleTy) { 4071 default: 4072 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4073 case MVT::i1: 4074 case MVT::i32: 4075 RC = &PPC::GPRCRegClass; 4076 break; 4077 case MVT::f32: 4078 if (Subtarget.hasP8Vector()) 4079 RC = &PPC::VSSRCRegClass; 4080 else if (Subtarget.hasSPE()) 4081 RC = &PPC::GPRCRegClass; 4082 else 4083 RC = &PPC::F4RCRegClass; 4084 break; 4085 case MVT::f64: 4086 if (Subtarget.hasVSX()) 4087 RC = &PPC::VSFRCRegClass; 4088 else if (Subtarget.hasSPE()) 4089 // SPE passes doubles in GPR pairs. 4090 RC = &PPC::GPRCRegClass; 4091 else 4092 RC = &PPC::F8RCRegClass; 4093 break; 4094 case MVT::v16i8: 4095 case MVT::v8i16: 4096 case MVT::v4i32: 4097 RC = &PPC::VRRCRegClass; 4098 break; 4099 case MVT::v4f32: 4100 RC = &PPC::VRRCRegClass; 4101 break; 4102 case MVT::v2f64: 4103 case MVT::v2i64: 4104 RC = &PPC::VRRCRegClass; 4105 break; 4106 } 4107 4108 SDValue ArgValue; 4109 // Transform the arguments stored in physical registers into 4110 // virtual ones. 4111 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4112 assert(i + 1 < e && "No second half of double precision argument"); 4113 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4114 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4115 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4116 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4117 if (!Subtarget.isLittleEndian()) 4118 std::swap (ArgValueLo, ArgValueHi); 4119 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4120 ArgValueHi); 4121 } else { 4122 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4123 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4124 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4125 if (ValVT == MVT::i1) 4126 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4127 } 4128 4129 InVals.push_back(ArgValue); 4130 } else { 4131 // Argument stored in memory. 4132 assert(VA.isMemLoc()); 4133 4134 // Get the extended size of the argument type in stack 4135 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4136 // Get the actual size of the argument type 4137 unsigned ObjSize = VA.getValVT().getStoreSize(); 4138 unsigned ArgOffset = VA.getLocMemOffset(); 4139 // Stack objects in PPC32 are right justified. 4140 ArgOffset += ArgSize - ObjSize; 4141 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4142 4143 // Create load nodes to retrieve arguments from the stack. 4144 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4145 InVals.push_back( 4146 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4147 } 4148 } 4149 4150 // Assign locations to all of the incoming aggregate by value arguments. 4151 // Aggregates passed by value are stored in the local variable space of the 4152 // caller's stack frame, right above the parameter list area. 4153 SmallVector<CCValAssign, 16> ByValArgLocs; 4154 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4155 ByValArgLocs, *DAG.getContext()); 4156 4157 // Reserve stack space for the allocations in CCInfo. 4158 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4159 4160 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4161 4162 // Area that is at least reserved in the caller of this function. 4163 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4164 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4165 4166 // Set the size that is at least reserved in caller of this function. Tail 4167 // call optimized function's reserved stack space needs to be aligned so that 4168 // taking the difference between two stack areas will result in an aligned 4169 // stack. 4170 MinReservedArea = 4171 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4172 FuncInfo->setMinReservedArea(MinReservedArea); 4173 4174 SmallVector<SDValue, 8> MemOps; 4175 4176 // If the function takes variable number of arguments, make a frame index for 4177 // the start of the first vararg value... for expansion of llvm.va_start. 4178 if (isVarArg) { 4179 static const MCPhysReg GPArgRegs[] = { 4180 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4181 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4182 }; 4183 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4184 4185 static const MCPhysReg FPArgRegs[] = { 4186 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4187 PPC::F8 4188 }; 4189 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4190 4191 if (useSoftFloat() || hasSPE()) 4192 NumFPArgRegs = 0; 4193 4194 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4195 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4196 4197 // Make room for NumGPArgRegs and NumFPArgRegs. 4198 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4199 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4200 4201 FuncInfo->setVarArgsStackOffset( 4202 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4203 CCInfo.getNextStackOffset(), true)); 4204 4205 FuncInfo->setVarArgsFrameIndex( 4206 MFI.CreateStackObject(Depth, Align(8), false)); 4207 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4208 4209 // The fixed integer arguments of a variadic function are stored to the 4210 // VarArgsFrameIndex on the stack so that they may be loaded by 4211 // dereferencing the result of va_next. 4212 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4213 // Get an existing live-in vreg, or add a new one. 4214 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4215 if (!VReg) 4216 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4217 4218 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4219 SDValue Store = 4220 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4221 MemOps.push_back(Store); 4222 // Increment the address by four for the next argument to store 4223 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4224 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4225 } 4226 4227 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4228 // is set. 4229 // The double arguments are stored to the VarArgsFrameIndex 4230 // on the stack. 4231 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4232 // Get an existing live-in vreg, or add a new one. 4233 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4234 if (!VReg) 4235 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4236 4237 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4238 SDValue Store = 4239 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4240 MemOps.push_back(Store); 4241 // Increment the address by eight for the next argument to store 4242 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4243 PtrVT); 4244 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4245 } 4246 } 4247 4248 if (!MemOps.empty()) 4249 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4250 4251 return Chain; 4252 } 4253 4254 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4255 // value to MVT::i64 and then truncate to the correct register size. 4256 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4257 EVT ObjectVT, SelectionDAG &DAG, 4258 SDValue ArgVal, 4259 const SDLoc &dl) const { 4260 if (Flags.isSExt()) 4261 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4262 DAG.getValueType(ObjectVT)); 4263 else if (Flags.isZExt()) 4264 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4265 DAG.getValueType(ObjectVT)); 4266 4267 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4268 } 4269 4270 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4271 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4272 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4273 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4274 // TODO: add description of PPC stack frame format, or at least some docs. 4275 // 4276 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4277 bool isLittleEndian = Subtarget.isLittleEndian(); 4278 MachineFunction &MF = DAG.getMachineFunction(); 4279 MachineFrameInfo &MFI = MF.getFrameInfo(); 4280 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4281 4282 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4283 "fastcc not supported on varargs functions"); 4284 4285 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4286 // Potential tail calls could cause overwriting of argument stack slots. 4287 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4288 (CallConv == CallingConv::Fast)); 4289 unsigned PtrByteSize = 8; 4290 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4291 4292 static const MCPhysReg GPR[] = { 4293 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4294 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4295 }; 4296 static const MCPhysReg VR[] = { 4297 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4298 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4299 }; 4300 4301 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4302 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4303 const unsigned Num_VR_Regs = array_lengthof(VR); 4304 4305 // Do a first pass over the arguments to determine whether the ABI 4306 // guarantees that our caller has allocated the parameter save area 4307 // on its stack frame. In the ELFv1 ABI, this is always the case; 4308 // in the ELFv2 ABI, it is true if this is a vararg function or if 4309 // any parameter is located in a stack slot. 4310 4311 bool HasParameterArea = !isELFv2ABI || isVarArg; 4312 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4313 unsigned NumBytes = LinkageSize; 4314 unsigned AvailableFPRs = Num_FPR_Regs; 4315 unsigned AvailableVRs = Num_VR_Regs; 4316 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4317 if (Ins[i].Flags.isNest()) 4318 continue; 4319 4320 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4321 PtrByteSize, LinkageSize, ParamAreaSize, 4322 NumBytes, AvailableFPRs, AvailableVRs)) 4323 HasParameterArea = true; 4324 } 4325 4326 // Add DAG nodes to load the arguments or copy them out of registers. On 4327 // entry to a function on PPC, the arguments start after the linkage area, 4328 // although the first ones are often in registers. 4329 4330 unsigned ArgOffset = LinkageSize; 4331 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4332 SmallVector<SDValue, 8> MemOps; 4333 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4334 unsigned CurArgIdx = 0; 4335 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4336 SDValue ArgVal; 4337 bool needsLoad = false; 4338 EVT ObjectVT = Ins[ArgNo].VT; 4339 EVT OrigVT = Ins[ArgNo].ArgVT; 4340 unsigned ObjSize = ObjectVT.getStoreSize(); 4341 unsigned ArgSize = ObjSize; 4342 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4343 if (Ins[ArgNo].isOrigArg()) { 4344 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4345 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4346 } 4347 // We re-align the argument offset for each argument, except when using the 4348 // fast calling convention, when we need to make sure we do that only when 4349 // we'll actually use a stack slot. 4350 unsigned CurArgOffset; 4351 Align Alignment; 4352 auto ComputeArgOffset = [&]() { 4353 /* Respect alignment of argument on the stack. */ 4354 Alignment = 4355 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4356 ArgOffset = alignTo(ArgOffset, Alignment); 4357 CurArgOffset = ArgOffset; 4358 }; 4359 4360 if (CallConv != CallingConv::Fast) { 4361 ComputeArgOffset(); 4362 4363 /* Compute GPR index associated with argument offset. */ 4364 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4365 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4366 } 4367 4368 // FIXME the codegen can be much improved in some cases. 4369 // We do not have to keep everything in memory. 4370 if (Flags.isByVal()) { 4371 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4372 4373 if (CallConv == CallingConv::Fast) 4374 ComputeArgOffset(); 4375 4376 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4377 ObjSize = Flags.getByValSize(); 4378 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4379 // Empty aggregate parameters do not take up registers. Examples: 4380 // struct { } a; 4381 // union { } b; 4382 // int c[0]; 4383 // etc. However, we have to provide a place-holder in InVals, so 4384 // pretend we have an 8-byte item at the current address for that 4385 // purpose. 4386 if (!ObjSize) { 4387 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4388 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4389 InVals.push_back(FIN); 4390 continue; 4391 } 4392 4393 // Create a stack object covering all stack doublewords occupied 4394 // by the argument. If the argument is (fully or partially) on 4395 // the stack, or if the argument is fully in registers but the 4396 // caller has allocated the parameter save anyway, we can refer 4397 // directly to the caller's stack frame. Otherwise, create a 4398 // local copy in our own frame. 4399 int FI; 4400 if (HasParameterArea || 4401 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4402 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4403 else 4404 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4405 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4406 4407 // Handle aggregates smaller than 8 bytes. 4408 if (ObjSize < PtrByteSize) { 4409 // The value of the object is its address, which differs from the 4410 // address of the enclosing doubleword on big-endian systems. 4411 SDValue Arg = FIN; 4412 if (!isLittleEndian) { 4413 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4414 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4415 } 4416 InVals.push_back(Arg); 4417 4418 if (GPR_idx != Num_GPR_Regs) { 4419 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4420 FuncInfo->addLiveInAttr(VReg, Flags); 4421 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4422 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4423 SDValue Store = 4424 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4425 MachinePointerInfo(&*FuncArg), ObjType); 4426 MemOps.push_back(Store); 4427 } 4428 // Whether we copied from a register or not, advance the offset 4429 // into the parameter save area by a full doubleword. 4430 ArgOffset += PtrByteSize; 4431 continue; 4432 } 4433 4434 // The value of the object is its address, which is the address of 4435 // its first stack doubleword. 4436 InVals.push_back(FIN); 4437 4438 // Store whatever pieces of the object are in registers to memory. 4439 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4440 if (GPR_idx == Num_GPR_Regs) 4441 break; 4442 4443 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4444 FuncInfo->addLiveInAttr(VReg, Flags); 4445 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4446 SDValue Addr = FIN; 4447 if (j) { 4448 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4449 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4450 } 4451 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4452 MachinePointerInfo(&*FuncArg, j)); 4453 MemOps.push_back(Store); 4454 ++GPR_idx; 4455 } 4456 ArgOffset += ArgSize; 4457 continue; 4458 } 4459 4460 switch (ObjectVT.getSimpleVT().SimpleTy) { 4461 default: llvm_unreachable("Unhandled argument type!"); 4462 case MVT::i1: 4463 case MVT::i32: 4464 case MVT::i64: 4465 if (Flags.isNest()) { 4466 // The 'nest' parameter, if any, is passed in R11. 4467 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4468 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4469 4470 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4471 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4472 4473 break; 4474 } 4475 4476 // These can be scalar arguments or elements of an integer array type 4477 // passed directly. Clang may use those instead of "byval" aggregate 4478 // types to avoid forcing arguments to memory unnecessarily. 4479 if (GPR_idx != Num_GPR_Regs) { 4480 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4481 FuncInfo->addLiveInAttr(VReg, Flags); 4482 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4483 4484 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4485 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4486 // value to MVT::i64 and then truncate to the correct register size. 4487 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4488 } else { 4489 if (CallConv == CallingConv::Fast) 4490 ComputeArgOffset(); 4491 4492 needsLoad = true; 4493 ArgSize = PtrByteSize; 4494 } 4495 if (CallConv != CallingConv::Fast || needsLoad) 4496 ArgOffset += 8; 4497 break; 4498 4499 case MVT::f32: 4500 case MVT::f64: 4501 // These can be scalar arguments or elements of a float array type 4502 // passed directly. The latter are used to implement ELFv2 homogenous 4503 // float aggregates. 4504 if (FPR_idx != Num_FPR_Regs) { 4505 unsigned VReg; 4506 4507 if (ObjectVT == MVT::f32) 4508 VReg = MF.addLiveIn(FPR[FPR_idx], 4509 Subtarget.hasP8Vector() 4510 ? &PPC::VSSRCRegClass 4511 : &PPC::F4RCRegClass); 4512 else 4513 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4514 ? &PPC::VSFRCRegClass 4515 : &PPC::F8RCRegClass); 4516 4517 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4518 ++FPR_idx; 4519 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4520 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4521 // once we support fp <-> gpr moves. 4522 4523 // This can only ever happen in the presence of f32 array types, 4524 // since otherwise we never run out of FPRs before running out 4525 // of GPRs. 4526 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4527 FuncInfo->addLiveInAttr(VReg, Flags); 4528 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4529 4530 if (ObjectVT == MVT::f32) { 4531 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4532 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4533 DAG.getConstant(32, dl, MVT::i32)); 4534 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4535 } 4536 4537 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4538 } else { 4539 if (CallConv == CallingConv::Fast) 4540 ComputeArgOffset(); 4541 4542 needsLoad = true; 4543 } 4544 4545 // When passing an array of floats, the array occupies consecutive 4546 // space in the argument area; only round up to the next doubleword 4547 // at the end of the array. Otherwise, each float takes 8 bytes. 4548 if (CallConv != CallingConv::Fast || needsLoad) { 4549 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4550 ArgOffset += ArgSize; 4551 if (Flags.isInConsecutiveRegsLast()) 4552 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4553 } 4554 break; 4555 case MVT::v4f32: 4556 case MVT::v4i32: 4557 case MVT::v8i16: 4558 case MVT::v16i8: 4559 case MVT::v2f64: 4560 case MVT::v2i64: 4561 case MVT::v1i128: 4562 case MVT::f128: 4563 // These can be scalar arguments or elements of a vector array type 4564 // passed directly. The latter are used to implement ELFv2 homogenous 4565 // vector aggregates. 4566 if (VR_idx != Num_VR_Regs) { 4567 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4568 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4569 ++VR_idx; 4570 } else { 4571 if (CallConv == CallingConv::Fast) 4572 ComputeArgOffset(); 4573 needsLoad = true; 4574 } 4575 if (CallConv != CallingConv::Fast || needsLoad) 4576 ArgOffset += 16; 4577 break; 4578 } 4579 4580 // We need to load the argument to a virtual register if we determined 4581 // above that we ran out of physical registers of the appropriate type. 4582 if (needsLoad) { 4583 if (ObjSize < ArgSize && !isLittleEndian) 4584 CurArgOffset += ArgSize - ObjSize; 4585 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4586 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4587 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4588 } 4589 4590 InVals.push_back(ArgVal); 4591 } 4592 4593 // Area that is at least reserved in the caller of this function. 4594 unsigned MinReservedArea; 4595 if (HasParameterArea) 4596 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4597 else 4598 MinReservedArea = LinkageSize; 4599 4600 // Set the size that is at least reserved in caller of this function. Tail 4601 // call optimized functions' reserved stack space needs to be aligned so that 4602 // taking the difference between two stack areas will result in an aligned 4603 // stack. 4604 MinReservedArea = 4605 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4606 FuncInfo->setMinReservedArea(MinReservedArea); 4607 4608 // If the function takes variable number of arguments, make a frame index for 4609 // the start of the first vararg value... for expansion of llvm.va_start. 4610 // On ELFv2ABI spec, it writes: 4611 // C programs that are intended to be *portable* across different compilers 4612 // and architectures must use the header file <stdarg.h> to deal with variable 4613 // argument lists. 4614 if (isVarArg && MFI.hasVAStart()) { 4615 int Depth = ArgOffset; 4616 4617 FuncInfo->setVarArgsFrameIndex( 4618 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4619 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4620 4621 // If this function is vararg, store any remaining integer argument regs 4622 // to their spots on the stack so that they may be loaded by dereferencing 4623 // the result of va_next. 4624 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4625 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4626 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4627 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4628 SDValue Store = 4629 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4630 MemOps.push_back(Store); 4631 // Increment the address by four for the next argument to store 4632 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4633 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4634 } 4635 } 4636 4637 if (!MemOps.empty()) 4638 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4639 4640 return Chain; 4641 } 4642 4643 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4644 /// adjusted to accommodate the arguments for the tailcall. 4645 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4646 unsigned ParamSize) { 4647 4648 if (!isTailCall) return 0; 4649 4650 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4651 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4652 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4653 // Remember only if the new adjustment is bigger. 4654 if (SPDiff < FI->getTailCallSPDelta()) 4655 FI->setTailCallSPDelta(SPDiff); 4656 4657 return SPDiff; 4658 } 4659 4660 static bool isFunctionGlobalAddress(SDValue Callee); 4661 4662 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4663 const TargetMachine &TM) { 4664 // It does not make sense to call callsShareTOCBase() with a caller that 4665 // is PC Relative since PC Relative callers do not have a TOC. 4666 #ifndef NDEBUG 4667 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4668 assert(!STICaller->isUsingPCRelativeCalls() && 4669 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4670 #endif 4671 4672 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4673 // don't have enough information to determine if the caller and callee share 4674 // the same TOC base, so we have to pessimistically assume they don't for 4675 // correctness. 4676 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4677 if (!G) 4678 return false; 4679 4680 const GlobalValue *GV = G->getGlobal(); 4681 4682 // If the callee is preemptable, then the static linker will use a plt-stub 4683 // which saves the toc to the stack, and needs a nop after the call 4684 // instruction to convert to a toc-restore. 4685 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4686 return false; 4687 4688 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4689 // We may need a TOC restore in the situation where the caller requires a 4690 // valid TOC but the callee is PC Relative and does not. 4691 const Function *F = dyn_cast<Function>(GV); 4692 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4693 4694 // If we have an Alias we can try to get the function from there. 4695 if (Alias) { 4696 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4697 F = dyn_cast<Function>(GlobalObj); 4698 } 4699 4700 // If we still have no valid function pointer we do not have enough 4701 // information to determine if the callee uses PC Relative calls so we must 4702 // assume that it does. 4703 if (!F) 4704 return false; 4705 4706 // If the callee uses PC Relative we cannot guarantee that the callee won't 4707 // clobber the TOC of the caller and so we must assume that the two 4708 // functions do not share a TOC base. 4709 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4710 if (STICallee->isUsingPCRelativeCalls()) 4711 return false; 4712 4713 // If the GV is not a strong definition then we need to assume it can be 4714 // replaced by another function at link time. The function that replaces 4715 // it may not share the same TOC as the caller since the callee may be 4716 // replaced by a PC Relative version of the same function. 4717 if (!GV->isStrongDefinitionForLinker()) 4718 return false; 4719 4720 // The medium and large code models are expected to provide a sufficiently 4721 // large TOC to provide all data addressing needs of a module with a 4722 // single TOC. 4723 if (CodeModel::Medium == TM.getCodeModel() || 4724 CodeModel::Large == TM.getCodeModel()) 4725 return true; 4726 4727 // Any explicitly-specified sections and section prefixes must also match. 4728 // Also, if we're using -ffunction-sections, then each function is always in 4729 // a different section (the same is true for COMDAT functions). 4730 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4731 GV->getSection() != Caller->getSection()) 4732 return false; 4733 if (const auto *F = dyn_cast<Function>(GV)) { 4734 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4735 return false; 4736 } 4737 4738 return true; 4739 } 4740 4741 static bool 4742 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4743 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4744 assert(Subtarget.is64BitELFABI()); 4745 4746 const unsigned PtrByteSize = 8; 4747 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4748 4749 static const MCPhysReg GPR[] = { 4750 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4751 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4752 }; 4753 static const MCPhysReg VR[] = { 4754 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4755 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4756 }; 4757 4758 const unsigned NumGPRs = array_lengthof(GPR); 4759 const unsigned NumFPRs = 13; 4760 const unsigned NumVRs = array_lengthof(VR); 4761 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4762 4763 unsigned NumBytes = LinkageSize; 4764 unsigned AvailableFPRs = NumFPRs; 4765 unsigned AvailableVRs = NumVRs; 4766 4767 for (const ISD::OutputArg& Param : Outs) { 4768 if (Param.Flags.isNest()) continue; 4769 4770 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4771 LinkageSize, ParamAreaSize, NumBytes, 4772 AvailableFPRs, AvailableVRs)) 4773 return true; 4774 } 4775 return false; 4776 } 4777 4778 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4779 if (CB.arg_size() != CallerFn->arg_size()) 4780 return false; 4781 4782 auto CalleeArgIter = CB.arg_begin(); 4783 auto CalleeArgEnd = CB.arg_end(); 4784 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4785 4786 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4787 const Value* CalleeArg = *CalleeArgIter; 4788 const Value* CallerArg = &(*CallerArgIter); 4789 if (CalleeArg == CallerArg) 4790 continue; 4791 4792 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4793 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4794 // } 4795 // 1st argument of callee is undef and has the same type as caller. 4796 if (CalleeArg->getType() == CallerArg->getType() && 4797 isa<UndefValue>(CalleeArg)) 4798 continue; 4799 4800 return false; 4801 } 4802 4803 return true; 4804 } 4805 4806 // Returns true if TCO is possible between the callers and callees 4807 // calling conventions. 4808 static bool 4809 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4810 CallingConv::ID CalleeCC) { 4811 // Tail calls are possible with fastcc and ccc. 4812 auto isTailCallableCC = [] (CallingConv::ID CC){ 4813 return CC == CallingConv::C || CC == CallingConv::Fast; 4814 }; 4815 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4816 return false; 4817 4818 // We can safely tail call both fastcc and ccc callees from a c calling 4819 // convention caller. If the caller is fastcc, we may have less stack space 4820 // than a non-fastcc caller with the same signature so disable tail-calls in 4821 // that case. 4822 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4823 } 4824 4825 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4826 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4827 const SmallVectorImpl<ISD::OutputArg> &Outs, 4828 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4829 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4830 4831 if (DisableSCO && !TailCallOpt) return false; 4832 4833 // Variadic argument functions are not supported. 4834 if (isVarArg) return false; 4835 4836 auto &Caller = DAG.getMachineFunction().getFunction(); 4837 // Check that the calling conventions are compatible for tco. 4838 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4839 return false; 4840 4841 // Caller contains any byval parameter is not supported. 4842 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4843 return false; 4844 4845 // Callee contains any byval parameter is not supported, too. 4846 // Note: This is a quick work around, because in some cases, e.g. 4847 // caller's stack size > callee's stack size, we are still able to apply 4848 // sibling call optimization. For example, gcc is able to do SCO for caller1 4849 // in the following example, but not for caller2. 4850 // struct test { 4851 // long int a; 4852 // char ary[56]; 4853 // } gTest; 4854 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4855 // b->a = v.a; 4856 // return 0; 4857 // } 4858 // void caller1(struct test a, struct test c, struct test *b) { 4859 // callee(gTest, b); } 4860 // void caller2(struct test *b) { callee(gTest, b); } 4861 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4862 return false; 4863 4864 // If callee and caller use different calling conventions, we cannot pass 4865 // parameters on stack since offsets for the parameter area may be different. 4866 if (Caller.getCallingConv() != CalleeCC && 4867 needStackSlotPassParameters(Subtarget, Outs)) 4868 return false; 4869 4870 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4871 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4872 // callee potentially have different TOC bases then we cannot tail call since 4873 // we need to restore the TOC pointer after the call. 4874 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4875 // We cannot guarantee this for indirect calls or calls to external functions. 4876 // When PC-Relative addressing is used, the concept of the TOC is no longer 4877 // applicable so this check is not required. 4878 // Check first for indirect calls. 4879 if (!Subtarget.isUsingPCRelativeCalls() && 4880 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4881 return false; 4882 4883 // Check if we share the TOC base. 4884 if (!Subtarget.isUsingPCRelativeCalls() && 4885 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4886 return false; 4887 4888 // TCO allows altering callee ABI, so we don't have to check further. 4889 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4890 return true; 4891 4892 if (DisableSCO) return false; 4893 4894 // If callee use the same argument list that caller is using, then we can 4895 // apply SCO on this case. If it is not, then we need to check if callee needs 4896 // stack for passing arguments. 4897 // PC Relative tail calls may not have a CallBase. 4898 // If there is no CallBase we cannot verify if we have the same argument 4899 // list so assume that we don't have the same argument list. 4900 if (CB && !hasSameArgumentList(&Caller, *CB) && 4901 needStackSlotPassParameters(Subtarget, Outs)) 4902 return false; 4903 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4904 return false; 4905 4906 return true; 4907 } 4908 4909 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4910 /// for tail call optimization. Targets which want to do tail call 4911 /// optimization should implement this function. 4912 bool 4913 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4914 CallingConv::ID CalleeCC, 4915 bool isVarArg, 4916 const SmallVectorImpl<ISD::InputArg> &Ins, 4917 SelectionDAG& DAG) const { 4918 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4919 return false; 4920 4921 // Variable argument functions are not supported. 4922 if (isVarArg) 4923 return false; 4924 4925 MachineFunction &MF = DAG.getMachineFunction(); 4926 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4927 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4928 // Functions containing by val parameters are not supported. 4929 for (unsigned i = 0; i != Ins.size(); i++) { 4930 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4931 if (Flags.isByVal()) return false; 4932 } 4933 4934 // Non-PIC/GOT tail calls are supported. 4935 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4936 return true; 4937 4938 // At the moment we can only do local tail calls (in same module, hidden 4939 // or protected) if we are generating PIC. 4940 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4941 return G->getGlobal()->hasHiddenVisibility() 4942 || G->getGlobal()->hasProtectedVisibility(); 4943 } 4944 4945 return false; 4946 } 4947 4948 /// isCallCompatibleAddress - Return the immediate to use if the specified 4949 /// 32-bit value is representable in the immediate field of a BxA instruction. 4950 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4951 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4952 if (!C) return nullptr; 4953 4954 int Addr = C->getZExtValue(); 4955 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4956 SignExtend32<26>(Addr) != Addr) 4957 return nullptr; // Top 6 bits have to be sext of immediate. 4958 4959 return DAG 4960 .getConstant( 4961 (int)C->getZExtValue() >> 2, SDLoc(Op), 4962 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4963 .getNode(); 4964 } 4965 4966 namespace { 4967 4968 struct TailCallArgumentInfo { 4969 SDValue Arg; 4970 SDValue FrameIdxOp; 4971 int FrameIdx = 0; 4972 4973 TailCallArgumentInfo() = default; 4974 }; 4975 4976 } // end anonymous namespace 4977 4978 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4979 static void StoreTailCallArgumentsToStackSlot( 4980 SelectionDAG &DAG, SDValue Chain, 4981 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4982 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4983 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4984 SDValue Arg = TailCallArgs[i].Arg; 4985 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4986 int FI = TailCallArgs[i].FrameIdx; 4987 // Store relative to framepointer. 4988 MemOpChains.push_back(DAG.getStore( 4989 Chain, dl, Arg, FIN, 4990 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4991 } 4992 } 4993 4994 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4995 /// the appropriate stack slot for the tail call optimized function call. 4996 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4997 SDValue OldRetAddr, SDValue OldFP, 4998 int SPDiff, const SDLoc &dl) { 4999 if (SPDiff) { 5000 // Calculate the new stack slot for the return address. 5001 MachineFunction &MF = DAG.getMachineFunction(); 5002 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5003 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5004 bool isPPC64 = Subtarget.isPPC64(); 5005 int SlotSize = isPPC64 ? 8 : 4; 5006 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5007 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5008 NewRetAddrLoc, true); 5009 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5010 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5011 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5012 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5013 } 5014 return Chain; 5015 } 5016 5017 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5018 /// the position of the argument. 5019 static void 5020 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5021 SDValue Arg, int SPDiff, unsigned ArgOffset, 5022 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5023 int Offset = ArgOffset + SPDiff; 5024 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5025 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5026 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5027 SDValue FIN = DAG.getFrameIndex(FI, VT); 5028 TailCallArgumentInfo Info; 5029 Info.Arg = Arg; 5030 Info.FrameIdxOp = FIN; 5031 Info.FrameIdx = FI; 5032 TailCallArguments.push_back(Info); 5033 } 5034 5035 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5036 /// stack slot. Returns the chain as result and the loaded frame pointers in 5037 /// LROpOut/FPOpout. Used when tail calling. 5038 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5039 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5040 SDValue &FPOpOut, const SDLoc &dl) const { 5041 if (SPDiff) { 5042 // Load the LR and FP stack slot for later adjusting. 5043 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5044 LROpOut = getReturnAddrFrameIndex(DAG); 5045 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5046 Chain = SDValue(LROpOut.getNode(), 1); 5047 } 5048 return Chain; 5049 } 5050 5051 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5052 /// by "Src" to address "Dst" of size "Size". Alignment information is 5053 /// specified by the specific parameter attribute. The copy will be passed as 5054 /// a byval function parameter. 5055 /// Sometimes what we are copying is the end of a larger object, the part that 5056 /// does not fit in registers. 5057 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5058 SDValue Chain, ISD::ArgFlagsTy Flags, 5059 SelectionDAG &DAG, const SDLoc &dl) { 5060 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5061 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5062 Flags.getNonZeroByValAlign(), false, false, false, 5063 MachinePointerInfo(), MachinePointerInfo()); 5064 } 5065 5066 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5067 /// tail calls. 5068 static void LowerMemOpCallTo( 5069 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5070 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5071 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5072 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5073 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5074 if (!isTailCall) { 5075 if (isVector) { 5076 SDValue StackPtr; 5077 if (isPPC64) 5078 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5079 else 5080 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5081 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5082 DAG.getConstant(ArgOffset, dl, PtrVT)); 5083 } 5084 MemOpChains.push_back( 5085 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5086 // Calculate and remember argument location. 5087 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5088 TailCallArguments); 5089 } 5090 5091 static void 5092 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5093 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5094 SDValue FPOp, 5095 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5096 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5097 // might overwrite each other in case of tail call optimization. 5098 SmallVector<SDValue, 8> MemOpChains2; 5099 // Do not flag preceding copytoreg stuff together with the following stuff. 5100 InFlag = SDValue(); 5101 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5102 MemOpChains2, dl); 5103 if (!MemOpChains2.empty()) 5104 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5105 5106 // Store the return address to the appropriate stack slot. 5107 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5108 5109 // Emit callseq_end just before tailcall node. 5110 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5111 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5112 InFlag = Chain.getValue(1); 5113 } 5114 5115 // Is this global address that of a function that can be called by name? (as 5116 // opposed to something that must hold a descriptor for an indirect call). 5117 static bool isFunctionGlobalAddress(SDValue Callee) { 5118 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5119 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5120 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5121 return false; 5122 5123 return G->getGlobal()->getValueType()->isFunctionTy(); 5124 } 5125 5126 return false; 5127 } 5128 5129 SDValue PPCTargetLowering::LowerCallResult( 5130 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5131 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5132 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5133 SmallVector<CCValAssign, 16> RVLocs; 5134 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5135 *DAG.getContext()); 5136 5137 CCRetInfo.AnalyzeCallResult( 5138 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5139 ? RetCC_PPC_Cold 5140 : RetCC_PPC); 5141 5142 // Copy all of the result registers out of their specified physreg. 5143 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5144 CCValAssign &VA = RVLocs[i]; 5145 assert(VA.isRegLoc() && "Can only return in registers!"); 5146 5147 SDValue Val; 5148 5149 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5150 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5151 InFlag); 5152 Chain = Lo.getValue(1); 5153 InFlag = Lo.getValue(2); 5154 VA = RVLocs[++i]; // skip ahead to next loc 5155 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5156 InFlag); 5157 Chain = Hi.getValue(1); 5158 InFlag = Hi.getValue(2); 5159 if (!Subtarget.isLittleEndian()) 5160 std::swap (Lo, Hi); 5161 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5162 } else { 5163 Val = DAG.getCopyFromReg(Chain, dl, 5164 VA.getLocReg(), VA.getLocVT(), InFlag); 5165 Chain = Val.getValue(1); 5166 InFlag = Val.getValue(2); 5167 } 5168 5169 switch (VA.getLocInfo()) { 5170 default: llvm_unreachable("Unknown loc info!"); 5171 case CCValAssign::Full: break; 5172 case CCValAssign::AExt: 5173 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5174 break; 5175 case CCValAssign::ZExt: 5176 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5177 DAG.getValueType(VA.getValVT())); 5178 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5179 break; 5180 case CCValAssign::SExt: 5181 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5182 DAG.getValueType(VA.getValVT())); 5183 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5184 break; 5185 } 5186 5187 InVals.push_back(Val); 5188 } 5189 5190 return Chain; 5191 } 5192 5193 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5194 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5195 // PatchPoint calls are not indirect. 5196 if (isPatchPoint) 5197 return false; 5198 5199 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5200 return false; 5201 5202 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5203 // becuase the immediate function pointer points to a descriptor instead of 5204 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5205 // pointer immediate points to the global entry point, while the BLA would 5206 // need to jump to the local entry point (see rL211174). 5207 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5208 isBLACompatibleAddress(Callee, DAG)) 5209 return false; 5210 5211 return true; 5212 } 5213 5214 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5215 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5216 return Subtarget.isAIXABI() || 5217 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5218 } 5219 5220 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5221 const Function &Caller, const SDValue &Callee, 5222 const PPCSubtarget &Subtarget, 5223 const TargetMachine &TM, 5224 bool IsStrictFPCall = false) { 5225 if (CFlags.IsTailCall) 5226 return PPCISD::TC_RETURN; 5227 5228 unsigned RetOpc = 0; 5229 // This is a call through a function pointer. 5230 if (CFlags.IsIndirect) { 5231 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5232 // indirect calls. The save of the caller's TOC pointer to the stack will be 5233 // inserted into the DAG as part of call lowering. The restore of the TOC 5234 // pointer is modeled by using a pseudo instruction for the call opcode that 5235 // represents the 2 instruction sequence of an indirect branch and link, 5236 // immediately followed by a load of the TOC pointer from the the stack save 5237 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5238 // as it is not saved or used. 5239 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5240 : PPCISD::BCTRL; 5241 } else if (Subtarget.isUsingPCRelativeCalls()) { 5242 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5243 RetOpc = PPCISD::CALL_NOTOC; 5244 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5245 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5246 // immediately following the call instruction if the caller and callee may 5247 // have different TOC bases. At link time if the linker determines the calls 5248 // may not share a TOC base, the call is redirected to a trampoline inserted 5249 // by the linker. The trampoline will (among other things) save the callers 5250 // TOC pointer at an ABI designated offset in the linkage area and the 5251 // linker will rewrite the nop to be a load of the TOC pointer from the 5252 // linkage area into gpr2. 5253 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5254 : PPCISD::CALL_NOP; 5255 else 5256 RetOpc = PPCISD::CALL; 5257 if (IsStrictFPCall) { 5258 switch (RetOpc) { 5259 default: 5260 llvm_unreachable("Unknown call opcode"); 5261 case PPCISD::BCTRL_LOAD_TOC: 5262 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5263 break; 5264 case PPCISD::BCTRL: 5265 RetOpc = PPCISD::BCTRL_RM; 5266 break; 5267 case PPCISD::CALL_NOTOC: 5268 RetOpc = PPCISD::CALL_NOTOC_RM; 5269 break; 5270 case PPCISD::CALL: 5271 RetOpc = PPCISD::CALL_RM; 5272 break; 5273 case PPCISD::CALL_NOP: 5274 RetOpc = PPCISD::CALL_NOP_RM; 5275 break; 5276 } 5277 } 5278 return RetOpc; 5279 } 5280 5281 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5282 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5283 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5284 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5285 return SDValue(Dest, 0); 5286 5287 // Returns true if the callee is local, and false otherwise. 5288 auto isLocalCallee = [&]() { 5289 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5290 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5291 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5292 5293 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5294 !isa_and_nonnull<GlobalIFunc>(GV); 5295 }; 5296 5297 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5298 // a static relocation model causes some versions of GNU LD (2.17.50, at 5299 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5300 // built with secure-PLT. 5301 bool UsePlt = 5302 Subtarget.is32BitELFABI() && !isLocalCallee() && 5303 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5304 5305 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5306 const TargetMachine &TM = Subtarget.getTargetMachine(); 5307 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5308 MCSymbolXCOFF *S = 5309 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5310 5311 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5312 return DAG.getMCSymbol(S, PtrVT); 5313 }; 5314 5315 if (isFunctionGlobalAddress(Callee)) { 5316 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5317 5318 if (Subtarget.isAIXABI()) { 5319 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5320 return getAIXFuncEntryPointSymbolSDNode(GV); 5321 } 5322 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5323 UsePlt ? PPCII::MO_PLT : 0); 5324 } 5325 5326 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5327 const char *SymName = S->getSymbol(); 5328 if (Subtarget.isAIXABI()) { 5329 // If there exists a user-declared function whose name is the same as the 5330 // ExternalSymbol's, then we pick up the user-declared version. 5331 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5332 if (const Function *F = 5333 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5334 return getAIXFuncEntryPointSymbolSDNode(F); 5335 5336 // On AIX, direct function calls reference the symbol for the function's 5337 // entry point, which is named by prepending a "." before the function's 5338 // C-linkage name. A Qualname is returned here because an external 5339 // function entry point is a csect with XTY_ER property. 5340 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5341 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5342 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5343 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5344 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5345 return Sec->getQualNameSymbol(); 5346 }; 5347 5348 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5349 } 5350 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5351 UsePlt ? PPCII::MO_PLT : 0); 5352 } 5353 5354 // No transformation needed. 5355 assert(Callee.getNode() && "What no callee?"); 5356 return Callee; 5357 } 5358 5359 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5360 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5361 "Expected a CALLSEQ_STARTSDNode."); 5362 5363 // The last operand is the chain, except when the node has glue. If the node 5364 // has glue, then the last operand is the glue, and the chain is the second 5365 // last operand. 5366 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5367 if (LastValue.getValueType() != MVT::Glue) 5368 return LastValue; 5369 5370 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5371 } 5372 5373 // Creates the node that moves a functions address into the count register 5374 // to prepare for an indirect call instruction. 5375 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5376 SDValue &Glue, SDValue &Chain, 5377 const SDLoc &dl) { 5378 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5379 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5380 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5381 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5382 // The glue is the second value produced. 5383 Glue = Chain.getValue(1); 5384 } 5385 5386 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5387 SDValue &Glue, SDValue &Chain, 5388 SDValue CallSeqStart, 5389 const CallBase *CB, const SDLoc &dl, 5390 bool hasNest, 5391 const PPCSubtarget &Subtarget) { 5392 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5393 // entry point, but to the function descriptor (the function entry point 5394 // address is part of the function descriptor though). 5395 // The function descriptor is a three doubleword structure with the 5396 // following fields: function entry point, TOC base address and 5397 // environment pointer. 5398 // Thus for a call through a function pointer, the following actions need 5399 // to be performed: 5400 // 1. Save the TOC of the caller in the TOC save area of its stack 5401 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5402 // 2. Load the address of the function entry point from the function 5403 // descriptor. 5404 // 3. Load the TOC of the callee from the function descriptor into r2. 5405 // 4. Load the environment pointer from the function descriptor into 5406 // r11. 5407 // 5. Branch to the function entry point address. 5408 // 6. On return of the callee, the TOC of the caller needs to be 5409 // restored (this is done in FinishCall()). 5410 // 5411 // The loads are scheduled at the beginning of the call sequence, and the 5412 // register copies are flagged together to ensure that no other 5413 // operations can be scheduled in between. E.g. without flagging the 5414 // copies together, a TOC access in the caller could be scheduled between 5415 // the assignment of the callee TOC and the branch to the callee, which leads 5416 // to incorrect code. 5417 5418 // Start by loading the function address from the descriptor. 5419 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5420 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5421 ? (MachineMemOperand::MODereferenceable | 5422 MachineMemOperand::MOInvariant) 5423 : MachineMemOperand::MONone; 5424 5425 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5426 5427 // Registers used in building the DAG. 5428 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5429 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5430 5431 // Offsets of descriptor members. 5432 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5433 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5434 5435 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5436 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5437 5438 // One load for the functions entry point address. 5439 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5440 Alignment, MMOFlags); 5441 5442 // One for loading the TOC anchor for the module that contains the called 5443 // function. 5444 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5445 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5446 SDValue TOCPtr = 5447 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5448 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5449 5450 // One for loading the environment pointer. 5451 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5452 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5453 SDValue LoadEnvPtr = 5454 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5455 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5456 5457 5458 // Then copy the newly loaded TOC anchor to the TOC pointer. 5459 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5460 Chain = TOCVal.getValue(0); 5461 Glue = TOCVal.getValue(1); 5462 5463 // If the function call has an explicit 'nest' parameter, it takes the 5464 // place of the environment pointer. 5465 assert((!hasNest || !Subtarget.isAIXABI()) && 5466 "Nest parameter is not supported on AIX."); 5467 if (!hasNest) { 5468 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5469 Chain = EnvVal.getValue(0); 5470 Glue = EnvVal.getValue(1); 5471 } 5472 5473 // The rest of the indirect call sequence is the same as the non-descriptor 5474 // DAG. 5475 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5476 } 5477 5478 static void 5479 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5480 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5481 SelectionDAG &DAG, 5482 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5483 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5484 const PPCSubtarget &Subtarget) { 5485 const bool IsPPC64 = Subtarget.isPPC64(); 5486 // MVT for a general purpose register. 5487 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5488 5489 // First operand is always the chain. 5490 Ops.push_back(Chain); 5491 5492 // If it's a direct call pass the callee as the second operand. 5493 if (!CFlags.IsIndirect) 5494 Ops.push_back(Callee); 5495 else { 5496 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5497 5498 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5499 // on the stack (this would have been done in `LowerCall_64SVR4` or 5500 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5501 // represents both the indirect branch and a load that restores the TOC 5502 // pointer from the linkage area. The operand for the TOC restore is an add 5503 // of the TOC save offset to the stack pointer. This must be the second 5504 // operand: after the chain input but before any other variadic arguments. 5505 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5506 // saved or used. 5507 if (isTOCSaveRestoreRequired(Subtarget)) { 5508 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5509 5510 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5511 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5512 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5513 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5514 Ops.push_back(AddTOC); 5515 } 5516 5517 // Add the register used for the environment pointer. 5518 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5519 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5520 RegVT)); 5521 5522 5523 // Add CTR register as callee so a bctr can be emitted later. 5524 if (CFlags.IsTailCall) 5525 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5526 } 5527 5528 // If this is a tail call add stack pointer delta. 5529 if (CFlags.IsTailCall) 5530 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5531 5532 // Add argument registers to the end of the list so that they are known live 5533 // into the call. 5534 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5535 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5536 RegsToPass[i].second.getValueType())); 5537 5538 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5539 // no way to mark dependencies as implicit here. 5540 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5541 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5542 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5543 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5544 5545 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5546 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5547 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5548 5549 // Add a register mask operand representing the call-preserved registers. 5550 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5551 const uint32_t *Mask = 5552 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5553 assert(Mask && "Missing call preserved mask for calling convention"); 5554 Ops.push_back(DAG.getRegisterMask(Mask)); 5555 5556 // If the glue is valid, it is the last operand. 5557 if (Glue.getNode()) 5558 Ops.push_back(Glue); 5559 } 5560 5561 SDValue PPCTargetLowering::FinishCall( 5562 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5563 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5564 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5565 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5566 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5567 5568 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5569 Subtarget.isAIXABI()) 5570 setUsesTOCBasePtr(DAG); 5571 5572 unsigned CallOpc = 5573 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5574 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5575 5576 if (!CFlags.IsIndirect) 5577 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5578 else if (Subtarget.usesFunctionDescriptors()) 5579 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5580 dl, CFlags.HasNest, Subtarget); 5581 else 5582 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5583 5584 // Build the operand list for the call instruction. 5585 SmallVector<SDValue, 8> Ops; 5586 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5587 SPDiff, Subtarget); 5588 5589 // Emit tail call. 5590 if (CFlags.IsTailCall) { 5591 // Indirect tail call when using PC Relative calls do not have the same 5592 // constraints. 5593 assert(((Callee.getOpcode() == ISD::Register && 5594 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5595 Callee.getOpcode() == ISD::TargetExternalSymbol || 5596 Callee.getOpcode() == ISD::TargetGlobalAddress || 5597 isa<ConstantSDNode>(Callee) || 5598 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5599 "Expecting a global address, external symbol, absolute value, " 5600 "register or an indirect tail call when PC Relative calls are " 5601 "used."); 5602 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5603 assert(CallOpc == PPCISD::TC_RETURN && 5604 "Unexpected call opcode for a tail call."); 5605 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5606 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5607 } 5608 5609 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5610 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5611 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5612 Glue = Chain.getValue(1); 5613 5614 // When performing tail call optimization the callee pops its arguments off 5615 // the stack. Account for this here so these bytes can be pushed back on in 5616 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5617 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5618 getTargetMachine().Options.GuaranteedTailCallOpt) 5619 ? NumBytes 5620 : 0; 5621 5622 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5623 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5624 Glue, dl); 5625 Glue = Chain.getValue(1); 5626 5627 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5628 DAG, InVals); 5629 } 5630 5631 SDValue 5632 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5633 SmallVectorImpl<SDValue> &InVals) const { 5634 SelectionDAG &DAG = CLI.DAG; 5635 SDLoc &dl = CLI.DL; 5636 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5637 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5638 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5639 SDValue Chain = CLI.Chain; 5640 SDValue Callee = CLI.Callee; 5641 bool &isTailCall = CLI.IsTailCall; 5642 CallingConv::ID CallConv = CLI.CallConv; 5643 bool isVarArg = CLI.IsVarArg; 5644 bool isPatchPoint = CLI.IsPatchPoint; 5645 const CallBase *CB = CLI.CB; 5646 5647 if (isTailCall) { 5648 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5649 isTailCall = false; 5650 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5651 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5652 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5653 else 5654 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5655 Ins, DAG); 5656 if (isTailCall) { 5657 ++NumTailCalls; 5658 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5659 ++NumSiblingCalls; 5660 5661 // PC Relative calls no longer guarantee that the callee is a Global 5662 // Address Node. The callee could be an indirect tail call in which 5663 // case the SDValue for the callee could be a load (to load the address 5664 // of a function pointer) or it may be a register copy (to move the 5665 // address of the callee from a function parameter into a virtual 5666 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5667 assert((Subtarget.isUsingPCRelativeCalls() || 5668 isa<GlobalAddressSDNode>(Callee)) && 5669 "Callee should be an llvm::Function object."); 5670 5671 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5672 << "\nTCO callee: "); 5673 LLVM_DEBUG(Callee.dump()); 5674 } 5675 } 5676 5677 if (!isTailCall && CB && CB->isMustTailCall()) 5678 report_fatal_error("failed to perform tail call elimination on a call " 5679 "site marked musttail"); 5680 5681 // When long calls (i.e. indirect calls) are always used, calls are always 5682 // made via function pointer. If we have a function name, first translate it 5683 // into a pointer. 5684 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5685 !isTailCall) 5686 Callee = LowerGlobalAddress(Callee, DAG); 5687 5688 CallFlags CFlags( 5689 CallConv, isTailCall, isVarArg, isPatchPoint, 5690 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5691 // hasNest 5692 Subtarget.is64BitELFABI() && 5693 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5694 CLI.NoMerge); 5695 5696 if (Subtarget.isAIXABI()) 5697 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5698 InVals, CB); 5699 5700 assert(Subtarget.isSVR4ABI()); 5701 if (Subtarget.isPPC64()) 5702 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5703 InVals, CB); 5704 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5705 InVals, CB); 5706 } 5707 5708 SDValue PPCTargetLowering::LowerCall_32SVR4( 5709 SDValue Chain, SDValue Callee, CallFlags CFlags, 5710 const SmallVectorImpl<ISD::OutputArg> &Outs, 5711 const SmallVectorImpl<SDValue> &OutVals, 5712 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5713 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5714 const CallBase *CB) const { 5715 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5716 // of the 32-bit SVR4 ABI stack frame layout. 5717 5718 const CallingConv::ID CallConv = CFlags.CallConv; 5719 const bool IsVarArg = CFlags.IsVarArg; 5720 const bool IsTailCall = CFlags.IsTailCall; 5721 5722 assert((CallConv == CallingConv::C || 5723 CallConv == CallingConv::Cold || 5724 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5725 5726 const Align PtrAlign(4); 5727 5728 MachineFunction &MF = DAG.getMachineFunction(); 5729 5730 // Mark this function as potentially containing a function that contains a 5731 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5732 // and restoring the callers stack pointer in this functions epilog. This is 5733 // done because by tail calling the called function might overwrite the value 5734 // in this function's (MF) stack pointer stack slot 0(SP). 5735 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5736 CallConv == CallingConv::Fast) 5737 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5738 5739 // Count how many bytes are to be pushed on the stack, including the linkage 5740 // area, parameter list area and the part of the local variable space which 5741 // contains copies of aggregates which are passed by value. 5742 5743 // Assign locations to all of the outgoing arguments. 5744 SmallVector<CCValAssign, 16> ArgLocs; 5745 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5746 5747 // Reserve space for the linkage area on the stack. 5748 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5749 PtrAlign); 5750 if (useSoftFloat()) 5751 CCInfo.PreAnalyzeCallOperands(Outs); 5752 5753 if (IsVarArg) { 5754 // Handle fixed and variable vector arguments differently. 5755 // Fixed vector arguments go into registers as long as registers are 5756 // available. Variable vector arguments always go into memory. 5757 unsigned NumArgs = Outs.size(); 5758 5759 for (unsigned i = 0; i != NumArgs; ++i) { 5760 MVT ArgVT = Outs[i].VT; 5761 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5762 bool Result; 5763 5764 if (Outs[i].IsFixed) { 5765 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5766 CCInfo); 5767 } else { 5768 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5769 ArgFlags, CCInfo); 5770 } 5771 5772 if (Result) { 5773 #ifndef NDEBUG 5774 errs() << "Call operand #" << i << " has unhandled type " 5775 << EVT(ArgVT).getEVTString() << "\n"; 5776 #endif 5777 llvm_unreachable(nullptr); 5778 } 5779 } 5780 } else { 5781 // All arguments are treated the same. 5782 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5783 } 5784 CCInfo.clearWasPPCF128(); 5785 5786 // Assign locations to all of the outgoing aggregate by value arguments. 5787 SmallVector<CCValAssign, 16> ByValArgLocs; 5788 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5789 5790 // Reserve stack space for the allocations in CCInfo. 5791 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5792 5793 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5794 5795 // Size of the linkage area, parameter list area and the part of the local 5796 // space variable where copies of aggregates which are passed by value are 5797 // stored. 5798 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5799 5800 // Calculate by how many bytes the stack has to be adjusted in case of tail 5801 // call optimization. 5802 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5803 5804 // Adjust the stack pointer for the new arguments... 5805 // These operations are automatically eliminated by the prolog/epilog pass 5806 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5807 SDValue CallSeqStart = Chain; 5808 5809 // Load the return address and frame pointer so it can be moved somewhere else 5810 // later. 5811 SDValue LROp, FPOp; 5812 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5813 5814 // Set up a copy of the stack pointer for use loading and storing any 5815 // arguments that may not fit in the registers available for argument 5816 // passing. 5817 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5818 5819 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5820 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5821 SmallVector<SDValue, 8> MemOpChains; 5822 5823 bool seenFloatArg = false; 5824 // Walk the register/memloc assignments, inserting copies/loads. 5825 // i - Tracks the index into the list of registers allocated for the call 5826 // RealArgIdx - Tracks the index into the list of actual function arguments 5827 // j - Tracks the index into the list of byval arguments 5828 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5829 i != e; 5830 ++i, ++RealArgIdx) { 5831 CCValAssign &VA = ArgLocs[i]; 5832 SDValue Arg = OutVals[RealArgIdx]; 5833 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5834 5835 if (Flags.isByVal()) { 5836 // Argument is an aggregate which is passed by value, thus we need to 5837 // create a copy of it in the local variable space of the current stack 5838 // frame (which is the stack frame of the caller) and pass the address of 5839 // this copy to the callee. 5840 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5841 CCValAssign &ByValVA = ByValArgLocs[j++]; 5842 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5843 5844 // Memory reserved in the local variable space of the callers stack frame. 5845 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5846 5847 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5848 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5849 StackPtr, PtrOff); 5850 5851 // Create a copy of the argument in the local area of the current 5852 // stack frame. 5853 SDValue MemcpyCall = 5854 CreateCopyOfByValArgument(Arg, PtrOff, 5855 CallSeqStart.getNode()->getOperand(0), 5856 Flags, DAG, dl); 5857 5858 // This must go outside the CALLSEQ_START..END. 5859 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5860 SDLoc(MemcpyCall)); 5861 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5862 NewCallSeqStart.getNode()); 5863 Chain = CallSeqStart = NewCallSeqStart; 5864 5865 // Pass the address of the aggregate copy on the stack either in a 5866 // physical register or in the parameter list area of the current stack 5867 // frame to the callee. 5868 Arg = PtrOff; 5869 } 5870 5871 // When useCRBits() is true, there can be i1 arguments. 5872 // It is because getRegisterType(MVT::i1) => MVT::i1, 5873 // and for other integer types getRegisterType() => MVT::i32. 5874 // Extend i1 and ensure callee will get i32. 5875 if (Arg.getValueType() == MVT::i1) 5876 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5877 dl, MVT::i32, Arg); 5878 5879 if (VA.isRegLoc()) { 5880 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5881 // Put argument in a physical register. 5882 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5883 bool IsLE = Subtarget.isLittleEndian(); 5884 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5885 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5886 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5887 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5888 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5889 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5890 SVal.getValue(0))); 5891 } else 5892 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5893 } else { 5894 // Put argument in the parameter list area of the current stack frame. 5895 assert(VA.isMemLoc()); 5896 unsigned LocMemOffset = VA.getLocMemOffset(); 5897 5898 if (!IsTailCall) { 5899 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5900 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5901 StackPtr, PtrOff); 5902 5903 MemOpChains.push_back( 5904 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5905 } else { 5906 // Calculate and remember argument location. 5907 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5908 TailCallArguments); 5909 } 5910 } 5911 } 5912 5913 if (!MemOpChains.empty()) 5914 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5915 5916 // Build a sequence of copy-to-reg nodes chained together with token chain 5917 // and flag operands which copy the outgoing args into the appropriate regs. 5918 SDValue InFlag; 5919 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5920 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5921 RegsToPass[i].second, InFlag); 5922 InFlag = Chain.getValue(1); 5923 } 5924 5925 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5926 // registers. 5927 if (IsVarArg) { 5928 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5929 SDValue Ops[] = { Chain, InFlag }; 5930 5931 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5932 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5933 5934 InFlag = Chain.getValue(1); 5935 } 5936 5937 if (IsTailCall) 5938 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5939 TailCallArguments); 5940 5941 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5942 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5943 } 5944 5945 // Copy an argument into memory, being careful to do this outside the 5946 // call sequence for the call to which the argument belongs. 5947 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5948 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5949 SelectionDAG &DAG, const SDLoc &dl) const { 5950 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5951 CallSeqStart.getNode()->getOperand(0), 5952 Flags, DAG, dl); 5953 // The MEMCPY must go outside the CALLSEQ_START..END. 5954 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5955 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5956 SDLoc(MemcpyCall)); 5957 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5958 NewCallSeqStart.getNode()); 5959 return NewCallSeqStart; 5960 } 5961 5962 SDValue PPCTargetLowering::LowerCall_64SVR4( 5963 SDValue Chain, SDValue Callee, CallFlags CFlags, 5964 const SmallVectorImpl<ISD::OutputArg> &Outs, 5965 const SmallVectorImpl<SDValue> &OutVals, 5966 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5967 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5968 const CallBase *CB) const { 5969 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5970 bool isLittleEndian = Subtarget.isLittleEndian(); 5971 unsigned NumOps = Outs.size(); 5972 bool IsSibCall = false; 5973 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5974 5975 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5976 unsigned PtrByteSize = 8; 5977 5978 MachineFunction &MF = DAG.getMachineFunction(); 5979 5980 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5981 IsSibCall = true; 5982 5983 // Mark this function as potentially containing a function that contains a 5984 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5985 // and restoring the callers stack pointer in this functions epilog. This is 5986 // done because by tail calling the called function might overwrite the value 5987 // in this function's (MF) stack pointer stack slot 0(SP). 5988 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5989 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5990 5991 assert(!(IsFastCall && CFlags.IsVarArg) && 5992 "fastcc not supported on varargs functions"); 5993 5994 // Count how many bytes are to be pushed on the stack, including the linkage 5995 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5996 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5997 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5998 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5999 unsigned NumBytes = LinkageSize; 6000 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6001 6002 static const MCPhysReg GPR[] = { 6003 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6004 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6005 }; 6006 static const MCPhysReg VR[] = { 6007 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6008 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6009 }; 6010 6011 const unsigned NumGPRs = array_lengthof(GPR); 6012 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6013 const unsigned NumVRs = array_lengthof(VR); 6014 6015 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6016 // can be passed to the callee in registers. 6017 // For the fast calling convention, there is another check below. 6018 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6019 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6020 if (!HasParameterArea) { 6021 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6022 unsigned AvailableFPRs = NumFPRs; 6023 unsigned AvailableVRs = NumVRs; 6024 unsigned NumBytesTmp = NumBytes; 6025 for (unsigned i = 0; i != NumOps; ++i) { 6026 if (Outs[i].Flags.isNest()) continue; 6027 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6028 PtrByteSize, LinkageSize, ParamAreaSize, 6029 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6030 HasParameterArea = true; 6031 } 6032 } 6033 6034 // When using the fast calling convention, we don't provide backing for 6035 // arguments that will be in registers. 6036 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6037 6038 // Avoid allocating parameter area for fastcc functions if all the arguments 6039 // can be passed in the registers. 6040 if (IsFastCall) 6041 HasParameterArea = false; 6042 6043 // Add up all the space actually used. 6044 for (unsigned i = 0; i != NumOps; ++i) { 6045 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6046 EVT ArgVT = Outs[i].VT; 6047 EVT OrigVT = Outs[i].ArgVT; 6048 6049 if (Flags.isNest()) 6050 continue; 6051 6052 if (IsFastCall) { 6053 if (Flags.isByVal()) { 6054 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6055 if (NumGPRsUsed > NumGPRs) 6056 HasParameterArea = true; 6057 } else { 6058 switch (ArgVT.getSimpleVT().SimpleTy) { 6059 default: llvm_unreachable("Unexpected ValueType for argument!"); 6060 case MVT::i1: 6061 case MVT::i32: 6062 case MVT::i64: 6063 if (++NumGPRsUsed <= NumGPRs) 6064 continue; 6065 break; 6066 case MVT::v4i32: 6067 case MVT::v8i16: 6068 case MVT::v16i8: 6069 case MVT::v2f64: 6070 case MVT::v2i64: 6071 case MVT::v1i128: 6072 case MVT::f128: 6073 if (++NumVRsUsed <= NumVRs) 6074 continue; 6075 break; 6076 case MVT::v4f32: 6077 if (++NumVRsUsed <= NumVRs) 6078 continue; 6079 break; 6080 case MVT::f32: 6081 case MVT::f64: 6082 if (++NumFPRsUsed <= NumFPRs) 6083 continue; 6084 break; 6085 } 6086 HasParameterArea = true; 6087 } 6088 } 6089 6090 /* Respect alignment of argument on the stack. */ 6091 auto Alignement = 6092 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6093 NumBytes = alignTo(NumBytes, Alignement); 6094 6095 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6096 if (Flags.isInConsecutiveRegsLast()) 6097 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6098 } 6099 6100 unsigned NumBytesActuallyUsed = NumBytes; 6101 6102 // In the old ELFv1 ABI, 6103 // the prolog code of the callee may store up to 8 GPR argument registers to 6104 // the stack, allowing va_start to index over them in memory if its varargs. 6105 // Because we cannot tell if this is needed on the caller side, we have to 6106 // conservatively assume that it is needed. As such, make sure we have at 6107 // least enough stack space for the caller to store the 8 GPRs. 6108 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6109 // really requires memory operands, e.g. a vararg function. 6110 if (HasParameterArea) 6111 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6112 else 6113 NumBytes = LinkageSize; 6114 6115 // Tail call needs the stack to be aligned. 6116 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6117 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6118 6119 int SPDiff = 0; 6120 6121 // Calculate by how many bytes the stack has to be adjusted in case of tail 6122 // call optimization. 6123 if (!IsSibCall) 6124 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6125 6126 // To protect arguments on the stack from being clobbered in a tail call, 6127 // force all the loads to happen before doing any other lowering. 6128 if (CFlags.IsTailCall) 6129 Chain = DAG.getStackArgumentTokenFactor(Chain); 6130 6131 // Adjust the stack pointer for the new arguments... 6132 // These operations are automatically eliminated by the prolog/epilog pass 6133 if (!IsSibCall) 6134 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6135 SDValue CallSeqStart = Chain; 6136 6137 // Load the return address and frame pointer so it can be move somewhere else 6138 // later. 6139 SDValue LROp, FPOp; 6140 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6141 6142 // Set up a copy of the stack pointer for use loading and storing any 6143 // arguments that may not fit in the registers available for argument 6144 // passing. 6145 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6146 6147 // Figure out which arguments are going to go in registers, and which in 6148 // memory. Also, if this is a vararg function, floating point operations 6149 // must be stored to our stack, and loaded into integer regs as well, if 6150 // any integer regs are available for argument passing. 6151 unsigned ArgOffset = LinkageSize; 6152 6153 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6154 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6155 6156 SmallVector<SDValue, 8> MemOpChains; 6157 for (unsigned i = 0; i != NumOps; ++i) { 6158 SDValue Arg = OutVals[i]; 6159 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6160 EVT ArgVT = Outs[i].VT; 6161 EVT OrigVT = Outs[i].ArgVT; 6162 6163 // PtrOff will be used to store the current argument to the stack if a 6164 // register cannot be found for it. 6165 SDValue PtrOff; 6166 6167 // We re-align the argument offset for each argument, except when using the 6168 // fast calling convention, when we need to make sure we do that only when 6169 // we'll actually use a stack slot. 6170 auto ComputePtrOff = [&]() { 6171 /* Respect alignment of argument on the stack. */ 6172 auto Alignment = 6173 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6174 ArgOffset = alignTo(ArgOffset, Alignment); 6175 6176 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6177 6178 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6179 }; 6180 6181 if (!IsFastCall) { 6182 ComputePtrOff(); 6183 6184 /* Compute GPR index associated with argument offset. */ 6185 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6186 GPR_idx = std::min(GPR_idx, NumGPRs); 6187 } 6188 6189 // Promote integers to 64-bit values. 6190 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6191 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6192 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6193 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6194 } 6195 6196 // FIXME memcpy is used way more than necessary. Correctness first. 6197 // Note: "by value" is code for passing a structure by value, not 6198 // basic types. 6199 if (Flags.isByVal()) { 6200 // Note: Size includes alignment padding, so 6201 // struct x { short a; char b; } 6202 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6203 // These are the proper values we need for right-justifying the 6204 // aggregate in a parameter register. 6205 unsigned Size = Flags.getByValSize(); 6206 6207 // An empty aggregate parameter takes up no storage and no 6208 // registers. 6209 if (Size == 0) 6210 continue; 6211 6212 if (IsFastCall) 6213 ComputePtrOff(); 6214 6215 // All aggregates smaller than 8 bytes must be passed right-justified. 6216 if (Size==1 || Size==2 || Size==4) { 6217 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6218 if (GPR_idx != NumGPRs) { 6219 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6220 MachinePointerInfo(), VT); 6221 MemOpChains.push_back(Load.getValue(1)); 6222 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6223 6224 ArgOffset += PtrByteSize; 6225 continue; 6226 } 6227 } 6228 6229 if (GPR_idx == NumGPRs && Size < 8) { 6230 SDValue AddPtr = PtrOff; 6231 if (!isLittleEndian) { 6232 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6233 PtrOff.getValueType()); 6234 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6235 } 6236 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6237 CallSeqStart, 6238 Flags, DAG, dl); 6239 ArgOffset += PtrByteSize; 6240 continue; 6241 } 6242 // Copy the object to parameter save area if it can not be entirely passed 6243 // by registers. 6244 // FIXME: we only need to copy the parts which need to be passed in 6245 // parameter save area. For the parts passed by registers, we don't need 6246 // to copy them to the stack although we need to allocate space for them 6247 // in parameter save area. 6248 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6249 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6250 CallSeqStart, 6251 Flags, DAG, dl); 6252 6253 // When a register is available, pass a small aggregate right-justified. 6254 if (Size < 8 && GPR_idx != NumGPRs) { 6255 // The easiest way to get this right-justified in a register 6256 // is to copy the structure into the rightmost portion of a 6257 // local variable slot, then load the whole slot into the 6258 // register. 6259 // FIXME: The memcpy seems to produce pretty awful code for 6260 // small aggregates, particularly for packed ones. 6261 // FIXME: It would be preferable to use the slot in the 6262 // parameter save area instead of a new local variable. 6263 SDValue AddPtr = PtrOff; 6264 if (!isLittleEndian) { 6265 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6266 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6267 } 6268 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6269 CallSeqStart, 6270 Flags, DAG, dl); 6271 6272 // Load the slot into the register. 6273 SDValue Load = 6274 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6275 MemOpChains.push_back(Load.getValue(1)); 6276 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6277 6278 // Done with this argument. 6279 ArgOffset += PtrByteSize; 6280 continue; 6281 } 6282 6283 // For aggregates larger than PtrByteSize, copy the pieces of the 6284 // object that fit into registers from the parameter save area. 6285 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6286 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6287 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6288 if (GPR_idx != NumGPRs) { 6289 SDValue Load = 6290 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6291 MemOpChains.push_back(Load.getValue(1)); 6292 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6293 ArgOffset += PtrByteSize; 6294 } else { 6295 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6296 break; 6297 } 6298 } 6299 continue; 6300 } 6301 6302 switch (Arg.getSimpleValueType().SimpleTy) { 6303 default: llvm_unreachable("Unexpected ValueType for argument!"); 6304 case MVT::i1: 6305 case MVT::i32: 6306 case MVT::i64: 6307 if (Flags.isNest()) { 6308 // The 'nest' parameter, if any, is passed in R11. 6309 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6310 break; 6311 } 6312 6313 // These can be scalar arguments or elements of an integer array type 6314 // passed directly. Clang may use those instead of "byval" aggregate 6315 // types to avoid forcing arguments to memory unnecessarily. 6316 if (GPR_idx != NumGPRs) { 6317 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6318 } else { 6319 if (IsFastCall) 6320 ComputePtrOff(); 6321 6322 assert(HasParameterArea && 6323 "Parameter area must exist to pass an argument in memory."); 6324 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6325 true, CFlags.IsTailCall, false, MemOpChains, 6326 TailCallArguments, dl); 6327 if (IsFastCall) 6328 ArgOffset += PtrByteSize; 6329 } 6330 if (!IsFastCall) 6331 ArgOffset += PtrByteSize; 6332 break; 6333 case MVT::f32: 6334 case MVT::f64: { 6335 // These can be scalar arguments or elements of a float array type 6336 // passed directly. The latter are used to implement ELFv2 homogenous 6337 // float aggregates. 6338 6339 // Named arguments go into FPRs first, and once they overflow, the 6340 // remaining arguments go into GPRs and then the parameter save area. 6341 // Unnamed arguments for vararg functions always go to GPRs and 6342 // then the parameter save area. For now, put all arguments to vararg 6343 // routines always in both locations (FPR *and* GPR or stack slot). 6344 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6345 bool NeededLoad = false; 6346 6347 // First load the argument into the next available FPR. 6348 if (FPR_idx != NumFPRs) 6349 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6350 6351 // Next, load the argument into GPR or stack slot if needed. 6352 if (!NeedGPROrStack) 6353 ; 6354 else if (GPR_idx != NumGPRs && !IsFastCall) { 6355 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6356 // once we support fp <-> gpr moves. 6357 6358 // In the non-vararg case, this can only ever happen in the 6359 // presence of f32 array types, since otherwise we never run 6360 // out of FPRs before running out of GPRs. 6361 SDValue ArgVal; 6362 6363 // Double values are always passed in a single GPR. 6364 if (Arg.getValueType() != MVT::f32) { 6365 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6366 6367 // Non-array float values are extended and passed in a GPR. 6368 } else if (!Flags.isInConsecutiveRegs()) { 6369 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6370 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6371 6372 // If we have an array of floats, we collect every odd element 6373 // together with its predecessor into one GPR. 6374 } else if (ArgOffset % PtrByteSize != 0) { 6375 SDValue Lo, Hi; 6376 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6377 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6378 if (!isLittleEndian) 6379 std::swap(Lo, Hi); 6380 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6381 6382 // The final element, if even, goes into the first half of a GPR. 6383 } else if (Flags.isInConsecutiveRegsLast()) { 6384 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6385 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6386 if (!isLittleEndian) 6387 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6388 DAG.getConstant(32, dl, MVT::i32)); 6389 6390 // Non-final even elements are skipped; they will be handled 6391 // together the with subsequent argument on the next go-around. 6392 } else 6393 ArgVal = SDValue(); 6394 6395 if (ArgVal.getNode()) 6396 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6397 } else { 6398 if (IsFastCall) 6399 ComputePtrOff(); 6400 6401 // Single-precision floating-point values are mapped to the 6402 // second (rightmost) word of the stack doubleword. 6403 if (Arg.getValueType() == MVT::f32 && 6404 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6405 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6406 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6407 } 6408 6409 assert(HasParameterArea && 6410 "Parameter area must exist to pass an argument in memory."); 6411 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6412 true, CFlags.IsTailCall, false, MemOpChains, 6413 TailCallArguments, dl); 6414 6415 NeededLoad = true; 6416 } 6417 // When passing an array of floats, the array occupies consecutive 6418 // space in the argument area; only round up to the next doubleword 6419 // at the end of the array. Otherwise, each float takes 8 bytes. 6420 if (!IsFastCall || NeededLoad) { 6421 ArgOffset += (Arg.getValueType() == MVT::f32 && 6422 Flags.isInConsecutiveRegs()) ? 4 : 8; 6423 if (Flags.isInConsecutiveRegsLast()) 6424 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6425 } 6426 break; 6427 } 6428 case MVT::v4f32: 6429 case MVT::v4i32: 6430 case MVT::v8i16: 6431 case MVT::v16i8: 6432 case MVT::v2f64: 6433 case MVT::v2i64: 6434 case MVT::v1i128: 6435 case MVT::f128: 6436 // These can be scalar arguments or elements of a vector array type 6437 // passed directly. The latter are used to implement ELFv2 homogenous 6438 // vector aggregates. 6439 6440 // For a varargs call, named arguments go into VRs or on the stack as 6441 // usual; unnamed arguments always go to the stack or the corresponding 6442 // GPRs when within range. For now, we always put the value in both 6443 // locations (or even all three). 6444 if (CFlags.IsVarArg) { 6445 assert(HasParameterArea && 6446 "Parameter area must exist if we have a varargs call."); 6447 // We could elide this store in the case where the object fits 6448 // entirely in R registers. Maybe later. 6449 SDValue Store = 6450 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6451 MemOpChains.push_back(Store); 6452 if (VR_idx != NumVRs) { 6453 SDValue Load = 6454 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6455 MemOpChains.push_back(Load.getValue(1)); 6456 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6457 } 6458 ArgOffset += 16; 6459 for (unsigned i=0; i<16; i+=PtrByteSize) { 6460 if (GPR_idx == NumGPRs) 6461 break; 6462 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6463 DAG.getConstant(i, dl, PtrVT)); 6464 SDValue Load = 6465 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6466 MemOpChains.push_back(Load.getValue(1)); 6467 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6468 } 6469 break; 6470 } 6471 6472 // Non-varargs Altivec params go into VRs or on the stack. 6473 if (VR_idx != NumVRs) { 6474 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6475 } else { 6476 if (IsFastCall) 6477 ComputePtrOff(); 6478 6479 assert(HasParameterArea && 6480 "Parameter area must exist to pass an argument in memory."); 6481 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6482 true, CFlags.IsTailCall, true, MemOpChains, 6483 TailCallArguments, dl); 6484 if (IsFastCall) 6485 ArgOffset += 16; 6486 } 6487 6488 if (!IsFastCall) 6489 ArgOffset += 16; 6490 break; 6491 } 6492 } 6493 6494 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6495 "mismatch in size of parameter area"); 6496 (void)NumBytesActuallyUsed; 6497 6498 if (!MemOpChains.empty()) 6499 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6500 6501 // Check if this is an indirect call (MTCTR/BCTRL). 6502 // See prepareDescriptorIndirectCall and buildCallOperands for more 6503 // information about calls through function pointers in the 64-bit SVR4 ABI. 6504 if (CFlags.IsIndirect) { 6505 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6506 // caller in the TOC save area. 6507 if (isTOCSaveRestoreRequired(Subtarget)) { 6508 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6509 // Load r2 into a virtual register and store it to the TOC save area. 6510 setUsesTOCBasePtr(DAG); 6511 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6512 // TOC save area offset. 6513 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6514 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6515 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6516 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6517 MachinePointerInfo::getStack( 6518 DAG.getMachineFunction(), TOCSaveOffset)); 6519 } 6520 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6521 // This does not mean the MTCTR instruction must use R12; it's easier 6522 // to model this as an extra parameter, so do that. 6523 if (isELFv2ABI && !CFlags.IsPatchPoint) 6524 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6525 } 6526 6527 // Build a sequence of copy-to-reg nodes chained together with token chain 6528 // and flag operands which copy the outgoing args into the appropriate regs. 6529 SDValue InFlag; 6530 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6531 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6532 RegsToPass[i].second, InFlag); 6533 InFlag = Chain.getValue(1); 6534 } 6535 6536 if (CFlags.IsTailCall && !IsSibCall) 6537 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6538 TailCallArguments); 6539 6540 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6541 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6542 } 6543 6544 // Returns true when the shadow of a general purpose argument register 6545 // in the parameter save area is aligned to at least 'RequiredAlign'. 6546 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6547 assert(RequiredAlign.value() <= 16 && 6548 "Required alignment greater than stack alignment."); 6549 switch (Reg) { 6550 default: 6551 report_fatal_error("called on invalid register."); 6552 case PPC::R5: 6553 case PPC::R9: 6554 case PPC::X3: 6555 case PPC::X5: 6556 case PPC::X7: 6557 case PPC::X9: 6558 // These registers are 16 byte aligned which is the most strict aligment 6559 // we can support. 6560 return true; 6561 case PPC::R3: 6562 case PPC::R7: 6563 case PPC::X4: 6564 case PPC::X6: 6565 case PPC::X8: 6566 case PPC::X10: 6567 // The shadow of these registers in the PSA is 8 byte aligned. 6568 return RequiredAlign <= 8; 6569 case PPC::R4: 6570 case PPC::R6: 6571 case PPC::R8: 6572 case PPC::R10: 6573 return RequiredAlign <= 4; 6574 } 6575 } 6576 6577 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6578 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6579 CCState &S) { 6580 AIXCCState &State = static_cast<AIXCCState &>(S); 6581 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6582 State.getMachineFunction().getSubtarget()); 6583 const bool IsPPC64 = Subtarget.isPPC64(); 6584 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6585 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6586 6587 if (ValVT == MVT::f128) 6588 report_fatal_error("f128 is unimplemented on AIX."); 6589 6590 if (ArgFlags.isNest()) 6591 report_fatal_error("Nest arguments are unimplemented."); 6592 6593 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6594 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6595 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6596 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6597 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6598 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6599 6600 static const MCPhysReg VR[] = {// Vector registers. 6601 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6602 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6603 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6604 6605 if (ArgFlags.isByVal()) { 6606 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6607 report_fatal_error("Pass-by-value arguments with alignment greater than " 6608 "register width are not supported."); 6609 6610 const unsigned ByValSize = ArgFlags.getByValSize(); 6611 6612 // An empty aggregate parameter takes up no storage and no registers, 6613 // but needs a MemLoc for a stack slot for the formal arguments side. 6614 if (ByValSize == 0) { 6615 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6616 State.getNextStackOffset(), RegVT, 6617 LocInfo)); 6618 return false; 6619 } 6620 6621 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6622 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6623 for (const unsigned E = Offset + StackSize; Offset < E; 6624 Offset += PtrAlign.value()) { 6625 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6626 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6627 else { 6628 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6629 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6630 LocInfo)); 6631 break; 6632 } 6633 } 6634 return false; 6635 } 6636 6637 // Arguments always reserve parameter save area. 6638 switch (ValVT.SimpleTy) { 6639 default: 6640 report_fatal_error("Unhandled value type for argument."); 6641 case MVT::i64: 6642 // i64 arguments should have been split to i32 for PPC32. 6643 assert(IsPPC64 && "PPC32 should have split i64 values."); 6644 LLVM_FALLTHROUGH; 6645 case MVT::i1: 6646 case MVT::i32: { 6647 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6648 // AIX integer arguments are always passed in register width. 6649 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6650 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6651 : CCValAssign::LocInfo::ZExt; 6652 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6653 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6654 else 6655 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6656 6657 return false; 6658 } 6659 case MVT::f32: 6660 case MVT::f64: { 6661 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6662 const unsigned StoreSize = LocVT.getStoreSize(); 6663 // Floats are always 4-byte aligned in the PSA on AIX. 6664 // This includes f64 in 64-bit mode for ABI compatibility. 6665 const unsigned Offset = 6666 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6667 unsigned FReg = State.AllocateReg(FPR); 6668 if (FReg) 6669 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6670 6671 // Reserve and initialize GPRs or initialize the PSA as required. 6672 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6673 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6674 assert(FReg && "An FPR should be available when a GPR is reserved."); 6675 if (State.isVarArg()) { 6676 // Successfully reserved GPRs are only initialized for vararg calls. 6677 // Custom handling is required for: 6678 // f64 in PPC32 needs to be split into 2 GPRs. 6679 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6680 State.addLoc( 6681 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6682 } 6683 } else { 6684 // If there are insufficient GPRs, the PSA needs to be initialized. 6685 // Initialization occurs even if an FPR was initialized for 6686 // compatibility with the AIX XL compiler. The full memory for the 6687 // argument will be initialized even if a prior word is saved in GPR. 6688 // A custom memLoc is used when the argument also passes in FPR so 6689 // that the callee handling can skip over it easily. 6690 State.addLoc( 6691 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6692 LocInfo) 6693 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6694 break; 6695 } 6696 } 6697 6698 return false; 6699 } 6700 case MVT::v4f32: 6701 case MVT::v4i32: 6702 case MVT::v8i16: 6703 case MVT::v16i8: 6704 case MVT::v2i64: 6705 case MVT::v2f64: 6706 case MVT::v1i128: { 6707 const unsigned VecSize = 16; 6708 const Align VecAlign(VecSize); 6709 6710 if (!State.isVarArg()) { 6711 // If there are vector registers remaining we don't consume any stack 6712 // space. 6713 if (unsigned VReg = State.AllocateReg(VR)) { 6714 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6715 return false; 6716 } 6717 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6718 // might be allocated in the portion of the PSA that is shadowed by the 6719 // GPRs. 6720 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6721 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6722 return false; 6723 } 6724 6725 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6726 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6727 6728 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6729 // Burn any underaligned registers and their shadowed stack space until 6730 // we reach the required alignment. 6731 while (NextRegIndex != GPRs.size() && 6732 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6733 // Shadow allocate register and its stack shadow. 6734 unsigned Reg = State.AllocateReg(GPRs); 6735 State.AllocateStack(PtrSize, PtrAlign); 6736 assert(Reg && "Allocating register unexpectedly failed."); 6737 (void)Reg; 6738 NextRegIndex = State.getFirstUnallocated(GPRs); 6739 } 6740 6741 // Vectors that are passed as fixed arguments are handled differently. 6742 // They are passed in VRs if any are available (unlike arguments passed 6743 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6744 // functions) 6745 if (State.isFixed(ValNo)) { 6746 if (unsigned VReg = State.AllocateReg(VR)) { 6747 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6748 // Shadow allocate GPRs and stack space even though we pass in a VR. 6749 for (unsigned I = 0; I != VecSize; I += PtrSize) 6750 State.AllocateReg(GPRs); 6751 State.AllocateStack(VecSize, VecAlign); 6752 return false; 6753 } 6754 // No vector registers remain so pass on the stack. 6755 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6756 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6757 return false; 6758 } 6759 6760 // If all GPRS are consumed then we pass the argument fully on the stack. 6761 if (NextRegIndex == GPRs.size()) { 6762 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6763 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6764 return false; 6765 } 6766 6767 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6768 // half of the argument, and then need to pass the remaining half on the 6769 // stack. 6770 if (GPRs[NextRegIndex] == PPC::R9) { 6771 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6772 State.addLoc( 6773 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6774 6775 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6776 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6777 assert(FirstReg && SecondReg && 6778 "Allocating R9 or R10 unexpectedly failed."); 6779 State.addLoc( 6780 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6781 State.addLoc( 6782 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6783 return false; 6784 } 6785 6786 // We have enough GPRs to fully pass the vector argument, and we have 6787 // already consumed any underaligned registers. Start with the custom 6788 // MemLoc and then the custom RegLocs. 6789 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6790 State.addLoc( 6791 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6792 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6793 const unsigned Reg = State.AllocateReg(GPRs); 6794 assert(Reg && "Failed to allocated register for vararg vector argument"); 6795 State.addLoc( 6796 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6797 } 6798 return false; 6799 } 6800 } 6801 return true; 6802 } 6803 6804 // So far, this function is only used by LowerFormalArguments_AIX() 6805 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6806 bool IsPPC64, 6807 bool HasP8Vector, 6808 bool HasVSX) { 6809 assert((IsPPC64 || SVT != MVT::i64) && 6810 "i64 should have been split for 32-bit codegen."); 6811 6812 switch (SVT) { 6813 default: 6814 report_fatal_error("Unexpected value type for formal argument"); 6815 case MVT::i1: 6816 case MVT::i32: 6817 case MVT::i64: 6818 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6819 case MVT::f32: 6820 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6821 case MVT::f64: 6822 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6823 case MVT::v4f32: 6824 case MVT::v4i32: 6825 case MVT::v8i16: 6826 case MVT::v16i8: 6827 case MVT::v2i64: 6828 case MVT::v2f64: 6829 case MVT::v1i128: 6830 return &PPC::VRRCRegClass; 6831 } 6832 } 6833 6834 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6835 SelectionDAG &DAG, SDValue ArgValue, 6836 MVT LocVT, const SDLoc &dl) { 6837 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6838 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6839 6840 if (Flags.isSExt()) 6841 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6842 DAG.getValueType(ValVT)); 6843 else if (Flags.isZExt()) 6844 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6845 DAG.getValueType(ValVT)); 6846 6847 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6848 } 6849 6850 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6851 const unsigned LASize = FL->getLinkageSize(); 6852 6853 if (PPC::GPRCRegClass.contains(Reg)) { 6854 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6855 "Reg must be a valid argument register!"); 6856 return LASize + 4 * (Reg - PPC::R3); 6857 } 6858 6859 if (PPC::G8RCRegClass.contains(Reg)) { 6860 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6861 "Reg must be a valid argument register!"); 6862 return LASize + 8 * (Reg - PPC::X3); 6863 } 6864 6865 llvm_unreachable("Only general purpose registers expected."); 6866 } 6867 6868 // AIX ABI Stack Frame Layout: 6869 // 6870 // Low Memory +--------------------------------------------+ 6871 // SP +---> | Back chain | ---+ 6872 // | +--------------------------------------------+ | 6873 // | | Saved Condition Register | | 6874 // | +--------------------------------------------+ | 6875 // | | Saved Linkage Register | | 6876 // | +--------------------------------------------+ | Linkage Area 6877 // | | Reserved for compilers | | 6878 // | +--------------------------------------------+ | 6879 // | | Reserved for binders | | 6880 // | +--------------------------------------------+ | 6881 // | | Saved TOC pointer | ---+ 6882 // | +--------------------------------------------+ 6883 // | | Parameter save area | 6884 // | +--------------------------------------------+ 6885 // | | Alloca space | 6886 // | +--------------------------------------------+ 6887 // | | Local variable space | 6888 // | +--------------------------------------------+ 6889 // | | Float/int conversion temporary | 6890 // | +--------------------------------------------+ 6891 // | | Save area for AltiVec registers | 6892 // | +--------------------------------------------+ 6893 // | | AltiVec alignment padding | 6894 // | +--------------------------------------------+ 6895 // | | Save area for VRSAVE register | 6896 // | +--------------------------------------------+ 6897 // | | Save area for General Purpose registers | 6898 // | +--------------------------------------------+ 6899 // | | Save area for Floating Point registers | 6900 // | +--------------------------------------------+ 6901 // +---- | Back chain | 6902 // High Memory +--------------------------------------------+ 6903 // 6904 // Specifications: 6905 // AIX 7.2 Assembler Language Reference 6906 // Subroutine linkage convention 6907 6908 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6909 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6910 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6911 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6912 6913 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6914 CallConv == CallingConv::Fast) && 6915 "Unexpected calling convention!"); 6916 6917 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6918 report_fatal_error("Tail call support is unimplemented on AIX."); 6919 6920 if (useSoftFloat()) 6921 report_fatal_error("Soft float support is unimplemented on AIX."); 6922 6923 const PPCSubtarget &Subtarget = 6924 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6925 6926 const bool IsPPC64 = Subtarget.isPPC64(); 6927 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6928 6929 // Assign locations to all of the incoming arguments. 6930 SmallVector<CCValAssign, 16> ArgLocs; 6931 MachineFunction &MF = DAG.getMachineFunction(); 6932 MachineFrameInfo &MFI = MF.getFrameInfo(); 6933 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6934 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6935 6936 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6937 // Reserve space for the linkage area on the stack. 6938 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6939 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6940 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6941 6942 SmallVector<SDValue, 8> MemOps; 6943 6944 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6945 CCValAssign &VA = ArgLocs[I++]; 6946 MVT LocVT = VA.getLocVT(); 6947 MVT ValVT = VA.getValVT(); 6948 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6949 // For compatibility with the AIX XL compiler, the float args in the 6950 // parameter save area are initialized even if the argument is available 6951 // in register. The caller is required to initialize both the register 6952 // and memory, however, the callee can choose to expect it in either. 6953 // The memloc is dismissed here because the argument is retrieved from 6954 // the register. 6955 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6956 continue; 6957 6958 auto HandleMemLoc = [&]() { 6959 const unsigned LocSize = LocVT.getStoreSize(); 6960 const unsigned ValSize = ValVT.getStoreSize(); 6961 assert((ValSize <= LocSize) && 6962 "Object size is larger than size of MemLoc"); 6963 int CurArgOffset = VA.getLocMemOffset(); 6964 // Objects are right-justified because AIX is big-endian. 6965 if (LocSize > ValSize) 6966 CurArgOffset += LocSize - ValSize; 6967 // Potential tail calls could cause overwriting of argument stack slots. 6968 const bool IsImmutable = 6969 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6970 (CallConv == CallingConv::Fast)); 6971 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6972 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6973 SDValue ArgValue = 6974 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6975 InVals.push_back(ArgValue); 6976 }; 6977 6978 // Vector arguments to VaArg functions are passed both on the stack, and 6979 // in any available GPRs. Load the value from the stack and add the GPRs 6980 // as live ins. 6981 if (VA.isMemLoc() && VA.needsCustom()) { 6982 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6983 assert(isVarArg && "Only use custom memloc for vararg."); 6984 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6985 // matching custom RegLocs. 6986 const unsigned OriginalValNo = VA.getValNo(); 6987 (void)OriginalValNo; 6988 6989 auto HandleCustomVecRegLoc = [&]() { 6990 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6991 "Missing custom RegLoc."); 6992 VA = ArgLocs[I++]; 6993 assert(VA.getValVT().isVector() && 6994 "Unexpected Val type for custom RegLoc."); 6995 assert(VA.getValNo() == OriginalValNo && 6996 "ValNo mismatch between custom MemLoc and RegLoc."); 6997 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6998 MF.addLiveIn(VA.getLocReg(), 6999 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7000 Subtarget.hasVSX())); 7001 }; 7002 7003 HandleMemLoc(); 7004 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7005 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7006 // R10. 7007 HandleCustomVecRegLoc(); 7008 HandleCustomVecRegLoc(); 7009 7010 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7011 // we passed the vector in R5, R6, R7 and R8. 7012 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7013 assert(!IsPPC64 && 7014 "Only 2 custom RegLocs expected for 64-bit codegen."); 7015 HandleCustomVecRegLoc(); 7016 HandleCustomVecRegLoc(); 7017 } 7018 7019 continue; 7020 } 7021 7022 if (VA.isRegLoc()) { 7023 if (VA.getValVT().isScalarInteger()) 7024 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7025 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7026 switch (VA.getValVT().SimpleTy) { 7027 default: 7028 report_fatal_error("Unhandled value type for argument."); 7029 case MVT::f32: 7030 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7031 break; 7032 case MVT::f64: 7033 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7034 break; 7035 } 7036 } else if (VA.getValVT().isVector()) { 7037 switch (VA.getValVT().SimpleTy) { 7038 default: 7039 report_fatal_error("Unhandled value type for argument."); 7040 case MVT::v16i8: 7041 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7042 break; 7043 case MVT::v8i16: 7044 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7045 break; 7046 case MVT::v4i32: 7047 case MVT::v2i64: 7048 case MVT::v1i128: 7049 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7050 break; 7051 case MVT::v4f32: 7052 case MVT::v2f64: 7053 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7054 break; 7055 } 7056 } 7057 } 7058 7059 if (Flags.isByVal() && VA.isMemLoc()) { 7060 const unsigned Size = 7061 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7062 PtrByteSize); 7063 const int FI = MF.getFrameInfo().CreateFixedObject( 7064 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7065 /* IsAliased */ true); 7066 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7067 InVals.push_back(FIN); 7068 7069 continue; 7070 } 7071 7072 if (Flags.isByVal()) { 7073 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7074 7075 const MCPhysReg ArgReg = VA.getLocReg(); 7076 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7077 7078 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7079 report_fatal_error("Over aligned byvals not supported yet."); 7080 7081 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7082 const int FI = MF.getFrameInfo().CreateFixedObject( 7083 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7084 /* IsAliased */ true); 7085 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7086 InVals.push_back(FIN); 7087 7088 // Add live ins for all the RegLocs for the same ByVal. 7089 const TargetRegisterClass *RegClass = 7090 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7091 7092 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7093 unsigned Offset) { 7094 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7095 // Since the callers side has left justified the aggregate in the 7096 // register, we can simply store the entire register into the stack 7097 // slot. 7098 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7099 // The store to the fixedstack object is needed becuase accessing a 7100 // field of the ByVal will use a gep and load. Ideally we will optimize 7101 // to extracting the value from the register directly, and elide the 7102 // stores when the arguments address is not taken, but that will need to 7103 // be future work. 7104 SDValue Store = DAG.getStore( 7105 CopyFrom.getValue(1), dl, CopyFrom, 7106 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7107 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7108 7109 MemOps.push_back(Store); 7110 }; 7111 7112 unsigned Offset = 0; 7113 HandleRegLoc(VA.getLocReg(), Offset); 7114 Offset += PtrByteSize; 7115 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7116 Offset += PtrByteSize) { 7117 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7118 "RegLocs should be for ByVal argument."); 7119 7120 const CCValAssign RL = ArgLocs[I++]; 7121 HandleRegLoc(RL.getLocReg(), Offset); 7122 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7123 } 7124 7125 if (Offset != StackSize) { 7126 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7127 "Expected MemLoc for remaining bytes."); 7128 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7129 // Consume the MemLoc.The InVal has already been emitted, so nothing 7130 // more needs to be done. 7131 ++I; 7132 } 7133 7134 continue; 7135 } 7136 7137 if (VA.isRegLoc() && !VA.needsCustom()) { 7138 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7139 Register VReg = 7140 MF.addLiveIn(VA.getLocReg(), 7141 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7142 Subtarget.hasVSX())); 7143 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7144 if (ValVT.isScalarInteger() && 7145 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7146 ArgValue = 7147 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7148 } 7149 InVals.push_back(ArgValue); 7150 continue; 7151 } 7152 if (VA.isMemLoc()) { 7153 HandleMemLoc(); 7154 continue; 7155 } 7156 } 7157 7158 // On AIX a minimum of 8 words is saved to the parameter save area. 7159 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7160 // Area that is at least reserved in the caller of this function. 7161 unsigned CallerReservedArea = 7162 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7163 7164 // Set the size that is at least reserved in caller of this function. Tail 7165 // call optimized function's reserved stack space needs to be aligned so 7166 // that taking the difference between two stack areas will result in an 7167 // aligned stack. 7168 CallerReservedArea = 7169 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7170 FuncInfo->setMinReservedArea(CallerReservedArea); 7171 7172 if (isVarArg) { 7173 FuncInfo->setVarArgsFrameIndex( 7174 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7175 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7176 7177 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7178 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7179 7180 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7181 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7182 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7183 7184 // The fixed integer arguments of a variadic function are stored to the 7185 // VarArgsFrameIndex on the stack so that they may be loaded by 7186 // dereferencing the result of va_next. 7187 for (unsigned GPRIndex = 7188 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7189 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7190 7191 const Register VReg = 7192 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7193 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7194 7195 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7196 SDValue Store = 7197 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7198 MemOps.push_back(Store); 7199 // Increment the address for the next argument to store. 7200 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7201 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7202 } 7203 } 7204 7205 if (!MemOps.empty()) 7206 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7207 7208 return Chain; 7209 } 7210 7211 SDValue PPCTargetLowering::LowerCall_AIX( 7212 SDValue Chain, SDValue Callee, CallFlags CFlags, 7213 const SmallVectorImpl<ISD::OutputArg> &Outs, 7214 const SmallVectorImpl<SDValue> &OutVals, 7215 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7216 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7217 const CallBase *CB) const { 7218 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7219 // AIX ABI stack frame layout. 7220 7221 assert((CFlags.CallConv == CallingConv::C || 7222 CFlags.CallConv == CallingConv::Cold || 7223 CFlags.CallConv == CallingConv::Fast) && 7224 "Unexpected calling convention!"); 7225 7226 if (CFlags.IsPatchPoint) 7227 report_fatal_error("This call type is unimplemented on AIX."); 7228 7229 const PPCSubtarget& Subtarget = 7230 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7231 7232 MachineFunction &MF = DAG.getMachineFunction(); 7233 SmallVector<CCValAssign, 16> ArgLocs; 7234 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7235 *DAG.getContext()); 7236 7237 // Reserve space for the linkage save area (LSA) on the stack. 7238 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7239 // [SP][CR][LR][2 x reserved][TOC]. 7240 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7241 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7242 const bool IsPPC64 = Subtarget.isPPC64(); 7243 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7244 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7245 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7246 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7247 7248 // The prolog code of the callee may store up to 8 GPR argument registers to 7249 // the stack, allowing va_start to index over them in memory if the callee 7250 // is variadic. 7251 // Because we cannot tell if this is needed on the caller side, we have to 7252 // conservatively assume that it is needed. As such, make sure we have at 7253 // least enough stack space for the caller to store the 8 GPRs. 7254 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7255 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7256 CCInfo.getNextStackOffset()); 7257 7258 // Adjust the stack pointer for the new arguments... 7259 // These operations are automatically eliminated by the prolog/epilog pass. 7260 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7261 SDValue CallSeqStart = Chain; 7262 7263 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7264 SmallVector<SDValue, 8> MemOpChains; 7265 7266 // Set up a copy of the stack pointer for loading and storing any 7267 // arguments that may not fit in the registers available for argument 7268 // passing. 7269 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7270 : DAG.getRegister(PPC::R1, MVT::i32); 7271 7272 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7273 const unsigned ValNo = ArgLocs[I].getValNo(); 7274 SDValue Arg = OutVals[ValNo]; 7275 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7276 7277 if (Flags.isByVal()) { 7278 const unsigned ByValSize = Flags.getByValSize(); 7279 7280 // Nothing to do for zero-sized ByVals on the caller side. 7281 if (!ByValSize) { 7282 ++I; 7283 continue; 7284 } 7285 7286 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7287 return DAG.getExtLoad( 7288 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7289 (LoadOffset != 0) 7290 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7291 : Arg, 7292 MachinePointerInfo(), VT); 7293 }; 7294 7295 unsigned LoadOffset = 0; 7296 7297 // Initialize registers, which are fully occupied by the by-val argument. 7298 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7299 SDValue Load = GetLoad(PtrVT, LoadOffset); 7300 MemOpChains.push_back(Load.getValue(1)); 7301 LoadOffset += PtrByteSize; 7302 const CCValAssign &ByValVA = ArgLocs[I++]; 7303 assert(ByValVA.getValNo() == ValNo && 7304 "Unexpected location for pass-by-value argument."); 7305 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7306 } 7307 7308 if (LoadOffset == ByValSize) 7309 continue; 7310 7311 // There must be one more loc to handle the remainder. 7312 assert(ArgLocs[I].getValNo() == ValNo && 7313 "Expected additional location for by-value argument."); 7314 7315 if (ArgLocs[I].isMemLoc()) { 7316 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7317 const CCValAssign &ByValVA = ArgLocs[I++]; 7318 ISD::ArgFlagsTy MemcpyFlags = Flags; 7319 // Only memcpy the bytes that don't pass in register. 7320 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7321 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7322 (LoadOffset != 0) 7323 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7324 : Arg, 7325 DAG.getObjectPtrOffset(dl, StackPtr, 7326 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7327 CallSeqStart, MemcpyFlags, DAG, dl); 7328 continue; 7329 } 7330 7331 // Initialize the final register residue. 7332 // Any residue that occupies the final by-val arg register must be 7333 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7334 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7335 // 2 and 1 byte loads. 7336 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7337 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7338 "Unexpected register residue for by-value argument."); 7339 SDValue ResidueVal; 7340 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7341 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7342 const MVT VT = 7343 N == 1 ? MVT::i8 7344 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7345 SDValue Load = GetLoad(VT, LoadOffset); 7346 MemOpChains.push_back(Load.getValue(1)); 7347 LoadOffset += N; 7348 Bytes += N; 7349 7350 // By-val arguments are passed left-justfied in register. 7351 // Every load here needs to be shifted, otherwise a full register load 7352 // should have been used. 7353 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7354 "Unexpected load emitted during handling of pass-by-value " 7355 "argument."); 7356 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7357 EVT ShiftAmountTy = 7358 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7359 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7360 SDValue ShiftedLoad = 7361 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7362 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7363 ShiftedLoad) 7364 : ShiftedLoad; 7365 } 7366 7367 const CCValAssign &ByValVA = ArgLocs[I++]; 7368 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7369 continue; 7370 } 7371 7372 CCValAssign &VA = ArgLocs[I++]; 7373 const MVT LocVT = VA.getLocVT(); 7374 const MVT ValVT = VA.getValVT(); 7375 7376 switch (VA.getLocInfo()) { 7377 default: 7378 report_fatal_error("Unexpected argument extension type."); 7379 case CCValAssign::Full: 7380 break; 7381 case CCValAssign::ZExt: 7382 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7383 break; 7384 case CCValAssign::SExt: 7385 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7386 break; 7387 } 7388 7389 if (VA.isRegLoc() && !VA.needsCustom()) { 7390 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7391 continue; 7392 } 7393 7394 // Vector arguments passed to VarArg functions need custom handling when 7395 // they are passed (at least partially) in GPRs. 7396 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7397 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7398 // Store value to its stack slot. 7399 SDValue PtrOff = 7400 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7401 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7402 SDValue Store = 7403 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7404 MemOpChains.push_back(Store); 7405 const unsigned OriginalValNo = VA.getValNo(); 7406 // Then load the GPRs from the stack 7407 unsigned LoadOffset = 0; 7408 auto HandleCustomVecRegLoc = [&]() { 7409 assert(I != E && "Unexpected end of CCvalAssigns."); 7410 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7411 "Expected custom RegLoc."); 7412 CCValAssign RegVA = ArgLocs[I++]; 7413 assert(RegVA.getValNo() == OriginalValNo && 7414 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7415 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7416 DAG.getConstant(LoadOffset, dl, PtrVT)); 7417 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7418 MemOpChains.push_back(Load.getValue(1)); 7419 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7420 LoadOffset += PtrByteSize; 7421 }; 7422 7423 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7424 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7425 // R10. 7426 HandleCustomVecRegLoc(); 7427 HandleCustomVecRegLoc(); 7428 7429 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7430 ArgLocs[I].getValNo() == OriginalValNo) { 7431 assert(!IsPPC64 && 7432 "Only 2 custom RegLocs expected for 64-bit codegen."); 7433 HandleCustomVecRegLoc(); 7434 HandleCustomVecRegLoc(); 7435 } 7436 7437 continue; 7438 } 7439 7440 if (VA.isMemLoc()) { 7441 SDValue PtrOff = 7442 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7443 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7444 MemOpChains.push_back( 7445 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7446 7447 continue; 7448 } 7449 7450 if (!ValVT.isFloatingPoint()) 7451 report_fatal_error( 7452 "Unexpected register handling for calling convention."); 7453 7454 // Custom handling is used for GPR initializations for vararg float 7455 // arguments. 7456 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7457 LocVT.isInteger() && 7458 "Custom register handling only expected for VarArg."); 7459 7460 SDValue ArgAsInt = 7461 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7462 7463 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7464 // f32 in 32-bit GPR 7465 // f64 in 64-bit GPR 7466 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7467 else if (Arg.getValueType().getFixedSizeInBits() < 7468 LocVT.getFixedSizeInBits()) 7469 // f32 in 64-bit GPR. 7470 RegsToPass.push_back(std::make_pair( 7471 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7472 else { 7473 // f64 in two 32-bit GPRs 7474 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7475 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7476 "Unexpected custom register for argument!"); 7477 CCValAssign &GPR1 = VA; 7478 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7479 DAG.getConstant(32, dl, MVT::i8)); 7480 RegsToPass.push_back(std::make_pair( 7481 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7482 7483 if (I != E) { 7484 // If only 1 GPR was available, there will only be one custom GPR and 7485 // the argument will also pass in memory. 7486 CCValAssign &PeekArg = ArgLocs[I]; 7487 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7488 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7489 CCValAssign &GPR2 = ArgLocs[I++]; 7490 RegsToPass.push_back(std::make_pair( 7491 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7492 } 7493 } 7494 } 7495 } 7496 7497 if (!MemOpChains.empty()) 7498 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7499 7500 // For indirect calls, we need to save the TOC base to the stack for 7501 // restoration after the call. 7502 if (CFlags.IsIndirect) { 7503 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7504 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7505 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7506 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7507 const unsigned TOCSaveOffset = 7508 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7509 7510 setUsesTOCBasePtr(DAG); 7511 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7512 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7513 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7514 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7515 Chain = DAG.getStore( 7516 Val.getValue(1), dl, Val, AddPtr, 7517 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7518 } 7519 7520 // Build a sequence of copy-to-reg nodes chained together with token chain 7521 // and flag operands which copy the outgoing args into the appropriate regs. 7522 SDValue InFlag; 7523 for (auto Reg : RegsToPass) { 7524 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7525 InFlag = Chain.getValue(1); 7526 } 7527 7528 const int SPDiff = 0; 7529 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7530 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7531 } 7532 7533 bool 7534 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7535 MachineFunction &MF, bool isVarArg, 7536 const SmallVectorImpl<ISD::OutputArg> &Outs, 7537 LLVMContext &Context) const { 7538 SmallVector<CCValAssign, 16> RVLocs; 7539 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7540 return CCInfo.CheckReturn( 7541 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7542 ? RetCC_PPC_Cold 7543 : RetCC_PPC); 7544 } 7545 7546 SDValue 7547 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7548 bool isVarArg, 7549 const SmallVectorImpl<ISD::OutputArg> &Outs, 7550 const SmallVectorImpl<SDValue> &OutVals, 7551 const SDLoc &dl, SelectionDAG &DAG) const { 7552 SmallVector<CCValAssign, 16> RVLocs; 7553 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7554 *DAG.getContext()); 7555 CCInfo.AnalyzeReturn(Outs, 7556 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7557 ? RetCC_PPC_Cold 7558 : RetCC_PPC); 7559 7560 SDValue Flag; 7561 SmallVector<SDValue, 4> RetOps(1, Chain); 7562 7563 // Copy the result values into the output registers. 7564 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7565 CCValAssign &VA = RVLocs[i]; 7566 assert(VA.isRegLoc() && "Can only return in registers!"); 7567 7568 SDValue Arg = OutVals[RealResIdx]; 7569 7570 switch (VA.getLocInfo()) { 7571 default: llvm_unreachable("Unknown loc info!"); 7572 case CCValAssign::Full: break; 7573 case CCValAssign::AExt: 7574 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7575 break; 7576 case CCValAssign::ZExt: 7577 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7578 break; 7579 case CCValAssign::SExt: 7580 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7581 break; 7582 } 7583 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7584 bool isLittleEndian = Subtarget.isLittleEndian(); 7585 // Legalize ret f64 -> ret 2 x i32. 7586 SDValue SVal = 7587 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7588 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7589 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7590 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7591 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7592 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7593 Flag = Chain.getValue(1); 7594 VA = RVLocs[++i]; // skip ahead to next loc 7595 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7596 } else 7597 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7598 Flag = Chain.getValue(1); 7599 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7600 } 7601 7602 RetOps[0] = Chain; // Update chain. 7603 7604 // Add the flag if we have it. 7605 if (Flag.getNode()) 7606 RetOps.push_back(Flag); 7607 7608 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7609 } 7610 7611 SDValue 7612 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7613 SelectionDAG &DAG) const { 7614 SDLoc dl(Op); 7615 7616 // Get the correct type for integers. 7617 EVT IntVT = Op.getValueType(); 7618 7619 // Get the inputs. 7620 SDValue Chain = Op.getOperand(0); 7621 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7622 // Build a DYNAREAOFFSET node. 7623 SDValue Ops[2] = {Chain, FPSIdx}; 7624 SDVTList VTs = DAG.getVTList(IntVT); 7625 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7626 } 7627 7628 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7629 SelectionDAG &DAG) const { 7630 // When we pop the dynamic allocation we need to restore the SP link. 7631 SDLoc dl(Op); 7632 7633 // Get the correct type for pointers. 7634 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7635 7636 // Construct the stack pointer operand. 7637 bool isPPC64 = Subtarget.isPPC64(); 7638 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7639 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7640 7641 // Get the operands for the STACKRESTORE. 7642 SDValue Chain = Op.getOperand(0); 7643 SDValue SaveSP = Op.getOperand(1); 7644 7645 // Load the old link SP. 7646 SDValue LoadLinkSP = 7647 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7648 7649 // Restore the stack pointer. 7650 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7651 7652 // Store the old link SP. 7653 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7654 } 7655 7656 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7657 MachineFunction &MF = DAG.getMachineFunction(); 7658 bool isPPC64 = Subtarget.isPPC64(); 7659 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7660 7661 // Get current frame pointer save index. The users of this index will be 7662 // primarily DYNALLOC instructions. 7663 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7664 int RASI = FI->getReturnAddrSaveIndex(); 7665 7666 // If the frame pointer save index hasn't been defined yet. 7667 if (!RASI) { 7668 // Find out what the fix offset of the frame pointer save area. 7669 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7670 // Allocate the frame index for frame pointer save area. 7671 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7672 // Save the result. 7673 FI->setReturnAddrSaveIndex(RASI); 7674 } 7675 return DAG.getFrameIndex(RASI, PtrVT); 7676 } 7677 7678 SDValue 7679 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7680 MachineFunction &MF = DAG.getMachineFunction(); 7681 bool isPPC64 = Subtarget.isPPC64(); 7682 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7683 7684 // Get current frame pointer save index. The users of this index will be 7685 // primarily DYNALLOC instructions. 7686 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7687 int FPSI = FI->getFramePointerSaveIndex(); 7688 7689 // If the frame pointer save index hasn't been defined yet. 7690 if (!FPSI) { 7691 // Find out what the fix offset of the frame pointer save area. 7692 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7693 // Allocate the frame index for frame pointer save area. 7694 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7695 // Save the result. 7696 FI->setFramePointerSaveIndex(FPSI); 7697 } 7698 return DAG.getFrameIndex(FPSI, PtrVT); 7699 } 7700 7701 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7702 SelectionDAG &DAG) const { 7703 MachineFunction &MF = DAG.getMachineFunction(); 7704 // Get the inputs. 7705 SDValue Chain = Op.getOperand(0); 7706 SDValue Size = Op.getOperand(1); 7707 SDLoc dl(Op); 7708 7709 // Get the correct type for pointers. 7710 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7711 // Negate the size. 7712 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7713 DAG.getConstant(0, dl, PtrVT), Size); 7714 // Construct a node for the frame pointer save index. 7715 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7716 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7717 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7718 if (hasInlineStackProbe(MF)) 7719 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7720 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7721 } 7722 7723 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7724 SelectionDAG &DAG) const { 7725 MachineFunction &MF = DAG.getMachineFunction(); 7726 7727 bool isPPC64 = Subtarget.isPPC64(); 7728 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7729 7730 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7731 return DAG.getFrameIndex(FI, PtrVT); 7732 } 7733 7734 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7735 SelectionDAG &DAG) const { 7736 SDLoc DL(Op); 7737 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7738 DAG.getVTList(MVT::i32, MVT::Other), 7739 Op.getOperand(0), Op.getOperand(1)); 7740 } 7741 7742 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7743 SelectionDAG &DAG) const { 7744 SDLoc DL(Op); 7745 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7746 Op.getOperand(0), Op.getOperand(1)); 7747 } 7748 7749 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7750 if (Op.getValueType().isVector()) 7751 return LowerVectorLoad(Op, DAG); 7752 7753 assert(Op.getValueType() == MVT::i1 && 7754 "Custom lowering only for i1 loads"); 7755 7756 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7757 7758 SDLoc dl(Op); 7759 LoadSDNode *LD = cast<LoadSDNode>(Op); 7760 7761 SDValue Chain = LD->getChain(); 7762 SDValue BasePtr = LD->getBasePtr(); 7763 MachineMemOperand *MMO = LD->getMemOperand(); 7764 7765 SDValue NewLD = 7766 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7767 BasePtr, MVT::i8, MMO); 7768 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7769 7770 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7771 return DAG.getMergeValues(Ops, dl); 7772 } 7773 7774 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7775 if (Op.getOperand(1).getValueType().isVector()) 7776 return LowerVectorStore(Op, DAG); 7777 7778 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7779 "Custom lowering only for i1 stores"); 7780 7781 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7782 7783 SDLoc dl(Op); 7784 StoreSDNode *ST = cast<StoreSDNode>(Op); 7785 7786 SDValue Chain = ST->getChain(); 7787 SDValue BasePtr = ST->getBasePtr(); 7788 SDValue Value = ST->getValue(); 7789 MachineMemOperand *MMO = ST->getMemOperand(); 7790 7791 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7792 Value); 7793 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7794 } 7795 7796 // FIXME: Remove this once the ANDI glue bug is fixed: 7797 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7798 assert(Op.getValueType() == MVT::i1 && 7799 "Custom lowering only for i1 results"); 7800 7801 SDLoc DL(Op); 7802 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7803 } 7804 7805 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7806 SelectionDAG &DAG) const { 7807 7808 // Implements a vector truncate that fits in a vector register as a shuffle. 7809 // We want to legalize vector truncates down to where the source fits in 7810 // a vector register (and target is therefore smaller than vector register 7811 // size). At that point legalization will try to custom lower the sub-legal 7812 // result and get here - where we can contain the truncate as a single target 7813 // operation. 7814 7815 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7816 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7817 // 7818 // We will implement it for big-endian ordering as this (where x denotes 7819 // undefined): 7820 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7821 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7822 // 7823 // The same operation in little-endian ordering will be: 7824 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7825 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7826 7827 EVT TrgVT = Op.getValueType(); 7828 assert(TrgVT.isVector() && "Vector type expected."); 7829 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7830 EVT EltVT = TrgVT.getVectorElementType(); 7831 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7832 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7833 !isPowerOf2_32(EltVT.getSizeInBits())) 7834 return SDValue(); 7835 7836 SDValue N1 = Op.getOperand(0); 7837 EVT SrcVT = N1.getValueType(); 7838 unsigned SrcSize = SrcVT.getSizeInBits(); 7839 if (SrcSize > 256 || 7840 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7841 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7842 return SDValue(); 7843 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7844 return SDValue(); 7845 7846 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7847 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7848 7849 SDLoc DL(Op); 7850 SDValue Op1, Op2; 7851 if (SrcSize == 256) { 7852 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7853 EVT SplitVT = 7854 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7855 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7856 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7857 DAG.getConstant(0, DL, VecIdxTy)); 7858 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7859 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7860 } 7861 else { 7862 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7863 Op2 = DAG.getUNDEF(WideVT); 7864 } 7865 7866 // First list the elements we want to keep. 7867 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7868 SmallVector<int, 16> ShuffV; 7869 if (Subtarget.isLittleEndian()) 7870 for (unsigned i = 0; i < TrgNumElts; ++i) 7871 ShuffV.push_back(i * SizeMult); 7872 else 7873 for (unsigned i = 1; i <= TrgNumElts; ++i) 7874 ShuffV.push_back(i * SizeMult - 1); 7875 7876 // Populate the remaining elements with undefs. 7877 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7878 // ShuffV.push_back(i + WideNumElts); 7879 ShuffV.push_back(WideNumElts + 1); 7880 7881 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7882 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7883 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7884 } 7885 7886 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7887 /// possible. 7888 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7889 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7890 EVT ResVT = Op.getValueType(); 7891 EVT CmpVT = Op.getOperand(0).getValueType(); 7892 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7893 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7894 SDLoc dl(Op); 7895 7896 // Without power9-vector, we don't have native instruction for f128 comparison. 7897 // Following transformation to libcall is needed for setcc: 7898 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7899 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7900 SDValue Z = DAG.getSetCC( 7901 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7902 LHS, RHS, CC); 7903 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7904 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7905 } 7906 7907 // Not FP, or using SPE? Not a fsel. 7908 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7909 Subtarget.hasSPE()) 7910 return Op; 7911 7912 SDNodeFlags Flags = Op.getNode()->getFlags(); 7913 7914 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7915 // presence of infinities. 7916 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7917 switch (CC) { 7918 default: 7919 break; 7920 case ISD::SETOGT: 7921 case ISD::SETGT: 7922 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7923 case ISD::SETOLT: 7924 case ISD::SETLT: 7925 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7926 } 7927 } 7928 7929 // We might be able to do better than this under some circumstances, but in 7930 // general, fsel-based lowering of select is a finite-math-only optimization. 7931 // For more information, see section F.3 of the 2.06 ISA specification. 7932 // With ISA 3.0 7933 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7934 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7935 return Op; 7936 7937 // If the RHS of the comparison is a 0.0, we don't need to do the 7938 // subtraction at all. 7939 SDValue Sel1; 7940 if (isFloatingPointZero(RHS)) 7941 switch (CC) { 7942 default: break; // SETUO etc aren't handled by fsel. 7943 case ISD::SETNE: 7944 std::swap(TV, FV); 7945 LLVM_FALLTHROUGH; 7946 case ISD::SETEQ: 7947 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7948 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7949 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7950 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7951 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7952 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7953 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7954 case ISD::SETULT: 7955 case ISD::SETLT: 7956 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7957 LLVM_FALLTHROUGH; 7958 case ISD::SETOGE: 7959 case ISD::SETGE: 7960 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7961 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7962 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7963 case ISD::SETUGT: 7964 case ISD::SETGT: 7965 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7966 LLVM_FALLTHROUGH; 7967 case ISD::SETOLE: 7968 case ISD::SETLE: 7969 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7970 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7971 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7972 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7973 } 7974 7975 SDValue Cmp; 7976 switch (CC) { 7977 default: break; // SETUO etc aren't handled by fsel. 7978 case ISD::SETNE: 7979 std::swap(TV, FV); 7980 LLVM_FALLTHROUGH; 7981 case ISD::SETEQ: 7982 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7983 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7984 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7985 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7986 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7987 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7988 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7989 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7990 case ISD::SETULT: 7991 case ISD::SETLT: 7992 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7993 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7994 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7995 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7996 case ISD::SETOGE: 7997 case ISD::SETGE: 7998 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7999 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8000 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8001 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8002 case ISD::SETUGT: 8003 case ISD::SETGT: 8004 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8005 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8006 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8007 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8008 case ISD::SETOLE: 8009 case ISD::SETLE: 8010 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8011 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8012 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8013 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8014 } 8015 return Op; 8016 } 8017 8018 static unsigned getPPCStrictOpcode(unsigned Opc) { 8019 switch (Opc) { 8020 default: 8021 llvm_unreachable("No strict version of this opcode!"); 8022 case PPCISD::FCTIDZ: 8023 return PPCISD::STRICT_FCTIDZ; 8024 case PPCISD::FCTIWZ: 8025 return PPCISD::STRICT_FCTIWZ; 8026 case PPCISD::FCTIDUZ: 8027 return PPCISD::STRICT_FCTIDUZ; 8028 case PPCISD::FCTIWUZ: 8029 return PPCISD::STRICT_FCTIWUZ; 8030 case PPCISD::FCFID: 8031 return PPCISD::STRICT_FCFID; 8032 case PPCISD::FCFIDU: 8033 return PPCISD::STRICT_FCFIDU; 8034 case PPCISD::FCFIDS: 8035 return PPCISD::STRICT_FCFIDS; 8036 case PPCISD::FCFIDUS: 8037 return PPCISD::STRICT_FCFIDUS; 8038 } 8039 } 8040 8041 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8042 const PPCSubtarget &Subtarget) { 8043 SDLoc dl(Op); 8044 bool IsStrict = Op->isStrictFPOpcode(); 8045 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8046 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8047 8048 // TODO: Any other flags to propagate? 8049 SDNodeFlags Flags; 8050 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8051 8052 // For strict nodes, source is the second operand. 8053 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8054 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8055 assert(Src.getValueType().isFloatingPoint()); 8056 if (Src.getValueType() == MVT::f32) { 8057 if (IsStrict) { 8058 Src = 8059 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8060 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8061 Chain = Src.getValue(1); 8062 } else 8063 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8064 } 8065 SDValue Conv; 8066 unsigned Opc = ISD::DELETED_NODE; 8067 switch (Op.getSimpleValueType().SimpleTy) { 8068 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8069 case MVT::i32: 8070 Opc = IsSigned ? PPCISD::FCTIWZ 8071 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8072 break; 8073 case MVT::i64: 8074 assert((IsSigned || Subtarget.hasFPCVT()) && 8075 "i64 FP_TO_UINT is supported only with FPCVT"); 8076 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8077 } 8078 if (IsStrict) { 8079 Opc = getPPCStrictOpcode(Opc); 8080 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8081 {Chain, Src}, Flags); 8082 } else { 8083 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8084 } 8085 return Conv; 8086 } 8087 8088 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8089 SelectionDAG &DAG, 8090 const SDLoc &dl) const { 8091 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8092 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8093 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8094 bool IsStrict = Op->isStrictFPOpcode(); 8095 8096 // Convert the FP value to an int value through memory. 8097 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8098 (IsSigned || Subtarget.hasFPCVT()); 8099 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8100 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8101 MachinePointerInfo MPI = 8102 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8103 8104 // Emit a store to the stack slot. 8105 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8106 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8107 if (i32Stack) { 8108 MachineFunction &MF = DAG.getMachineFunction(); 8109 Alignment = Align(4); 8110 MachineMemOperand *MMO = 8111 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8112 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8113 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8114 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8115 } else 8116 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8117 8118 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8119 // add in a bias on big endian. 8120 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8121 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8122 DAG.getConstant(4, dl, FIPtr.getValueType())); 8123 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8124 } 8125 8126 RLI.Chain = Chain; 8127 RLI.Ptr = FIPtr; 8128 RLI.MPI = MPI; 8129 RLI.Alignment = Alignment; 8130 } 8131 8132 /// Custom lowers floating point to integer conversions to use 8133 /// the direct move instructions available in ISA 2.07 to avoid the 8134 /// need for load/store combinations. 8135 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8136 SelectionDAG &DAG, 8137 const SDLoc &dl) const { 8138 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8139 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8140 if (Op->isStrictFPOpcode()) 8141 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8142 else 8143 return Mov; 8144 } 8145 8146 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8147 const SDLoc &dl) const { 8148 bool IsStrict = Op->isStrictFPOpcode(); 8149 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8150 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8151 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8152 EVT SrcVT = Src.getValueType(); 8153 EVT DstVT = Op.getValueType(); 8154 8155 // FP to INT conversions are legal for f128. 8156 if (SrcVT == MVT::f128) 8157 return Subtarget.hasP9Vector() ? Op : SDValue(); 8158 8159 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8160 // PPC (the libcall is not available). 8161 if (SrcVT == MVT::ppcf128) { 8162 if (DstVT == MVT::i32) { 8163 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8164 // set other fast-math flags to FP operations in both strict and 8165 // non-strict cases. (FP_TO_SINT, FSUB) 8166 SDNodeFlags Flags; 8167 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8168 8169 if (IsSigned) { 8170 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8171 DAG.getIntPtrConstant(0, dl)); 8172 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8173 DAG.getIntPtrConstant(1, dl)); 8174 8175 // Add the two halves of the long double in round-to-zero mode, and use 8176 // a smaller FP_TO_SINT. 8177 if (IsStrict) { 8178 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8179 DAG.getVTList(MVT::f64, MVT::Other), 8180 {Op.getOperand(0), Lo, Hi}, Flags); 8181 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8182 DAG.getVTList(MVT::i32, MVT::Other), 8183 {Res.getValue(1), Res}, Flags); 8184 } else { 8185 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8186 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8187 } 8188 } else { 8189 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8190 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8191 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8192 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8193 if (IsStrict) { 8194 // Sel = Src < 0x80000000 8195 // FltOfs = select Sel, 0.0, 0x80000000 8196 // IntOfs = select Sel, 0, 0x80000000 8197 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8198 SDValue Chain = Op.getOperand(0); 8199 EVT SetCCVT = 8200 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8201 EVT DstSetCCVT = 8202 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8203 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8204 Chain, true); 8205 Chain = Sel.getValue(1); 8206 8207 SDValue FltOfs = DAG.getSelect( 8208 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8209 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8210 8211 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8212 DAG.getVTList(SrcVT, MVT::Other), 8213 {Chain, Src, FltOfs}, Flags); 8214 Chain = Val.getValue(1); 8215 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8216 DAG.getVTList(DstVT, MVT::Other), 8217 {Chain, Val}, Flags); 8218 Chain = SInt.getValue(1); 8219 SDValue IntOfs = DAG.getSelect( 8220 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8221 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8222 return DAG.getMergeValues({Result, Chain}, dl); 8223 } else { 8224 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8225 // FIXME: generated code sucks. 8226 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8227 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8228 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8229 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8230 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8231 } 8232 } 8233 } 8234 8235 return SDValue(); 8236 } 8237 8238 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8239 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8240 8241 ReuseLoadInfo RLI; 8242 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8243 8244 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8245 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8246 } 8247 8248 // We're trying to insert a regular store, S, and then a load, L. If the 8249 // incoming value, O, is a load, we might just be able to have our load use the 8250 // address used by O. However, we don't know if anything else will store to 8251 // that address before we can load from it. To prevent this situation, we need 8252 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8253 // the same chain operand as O, we create a token factor from the chain results 8254 // of O and L, and we replace all uses of O's chain result with that token 8255 // factor (see spliceIntoChain below for this last part). 8256 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8257 ReuseLoadInfo &RLI, 8258 SelectionDAG &DAG, 8259 ISD::LoadExtType ET) const { 8260 // Conservatively skip reusing for constrained FP nodes. 8261 if (Op->isStrictFPOpcode()) 8262 return false; 8263 8264 SDLoc dl(Op); 8265 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8266 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8267 if (ET == ISD::NON_EXTLOAD && 8268 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8269 isOperationLegalOrCustom(Op.getOpcode(), 8270 Op.getOperand(0).getValueType())) { 8271 8272 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8273 return true; 8274 } 8275 8276 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8277 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8278 LD->isNonTemporal()) 8279 return false; 8280 if (LD->getMemoryVT() != MemVT) 8281 return false; 8282 8283 // If the result of the load is an illegal type, then we can't build a 8284 // valid chain for reuse since the legalised loads and token factor node that 8285 // ties the legalised loads together uses a different output chain then the 8286 // illegal load. 8287 if (!isTypeLegal(LD->getValueType(0))) 8288 return false; 8289 8290 RLI.Ptr = LD->getBasePtr(); 8291 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8292 assert(LD->getAddressingMode() == ISD::PRE_INC && 8293 "Non-pre-inc AM on PPC?"); 8294 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8295 LD->getOffset()); 8296 } 8297 8298 RLI.Chain = LD->getChain(); 8299 RLI.MPI = LD->getPointerInfo(); 8300 RLI.IsDereferenceable = LD->isDereferenceable(); 8301 RLI.IsInvariant = LD->isInvariant(); 8302 RLI.Alignment = LD->getAlign(); 8303 RLI.AAInfo = LD->getAAInfo(); 8304 RLI.Ranges = LD->getRanges(); 8305 8306 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8307 return true; 8308 } 8309 8310 // Given the head of the old chain, ResChain, insert a token factor containing 8311 // it and NewResChain, and make users of ResChain now be users of that token 8312 // factor. 8313 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8314 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8315 SDValue NewResChain, 8316 SelectionDAG &DAG) const { 8317 if (!ResChain) 8318 return; 8319 8320 SDLoc dl(NewResChain); 8321 8322 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8323 NewResChain, DAG.getUNDEF(MVT::Other)); 8324 assert(TF.getNode() != NewResChain.getNode() && 8325 "A new TF really is required here"); 8326 8327 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8328 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8329 } 8330 8331 /// Analyze profitability of direct move 8332 /// prefer float load to int load plus direct move 8333 /// when there is no integer use of int load 8334 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8335 SDNode *Origin = Op.getOperand(0).getNode(); 8336 if (Origin->getOpcode() != ISD::LOAD) 8337 return true; 8338 8339 // If there is no LXSIBZX/LXSIHZX, like Power8, 8340 // prefer direct move if the memory size is 1 or 2 bytes. 8341 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8342 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8343 return true; 8344 8345 for (SDNode::use_iterator UI = Origin->use_begin(), 8346 UE = Origin->use_end(); 8347 UI != UE; ++UI) { 8348 8349 // Only look at the users of the loaded value. 8350 if (UI.getUse().get().getResNo() != 0) 8351 continue; 8352 8353 if (UI->getOpcode() != ISD::SINT_TO_FP && 8354 UI->getOpcode() != ISD::UINT_TO_FP && 8355 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8356 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8357 return true; 8358 } 8359 8360 return false; 8361 } 8362 8363 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8364 const PPCSubtarget &Subtarget, 8365 SDValue Chain = SDValue()) { 8366 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8367 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8368 SDLoc dl(Op); 8369 8370 // TODO: Any other flags to propagate? 8371 SDNodeFlags Flags; 8372 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8373 8374 // If we have FCFIDS, then use it when converting to single-precision. 8375 // Otherwise, convert to double-precision and then round. 8376 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8377 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8378 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8379 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8380 if (Op->isStrictFPOpcode()) { 8381 if (!Chain) 8382 Chain = Op.getOperand(0); 8383 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8384 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8385 } else 8386 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8387 } 8388 8389 /// Custom lowers integer to floating point conversions to use 8390 /// the direct move instructions available in ISA 2.07 to avoid the 8391 /// need for load/store combinations. 8392 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8393 SelectionDAG &DAG, 8394 const SDLoc &dl) const { 8395 assert((Op.getValueType() == MVT::f32 || 8396 Op.getValueType() == MVT::f64) && 8397 "Invalid floating point type as target of conversion"); 8398 assert(Subtarget.hasFPCVT() && 8399 "Int to FP conversions with direct moves require FPCVT"); 8400 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8401 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8402 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8403 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8404 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8405 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8406 return convertIntToFP(Op, Mov, DAG, Subtarget); 8407 } 8408 8409 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8410 8411 EVT VecVT = Vec.getValueType(); 8412 assert(VecVT.isVector() && "Expected a vector type."); 8413 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8414 8415 EVT EltVT = VecVT.getVectorElementType(); 8416 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8417 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8418 8419 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8420 SmallVector<SDValue, 16> Ops(NumConcat); 8421 Ops[0] = Vec; 8422 SDValue UndefVec = DAG.getUNDEF(VecVT); 8423 for (unsigned i = 1; i < NumConcat; ++i) 8424 Ops[i] = UndefVec; 8425 8426 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8427 } 8428 8429 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8430 const SDLoc &dl) const { 8431 bool IsStrict = Op->isStrictFPOpcode(); 8432 unsigned Opc = Op.getOpcode(); 8433 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8434 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8435 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8436 "Unexpected conversion type"); 8437 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8438 "Supports conversions to v2f64/v4f32 only."); 8439 8440 // TODO: Any other flags to propagate? 8441 SDNodeFlags Flags; 8442 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8443 8444 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8445 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8446 8447 SDValue Wide = widenVec(DAG, Src, dl); 8448 EVT WideVT = Wide.getValueType(); 8449 unsigned WideNumElts = WideVT.getVectorNumElements(); 8450 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8451 8452 SmallVector<int, 16> ShuffV; 8453 for (unsigned i = 0; i < WideNumElts; ++i) 8454 ShuffV.push_back(i + WideNumElts); 8455 8456 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8457 int SaveElts = FourEltRes ? 4 : 2; 8458 if (Subtarget.isLittleEndian()) 8459 for (int i = 0; i < SaveElts; i++) 8460 ShuffV[i * Stride] = i; 8461 else 8462 for (int i = 1; i <= SaveElts; i++) 8463 ShuffV[i * Stride - 1] = i - 1; 8464 8465 SDValue ShuffleSrc2 = 8466 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8467 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8468 8469 SDValue Extend; 8470 if (SignedConv) { 8471 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8472 EVT ExtVT = Src.getValueType(); 8473 if (Subtarget.hasP9Altivec()) 8474 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8475 IntermediateVT.getVectorNumElements()); 8476 8477 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8478 DAG.getValueType(ExtVT)); 8479 } else 8480 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8481 8482 if (IsStrict) 8483 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8484 {Op.getOperand(0), Extend}, Flags); 8485 8486 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8487 } 8488 8489 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8490 SelectionDAG &DAG) const { 8491 SDLoc dl(Op); 8492 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8493 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8494 bool IsStrict = Op->isStrictFPOpcode(); 8495 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8496 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8497 8498 // TODO: Any other flags to propagate? 8499 SDNodeFlags Flags; 8500 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8501 8502 EVT InVT = Src.getValueType(); 8503 EVT OutVT = Op.getValueType(); 8504 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8505 isOperationCustom(Op.getOpcode(), InVT)) 8506 return LowerINT_TO_FPVector(Op, DAG, dl); 8507 8508 // Conversions to f128 are legal. 8509 if (Op.getValueType() == MVT::f128) 8510 return Subtarget.hasP9Vector() ? Op : SDValue(); 8511 8512 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8513 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8514 return SDValue(); 8515 8516 if (Src.getValueType() == MVT::i1) { 8517 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8518 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8519 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8520 if (IsStrict) 8521 return DAG.getMergeValues({Sel, Chain}, dl); 8522 else 8523 return Sel; 8524 } 8525 8526 // If we have direct moves, we can do all the conversion, skip the store/load 8527 // however, without FPCVT we can't do most conversions. 8528 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8529 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8530 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8531 8532 assert((IsSigned || Subtarget.hasFPCVT()) && 8533 "UINT_TO_FP is supported only with FPCVT"); 8534 8535 if (Src.getValueType() == MVT::i64) { 8536 SDValue SINT = Src; 8537 // When converting to single-precision, we actually need to convert 8538 // to double-precision first and then round to single-precision. 8539 // To avoid double-rounding effects during that operation, we have 8540 // to prepare the input operand. Bits that might be truncated when 8541 // converting to double-precision are replaced by a bit that won't 8542 // be lost at this stage, but is below the single-precision rounding 8543 // position. 8544 // 8545 // However, if -enable-unsafe-fp-math is in effect, accept double 8546 // rounding to avoid the extra overhead. 8547 if (Op.getValueType() == MVT::f32 && 8548 !Subtarget.hasFPCVT() && 8549 !DAG.getTarget().Options.UnsafeFPMath) { 8550 8551 // Twiddle input to make sure the low 11 bits are zero. (If this 8552 // is the case, we are guaranteed the value will fit into the 53 bit 8553 // mantissa of an IEEE double-precision value without rounding.) 8554 // If any of those low 11 bits were not zero originally, make sure 8555 // bit 12 (value 2048) is set instead, so that the final rounding 8556 // to single-precision gets the correct result. 8557 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8558 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8559 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8560 Round, DAG.getConstant(2047, dl, MVT::i64)); 8561 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8562 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8563 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8564 8565 // However, we cannot use that value unconditionally: if the magnitude 8566 // of the input value is small, the bit-twiddling we did above might 8567 // end up visibly changing the output. Fortunately, in that case, we 8568 // don't need to twiddle bits since the original input will convert 8569 // exactly to double-precision floating-point already. Therefore, 8570 // construct a conditional to use the original value if the top 11 8571 // bits are all sign-bit copies, and use the rounded value computed 8572 // above otherwise. 8573 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8574 SINT, DAG.getConstant(53, dl, MVT::i32)); 8575 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8576 Cond, DAG.getConstant(1, dl, MVT::i64)); 8577 Cond = DAG.getSetCC( 8578 dl, 8579 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8580 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8581 8582 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8583 } 8584 8585 ReuseLoadInfo RLI; 8586 SDValue Bits; 8587 8588 MachineFunction &MF = DAG.getMachineFunction(); 8589 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8590 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8591 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8592 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8593 } else if (Subtarget.hasLFIWAX() && 8594 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8595 MachineMemOperand *MMO = 8596 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8597 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8598 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8599 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8600 DAG.getVTList(MVT::f64, MVT::Other), 8601 Ops, MVT::i32, MMO); 8602 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8603 } else if (Subtarget.hasFPCVT() && 8604 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8605 MachineMemOperand *MMO = 8606 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8607 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8608 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8609 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8610 DAG.getVTList(MVT::f64, MVT::Other), 8611 Ops, MVT::i32, MMO); 8612 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8613 } else if (((Subtarget.hasLFIWAX() && 8614 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8615 (Subtarget.hasFPCVT() && 8616 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8617 SINT.getOperand(0).getValueType() == MVT::i32) { 8618 MachineFrameInfo &MFI = MF.getFrameInfo(); 8619 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8620 8621 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8622 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8623 8624 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8625 MachinePointerInfo::getFixedStack( 8626 DAG.getMachineFunction(), FrameIdx)); 8627 Chain = Store; 8628 8629 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8630 "Expected an i32 store"); 8631 8632 RLI.Ptr = FIdx; 8633 RLI.Chain = Chain; 8634 RLI.MPI = 8635 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8636 RLI.Alignment = Align(4); 8637 8638 MachineMemOperand *MMO = 8639 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8640 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8641 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8642 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8643 PPCISD::LFIWZX : PPCISD::LFIWAX, 8644 dl, DAG.getVTList(MVT::f64, MVT::Other), 8645 Ops, MVT::i32, MMO); 8646 Chain = Bits.getValue(1); 8647 } else 8648 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8649 8650 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8651 if (IsStrict) 8652 Chain = FP.getValue(1); 8653 8654 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8655 if (IsStrict) 8656 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8657 DAG.getVTList(MVT::f32, MVT::Other), 8658 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8659 else 8660 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8661 DAG.getIntPtrConstant(0, dl)); 8662 } 8663 return FP; 8664 } 8665 8666 assert(Src.getValueType() == MVT::i32 && 8667 "Unhandled INT_TO_FP type in custom expander!"); 8668 // Since we only generate this in 64-bit mode, we can take advantage of 8669 // 64-bit registers. In particular, sign extend the input value into the 8670 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8671 // then lfd it and fcfid it. 8672 MachineFunction &MF = DAG.getMachineFunction(); 8673 MachineFrameInfo &MFI = MF.getFrameInfo(); 8674 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8675 8676 SDValue Ld; 8677 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8678 ReuseLoadInfo RLI; 8679 bool ReusingLoad; 8680 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8681 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8682 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8683 8684 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8685 MachinePointerInfo::getFixedStack( 8686 DAG.getMachineFunction(), FrameIdx)); 8687 Chain = Store; 8688 8689 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8690 "Expected an i32 store"); 8691 8692 RLI.Ptr = FIdx; 8693 RLI.Chain = Chain; 8694 RLI.MPI = 8695 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8696 RLI.Alignment = Align(4); 8697 } 8698 8699 MachineMemOperand *MMO = 8700 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8701 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8702 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8703 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8704 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8705 MVT::i32, MMO); 8706 Chain = Ld.getValue(1); 8707 if (ReusingLoad) 8708 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8709 } else { 8710 assert(Subtarget.isPPC64() && 8711 "i32->FP without LFIWAX supported only on PPC64"); 8712 8713 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8714 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8715 8716 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8717 8718 // STD the extended value into the stack slot. 8719 SDValue Store = DAG.getStore( 8720 Chain, dl, Ext64, FIdx, 8721 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8722 Chain = Store; 8723 8724 // Load the value as a double. 8725 Ld = DAG.getLoad( 8726 MVT::f64, dl, Chain, FIdx, 8727 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8728 Chain = Ld.getValue(1); 8729 } 8730 8731 // FCFID it and return it. 8732 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8733 if (IsStrict) 8734 Chain = FP.getValue(1); 8735 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8736 if (IsStrict) 8737 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8738 DAG.getVTList(MVT::f32, MVT::Other), 8739 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8740 else 8741 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8742 DAG.getIntPtrConstant(0, dl)); 8743 } 8744 return FP; 8745 } 8746 8747 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8748 SelectionDAG &DAG) const { 8749 SDLoc dl(Op); 8750 /* 8751 The rounding mode is in bits 30:31 of FPSR, and has the following 8752 settings: 8753 00 Round to nearest 8754 01 Round to 0 8755 10 Round to +inf 8756 11 Round to -inf 8757 8758 FLT_ROUNDS, on the other hand, expects the following: 8759 -1 Undefined 8760 0 Round to 0 8761 1 Round to nearest 8762 2 Round to +inf 8763 3 Round to -inf 8764 8765 To perform the conversion, we do: 8766 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8767 */ 8768 8769 MachineFunction &MF = DAG.getMachineFunction(); 8770 EVT VT = Op.getValueType(); 8771 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8772 8773 // Save FP Control Word to register 8774 SDValue Chain = Op.getOperand(0); 8775 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8776 Chain = MFFS.getValue(1); 8777 8778 SDValue CWD; 8779 if (isTypeLegal(MVT::i64)) { 8780 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8781 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8782 } else { 8783 // Save FP register to stack slot 8784 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8785 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8786 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8787 8788 // Load FP Control Word from low 32 bits of stack slot. 8789 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8790 "Stack slot adjustment is valid only on big endian subtargets!"); 8791 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8792 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8793 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8794 Chain = CWD.getValue(1); 8795 } 8796 8797 // Transform as necessary 8798 SDValue CWD1 = 8799 DAG.getNode(ISD::AND, dl, MVT::i32, 8800 CWD, DAG.getConstant(3, dl, MVT::i32)); 8801 SDValue CWD2 = 8802 DAG.getNode(ISD::SRL, dl, MVT::i32, 8803 DAG.getNode(ISD::AND, dl, MVT::i32, 8804 DAG.getNode(ISD::XOR, dl, MVT::i32, 8805 CWD, DAG.getConstant(3, dl, MVT::i32)), 8806 DAG.getConstant(3, dl, MVT::i32)), 8807 DAG.getConstant(1, dl, MVT::i32)); 8808 8809 SDValue RetVal = 8810 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8811 8812 RetVal = 8813 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8814 dl, VT, RetVal); 8815 8816 return DAG.getMergeValues({RetVal, Chain}, dl); 8817 } 8818 8819 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8820 EVT VT = Op.getValueType(); 8821 unsigned BitWidth = VT.getSizeInBits(); 8822 SDLoc dl(Op); 8823 assert(Op.getNumOperands() == 3 && 8824 VT == Op.getOperand(1).getValueType() && 8825 "Unexpected SHL!"); 8826 8827 // Expand into a bunch of logical ops. Note that these ops 8828 // depend on the PPC behavior for oversized shift amounts. 8829 SDValue Lo = Op.getOperand(0); 8830 SDValue Hi = Op.getOperand(1); 8831 SDValue Amt = Op.getOperand(2); 8832 EVT AmtVT = Amt.getValueType(); 8833 8834 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8835 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8836 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8837 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8838 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8839 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8840 DAG.getConstant(-BitWidth, dl, AmtVT)); 8841 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8842 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8843 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8844 SDValue OutOps[] = { OutLo, OutHi }; 8845 return DAG.getMergeValues(OutOps, dl); 8846 } 8847 8848 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8849 EVT VT = Op.getValueType(); 8850 SDLoc dl(Op); 8851 unsigned BitWidth = VT.getSizeInBits(); 8852 assert(Op.getNumOperands() == 3 && 8853 VT == Op.getOperand(1).getValueType() && 8854 "Unexpected SRL!"); 8855 8856 // Expand into a bunch of logical ops. Note that these ops 8857 // depend on the PPC behavior for oversized shift amounts. 8858 SDValue Lo = Op.getOperand(0); 8859 SDValue Hi = Op.getOperand(1); 8860 SDValue Amt = Op.getOperand(2); 8861 EVT AmtVT = Amt.getValueType(); 8862 8863 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8864 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8865 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8866 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8867 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8868 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8869 DAG.getConstant(-BitWidth, dl, AmtVT)); 8870 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8871 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8872 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8873 SDValue OutOps[] = { OutLo, OutHi }; 8874 return DAG.getMergeValues(OutOps, dl); 8875 } 8876 8877 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8878 SDLoc dl(Op); 8879 EVT VT = Op.getValueType(); 8880 unsigned BitWidth = VT.getSizeInBits(); 8881 assert(Op.getNumOperands() == 3 && 8882 VT == Op.getOperand(1).getValueType() && 8883 "Unexpected SRA!"); 8884 8885 // Expand into a bunch of logical ops, followed by a select_cc. 8886 SDValue Lo = Op.getOperand(0); 8887 SDValue Hi = Op.getOperand(1); 8888 SDValue Amt = Op.getOperand(2); 8889 EVT AmtVT = Amt.getValueType(); 8890 8891 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8892 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8893 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8894 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8895 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8896 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8897 DAG.getConstant(-BitWidth, dl, AmtVT)); 8898 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8899 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8900 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8901 Tmp4, Tmp6, ISD::SETLE); 8902 SDValue OutOps[] = { OutLo, OutHi }; 8903 return DAG.getMergeValues(OutOps, dl); 8904 } 8905 8906 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8907 SelectionDAG &DAG) const { 8908 SDLoc dl(Op); 8909 EVT VT = Op.getValueType(); 8910 unsigned BitWidth = VT.getSizeInBits(); 8911 8912 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8913 SDValue X = Op.getOperand(0); 8914 SDValue Y = Op.getOperand(1); 8915 SDValue Z = Op.getOperand(2); 8916 EVT AmtVT = Z.getValueType(); 8917 8918 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8919 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8920 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8921 // on PowerPC shift by BW being well defined. 8922 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8923 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8924 SDValue SubZ = 8925 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8926 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8927 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8928 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8929 } 8930 8931 //===----------------------------------------------------------------------===// 8932 // Vector related lowering. 8933 // 8934 8935 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8936 /// element size of SplatSize. Cast the result to VT. 8937 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8938 SelectionDAG &DAG, const SDLoc &dl) { 8939 static const MVT VTys[] = { // canonical VT to use for each size. 8940 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8941 }; 8942 8943 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8944 8945 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8946 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8947 SplatSize = 1; 8948 Val = 0xFF; 8949 } 8950 8951 EVT CanonicalVT = VTys[SplatSize-1]; 8952 8953 // Build a canonical splat for this value. 8954 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8955 } 8956 8957 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8958 /// specified intrinsic ID. 8959 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8960 const SDLoc &dl, EVT DestVT = MVT::Other) { 8961 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8962 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8963 DAG.getConstant(IID, dl, MVT::i32), Op); 8964 } 8965 8966 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8967 /// specified intrinsic ID. 8968 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8969 SelectionDAG &DAG, const SDLoc &dl, 8970 EVT DestVT = MVT::Other) { 8971 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8972 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8973 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8974 } 8975 8976 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8977 /// specified intrinsic ID. 8978 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8979 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8980 EVT DestVT = MVT::Other) { 8981 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8982 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8983 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8984 } 8985 8986 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8987 /// amount. The result has the specified value type. 8988 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8989 SelectionDAG &DAG, const SDLoc &dl) { 8990 // Force LHS/RHS to be the right type. 8991 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8992 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8993 8994 int Ops[16]; 8995 for (unsigned i = 0; i != 16; ++i) 8996 Ops[i] = i + Amt; 8997 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8998 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8999 } 9000 9001 /// Do we have an efficient pattern in a .td file for this node? 9002 /// 9003 /// \param V - pointer to the BuildVectorSDNode being matched 9004 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9005 /// 9006 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9007 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9008 /// the opposite is true (expansion is beneficial) are: 9009 /// - The node builds a vector out of integers that are not 32 or 64-bits 9010 /// - The node builds a vector out of constants 9011 /// - The node is a "load-and-splat" 9012 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9013 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9014 bool HasDirectMove, 9015 bool HasP8Vector) { 9016 EVT VecVT = V->getValueType(0); 9017 bool RightType = VecVT == MVT::v2f64 || 9018 (HasP8Vector && VecVT == MVT::v4f32) || 9019 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9020 if (!RightType) 9021 return false; 9022 9023 bool IsSplat = true; 9024 bool IsLoad = false; 9025 SDValue Op0 = V->getOperand(0); 9026 9027 // This function is called in a block that confirms the node is not a constant 9028 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9029 // different constants. 9030 if (V->isConstant()) 9031 return false; 9032 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9033 if (V->getOperand(i).isUndef()) 9034 return false; 9035 // We want to expand nodes that represent load-and-splat even if the 9036 // loaded value is a floating point truncation or conversion to int. 9037 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9038 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9039 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9040 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9041 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9042 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9043 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9044 IsLoad = true; 9045 // If the operands are different or the input is not a load and has more 9046 // uses than just this BV node, then it isn't a splat. 9047 if (V->getOperand(i) != Op0 || 9048 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9049 IsSplat = false; 9050 } 9051 return !(IsSplat && IsLoad); 9052 } 9053 9054 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9055 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9056 9057 SDLoc dl(Op); 9058 SDValue Op0 = Op->getOperand(0); 9059 9060 if ((Op.getValueType() != MVT::f128) || 9061 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9062 (Op0.getOperand(0).getValueType() != MVT::i64) || 9063 (Op0.getOperand(1).getValueType() != MVT::i64)) 9064 return SDValue(); 9065 9066 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9067 Op0.getOperand(1)); 9068 } 9069 9070 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9071 const SDValue *InputLoad = &Op; 9072 if (InputLoad->getOpcode() == ISD::BITCAST) 9073 InputLoad = &InputLoad->getOperand(0); 9074 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9075 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9076 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9077 InputLoad = &InputLoad->getOperand(0); 9078 } 9079 if (InputLoad->getOpcode() != ISD::LOAD) 9080 return nullptr; 9081 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9082 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9083 } 9084 9085 // Convert the argument APFloat to a single precision APFloat if there is no 9086 // loss in information during the conversion to single precision APFloat and the 9087 // resulting number is not a denormal number. Return true if successful. 9088 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9089 APFloat APFloatToConvert = ArgAPFloat; 9090 bool LosesInfo = true; 9091 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9092 &LosesInfo); 9093 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9094 if (Success) 9095 ArgAPFloat = APFloatToConvert; 9096 return Success; 9097 } 9098 9099 // Bitcast the argument APInt to a double and convert it to a single precision 9100 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9101 // argument if there is no loss in information during the conversion from 9102 // double to single precision APFloat and the resulting number is not a denormal 9103 // number. Return true if successful. 9104 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9105 double DpValue = ArgAPInt.bitsToDouble(); 9106 APFloat APFloatDp(DpValue); 9107 bool Success = convertToNonDenormSingle(APFloatDp); 9108 if (Success) 9109 ArgAPInt = APFloatDp.bitcastToAPInt(); 9110 return Success; 9111 } 9112 9113 // Nondestructive check for convertTonNonDenormSingle. 9114 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9115 // Only convert if it loses info, since XXSPLTIDP should 9116 // handle the other case. 9117 APFloat APFloatToConvert = ArgAPFloat; 9118 bool LosesInfo = true; 9119 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9120 &LosesInfo); 9121 9122 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9123 } 9124 9125 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9126 unsigned &Opcode) { 9127 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9128 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9129 return false; 9130 9131 EVT Ty = Op->getValueType(0); 9132 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9133 // as we cannot handle extending loads for these types. 9134 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9135 ISD::isNON_EXTLoad(InputNode)) 9136 return true; 9137 9138 EVT MemVT = InputNode->getMemoryVT(); 9139 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9140 // memory VT is the same vector element VT type. 9141 // The loads feeding into the v8i16 and v16i8 types will be extending because 9142 // scalar i8/i16 are not legal types. 9143 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9144 (MemVT == Ty.getVectorElementType())) 9145 return true; 9146 9147 if (Ty == MVT::v2i64) { 9148 // Check the extend type, when the input type is i32, and the output vector 9149 // type is v2i64. 9150 if (MemVT == MVT::i32) { 9151 if (ISD::isZEXTLoad(InputNode)) 9152 Opcode = PPCISD::ZEXT_LD_SPLAT; 9153 if (ISD::isSEXTLoad(InputNode)) 9154 Opcode = PPCISD::SEXT_LD_SPLAT; 9155 } 9156 return true; 9157 } 9158 return false; 9159 } 9160 9161 // If this is a case we can't handle, return null and let the default 9162 // expansion code take care of it. If we CAN select this case, and if it 9163 // selects to a single instruction, return Op. Otherwise, if we can codegen 9164 // this case more efficiently than a constant pool load, lower it to the 9165 // sequence of ops that should be used. 9166 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9167 SelectionDAG &DAG) const { 9168 SDLoc dl(Op); 9169 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9170 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9171 9172 // Check if this is a splat of a constant value. 9173 APInt APSplatBits, APSplatUndef; 9174 unsigned SplatBitSize; 9175 bool HasAnyUndefs; 9176 bool BVNIsConstantSplat = 9177 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9178 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9179 9180 // If it is a splat of a double, check if we can shrink it to a 32 bit 9181 // non-denormal float which when converted back to double gives us the same 9182 // double. This is to exploit the XXSPLTIDP instruction. 9183 // If we lose precision, we use XXSPLTI32DX. 9184 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9185 Subtarget.hasPrefixInstrs()) { 9186 // Check the type first to short-circuit so we don't modify APSplatBits if 9187 // this block isn't executed. 9188 if ((Op->getValueType(0) == MVT::v2f64) && 9189 convertToNonDenormSingle(APSplatBits)) { 9190 SDValue SplatNode = DAG.getNode( 9191 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9192 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9193 return DAG.getBitcast(Op.getValueType(), SplatNode); 9194 } else { 9195 // We may lose precision, so we have to use XXSPLTI32DX. 9196 9197 uint32_t Hi = 9198 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9199 uint32_t Lo = 9200 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9201 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9202 9203 if (!Hi || !Lo) 9204 // If either load is 0, then we should generate XXLXOR to set to 0. 9205 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9206 9207 if (Hi) 9208 SplatNode = DAG.getNode( 9209 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9210 DAG.getTargetConstant(0, dl, MVT::i32), 9211 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9212 9213 if (Lo) 9214 SplatNode = 9215 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9216 DAG.getTargetConstant(1, dl, MVT::i32), 9217 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9218 9219 return DAG.getBitcast(Op.getValueType(), SplatNode); 9220 } 9221 } 9222 9223 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9224 unsigned NewOpcode = PPCISD::LD_SPLAT; 9225 9226 // Handle load-and-splat patterns as we have instructions that will do this 9227 // in one go. 9228 if (DAG.isSplatValue(Op, true) && 9229 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9230 const SDValue *InputLoad = &Op.getOperand(0); 9231 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9232 9233 // If the input load is an extending load, it will be an i32 -> i64 9234 // extending load and isValidSplatLoad() will update NewOpcode. 9235 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9236 unsigned ElementSize = 9237 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9238 9239 assert(((ElementSize == 2 * MemorySize) 9240 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9241 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9242 : (NewOpcode == PPCISD::LD_SPLAT)) && 9243 "Unmatched element size and opcode!\n"); 9244 9245 // Checking for a single use of this load, we have to check for vector 9246 // width (128 bits) / ElementSize uses (since each operand of the 9247 // BUILD_VECTOR is a separate use of the value. 9248 unsigned NumUsesOfInputLD = 128 / ElementSize; 9249 for (SDValue BVInOp : Op->ops()) 9250 if (BVInOp.isUndef()) 9251 NumUsesOfInputLD--; 9252 9253 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9254 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9255 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9256 // 15", but funciton IsValidSplatLoad() now will only return true when 9257 // the data at index 0 is not nullptr. So we will not get into trouble for 9258 // these cases. 9259 // 9260 // case 1 - lfiwzx/lfiwax 9261 // 1.1: load result is i32 and is sign/zero extend to i64; 9262 // 1.2: build a v2i64 vector type with above loaded value; 9263 // 1.3: the vector has only one value at index 0, others are all undef; 9264 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9265 if (NumUsesOfInputLD == 1 && 9266 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9267 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9268 Subtarget.hasLFIWAX())) 9269 return SDValue(); 9270 9271 // case 2 - lxvr[hb]x 9272 // 2.1: load result is at most i16; 9273 // 2.2: build a vector with above loaded value; 9274 // 2.3: the vector has only one value at index 0, others are all undef; 9275 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9276 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9277 Subtarget.isISA3_1() && ElementSize <= 16) 9278 return SDValue(); 9279 9280 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9281 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9282 Subtarget.hasVSX()) { 9283 SDValue Ops[] = { 9284 LD->getChain(), // Chain 9285 LD->getBasePtr(), // Ptr 9286 DAG.getValueType(Op.getValueType()) // VT 9287 }; 9288 SDValue LdSplt = DAG.getMemIntrinsicNode( 9289 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9290 LD->getMemoryVT(), LD->getMemOperand()); 9291 // Replace all uses of the output chain of the original load with the 9292 // output chain of the new load. 9293 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9294 LdSplt.getValue(1)); 9295 return LdSplt; 9296 } 9297 } 9298 9299 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9300 // 32-bits can be lowered to VSX instructions under certain conditions. 9301 // Without VSX, there is no pattern more efficient than expanding the node. 9302 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9303 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9304 Subtarget.hasP8Vector())) 9305 return Op; 9306 return SDValue(); 9307 } 9308 9309 uint64_t SplatBits = APSplatBits.getZExtValue(); 9310 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9311 unsigned SplatSize = SplatBitSize / 8; 9312 9313 // First, handle single instruction cases. 9314 9315 // All zeros? 9316 if (SplatBits == 0) { 9317 // Canonicalize all zero vectors to be v4i32. 9318 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9319 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9320 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9321 } 9322 return Op; 9323 } 9324 9325 // We have XXSPLTIW for constant splats four bytes wide. 9326 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9327 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9328 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9329 // turned into a 4-byte splat of 0xABABABAB. 9330 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9331 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9332 Op.getValueType(), DAG, dl); 9333 9334 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9335 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9336 dl); 9337 9338 // We have XXSPLTIB for constant splats one byte wide. 9339 if (Subtarget.hasP9Vector() && SplatSize == 1) 9340 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9341 dl); 9342 9343 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9344 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9345 (32-SplatBitSize)); 9346 if (SextVal >= -16 && SextVal <= 15) 9347 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9348 dl); 9349 9350 // Two instruction sequences. 9351 9352 // If this value is in the range [-32,30] and is even, use: 9353 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9354 // If this value is in the range [17,31] and is odd, use: 9355 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9356 // If this value is in the range [-31,-17] and is odd, use: 9357 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9358 // Note the last two are three-instruction sequences. 9359 if (SextVal >= -32 && SextVal <= 31) { 9360 // To avoid having these optimizations undone by constant folding, 9361 // we convert to a pseudo that will be expanded later into one of 9362 // the above forms. 9363 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9364 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9365 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9366 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9367 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9368 if (VT == Op.getValueType()) 9369 return RetVal; 9370 else 9371 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9372 } 9373 9374 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9375 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9376 // for fneg/fabs. 9377 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9378 // Make -1 and vspltisw -1: 9379 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9380 9381 // Make the VSLW intrinsic, computing 0x8000_0000. 9382 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9383 OnesV, DAG, dl); 9384 9385 // xor by OnesV to invert it. 9386 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9387 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9388 } 9389 9390 // Check to see if this is a wide variety of vsplti*, binop self cases. 9391 static const signed char SplatCsts[] = { 9392 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9393 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9394 }; 9395 9396 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9397 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9398 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9399 int i = SplatCsts[idx]; 9400 9401 // Figure out what shift amount will be used by altivec if shifted by i in 9402 // this splat size. 9403 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9404 9405 // vsplti + shl self. 9406 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9407 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9408 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9409 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9410 Intrinsic::ppc_altivec_vslw 9411 }; 9412 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9413 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9414 } 9415 9416 // vsplti + srl self. 9417 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9418 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9419 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9420 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9421 Intrinsic::ppc_altivec_vsrw 9422 }; 9423 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9424 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9425 } 9426 9427 // vsplti + rol self. 9428 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9429 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9430 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9431 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9432 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9433 Intrinsic::ppc_altivec_vrlw 9434 }; 9435 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9436 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9437 } 9438 9439 // t = vsplti c, result = vsldoi t, t, 1 9440 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9441 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9442 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9443 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9444 } 9445 // t = vsplti c, result = vsldoi t, t, 2 9446 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9447 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9448 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9449 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9450 } 9451 // t = vsplti c, result = vsldoi t, t, 3 9452 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9453 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9454 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9455 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9456 } 9457 } 9458 9459 return SDValue(); 9460 } 9461 9462 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9463 /// the specified operations to build the shuffle. 9464 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9465 SDValue RHS, SelectionDAG &DAG, 9466 const SDLoc &dl) { 9467 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9468 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9469 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9470 9471 enum { 9472 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9473 OP_VMRGHW, 9474 OP_VMRGLW, 9475 OP_VSPLTISW0, 9476 OP_VSPLTISW1, 9477 OP_VSPLTISW2, 9478 OP_VSPLTISW3, 9479 OP_VSLDOI4, 9480 OP_VSLDOI8, 9481 OP_VSLDOI12 9482 }; 9483 9484 if (OpNum == OP_COPY) { 9485 if (LHSID == (1*9+2)*9+3) return LHS; 9486 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9487 return RHS; 9488 } 9489 9490 SDValue OpLHS, OpRHS; 9491 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9492 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9493 9494 int ShufIdxs[16]; 9495 switch (OpNum) { 9496 default: llvm_unreachable("Unknown i32 permute!"); 9497 case OP_VMRGHW: 9498 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9499 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9500 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9501 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9502 break; 9503 case OP_VMRGLW: 9504 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9505 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9506 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9507 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9508 break; 9509 case OP_VSPLTISW0: 9510 for (unsigned i = 0; i != 16; ++i) 9511 ShufIdxs[i] = (i&3)+0; 9512 break; 9513 case OP_VSPLTISW1: 9514 for (unsigned i = 0; i != 16; ++i) 9515 ShufIdxs[i] = (i&3)+4; 9516 break; 9517 case OP_VSPLTISW2: 9518 for (unsigned i = 0; i != 16; ++i) 9519 ShufIdxs[i] = (i&3)+8; 9520 break; 9521 case OP_VSPLTISW3: 9522 for (unsigned i = 0; i != 16; ++i) 9523 ShufIdxs[i] = (i&3)+12; 9524 break; 9525 case OP_VSLDOI4: 9526 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9527 case OP_VSLDOI8: 9528 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9529 case OP_VSLDOI12: 9530 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9531 } 9532 EVT VT = OpLHS.getValueType(); 9533 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9534 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9535 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9536 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9537 } 9538 9539 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9540 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9541 /// SDValue. 9542 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9543 SelectionDAG &DAG) const { 9544 const unsigned BytesInVector = 16; 9545 bool IsLE = Subtarget.isLittleEndian(); 9546 SDLoc dl(N); 9547 SDValue V1 = N->getOperand(0); 9548 SDValue V2 = N->getOperand(1); 9549 unsigned ShiftElts = 0, InsertAtByte = 0; 9550 bool Swap = false; 9551 9552 // Shifts required to get the byte we want at element 7. 9553 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9554 0, 15, 14, 13, 12, 11, 10, 9}; 9555 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9556 1, 2, 3, 4, 5, 6, 7, 8}; 9557 9558 ArrayRef<int> Mask = N->getMask(); 9559 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9560 9561 // For each mask element, find out if we're just inserting something 9562 // from V2 into V1 or vice versa. 9563 // Possible permutations inserting an element from V2 into V1: 9564 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9565 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9566 // ... 9567 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9568 // Inserting from V1 into V2 will be similar, except mask range will be 9569 // [16,31]. 9570 9571 bool FoundCandidate = false; 9572 // If both vector operands for the shuffle are the same vector, the mask 9573 // will contain only elements from the first one and the second one will be 9574 // undef. 9575 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9576 // Go through the mask of half-words to find an element that's being moved 9577 // from one vector to the other. 9578 for (unsigned i = 0; i < BytesInVector; ++i) { 9579 unsigned CurrentElement = Mask[i]; 9580 // If 2nd operand is undefined, we should only look for element 7 in the 9581 // Mask. 9582 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9583 continue; 9584 9585 bool OtherElementsInOrder = true; 9586 // Examine the other elements in the Mask to see if they're in original 9587 // order. 9588 for (unsigned j = 0; j < BytesInVector; ++j) { 9589 if (j == i) 9590 continue; 9591 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9592 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9593 // in which we always assume we're always picking from the 1st operand. 9594 int MaskOffset = 9595 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9596 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9597 OtherElementsInOrder = false; 9598 break; 9599 } 9600 } 9601 // If other elements are in original order, we record the number of shifts 9602 // we need to get the element we want into element 7. Also record which byte 9603 // in the vector we should insert into. 9604 if (OtherElementsInOrder) { 9605 // If 2nd operand is undefined, we assume no shifts and no swapping. 9606 if (V2.isUndef()) { 9607 ShiftElts = 0; 9608 Swap = false; 9609 } else { 9610 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9611 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9612 : BigEndianShifts[CurrentElement & 0xF]; 9613 Swap = CurrentElement < BytesInVector; 9614 } 9615 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9616 FoundCandidate = true; 9617 break; 9618 } 9619 } 9620 9621 if (!FoundCandidate) 9622 return SDValue(); 9623 9624 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9625 // optionally with VECSHL if shift is required. 9626 if (Swap) 9627 std::swap(V1, V2); 9628 if (V2.isUndef()) 9629 V2 = V1; 9630 if (ShiftElts) { 9631 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9632 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9633 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9634 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9635 } 9636 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9637 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9638 } 9639 9640 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9641 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9642 /// SDValue. 9643 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9644 SelectionDAG &DAG) const { 9645 const unsigned NumHalfWords = 8; 9646 const unsigned BytesInVector = NumHalfWords * 2; 9647 // Check that the shuffle is on half-words. 9648 if (!isNByteElemShuffleMask(N, 2, 1)) 9649 return SDValue(); 9650 9651 bool IsLE = Subtarget.isLittleEndian(); 9652 SDLoc dl(N); 9653 SDValue V1 = N->getOperand(0); 9654 SDValue V2 = N->getOperand(1); 9655 unsigned ShiftElts = 0, InsertAtByte = 0; 9656 bool Swap = false; 9657 9658 // Shifts required to get the half-word we want at element 3. 9659 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9660 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9661 9662 uint32_t Mask = 0; 9663 uint32_t OriginalOrderLow = 0x1234567; 9664 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9665 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9666 // 32-bit space, only need 4-bit nibbles per element. 9667 for (unsigned i = 0; i < NumHalfWords; ++i) { 9668 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9669 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9670 } 9671 9672 // For each mask element, find out if we're just inserting something 9673 // from V2 into V1 or vice versa. Possible permutations inserting an element 9674 // from V2 into V1: 9675 // X, 1, 2, 3, 4, 5, 6, 7 9676 // 0, X, 2, 3, 4, 5, 6, 7 9677 // 0, 1, X, 3, 4, 5, 6, 7 9678 // 0, 1, 2, X, 4, 5, 6, 7 9679 // 0, 1, 2, 3, X, 5, 6, 7 9680 // 0, 1, 2, 3, 4, X, 6, 7 9681 // 0, 1, 2, 3, 4, 5, X, 7 9682 // 0, 1, 2, 3, 4, 5, 6, X 9683 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9684 9685 bool FoundCandidate = false; 9686 // Go through the mask of half-words to find an element that's being moved 9687 // from one vector to the other. 9688 for (unsigned i = 0; i < NumHalfWords; ++i) { 9689 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9690 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9691 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9692 uint32_t TargetOrder = 0x0; 9693 9694 // If both vector operands for the shuffle are the same vector, the mask 9695 // will contain only elements from the first one and the second one will be 9696 // undef. 9697 if (V2.isUndef()) { 9698 ShiftElts = 0; 9699 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9700 TargetOrder = OriginalOrderLow; 9701 Swap = false; 9702 // Skip if not the correct element or mask of other elements don't equal 9703 // to our expected order. 9704 if (MaskOneElt == VINSERTHSrcElem && 9705 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9706 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9707 FoundCandidate = true; 9708 break; 9709 } 9710 } else { // If both operands are defined. 9711 // Target order is [8,15] if the current mask is between [0,7]. 9712 TargetOrder = 9713 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9714 // Skip if mask of other elements don't equal our expected order. 9715 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9716 // We only need the last 3 bits for the number of shifts. 9717 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9718 : BigEndianShifts[MaskOneElt & 0x7]; 9719 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9720 Swap = MaskOneElt < NumHalfWords; 9721 FoundCandidate = true; 9722 break; 9723 } 9724 } 9725 } 9726 9727 if (!FoundCandidate) 9728 return SDValue(); 9729 9730 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9731 // optionally with VECSHL if shift is required. 9732 if (Swap) 9733 std::swap(V1, V2); 9734 if (V2.isUndef()) 9735 V2 = V1; 9736 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9737 if (ShiftElts) { 9738 // Double ShiftElts because we're left shifting on v16i8 type. 9739 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9740 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9741 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9742 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9743 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9744 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9745 } 9746 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9747 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9748 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9749 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9750 } 9751 9752 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9753 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9754 /// return the default SDValue. 9755 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9756 SelectionDAG &DAG) const { 9757 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9758 // to v16i8. Peek through the bitcasts to get the actual operands. 9759 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9760 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9761 9762 auto ShuffleMask = SVN->getMask(); 9763 SDValue VecShuffle(SVN, 0); 9764 SDLoc DL(SVN); 9765 9766 // Check that we have a four byte shuffle. 9767 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9768 return SDValue(); 9769 9770 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9771 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9772 std::swap(LHS, RHS); 9773 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9774 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9775 } 9776 9777 // Ensure that the RHS is a vector of constants. 9778 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9779 if (!BVN) 9780 return SDValue(); 9781 9782 // Check if RHS is a splat of 4-bytes (or smaller). 9783 APInt APSplatValue, APSplatUndef; 9784 unsigned SplatBitSize; 9785 bool HasAnyUndefs; 9786 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9787 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9788 SplatBitSize > 32) 9789 return SDValue(); 9790 9791 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9792 // The instruction splats a constant C into two words of the source vector 9793 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9794 // Thus we check that the shuffle mask is the equivalent of 9795 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9796 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9797 // within each word are consecutive, so we only need to check the first byte. 9798 SDValue Index; 9799 bool IsLE = Subtarget.isLittleEndian(); 9800 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9801 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9802 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9803 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9804 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9805 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9806 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9807 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9808 else 9809 return SDValue(); 9810 9811 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9812 // for XXSPLTI32DX. 9813 unsigned SplatVal = APSplatValue.getZExtValue(); 9814 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9815 SplatVal |= (SplatVal << SplatBitSize); 9816 9817 SDValue SplatNode = DAG.getNode( 9818 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9819 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9820 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9821 } 9822 9823 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9824 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9825 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9826 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9827 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9828 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9829 assert(Op.getValueType() == MVT::v1i128 && 9830 "Only set v1i128 as custom, other type shouldn't reach here!"); 9831 SDLoc dl(Op); 9832 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9833 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9834 unsigned SHLAmt = N1.getConstantOperandVal(0); 9835 if (SHLAmt % 8 == 0) { 9836 std::array<int, 16> Mask; 9837 std::iota(Mask.begin(), Mask.end(), 0); 9838 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9839 if (SDValue Shuffle = 9840 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9841 DAG.getUNDEF(MVT::v16i8), Mask)) 9842 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9843 } 9844 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9845 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9846 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9847 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9848 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9849 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9850 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9851 } 9852 9853 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9854 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9855 /// return the code it can be lowered into. Worst case, it can always be 9856 /// lowered into a vperm. 9857 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9858 SelectionDAG &DAG) const { 9859 SDLoc dl(Op); 9860 SDValue V1 = Op.getOperand(0); 9861 SDValue V2 = Op.getOperand(1); 9862 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9863 9864 // Any nodes that were combined in the target-independent combiner prior 9865 // to vector legalization will not be sent to the target combine. Try to 9866 // combine it here. 9867 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9868 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9869 return NewShuffle; 9870 Op = NewShuffle; 9871 SVOp = cast<ShuffleVectorSDNode>(Op); 9872 V1 = Op.getOperand(0); 9873 V2 = Op.getOperand(1); 9874 } 9875 EVT VT = Op.getValueType(); 9876 bool isLittleEndian = Subtarget.isLittleEndian(); 9877 9878 unsigned ShiftElts, InsertAtByte; 9879 bool Swap = false; 9880 9881 // If this is a load-and-splat, we can do that with a single instruction 9882 // in some cases. However if the load has multiple uses, we don't want to 9883 // combine it because that will just produce multiple loads. 9884 bool IsPermutedLoad = false; 9885 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9886 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9887 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9888 InputLoad->hasOneUse()) { 9889 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9890 int SplatIdx = 9891 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9892 9893 // The splat index for permuted loads will be in the left half of the vector 9894 // which is strictly wider than the loaded value by 8 bytes. So we need to 9895 // adjust the splat index to point to the correct address in memory. 9896 if (IsPermutedLoad) { 9897 assert((isLittleEndian || IsFourByte) && 9898 "Unexpected size for permuted load on big endian target"); 9899 SplatIdx += IsFourByte ? 2 : 1; 9900 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9901 "Splat of a value outside of the loaded memory"); 9902 } 9903 9904 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9905 // For 4-byte load-and-splat, we need Power9. 9906 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9907 uint64_t Offset = 0; 9908 if (IsFourByte) 9909 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9910 else 9911 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9912 9913 // If the width of the load is the same as the width of the splat, 9914 // loading with an offset would load the wrong memory. 9915 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9916 Offset = 0; 9917 9918 SDValue BasePtr = LD->getBasePtr(); 9919 if (Offset != 0) 9920 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9921 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9922 SDValue Ops[] = { 9923 LD->getChain(), // Chain 9924 BasePtr, // BasePtr 9925 DAG.getValueType(Op.getValueType()) // VT 9926 }; 9927 SDVTList VTL = 9928 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9929 SDValue LdSplt = 9930 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9931 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9932 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9933 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9934 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9935 return LdSplt; 9936 } 9937 } 9938 if (Subtarget.hasP9Vector() && 9939 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9940 isLittleEndian)) { 9941 if (Swap) 9942 std::swap(V1, V2); 9943 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9944 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9945 if (ShiftElts) { 9946 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9947 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9948 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9949 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9950 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9951 } 9952 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9953 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9954 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9955 } 9956 9957 if (Subtarget.hasPrefixInstrs()) { 9958 SDValue SplatInsertNode; 9959 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9960 return SplatInsertNode; 9961 } 9962 9963 if (Subtarget.hasP9Altivec()) { 9964 SDValue NewISDNode; 9965 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9966 return NewISDNode; 9967 9968 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9969 return NewISDNode; 9970 } 9971 9972 if (Subtarget.hasVSX() && 9973 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9974 if (Swap) 9975 std::swap(V1, V2); 9976 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9977 SDValue Conv2 = 9978 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9979 9980 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9981 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9982 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9983 } 9984 9985 if (Subtarget.hasVSX() && 9986 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9987 if (Swap) 9988 std::swap(V1, V2); 9989 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9990 SDValue Conv2 = 9991 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9992 9993 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9994 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9995 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9996 } 9997 9998 if (Subtarget.hasP9Vector()) { 9999 if (PPC::isXXBRHShuffleMask(SVOp)) { 10000 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10001 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10002 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10003 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10004 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10005 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10006 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10007 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10008 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10009 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10010 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10011 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10012 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10013 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10014 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10015 } 10016 } 10017 10018 if (Subtarget.hasVSX()) { 10019 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10020 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10021 10022 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10023 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10024 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10025 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10026 } 10027 10028 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10029 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10030 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10031 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10032 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10033 } 10034 } 10035 10036 // Cases that are handled by instructions that take permute immediates 10037 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10038 // selected by the instruction selector. 10039 if (V2.isUndef()) { 10040 if (PPC::isSplatShuffleMask(SVOp, 1) || 10041 PPC::isSplatShuffleMask(SVOp, 2) || 10042 PPC::isSplatShuffleMask(SVOp, 4) || 10043 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10044 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10045 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10046 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10047 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10048 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10049 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10050 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10051 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10052 (Subtarget.hasP8Altivec() && ( 10053 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10054 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10055 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10056 return Op; 10057 } 10058 } 10059 10060 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10061 // and produce a fixed permutation. If any of these match, do not lower to 10062 // VPERM. 10063 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10064 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10065 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10066 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10067 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10068 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10069 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10070 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10071 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10072 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10073 (Subtarget.hasP8Altivec() && ( 10074 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10075 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10076 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10077 return Op; 10078 10079 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10080 // perfect shuffle table to emit an optimal matching sequence. 10081 ArrayRef<int> PermMask = SVOp->getMask(); 10082 10083 if (!DisablePerfectShuffle && !isLittleEndian) { 10084 unsigned PFIndexes[4]; 10085 bool isFourElementShuffle = true; 10086 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10087 ++i) { // Element number 10088 unsigned EltNo = 8; // Start out undef. 10089 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10090 if (PermMask[i * 4 + j] < 0) 10091 continue; // Undef, ignore it. 10092 10093 unsigned ByteSource = PermMask[i * 4 + j]; 10094 if ((ByteSource & 3) != j) { 10095 isFourElementShuffle = false; 10096 break; 10097 } 10098 10099 if (EltNo == 8) { 10100 EltNo = ByteSource / 4; 10101 } else if (EltNo != ByteSource / 4) { 10102 isFourElementShuffle = false; 10103 break; 10104 } 10105 } 10106 PFIndexes[i] = EltNo; 10107 } 10108 10109 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10110 // perfect shuffle vector to determine if it is cost effective to do this as 10111 // discrete instructions, or whether we should use a vperm. 10112 // For now, we skip this for little endian until such time as we have a 10113 // little-endian perfect shuffle table. 10114 if (isFourElementShuffle) { 10115 // Compute the index in the perfect shuffle table. 10116 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10117 PFIndexes[2] * 9 + PFIndexes[3]; 10118 10119 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10120 unsigned Cost = (PFEntry >> 30); 10121 10122 // Determining when to avoid vperm is tricky. Many things affect the cost 10123 // of vperm, particularly how many times the perm mask needs to be 10124 // computed. For example, if the perm mask can be hoisted out of a loop or 10125 // is already used (perhaps because there are multiple permutes with the 10126 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10127 // permute mask out of the loop requires an extra register. 10128 // 10129 // As a compromise, we only emit discrete instructions if the shuffle can 10130 // be generated in 3 or fewer operations. When we have loop information 10131 // available, if this block is within a loop, we should avoid using vperm 10132 // for 3-operation perms and use a constant pool load instead. 10133 if (Cost < 3) 10134 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10135 } 10136 } 10137 10138 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10139 // vector that will get spilled to the constant pool. 10140 if (V2.isUndef()) V2 = V1; 10141 10142 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10143 // that it is in input element units, not in bytes. Convert now. 10144 10145 // For little endian, the order of the input vectors is reversed, and 10146 // the permutation mask is complemented with respect to 31. This is 10147 // necessary to produce proper semantics with the big-endian-biased vperm 10148 // instruction. 10149 EVT EltVT = V1.getValueType().getVectorElementType(); 10150 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10151 10152 SmallVector<SDValue, 16> ResultMask; 10153 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10154 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10155 10156 for (unsigned j = 0; j != BytesPerElement; ++j) 10157 if (isLittleEndian) 10158 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10159 dl, MVT::i32)); 10160 else 10161 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10162 MVT::i32)); 10163 } 10164 10165 ShufflesHandledWithVPERM++; 10166 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10167 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10168 LLVM_DEBUG(SVOp->dump()); 10169 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10170 LLVM_DEBUG(VPermMask.dump()); 10171 10172 if (isLittleEndian) 10173 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10174 V2, V1, VPermMask); 10175 else 10176 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10177 V1, V2, VPermMask); 10178 } 10179 10180 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10181 /// vector comparison. If it is, return true and fill in Opc/isDot with 10182 /// information about the intrinsic. 10183 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10184 bool &isDot, const PPCSubtarget &Subtarget) { 10185 unsigned IntrinsicID = 10186 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10187 CompareOpc = -1; 10188 isDot = false; 10189 switch (IntrinsicID) { 10190 default: 10191 return false; 10192 // Comparison predicates. 10193 case Intrinsic::ppc_altivec_vcmpbfp_p: 10194 CompareOpc = 966; 10195 isDot = true; 10196 break; 10197 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10198 CompareOpc = 198; 10199 isDot = true; 10200 break; 10201 case Intrinsic::ppc_altivec_vcmpequb_p: 10202 CompareOpc = 6; 10203 isDot = true; 10204 break; 10205 case Intrinsic::ppc_altivec_vcmpequh_p: 10206 CompareOpc = 70; 10207 isDot = true; 10208 break; 10209 case Intrinsic::ppc_altivec_vcmpequw_p: 10210 CompareOpc = 134; 10211 isDot = true; 10212 break; 10213 case Intrinsic::ppc_altivec_vcmpequd_p: 10214 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10215 CompareOpc = 199; 10216 isDot = true; 10217 } else 10218 return false; 10219 break; 10220 case Intrinsic::ppc_altivec_vcmpneb_p: 10221 case Intrinsic::ppc_altivec_vcmpneh_p: 10222 case Intrinsic::ppc_altivec_vcmpnew_p: 10223 case Intrinsic::ppc_altivec_vcmpnezb_p: 10224 case Intrinsic::ppc_altivec_vcmpnezh_p: 10225 case Intrinsic::ppc_altivec_vcmpnezw_p: 10226 if (Subtarget.hasP9Altivec()) { 10227 switch (IntrinsicID) { 10228 default: 10229 llvm_unreachable("Unknown comparison intrinsic."); 10230 case Intrinsic::ppc_altivec_vcmpneb_p: 10231 CompareOpc = 7; 10232 break; 10233 case Intrinsic::ppc_altivec_vcmpneh_p: 10234 CompareOpc = 71; 10235 break; 10236 case Intrinsic::ppc_altivec_vcmpnew_p: 10237 CompareOpc = 135; 10238 break; 10239 case Intrinsic::ppc_altivec_vcmpnezb_p: 10240 CompareOpc = 263; 10241 break; 10242 case Intrinsic::ppc_altivec_vcmpnezh_p: 10243 CompareOpc = 327; 10244 break; 10245 case Intrinsic::ppc_altivec_vcmpnezw_p: 10246 CompareOpc = 391; 10247 break; 10248 } 10249 isDot = true; 10250 } else 10251 return false; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpgefp_p: 10254 CompareOpc = 454; 10255 isDot = true; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10258 CompareOpc = 710; 10259 isDot = true; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10262 CompareOpc = 774; 10263 isDot = true; 10264 break; 10265 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10266 CompareOpc = 838; 10267 isDot = true; 10268 break; 10269 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10270 CompareOpc = 902; 10271 isDot = true; 10272 break; 10273 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10274 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10275 CompareOpc = 967; 10276 isDot = true; 10277 } else 10278 return false; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtub_p: 10281 CompareOpc = 518; 10282 isDot = true; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10285 CompareOpc = 582; 10286 isDot = true; 10287 break; 10288 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10289 CompareOpc = 646; 10290 isDot = true; 10291 break; 10292 case Intrinsic::ppc_altivec_vcmpgtud_p: 10293 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10294 CompareOpc = 711; 10295 isDot = true; 10296 } else 10297 return false; 10298 break; 10299 10300 case Intrinsic::ppc_altivec_vcmpequq: 10301 case Intrinsic::ppc_altivec_vcmpgtsq: 10302 case Intrinsic::ppc_altivec_vcmpgtuq: 10303 if (!Subtarget.isISA3_1()) 10304 return false; 10305 switch (IntrinsicID) { 10306 default: 10307 llvm_unreachable("Unknown comparison intrinsic."); 10308 case Intrinsic::ppc_altivec_vcmpequq: 10309 CompareOpc = 455; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpgtsq: 10312 CompareOpc = 903; 10313 break; 10314 case Intrinsic::ppc_altivec_vcmpgtuq: 10315 CompareOpc = 647; 10316 break; 10317 } 10318 break; 10319 10320 // VSX predicate comparisons use the same infrastructure 10321 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10322 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10323 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10324 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10325 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10326 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10327 if (Subtarget.hasVSX()) { 10328 switch (IntrinsicID) { 10329 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10330 CompareOpc = 99; 10331 break; 10332 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10333 CompareOpc = 115; 10334 break; 10335 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10336 CompareOpc = 107; 10337 break; 10338 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10339 CompareOpc = 67; 10340 break; 10341 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10342 CompareOpc = 83; 10343 break; 10344 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10345 CompareOpc = 75; 10346 break; 10347 } 10348 isDot = true; 10349 } else 10350 return false; 10351 break; 10352 10353 // Normal Comparisons. 10354 case Intrinsic::ppc_altivec_vcmpbfp: 10355 CompareOpc = 966; 10356 break; 10357 case Intrinsic::ppc_altivec_vcmpeqfp: 10358 CompareOpc = 198; 10359 break; 10360 case Intrinsic::ppc_altivec_vcmpequb: 10361 CompareOpc = 6; 10362 break; 10363 case Intrinsic::ppc_altivec_vcmpequh: 10364 CompareOpc = 70; 10365 break; 10366 case Intrinsic::ppc_altivec_vcmpequw: 10367 CompareOpc = 134; 10368 break; 10369 case Intrinsic::ppc_altivec_vcmpequd: 10370 if (Subtarget.hasP8Altivec()) 10371 CompareOpc = 199; 10372 else 10373 return false; 10374 break; 10375 case Intrinsic::ppc_altivec_vcmpneb: 10376 case Intrinsic::ppc_altivec_vcmpneh: 10377 case Intrinsic::ppc_altivec_vcmpnew: 10378 case Intrinsic::ppc_altivec_vcmpnezb: 10379 case Intrinsic::ppc_altivec_vcmpnezh: 10380 case Intrinsic::ppc_altivec_vcmpnezw: 10381 if (Subtarget.hasP9Altivec()) 10382 switch (IntrinsicID) { 10383 default: 10384 llvm_unreachable("Unknown comparison intrinsic."); 10385 case Intrinsic::ppc_altivec_vcmpneb: 10386 CompareOpc = 7; 10387 break; 10388 case Intrinsic::ppc_altivec_vcmpneh: 10389 CompareOpc = 71; 10390 break; 10391 case Intrinsic::ppc_altivec_vcmpnew: 10392 CompareOpc = 135; 10393 break; 10394 case Intrinsic::ppc_altivec_vcmpnezb: 10395 CompareOpc = 263; 10396 break; 10397 case Intrinsic::ppc_altivec_vcmpnezh: 10398 CompareOpc = 327; 10399 break; 10400 case Intrinsic::ppc_altivec_vcmpnezw: 10401 CompareOpc = 391; 10402 break; 10403 } 10404 else 10405 return false; 10406 break; 10407 case Intrinsic::ppc_altivec_vcmpgefp: 10408 CompareOpc = 454; 10409 break; 10410 case Intrinsic::ppc_altivec_vcmpgtfp: 10411 CompareOpc = 710; 10412 break; 10413 case Intrinsic::ppc_altivec_vcmpgtsb: 10414 CompareOpc = 774; 10415 break; 10416 case Intrinsic::ppc_altivec_vcmpgtsh: 10417 CompareOpc = 838; 10418 break; 10419 case Intrinsic::ppc_altivec_vcmpgtsw: 10420 CompareOpc = 902; 10421 break; 10422 case Intrinsic::ppc_altivec_vcmpgtsd: 10423 if (Subtarget.hasP8Altivec()) 10424 CompareOpc = 967; 10425 else 10426 return false; 10427 break; 10428 case Intrinsic::ppc_altivec_vcmpgtub: 10429 CompareOpc = 518; 10430 break; 10431 case Intrinsic::ppc_altivec_vcmpgtuh: 10432 CompareOpc = 582; 10433 break; 10434 case Intrinsic::ppc_altivec_vcmpgtuw: 10435 CompareOpc = 646; 10436 break; 10437 case Intrinsic::ppc_altivec_vcmpgtud: 10438 if (Subtarget.hasP8Altivec()) 10439 CompareOpc = 711; 10440 else 10441 return false; 10442 break; 10443 case Intrinsic::ppc_altivec_vcmpequq_p: 10444 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10445 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10446 if (!Subtarget.isISA3_1()) 10447 return false; 10448 switch (IntrinsicID) { 10449 default: 10450 llvm_unreachable("Unknown comparison intrinsic."); 10451 case Intrinsic::ppc_altivec_vcmpequq_p: 10452 CompareOpc = 455; 10453 break; 10454 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10455 CompareOpc = 903; 10456 break; 10457 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10458 CompareOpc = 647; 10459 break; 10460 } 10461 isDot = true; 10462 break; 10463 } 10464 return true; 10465 } 10466 10467 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10468 /// lower, do it, otherwise return null. 10469 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10470 SelectionDAG &DAG) const { 10471 unsigned IntrinsicID = 10472 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10473 10474 SDLoc dl(Op); 10475 10476 switch (IntrinsicID) { 10477 case Intrinsic::thread_pointer: 10478 // Reads the thread pointer register, used for __builtin_thread_pointer. 10479 if (Subtarget.isPPC64()) 10480 return DAG.getRegister(PPC::X13, MVT::i64); 10481 return DAG.getRegister(PPC::R2, MVT::i32); 10482 10483 case Intrinsic::ppc_mma_disassemble_acc: 10484 case Intrinsic::ppc_vsx_disassemble_pair: { 10485 int NumVecs = 2; 10486 SDValue WideVec = Op.getOperand(1); 10487 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10488 NumVecs = 4; 10489 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10490 } 10491 SmallVector<SDValue, 4> RetOps; 10492 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10493 SDValue Extract = DAG.getNode( 10494 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10495 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10496 : VecNo, 10497 dl, getPointerTy(DAG.getDataLayout()))); 10498 RetOps.push_back(Extract); 10499 } 10500 return DAG.getMergeValues(RetOps, dl); 10501 } 10502 10503 case Intrinsic::ppc_unpack_longdouble: { 10504 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10505 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10506 "Argument of long double unpack must be 0 or 1!"); 10507 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10508 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10509 Idx->getValueType(0))); 10510 } 10511 10512 case Intrinsic::ppc_compare_exp_lt: 10513 case Intrinsic::ppc_compare_exp_gt: 10514 case Intrinsic::ppc_compare_exp_eq: 10515 case Intrinsic::ppc_compare_exp_uo: { 10516 unsigned Pred; 10517 switch (IntrinsicID) { 10518 case Intrinsic::ppc_compare_exp_lt: 10519 Pred = PPC::PRED_LT; 10520 break; 10521 case Intrinsic::ppc_compare_exp_gt: 10522 Pred = PPC::PRED_GT; 10523 break; 10524 case Intrinsic::ppc_compare_exp_eq: 10525 Pred = PPC::PRED_EQ; 10526 break; 10527 case Intrinsic::ppc_compare_exp_uo: 10528 Pred = PPC::PRED_UN; 10529 break; 10530 } 10531 return SDValue( 10532 DAG.getMachineNode( 10533 PPC::SELECT_CC_I4, dl, MVT::i32, 10534 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10535 Op.getOperand(1), Op.getOperand(2)), 10536 0), 10537 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10538 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10539 0); 10540 } 10541 case Intrinsic::ppc_test_data_class_d: 10542 case Intrinsic::ppc_test_data_class_f: { 10543 unsigned CmprOpc = PPC::XSTSTDCDP; 10544 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10545 CmprOpc = PPC::XSTSTDCSP; 10546 return SDValue( 10547 DAG.getMachineNode( 10548 PPC::SELECT_CC_I4, dl, MVT::i32, 10549 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10550 Op.getOperand(1)), 10551 0), 10552 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10553 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10554 0); 10555 } 10556 case Intrinsic::ppc_fnmsub: { 10557 EVT VT = Op.getOperand(1).getValueType(); 10558 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10559 return DAG.getNode( 10560 ISD::FNEG, dl, VT, 10561 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10562 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10563 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10564 Op.getOperand(2), Op.getOperand(3)); 10565 } 10566 case Intrinsic::ppc_convert_f128_to_ppcf128: 10567 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10568 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10569 ? RTLIB::CONVERT_PPCF128_F128 10570 : RTLIB::CONVERT_F128_PPCF128; 10571 MakeLibCallOptions CallOptions; 10572 std::pair<SDValue, SDValue> Result = 10573 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10574 dl, SDValue()); 10575 return Result.first; 10576 } 10577 } 10578 10579 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10580 // opcode number of the comparison. 10581 int CompareOpc; 10582 bool isDot; 10583 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10584 return SDValue(); // Don't custom lower most intrinsics. 10585 10586 // If this is a non-dot comparison, make the VCMP node and we are done. 10587 if (!isDot) { 10588 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10589 Op.getOperand(1), Op.getOperand(2), 10590 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10591 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10592 } 10593 10594 // Create the PPCISD altivec 'dot' comparison node. 10595 SDValue Ops[] = { 10596 Op.getOperand(2), // LHS 10597 Op.getOperand(3), // RHS 10598 DAG.getConstant(CompareOpc, dl, MVT::i32) 10599 }; 10600 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10601 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10602 10603 // Now that we have the comparison, emit a copy from the CR to a GPR. 10604 // This is flagged to the above dot comparison. 10605 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10606 DAG.getRegister(PPC::CR6, MVT::i32), 10607 CompNode.getValue(1)); 10608 10609 // Unpack the result based on how the target uses it. 10610 unsigned BitNo; // Bit # of CR6. 10611 bool InvertBit; // Invert result? 10612 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10613 default: // Can't happen, don't crash on invalid number though. 10614 case 0: // Return the value of the EQ bit of CR6. 10615 BitNo = 0; InvertBit = false; 10616 break; 10617 case 1: // Return the inverted value of the EQ bit of CR6. 10618 BitNo = 0; InvertBit = true; 10619 break; 10620 case 2: // Return the value of the LT bit of CR6. 10621 BitNo = 2; InvertBit = false; 10622 break; 10623 case 3: // Return the inverted value of the LT bit of CR6. 10624 BitNo = 2; InvertBit = true; 10625 break; 10626 } 10627 10628 // Shift the bit into the low position. 10629 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10630 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10631 // Isolate the bit. 10632 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10633 DAG.getConstant(1, dl, MVT::i32)); 10634 10635 // If we are supposed to, toggle the bit. 10636 if (InvertBit) 10637 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10638 DAG.getConstant(1, dl, MVT::i32)); 10639 return Flags; 10640 } 10641 10642 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10643 SelectionDAG &DAG) const { 10644 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10645 // the beginning of the argument list. 10646 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10647 SDLoc DL(Op); 10648 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10649 case Intrinsic::ppc_cfence: { 10650 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10651 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10652 SDValue Val = Op.getOperand(ArgStart + 1); 10653 EVT Ty = Val.getValueType(); 10654 if (Ty == MVT::i128) { 10655 // FIXME: Testing one of two paired registers is sufficient to guarantee 10656 // ordering? 10657 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10658 } 10659 return SDValue( 10660 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10661 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10662 Op.getOperand(0)), 10663 0); 10664 } 10665 default: 10666 break; 10667 } 10668 return SDValue(); 10669 } 10670 10671 // Lower scalar BSWAP64 to xxbrd. 10672 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10673 SDLoc dl(Op); 10674 if (!Subtarget.isPPC64()) 10675 return Op; 10676 // MTVSRDD 10677 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10678 Op.getOperand(0)); 10679 // XXBRD 10680 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10681 // MFVSRD 10682 int VectorIndex = 0; 10683 if (Subtarget.isLittleEndian()) 10684 VectorIndex = 1; 10685 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10686 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10687 return Op; 10688 } 10689 10690 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10691 // compared to a value that is atomically loaded (atomic loads zero-extend). 10692 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10693 SelectionDAG &DAG) const { 10694 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10695 "Expecting an atomic compare-and-swap here."); 10696 SDLoc dl(Op); 10697 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10698 EVT MemVT = AtomicNode->getMemoryVT(); 10699 if (MemVT.getSizeInBits() >= 32) 10700 return Op; 10701 10702 SDValue CmpOp = Op.getOperand(2); 10703 // If this is already correctly zero-extended, leave it alone. 10704 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10705 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10706 return Op; 10707 10708 // Clear the high bits of the compare operand. 10709 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10710 SDValue NewCmpOp = 10711 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10712 DAG.getConstant(MaskVal, dl, MVT::i32)); 10713 10714 // Replace the existing compare operand with the properly zero-extended one. 10715 SmallVector<SDValue, 4> Ops; 10716 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10717 Ops.push_back(AtomicNode->getOperand(i)); 10718 Ops[2] = NewCmpOp; 10719 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10720 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10721 auto NodeTy = 10722 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10723 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10724 } 10725 10726 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10727 SelectionDAG &DAG) const { 10728 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10729 EVT MemVT = N->getMemoryVT(); 10730 assert(MemVT.getSimpleVT() == MVT::i128 && 10731 "Expect quadword atomic operations"); 10732 SDLoc dl(N); 10733 unsigned Opc = N->getOpcode(); 10734 switch (Opc) { 10735 case ISD::ATOMIC_LOAD: { 10736 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10737 // lowered to ppc instructions by pattern matching instruction selector. 10738 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10739 SmallVector<SDValue, 4> Ops{ 10740 N->getOperand(0), 10741 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10742 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10743 Ops.push_back(N->getOperand(I)); 10744 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10745 Ops, MemVT, N->getMemOperand()); 10746 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10747 SDValue ValHi = 10748 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10749 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10750 DAG.getConstant(64, dl, MVT::i32)); 10751 SDValue Val = 10752 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10753 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10754 {Val, LoadedVal.getValue(2)}); 10755 } 10756 case ISD::ATOMIC_STORE: { 10757 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10758 // lowered to ppc instructions by pattern matching instruction selector. 10759 SDVTList Tys = DAG.getVTList(MVT::Other); 10760 SmallVector<SDValue, 4> Ops{ 10761 N->getOperand(0), 10762 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10763 SDValue Val = N->getOperand(2); 10764 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10765 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10766 DAG.getConstant(64, dl, MVT::i32)); 10767 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10768 Ops.push_back(ValLo); 10769 Ops.push_back(ValHi); 10770 Ops.push_back(N->getOperand(1)); 10771 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10772 N->getMemOperand()); 10773 } 10774 default: 10775 llvm_unreachable("Unexpected atomic opcode"); 10776 } 10777 } 10778 10779 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10780 SelectionDAG &DAG) const { 10781 SDLoc dl(Op); 10782 // Create a stack slot that is 16-byte aligned. 10783 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10784 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10785 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10786 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10787 10788 // Store the input value into Value#0 of the stack slot. 10789 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10790 MachinePointerInfo()); 10791 // Load it out. 10792 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10793 } 10794 10795 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10796 SelectionDAG &DAG) const { 10797 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10798 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10799 10800 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10801 10802 EVT VT = Op.getValueType(); 10803 SDLoc dl(Op); 10804 SDValue V1 = Op.getOperand(0); 10805 SDValue V2 = Op.getOperand(1); 10806 10807 if (VT == MVT::v2f64 && C) 10808 return Op; 10809 10810 if (Subtarget.hasP9Vector()) { 10811 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10812 // because on P10, it allows this specific insert_vector_elt load pattern to 10813 // utilize the refactored load and store infrastructure in order to exploit 10814 // prefixed loads. 10815 // On targets with inexpensive direct moves (Power9 and up), a 10816 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10817 // load since a single precision load will involve conversion to double 10818 // precision on the load followed by another conversion to single precision. 10819 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10820 (isa<LoadSDNode>(V2))) { 10821 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10822 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10823 SDValue InsVecElt = 10824 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10825 BitcastLoad, Op.getOperand(2)); 10826 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10827 } 10828 } 10829 10830 if (Subtarget.isISA3_1()) { 10831 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10832 return SDValue(); 10833 // On P10, we have legal lowering for constant and variable indices for 10834 // all vectors. 10835 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10836 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10837 return Op; 10838 } 10839 10840 // Before P10, we have legal lowering for constant indices but not for 10841 // variable ones. 10842 if (!C) 10843 return SDValue(); 10844 10845 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10846 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10847 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10848 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10849 unsigned InsertAtElement = C->getZExtValue(); 10850 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10851 if (Subtarget.isLittleEndian()) { 10852 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10853 } 10854 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10855 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10856 } 10857 return Op; 10858 } 10859 10860 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10861 SelectionDAG &DAG) const { 10862 SDLoc dl(Op); 10863 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10864 SDValue LoadChain = LN->getChain(); 10865 SDValue BasePtr = LN->getBasePtr(); 10866 EVT VT = Op.getValueType(); 10867 10868 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10869 return Op; 10870 10871 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10872 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10873 // 2 or 4 vsx registers. 10874 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10875 "Type unsupported without MMA"); 10876 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10877 "Type unsupported without paired vector support"); 10878 Align Alignment = LN->getAlign(); 10879 SmallVector<SDValue, 4> Loads; 10880 SmallVector<SDValue, 4> LoadChains; 10881 unsigned NumVecs = VT.getSizeInBits() / 128; 10882 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10883 SDValue Load = 10884 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10885 LN->getPointerInfo().getWithOffset(Idx * 16), 10886 commonAlignment(Alignment, Idx * 16), 10887 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10888 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10889 DAG.getConstant(16, dl, BasePtr.getValueType())); 10890 Loads.push_back(Load); 10891 LoadChains.push_back(Load.getValue(1)); 10892 } 10893 if (Subtarget.isLittleEndian()) { 10894 std::reverse(Loads.begin(), Loads.end()); 10895 std::reverse(LoadChains.begin(), LoadChains.end()); 10896 } 10897 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10898 SDValue Value = 10899 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10900 dl, VT, Loads); 10901 SDValue RetOps[] = {Value, TF}; 10902 return DAG.getMergeValues(RetOps, dl); 10903 } 10904 10905 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10906 SelectionDAG &DAG) const { 10907 SDLoc dl(Op); 10908 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10909 SDValue StoreChain = SN->getChain(); 10910 SDValue BasePtr = SN->getBasePtr(); 10911 SDValue Value = SN->getValue(); 10912 EVT StoreVT = Value.getValueType(); 10913 10914 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10915 return Op; 10916 10917 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10918 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10919 // underlying registers individually. 10920 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10921 "Type unsupported without MMA"); 10922 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10923 "Type unsupported without paired vector support"); 10924 Align Alignment = SN->getAlign(); 10925 SmallVector<SDValue, 4> Stores; 10926 unsigned NumVecs = 2; 10927 if (StoreVT == MVT::v512i1) { 10928 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10929 NumVecs = 4; 10930 } 10931 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10932 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10933 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10934 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10935 SDValue Store = 10936 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10937 SN->getPointerInfo().getWithOffset(Idx * 16), 10938 commonAlignment(Alignment, Idx * 16), 10939 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10940 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10941 DAG.getConstant(16, dl, BasePtr.getValueType())); 10942 Stores.push_back(Store); 10943 } 10944 SDValue TF = DAG.getTokenFactor(dl, Stores); 10945 return TF; 10946 } 10947 10948 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10949 SDLoc dl(Op); 10950 if (Op.getValueType() == MVT::v4i32) { 10951 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10952 10953 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10954 // +16 as shift amt. 10955 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10956 SDValue RHSSwap = // = vrlw RHS, 16 10957 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10958 10959 // Shrinkify inputs to v8i16. 10960 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10961 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10962 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10963 10964 // Low parts multiplied together, generating 32-bit results (we ignore the 10965 // top parts). 10966 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10967 LHS, RHS, DAG, dl, MVT::v4i32); 10968 10969 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10970 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10971 // Shift the high parts up 16 bits. 10972 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10973 Neg16, DAG, dl); 10974 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10975 } else if (Op.getValueType() == MVT::v16i8) { 10976 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10977 bool isLittleEndian = Subtarget.isLittleEndian(); 10978 10979 // Multiply the even 8-bit parts, producing 16-bit sums. 10980 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10981 LHS, RHS, DAG, dl, MVT::v8i16); 10982 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10983 10984 // Multiply the odd 8-bit parts, producing 16-bit sums. 10985 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10986 LHS, RHS, DAG, dl, MVT::v8i16); 10987 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10988 10989 // Merge the results together. Because vmuleub and vmuloub are 10990 // instructions with a big-endian bias, we must reverse the 10991 // element numbering and reverse the meaning of "odd" and "even" 10992 // when generating little endian code. 10993 int Ops[16]; 10994 for (unsigned i = 0; i != 8; ++i) { 10995 if (isLittleEndian) { 10996 Ops[i*2 ] = 2*i; 10997 Ops[i*2+1] = 2*i+16; 10998 } else { 10999 Ops[i*2 ] = 2*i+1; 11000 Ops[i*2+1] = 2*i+1+16; 11001 } 11002 } 11003 if (isLittleEndian) 11004 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11005 else 11006 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11007 } else { 11008 llvm_unreachable("Unknown mul to lower!"); 11009 } 11010 } 11011 11012 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11013 bool IsStrict = Op->isStrictFPOpcode(); 11014 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11015 !Subtarget.hasP9Vector()) 11016 return SDValue(); 11017 11018 return Op; 11019 } 11020 11021 // Custom lowering for fpext vf32 to v2f64 11022 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11023 11024 assert(Op.getOpcode() == ISD::FP_EXTEND && 11025 "Should only be called for ISD::FP_EXTEND"); 11026 11027 // FIXME: handle extends from half precision float vectors on P9. 11028 // We only want to custom lower an extend from v2f32 to v2f64. 11029 if (Op.getValueType() != MVT::v2f64 || 11030 Op.getOperand(0).getValueType() != MVT::v2f32) 11031 return SDValue(); 11032 11033 SDLoc dl(Op); 11034 SDValue Op0 = Op.getOperand(0); 11035 11036 switch (Op0.getOpcode()) { 11037 default: 11038 return SDValue(); 11039 case ISD::EXTRACT_SUBVECTOR: { 11040 assert(Op0.getNumOperands() == 2 && 11041 isa<ConstantSDNode>(Op0->getOperand(1)) && 11042 "Node should have 2 operands with second one being a constant!"); 11043 11044 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11045 return SDValue(); 11046 11047 // Custom lower is only done for high or low doubleword. 11048 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11049 if (Idx % 2 != 0) 11050 return SDValue(); 11051 11052 // Since input is v4f32, at this point Idx is either 0 or 2. 11053 // Shift to get the doubleword position we want. 11054 int DWord = Idx >> 1; 11055 11056 // High and low word positions are different on little endian. 11057 if (Subtarget.isLittleEndian()) 11058 DWord ^= 0x1; 11059 11060 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11061 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11062 } 11063 case ISD::FADD: 11064 case ISD::FMUL: 11065 case ISD::FSUB: { 11066 SDValue NewLoad[2]; 11067 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11068 // Ensure both input are loads. 11069 SDValue LdOp = Op0.getOperand(i); 11070 if (LdOp.getOpcode() != ISD::LOAD) 11071 return SDValue(); 11072 // Generate new load node. 11073 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11074 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11075 NewLoad[i] = DAG.getMemIntrinsicNode( 11076 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11077 LD->getMemoryVT(), LD->getMemOperand()); 11078 } 11079 SDValue NewOp = 11080 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11081 NewLoad[1], Op0.getNode()->getFlags()); 11082 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11083 DAG.getConstant(0, dl, MVT::i32)); 11084 } 11085 case ISD::LOAD: { 11086 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11087 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11088 SDValue NewLd = DAG.getMemIntrinsicNode( 11089 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11090 LD->getMemoryVT(), LD->getMemOperand()); 11091 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11092 DAG.getConstant(0, dl, MVT::i32)); 11093 } 11094 } 11095 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11096 } 11097 11098 /// LowerOperation - Provide custom lowering hooks for some operations. 11099 /// 11100 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11101 switch (Op.getOpcode()) { 11102 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11103 case ISD::FPOW: return lowerPow(Op, DAG); 11104 case ISD::FSIN: return lowerSin(Op, DAG); 11105 case ISD::FCOS: return lowerCos(Op, DAG); 11106 case ISD::FLOG: return lowerLog(Op, DAG); 11107 case ISD::FLOG10: return lowerLog10(Op, DAG); 11108 case ISD::FEXP: return lowerExp(Op, DAG); 11109 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11110 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11111 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11112 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11113 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11114 case ISD::STRICT_FSETCC: 11115 case ISD::STRICT_FSETCCS: 11116 case ISD::SETCC: return LowerSETCC(Op, DAG); 11117 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11118 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11119 11120 case ISD::INLINEASM: 11121 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11122 // Variable argument lowering. 11123 case ISD::VASTART: return LowerVASTART(Op, DAG); 11124 case ISD::VAARG: return LowerVAARG(Op, DAG); 11125 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11126 11127 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11128 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11129 case ISD::GET_DYNAMIC_AREA_OFFSET: 11130 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11131 11132 // Exception handling lowering. 11133 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11134 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11135 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11136 11137 case ISD::LOAD: return LowerLOAD(Op, DAG); 11138 case ISD::STORE: return LowerSTORE(Op, DAG); 11139 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11140 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11141 case ISD::STRICT_FP_TO_UINT: 11142 case ISD::STRICT_FP_TO_SINT: 11143 case ISD::FP_TO_UINT: 11144 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11145 case ISD::STRICT_UINT_TO_FP: 11146 case ISD::STRICT_SINT_TO_FP: 11147 case ISD::UINT_TO_FP: 11148 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11149 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11150 11151 // Lower 64-bit shifts. 11152 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11153 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11154 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11155 11156 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11157 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11158 11159 // Vector-related lowering. 11160 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11161 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11162 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11163 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11164 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11165 case ISD::MUL: return LowerMUL(Op, DAG); 11166 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11167 case ISD::STRICT_FP_ROUND: 11168 case ISD::FP_ROUND: 11169 return LowerFP_ROUND(Op, DAG); 11170 case ISD::ROTL: return LowerROTL(Op, DAG); 11171 11172 // For counter-based loop handling. 11173 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11174 11175 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11176 11177 // Frame & Return address. 11178 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11179 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11180 11181 case ISD::INTRINSIC_VOID: 11182 return LowerINTRINSIC_VOID(Op, DAG); 11183 case ISD::BSWAP: 11184 return LowerBSWAP(Op, DAG); 11185 case ISD::ATOMIC_CMP_SWAP: 11186 return LowerATOMIC_CMP_SWAP(Op, DAG); 11187 case ISD::ATOMIC_STORE: 11188 return LowerATOMIC_LOAD_STORE(Op, DAG); 11189 } 11190 } 11191 11192 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11193 SmallVectorImpl<SDValue>&Results, 11194 SelectionDAG &DAG) const { 11195 SDLoc dl(N); 11196 switch (N->getOpcode()) { 11197 default: 11198 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11199 case ISD::ATOMIC_LOAD: { 11200 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11201 Results.push_back(Res); 11202 Results.push_back(Res.getValue(1)); 11203 break; 11204 } 11205 case ISD::READCYCLECOUNTER: { 11206 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11207 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11208 11209 Results.push_back( 11210 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11211 Results.push_back(RTB.getValue(2)); 11212 break; 11213 } 11214 case ISD::INTRINSIC_W_CHAIN: { 11215 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11216 Intrinsic::loop_decrement) 11217 break; 11218 11219 assert(N->getValueType(0) == MVT::i1 && 11220 "Unexpected result type for CTR decrement intrinsic"); 11221 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11222 N->getValueType(0)); 11223 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11224 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11225 N->getOperand(1)); 11226 11227 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11228 Results.push_back(NewInt.getValue(1)); 11229 break; 11230 } 11231 case ISD::INTRINSIC_WO_CHAIN: { 11232 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11233 case Intrinsic::ppc_pack_longdouble: 11234 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11235 N->getOperand(2), N->getOperand(1))); 11236 break; 11237 case Intrinsic::ppc_fnmsub: 11238 case Intrinsic::ppc_convert_f128_to_ppcf128: 11239 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11240 break; 11241 } 11242 break; 11243 } 11244 case ISD::VAARG: { 11245 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11246 return; 11247 11248 EVT VT = N->getValueType(0); 11249 11250 if (VT == MVT::i64) { 11251 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11252 11253 Results.push_back(NewNode); 11254 Results.push_back(NewNode.getValue(1)); 11255 } 11256 return; 11257 } 11258 case ISD::STRICT_FP_TO_SINT: 11259 case ISD::STRICT_FP_TO_UINT: 11260 case ISD::FP_TO_SINT: 11261 case ISD::FP_TO_UINT: { 11262 // LowerFP_TO_INT() can only handle f32 and f64. 11263 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11264 MVT::ppcf128) 11265 return; 11266 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11267 Results.push_back(LoweredValue); 11268 if (N->isStrictFPOpcode()) 11269 Results.push_back(LoweredValue.getValue(1)); 11270 return; 11271 } 11272 case ISD::TRUNCATE: { 11273 if (!N->getValueType(0).isVector()) 11274 return; 11275 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11276 if (Lowered) 11277 Results.push_back(Lowered); 11278 return; 11279 } 11280 case ISD::FSHL: 11281 case ISD::FSHR: 11282 // Don't handle funnel shifts here. 11283 return; 11284 case ISD::BITCAST: 11285 // Don't handle bitcast here. 11286 return; 11287 case ISD::FP_EXTEND: 11288 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11289 if (Lowered) 11290 Results.push_back(Lowered); 11291 return; 11292 } 11293 } 11294 11295 //===----------------------------------------------------------------------===// 11296 // Other Lowering Code 11297 //===----------------------------------------------------------------------===// 11298 11299 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11300 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11301 Function *Func = Intrinsic::getDeclaration(M, Id); 11302 return Builder.CreateCall(Func, {}); 11303 } 11304 11305 // The mappings for emitLeading/TrailingFence is taken from 11306 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11307 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11308 Instruction *Inst, 11309 AtomicOrdering Ord) const { 11310 if (Ord == AtomicOrdering::SequentiallyConsistent) 11311 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11312 if (isReleaseOrStronger(Ord)) 11313 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11314 return nullptr; 11315 } 11316 11317 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11318 Instruction *Inst, 11319 AtomicOrdering Ord) const { 11320 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11321 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11322 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11323 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11324 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11325 return Builder.CreateCall( 11326 Intrinsic::getDeclaration( 11327 Builder.GetInsertBlock()->getParent()->getParent(), 11328 Intrinsic::ppc_cfence, {Inst->getType()}), 11329 {Inst}); 11330 // FIXME: Can use isync for rmw operation. 11331 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11332 } 11333 return nullptr; 11334 } 11335 11336 MachineBasicBlock * 11337 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11338 unsigned AtomicSize, 11339 unsigned BinOpcode, 11340 unsigned CmpOpcode, 11341 unsigned CmpPred) const { 11342 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11343 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11344 11345 auto LoadMnemonic = PPC::LDARX; 11346 auto StoreMnemonic = PPC::STDCX; 11347 switch (AtomicSize) { 11348 default: 11349 llvm_unreachable("Unexpected size of atomic entity"); 11350 case 1: 11351 LoadMnemonic = PPC::LBARX; 11352 StoreMnemonic = PPC::STBCX; 11353 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11354 break; 11355 case 2: 11356 LoadMnemonic = PPC::LHARX; 11357 StoreMnemonic = PPC::STHCX; 11358 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11359 break; 11360 case 4: 11361 LoadMnemonic = PPC::LWARX; 11362 StoreMnemonic = PPC::STWCX; 11363 break; 11364 case 8: 11365 LoadMnemonic = PPC::LDARX; 11366 StoreMnemonic = PPC::STDCX; 11367 break; 11368 } 11369 11370 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11371 MachineFunction *F = BB->getParent(); 11372 MachineFunction::iterator It = ++BB->getIterator(); 11373 11374 Register dest = MI.getOperand(0).getReg(); 11375 Register ptrA = MI.getOperand(1).getReg(); 11376 Register ptrB = MI.getOperand(2).getReg(); 11377 Register incr = MI.getOperand(3).getReg(); 11378 DebugLoc dl = MI.getDebugLoc(); 11379 11380 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11381 MachineBasicBlock *loop2MBB = 11382 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11383 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11384 F->insert(It, loopMBB); 11385 if (CmpOpcode) 11386 F->insert(It, loop2MBB); 11387 F->insert(It, exitMBB); 11388 exitMBB->splice(exitMBB->begin(), BB, 11389 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11390 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11391 11392 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11393 Register TmpReg = (!BinOpcode) ? incr : 11394 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11395 : &PPC::GPRCRegClass); 11396 11397 // thisMBB: 11398 // ... 11399 // fallthrough --> loopMBB 11400 BB->addSuccessor(loopMBB); 11401 11402 // loopMBB: 11403 // l[wd]arx dest, ptr 11404 // add r0, dest, incr 11405 // st[wd]cx. r0, ptr 11406 // bne- loopMBB 11407 // fallthrough --> exitMBB 11408 11409 // For max/min... 11410 // loopMBB: 11411 // l[wd]arx dest, ptr 11412 // cmpl?[wd] incr, dest 11413 // bgt exitMBB 11414 // loop2MBB: 11415 // st[wd]cx. dest, ptr 11416 // bne- loopMBB 11417 // fallthrough --> exitMBB 11418 11419 BB = loopMBB; 11420 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11421 .addReg(ptrA).addReg(ptrB); 11422 if (BinOpcode) 11423 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11424 if (CmpOpcode) { 11425 // Signed comparisons of byte or halfword values must be sign-extended. 11426 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11427 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11428 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11429 ExtReg).addReg(dest); 11430 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11431 .addReg(incr).addReg(ExtReg); 11432 } else 11433 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11434 .addReg(incr).addReg(dest); 11435 11436 BuildMI(BB, dl, TII->get(PPC::BCC)) 11437 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11438 BB->addSuccessor(loop2MBB); 11439 BB->addSuccessor(exitMBB); 11440 BB = loop2MBB; 11441 } 11442 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11443 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11444 BuildMI(BB, dl, TII->get(PPC::BCC)) 11445 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11446 BB->addSuccessor(loopMBB); 11447 BB->addSuccessor(exitMBB); 11448 11449 // exitMBB: 11450 // ... 11451 BB = exitMBB; 11452 return BB; 11453 } 11454 11455 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11456 switch(MI.getOpcode()) { 11457 default: 11458 return false; 11459 case PPC::COPY: 11460 return TII->isSignExtended(MI); 11461 case PPC::LHA: 11462 case PPC::LHA8: 11463 case PPC::LHAU: 11464 case PPC::LHAU8: 11465 case PPC::LHAUX: 11466 case PPC::LHAUX8: 11467 case PPC::LHAX: 11468 case PPC::LHAX8: 11469 case PPC::LWA: 11470 case PPC::LWAUX: 11471 case PPC::LWAX: 11472 case PPC::LWAX_32: 11473 case PPC::LWA_32: 11474 case PPC::PLHA: 11475 case PPC::PLHA8: 11476 case PPC::PLHA8pc: 11477 case PPC::PLHApc: 11478 case PPC::PLWA: 11479 case PPC::PLWA8: 11480 case PPC::PLWA8pc: 11481 case PPC::PLWApc: 11482 case PPC::EXTSB: 11483 case PPC::EXTSB8: 11484 case PPC::EXTSB8_32_64: 11485 case PPC::EXTSB8_rec: 11486 case PPC::EXTSB_rec: 11487 case PPC::EXTSH: 11488 case PPC::EXTSH8: 11489 case PPC::EXTSH8_32_64: 11490 case PPC::EXTSH8_rec: 11491 case PPC::EXTSH_rec: 11492 case PPC::EXTSW: 11493 case PPC::EXTSWSLI: 11494 case PPC::EXTSWSLI_32_64: 11495 case PPC::EXTSWSLI_32_64_rec: 11496 case PPC::EXTSWSLI_rec: 11497 case PPC::EXTSW_32: 11498 case PPC::EXTSW_32_64: 11499 case PPC::EXTSW_32_64_rec: 11500 case PPC::EXTSW_rec: 11501 case PPC::SRAW: 11502 case PPC::SRAWI: 11503 case PPC::SRAWI_rec: 11504 case PPC::SRAW_rec: 11505 return true; 11506 } 11507 return false; 11508 } 11509 11510 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11511 MachineInstr &MI, MachineBasicBlock *BB, 11512 bool is8bit, // operation 11513 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11514 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11515 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11516 11517 // If this is a signed comparison and the value being compared is not known 11518 // to be sign extended, sign extend it here. 11519 DebugLoc dl = MI.getDebugLoc(); 11520 MachineFunction *F = BB->getParent(); 11521 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11522 Register incr = MI.getOperand(3).getReg(); 11523 bool IsSignExtended = Register::isVirtualRegister(incr) && 11524 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11525 11526 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11527 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11528 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11529 .addReg(MI.getOperand(3).getReg()); 11530 MI.getOperand(3).setReg(ValueReg); 11531 } 11532 // If we support part-word atomic mnemonics, just use them 11533 if (Subtarget.hasPartwordAtomics()) 11534 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11535 CmpPred); 11536 11537 // In 64 bit mode we have to use 64 bits for addresses, even though the 11538 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11539 // registers without caring whether they're 32 or 64, but here we're 11540 // doing actual arithmetic on the addresses. 11541 bool is64bit = Subtarget.isPPC64(); 11542 bool isLittleEndian = Subtarget.isLittleEndian(); 11543 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11544 11545 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11546 MachineFunction::iterator It = ++BB->getIterator(); 11547 11548 Register dest = MI.getOperand(0).getReg(); 11549 Register ptrA = MI.getOperand(1).getReg(); 11550 Register ptrB = MI.getOperand(2).getReg(); 11551 11552 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11553 MachineBasicBlock *loop2MBB = 11554 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11555 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11556 F->insert(It, loopMBB); 11557 if (CmpOpcode) 11558 F->insert(It, loop2MBB); 11559 F->insert(It, exitMBB); 11560 exitMBB->splice(exitMBB->begin(), BB, 11561 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11562 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11563 11564 const TargetRegisterClass *RC = 11565 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11566 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11567 11568 Register PtrReg = RegInfo.createVirtualRegister(RC); 11569 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11570 Register ShiftReg = 11571 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11572 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11573 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11574 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11575 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11576 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11577 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11578 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11579 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11580 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11581 Register Ptr1Reg; 11582 Register TmpReg = 11583 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11584 11585 // thisMBB: 11586 // ... 11587 // fallthrough --> loopMBB 11588 BB->addSuccessor(loopMBB); 11589 11590 // The 4-byte load must be aligned, while a char or short may be 11591 // anywhere in the word. Hence all this nasty bookkeeping code. 11592 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11593 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11594 // xori shift, shift1, 24 [16] 11595 // rlwinm ptr, ptr1, 0, 0, 29 11596 // slw incr2, incr, shift 11597 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11598 // slw mask, mask2, shift 11599 // loopMBB: 11600 // lwarx tmpDest, ptr 11601 // add tmp, tmpDest, incr2 11602 // andc tmp2, tmpDest, mask 11603 // and tmp3, tmp, mask 11604 // or tmp4, tmp3, tmp2 11605 // stwcx. tmp4, ptr 11606 // bne- loopMBB 11607 // fallthrough --> exitMBB 11608 // srw SrwDest, tmpDest, shift 11609 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11610 if (ptrA != ZeroReg) { 11611 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11612 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11613 .addReg(ptrA) 11614 .addReg(ptrB); 11615 } else { 11616 Ptr1Reg = ptrB; 11617 } 11618 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11619 // mode. 11620 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11621 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11622 .addImm(3) 11623 .addImm(27) 11624 .addImm(is8bit ? 28 : 27); 11625 if (!isLittleEndian) 11626 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11627 .addReg(Shift1Reg) 11628 .addImm(is8bit ? 24 : 16); 11629 if (is64bit) 11630 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11631 .addReg(Ptr1Reg) 11632 .addImm(0) 11633 .addImm(61); 11634 else 11635 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11636 .addReg(Ptr1Reg) 11637 .addImm(0) 11638 .addImm(0) 11639 .addImm(29); 11640 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11641 if (is8bit) 11642 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11643 else { 11644 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11645 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11646 .addReg(Mask3Reg) 11647 .addImm(65535); 11648 } 11649 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11650 .addReg(Mask2Reg) 11651 .addReg(ShiftReg); 11652 11653 BB = loopMBB; 11654 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11655 .addReg(ZeroReg) 11656 .addReg(PtrReg); 11657 if (BinOpcode) 11658 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11659 .addReg(Incr2Reg) 11660 .addReg(TmpDestReg); 11661 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11662 .addReg(TmpDestReg) 11663 .addReg(MaskReg); 11664 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11665 if (CmpOpcode) { 11666 // For unsigned comparisons, we can directly compare the shifted values. 11667 // For signed comparisons we shift and sign extend. 11668 Register SReg = RegInfo.createVirtualRegister(GPRC); 11669 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11670 .addReg(TmpDestReg) 11671 .addReg(MaskReg); 11672 unsigned ValueReg = SReg; 11673 unsigned CmpReg = Incr2Reg; 11674 if (CmpOpcode == PPC::CMPW) { 11675 ValueReg = RegInfo.createVirtualRegister(GPRC); 11676 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11677 .addReg(SReg) 11678 .addReg(ShiftReg); 11679 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11680 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11681 .addReg(ValueReg); 11682 ValueReg = ValueSReg; 11683 CmpReg = incr; 11684 } 11685 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11686 .addReg(CmpReg) 11687 .addReg(ValueReg); 11688 BuildMI(BB, dl, TII->get(PPC::BCC)) 11689 .addImm(CmpPred) 11690 .addReg(PPC::CR0) 11691 .addMBB(exitMBB); 11692 BB->addSuccessor(loop2MBB); 11693 BB->addSuccessor(exitMBB); 11694 BB = loop2MBB; 11695 } 11696 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11697 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11698 .addReg(Tmp4Reg) 11699 .addReg(ZeroReg) 11700 .addReg(PtrReg); 11701 BuildMI(BB, dl, TII->get(PPC::BCC)) 11702 .addImm(PPC::PRED_NE) 11703 .addReg(PPC::CR0) 11704 .addMBB(loopMBB); 11705 BB->addSuccessor(loopMBB); 11706 BB->addSuccessor(exitMBB); 11707 11708 // exitMBB: 11709 // ... 11710 BB = exitMBB; 11711 // Since the shift amount is not a constant, we need to clear 11712 // the upper bits with a separate RLWINM. 11713 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11714 .addReg(SrwDestReg) 11715 .addImm(0) 11716 .addImm(is8bit ? 24 : 16) 11717 .addImm(31); 11718 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11719 .addReg(TmpDestReg) 11720 .addReg(ShiftReg); 11721 return BB; 11722 } 11723 11724 llvm::MachineBasicBlock * 11725 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11726 MachineBasicBlock *MBB) const { 11727 DebugLoc DL = MI.getDebugLoc(); 11728 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11729 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11730 11731 MachineFunction *MF = MBB->getParent(); 11732 MachineRegisterInfo &MRI = MF->getRegInfo(); 11733 11734 const BasicBlock *BB = MBB->getBasicBlock(); 11735 MachineFunction::iterator I = ++MBB->getIterator(); 11736 11737 Register DstReg = MI.getOperand(0).getReg(); 11738 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11739 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11740 Register mainDstReg = MRI.createVirtualRegister(RC); 11741 Register restoreDstReg = MRI.createVirtualRegister(RC); 11742 11743 MVT PVT = getPointerTy(MF->getDataLayout()); 11744 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11745 "Invalid Pointer Size!"); 11746 // For v = setjmp(buf), we generate 11747 // 11748 // thisMBB: 11749 // SjLjSetup mainMBB 11750 // bl mainMBB 11751 // v_restore = 1 11752 // b sinkMBB 11753 // 11754 // mainMBB: 11755 // buf[LabelOffset] = LR 11756 // v_main = 0 11757 // 11758 // sinkMBB: 11759 // v = phi(main, restore) 11760 // 11761 11762 MachineBasicBlock *thisMBB = MBB; 11763 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11764 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11765 MF->insert(I, mainMBB); 11766 MF->insert(I, sinkMBB); 11767 11768 MachineInstrBuilder MIB; 11769 11770 // Transfer the remainder of BB and its successor edges to sinkMBB. 11771 sinkMBB->splice(sinkMBB->begin(), MBB, 11772 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11773 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11774 11775 // Note that the structure of the jmp_buf used here is not compatible 11776 // with that used by libc, and is not designed to be. Specifically, it 11777 // stores only those 'reserved' registers that LLVM does not otherwise 11778 // understand how to spill. Also, by convention, by the time this 11779 // intrinsic is called, Clang has already stored the frame address in the 11780 // first slot of the buffer and stack address in the third. Following the 11781 // X86 target code, we'll store the jump address in the second slot. We also 11782 // need to save the TOC pointer (R2) to handle jumps between shared 11783 // libraries, and that will be stored in the fourth slot. The thread 11784 // identifier (R13) is not affected. 11785 11786 // thisMBB: 11787 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11788 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11789 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11790 11791 // Prepare IP either in reg. 11792 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11793 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11794 Register BufReg = MI.getOperand(1).getReg(); 11795 11796 if (Subtarget.is64BitELFABI()) { 11797 setUsesTOCBasePtr(*MBB->getParent()); 11798 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11799 .addReg(PPC::X2) 11800 .addImm(TOCOffset) 11801 .addReg(BufReg) 11802 .cloneMemRefs(MI); 11803 } 11804 11805 // Naked functions never have a base pointer, and so we use r1. For all 11806 // other functions, this decision must be delayed until during PEI. 11807 unsigned BaseReg; 11808 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11809 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11810 else 11811 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11812 11813 MIB = BuildMI(*thisMBB, MI, DL, 11814 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11815 .addReg(BaseReg) 11816 .addImm(BPOffset) 11817 .addReg(BufReg) 11818 .cloneMemRefs(MI); 11819 11820 // Setup 11821 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11822 MIB.addRegMask(TRI->getNoPreservedMask()); 11823 11824 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11825 11826 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11827 .addMBB(mainMBB); 11828 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11829 11830 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11831 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11832 11833 // mainMBB: 11834 // mainDstReg = 0 11835 MIB = 11836 BuildMI(mainMBB, DL, 11837 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11838 11839 // Store IP 11840 if (Subtarget.isPPC64()) { 11841 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11842 .addReg(LabelReg) 11843 .addImm(LabelOffset) 11844 .addReg(BufReg); 11845 } else { 11846 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11847 .addReg(LabelReg) 11848 .addImm(LabelOffset) 11849 .addReg(BufReg); 11850 } 11851 MIB.cloneMemRefs(MI); 11852 11853 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11854 mainMBB->addSuccessor(sinkMBB); 11855 11856 // sinkMBB: 11857 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11858 TII->get(PPC::PHI), DstReg) 11859 .addReg(mainDstReg).addMBB(mainMBB) 11860 .addReg(restoreDstReg).addMBB(thisMBB); 11861 11862 MI.eraseFromParent(); 11863 return sinkMBB; 11864 } 11865 11866 MachineBasicBlock * 11867 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11868 MachineBasicBlock *MBB) const { 11869 DebugLoc DL = MI.getDebugLoc(); 11870 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11871 11872 MachineFunction *MF = MBB->getParent(); 11873 MachineRegisterInfo &MRI = MF->getRegInfo(); 11874 11875 MVT PVT = getPointerTy(MF->getDataLayout()); 11876 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11877 "Invalid Pointer Size!"); 11878 11879 const TargetRegisterClass *RC = 11880 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11881 Register Tmp = MRI.createVirtualRegister(RC); 11882 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11883 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11884 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11885 unsigned BP = 11886 (PVT == MVT::i64) 11887 ? PPC::X30 11888 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11889 : PPC::R30); 11890 11891 MachineInstrBuilder MIB; 11892 11893 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11894 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11895 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11896 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11897 11898 Register BufReg = MI.getOperand(0).getReg(); 11899 11900 // Reload FP (the jumped-to function may not have had a 11901 // frame pointer, and if so, then its r31 will be restored 11902 // as necessary). 11903 if (PVT == MVT::i64) { 11904 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11905 .addImm(0) 11906 .addReg(BufReg); 11907 } else { 11908 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11909 .addImm(0) 11910 .addReg(BufReg); 11911 } 11912 MIB.cloneMemRefs(MI); 11913 11914 // Reload IP 11915 if (PVT == MVT::i64) { 11916 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11917 .addImm(LabelOffset) 11918 .addReg(BufReg); 11919 } else { 11920 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11921 .addImm(LabelOffset) 11922 .addReg(BufReg); 11923 } 11924 MIB.cloneMemRefs(MI); 11925 11926 // Reload SP 11927 if (PVT == MVT::i64) { 11928 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11929 .addImm(SPOffset) 11930 .addReg(BufReg); 11931 } else { 11932 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11933 .addImm(SPOffset) 11934 .addReg(BufReg); 11935 } 11936 MIB.cloneMemRefs(MI); 11937 11938 // Reload BP 11939 if (PVT == MVT::i64) { 11940 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11941 .addImm(BPOffset) 11942 .addReg(BufReg); 11943 } else { 11944 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11945 .addImm(BPOffset) 11946 .addReg(BufReg); 11947 } 11948 MIB.cloneMemRefs(MI); 11949 11950 // Reload TOC 11951 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11952 setUsesTOCBasePtr(*MBB->getParent()); 11953 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11954 .addImm(TOCOffset) 11955 .addReg(BufReg) 11956 .cloneMemRefs(MI); 11957 } 11958 11959 // Jump 11960 BuildMI(*MBB, MI, DL, 11961 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11962 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11963 11964 MI.eraseFromParent(); 11965 return MBB; 11966 } 11967 11968 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11969 // If the function specifically requests inline stack probes, emit them. 11970 if (MF.getFunction().hasFnAttribute("probe-stack")) 11971 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11972 "inline-asm"; 11973 return false; 11974 } 11975 11976 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11977 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11978 unsigned StackAlign = TFI->getStackAlignment(); 11979 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11980 "Unexpected stack alignment"); 11981 // The default stack probe size is 4096 if the function has no 11982 // stack-probe-size attribute. 11983 unsigned StackProbeSize = 4096; 11984 const Function &Fn = MF.getFunction(); 11985 if (Fn.hasFnAttribute("stack-probe-size")) 11986 Fn.getFnAttribute("stack-probe-size") 11987 .getValueAsString() 11988 .getAsInteger(0, StackProbeSize); 11989 // Round down to the stack alignment. 11990 StackProbeSize &= ~(StackAlign - 1); 11991 return StackProbeSize ? StackProbeSize : StackAlign; 11992 } 11993 11994 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11995 // into three phases. In the first phase, it uses pseudo instruction 11996 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11997 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11998 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11999 // MaxCallFrameSize so that it can calculate correct data area pointer. 12000 MachineBasicBlock * 12001 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12002 MachineBasicBlock *MBB) const { 12003 const bool isPPC64 = Subtarget.isPPC64(); 12004 MachineFunction *MF = MBB->getParent(); 12005 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12006 DebugLoc DL = MI.getDebugLoc(); 12007 const unsigned ProbeSize = getStackProbeSize(*MF); 12008 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12009 MachineRegisterInfo &MRI = MF->getRegInfo(); 12010 // The CFG of probing stack looks as 12011 // +-----+ 12012 // | MBB | 12013 // +--+--+ 12014 // | 12015 // +----v----+ 12016 // +--->+ TestMBB +---+ 12017 // | +----+----+ | 12018 // | | | 12019 // | +-----v----+ | 12020 // +---+ BlockMBB | | 12021 // +----------+ | 12022 // | 12023 // +---------+ | 12024 // | TailMBB +<--+ 12025 // +---------+ 12026 // In MBB, calculate previous frame pointer and final stack pointer. 12027 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12028 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12029 // TailMBB is spliced via \p MI. 12030 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12031 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12032 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12033 12034 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12035 MF->insert(MBBIter, TestMBB); 12036 MF->insert(MBBIter, BlockMBB); 12037 MF->insert(MBBIter, TailMBB); 12038 12039 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12040 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12041 12042 Register DstReg = MI.getOperand(0).getReg(); 12043 Register NegSizeReg = MI.getOperand(1).getReg(); 12044 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12045 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12046 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12047 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12048 12049 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12050 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12051 // NegSize. 12052 unsigned ProbeOpc; 12053 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12054 ProbeOpc = 12055 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12056 else 12057 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12058 // and NegSizeReg will be allocated in the same phyreg to avoid 12059 // redundant copy when NegSizeReg has only one use which is current MI and 12060 // will be replaced by PREPARE_PROBED_ALLOCA then. 12061 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12062 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12063 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12064 .addDef(ActualNegSizeReg) 12065 .addReg(NegSizeReg) 12066 .add(MI.getOperand(2)) 12067 .add(MI.getOperand(3)); 12068 12069 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12070 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12071 FinalStackPtr) 12072 .addReg(SPReg) 12073 .addReg(ActualNegSizeReg); 12074 12075 // Materialize a scratch register for update. 12076 int64_t NegProbeSize = -(int64_t)ProbeSize; 12077 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12078 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12079 if (!isInt<16>(NegProbeSize)) { 12080 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12081 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12082 .addImm(NegProbeSize >> 16); 12083 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12084 ScratchReg) 12085 .addReg(TempReg) 12086 .addImm(NegProbeSize & 0xFFFF); 12087 } else 12088 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12089 .addImm(NegProbeSize); 12090 12091 { 12092 // Probing leading residual part. 12093 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12094 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12095 .addReg(ActualNegSizeReg) 12096 .addReg(ScratchReg); 12097 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12098 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12099 .addReg(Div) 12100 .addReg(ScratchReg); 12101 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12102 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12103 .addReg(Mul) 12104 .addReg(ActualNegSizeReg); 12105 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12106 .addReg(FramePointer) 12107 .addReg(SPReg) 12108 .addReg(NegMod); 12109 } 12110 12111 { 12112 // Remaining part should be multiple of ProbeSize. 12113 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12114 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12115 .addReg(SPReg) 12116 .addReg(FinalStackPtr); 12117 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12118 .addImm(PPC::PRED_EQ) 12119 .addReg(CmpResult) 12120 .addMBB(TailMBB); 12121 TestMBB->addSuccessor(BlockMBB); 12122 TestMBB->addSuccessor(TailMBB); 12123 } 12124 12125 { 12126 // Touch the block. 12127 // |P...|P...|P... 12128 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12129 .addReg(FramePointer) 12130 .addReg(SPReg) 12131 .addReg(ScratchReg); 12132 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12133 BlockMBB->addSuccessor(TestMBB); 12134 } 12135 12136 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12137 // DYNAREAOFFSET pseudo instruction to get the future result. 12138 Register MaxCallFrameSizeReg = 12139 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12140 BuildMI(TailMBB, DL, 12141 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12142 MaxCallFrameSizeReg) 12143 .add(MI.getOperand(2)) 12144 .add(MI.getOperand(3)); 12145 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12146 .addReg(SPReg) 12147 .addReg(MaxCallFrameSizeReg); 12148 12149 // Splice instructions after MI to TailMBB. 12150 TailMBB->splice(TailMBB->end(), MBB, 12151 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12152 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12153 MBB->addSuccessor(TestMBB); 12154 12155 // Delete the pseudo instruction. 12156 MI.eraseFromParent(); 12157 12158 ++NumDynamicAllocaProbed; 12159 return TailMBB; 12160 } 12161 12162 MachineBasicBlock * 12163 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12164 MachineBasicBlock *BB) const { 12165 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12166 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12167 if (Subtarget.is64BitELFABI() && 12168 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12169 !Subtarget.isUsingPCRelativeCalls()) { 12170 // Call lowering should have added an r2 operand to indicate a dependence 12171 // on the TOC base pointer value. It can't however, because there is no 12172 // way to mark the dependence as implicit there, and so the stackmap code 12173 // will confuse it with a regular operand. Instead, add the dependence 12174 // here. 12175 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12176 } 12177 12178 return emitPatchPoint(MI, BB); 12179 } 12180 12181 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12182 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12183 return emitEHSjLjSetJmp(MI, BB); 12184 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12185 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12186 return emitEHSjLjLongJmp(MI, BB); 12187 } 12188 12189 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12190 12191 // To "insert" these instructions we actually have to insert their 12192 // control-flow patterns. 12193 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12194 MachineFunction::iterator It = ++BB->getIterator(); 12195 12196 MachineFunction *F = BB->getParent(); 12197 MachineRegisterInfo &MRI = F->getRegInfo(); 12198 12199 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12200 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12201 MI.getOpcode() == PPC::SELECT_I8) { 12202 SmallVector<MachineOperand, 2> Cond; 12203 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12204 MI.getOpcode() == PPC::SELECT_CC_I8) 12205 Cond.push_back(MI.getOperand(4)); 12206 else 12207 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12208 Cond.push_back(MI.getOperand(1)); 12209 12210 DebugLoc dl = MI.getDebugLoc(); 12211 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12212 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12213 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12214 MI.getOpcode() == PPC::SELECT_CC_F8 || 12215 MI.getOpcode() == PPC::SELECT_CC_F16 || 12216 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12217 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12218 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12219 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12220 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12221 MI.getOpcode() == PPC::SELECT_CC_SPE || 12222 MI.getOpcode() == PPC::SELECT_F4 || 12223 MI.getOpcode() == PPC::SELECT_F8 || 12224 MI.getOpcode() == PPC::SELECT_F16 || 12225 MI.getOpcode() == PPC::SELECT_SPE || 12226 MI.getOpcode() == PPC::SELECT_SPE4 || 12227 MI.getOpcode() == PPC::SELECT_VRRC || 12228 MI.getOpcode() == PPC::SELECT_VSFRC || 12229 MI.getOpcode() == PPC::SELECT_VSSRC || 12230 MI.getOpcode() == PPC::SELECT_VSRC) { 12231 // The incoming instruction knows the destination vreg to set, the 12232 // condition code register to branch on, the true/false values to 12233 // select between, and a branch opcode to use. 12234 12235 // thisMBB: 12236 // ... 12237 // TrueVal = ... 12238 // cmpTY ccX, r1, r2 12239 // bCC copy1MBB 12240 // fallthrough --> copy0MBB 12241 MachineBasicBlock *thisMBB = BB; 12242 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12243 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12244 DebugLoc dl = MI.getDebugLoc(); 12245 F->insert(It, copy0MBB); 12246 F->insert(It, sinkMBB); 12247 12248 // Transfer the remainder of BB and its successor edges to sinkMBB. 12249 sinkMBB->splice(sinkMBB->begin(), BB, 12250 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12251 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12252 12253 // Next, add the true and fallthrough blocks as its successors. 12254 BB->addSuccessor(copy0MBB); 12255 BB->addSuccessor(sinkMBB); 12256 12257 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12258 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12259 MI.getOpcode() == PPC::SELECT_F16 || 12260 MI.getOpcode() == PPC::SELECT_SPE4 || 12261 MI.getOpcode() == PPC::SELECT_SPE || 12262 MI.getOpcode() == PPC::SELECT_VRRC || 12263 MI.getOpcode() == PPC::SELECT_VSFRC || 12264 MI.getOpcode() == PPC::SELECT_VSSRC || 12265 MI.getOpcode() == PPC::SELECT_VSRC) { 12266 BuildMI(BB, dl, TII->get(PPC::BC)) 12267 .addReg(MI.getOperand(1).getReg()) 12268 .addMBB(sinkMBB); 12269 } else { 12270 unsigned SelectPred = MI.getOperand(4).getImm(); 12271 BuildMI(BB, dl, TII->get(PPC::BCC)) 12272 .addImm(SelectPred) 12273 .addReg(MI.getOperand(1).getReg()) 12274 .addMBB(sinkMBB); 12275 } 12276 12277 // copy0MBB: 12278 // %FalseValue = ... 12279 // # fallthrough to sinkMBB 12280 BB = copy0MBB; 12281 12282 // Update machine-CFG edges 12283 BB->addSuccessor(sinkMBB); 12284 12285 // sinkMBB: 12286 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12287 // ... 12288 BB = sinkMBB; 12289 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12290 .addReg(MI.getOperand(3).getReg()) 12291 .addMBB(copy0MBB) 12292 .addReg(MI.getOperand(2).getReg()) 12293 .addMBB(thisMBB); 12294 } else if (MI.getOpcode() == PPC::ReadTB) { 12295 // To read the 64-bit time-base register on a 32-bit target, we read the 12296 // two halves. Should the counter have wrapped while it was being read, we 12297 // need to try again. 12298 // ... 12299 // readLoop: 12300 // mfspr Rx,TBU # load from TBU 12301 // mfspr Ry,TB # load from TB 12302 // mfspr Rz,TBU # load from TBU 12303 // cmpw crX,Rx,Rz # check if 'old'='new' 12304 // bne readLoop # branch if they're not equal 12305 // ... 12306 12307 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12308 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12309 DebugLoc dl = MI.getDebugLoc(); 12310 F->insert(It, readMBB); 12311 F->insert(It, sinkMBB); 12312 12313 // Transfer the remainder of BB and its successor edges to sinkMBB. 12314 sinkMBB->splice(sinkMBB->begin(), BB, 12315 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12316 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12317 12318 BB->addSuccessor(readMBB); 12319 BB = readMBB; 12320 12321 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12322 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12323 Register LoReg = MI.getOperand(0).getReg(); 12324 Register HiReg = MI.getOperand(1).getReg(); 12325 12326 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12327 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12328 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12329 12330 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12331 12332 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12333 .addReg(HiReg) 12334 .addReg(ReadAgainReg); 12335 BuildMI(BB, dl, TII->get(PPC::BCC)) 12336 .addImm(PPC::PRED_NE) 12337 .addReg(CmpReg) 12338 .addMBB(readMBB); 12339 12340 BB->addSuccessor(readMBB); 12341 BB->addSuccessor(sinkMBB); 12342 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12343 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12344 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12345 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12346 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12347 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12348 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12349 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12350 12351 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12352 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12353 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12354 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12355 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12356 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12357 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12358 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12359 12360 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12361 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12362 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12363 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12364 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12365 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12366 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12367 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12368 12369 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12370 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12371 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12372 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12373 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12374 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12375 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12376 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12377 12378 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12379 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12380 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12381 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12382 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12383 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12384 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12385 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12386 12387 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12388 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12389 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12390 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12391 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12392 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12393 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12394 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12395 12396 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12397 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12398 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12399 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12400 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12401 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12402 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12403 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12404 12405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12406 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12407 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12408 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12409 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12410 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12411 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12412 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12413 12414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12415 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12416 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12417 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12418 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12419 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12420 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12421 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12422 12423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12424 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12426 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12428 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12429 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12430 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12431 12432 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12433 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12434 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12435 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12436 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12437 BB = EmitAtomicBinary(MI, BB, 4, 0); 12438 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12439 BB = EmitAtomicBinary(MI, BB, 8, 0); 12440 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12441 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12442 (Subtarget.hasPartwordAtomics() && 12443 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12444 (Subtarget.hasPartwordAtomics() && 12445 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12446 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12447 12448 auto LoadMnemonic = PPC::LDARX; 12449 auto StoreMnemonic = PPC::STDCX; 12450 switch (MI.getOpcode()) { 12451 default: 12452 llvm_unreachable("Compare and swap of unknown size"); 12453 case PPC::ATOMIC_CMP_SWAP_I8: 12454 LoadMnemonic = PPC::LBARX; 12455 StoreMnemonic = PPC::STBCX; 12456 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12457 break; 12458 case PPC::ATOMIC_CMP_SWAP_I16: 12459 LoadMnemonic = PPC::LHARX; 12460 StoreMnemonic = PPC::STHCX; 12461 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12462 break; 12463 case PPC::ATOMIC_CMP_SWAP_I32: 12464 LoadMnemonic = PPC::LWARX; 12465 StoreMnemonic = PPC::STWCX; 12466 break; 12467 case PPC::ATOMIC_CMP_SWAP_I64: 12468 LoadMnemonic = PPC::LDARX; 12469 StoreMnemonic = PPC::STDCX; 12470 break; 12471 } 12472 Register dest = MI.getOperand(0).getReg(); 12473 Register ptrA = MI.getOperand(1).getReg(); 12474 Register ptrB = MI.getOperand(2).getReg(); 12475 Register oldval = MI.getOperand(3).getReg(); 12476 Register newval = MI.getOperand(4).getReg(); 12477 DebugLoc dl = MI.getDebugLoc(); 12478 12479 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12480 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12481 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12482 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12483 F->insert(It, loop1MBB); 12484 F->insert(It, loop2MBB); 12485 F->insert(It, midMBB); 12486 F->insert(It, exitMBB); 12487 exitMBB->splice(exitMBB->begin(), BB, 12488 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12489 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12490 12491 // thisMBB: 12492 // ... 12493 // fallthrough --> loopMBB 12494 BB->addSuccessor(loop1MBB); 12495 12496 // loop1MBB: 12497 // l[bhwd]arx dest, ptr 12498 // cmp[wd] dest, oldval 12499 // bne- midMBB 12500 // loop2MBB: 12501 // st[bhwd]cx. newval, ptr 12502 // bne- loopMBB 12503 // b exitBB 12504 // midMBB: 12505 // st[bhwd]cx. dest, ptr 12506 // exitBB: 12507 BB = loop1MBB; 12508 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12509 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12510 .addReg(oldval) 12511 .addReg(dest); 12512 BuildMI(BB, dl, TII->get(PPC::BCC)) 12513 .addImm(PPC::PRED_NE) 12514 .addReg(PPC::CR0) 12515 .addMBB(midMBB); 12516 BB->addSuccessor(loop2MBB); 12517 BB->addSuccessor(midMBB); 12518 12519 BB = loop2MBB; 12520 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12521 .addReg(newval) 12522 .addReg(ptrA) 12523 .addReg(ptrB); 12524 BuildMI(BB, dl, TII->get(PPC::BCC)) 12525 .addImm(PPC::PRED_NE) 12526 .addReg(PPC::CR0) 12527 .addMBB(loop1MBB); 12528 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12529 BB->addSuccessor(loop1MBB); 12530 BB->addSuccessor(exitMBB); 12531 12532 BB = midMBB; 12533 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12534 .addReg(dest) 12535 .addReg(ptrA) 12536 .addReg(ptrB); 12537 BB->addSuccessor(exitMBB); 12538 12539 // exitMBB: 12540 // ... 12541 BB = exitMBB; 12542 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12543 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12544 // We must use 64-bit registers for addresses when targeting 64-bit, 12545 // since we're actually doing arithmetic on them. Other registers 12546 // can be 32-bit. 12547 bool is64bit = Subtarget.isPPC64(); 12548 bool isLittleEndian = Subtarget.isLittleEndian(); 12549 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12550 12551 Register dest = MI.getOperand(0).getReg(); 12552 Register ptrA = MI.getOperand(1).getReg(); 12553 Register ptrB = MI.getOperand(2).getReg(); 12554 Register oldval = MI.getOperand(3).getReg(); 12555 Register newval = MI.getOperand(4).getReg(); 12556 DebugLoc dl = MI.getDebugLoc(); 12557 12558 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12559 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12560 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12561 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12562 F->insert(It, loop1MBB); 12563 F->insert(It, loop2MBB); 12564 F->insert(It, midMBB); 12565 F->insert(It, exitMBB); 12566 exitMBB->splice(exitMBB->begin(), BB, 12567 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12568 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12569 12570 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12571 const TargetRegisterClass *RC = 12572 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12573 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12574 12575 Register PtrReg = RegInfo.createVirtualRegister(RC); 12576 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12577 Register ShiftReg = 12578 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12579 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12580 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12581 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12582 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12583 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12584 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12585 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12586 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12587 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12588 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12589 Register Ptr1Reg; 12590 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12591 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12592 // thisMBB: 12593 // ... 12594 // fallthrough --> loopMBB 12595 BB->addSuccessor(loop1MBB); 12596 12597 // The 4-byte load must be aligned, while a char or short may be 12598 // anywhere in the word. Hence all this nasty bookkeeping code. 12599 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12600 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12601 // xori shift, shift1, 24 [16] 12602 // rlwinm ptr, ptr1, 0, 0, 29 12603 // slw newval2, newval, shift 12604 // slw oldval2, oldval,shift 12605 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12606 // slw mask, mask2, shift 12607 // and newval3, newval2, mask 12608 // and oldval3, oldval2, mask 12609 // loop1MBB: 12610 // lwarx tmpDest, ptr 12611 // and tmp, tmpDest, mask 12612 // cmpw tmp, oldval3 12613 // bne- midMBB 12614 // loop2MBB: 12615 // andc tmp2, tmpDest, mask 12616 // or tmp4, tmp2, newval3 12617 // stwcx. tmp4, ptr 12618 // bne- loop1MBB 12619 // b exitBB 12620 // midMBB: 12621 // stwcx. tmpDest, ptr 12622 // exitBB: 12623 // srw dest, tmpDest, shift 12624 if (ptrA != ZeroReg) { 12625 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12626 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12627 .addReg(ptrA) 12628 .addReg(ptrB); 12629 } else { 12630 Ptr1Reg = ptrB; 12631 } 12632 12633 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12634 // mode. 12635 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12636 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12637 .addImm(3) 12638 .addImm(27) 12639 .addImm(is8bit ? 28 : 27); 12640 if (!isLittleEndian) 12641 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12642 .addReg(Shift1Reg) 12643 .addImm(is8bit ? 24 : 16); 12644 if (is64bit) 12645 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12646 .addReg(Ptr1Reg) 12647 .addImm(0) 12648 .addImm(61); 12649 else 12650 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12651 .addReg(Ptr1Reg) 12652 .addImm(0) 12653 .addImm(0) 12654 .addImm(29); 12655 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12656 .addReg(newval) 12657 .addReg(ShiftReg); 12658 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12659 .addReg(oldval) 12660 .addReg(ShiftReg); 12661 if (is8bit) 12662 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12663 else { 12664 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12665 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12666 .addReg(Mask3Reg) 12667 .addImm(65535); 12668 } 12669 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12670 .addReg(Mask2Reg) 12671 .addReg(ShiftReg); 12672 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12673 .addReg(NewVal2Reg) 12674 .addReg(MaskReg); 12675 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12676 .addReg(OldVal2Reg) 12677 .addReg(MaskReg); 12678 12679 BB = loop1MBB; 12680 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12681 .addReg(ZeroReg) 12682 .addReg(PtrReg); 12683 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12684 .addReg(TmpDestReg) 12685 .addReg(MaskReg); 12686 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12687 .addReg(TmpReg) 12688 .addReg(OldVal3Reg); 12689 BuildMI(BB, dl, TII->get(PPC::BCC)) 12690 .addImm(PPC::PRED_NE) 12691 .addReg(PPC::CR0) 12692 .addMBB(midMBB); 12693 BB->addSuccessor(loop2MBB); 12694 BB->addSuccessor(midMBB); 12695 12696 BB = loop2MBB; 12697 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12698 .addReg(TmpDestReg) 12699 .addReg(MaskReg); 12700 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12701 .addReg(Tmp2Reg) 12702 .addReg(NewVal3Reg); 12703 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12704 .addReg(Tmp4Reg) 12705 .addReg(ZeroReg) 12706 .addReg(PtrReg); 12707 BuildMI(BB, dl, TII->get(PPC::BCC)) 12708 .addImm(PPC::PRED_NE) 12709 .addReg(PPC::CR0) 12710 .addMBB(loop1MBB); 12711 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12712 BB->addSuccessor(loop1MBB); 12713 BB->addSuccessor(exitMBB); 12714 12715 BB = midMBB; 12716 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12717 .addReg(TmpDestReg) 12718 .addReg(ZeroReg) 12719 .addReg(PtrReg); 12720 BB->addSuccessor(exitMBB); 12721 12722 // exitMBB: 12723 // ... 12724 BB = exitMBB; 12725 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12726 .addReg(TmpReg) 12727 .addReg(ShiftReg); 12728 } else if (MI.getOpcode() == PPC::FADDrtz) { 12729 // This pseudo performs an FADD with rounding mode temporarily forced 12730 // to round-to-zero. We emit this via custom inserter since the FPSCR 12731 // is not modeled at the SelectionDAG level. 12732 Register Dest = MI.getOperand(0).getReg(); 12733 Register Src1 = MI.getOperand(1).getReg(); 12734 Register Src2 = MI.getOperand(2).getReg(); 12735 DebugLoc dl = MI.getDebugLoc(); 12736 12737 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12738 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12739 12740 // Save FPSCR value. 12741 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12742 12743 // Set rounding mode to round-to-zero. 12744 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12745 .addImm(31) 12746 .addReg(PPC::RM, RegState::ImplicitDefine); 12747 12748 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12749 .addImm(30) 12750 .addReg(PPC::RM, RegState::ImplicitDefine); 12751 12752 // Perform addition. 12753 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12754 .addReg(Src1) 12755 .addReg(Src2); 12756 if (MI.getFlag(MachineInstr::NoFPExcept)) 12757 MIB.setMIFlag(MachineInstr::NoFPExcept); 12758 12759 // Restore FPSCR value. 12760 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12761 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12762 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12763 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12764 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12765 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12766 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12767 ? PPC::ANDI8_rec 12768 : PPC::ANDI_rec; 12769 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12770 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12771 12772 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12773 Register Dest = RegInfo.createVirtualRegister( 12774 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12775 12776 DebugLoc Dl = MI.getDebugLoc(); 12777 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12778 .addReg(MI.getOperand(1).getReg()) 12779 .addImm(1); 12780 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12781 MI.getOperand(0).getReg()) 12782 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12783 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12784 DebugLoc Dl = MI.getDebugLoc(); 12785 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12786 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12787 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12788 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12789 MI.getOperand(0).getReg()) 12790 .addReg(CRReg); 12791 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12792 DebugLoc Dl = MI.getDebugLoc(); 12793 unsigned Imm = MI.getOperand(1).getImm(); 12794 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12795 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12796 MI.getOperand(0).getReg()) 12797 .addReg(PPC::CR0EQ); 12798 } else if (MI.getOpcode() == PPC::SETRNDi) { 12799 DebugLoc dl = MI.getDebugLoc(); 12800 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12801 12802 // Save FPSCR value. 12803 if (MRI.use_empty(OldFPSCRReg)) 12804 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12805 else 12806 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12807 12808 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12809 // the following settings: 12810 // 00 Round to nearest 12811 // 01 Round to 0 12812 // 10 Round to +inf 12813 // 11 Round to -inf 12814 12815 // When the operand is immediate, using the two least significant bits of 12816 // the immediate to set the bits 62:63 of FPSCR. 12817 unsigned Mode = MI.getOperand(1).getImm(); 12818 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12819 .addImm(31) 12820 .addReg(PPC::RM, RegState::ImplicitDefine); 12821 12822 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12823 .addImm(30) 12824 .addReg(PPC::RM, RegState::ImplicitDefine); 12825 } else if (MI.getOpcode() == PPC::SETRND) { 12826 DebugLoc dl = MI.getDebugLoc(); 12827 12828 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12829 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12830 // If the target doesn't have DirectMove, we should use stack to do the 12831 // conversion, because the target doesn't have the instructions like mtvsrd 12832 // or mfvsrd to do this conversion directly. 12833 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12834 if (Subtarget.hasDirectMove()) { 12835 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12836 .addReg(SrcReg); 12837 } else { 12838 // Use stack to do the register copy. 12839 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12840 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12841 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12842 if (RC == &PPC::F8RCRegClass) { 12843 // Copy register from F8RCRegClass to G8RCRegclass. 12844 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12845 "Unsupported RegClass."); 12846 12847 StoreOp = PPC::STFD; 12848 LoadOp = PPC::LD; 12849 } else { 12850 // Copy register from G8RCRegClass to F8RCRegclass. 12851 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12852 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12853 "Unsupported RegClass."); 12854 } 12855 12856 MachineFrameInfo &MFI = F->getFrameInfo(); 12857 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12858 12859 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12860 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12861 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12862 MFI.getObjectAlign(FrameIdx)); 12863 12864 // Store the SrcReg into the stack. 12865 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12866 .addReg(SrcReg) 12867 .addImm(0) 12868 .addFrameIndex(FrameIdx) 12869 .addMemOperand(MMOStore); 12870 12871 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12872 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12873 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12874 MFI.getObjectAlign(FrameIdx)); 12875 12876 // Load from the stack where SrcReg is stored, and save to DestReg, 12877 // so we have done the RegClass conversion from RegClass::SrcReg to 12878 // RegClass::DestReg. 12879 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12880 .addImm(0) 12881 .addFrameIndex(FrameIdx) 12882 .addMemOperand(MMOLoad); 12883 } 12884 }; 12885 12886 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12887 12888 // Save FPSCR value. 12889 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12890 12891 // When the operand is gprc register, use two least significant bits of the 12892 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12893 // 12894 // copy OldFPSCRTmpReg, OldFPSCRReg 12895 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12896 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12897 // copy NewFPSCRReg, NewFPSCRTmpReg 12898 // mtfsf 255, NewFPSCRReg 12899 MachineOperand SrcOp = MI.getOperand(1); 12900 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12901 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12902 12903 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12904 12905 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12906 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12907 12908 // The first operand of INSERT_SUBREG should be a register which has 12909 // subregisters, we only care about its RegClass, so we should use an 12910 // IMPLICIT_DEF register. 12911 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12912 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12913 .addReg(ImDefReg) 12914 .add(SrcOp) 12915 .addImm(1); 12916 12917 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12918 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12919 .addReg(OldFPSCRTmpReg) 12920 .addReg(ExtSrcReg) 12921 .addImm(0) 12922 .addImm(62); 12923 12924 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12925 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12926 12927 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12928 // bits of FPSCR. 12929 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12930 .addImm(255) 12931 .addReg(NewFPSCRReg) 12932 .addImm(0) 12933 .addImm(0); 12934 } else if (MI.getOpcode() == PPC::SETFLM) { 12935 DebugLoc Dl = MI.getDebugLoc(); 12936 12937 // Result of setflm is previous FPSCR content, so we need to save it first. 12938 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12939 if (MRI.use_empty(OldFPSCRReg)) 12940 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12941 else 12942 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12943 12944 // Put bits in 32:63 to FPSCR. 12945 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12946 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12947 .addImm(255) 12948 .addReg(NewFPSCRReg) 12949 .addImm(0) 12950 .addImm(0); 12951 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12952 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12953 return emitProbedAlloca(MI, BB); 12954 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12955 DebugLoc DL = MI.getDebugLoc(); 12956 Register Src = MI.getOperand(2).getReg(); 12957 Register Lo = MI.getOperand(0).getReg(); 12958 Register Hi = MI.getOperand(1).getReg(); 12959 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12960 .addDef(Lo) 12961 .addUse(Src, 0, PPC::sub_gp8_x1); 12962 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12963 .addDef(Hi) 12964 .addUse(Src, 0, PPC::sub_gp8_x0); 12965 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12966 MI.getOpcode() == PPC::STQX_PSEUDO) { 12967 DebugLoc DL = MI.getDebugLoc(); 12968 // Ptr is used as the ptr_rc_no_r0 part 12969 // of LQ/STQ's memory operand and adding result of RA and RB, 12970 // so it has to be g8rc_and_g8rc_nox0. 12971 Register Ptr = 12972 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12973 Register Val = MI.getOperand(0).getReg(); 12974 Register RA = MI.getOperand(1).getReg(); 12975 Register RB = MI.getOperand(2).getReg(); 12976 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12977 BuildMI(*BB, MI, DL, 12978 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12979 : TII->get(PPC::STQ)) 12980 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12981 .addImm(0) 12982 .addReg(Ptr); 12983 } else { 12984 llvm_unreachable("Unexpected instr type to insert"); 12985 } 12986 12987 MI.eraseFromParent(); // The pseudo instruction is gone now. 12988 return BB; 12989 } 12990 12991 //===----------------------------------------------------------------------===// 12992 // Target Optimization Hooks 12993 //===----------------------------------------------------------------------===// 12994 12995 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12996 // For the estimates, convergence is quadratic, so we essentially double the 12997 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12998 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12999 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13000 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13001 if (VT.getScalarType() == MVT::f64) 13002 RefinementSteps++; 13003 return RefinementSteps; 13004 } 13005 13006 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13007 const DenormalMode &Mode) const { 13008 // We only have VSX Vector Test for software Square Root. 13009 EVT VT = Op.getValueType(); 13010 if (!isTypeLegal(MVT::i1) || 13011 (VT != MVT::f64 && 13012 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13013 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13014 13015 SDLoc DL(Op); 13016 // The output register of FTSQRT is CR field. 13017 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13018 // ftsqrt BF,FRB 13019 // Let e_b be the unbiased exponent of the double-precision 13020 // floating-point operand in register FRB. 13021 // fe_flag is set to 1 if either of the following conditions occurs. 13022 // - The double-precision floating-point operand in register FRB is a zero, 13023 // a NaN, or an infinity, or a negative value. 13024 // - e_b is less than or equal to -970. 13025 // Otherwise fe_flag is set to 0. 13026 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13027 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13028 // exponent is less than -970) 13029 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13030 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13031 FTSQRT, SRIdxVal), 13032 0); 13033 } 13034 13035 SDValue 13036 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13037 SelectionDAG &DAG) const { 13038 // We only have VSX Vector Square Root. 13039 EVT VT = Op.getValueType(); 13040 if (VT != MVT::f64 && 13041 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13042 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13043 13044 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13045 } 13046 13047 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13048 int Enabled, int &RefinementSteps, 13049 bool &UseOneConstNR, 13050 bool Reciprocal) const { 13051 EVT VT = Operand.getValueType(); 13052 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13053 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13054 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13055 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13056 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13057 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13058 13059 // The Newton-Raphson computation with a single constant does not provide 13060 // enough accuracy on some CPUs. 13061 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13062 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13063 } 13064 return SDValue(); 13065 } 13066 13067 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13068 int Enabled, 13069 int &RefinementSteps) const { 13070 EVT VT = Operand.getValueType(); 13071 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13072 (VT == MVT::f64 && Subtarget.hasFRE()) || 13073 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13074 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13075 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13076 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13077 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13078 } 13079 return SDValue(); 13080 } 13081 13082 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13083 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13084 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13085 // enabled for division), this functionality is redundant with the default 13086 // combiner logic (once the division -> reciprocal/multiply transformation 13087 // has taken place). As a result, this matters more for older cores than for 13088 // newer ones. 13089 13090 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13091 // reciprocal if there are two or more FDIVs (for embedded cores with only 13092 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13093 switch (Subtarget.getCPUDirective()) { 13094 default: 13095 return 3; 13096 case PPC::DIR_440: 13097 case PPC::DIR_A2: 13098 case PPC::DIR_E500: 13099 case PPC::DIR_E500mc: 13100 case PPC::DIR_E5500: 13101 return 2; 13102 } 13103 } 13104 13105 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13106 // collapsed, and so we need to look through chains of them. 13107 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13108 int64_t& Offset, SelectionDAG &DAG) { 13109 if (DAG.isBaseWithConstantOffset(Loc)) { 13110 Base = Loc.getOperand(0); 13111 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13112 13113 // The base might itself be a base plus an offset, and if so, accumulate 13114 // that as well. 13115 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13116 } 13117 } 13118 13119 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13120 unsigned Bytes, int Dist, 13121 SelectionDAG &DAG) { 13122 if (VT.getSizeInBits() / 8 != Bytes) 13123 return false; 13124 13125 SDValue BaseLoc = Base->getBasePtr(); 13126 if (Loc.getOpcode() == ISD::FrameIndex) { 13127 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13128 return false; 13129 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13130 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13131 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13132 int FS = MFI.getObjectSize(FI); 13133 int BFS = MFI.getObjectSize(BFI); 13134 if (FS != BFS || FS != (int)Bytes) return false; 13135 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13136 } 13137 13138 SDValue Base1 = Loc, Base2 = BaseLoc; 13139 int64_t Offset1 = 0, Offset2 = 0; 13140 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13141 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13142 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13143 return true; 13144 13145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13146 const GlobalValue *GV1 = nullptr; 13147 const GlobalValue *GV2 = nullptr; 13148 Offset1 = 0; 13149 Offset2 = 0; 13150 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13151 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13152 if (isGA1 && isGA2 && GV1 == GV2) 13153 return Offset1 == (Offset2 + Dist*Bytes); 13154 return false; 13155 } 13156 13157 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13158 // not enforce equality of the chain operands. 13159 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13160 unsigned Bytes, int Dist, 13161 SelectionDAG &DAG) { 13162 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13163 EVT VT = LS->getMemoryVT(); 13164 SDValue Loc = LS->getBasePtr(); 13165 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13166 } 13167 13168 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13169 EVT VT; 13170 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13171 default: return false; 13172 case Intrinsic::ppc_altivec_lvx: 13173 case Intrinsic::ppc_altivec_lvxl: 13174 case Intrinsic::ppc_vsx_lxvw4x: 13175 case Intrinsic::ppc_vsx_lxvw4x_be: 13176 VT = MVT::v4i32; 13177 break; 13178 case Intrinsic::ppc_vsx_lxvd2x: 13179 case Intrinsic::ppc_vsx_lxvd2x_be: 13180 VT = MVT::v2f64; 13181 break; 13182 case Intrinsic::ppc_altivec_lvebx: 13183 VT = MVT::i8; 13184 break; 13185 case Intrinsic::ppc_altivec_lvehx: 13186 VT = MVT::i16; 13187 break; 13188 case Intrinsic::ppc_altivec_lvewx: 13189 VT = MVT::i32; 13190 break; 13191 } 13192 13193 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13194 } 13195 13196 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13197 EVT VT; 13198 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13199 default: return false; 13200 case Intrinsic::ppc_altivec_stvx: 13201 case Intrinsic::ppc_altivec_stvxl: 13202 case Intrinsic::ppc_vsx_stxvw4x: 13203 VT = MVT::v4i32; 13204 break; 13205 case Intrinsic::ppc_vsx_stxvd2x: 13206 VT = MVT::v2f64; 13207 break; 13208 case Intrinsic::ppc_vsx_stxvw4x_be: 13209 VT = MVT::v4i32; 13210 break; 13211 case Intrinsic::ppc_vsx_stxvd2x_be: 13212 VT = MVT::v2f64; 13213 break; 13214 case Intrinsic::ppc_altivec_stvebx: 13215 VT = MVT::i8; 13216 break; 13217 case Intrinsic::ppc_altivec_stvehx: 13218 VT = MVT::i16; 13219 break; 13220 case Intrinsic::ppc_altivec_stvewx: 13221 VT = MVT::i32; 13222 break; 13223 } 13224 13225 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13226 } 13227 13228 return false; 13229 } 13230 13231 // Return true is there is a nearyby consecutive load to the one provided 13232 // (regardless of alignment). We search up and down the chain, looking though 13233 // token factors and other loads (but nothing else). As a result, a true result 13234 // indicates that it is safe to create a new consecutive load adjacent to the 13235 // load provided. 13236 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13237 SDValue Chain = LD->getChain(); 13238 EVT VT = LD->getMemoryVT(); 13239 13240 SmallSet<SDNode *, 16> LoadRoots; 13241 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13242 SmallSet<SDNode *, 16> Visited; 13243 13244 // First, search up the chain, branching to follow all token-factor operands. 13245 // If we find a consecutive load, then we're done, otherwise, record all 13246 // nodes just above the top-level loads and token factors. 13247 while (!Queue.empty()) { 13248 SDNode *ChainNext = Queue.pop_back_val(); 13249 if (!Visited.insert(ChainNext).second) 13250 continue; 13251 13252 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13253 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13254 return true; 13255 13256 if (!Visited.count(ChainLD->getChain().getNode())) 13257 Queue.push_back(ChainLD->getChain().getNode()); 13258 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13259 for (const SDUse &O : ChainNext->ops()) 13260 if (!Visited.count(O.getNode())) 13261 Queue.push_back(O.getNode()); 13262 } else 13263 LoadRoots.insert(ChainNext); 13264 } 13265 13266 // Second, search down the chain, starting from the top-level nodes recorded 13267 // in the first phase. These top-level nodes are the nodes just above all 13268 // loads and token factors. Starting with their uses, recursively look though 13269 // all loads (just the chain uses) and token factors to find a consecutive 13270 // load. 13271 Visited.clear(); 13272 Queue.clear(); 13273 13274 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13275 IE = LoadRoots.end(); I != IE; ++I) { 13276 Queue.push_back(*I); 13277 13278 while (!Queue.empty()) { 13279 SDNode *LoadRoot = Queue.pop_back_val(); 13280 if (!Visited.insert(LoadRoot).second) 13281 continue; 13282 13283 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13284 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13285 return true; 13286 13287 for (SDNode *U : LoadRoot->uses()) 13288 if (((isa<MemSDNode>(U) && 13289 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13290 U->getOpcode() == ISD::TokenFactor) && 13291 !Visited.count(U)) 13292 Queue.push_back(U); 13293 } 13294 } 13295 13296 return false; 13297 } 13298 13299 /// This function is called when we have proved that a SETCC node can be replaced 13300 /// by subtraction (and other supporting instructions) so that the result of 13301 /// comparison is kept in a GPR instead of CR. This function is purely for 13302 /// codegen purposes and has some flags to guide the codegen process. 13303 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13304 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13305 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13306 13307 // Zero extend the operands to the largest legal integer. Originally, they 13308 // must be of a strictly smaller size. 13309 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13310 DAG.getConstant(Size, DL, MVT::i32)); 13311 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13312 DAG.getConstant(Size, DL, MVT::i32)); 13313 13314 // Swap if needed. Depends on the condition code. 13315 if (Swap) 13316 std::swap(Op0, Op1); 13317 13318 // Subtract extended integers. 13319 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13320 13321 // Move the sign bit to the least significant position and zero out the rest. 13322 // Now the least significant bit carries the result of original comparison. 13323 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13324 DAG.getConstant(Size - 1, DL, MVT::i32)); 13325 auto Final = Shifted; 13326 13327 // Complement the result if needed. Based on the condition code. 13328 if (Complement) 13329 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13330 DAG.getConstant(1, DL, MVT::i64)); 13331 13332 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13333 } 13334 13335 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13336 DAGCombinerInfo &DCI) const { 13337 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13338 13339 SelectionDAG &DAG = DCI.DAG; 13340 SDLoc DL(N); 13341 13342 // Size of integers being compared has a critical role in the following 13343 // analysis, so we prefer to do this when all types are legal. 13344 if (!DCI.isAfterLegalizeDAG()) 13345 return SDValue(); 13346 13347 // If all users of SETCC extend its value to a legal integer type 13348 // then we replace SETCC with a subtraction 13349 for (const SDNode *U : N->uses()) 13350 if (U->getOpcode() != ISD::ZERO_EXTEND) 13351 return SDValue(); 13352 13353 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13354 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13355 13356 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13357 13358 if (OpSize < Size) { 13359 switch (CC) { 13360 default: break; 13361 case ISD::SETULT: 13362 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13363 case ISD::SETULE: 13364 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13365 case ISD::SETUGT: 13366 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13367 case ISD::SETUGE: 13368 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13369 } 13370 } 13371 13372 return SDValue(); 13373 } 13374 13375 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13376 DAGCombinerInfo &DCI) const { 13377 SelectionDAG &DAG = DCI.DAG; 13378 SDLoc dl(N); 13379 13380 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13381 // If we're tracking CR bits, we need to be careful that we don't have: 13382 // trunc(binary-ops(zext(x), zext(y))) 13383 // or 13384 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13385 // such that we're unnecessarily moving things into GPRs when it would be 13386 // better to keep them in CR bits. 13387 13388 // Note that trunc here can be an actual i1 trunc, or can be the effective 13389 // truncation that comes from a setcc or select_cc. 13390 if (N->getOpcode() == ISD::TRUNCATE && 13391 N->getValueType(0) != MVT::i1) 13392 return SDValue(); 13393 13394 if (N->getOperand(0).getValueType() != MVT::i32 && 13395 N->getOperand(0).getValueType() != MVT::i64) 13396 return SDValue(); 13397 13398 if (N->getOpcode() == ISD::SETCC || 13399 N->getOpcode() == ISD::SELECT_CC) { 13400 // If we're looking at a comparison, then we need to make sure that the 13401 // high bits (all except for the first) don't matter the result. 13402 ISD::CondCode CC = 13403 cast<CondCodeSDNode>(N->getOperand( 13404 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13405 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13406 13407 if (ISD::isSignedIntSetCC(CC)) { 13408 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13409 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13410 return SDValue(); 13411 } else if (ISD::isUnsignedIntSetCC(CC)) { 13412 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13413 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13414 !DAG.MaskedValueIsZero(N->getOperand(1), 13415 APInt::getHighBitsSet(OpBits, OpBits-1))) 13416 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13417 : SDValue()); 13418 } else { 13419 // This is neither a signed nor an unsigned comparison, just make sure 13420 // that the high bits are equal. 13421 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13422 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13423 13424 // We don't really care about what is known about the first bit (if 13425 // anything), so pretend that it is known zero for both to ensure they can 13426 // be compared as constants. 13427 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13428 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13429 13430 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13431 Op1Known.getConstant() != Op2Known.getConstant()) 13432 return SDValue(); 13433 } 13434 } 13435 13436 // We now know that the higher-order bits are irrelevant, we just need to 13437 // make sure that all of the intermediate operations are bit operations, and 13438 // all inputs are extensions. 13439 if (N->getOperand(0).getOpcode() != ISD::AND && 13440 N->getOperand(0).getOpcode() != ISD::OR && 13441 N->getOperand(0).getOpcode() != ISD::XOR && 13442 N->getOperand(0).getOpcode() != ISD::SELECT && 13443 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13444 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13445 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13446 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13447 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13448 return SDValue(); 13449 13450 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13451 N->getOperand(1).getOpcode() != ISD::AND && 13452 N->getOperand(1).getOpcode() != ISD::OR && 13453 N->getOperand(1).getOpcode() != ISD::XOR && 13454 N->getOperand(1).getOpcode() != ISD::SELECT && 13455 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13456 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13457 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13458 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13459 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13460 return SDValue(); 13461 13462 SmallVector<SDValue, 4> Inputs; 13463 SmallVector<SDValue, 8> BinOps, PromOps; 13464 SmallPtrSet<SDNode *, 16> Visited; 13465 13466 for (unsigned i = 0; i < 2; ++i) { 13467 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13468 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13469 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13470 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13471 isa<ConstantSDNode>(N->getOperand(i))) 13472 Inputs.push_back(N->getOperand(i)); 13473 else 13474 BinOps.push_back(N->getOperand(i)); 13475 13476 if (N->getOpcode() == ISD::TRUNCATE) 13477 break; 13478 } 13479 13480 // Visit all inputs, collect all binary operations (and, or, xor and 13481 // select) that are all fed by extensions. 13482 while (!BinOps.empty()) { 13483 SDValue BinOp = BinOps.pop_back_val(); 13484 13485 if (!Visited.insert(BinOp.getNode()).second) 13486 continue; 13487 13488 PromOps.push_back(BinOp); 13489 13490 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13491 // The condition of the select is not promoted. 13492 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13493 continue; 13494 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13495 continue; 13496 13497 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13498 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13499 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13500 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13501 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13502 Inputs.push_back(BinOp.getOperand(i)); 13503 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13504 BinOp.getOperand(i).getOpcode() == ISD::OR || 13505 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13506 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13507 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13508 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13509 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13510 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13511 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13512 BinOps.push_back(BinOp.getOperand(i)); 13513 } else { 13514 // We have an input that is not an extension or another binary 13515 // operation; we'll abort this transformation. 13516 return SDValue(); 13517 } 13518 } 13519 } 13520 13521 // Make sure that this is a self-contained cluster of operations (which 13522 // is not quite the same thing as saying that everything has only one 13523 // use). 13524 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13525 if (isa<ConstantSDNode>(Inputs[i])) 13526 continue; 13527 13528 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13529 if (User != N && !Visited.count(User)) 13530 return SDValue(); 13531 13532 // Make sure that we're not going to promote the non-output-value 13533 // operand(s) or SELECT or SELECT_CC. 13534 // FIXME: Although we could sometimes handle this, and it does occur in 13535 // practice that one of the condition inputs to the select is also one of 13536 // the outputs, we currently can't deal with this. 13537 if (User->getOpcode() == ISD::SELECT) { 13538 if (User->getOperand(0) == Inputs[i]) 13539 return SDValue(); 13540 } else if (User->getOpcode() == ISD::SELECT_CC) { 13541 if (User->getOperand(0) == Inputs[i] || 13542 User->getOperand(1) == Inputs[i]) 13543 return SDValue(); 13544 } 13545 } 13546 } 13547 13548 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13549 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13550 if (User != N && !Visited.count(User)) 13551 return SDValue(); 13552 13553 // Make sure that we're not going to promote the non-output-value 13554 // operand(s) or SELECT or SELECT_CC. 13555 // FIXME: Although we could sometimes handle this, and it does occur in 13556 // practice that one of the condition inputs to the select is also one of 13557 // the outputs, we currently can't deal with this. 13558 if (User->getOpcode() == ISD::SELECT) { 13559 if (User->getOperand(0) == PromOps[i]) 13560 return SDValue(); 13561 } else if (User->getOpcode() == ISD::SELECT_CC) { 13562 if (User->getOperand(0) == PromOps[i] || 13563 User->getOperand(1) == PromOps[i]) 13564 return SDValue(); 13565 } 13566 } 13567 } 13568 13569 // Replace all inputs with the extension operand. 13570 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13571 // Constants may have users outside the cluster of to-be-promoted nodes, 13572 // and so we need to replace those as we do the promotions. 13573 if (isa<ConstantSDNode>(Inputs[i])) 13574 continue; 13575 else 13576 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13577 } 13578 13579 std::list<HandleSDNode> PromOpHandles; 13580 for (auto &PromOp : PromOps) 13581 PromOpHandles.emplace_back(PromOp); 13582 13583 // Replace all operations (these are all the same, but have a different 13584 // (i1) return type). DAG.getNode will validate that the types of 13585 // a binary operator match, so go through the list in reverse so that 13586 // we've likely promoted both operands first. Any intermediate truncations or 13587 // extensions disappear. 13588 while (!PromOpHandles.empty()) { 13589 SDValue PromOp = PromOpHandles.back().getValue(); 13590 PromOpHandles.pop_back(); 13591 13592 if (PromOp.getOpcode() == ISD::TRUNCATE || 13593 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13594 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13595 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13596 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13597 PromOp.getOperand(0).getValueType() != MVT::i1) { 13598 // The operand is not yet ready (see comment below). 13599 PromOpHandles.emplace_front(PromOp); 13600 continue; 13601 } 13602 13603 SDValue RepValue = PromOp.getOperand(0); 13604 if (isa<ConstantSDNode>(RepValue)) 13605 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13606 13607 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13608 continue; 13609 } 13610 13611 unsigned C; 13612 switch (PromOp.getOpcode()) { 13613 default: C = 0; break; 13614 case ISD::SELECT: C = 1; break; 13615 case ISD::SELECT_CC: C = 2; break; 13616 } 13617 13618 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13619 PromOp.getOperand(C).getValueType() != MVT::i1) || 13620 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13621 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13622 // The to-be-promoted operands of this node have not yet been 13623 // promoted (this should be rare because we're going through the 13624 // list backward, but if one of the operands has several users in 13625 // this cluster of to-be-promoted nodes, it is possible). 13626 PromOpHandles.emplace_front(PromOp); 13627 continue; 13628 } 13629 13630 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13631 PromOp.getNode()->op_end()); 13632 13633 // If there are any constant inputs, make sure they're replaced now. 13634 for (unsigned i = 0; i < 2; ++i) 13635 if (isa<ConstantSDNode>(Ops[C+i])) 13636 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13637 13638 DAG.ReplaceAllUsesOfValueWith(PromOp, 13639 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13640 } 13641 13642 // Now we're left with the initial truncation itself. 13643 if (N->getOpcode() == ISD::TRUNCATE) 13644 return N->getOperand(0); 13645 13646 // Otherwise, this is a comparison. The operands to be compared have just 13647 // changed type (to i1), but everything else is the same. 13648 return SDValue(N, 0); 13649 } 13650 13651 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13652 DAGCombinerInfo &DCI) const { 13653 SelectionDAG &DAG = DCI.DAG; 13654 SDLoc dl(N); 13655 13656 // If we're tracking CR bits, we need to be careful that we don't have: 13657 // zext(binary-ops(trunc(x), trunc(y))) 13658 // or 13659 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13660 // such that we're unnecessarily moving things into CR bits that can more 13661 // efficiently stay in GPRs. Note that if we're not certain that the high 13662 // bits are set as required by the final extension, we still may need to do 13663 // some masking to get the proper behavior. 13664 13665 // This same functionality is important on PPC64 when dealing with 13666 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13667 // the return values of functions. Because it is so similar, it is handled 13668 // here as well. 13669 13670 if (N->getValueType(0) != MVT::i32 && 13671 N->getValueType(0) != MVT::i64) 13672 return SDValue(); 13673 13674 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13675 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13676 return SDValue(); 13677 13678 if (N->getOperand(0).getOpcode() != ISD::AND && 13679 N->getOperand(0).getOpcode() != ISD::OR && 13680 N->getOperand(0).getOpcode() != ISD::XOR && 13681 N->getOperand(0).getOpcode() != ISD::SELECT && 13682 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13683 return SDValue(); 13684 13685 SmallVector<SDValue, 4> Inputs; 13686 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13687 SmallPtrSet<SDNode *, 16> Visited; 13688 13689 // Visit all inputs, collect all binary operations (and, or, xor and 13690 // select) that are all fed by truncations. 13691 while (!BinOps.empty()) { 13692 SDValue BinOp = BinOps.pop_back_val(); 13693 13694 if (!Visited.insert(BinOp.getNode()).second) 13695 continue; 13696 13697 PromOps.push_back(BinOp); 13698 13699 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13700 // The condition of the select is not promoted. 13701 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13702 continue; 13703 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13704 continue; 13705 13706 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13707 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13708 Inputs.push_back(BinOp.getOperand(i)); 13709 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13710 BinOp.getOperand(i).getOpcode() == ISD::OR || 13711 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13712 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13713 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13714 BinOps.push_back(BinOp.getOperand(i)); 13715 } else { 13716 // We have an input that is not a truncation or another binary 13717 // operation; we'll abort this transformation. 13718 return SDValue(); 13719 } 13720 } 13721 } 13722 13723 // The operands of a select that must be truncated when the select is 13724 // promoted because the operand is actually part of the to-be-promoted set. 13725 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13726 13727 // Make sure that this is a self-contained cluster of operations (which 13728 // is not quite the same thing as saying that everything has only one 13729 // use). 13730 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13731 if (isa<ConstantSDNode>(Inputs[i])) 13732 continue; 13733 13734 for (SDNode *User : Inputs[i].getNode()->uses()) { 13735 if (User != N && !Visited.count(User)) 13736 return SDValue(); 13737 13738 // If we're going to promote the non-output-value operand(s) or SELECT or 13739 // SELECT_CC, record them for truncation. 13740 if (User->getOpcode() == ISD::SELECT) { 13741 if (User->getOperand(0) == Inputs[i]) 13742 SelectTruncOp[0].insert(std::make_pair(User, 13743 User->getOperand(0).getValueType())); 13744 } else if (User->getOpcode() == ISD::SELECT_CC) { 13745 if (User->getOperand(0) == Inputs[i]) 13746 SelectTruncOp[0].insert(std::make_pair(User, 13747 User->getOperand(0).getValueType())); 13748 if (User->getOperand(1) == Inputs[i]) 13749 SelectTruncOp[1].insert(std::make_pair(User, 13750 User->getOperand(1).getValueType())); 13751 } 13752 } 13753 } 13754 13755 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13756 for (SDNode *User : PromOps[i].getNode()->uses()) { 13757 if (User != N && !Visited.count(User)) 13758 return SDValue(); 13759 13760 // If we're going to promote the non-output-value operand(s) or SELECT or 13761 // SELECT_CC, record them for truncation. 13762 if (User->getOpcode() == ISD::SELECT) { 13763 if (User->getOperand(0) == PromOps[i]) 13764 SelectTruncOp[0].insert(std::make_pair(User, 13765 User->getOperand(0).getValueType())); 13766 } else if (User->getOpcode() == ISD::SELECT_CC) { 13767 if (User->getOperand(0) == PromOps[i]) 13768 SelectTruncOp[0].insert(std::make_pair(User, 13769 User->getOperand(0).getValueType())); 13770 if (User->getOperand(1) == PromOps[i]) 13771 SelectTruncOp[1].insert(std::make_pair(User, 13772 User->getOperand(1).getValueType())); 13773 } 13774 } 13775 } 13776 13777 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13778 bool ReallyNeedsExt = false; 13779 if (N->getOpcode() != ISD::ANY_EXTEND) { 13780 // If all of the inputs are not already sign/zero extended, then 13781 // we'll still need to do that at the end. 13782 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13783 if (isa<ConstantSDNode>(Inputs[i])) 13784 continue; 13785 13786 unsigned OpBits = 13787 Inputs[i].getOperand(0).getValueSizeInBits(); 13788 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13789 13790 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13791 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13792 APInt::getHighBitsSet(OpBits, 13793 OpBits-PromBits))) || 13794 (N->getOpcode() == ISD::SIGN_EXTEND && 13795 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13796 (OpBits-(PromBits-1)))) { 13797 ReallyNeedsExt = true; 13798 break; 13799 } 13800 } 13801 } 13802 13803 // Replace all inputs, either with the truncation operand, or a 13804 // truncation or extension to the final output type. 13805 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13806 // Constant inputs need to be replaced with the to-be-promoted nodes that 13807 // use them because they might have users outside of the cluster of 13808 // promoted nodes. 13809 if (isa<ConstantSDNode>(Inputs[i])) 13810 continue; 13811 13812 SDValue InSrc = Inputs[i].getOperand(0); 13813 if (Inputs[i].getValueType() == N->getValueType(0)) 13814 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13815 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13816 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13817 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13818 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13819 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13820 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13821 else 13822 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13823 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13824 } 13825 13826 std::list<HandleSDNode> PromOpHandles; 13827 for (auto &PromOp : PromOps) 13828 PromOpHandles.emplace_back(PromOp); 13829 13830 // Replace all operations (these are all the same, but have a different 13831 // (promoted) return type). DAG.getNode will validate that the types of 13832 // a binary operator match, so go through the list in reverse so that 13833 // we've likely promoted both operands first. 13834 while (!PromOpHandles.empty()) { 13835 SDValue PromOp = PromOpHandles.back().getValue(); 13836 PromOpHandles.pop_back(); 13837 13838 unsigned C; 13839 switch (PromOp.getOpcode()) { 13840 default: C = 0; break; 13841 case ISD::SELECT: C = 1; break; 13842 case ISD::SELECT_CC: C = 2; break; 13843 } 13844 13845 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13846 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13847 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13848 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13849 // The to-be-promoted operands of this node have not yet been 13850 // promoted (this should be rare because we're going through the 13851 // list backward, but if one of the operands has several users in 13852 // this cluster of to-be-promoted nodes, it is possible). 13853 PromOpHandles.emplace_front(PromOp); 13854 continue; 13855 } 13856 13857 // For SELECT and SELECT_CC nodes, we do a similar check for any 13858 // to-be-promoted comparison inputs. 13859 if (PromOp.getOpcode() == ISD::SELECT || 13860 PromOp.getOpcode() == ISD::SELECT_CC) { 13861 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13862 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13863 (SelectTruncOp[1].count(PromOp.getNode()) && 13864 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13865 PromOpHandles.emplace_front(PromOp); 13866 continue; 13867 } 13868 } 13869 13870 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13871 PromOp.getNode()->op_end()); 13872 13873 // If this node has constant inputs, then they'll need to be promoted here. 13874 for (unsigned i = 0; i < 2; ++i) { 13875 if (!isa<ConstantSDNode>(Ops[C+i])) 13876 continue; 13877 if (Ops[C+i].getValueType() == N->getValueType(0)) 13878 continue; 13879 13880 if (N->getOpcode() == ISD::SIGN_EXTEND) 13881 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13882 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13883 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13884 else 13885 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13886 } 13887 13888 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13889 // truncate them again to the original value type. 13890 if (PromOp.getOpcode() == ISD::SELECT || 13891 PromOp.getOpcode() == ISD::SELECT_CC) { 13892 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13893 if (SI0 != SelectTruncOp[0].end()) 13894 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13895 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13896 if (SI1 != SelectTruncOp[1].end()) 13897 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13898 } 13899 13900 DAG.ReplaceAllUsesOfValueWith(PromOp, 13901 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13902 } 13903 13904 // Now we're left with the initial extension itself. 13905 if (!ReallyNeedsExt) 13906 return N->getOperand(0); 13907 13908 // To zero extend, just mask off everything except for the first bit (in the 13909 // i1 case). 13910 if (N->getOpcode() == ISD::ZERO_EXTEND) 13911 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13912 DAG.getConstant(APInt::getLowBitsSet( 13913 N->getValueSizeInBits(0), PromBits), 13914 dl, N->getValueType(0))); 13915 13916 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13917 "Invalid extension type"); 13918 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13919 SDValue ShiftCst = 13920 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13921 return DAG.getNode( 13922 ISD::SRA, dl, N->getValueType(0), 13923 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13924 ShiftCst); 13925 } 13926 13927 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13928 DAGCombinerInfo &DCI) const { 13929 assert(N->getOpcode() == ISD::SETCC && 13930 "Should be called with a SETCC node"); 13931 13932 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13933 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13934 SDValue LHS = N->getOperand(0); 13935 SDValue RHS = N->getOperand(1); 13936 13937 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13938 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13939 LHS.hasOneUse()) 13940 std::swap(LHS, RHS); 13941 13942 // x == 0-y --> x+y == 0 13943 // x != 0-y --> x+y != 0 13944 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13945 RHS.hasOneUse()) { 13946 SDLoc DL(N); 13947 SelectionDAG &DAG = DCI.DAG; 13948 EVT VT = N->getValueType(0); 13949 EVT OpVT = LHS.getValueType(); 13950 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13951 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13952 } 13953 } 13954 13955 return DAGCombineTruncBoolExt(N, DCI); 13956 } 13957 13958 // Is this an extending load from an f32 to an f64? 13959 static bool isFPExtLoad(SDValue Op) { 13960 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13961 return LD->getExtensionType() == ISD::EXTLOAD && 13962 Op.getValueType() == MVT::f64; 13963 return false; 13964 } 13965 13966 /// Reduces the number of fp-to-int conversion when building a vector. 13967 /// 13968 /// If this vector is built out of floating to integer conversions, 13969 /// transform it to a vector built out of floating point values followed by a 13970 /// single floating to integer conversion of the vector. 13971 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13972 /// becomes (fptosi (build_vector ($A, $B, ...))) 13973 SDValue PPCTargetLowering:: 13974 combineElementTruncationToVectorTruncation(SDNode *N, 13975 DAGCombinerInfo &DCI) const { 13976 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13977 "Should be called with a BUILD_VECTOR node"); 13978 13979 SelectionDAG &DAG = DCI.DAG; 13980 SDLoc dl(N); 13981 13982 SDValue FirstInput = N->getOperand(0); 13983 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13984 "The input operand must be an fp-to-int conversion."); 13985 13986 // This combine happens after legalization so the fp_to_[su]i nodes are 13987 // already converted to PPCSISD nodes. 13988 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13989 if (FirstConversion == PPCISD::FCTIDZ || 13990 FirstConversion == PPCISD::FCTIDUZ || 13991 FirstConversion == PPCISD::FCTIWZ || 13992 FirstConversion == PPCISD::FCTIWUZ) { 13993 bool IsSplat = true; 13994 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13995 FirstConversion == PPCISD::FCTIWUZ; 13996 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13997 SmallVector<SDValue, 4> Ops; 13998 EVT TargetVT = N->getValueType(0); 13999 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14000 SDValue NextOp = N->getOperand(i); 14001 if (NextOp.getOpcode() != PPCISD::MFVSR) 14002 return SDValue(); 14003 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14004 if (NextConversion != FirstConversion) 14005 return SDValue(); 14006 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14007 // This is not valid if the input was originally double precision. It is 14008 // also not profitable to do unless this is an extending load in which 14009 // case doing this combine will allow us to combine consecutive loads. 14010 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14011 return SDValue(); 14012 if (N->getOperand(i) != FirstInput) 14013 IsSplat = false; 14014 } 14015 14016 // If this is a splat, we leave it as-is since there will be only a single 14017 // fp-to-int conversion followed by a splat of the integer. This is better 14018 // for 32-bit and smaller ints and neutral for 64-bit ints. 14019 if (IsSplat) 14020 return SDValue(); 14021 14022 // Now that we know we have the right type of node, get its operands 14023 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14024 SDValue In = N->getOperand(i).getOperand(0); 14025 if (Is32Bit) { 14026 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14027 // here, we know that all inputs are extending loads so this is safe). 14028 if (In.isUndef()) 14029 Ops.push_back(DAG.getUNDEF(SrcVT)); 14030 else { 14031 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14032 MVT::f32, In.getOperand(0), 14033 DAG.getIntPtrConstant(1, dl)); 14034 Ops.push_back(Trunc); 14035 } 14036 } else 14037 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14038 } 14039 14040 unsigned Opcode; 14041 if (FirstConversion == PPCISD::FCTIDZ || 14042 FirstConversion == PPCISD::FCTIWZ) 14043 Opcode = ISD::FP_TO_SINT; 14044 else 14045 Opcode = ISD::FP_TO_UINT; 14046 14047 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14048 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14049 return DAG.getNode(Opcode, dl, TargetVT, BV); 14050 } 14051 return SDValue(); 14052 } 14053 14054 /// Reduce the number of loads when building a vector. 14055 /// 14056 /// Building a vector out of multiple loads can be converted to a load 14057 /// of the vector type if the loads are consecutive. If the loads are 14058 /// consecutive but in descending order, a shuffle is added at the end 14059 /// to reorder the vector. 14060 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14061 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14062 "Should be called with a BUILD_VECTOR node"); 14063 14064 SDLoc dl(N); 14065 14066 // Return early for non byte-sized type, as they can't be consecutive. 14067 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14068 return SDValue(); 14069 14070 bool InputsAreConsecutiveLoads = true; 14071 bool InputsAreReverseConsecutive = true; 14072 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14073 SDValue FirstInput = N->getOperand(0); 14074 bool IsRoundOfExtLoad = false; 14075 14076 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14077 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14078 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14079 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14080 } 14081 // Not a build vector of (possibly fp_rounded) loads. 14082 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14083 N->getNumOperands() == 1) 14084 return SDValue(); 14085 14086 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14087 // If any inputs are fp_round(extload), they all must be. 14088 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14089 return SDValue(); 14090 14091 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14092 N->getOperand(i); 14093 if (NextInput.getOpcode() != ISD::LOAD) 14094 return SDValue(); 14095 14096 SDValue PreviousInput = 14097 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14098 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14099 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14100 14101 // If any inputs are fp_round(extload), they all must be. 14102 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14103 return SDValue(); 14104 14105 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14106 InputsAreConsecutiveLoads = false; 14107 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14108 InputsAreReverseConsecutive = false; 14109 14110 // Exit early if the loads are neither consecutive nor reverse consecutive. 14111 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14112 return SDValue(); 14113 } 14114 14115 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14116 "The loads cannot be both consecutive and reverse consecutive."); 14117 14118 SDValue FirstLoadOp = 14119 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14120 SDValue LastLoadOp = 14121 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14122 N->getOperand(N->getNumOperands()-1); 14123 14124 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14125 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14126 if (InputsAreConsecutiveLoads) { 14127 assert(LD1 && "Input needs to be a LoadSDNode."); 14128 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14129 LD1->getBasePtr(), LD1->getPointerInfo(), 14130 LD1->getAlignment()); 14131 } 14132 if (InputsAreReverseConsecutive) { 14133 assert(LDL && "Input needs to be a LoadSDNode."); 14134 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14135 LDL->getBasePtr(), LDL->getPointerInfo(), 14136 LDL->getAlignment()); 14137 SmallVector<int, 16> Ops; 14138 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14139 Ops.push_back(i); 14140 14141 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14142 DAG.getUNDEF(N->getValueType(0)), Ops); 14143 } 14144 return SDValue(); 14145 } 14146 14147 // This function adds the required vector_shuffle needed to get 14148 // the elements of the vector extract in the correct position 14149 // as specified by the CorrectElems encoding. 14150 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14151 SDValue Input, uint64_t Elems, 14152 uint64_t CorrectElems) { 14153 SDLoc dl(N); 14154 14155 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14156 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14157 14158 // Knowing the element indices being extracted from the original 14159 // vector and the order in which they're being inserted, just put 14160 // them at element indices required for the instruction. 14161 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14162 if (DAG.getDataLayout().isLittleEndian()) 14163 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14164 else 14165 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14166 CorrectElems = CorrectElems >> 8; 14167 Elems = Elems >> 8; 14168 } 14169 14170 SDValue Shuffle = 14171 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14172 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14173 14174 EVT VT = N->getValueType(0); 14175 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14176 14177 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14178 Input.getValueType().getVectorElementType(), 14179 VT.getVectorNumElements()); 14180 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14181 DAG.getValueType(ExtVT)); 14182 } 14183 14184 // Look for build vector patterns where input operands come from sign 14185 // extended vector_extract elements of specific indices. If the correct indices 14186 // aren't used, add a vector shuffle to fix up the indices and create 14187 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14188 // during instruction selection. 14189 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14190 // This array encodes the indices that the vector sign extend instructions 14191 // extract from when extending from one type to another for both BE and LE. 14192 // The right nibble of each byte corresponds to the LE incides. 14193 // and the left nibble of each byte corresponds to the BE incides. 14194 // For example: 0x3074B8FC byte->word 14195 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14196 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14197 // For example: 0x000070F8 byte->double word 14198 // For LE: the allowed indices are: 0x0,0x8 14199 // For BE: the allowed indices are: 0x7,0xF 14200 uint64_t TargetElems[] = { 14201 0x3074B8FC, // b->w 14202 0x000070F8, // b->d 14203 0x10325476, // h->w 14204 0x00003074, // h->d 14205 0x00001032, // w->d 14206 }; 14207 14208 uint64_t Elems = 0; 14209 int Index; 14210 SDValue Input; 14211 14212 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14213 if (!Op) 14214 return false; 14215 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14216 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14217 return false; 14218 14219 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14220 // of the right width. 14221 SDValue Extract = Op.getOperand(0); 14222 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14223 Extract = Extract.getOperand(0); 14224 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14225 return false; 14226 14227 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14228 if (!ExtOp) 14229 return false; 14230 14231 Index = ExtOp->getZExtValue(); 14232 if (Input && Input != Extract.getOperand(0)) 14233 return false; 14234 14235 if (!Input) 14236 Input = Extract.getOperand(0); 14237 14238 Elems = Elems << 8; 14239 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14240 Elems |= Index; 14241 14242 return true; 14243 }; 14244 14245 // If the build vector operands aren't sign extended vector extracts, 14246 // of the same input vector, then return. 14247 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14248 if (!isSExtOfVecExtract(N->getOperand(i))) { 14249 return SDValue(); 14250 } 14251 } 14252 14253 // If the vector extract indicies are not correct, add the appropriate 14254 // vector_shuffle. 14255 int TgtElemArrayIdx; 14256 int InputSize = Input.getValueType().getScalarSizeInBits(); 14257 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14258 if (InputSize + OutputSize == 40) 14259 TgtElemArrayIdx = 0; 14260 else if (InputSize + OutputSize == 72) 14261 TgtElemArrayIdx = 1; 14262 else if (InputSize + OutputSize == 48) 14263 TgtElemArrayIdx = 2; 14264 else if (InputSize + OutputSize == 80) 14265 TgtElemArrayIdx = 3; 14266 else if (InputSize + OutputSize == 96) 14267 TgtElemArrayIdx = 4; 14268 else 14269 return SDValue(); 14270 14271 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14272 CorrectElems = DAG.getDataLayout().isLittleEndian() 14273 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14274 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14275 if (Elems != CorrectElems) { 14276 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14277 } 14278 14279 // Regular lowering will catch cases where a shuffle is not needed. 14280 return SDValue(); 14281 } 14282 14283 // Look for the pattern of a load from a narrow width to i128, feeding 14284 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14285 // (LXVRZX). This node represents a zero extending load that will be matched 14286 // to the Load VSX Vector Rightmost instructions. 14287 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14288 SDLoc DL(N); 14289 14290 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14291 if (N->getValueType(0) != MVT::v1i128) 14292 return SDValue(); 14293 14294 SDValue Operand = N->getOperand(0); 14295 // Proceed with the transformation if the operand to the BUILD_VECTOR 14296 // is a load instruction. 14297 if (Operand.getOpcode() != ISD::LOAD) 14298 return SDValue(); 14299 14300 auto *LD = cast<LoadSDNode>(Operand); 14301 EVT MemoryType = LD->getMemoryVT(); 14302 14303 // This transformation is only valid if the we are loading either a byte, 14304 // halfword, word, or doubleword. 14305 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14306 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14307 14308 // Ensure that the load from the narrow width is being zero extended to i128. 14309 if (!ValidLDType || 14310 (LD->getExtensionType() != ISD::ZEXTLOAD && 14311 LD->getExtensionType() != ISD::EXTLOAD)) 14312 return SDValue(); 14313 14314 SDValue LoadOps[] = { 14315 LD->getChain(), LD->getBasePtr(), 14316 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14317 14318 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14319 DAG.getVTList(MVT::v1i128, MVT::Other), 14320 LoadOps, MemoryType, LD->getMemOperand()); 14321 } 14322 14323 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14324 DAGCombinerInfo &DCI) const { 14325 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14326 "Should be called with a BUILD_VECTOR node"); 14327 14328 SelectionDAG &DAG = DCI.DAG; 14329 SDLoc dl(N); 14330 14331 if (!Subtarget.hasVSX()) 14332 return SDValue(); 14333 14334 // The target independent DAG combiner will leave a build_vector of 14335 // float-to-int conversions intact. We can generate MUCH better code for 14336 // a float-to-int conversion of a vector of floats. 14337 SDValue FirstInput = N->getOperand(0); 14338 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14339 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14340 if (Reduced) 14341 return Reduced; 14342 } 14343 14344 // If we're building a vector out of consecutive loads, just load that 14345 // vector type. 14346 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14347 if (Reduced) 14348 return Reduced; 14349 14350 // If we're building a vector out of extended elements from another vector 14351 // we have P9 vector integer extend instructions. The code assumes legal 14352 // input types (i.e. it can't handle things like v4i16) so do not run before 14353 // legalization. 14354 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14355 Reduced = combineBVOfVecSExt(N, DAG); 14356 if (Reduced) 14357 return Reduced; 14358 } 14359 14360 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14361 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14362 // is a load from <valid narrow width> to i128. 14363 if (Subtarget.isISA3_1()) { 14364 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14365 if (BVOfZLoad) 14366 return BVOfZLoad; 14367 } 14368 14369 if (N->getValueType(0) != MVT::v2f64) 14370 return SDValue(); 14371 14372 // Looking for: 14373 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14374 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14375 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14376 return SDValue(); 14377 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14378 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14379 return SDValue(); 14380 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14381 return SDValue(); 14382 14383 SDValue Ext1 = FirstInput.getOperand(0); 14384 SDValue Ext2 = N->getOperand(1).getOperand(0); 14385 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14386 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14387 return SDValue(); 14388 14389 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14390 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14391 if (!Ext1Op || !Ext2Op) 14392 return SDValue(); 14393 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14394 Ext1.getOperand(0) != Ext2.getOperand(0)) 14395 return SDValue(); 14396 14397 int FirstElem = Ext1Op->getZExtValue(); 14398 int SecondElem = Ext2Op->getZExtValue(); 14399 int SubvecIdx; 14400 if (FirstElem == 0 && SecondElem == 1) 14401 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14402 else if (FirstElem == 2 && SecondElem == 3) 14403 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14404 else 14405 return SDValue(); 14406 14407 SDValue SrcVec = Ext1.getOperand(0); 14408 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14409 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14410 return DAG.getNode(NodeType, dl, MVT::v2f64, 14411 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14412 } 14413 14414 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14415 DAGCombinerInfo &DCI) const { 14416 assert((N->getOpcode() == ISD::SINT_TO_FP || 14417 N->getOpcode() == ISD::UINT_TO_FP) && 14418 "Need an int -> FP conversion node here"); 14419 14420 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14421 return SDValue(); 14422 14423 SelectionDAG &DAG = DCI.DAG; 14424 SDLoc dl(N); 14425 SDValue Op(N, 0); 14426 14427 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14428 // from the hardware. 14429 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14430 return SDValue(); 14431 if (!Op.getOperand(0).getValueType().isSimple()) 14432 return SDValue(); 14433 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14434 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14435 return SDValue(); 14436 14437 SDValue FirstOperand(Op.getOperand(0)); 14438 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14439 (FirstOperand.getValueType() == MVT::i8 || 14440 FirstOperand.getValueType() == MVT::i16); 14441 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14442 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14443 bool DstDouble = Op.getValueType() == MVT::f64; 14444 unsigned ConvOp = Signed ? 14445 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14446 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14447 SDValue WidthConst = 14448 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14449 dl, false); 14450 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14451 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14452 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14453 DAG.getVTList(MVT::f64, MVT::Other), 14454 Ops, MVT::i8, LDN->getMemOperand()); 14455 14456 // For signed conversion, we need to sign-extend the value in the VSR 14457 if (Signed) { 14458 SDValue ExtOps[] = { Ld, WidthConst }; 14459 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14460 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14461 } else 14462 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14463 } 14464 14465 14466 // For i32 intermediate values, unfortunately, the conversion functions 14467 // leave the upper 32 bits of the value are undefined. Within the set of 14468 // scalar instructions, we have no method for zero- or sign-extending the 14469 // value. Thus, we cannot handle i32 intermediate values here. 14470 if (Op.getOperand(0).getValueType() == MVT::i32) 14471 return SDValue(); 14472 14473 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14474 "UINT_TO_FP is supported only with FPCVT"); 14475 14476 // If we have FCFIDS, then use it when converting to single-precision. 14477 // Otherwise, convert to double-precision and then round. 14478 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14479 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14480 : PPCISD::FCFIDS) 14481 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14482 : PPCISD::FCFID); 14483 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14484 ? MVT::f32 14485 : MVT::f64; 14486 14487 // If we're converting from a float, to an int, and back to a float again, 14488 // then we don't need the store/load pair at all. 14489 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14490 Subtarget.hasFPCVT()) || 14491 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14492 SDValue Src = Op.getOperand(0).getOperand(0); 14493 if (Src.getValueType() == MVT::f32) { 14494 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14495 DCI.AddToWorklist(Src.getNode()); 14496 } else if (Src.getValueType() != MVT::f64) { 14497 // Make sure that we don't pick up a ppc_fp128 source value. 14498 return SDValue(); 14499 } 14500 14501 unsigned FCTOp = 14502 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14503 PPCISD::FCTIDUZ; 14504 14505 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14506 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14507 14508 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14509 FP = DAG.getNode(ISD::FP_ROUND, dl, 14510 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14511 DCI.AddToWorklist(FP.getNode()); 14512 } 14513 14514 return FP; 14515 } 14516 14517 return SDValue(); 14518 } 14519 14520 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14521 // builtins) into loads with swaps. 14522 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14523 DAGCombinerInfo &DCI) const { 14524 SelectionDAG &DAG = DCI.DAG; 14525 SDLoc dl(N); 14526 SDValue Chain; 14527 SDValue Base; 14528 MachineMemOperand *MMO; 14529 14530 switch (N->getOpcode()) { 14531 default: 14532 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14533 case ISD::LOAD: { 14534 LoadSDNode *LD = cast<LoadSDNode>(N); 14535 Chain = LD->getChain(); 14536 Base = LD->getBasePtr(); 14537 MMO = LD->getMemOperand(); 14538 // If the MMO suggests this isn't a load of a full vector, leave 14539 // things alone. For a built-in, we have to make the change for 14540 // correctness, so if there is a size problem that will be a bug. 14541 if (MMO->getSize() < 16) 14542 return SDValue(); 14543 break; 14544 } 14545 case ISD::INTRINSIC_W_CHAIN: { 14546 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14547 Chain = Intrin->getChain(); 14548 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14549 // us what we want. Get operand 2 instead. 14550 Base = Intrin->getOperand(2); 14551 MMO = Intrin->getMemOperand(); 14552 break; 14553 } 14554 } 14555 14556 MVT VecTy = N->getValueType(0).getSimpleVT(); 14557 14558 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14559 // aligned and the type is a vector with elements up to 4 bytes 14560 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14561 VecTy.getScalarSizeInBits() <= 32) { 14562 return SDValue(); 14563 } 14564 14565 SDValue LoadOps[] = { Chain, Base }; 14566 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14567 DAG.getVTList(MVT::v2f64, MVT::Other), 14568 LoadOps, MVT::v2f64, MMO); 14569 14570 DCI.AddToWorklist(Load.getNode()); 14571 Chain = Load.getValue(1); 14572 SDValue Swap = DAG.getNode( 14573 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14574 DCI.AddToWorklist(Swap.getNode()); 14575 14576 // Add a bitcast if the resulting load type doesn't match v2f64. 14577 if (VecTy != MVT::v2f64) { 14578 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14579 DCI.AddToWorklist(N.getNode()); 14580 // Package {bitcast value, swap's chain} to match Load's shape. 14581 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14582 N, Swap.getValue(1)); 14583 } 14584 14585 return Swap; 14586 } 14587 14588 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14589 // builtins) into stores with swaps. 14590 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14591 DAGCombinerInfo &DCI) const { 14592 SelectionDAG &DAG = DCI.DAG; 14593 SDLoc dl(N); 14594 SDValue Chain; 14595 SDValue Base; 14596 unsigned SrcOpnd; 14597 MachineMemOperand *MMO; 14598 14599 switch (N->getOpcode()) { 14600 default: 14601 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14602 case ISD::STORE: { 14603 StoreSDNode *ST = cast<StoreSDNode>(N); 14604 Chain = ST->getChain(); 14605 Base = ST->getBasePtr(); 14606 MMO = ST->getMemOperand(); 14607 SrcOpnd = 1; 14608 // If the MMO suggests this isn't a store of a full vector, leave 14609 // things alone. For a built-in, we have to make the change for 14610 // correctness, so if there is a size problem that will be a bug. 14611 if (MMO->getSize() < 16) 14612 return SDValue(); 14613 break; 14614 } 14615 case ISD::INTRINSIC_VOID: { 14616 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14617 Chain = Intrin->getChain(); 14618 // Intrin->getBasePtr() oddly does not get what we want. 14619 Base = Intrin->getOperand(3); 14620 MMO = Intrin->getMemOperand(); 14621 SrcOpnd = 2; 14622 break; 14623 } 14624 } 14625 14626 SDValue Src = N->getOperand(SrcOpnd); 14627 MVT VecTy = Src.getValueType().getSimpleVT(); 14628 14629 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14630 // aligned and the type is a vector with elements up to 4 bytes 14631 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14632 VecTy.getScalarSizeInBits() <= 32) { 14633 return SDValue(); 14634 } 14635 14636 // All stores are done as v2f64 and possible bit cast. 14637 if (VecTy != MVT::v2f64) { 14638 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14639 DCI.AddToWorklist(Src.getNode()); 14640 } 14641 14642 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14643 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14644 DCI.AddToWorklist(Swap.getNode()); 14645 Chain = Swap.getValue(1); 14646 SDValue StoreOps[] = { Chain, Swap, Base }; 14647 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14648 DAG.getVTList(MVT::Other), 14649 StoreOps, VecTy, MMO); 14650 DCI.AddToWorklist(Store.getNode()); 14651 return Store; 14652 } 14653 14654 // Handle DAG combine for STORE (FP_TO_INT F). 14655 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14656 DAGCombinerInfo &DCI) const { 14657 14658 SelectionDAG &DAG = DCI.DAG; 14659 SDLoc dl(N); 14660 unsigned Opcode = N->getOperand(1).getOpcode(); 14661 14662 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14663 && "Not a FP_TO_INT Instruction!"); 14664 14665 SDValue Val = N->getOperand(1).getOperand(0); 14666 EVT Op1VT = N->getOperand(1).getValueType(); 14667 EVT ResVT = Val.getValueType(); 14668 14669 if (!isTypeLegal(ResVT)) 14670 return SDValue(); 14671 14672 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14673 bool ValidTypeForStoreFltAsInt = 14674 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14675 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14676 14677 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14678 return SDValue(); 14679 14680 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14681 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14682 return SDValue(); 14683 14684 // Extend f32 values to f64 14685 if (ResVT.getScalarSizeInBits() == 32) { 14686 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14687 DCI.AddToWorklist(Val.getNode()); 14688 } 14689 14690 // Set signed or unsigned conversion opcode. 14691 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14692 PPCISD::FP_TO_SINT_IN_VSR : 14693 PPCISD::FP_TO_UINT_IN_VSR; 14694 14695 Val = DAG.getNode(ConvOpcode, 14696 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14697 DCI.AddToWorklist(Val.getNode()); 14698 14699 // Set number of bytes being converted. 14700 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14701 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14702 DAG.getIntPtrConstant(ByteSize, dl, false), 14703 DAG.getValueType(Op1VT) }; 14704 14705 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14706 DAG.getVTList(MVT::Other), Ops, 14707 cast<StoreSDNode>(N)->getMemoryVT(), 14708 cast<StoreSDNode>(N)->getMemOperand()); 14709 14710 DCI.AddToWorklist(Val.getNode()); 14711 return Val; 14712 } 14713 14714 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14715 // Check that the source of the element keeps flipping 14716 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14717 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14718 for (int i = 1, e = Mask.size(); i < e; i++) { 14719 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14720 return false; 14721 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14722 return false; 14723 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14724 } 14725 return true; 14726 } 14727 14728 static bool isSplatBV(SDValue Op) { 14729 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14730 return false; 14731 SDValue FirstOp; 14732 14733 // Find first non-undef input. 14734 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14735 FirstOp = Op.getOperand(i); 14736 if (!FirstOp.isUndef()) 14737 break; 14738 } 14739 14740 // All inputs are undef or the same as the first non-undef input. 14741 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14742 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14743 return false; 14744 return true; 14745 } 14746 14747 static SDValue isScalarToVec(SDValue Op) { 14748 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14749 return Op; 14750 if (Op.getOpcode() != ISD::BITCAST) 14751 return SDValue(); 14752 Op = Op.getOperand(0); 14753 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14754 return Op; 14755 return SDValue(); 14756 } 14757 14758 // Fix up the shuffle mask to account for the fact that the result of 14759 // scalar_to_vector is not in lane zero. This just takes all values in 14760 // the ranges specified by the min/max indices and adds the number of 14761 // elements required to ensure each element comes from the respective 14762 // position in the valid lane. 14763 // On little endian, that's just the corresponding element in the other 14764 // half of the vector. On big endian, it is in the same half but right 14765 // justified rather than left justified in that half. 14766 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14767 int LHSMaxIdx, int RHSMinIdx, 14768 int RHSMaxIdx, int HalfVec, 14769 unsigned ValidLaneWidth, 14770 const PPCSubtarget &Subtarget) { 14771 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14772 int Idx = ShuffV[i]; 14773 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14774 ShuffV[i] += 14775 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14776 } 14777 } 14778 14779 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14780 // the original is: 14781 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14782 // In such a case, just change the shuffle mask to extract the element 14783 // from the permuted index. 14784 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14785 const PPCSubtarget &Subtarget) { 14786 SDLoc dl(OrigSToV); 14787 EVT VT = OrigSToV.getValueType(); 14788 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14789 "Expecting a SCALAR_TO_VECTOR here"); 14790 SDValue Input = OrigSToV.getOperand(0); 14791 14792 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14793 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14794 SDValue OrigVector = Input.getOperand(0); 14795 14796 // Can't handle non-const element indices or different vector types 14797 // for the input to the extract and the output of the scalar_to_vector. 14798 if (Idx && VT == OrigVector.getValueType()) { 14799 unsigned NumElts = VT.getVectorNumElements(); 14800 assert( 14801 NumElts > 1 && 14802 "Cannot produce a permuted scalar_to_vector for one element vector"); 14803 SmallVector<int, 16> NewMask(NumElts, -1); 14804 unsigned ResultInElt = NumElts / 2; 14805 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14806 NewMask[ResultInElt] = Idx->getZExtValue(); 14807 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14808 } 14809 } 14810 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14811 OrigSToV.getOperand(0)); 14812 } 14813 14814 // On little endian subtargets, combine shuffles such as: 14815 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14816 // into: 14817 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14818 // because the latter can be matched to a single instruction merge. 14819 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14820 // to put the value into element zero. Adjust the shuffle mask so that the 14821 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14822 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14823 // nodes with elements smaller than doubleword because all the ways 14824 // of getting scalar data into a vector register put the value in the 14825 // rightmost element of the left half of the vector. 14826 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14827 SelectionDAG &DAG) const { 14828 SDValue LHS = SVN->getOperand(0); 14829 SDValue RHS = SVN->getOperand(1); 14830 auto Mask = SVN->getMask(); 14831 int NumElts = LHS.getValueType().getVectorNumElements(); 14832 SDValue Res(SVN, 0); 14833 SDLoc dl(SVN); 14834 bool IsLittleEndian = Subtarget.isLittleEndian(); 14835 14836 // On big endian targets this is only useful for subtargets with direct moves. 14837 // On little endian targets it would be useful for all subtargets with VSX. 14838 // However adding special handling for LE subtargets without direct moves 14839 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14840 // which includes direct moves. 14841 if (!Subtarget.hasDirectMove()) 14842 return Res; 14843 14844 // If this is not a shuffle of a shuffle and the first element comes from 14845 // the second vector, canonicalize to the commuted form. This will make it 14846 // more likely to match one of the single instruction patterns. 14847 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14848 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14849 std::swap(LHS, RHS); 14850 Res = DAG.getCommutedVectorShuffle(*SVN); 14851 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14852 } 14853 14854 // Adjust the shuffle mask if either input vector comes from a 14855 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14856 // form (to prevent the need for a swap). 14857 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14858 SDValue SToVLHS = isScalarToVec(LHS); 14859 SDValue SToVRHS = isScalarToVec(RHS); 14860 if (SToVLHS || SToVRHS) { 14861 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14862 : SToVRHS.getValueType().getVectorNumElements(); 14863 int NumEltsOut = ShuffV.size(); 14864 // The width of the "valid lane" (i.e. the lane that contains the value that 14865 // is vectorized) needs to be expressed in terms of the number of elements 14866 // of the shuffle. It is thereby the ratio of the values before and after 14867 // any bitcast. 14868 unsigned ValidLaneWidth = 14869 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14870 LHS.getValueType().getScalarSizeInBits() 14871 : SToVRHS.getValueType().getScalarSizeInBits() / 14872 RHS.getValueType().getScalarSizeInBits(); 14873 14874 // Initially assume that neither input is permuted. These will be adjusted 14875 // accordingly if either input is. 14876 int LHSMaxIdx = -1; 14877 int RHSMinIdx = -1; 14878 int RHSMaxIdx = -1; 14879 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14880 14881 // Get the permuted scalar to vector nodes for the source(s) that come from 14882 // ISD::SCALAR_TO_VECTOR. 14883 // On big endian systems, this only makes sense for element sizes smaller 14884 // than 64 bits since for 64-bit elements, all instructions already put 14885 // the value into element zero. Since scalar size of LHS and RHS may differ 14886 // after isScalarToVec, this should be checked using their own sizes. 14887 if (SToVLHS) { 14888 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14889 return Res; 14890 // Set up the values for the shuffle vector fixup. 14891 LHSMaxIdx = NumEltsOut / NumEltsIn; 14892 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14893 if (SToVLHS.getValueType() != LHS.getValueType()) 14894 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14895 LHS = SToVLHS; 14896 } 14897 if (SToVRHS) { 14898 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14899 return Res; 14900 RHSMinIdx = NumEltsOut; 14901 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14902 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14903 if (SToVRHS.getValueType() != RHS.getValueType()) 14904 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14905 RHS = SToVRHS; 14906 } 14907 14908 // Fix up the shuffle mask to reflect where the desired element actually is. 14909 // The minimum and maximum indices that correspond to element zero for both 14910 // the LHS and RHS are computed and will control which shuffle mask entries 14911 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14912 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14913 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14914 HalfVec, ValidLaneWidth, Subtarget); 14915 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14916 14917 // We may have simplified away the shuffle. We won't be able to do anything 14918 // further with it here. 14919 if (!isa<ShuffleVectorSDNode>(Res)) 14920 return Res; 14921 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14922 } 14923 14924 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14925 // The common case after we commuted the shuffle is that the RHS is a splat 14926 // and we have elements coming in from the splat at indices that are not 14927 // conducive to using a merge. 14928 // Example: 14929 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14930 if (!isSplatBV(TheSplat)) 14931 return Res; 14932 14933 // We are looking for a mask such that all even elements are from 14934 // one vector and all odd elements from the other. 14935 if (!isAlternatingShuffMask(Mask, NumElts)) 14936 return Res; 14937 14938 // Adjust the mask so we are pulling in the same index from the splat 14939 // as the index from the interesting vector in consecutive elements. 14940 if (IsLittleEndian) { 14941 // Example (even elements from first vector): 14942 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14943 if (Mask[0] < NumElts) 14944 for (int i = 1, e = Mask.size(); i < e; i += 2) 14945 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14946 // Example (odd elements from first vector): 14947 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14948 else 14949 for (int i = 0, e = Mask.size(); i < e; i += 2) 14950 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14951 } else { 14952 // Example (even elements from first vector): 14953 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14954 if (Mask[0] < NumElts) 14955 for (int i = 0, e = Mask.size(); i < e; i += 2) 14956 ShuffV[i] = ShuffV[i + 1] - NumElts; 14957 // Example (odd elements from first vector): 14958 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14959 else 14960 for (int i = 1, e = Mask.size(); i < e; i += 2) 14961 ShuffV[i] = ShuffV[i - 1] - NumElts; 14962 } 14963 14964 // If the RHS has undefs, we need to remove them since we may have created 14965 // a shuffle that adds those instead of the splat value. 14966 SDValue SplatVal = 14967 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14968 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14969 14970 if (IsLittleEndian) 14971 RHS = TheSplat; 14972 else 14973 LHS = TheSplat; 14974 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14975 } 14976 14977 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14978 LSBaseSDNode *LSBase, 14979 DAGCombinerInfo &DCI) const { 14980 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14981 "Not a reverse memop pattern!"); 14982 14983 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14984 auto Mask = SVN->getMask(); 14985 int i = 0; 14986 auto I = Mask.rbegin(); 14987 auto E = Mask.rend(); 14988 14989 for (; I != E; ++I) { 14990 if (*I != i) 14991 return false; 14992 i++; 14993 } 14994 return true; 14995 }; 14996 14997 SelectionDAG &DAG = DCI.DAG; 14998 EVT VT = SVN->getValueType(0); 14999 15000 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15001 return SDValue(); 15002 15003 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15004 // See comment in PPCVSXSwapRemoval.cpp. 15005 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15006 if (!Subtarget.hasP9Vector()) 15007 return SDValue(); 15008 15009 if(!IsElementReverse(SVN)) 15010 return SDValue(); 15011 15012 if (LSBase->getOpcode() == ISD::LOAD) { 15013 // If the load return value 0 has more than one user except the 15014 // shufflevector instruction, it is not profitable to replace the 15015 // shufflevector with a reverse load. 15016 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15017 UI != UE; ++UI) 15018 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15019 return SDValue(); 15020 15021 SDLoc dl(LSBase); 15022 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15023 return DAG.getMemIntrinsicNode( 15024 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15025 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15026 } 15027 15028 if (LSBase->getOpcode() == ISD::STORE) { 15029 // If there are other uses of the shuffle, the swap cannot be avoided. 15030 // Forcing the use of an X-Form (since swapped stores only have 15031 // X-Forms) without removing the swap is unprofitable. 15032 if (!SVN->hasOneUse()) 15033 return SDValue(); 15034 15035 SDLoc dl(LSBase); 15036 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15037 LSBase->getBasePtr()}; 15038 return DAG.getMemIntrinsicNode( 15039 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15040 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15041 } 15042 15043 llvm_unreachable("Expected a load or store node here"); 15044 } 15045 15046 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15047 DAGCombinerInfo &DCI) const { 15048 SelectionDAG &DAG = DCI.DAG; 15049 SDLoc dl(N); 15050 switch (N->getOpcode()) { 15051 default: break; 15052 case ISD::ADD: 15053 return combineADD(N, DCI); 15054 case ISD::SHL: 15055 return combineSHL(N, DCI); 15056 case ISD::SRA: 15057 return combineSRA(N, DCI); 15058 case ISD::SRL: 15059 return combineSRL(N, DCI); 15060 case ISD::MUL: 15061 return combineMUL(N, DCI); 15062 case ISD::FMA: 15063 case PPCISD::FNMSUB: 15064 return combineFMALike(N, DCI); 15065 case PPCISD::SHL: 15066 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15067 return N->getOperand(0); 15068 break; 15069 case PPCISD::SRL: 15070 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15071 return N->getOperand(0); 15072 break; 15073 case PPCISD::SRA: 15074 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15075 if (C->isZero() || // 0 >>s V -> 0. 15076 C->isAllOnes()) // -1 >>s V -> -1. 15077 return N->getOperand(0); 15078 } 15079 break; 15080 case ISD::SIGN_EXTEND: 15081 case ISD::ZERO_EXTEND: 15082 case ISD::ANY_EXTEND: 15083 return DAGCombineExtBoolTrunc(N, DCI); 15084 case ISD::TRUNCATE: 15085 return combineTRUNCATE(N, DCI); 15086 case ISD::SETCC: 15087 if (SDValue CSCC = combineSetCC(N, DCI)) 15088 return CSCC; 15089 LLVM_FALLTHROUGH; 15090 case ISD::SELECT_CC: 15091 return DAGCombineTruncBoolExt(N, DCI); 15092 case ISD::SINT_TO_FP: 15093 case ISD::UINT_TO_FP: 15094 return combineFPToIntToFP(N, DCI); 15095 case ISD::VECTOR_SHUFFLE: 15096 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15097 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15098 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15099 } 15100 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15101 case ISD::STORE: { 15102 15103 EVT Op1VT = N->getOperand(1).getValueType(); 15104 unsigned Opcode = N->getOperand(1).getOpcode(); 15105 15106 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15107 SDValue Val= combineStoreFPToInt(N, DCI); 15108 if (Val) 15109 return Val; 15110 } 15111 15112 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15113 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15114 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15115 if (Val) 15116 return Val; 15117 } 15118 15119 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15120 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15121 N->getOperand(1).getNode()->hasOneUse() && 15122 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15123 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15124 15125 // STBRX can only handle simple types and it makes no sense to store less 15126 // two bytes in byte-reversed order. 15127 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15128 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15129 break; 15130 15131 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15132 // Do an any-extend to 32-bits if this is a half-word input. 15133 if (BSwapOp.getValueType() == MVT::i16) 15134 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15135 15136 // If the type of BSWAP operand is wider than stored memory width 15137 // it need to be shifted to the right side before STBRX. 15138 if (Op1VT.bitsGT(mVT)) { 15139 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15140 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15141 DAG.getConstant(Shift, dl, MVT::i32)); 15142 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15143 if (Op1VT == MVT::i64) 15144 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15145 } 15146 15147 SDValue Ops[] = { 15148 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15149 }; 15150 return 15151 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15152 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15153 cast<StoreSDNode>(N)->getMemOperand()); 15154 } 15155 15156 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15157 // So it can increase the chance of CSE constant construction. 15158 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15159 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15160 // Need to sign-extended to 64-bits to handle negative values. 15161 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15162 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15163 MemVT.getSizeInBits()); 15164 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15165 15166 // DAG.getTruncStore() can't be used here because it doesn't accept 15167 // the general (base + offset) addressing mode. 15168 // So we use UpdateNodeOperands and setTruncatingStore instead. 15169 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15170 N->getOperand(3)); 15171 cast<StoreSDNode>(N)->setTruncatingStore(true); 15172 return SDValue(N, 0); 15173 } 15174 15175 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15176 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15177 if (Op1VT.isSimple()) { 15178 MVT StoreVT = Op1VT.getSimpleVT(); 15179 if (Subtarget.needsSwapsForVSXMemOps() && 15180 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15181 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15182 return expandVSXStoreForLE(N, DCI); 15183 } 15184 break; 15185 } 15186 case ISD::LOAD: { 15187 LoadSDNode *LD = cast<LoadSDNode>(N); 15188 EVT VT = LD->getValueType(0); 15189 15190 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15191 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15192 if (VT.isSimple()) { 15193 MVT LoadVT = VT.getSimpleVT(); 15194 if (Subtarget.needsSwapsForVSXMemOps() && 15195 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15196 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15197 return expandVSXLoadForLE(N, DCI); 15198 } 15199 15200 // We sometimes end up with a 64-bit integer load, from which we extract 15201 // two single-precision floating-point numbers. This happens with 15202 // std::complex<float>, and other similar structures, because of the way we 15203 // canonicalize structure copies. However, if we lack direct moves, 15204 // then the final bitcasts from the extracted integer values to the 15205 // floating-point numbers turn into store/load pairs. Even with direct moves, 15206 // just loading the two floating-point numbers is likely better. 15207 auto ReplaceTwoFloatLoad = [&]() { 15208 if (VT != MVT::i64) 15209 return false; 15210 15211 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15212 LD->isVolatile()) 15213 return false; 15214 15215 // We're looking for a sequence like this: 15216 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15217 // t16: i64 = srl t13, Constant:i32<32> 15218 // t17: i32 = truncate t16 15219 // t18: f32 = bitcast t17 15220 // t19: i32 = truncate t13 15221 // t20: f32 = bitcast t19 15222 15223 if (!LD->hasNUsesOfValue(2, 0)) 15224 return false; 15225 15226 auto UI = LD->use_begin(); 15227 while (UI.getUse().getResNo() != 0) ++UI; 15228 SDNode *Trunc = *UI++; 15229 while (UI.getUse().getResNo() != 0) ++UI; 15230 SDNode *RightShift = *UI; 15231 if (Trunc->getOpcode() != ISD::TRUNCATE) 15232 std::swap(Trunc, RightShift); 15233 15234 if (Trunc->getOpcode() != ISD::TRUNCATE || 15235 Trunc->getValueType(0) != MVT::i32 || 15236 !Trunc->hasOneUse()) 15237 return false; 15238 if (RightShift->getOpcode() != ISD::SRL || 15239 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15240 RightShift->getConstantOperandVal(1) != 32 || 15241 !RightShift->hasOneUse()) 15242 return false; 15243 15244 SDNode *Trunc2 = *RightShift->use_begin(); 15245 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15246 Trunc2->getValueType(0) != MVT::i32 || 15247 !Trunc2->hasOneUse()) 15248 return false; 15249 15250 SDNode *Bitcast = *Trunc->use_begin(); 15251 SDNode *Bitcast2 = *Trunc2->use_begin(); 15252 15253 if (Bitcast->getOpcode() != ISD::BITCAST || 15254 Bitcast->getValueType(0) != MVT::f32) 15255 return false; 15256 if (Bitcast2->getOpcode() != ISD::BITCAST || 15257 Bitcast2->getValueType(0) != MVT::f32) 15258 return false; 15259 15260 if (Subtarget.isLittleEndian()) 15261 std::swap(Bitcast, Bitcast2); 15262 15263 // Bitcast has the second float (in memory-layout order) and Bitcast2 15264 // has the first one. 15265 15266 SDValue BasePtr = LD->getBasePtr(); 15267 if (LD->isIndexed()) { 15268 assert(LD->getAddressingMode() == ISD::PRE_INC && 15269 "Non-pre-inc AM on PPC?"); 15270 BasePtr = 15271 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15272 LD->getOffset()); 15273 } 15274 15275 auto MMOFlags = 15276 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15277 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15278 LD->getPointerInfo(), LD->getAlignment(), 15279 MMOFlags, LD->getAAInfo()); 15280 SDValue AddPtr = 15281 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15282 BasePtr, DAG.getIntPtrConstant(4, dl)); 15283 SDValue FloatLoad2 = DAG.getLoad( 15284 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15285 LD->getPointerInfo().getWithOffset(4), 15286 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15287 15288 if (LD->isIndexed()) { 15289 // Note that DAGCombine should re-form any pre-increment load(s) from 15290 // what is produced here if that makes sense. 15291 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15292 } 15293 15294 DCI.CombineTo(Bitcast2, FloatLoad); 15295 DCI.CombineTo(Bitcast, FloatLoad2); 15296 15297 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15298 SDValue(FloatLoad2.getNode(), 1)); 15299 return true; 15300 }; 15301 15302 if (ReplaceTwoFloatLoad()) 15303 return SDValue(N, 0); 15304 15305 EVT MemVT = LD->getMemoryVT(); 15306 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15307 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15308 if (LD->isUnindexed() && VT.isVector() && 15309 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15310 // P8 and later hardware should just use LOAD. 15311 !Subtarget.hasP8Vector() && 15312 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15313 VT == MVT::v4f32))) && 15314 LD->getAlign() < ABIAlignment) { 15315 // This is a type-legal unaligned Altivec load. 15316 SDValue Chain = LD->getChain(); 15317 SDValue Ptr = LD->getBasePtr(); 15318 bool isLittleEndian = Subtarget.isLittleEndian(); 15319 15320 // This implements the loading of unaligned vectors as described in 15321 // the venerable Apple Velocity Engine overview. Specifically: 15322 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15323 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15324 // 15325 // The general idea is to expand a sequence of one or more unaligned 15326 // loads into an alignment-based permutation-control instruction (lvsl 15327 // or lvsr), a series of regular vector loads (which always truncate 15328 // their input address to an aligned address), and a series of 15329 // permutations. The results of these permutations are the requested 15330 // loaded values. The trick is that the last "extra" load is not taken 15331 // from the address you might suspect (sizeof(vector) bytes after the 15332 // last requested load), but rather sizeof(vector) - 1 bytes after the 15333 // last requested vector. The point of this is to avoid a page fault if 15334 // the base address happened to be aligned. This works because if the 15335 // base address is aligned, then adding less than a full vector length 15336 // will cause the last vector in the sequence to be (re)loaded. 15337 // Otherwise, the next vector will be fetched as you might suspect was 15338 // necessary. 15339 15340 // We might be able to reuse the permutation generation from 15341 // a different base address offset from this one by an aligned amount. 15342 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15343 // optimization later. 15344 Intrinsic::ID Intr, IntrLD, IntrPerm; 15345 MVT PermCntlTy, PermTy, LDTy; 15346 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15347 : Intrinsic::ppc_altivec_lvsl; 15348 IntrLD = Intrinsic::ppc_altivec_lvx; 15349 IntrPerm = Intrinsic::ppc_altivec_vperm; 15350 PermCntlTy = MVT::v16i8; 15351 PermTy = MVT::v4i32; 15352 LDTy = MVT::v4i32; 15353 15354 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15355 15356 // Create the new MMO for the new base load. It is like the original MMO, 15357 // but represents an area in memory almost twice the vector size centered 15358 // on the original address. If the address is unaligned, we might start 15359 // reading up to (sizeof(vector)-1) bytes below the address of the 15360 // original unaligned load. 15361 MachineFunction &MF = DAG.getMachineFunction(); 15362 MachineMemOperand *BaseMMO = 15363 MF.getMachineMemOperand(LD->getMemOperand(), 15364 -(long)MemVT.getStoreSize()+1, 15365 2*MemVT.getStoreSize()-1); 15366 15367 // Create the new base load. 15368 SDValue LDXIntID = 15369 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15370 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15371 SDValue BaseLoad = 15372 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15373 DAG.getVTList(PermTy, MVT::Other), 15374 BaseLoadOps, LDTy, BaseMMO); 15375 15376 // Note that the value of IncOffset (which is provided to the next 15377 // load's pointer info offset value, and thus used to calculate the 15378 // alignment), and the value of IncValue (which is actually used to 15379 // increment the pointer value) are different! This is because we 15380 // require the next load to appear to be aligned, even though it 15381 // is actually offset from the base pointer by a lesser amount. 15382 int IncOffset = VT.getSizeInBits() / 8; 15383 int IncValue = IncOffset; 15384 15385 // Walk (both up and down) the chain looking for another load at the real 15386 // (aligned) offset (the alignment of the other load does not matter in 15387 // this case). If found, then do not use the offset reduction trick, as 15388 // that will prevent the loads from being later combined (as they would 15389 // otherwise be duplicates). 15390 if (!findConsecutiveLoad(LD, DAG)) 15391 --IncValue; 15392 15393 SDValue Increment = 15394 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15395 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15396 15397 MachineMemOperand *ExtraMMO = 15398 MF.getMachineMemOperand(LD->getMemOperand(), 15399 1, 2*MemVT.getStoreSize()-1); 15400 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15401 SDValue ExtraLoad = 15402 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15403 DAG.getVTList(PermTy, MVT::Other), 15404 ExtraLoadOps, LDTy, ExtraMMO); 15405 15406 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15407 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15408 15409 // Because vperm has a big-endian bias, we must reverse the order 15410 // of the input vectors and complement the permute control vector 15411 // when generating little endian code. We have already handled the 15412 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15413 // and ExtraLoad here. 15414 SDValue Perm; 15415 if (isLittleEndian) 15416 Perm = BuildIntrinsicOp(IntrPerm, 15417 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15418 else 15419 Perm = BuildIntrinsicOp(IntrPerm, 15420 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15421 15422 if (VT != PermTy) 15423 Perm = Subtarget.hasAltivec() 15424 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15425 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15426 DAG.getTargetConstant(1, dl, MVT::i64)); 15427 // second argument is 1 because this rounding 15428 // is always exact. 15429 15430 // The output of the permutation is our loaded result, the TokenFactor is 15431 // our new chain. 15432 DCI.CombineTo(N, Perm, TF); 15433 return SDValue(N, 0); 15434 } 15435 } 15436 break; 15437 case ISD::INTRINSIC_WO_CHAIN: { 15438 bool isLittleEndian = Subtarget.isLittleEndian(); 15439 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15440 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15441 : Intrinsic::ppc_altivec_lvsl); 15442 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15443 SDValue Add = N->getOperand(1); 15444 15445 int Bits = 4 /* 16 byte alignment */; 15446 15447 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15448 APInt::getAllOnes(Bits /* alignment */) 15449 .zext(Add.getScalarValueSizeInBits()))) { 15450 SDNode *BasePtr = Add->getOperand(0).getNode(); 15451 for (SDNode *U : BasePtr->uses()) { 15452 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15453 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15454 // We've found another LVSL/LVSR, and this address is an aligned 15455 // multiple of that one. The results will be the same, so use the 15456 // one we've just found instead. 15457 15458 return SDValue(U, 0); 15459 } 15460 } 15461 } 15462 15463 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15464 SDNode *BasePtr = Add->getOperand(0).getNode(); 15465 for (SDNode *U : BasePtr->uses()) { 15466 if (U->getOpcode() == ISD::ADD && 15467 isa<ConstantSDNode>(U->getOperand(1)) && 15468 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15469 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15470 (1ULL << Bits) == 15471 0) { 15472 SDNode *OtherAdd = U; 15473 for (SDNode *V : OtherAdd->uses()) { 15474 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15475 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15476 IID) { 15477 return SDValue(V, 0); 15478 } 15479 } 15480 } 15481 } 15482 } 15483 } 15484 15485 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15486 // Expose the vabsduw/h/b opportunity for down stream 15487 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15488 (IID == Intrinsic::ppc_altivec_vmaxsw || 15489 IID == Intrinsic::ppc_altivec_vmaxsh || 15490 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15491 SDValue V1 = N->getOperand(1); 15492 SDValue V2 = N->getOperand(2); 15493 if ((V1.getSimpleValueType() == MVT::v4i32 || 15494 V1.getSimpleValueType() == MVT::v8i16 || 15495 V1.getSimpleValueType() == MVT::v16i8) && 15496 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15497 // (0-a, a) 15498 if (V1.getOpcode() == ISD::SUB && 15499 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15500 V1.getOperand(1) == V2) { 15501 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15502 } 15503 // (a, 0-a) 15504 if (V2.getOpcode() == ISD::SUB && 15505 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15506 V2.getOperand(1) == V1) { 15507 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15508 } 15509 // (x-y, y-x) 15510 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15511 V1.getOperand(0) == V2.getOperand(1) && 15512 V1.getOperand(1) == V2.getOperand(0)) { 15513 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15514 } 15515 } 15516 } 15517 } 15518 15519 break; 15520 case ISD::INTRINSIC_W_CHAIN: 15521 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15522 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15523 if (Subtarget.needsSwapsForVSXMemOps()) { 15524 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15525 default: 15526 break; 15527 case Intrinsic::ppc_vsx_lxvw4x: 15528 case Intrinsic::ppc_vsx_lxvd2x: 15529 return expandVSXLoadForLE(N, DCI); 15530 } 15531 } 15532 break; 15533 case ISD::INTRINSIC_VOID: 15534 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15535 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15536 if (Subtarget.needsSwapsForVSXMemOps()) { 15537 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15538 default: 15539 break; 15540 case Intrinsic::ppc_vsx_stxvw4x: 15541 case Intrinsic::ppc_vsx_stxvd2x: 15542 return expandVSXStoreForLE(N, DCI); 15543 } 15544 } 15545 break; 15546 case ISD::BSWAP: { 15547 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15548 // For subtargets without LDBRX, we can still do better than the default 15549 // expansion even for 64-bit BSWAP (LOAD). 15550 bool Is64BitBswapOn64BitTgt = 15551 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15552 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15553 N->getOperand(0).hasOneUse(); 15554 if (IsSingleUseNormalLd && 15555 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15556 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15557 SDValue Load = N->getOperand(0); 15558 LoadSDNode *LD = cast<LoadSDNode>(Load); 15559 // Create the byte-swapping load. 15560 SDValue Ops[] = { 15561 LD->getChain(), // Chain 15562 LD->getBasePtr(), // Ptr 15563 DAG.getValueType(N->getValueType(0)) // VT 15564 }; 15565 SDValue BSLoad = 15566 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15567 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15568 MVT::i64 : MVT::i32, MVT::Other), 15569 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15570 15571 // If this is an i16 load, insert the truncate. 15572 SDValue ResVal = BSLoad; 15573 if (N->getValueType(0) == MVT::i16) 15574 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15575 15576 // First, combine the bswap away. This makes the value produced by the 15577 // load dead. 15578 DCI.CombineTo(N, ResVal); 15579 15580 // Next, combine the load away, we give it a bogus result value but a real 15581 // chain result. The result value is dead because the bswap is dead. 15582 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15583 15584 // Return N so it doesn't get rechecked! 15585 return SDValue(N, 0); 15586 } 15587 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15588 // before legalization so that the BUILD_PAIR is handled correctly. 15589 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15590 !IsSingleUseNormalLd) 15591 return SDValue(); 15592 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15593 15594 // Can't split volatile or atomic loads. 15595 if (!LD->isSimple()) 15596 return SDValue(); 15597 SDValue BasePtr = LD->getBasePtr(); 15598 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15599 LD->getPointerInfo(), LD->getAlignment()); 15600 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15601 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15602 DAG.getIntPtrConstant(4, dl)); 15603 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15604 LD->getMemOperand(), 4, 4); 15605 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15606 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15607 SDValue Res; 15608 if (Subtarget.isLittleEndian()) 15609 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15610 else 15611 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15612 SDValue TF = 15613 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15614 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15615 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15616 return Res; 15617 } 15618 case PPCISD::VCMP: 15619 // If a VCMP_rec node already exists with exactly the same operands as this 15620 // node, use its result instead of this node (VCMP_rec computes both a CR6 15621 // and a normal output). 15622 // 15623 if (!N->getOperand(0).hasOneUse() && 15624 !N->getOperand(1).hasOneUse() && 15625 !N->getOperand(2).hasOneUse()) { 15626 15627 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15628 SDNode *VCMPrecNode = nullptr; 15629 15630 SDNode *LHSN = N->getOperand(0).getNode(); 15631 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15632 UI != E; ++UI) 15633 if (UI->getOpcode() == PPCISD::VCMP_rec && 15634 UI->getOperand(1) == N->getOperand(1) && 15635 UI->getOperand(2) == N->getOperand(2) && 15636 UI->getOperand(0) == N->getOperand(0)) { 15637 VCMPrecNode = *UI; 15638 break; 15639 } 15640 15641 // If there is no VCMP_rec node, or if the flag value has a single use, 15642 // don't transform this. 15643 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15644 break; 15645 15646 // Look at the (necessarily single) use of the flag value. If it has a 15647 // chain, this transformation is more complex. Note that multiple things 15648 // could use the value result, which we should ignore. 15649 SDNode *FlagUser = nullptr; 15650 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15651 FlagUser == nullptr; ++UI) { 15652 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15653 SDNode *User = *UI; 15654 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15655 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15656 FlagUser = User; 15657 break; 15658 } 15659 } 15660 } 15661 15662 // If the user is a MFOCRF instruction, we know this is safe. 15663 // Otherwise we give up for right now. 15664 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15665 return SDValue(VCMPrecNode, 0); 15666 } 15667 break; 15668 case ISD::BRCOND: { 15669 SDValue Cond = N->getOperand(1); 15670 SDValue Target = N->getOperand(2); 15671 15672 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15673 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15674 Intrinsic::loop_decrement) { 15675 15676 // We now need to make the intrinsic dead (it cannot be instruction 15677 // selected). 15678 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15679 assert(Cond.getNode()->hasOneUse() && 15680 "Counter decrement has more than one use"); 15681 15682 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15683 N->getOperand(0), Target); 15684 } 15685 } 15686 break; 15687 case ISD::BR_CC: { 15688 // If this is a branch on an altivec predicate comparison, lower this so 15689 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15690 // lowering is done pre-legalize, because the legalizer lowers the predicate 15691 // compare down to code that is difficult to reassemble. 15692 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15693 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15694 15695 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15696 // value. If so, pass-through the AND to get to the intrinsic. 15697 if (LHS.getOpcode() == ISD::AND && 15698 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15699 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15700 Intrinsic::loop_decrement && 15701 isa<ConstantSDNode>(LHS.getOperand(1)) && 15702 !isNullConstant(LHS.getOperand(1))) 15703 LHS = LHS.getOperand(0); 15704 15705 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15706 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15707 Intrinsic::loop_decrement && 15708 isa<ConstantSDNode>(RHS)) { 15709 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15710 "Counter decrement comparison is not EQ or NE"); 15711 15712 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15713 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15714 (CC == ISD::SETNE && !Val); 15715 15716 // We now need to make the intrinsic dead (it cannot be instruction 15717 // selected). 15718 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15719 assert(LHS.getNode()->hasOneUse() && 15720 "Counter decrement has more than one use"); 15721 15722 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15723 N->getOperand(0), N->getOperand(4)); 15724 } 15725 15726 int CompareOpc; 15727 bool isDot; 15728 15729 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15730 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15731 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15732 assert(isDot && "Can't compare against a vector result!"); 15733 15734 // If this is a comparison against something other than 0/1, then we know 15735 // that the condition is never/always true. 15736 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15737 if (Val != 0 && Val != 1) { 15738 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15739 return N->getOperand(0); 15740 // Always !=, turn it into an unconditional branch. 15741 return DAG.getNode(ISD::BR, dl, MVT::Other, 15742 N->getOperand(0), N->getOperand(4)); 15743 } 15744 15745 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15746 15747 // Create the PPCISD altivec 'dot' comparison node. 15748 SDValue Ops[] = { 15749 LHS.getOperand(2), // LHS of compare 15750 LHS.getOperand(3), // RHS of compare 15751 DAG.getConstant(CompareOpc, dl, MVT::i32) 15752 }; 15753 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15754 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15755 15756 // Unpack the result based on how the target uses it. 15757 PPC::Predicate CompOpc; 15758 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15759 default: // Can't happen, don't crash on invalid number though. 15760 case 0: // Branch on the value of the EQ bit of CR6. 15761 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15762 break; 15763 case 1: // Branch on the inverted value of the EQ bit of CR6. 15764 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15765 break; 15766 case 2: // Branch on the value of the LT bit of CR6. 15767 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15768 break; 15769 case 3: // Branch on the inverted value of the LT bit of CR6. 15770 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15771 break; 15772 } 15773 15774 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15775 DAG.getConstant(CompOpc, dl, MVT::i32), 15776 DAG.getRegister(PPC::CR6, MVT::i32), 15777 N->getOperand(4), CompNode.getValue(1)); 15778 } 15779 break; 15780 } 15781 case ISD::BUILD_VECTOR: 15782 return DAGCombineBuildVector(N, DCI); 15783 case ISD::ABS: 15784 return combineABS(N, DCI); 15785 case ISD::VSELECT: 15786 return combineVSelect(N, DCI); 15787 } 15788 15789 return SDValue(); 15790 } 15791 15792 SDValue 15793 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15794 SelectionDAG &DAG, 15795 SmallVectorImpl<SDNode *> &Created) const { 15796 // fold (sdiv X, pow2) 15797 EVT VT = N->getValueType(0); 15798 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15799 return SDValue(); 15800 if ((VT != MVT::i32 && VT != MVT::i64) || 15801 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15802 return SDValue(); 15803 15804 SDLoc DL(N); 15805 SDValue N0 = N->getOperand(0); 15806 15807 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15808 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15809 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15810 15811 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15812 Created.push_back(Op.getNode()); 15813 15814 if (IsNegPow2) { 15815 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15816 Created.push_back(Op.getNode()); 15817 } 15818 15819 return Op; 15820 } 15821 15822 //===----------------------------------------------------------------------===// 15823 // Inline Assembly Support 15824 //===----------------------------------------------------------------------===// 15825 15826 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15827 KnownBits &Known, 15828 const APInt &DemandedElts, 15829 const SelectionDAG &DAG, 15830 unsigned Depth) const { 15831 Known.resetAll(); 15832 switch (Op.getOpcode()) { 15833 default: break; 15834 case PPCISD::LBRX: { 15835 // lhbrx is known to have the top bits cleared out. 15836 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15837 Known.Zero = 0xFFFF0000; 15838 break; 15839 } 15840 case ISD::INTRINSIC_WO_CHAIN: { 15841 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15842 default: break; 15843 case Intrinsic::ppc_altivec_vcmpbfp_p: 15844 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15845 case Intrinsic::ppc_altivec_vcmpequb_p: 15846 case Intrinsic::ppc_altivec_vcmpequh_p: 15847 case Intrinsic::ppc_altivec_vcmpequw_p: 15848 case Intrinsic::ppc_altivec_vcmpequd_p: 15849 case Intrinsic::ppc_altivec_vcmpequq_p: 15850 case Intrinsic::ppc_altivec_vcmpgefp_p: 15851 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15852 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15853 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15854 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15855 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15856 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15857 case Intrinsic::ppc_altivec_vcmpgtub_p: 15858 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15859 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15860 case Intrinsic::ppc_altivec_vcmpgtud_p: 15861 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15862 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15863 break; 15864 } 15865 break; 15866 } 15867 case ISD::INTRINSIC_W_CHAIN: { 15868 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15869 default: 15870 break; 15871 case Intrinsic::ppc_load2r: 15872 // Top bits are cleared for load2r (which is the same as lhbrx). 15873 Known.Zero = 0xFFFF0000; 15874 break; 15875 } 15876 break; 15877 } 15878 } 15879 } 15880 15881 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15882 switch (Subtarget.getCPUDirective()) { 15883 default: break; 15884 case PPC::DIR_970: 15885 case PPC::DIR_PWR4: 15886 case PPC::DIR_PWR5: 15887 case PPC::DIR_PWR5X: 15888 case PPC::DIR_PWR6: 15889 case PPC::DIR_PWR6X: 15890 case PPC::DIR_PWR7: 15891 case PPC::DIR_PWR8: 15892 case PPC::DIR_PWR9: 15893 case PPC::DIR_PWR10: 15894 case PPC::DIR_PWR_FUTURE: { 15895 if (!ML) 15896 break; 15897 15898 if (!DisableInnermostLoopAlign32) { 15899 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15900 // so that we can decrease cache misses and branch-prediction misses. 15901 // Actual alignment of the loop will depend on the hotness check and other 15902 // logic in alignBlocks. 15903 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15904 return Align(32); 15905 } 15906 15907 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15908 15909 // For small loops (between 5 and 8 instructions), align to a 32-byte 15910 // boundary so that the entire loop fits in one instruction-cache line. 15911 uint64_t LoopSize = 0; 15912 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15913 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15914 LoopSize += TII->getInstSizeInBytes(*J); 15915 if (LoopSize > 32) 15916 break; 15917 } 15918 15919 if (LoopSize > 16 && LoopSize <= 32) 15920 return Align(32); 15921 15922 break; 15923 } 15924 } 15925 15926 return TargetLowering::getPrefLoopAlignment(ML); 15927 } 15928 15929 /// getConstraintType - Given a constraint, return the type of 15930 /// constraint it is for this target. 15931 PPCTargetLowering::ConstraintType 15932 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15933 if (Constraint.size() == 1) { 15934 switch (Constraint[0]) { 15935 default: break; 15936 case 'b': 15937 case 'r': 15938 case 'f': 15939 case 'd': 15940 case 'v': 15941 case 'y': 15942 return C_RegisterClass; 15943 case 'Z': 15944 // FIXME: While Z does indicate a memory constraint, it specifically 15945 // indicates an r+r address (used in conjunction with the 'y' modifier 15946 // in the replacement string). Currently, we're forcing the base 15947 // register to be r0 in the asm printer (which is interpreted as zero) 15948 // and forming the complete address in the second register. This is 15949 // suboptimal. 15950 return C_Memory; 15951 } 15952 } else if (Constraint == "wc") { // individual CR bits. 15953 return C_RegisterClass; 15954 } else if (Constraint == "wa" || Constraint == "wd" || 15955 Constraint == "wf" || Constraint == "ws" || 15956 Constraint == "wi" || Constraint == "ww") { 15957 return C_RegisterClass; // VSX registers. 15958 } 15959 return TargetLowering::getConstraintType(Constraint); 15960 } 15961 15962 /// Examine constraint type and operand type and determine a weight value. 15963 /// This object must already have been set up with the operand type 15964 /// and the current alternative constraint selected. 15965 TargetLowering::ConstraintWeight 15966 PPCTargetLowering::getSingleConstraintMatchWeight( 15967 AsmOperandInfo &info, const char *constraint) const { 15968 ConstraintWeight weight = CW_Invalid; 15969 Value *CallOperandVal = info.CallOperandVal; 15970 // If we don't have a value, we can't do a match, 15971 // but allow it at the lowest weight. 15972 if (!CallOperandVal) 15973 return CW_Default; 15974 Type *type = CallOperandVal->getType(); 15975 15976 // Look at the constraint type. 15977 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15978 return CW_Register; // an individual CR bit. 15979 else if ((StringRef(constraint) == "wa" || 15980 StringRef(constraint) == "wd" || 15981 StringRef(constraint) == "wf") && 15982 type->isVectorTy()) 15983 return CW_Register; 15984 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15985 return CW_Register; // just hold 64-bit integers data. 15986 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15987 return CW_Register; 15988 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15989 return CW_Register; 15990 15991 switch (*constraint) { 15992 default: 15993 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15994 break; 15995 case 'b': 15996 if (type->isIntegerTy()) 15997 weight = CW_Register; 15998 break; 15999 case 'f': 16000 if (type->isFloatTy()) 16001 weight = CW_Register; 16002 break; 16003 case 'd': 16004 if (type->isDoubleTy()) 16005 weight = CW_Register; 16006 break; 16007 case 'v': 16008 if (type->isVectorTy()) 16009 weight = CW_Register; 16010 break; 16011 case 'y': 16012 weight = CW_Register; 16013 break; 16014 case 'Z': 16015 weight = CW_Memory; 16016 break; 16017 } 16018 return weight; 16019 } 16020 16021 std::pair<unsigned, const TargetRegisterClass *> 16022 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16023 StringRef Constraint, 16024 MVT VT) const { 16025 if (Constraint.size() == 1) { 16026 // GCC RS6000 Constraint Letters 16027 switch (Constraint[0]) { 16028 case 'b': // R1-R31 16029 if (VT == MVT::i64 && Subtarget.isPPC64()) 16030 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16031 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16032 case 'r': // R0-R31 16033 if (VT == MVT::i64 && Subtarget.isPPC64()) 16034 return std::make_pair(0U, &PPC::G8RCRegClass); 16035 return std::make_pair(0U, &PPC::GPRCRegClass); 16036 // 'd' and 'f' constraints are both defined to be "the floating point 16037 // registers", where one is for 32-bit and the other for 64-bit. We don't 16038 // really care overly much here so just give them all the same reg classes. 16039 case 'd': 16040 case 'f': 16041 if (Subtarget.hasSPE()) { 16042 if (VT == MVT::f32 || VT == MVT::i32) 16043 return std::make_pair(0U, &PPC::GPRCRegClass); 16044 if (VT == MVT::f64 || VT == MVT::i64) 16045 return std::make_pair(0U, &PPC::SPERCRegClass); 16046 } else { 16047 if (VT == MVT::f32 || VT == MVT::i32) 16048 return std::make_pair(0U, &PPC::F4RCRegClass); 16049 if (VT == MVT::f64 || VT == MVT::i64) 16050 return std::make_pair(0U, &PPC::F8RCRegClass); 16051 } 16052 break; 16053 case 'v': 16054 if (Subtarget.hasAltivec() && VT.isVector()) 16055 return std::make_pair(0U, &PPC::VRRCRegClass); 16056 else if (Subtarget.hasVSX()) 16057 // Scalars in Altivec registers only make sense with VSX. 16058 return std::make_pair(0U, &PPC::VFRCRegClass); 16059 break; 16060 case 'y': // crrc 16061 return std::make_pair(0U, &PPC::CRRCRegClass); 16062 } 16063 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16064 // An individual CR bit. 16065 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16066 } else if ((Constraint == "wa" || Constraint == "wd" || 16067 Constraint == "wf" || Constraint == "wi") && 16068 Subtarget.hasVSX()) { 16069 // A VSX register for either a scalar (FP) or vector. There is no 16070 // support for single precision scalars on subtargets prior to Power8. 16071 if (VT.isVector()) 16072 return std::make_pair(0U, &PPC::VSRCRegClass); 16073 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16074 return std::make_pair(0U, &PPC::VSSRCRegClass); 16075 return std::make_pair(0U, &PPC::VSFRCRegClass); 16076 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16077 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16078 return std::make_pair(0U, &PPC::VSSRCRegClass); 16079 else 16080 return std::make_pair(0U, &PPC::VSFRCRegClass); 16081 } else if (Constraint == "lr") { 16082 if (VT == MVT::i64) 16083 return std::make_pair(0U, &PPC::LR8RCRegClass); 16084 else 16085 return std::make_pair(0U, &PPC::LRRCRegClass); 16086 } 16087 16088 // Handle special cases of physical registers that are not properly handled 16089 // by the base class. 16090 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16091 // If we name a VSX register, we can't defer to the base class because it 16092 // will not recognize the correct register (their names will be VSL{0-31} 16093 // and V{0-31} so they won't match). So we match them here. 16094 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16095 int VSNum = atoi(Constraint.data() + 3); 16096 assert(VSNum >= 0 && VSNum <= 63 && 16097 "Attempted to access a vsr out of range"); 16098 if (VSNum < 32) 16099 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16100 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16101 } 16102 16103 // For float registers, we can't defer to the base class as it will match 16104 // the SPILLTOVSRRC class. 16105 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16106 int RegNum = atoi(Constraint.data() + 2); 16107 if (RegNum > 31 || RegNum < 0) 16108 report_fatal_error("Invalid floating point register number"); 16109 if (VT == MVT::f32 || VT == MVT::i32) 16110 return Subtarget.hasSPE() 16111 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16112 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16113 if (VT == MVT::f64 || VT == MVT::i64) 16114 return Subtarget.hasSPE() 16115 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16116 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16117 } 16118 } 16119 16120 std::pair<unsigned, const TargetRegisterClass *> R = 16121 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16122 16123 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16124 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16125 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16126 // register. 16127 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16128 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16129 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16130 PPC::GPRCRegClass.contains(R.first)) 16131 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16132 PPC::sub_32, &PPC::G8RCRegClass), 16133 &PPC::G8RCRegClass); 16134 16135 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16136 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16137 R.first = PPC::CR0; 16138 R.second = &PPC::CRRCRegClass; 16139 } 16140 // FIXME: This warning should ideally be emitted in the front end. 16141 const auto &TM = getTargetMachine(); 16142 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16143 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16144 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16145 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16146 errs() << "warning: vector registers 20 to 32 are reserved in the " 16147 "default AIX AltiVec ABI and cannot be used\n"; 16148 } 16149 16150 return R; 16151 } 16152 16153 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16154 /// vector. If it is invalid, don't add anything to Ops. 16155 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16156 std::string &Constraint, 16157 std::vector<SDValue>&Ops, 16158 SelectionDAG &DAG) const { 16159 SDValue Result; 16160 16161 // Only support length 1 constraints. 16162 if (Constraint.length() > 1) return; 16163 16164 char Letter = Constraint[0]; 16165 switch (Letter) { 16166 default: break; 16167 case 'I': 16168 case 'J': 16169 case 'K': 16170 case 'L': 16171 case 'M': 16172 case 'N': 16173 case 'O': 16174 case 'P': { 16175 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16176 if (!CST) return; // Must be an immediate to match. 16177 SDLoc dl(Op); 16178 int64_t Value = CST->getSExtValue(); 16179 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16180 // numbers are printed as such. 16181 switch (Letter) { 16182 default: llvm_unreachable("Unknown constraint letter!"); 16183 case 'I': // "I" is a signed 16-bit constant. 16184 if (isInt<16>(Value)) 16185 Result = DAG.getTargetConstant(Value, dl, TCVT); 16186 break; 16187 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16188 if (isShiftedUInt<16, 16>(Value)) 16189 Result = DAG.getTargetConstant(Value, dl, TCVT); 16190 break; 16191 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16192 if (isShiftedInt<16, 16>(Value)) 16193 Result = DAG.getTargetConstant(Value, dl, TCVT); 16194 break; 16195 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16196 if (isUInt<16>(Value)) 16197 Result = DAG.getTargetConstant(Value, dl, TCVT); 16198 break; 16199 case 'M': // "M" is a constant that is greater than 31. 16200 if (Value > 31) 16201 Result = DAG.getTargetConstant(Value, dl, TCVT); 16202 break; 16203 case 'N': // "N" is a positive constant that is an exact power of two. 16204 if (Value > 0 && isPowerOf2_64(Value)) 16205 Result = DAG.getTargetConstant(Value, dl, TCVT); 16206 break; 16207 case 'O': // "O" is the constant zero. 16208 if (Value == 0) 16209 Result = DAG.getTargetConstant(Value, dl, TCVT); 16210 break; 16211 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16212 if (isInt<16>(-Value)) 16213 Result = DAG.getTargetConstant(Value, dl, TCVT); 16214 break; 16215 } 16216 break; 16217 } 16218 } 16219 16220 if (Result.getNode()) { 16221 Ops.push_back(Result); 16222 return; 16223 } 16224 16225 // Handle standard constraint letters. 16226 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16227 } 16228 16229 // isLegalAddressingMode - Return true if the addressing mode represented 16230 // by AM is legal for this target, for a load/store of the specified type. 16231 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16232 const AddrMode &AM, Type *Ty, 16233 unsigned AS, 16234 Instruction *I) const { 16235 // Vector type r+i form is supported since power9 as DQ form. We don't check 16236 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16237 // imm form is preferred and the offset can be adjusted to use imm form later 16238 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16239 // max offset to check legal addressing mode, we should be a little aggressive 16240 // to contain other offsets for that LSRUse. 16241 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16242 return false; 16243 16244 // PPC allows a sign-extended 16-bit immediate field. 16245 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16246 return false; 16247 16248 // No global is ever allowed as a base. 16249 if (AM.BaseGV) 16250 return false; 16251 16252 // PPC only support r+r, 16253 switch (AM.Scale) { 16254 case 0: // "r+i" or just "i", depending on HasBaseReg. 16255 break; 16256 case 1: 16257 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16258 return false; 16259 // Otherwise we have r+r or r+i. 16260 break; 16261 case 2: 16262 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16263 return false; 16264 // Allow 2*r as r+r. 16265 break; 16266 default: 16267 // No other scales are supported. 16268 return false; 16269 } 16270 16271 return true; 16272 } 16273 16274 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16275 SelectionDAG &DAG) const { 16276 MachineFunction &MF = DAG.getMachineFunction(); 16277 MachineFrameInfo &MFI = MF.getFrameInfo(); 16278 MFI.setReturnAddressIsTaken(true); 16279 16280 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16281 return SDValue(); 16282 16283 SDLoc dl(Op); 16284 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16285 16286 // Make sure the function does not optimize away the store of the RA to 16287 // the stack. 16288 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16289 FuncInfo->setLRStoreRequired(); 16290 bool isPPC64 = Subtarget.isPPC64(); 16291 auto PtrVT = getPointerTy(MF.getDataLayout()); 16292 16293 if (Depth > 0) { 16294 // The link register (return address) is saved in the caller's frame 16295 // not the callee's stack frame. So we must get the caller's frame 16296 // address and load the return address at the LR offset from there. 16297 SDValue FrameAddr = 16298 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16299 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16300 SDValue Offset = 16301 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16302 isPPC64 ? MVT::i64 : MVT::i32); 16303 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16304 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16305 MachinePointerInfo()); 16306 } 16307 16308 // Just load the return address off the stack. 16309 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16310 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16311 MachinePointerInfo()); 16312 } 16313 16314 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16315 SelectionDAG &DAG) const { 16316 SDLoc dl(Op); 16317 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16318 16319 MachineFunction &MF = DAG.getMachineFunction(); 16320 MachineFrameInfo &MFI = MF.getFrameInfo(); 16321 MFI.setFrameAddressIsTaken(true); 16322 16323 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16324 bool isPPC64 = PtrVT == MVT::i64; 16325 16326 // Naked functions never have a frame pointer, and so we use r1. For all 16327 // other functions, this decision must be delayed until during PEI. 16328 unsigned FrameReg; 16329 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16330 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16331 else 16332 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16333 16334 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16335 PtrVT); 16336 while (Depth--) 16337 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16338 FrameAddr, MachinePointerInfo()); 16339 return FrameAddr; 16340 } 16341 16342 // FIXME? Maybe this could be a TableGen attribute on some registers and 16343 // this table could be generated automatically from RegInfo. 16344 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16345 const MachineFunction &MF) const { 16346 bool isPPC64 = Subtarget.isPPC64(); 16347 16348 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16349 if (!is64Bit && VT != LLT::scalar(32)) 16350 report_fatal_error("Invalid register global variable type"); 16351 16352 Register Reg = StringSwitch<Register>(RegName) 16353 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16354 .Case("r2", isPPC64 ? Register() : PPC::R2) 16355 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16356 .Default(Register()); 16357 16358 if (Reg) 16359 return Reg; 16360 report_fatal_error("Invalid register name global variable"); 16361 } 16362 16363 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16364 // 32-bit SVR4 ABI access everything as got-indirect. 16365 if (Subtarget.is32BitELFABI()) 16366 return true; 16367 16368 // AIX accesses everything indirectly through the TOC, which is similar to 16369 // the GOT. 16370 if (Subtarget.isAIXABI()) 16371 return true; 16372 16373 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16374 // If it is small or large code model, module locals are accessed 16375 // indirectly by loading their address from .toc/.got. 16376 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16377 return true; 16378 16379 // JumpTable and BlockAddress are accessed as got-indirect. 16380 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16381 return true; 16382 16383 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16384 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16385 16386 return false; 16387 } 16388 16389 bool 16390 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16391 // The PowerPC target isn't yet aware of offsets. 16392 return false; 16393 } 16394 16395 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16396 const CallInst &I, 16397 MachineFunction &MF, 16398 unsigned Intrinsic) const { 16399 switch (Intrinsic) { 16400 case Intrinsic::ppc_atomicrmw_xchg_i128: 16401 case Intrinsic::ppc_atomicrmw_add_i128: 16402 case Intrinsic::ppc_atomicrmw_sub_i128: 16403 case Intrinsic::ppc_atomicrmw_nand_i128: 16404 case Intrinsic::ppc_atomicrmw_and_i128: 16405 case Intrinsic::ppc_atomicrmw_or_i128: 16406 case Intrinsic::ppc_atomicrmw_xor_i128: 16407 case Intrinsic::ppc_cmpxchg_i128: 16408 Info.opc = ISD::INTRINSIC_W_CHAIN; 16409 Info.memVT = MVT::i128; 16410 Info.ptrVal = I.getArgOperand(0); 16411 Info.offset = 0; 16412 Info.align = Align(16); 16413 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16414 MachineMemOperand::MOVolatile; 16415 return true; 16416 case Intrinsic::ppc_atomic_load_i128: 16417 Info.opc = ISD::INTRINSIC_W_CHAIN; 16418 Info.memVT = MVT::i128; 16419 Info.ptrVal = I.getArgOperand(0); 16420 Info.offset = 0; 16421 Info.align = Align(16); 16422 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16423 return true; 16424 case Intrinsic::ppc_atomic_store_i128: 16425 Info.opc = ISD::INTRINSIC_VOID; 16426 Info.memVT = MVT::i128; 16427 Info.ptrVal = I.getArgOperand(2); 16428 Info.offset = 0; 16429 Info.align = Align(16); 16430 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16431 return true; 16432 case Intrinsic::ppc_altivec_lvx: 16433 case Intrinsic::ppc_altivec_lvxl: 16434 case Intrinsic::ppc_altivec_lvebx: 16435 case Intrinsic::ppc_altivec_lvehx: 16436 case Intrinsic::ppc_altivec_lvewx: 16437 case Intrinsic::ppc_vsx_lxvd2x: 16438 case Intrinsic::ppc_vsx_lxvw4x: 16439 case Intrinsic::ppc_vsx_lxvd2x_be: 16440 case Intrinsic::ppc_vsx_lxvw4x_be: 16441 case Intrinsic::ppc_vsx_lxvl: 16442 case Intrinsic::ppc_vsx_lxvll: { 16443 EVT VT; 16444 switch (Intrinsic) { 16445 case Intrinsic::ppc_altivec_lvebx: 16446 VT = MVT::i8; 16447 break; 16448 case Intrinsic::ppc_altivec_lvehx: 16449 VT = MVT::i16; 16450 break; 16451 case Intrinsic::ppc_altivec_lvewx: 16452 VT = MVT::i32; 16453 break; 16454 case Intrinsic::ppc_vsx_lxvd2x: 16455 case Intrinsic::ppc_vsx_lxvd2x_be: 16456 VT = MVT::v2f64; 16457 break; 16458 default: 16459 VT = MVT::v4i32; 16460 break; 16461 } 16462 16463 Info.opc = ISD::INTRINSIC_W_CHAIN; 16464 Info.memVT = VT; 16465 Info.ptrVal = I.getArgOperand(0); 16466 Info.offset = -VT.getStoreSize()+1; 16467 Info.size = 2*VT.getStoreSize()-1; 16468 Info.align = Align(1); 16469 Info.flags = MachineMemOperand::MOLoad; 16470 return true; 16471 } 16472 case Intrinsic::ppc_altivec_stvx: 16473 case Intrinsic::ppc_altivec_stvxl: 16474 case Intrinsic::ppc_altivec_stvebx: 16475 case Intrinsic::ppc_altivec_stvehx: 16476 case Intrinsic::ppc_altivec_stvewx: 16477 case Intrinsic::ppc_vsx_stxvd2x: 16478 case Intrinsic::ppc_vsx_stxvw4x: 16479 case Intrinsic::ppc_vsx_stxvd2x_be: 16480 case Intrinsic::ppc_vsx_stxvw4x_be: 16481 case Intrinsic::ppc_vsx_stxvl: 16482 case Intrinsic::ppc_vsx_stxvll: { 16483 EVT VT; 16484 switch (Intrinsic) { 16485 case Intrinsic::ppc_altivec_stvebx: 16486 VT = MVT::i8; 16487 break; 16488 case Intrinsic::ppc_altivec_stvehx: 16489 VT = MVT::i16; 16490 break; 16491 case Intrinsic::ppc_altivec_stvewx: 16492 VT = MVT::i32; 16493 break; 16494 case Intrinsic::ppc_vsx_stxvd2x: 16495 case Intrinsic::ppc_vsx_stxvd2x_be: 16496 VT = MVT::v2f64; 16497 break; 16498 default: 16499 VT = MVT::v4i32; 16500 break; 16501 } 16502 16503 Info.opc = ISD::INTRINSIC_VOID; 16504 Info.memVT = VT; 16505 Info.ptrVal = I.getArgOperand(1); 16506 Info.offset = -VT.getStoreSize()+1; 16507 Info.size = 2*VT.getStoreSize()-1; 16508 Info.align = Align(1); 16509 Info.flags = MachineMemOperand::MOStore; 16510 return true; 16511 } 16512 default: 16513 break; 16514 } 16515 16516 return false; 16517 } 16518 16519 /// It returns EVT::Other if the type should be determined using generic 16520 /// target-independent logic. 16521 EVT PPCTargetLowering::getOptimalMemOpType( 16522 const MemOp &Op, const AttributeList &FuncAttributes) const { 16523 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16524 // We should use Altivec/VSX loads and stores when available. For unaligned 16525 // addresses, unaligned VSX loads are only fast starting with the P8. 16526 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16527 (Op.isAligned(Align(16)) || 16528 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16529 return MVT::v4i32; 16530 } 16531 16532 if (Subtarget.isPPC64()) { 16533 return MVT::i64; 16534 } 16535 16536 return MVT::i32; 16537 } 16538 16539 /// Returns true if it is beneficial to convert a load of a constant 16540 /// to just the constant itself. 16541 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16542 Type *Ty) const { 16543 assert(Ty->isIntegerTy()); 16544 16545 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16546 return !(BitSize == 0 || BitSize > 64); 16547 } 16548 16549 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16550 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16551 return false; 16552 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16553 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16554 return NumBits1 == 64 && NumBits2 == 32; 16555 } 16556 16557 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16558 if (!VT1.isInteger() || !VT2.isInteger()) 16559 return false; 16560 unsigned NumBits1 = VT1.getSizeInBits(); 16561 unsigned NumBits2 = VT2.getSizeInBits(); 16562 return NumBits1 == 64 && NumBits2 == 32; 16563 } 16564 16565 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16566 // Generally speaking, zexts are not free, but they are free when they can be 16567 // folded with other operations. 16568 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16569 EVT MemVT = LD->getMemoryVT(); 16570 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16571 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16572 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16573 LD->getExtensionType() == ISD::ZEXTLOAD)) 16574 return true; 16575 } 16576 16577 // FIXME: Add other cases... 16578 // - 32-bit shifts with a zext to i64 16579 // - zext after ctlz, bswap, etc. 16580 // - zext after and by a constant mask 16581 16582 return TargetLowering::isZExtFree(Val, VT2); 16583 } 16584 16585 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16586 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16587 "invalid fpext types"); 16588 // Extending to float128 is not free. 16589 if (DestVT == MVT::f128) 16590 return false; 16591 return true; 16592 } 16593 16594 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16595 return isInt<16>(Imm) || isUInt<16>(Imm); 16596 } 16597 16598 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16599 return isInt<16>(Imm) || isUInt<16>(Imm); 16600 } 16601 16602 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16603 MachineMemOperand::Flags, 16604 bool *Fast) const { 16605 if (DisablePPCUnaligned) 16606 return false; 16607 16608 // PowerPC supports unaligned memory access for simple non-vector types. 16609 // Although accessing unaligned addresses is not as efficient as accessing 16610 // aligned addresses, it is generally more efficient than manual expansion, 16611 // and generally only traps for software emulation when crossing page 16612 // boundaries. 16613 16614 if (!VT.isSimple()) 16615 return false; 16616 16617 if (VT.isFloatingPoint() && !VT.isVector() && 16618 !Subtarget.allowsUnalignedFPAccess()) 16619 return false; 16620 16621 if (VT.getSimpleVT().isVector()) { 16622 if (Subtarget.hasVSX()) { 16623 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16624 VT != MVT::v4f32 && VT != MVT::v4i32) 16625 return false; 16626 } else { 16627 return false; 16628 } 16629 } 16630 16631 if (VT == MVT::ppcf128) 16632 return false; 16633 16634 if (Fast) 16635 *Fast = true; 16636 16637 return true; 16638 } 16639 16640 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16641 SDValue C) const { 16642 // Check integral scalar types. 16643 if (!VT.isScalarInteger()) 16644 return false; 16645 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16646 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16647 return false; 16648 // This transformation will generate >= 2 operations. But the following 16649 // cases will generate <= 2 instructions during ISEL. So exclude them. 16650 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16651 // HW instruction, ie. MULLI 16652 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16653 // instruction is needed than case 1, ie. MULLI and RLDICR 16654 int64_t Imm = ConstNode->getSExtValue(); 16655 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16656 Imm >>= Shift; 16657 if (isInt<16>(Imm)) 16658 return false; 16659 uint64_t UImm = static_cast<uint64_t>(Imm); 16660 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16661 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16662 return true; 16663 } 16664 return false; 16665 } 16666 16667 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16668 EVT VT) const { 16669 return isFMAFasterThanFMulAndFAdd( 16670 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16671 } 16672 16673 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16674 Type *Ty) const { 16675 switch (Ty->getScalarType()->getTypeID()) { 16676 case Type::FloatTyID: 16677 case Type::DoubleTyID: 16678 return true; 16679 case Type::FP128TyID: 16680 return Subtarget.hasP9Vector(); 16681 default: 16682 return false; 16683 } 16684 } 16685 16686 // FIXME: add more patterns which are not profitable to hoist. 16687 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16688 if (!I->hasOneUse()) 16689 return true; 16690 16691 Instruction *User = I->user_back(); 16692 assert(User && "A single use instruction with no uses."); 16693 16694 switch (I->getOpcode()) { 16695 case Instruction::FMul: { 16696 // Don't break FMA, PowerPC prefers FMA. 16697 if (User->getOpcode() != Instruction::FSub && 16698 User->getOpcode() != Instruction::FAdd) 16699 return true; 16700 16701 const TargetOptions &Options = getTargetMachine().Options; 16702 const Function *F = I->getFunction(); 16703 const DataLayout &DL = F->getParent()->getDataLayout(); 16704 Type *Ty = User->getOperand(0)->getType(); 16705 16706 return !( 16707 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16708 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16709 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16710 } 16711 case Instruction::Load: { 16712 // Don't break "store (load float*)" pattern, this pattern will be combined 16713 // to "store (load int32)" in later InstCombine pass. See function 16714 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16715 // cycles than loading a 32 bit integer. 16716 LoadInst *LI = cast<LoadInst>(I); 16717 // For the loads that combineLoadToOperationType does nothing, like 16718 // ordered load, it should be profitable to hoist them. 16719 // For swifterror load, it can only be used for pointer to pointer type, so 16720 // later type check should get rid of this case. 16721 if (!LI->isUnordered()) 16722 return true; 16723 16724 if (User->getOpcode() != Instruction::Store) 16725 return true; 16726 16727 if (I->getType()->getTypeID() != Type::FloatTyID) 16728 return true; 16729 16730 return false; 16731 } 16732 default: 16733 return true; 16734 } 16735 return true; 16736 } 16737 16738 const MCPhysReg * 16739 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16740 // LR is a callee-save register, but we must treat it as clobbered by any call 16741 // site. Hence we include LR in the scratch registers, which are in turn added 16742 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16743 // to CTR, which is used by any indirect call. 16744 static const MCPhysReg ScratchRegs[] = { 16745 PPC::X12, PPC::LR8, PPC::CTR8, 0 16746 }; 16747 16748 return ScratchRegs; 16749 } 16750 16751 Register PPCTargetLowering::getExceptionPointerRegister( 16752 const Constant *PersonalityFn) const { 16753 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16754 } 16755 16756 Register PPCTargetLowering::getExceptionSelectorRegister( 16757 const Constant *PersonalityFn) const { 16758 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16759 } 16760 16761 bool 16762 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16763 EVT VT , unsigned DefinedValues) const { 16764 if (VT == MVT::v2i64) 16765 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16766 16767 if (Subtarget.hasVSX()) 16768 return true; 16769 16770 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16771 } 16772 16773 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16774 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16775 return TargetLowering::getSchedulingPreference(N); 16776 16777 return Sched::ILP; 16778 } 16779 16780 // Create a fast isel object. 16781 FastISel * 16782 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16783 const TargetLibraryInfo *LibInfo) const { 16784 return PPC::createFastISel(FuncInfo, LibInfo); 16785 } 16786 16787 // 'Inverted' means the FMA opcode after negating one multiplicand. 16788 // For example, (fma -a b c) = (fnmsub a b c) 16789 static unsigned invertFMAOpcode(unsigned Opc) { 16790 switch (Opc) { 16791 default: 16792 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16793 case ISD::FMA: 16794 return PPCISD::FNMSUB; 16795 case PPCISD::FNMSUB: 16796 return ISD::FMA; 16797 } 16798 } 16799 16800 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16801 bool LegalOps, bool OptForSize, 16802 NegatibleCost &Cost, 16803 unsigned Depth) const { 16804 if (Depth > SelectionDAG::MaxRecursionDepth) 16805 return SDValue(); 16806 16807 unsigned Opc = Op.getOpcode(); 16808 EVT VT = Op.getValueType(); 16809 SDNodeFlags Flags = Op.getNode()->getFlags(); 16810 16811 switch (Opc) { 16812 case PPCISD::FNMSUB: 16813 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16814 break; 16815 16816 const TargetOptions &Options = getTargetMachine().Options; 16817 SDValue N0 = Op.getOperand(0); 16818 SDValue N1 = Op.getOperand(1); 16819 SDValue N2 = Op.getOperand(2); 16820 SDLoc Loc(Op); 16821 16822 NegatibleCost N2Cost = NegatibleCost::Expensive; 16823 SDValue NegN2 = 16824 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16825 16826 if (!NegN2) 16827 return SDValue(); 16828 16829 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16830 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16831 // These transformations may change sign of zeroes. For example, 16832 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16833 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16834 // Try and choose the cheaper one to negate. 16835 NegatibleCost N0Cost = NegatibleCost::Expensive; 16836 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16837 N0Cost, Depth + 1); 16838 16839 NegatibleCost N1Cost = NegatibleCost::Expensive; 16840 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16841 N1Cost, Depth + 1); 16842 16843 if (NegN0 && N0Cost <= N1Cost) { 16844 Cost = std::min(N0Cost, N2Cost); 16845 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16846 } else if (NegN1) { 16847 Cost = std::min(N1Cost, N2Cost); 16848 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16849 } 16850 } 16851 16852 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16853 if (isOperationLegal(ISD::FMA, VT)) { 16854 Cost = N2Cost; 16855 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16856 } 16857 16858 break; 16859 } 16860 16861 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16862 Cost, Depth); 16863 } 16864 16865 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16866 bool PPCTargetLowering::useLoadStackGuardNode() const { 16867 if (!Subtarget.isTargetLinux()) 16868 return TargetLowering::useLoadStackGuardNode(); 16869 return true; 16870 } 16871 16872 // Override to disable global variable loading on Linux and insert AIX canary 16873 // word declaration. 16874 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16875 if (Subtarget.isAIXABI()) { 16876 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16877 Type::getInt8PtrTy(M.getContext())); 16878 return; 16879 } 16880 if (!Subtarget.isTargetLinux()) 16881 return TargetLowering::insertSSPDeclarations(M); 16882 } 16883 16884 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16885 if (Subtarget.isAIXABI()) 16886 return M.getGlobalVariable(AIXSSPCanaryWordName); 16887 return TargetLowering::getSDagStackGuard(M); 16888 } 16889 16890 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16891 bool ForCodeSize) const { 16892 if (!VT.isSimple() || !Subtarget.hasVSX()) 16893 return false; 16894 16895 switch(VT.getSimpleVT().SimpleTy) { 16896 default: 16897 // For FP types that are currently not supported by PPC backend, return 16898 // false. Examples: f16, f80. 16899 return false; 16900 case MVT::f32: 16901 case MVT::f64: 16902 if (Subtarget.hasPrefixInstrs()) { 16903 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16904 return true; 16905 } 16906 LLVM_FALLTHROUGH; 16907 case MVT::ppcf128: 16908 return Imm.isPosZero(); 16909 } 16910 } 16911 16912 // For vector shift operation op, fold 16913 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16914 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16915 SelectionDAG &DAG) { 16916 SDValue N0 = N->getOperand(0); 16917 SDValue N1 = N->getOperand(1); 16918 EVT VT = N0.getValueType(); 16919 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16920 unsigned Opcode = N->getOpcode(); 16921 unsigned TargetOpcode; 16922 16923 switch (Opcode) { 16924 default: 16925 llvm_unreachable("Unexpected shift operation"); 16926 case ISD::SHL: 16927 TargetOpcode = PPCISD::SHL; 16928 break; 16929 case ISD::SRL: 16930 TargetOpcode = PPCISD::SRL; 16931 break; 16932 case ISD::SRA: 16933 TargetOpcode = PPCISD::SRA; 16934 break; 16935 } 16936 16937 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16938 N1->getOpcode() == ISD::AND) 16939 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16940 if (Mask->getZExtValue() == OpSizeInBits - 1) 16941 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16942 16943 return SDValue(); 16944 } 16945 16946 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16947 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16948 return Value; 16949 16950 SDValue N0 = N->getOperand(0); 16951 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16952 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16953 N0.getOpcode() != ISD::SIGN_EXTEND || 16954 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16955 N->getValueType(0) != MVT::i64) 16956 return SDValue(); 16957 16958 // We can't save an operation here if the value is already extended, and 16959 // the existing shift is easier to combine. 16960 SDValue ExtsSrc = N0.getOperand(0); 16961 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16962 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16963 return SDValue(); 16964 16965 SDLoc DL(N0); 16966 SDValue ShiftBy = SDValue(CN1, 0); 16967 // We want the shift amount to be i32 on the extswli, but the shift could 16968 // have an i64. 16969 if (ShiftBy.getValueType() == MVT::i64) 16970 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16971 16972 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16973 ShiftBy); 16974 } 16975 16976 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16977 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16978 return Value; 16979 16980 return SDValue(); 16981 } 16982 16983 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16984 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16985 return Value; 16986 16987 return SDValue(); 16988 } 16989 16990 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16991 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16992 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16993 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16994 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16995 const PPCSubtarget &Subtarget) { 16996 if (!Subtarget.isPPC64()) 16997 return SDValue(); 16998 16999 SDValue LHS = N->getOperand(0); 17000 SDValue RHS = N->getOperand(1); 17001 17002 auto isZextOfCompareWithConstant = [](SDValue Op) { 17003 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17004 Op.getValueType() != MVT::i64) 17005 return false; 17006 17007 SDValue Cmp = Op.getOperand(0); 17008 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17009 Cmp.getOperand(0).getValueType() != MVT::i64) 17010 return false; 17011 17012 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17013 int64_t NegConstant = 0 - Constant->getSExtValue(); 17014 // Due to the limitations of the addi instruction, 17015 // -C is required to be [-32768, 32767]. 17016 return isInt<16>(NegConstant); 17017 } 17018 17019 return false; 17020 }; 17021 17022 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17023 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17024 17025 // If there is a pattern, canonicalize a zext operand to the RHS. 17026 if (LHSHasPattern && !RHSHasPattern) 17027 std::swap(LHS, RHS); 17028 else if (!LHSHasPattern && !RHSHasPattern) 17029 return SDValue(); 17030 17031 SDLoc DL(N); 17032 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17033 SDValue Cmp = RHS.getOperand(0); 17034 SDValue Z = Cmp.getOperand(0); 17035 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17036 int64_t NegConstant = 0 - Constant->getSExtValue(); 17037 17038 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17039 default: break; 17040 case ISD::SETNE: { 17041 // when C == 0 17042 // --> addze X, (addic Z, -1).carry 17043 // / 17044 // add X, (zext(setne Z, C))-- 17045 // \ when -32768 <= -C <= 32767 && C != 0 17046 // --> addze X, (addic (addi Z, -C), -1).carry 17047 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17048 DAG.getConstant(NegConstant, DL, MVT::i64)); 17049 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17050 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17051 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17052 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17053 SDValue(Addc.getNode(), 1)); 17054 } 17055 case ISD::SETEQ: { 17056 // when C == 0 17057 // --> addze X, (subfic Z, 0).carry 17058 // / 17059 // add X, (zext(sete Z, C))-- 17060 // \ when -32768 <= -C <= 32767 && C != 0 17061 // --> addze X, (subfic (addi Z, -C), 0).carry 17062 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17063 DAG.getConstant(NegConstant, DL, MVT::i64)); 17064 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17065 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17066 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17067 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17068 SDValue(Subc.getNode(), 1)); 17069 } 17070 } 17071 17072 return SDValue(); 17073 } 17074 17075 // Transform 17076 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17077 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17078 // In this case both C1 and C2 must be known constants. 17079 // C1+C2 must fit into a 34 bit signed integer. 17080 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17081 const PPCSubtarget &Subtarget) { 17082 if (!Subtarget.isUsingPCRelativeCalls()) 17083 return SDValue(); 17084 17085 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17086 // If we find that node try to cast the Global Address and the Constant. 17087 SDValue LHS = N->getOperand(0); 17088 SDValue RHS = N->getOperand(1); 17089 17090 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17091 std::swap(LHS, RHS); 17092 17093 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17094 return SDValue(); 17095 17096 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17097 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17098 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17099 17100 // Check that both casts succeeded. 17101 if (!GSDN || !ConstNode) 17102 return SDValue(); 17103 17104 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17105 SDLoc DL(GSDN); 17106 17107 // The signed int offset needs to fit in 34 bits. 17108 if (!isInt<34>(NewOffset)) 17109 return SDValue(); 17110 17111 // The new global address is a copy of the old global address except 17112 // that it has the updated Offset. 17113 SDValue GA = 17114 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17115 NewOffset, GSDN->getTargetFlags()); 17116 SDValue MatPCRel = 17117 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17118 return MatPCRel; 17119 } 17120 17121 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17122 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17123 return Value; 17124 17125 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17126 return Value; 17127 17128 return SDValue(); 17129 } 17130 17131 // Detect TRUNCATE operations on bitcasts of float128 values. 17132 // What we are looking for here is the situtation where we extract a subset 17133 // of bits from a 128 bit float. 17134 // This can be of two forms: 17135 // 1) BITCAST of f128 feeding TRUNCATE 17136 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17137 // The reason this is required is because we do not have a legal i128 type 17138 // and so we want to prevent having to store the f128 and then reload part 17139 // of it. 17140 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17141 DAGCombinerInfo &DCI) const { 17142 // If we are using CRBits then try that first. 17143 if (Subtarget.useCRBits()) { 17144 // Check if CRBits did anything and return that if it did. 17145 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17146 return CRTruncValue; 17147 } 17148 17149 SDLoc dl(N); 17150 SDValue Op0 = N->getOperand(0); 17151 17152 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17153 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17154 EVT VT = N->getValueType(0); 17155 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17156 return SDValue(); 17157 SDValue Sub = Op0.getOperand(0); 17158 if (Sub.getOpcode() == ISD::SUB) { 17159 SDValue SubOp0 = Sub.getOperand(0); 17160 SDValue SubOp1 = Sub.getOperand(1); 17161 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17162 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17163 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17164 SubOp1.getOperand(0), 17165 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17166 } 17167 } 17168 } 17169 17170 // Looking for a truncate of i128 to i64. 17171 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17172 return SDValue(); 17173 17174 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17175 17176 // SRL feeding TRUNCATE. 17177 if (Op0.getOpcode() == ISD::SRL) { 17178 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17179 // The right shift has to be by 64 bits. 17180 if (!ConstNode || ConstNode->getZExtValue() != 64) 17181 return SDValue(); 17182 17183 // Switch the element number to extract. 17184 EltToExtract = EltToExtract ? 0 : 1; 17185 // Update Op0 past the SRL. 17186 Op0 = Op0.getOperand(0); 17187 } 17188 17189 // BITCAST feeding a TRUNCATE possibly via SRL. 17190 if (Op0.getOpcode() == ISD::BITCAST && 17191 Op0.getValueType() == MVT::i128 && 17192 Op0.getOperand(0).getValueType() == MVT::f128) { 17193 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17194 return DCI.DAG.getNode( 17195 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17196 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17197 } 17198 return SDValue(); 17199 } 17200 17201 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17202 SelectionDAG &DAG = DCI.DAG; 17203 17204 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17205 if (!ConstOpOrElement) 17206 return SDValue(); 17207 17208 // An imul is usually smaller than the alternative sequence for legal type. 17209 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17210 isOperationLegal(ISD::MUL, N->getValueType(0))) 17211 return SDValue(); 17212 17213 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17214 switch (this->Subtarget.getCPUDirective()) { 17215 default: 17216 // TODO: enhance the condition for subtarget before pwr8 17217 return false; 17218 case PPC::DIR_PWR8: 17219 // type mul add shl 17220 // scalar 4 1 1 17221 // vector 7 2 2 17222 return true; 17223 case PPC::DIR_PWR9: 17224 case PPC::DIR_PWR10: 17225 case PPC::DIR_PWR_FUTURE: 17226 // type mul add shl 17227 // scalar 5 2 2 17228 // vector 7 2 2 17229 17230 // The cycle RATIO of related operations are showed as a table above. 17231 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17232 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17233 // are 4, it is always profitable; but for 3 instrs patterns 17234 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17235 // So we should only do it for vector type. 17236 return IsAddOne && IsNeg ? VT.isVector() : true; 17237 } 17238 }; 17239 17240 EVT VT = N->getValueType(0); 17241 SDLoc DL(N); 17242 17243 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17244 bool IsNeg = MulAmt.isNegative(); 17245 APInt MulAmtAbs = MulAmt.abs(); 17246 17247 if ((MulAmtAbs - 1).isPowerOf2()) { 17248 // (mul x, 2^N + 1) => (add (shl x, N), x) 17249 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17250 17251 if (!IsProfitable(IsNeg, true, VT)) 17252 return SDValue(); 17253 17254 SDValue Op0 = N->getOperand(0); 17255 SDValue Op1 = 17256 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17257 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17258 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17259 17260 if (!IsNeg) 17261 return Res; 17262 17263 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17264 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17265 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17266 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17267 17268 if (!IsProfitable(IsNeg, false, VT)) 17269 return SDValue(); 17270 17271 SDValue Op0 = N->getOperand(0); 17272 SDValue Op1 = 17273 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17274 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17275 17276 if (!IsNeg) 17277 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17278 else 17279 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17280 17281 } else { 17282 return SDValue(); 17283 } 17284 } 17285 17286 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17287 // in combiner since we need to check SD flags and other subtarget features. 17288 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17289 DAGCombinerInfo &DCI) const { 17290 SDValue N0 = N->getOperand(0); 17291 SDValue N1 = N->getOperand(1); 17292 SDValue N2 = N->getOperand(2); 17293 SDNodeFlags Flags = N->getFlags(); 17294 EVT VT = N->getValueType(0); 17295 SelectionDAG &DAG = DCI.DAG; 17296 const TargetOptions &Options = getTargetMachine().Options; 17297 unsigned Opc = N->getOpcode(); 17298 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17299 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17300 SDLoc Loc(N); 17301 17302 if (!isOperationLegal(ISD::FMA, VT)) 17303 return SDValue(); 17304 17305 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17306 // since (fnmsub a b c)=-0 while c-ab=+0. 17307 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17308 return SDValue(); 17309 17310 // (fma (fneg a) b c) => (fnmsub a b c) 17311 // (fnmsub (fneg a) b c) => (fma a b c) 17312 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17313 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17314 17315 // (fma a (fneg b) c) => (fnmsub a b c) 17316 // (fnmsub a (fneg b) c) => (fma a b c) 17317 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17318 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17319 17320 return SDValue(); 17321 } 17322 17323 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17324 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17325 if (!Subtarget.is64BitELFABI()) 17326 return false; 17327 17328 // If not a tail call then no need to proceed. 17329 if (!CI->isTailCall()) 17330 return false; 17331 17332 // If sibling calls have been disabled and tail-calls aren't guaranteed 17333 // there is no reason to duplicate. 17334 auto &TM = getTargetMachine(); 17335 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17336 return false; 17337 17338 // Can't tail call a function called indirectly, or if it has variadic args. 17339 const Function *Callee = CI->getCalledFunction(); 17340 if (!Callee || Callee->isVarArg()) 17341 return false; 17342 17343 // Make sure the callee and caller calling conventions are eligible for tco. 17344 const Function *Caller = CI->getParent()->getParent(); 17345 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17346 CI->getCallingConv())) 17347 return false; 17348 17349 // If the function is local then we have a good chance at tail-calling it 17350 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17351 } 17352 17353 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17354 if (!Subtarget.hasVSX()) 17355 return false; 17356 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17357 return true; 17358 return VT == MVT::f32 || VT == MVT::f64 || 17359 VT == MVT::v4f32 || VT == MVT::v2f64; 17360 } 17361 17362 bool PPCTargetLowering:: 17363 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17364 const Value *Mask = AndI.getOperand(1); 17365 // If the mask is suitable for andi. or andis. we should sink the and. 17366 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17367 // Can't handle constants wider than 64-bits. 17368 if (CI->getBitWidth() > 64) 17369 return false; 17370 int64_t ConstVal = CI->getZExtValue(); 17371 return isUInt<16>(ConstVal) || 17372 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17373 } 17374 17375 // For non-constant masks, we can always use the record-form and. 17376 return true; 17377 } 17378 17379 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17380 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17381 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17382 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17383 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17384 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17385 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17386 assert(Subtarget.hasP9Altivec() && 17387 "Only combine this when P9 altivec supported!"); 17388 EVT VT = N->getValueType(0); 17389 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17390 return SDValue(); 17391 17392 SelectionDAG &DAG = DCI.DAG; 17393 SDLoc dl(N); 17394 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17395 // Even for signed integers, if it's known to be positive (as signed 17396 // integer) due to zero-extended inputs. 17397 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17398 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17399 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17400 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17401 (SubOpcd1 == ISD::ZERO_EXTEND || 17402 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17403 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17404 N->getOperand(0)->getOperand(0), 17405 N->getOperand(0)->getOperand(1), 17406 DAG.getTargetConstant(0, dl, MVT::i32)); 17407 } 17408 17409 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17410 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17411 N->getOperand(0).hasOneUse()) { 17412 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17413 N->getOperand(0)->getOperand(0), 17414 N->getOperand(0)->getOperand(1), 17415 DAG.getTargetConstant(1, dl, MVT::i32)); 17416 } 17417 } 17418 17419 return SDValue(); 17420 } 17421 17422 // For type v4i32/v8ii16/v16i8, transform 17423 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17424 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17425 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17426 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17427 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17428 DAGCombinerInfo &DCI) const { 17429 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17430 assert(Subtarget.hasP9Altivec() && 17431 "Only combine this when P9 altivec supported!"); 17432 17433 SelectionDAG &DAG = DCI.DAG; 17434 SDLoc dl(N); 17435 SDValue Cond = N->getOperand(0); 17436 SDValue TrueOpnd = N->getOperand(1); 17437 SDValue FalseOpnd = N->getOperand(2); 17438 EVT VT = N->getOperand(1).getValueType(); 17439 17440 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17441 FalseOpnd.getOpcode() != ISD::SUB) 17442 return SDValue(); 17443 17444 // ABSD only available for type v4i32/v8i16/v16i8 17445 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17446 return SDValue(); 17447 17448 // At least to save one more dependent computation 17449 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17450 return SDValue(); 17451 17452 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17453 17454 // Can only handle unsigned comparison here 17455 switch (CC) { 17456 default: 17457 return SDValue(); 17458 case ISD::SETUGT: 17459 case ISD::SETUGE: 17460 break; 17461 case ISD::SETULT: 17462 case ISD::SETULE: 17463 std::swap(TrueOpnd, FalseOpnd); 17464 break; 17465 } 17466 17467 SDValue CmpOpnd1 = Cond.getOperand(0); 17468 SDValue CmpOpnd2 = Cond.getOperand(1); 17469 17470 // SETCC CmpOpnd1 CmpOpnd2 cond 17471 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17472 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17473 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17474 TrueOpnd.getOperand(1) == CmpOpnd2 && 17475 FalseOpnd.getOperand(0) == CmpOpnd2 && 17476 FalseOpnd.getOperand(1) == CmpOpnd1) { 17477 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17478 CmpOpnd1, CmpOpnd2, 17479 DAG.getTargetConstant(0, dl, MVT::i32)); 17480 } 17481 17482 return SDValue(); 17483 } 17484 17485 /// getAddrModeForFlags - Based on the set of address flags, select the most 17486 /// optimal instruction format to match by. 17487 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17488 // This is not a node we should be handling here. 17489 if (Flags == PPC::MOF_None) 17490 return PPC::AM_None; 17491 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17492 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17493 if ((Flags & FlagSet) == FlagSet) 17494 return PPC::AM_DForm; 17495 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17496 if ((Flags & FlagSet) == FlagSet) 17497 return PPC::AM_DSForm; 17498 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17499 if ((Flags & FlagSet) == FlagSet) 17500 return PPC::AM_DQForm; 17501 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17502 if ((Flags & FlagSet) == FlagSet) 17503 return PPC::AM_PrefixDForm; 17504 // If no other forms are selected, return an X-Form as it is the most 17505 // general addressing mode. 17506 return PPC::AM_XForm; 17507 } 17508 17509 /// Set alignment flags based on whether or not the Frame Index is aligned. 17510 /// Utilized when computing flags for address computation when selecting 17511 /// load and store instructions. 17512 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17513 SelectionDAG &DAG) { 17514 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17515 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17516 if (!FI) 17517 return; 17518 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17519 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17520 // If this is (add $FI, $S16Imm), the alignment flags are already set 17521 // based on the immediate. We just need to clear the alignment flags 17522 // if the FI alignment is weaker. 17523 if ((FrameIndexAlign % 4) != 0) 17524 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17525 if ((FrameIndexAlign % 16) != 0) 17526 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17527 // If the address is a plain FrameIndex, set alignment flags based on 17528 // FI alignment. 17529 if (!IsAdd) { 17530 if ((FrameIndexAlign % 4) == 0) 17531 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17532 if ((FrameIndexAlign % 16) == 0) 17533 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17534 } 17535 } 17536 17537 /// Given a node, compute flags that are used for address computation when 17538 /// selecting load and store instructions. The flags computed are stored in 17539 /// FlagSet. This function takes into account whether the node is a constant, 17540 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17541 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17542 SelectionDAG &DAG) { 17543 // Set the alignment flags for the node depending on if the node is 17544 // 4-byte or 16-byte aligned. 17545 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17546 if ((Imm & 0x3) == 0) 17547 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17548 if ((Imm & 0xf) == 0) 17549 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17550 }; 17551 17552 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17553 // All 32-bit constants can be computed as LIS + Disp. 17554 const APInt &ConstImm = CN->getAPIntValue(); 17555 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17556 FlagSet |= PPC::MOF_AddrIsSImm32; 17557 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17558 setAlignFlagsForFI(N, FlagSet, DAG); 17559 } 17560 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17561 FlagSet |= PPC::MOF_RPlusSImm34; 17562 else // Let constant materialization handle large constants. 17563 FlagSet |= PPC::MOF_NotAddNorCst; 17564 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17565 // This address can be represented as an addition of: 17566 // - Register + Imm16 (possibly a multiple of 4/16) 17567 // - Register + Imm34 17568 // - Register + PPCISD::Lo 17569 // - Register + Register 17570 // In any case, we won't have to match this as Base + Zero. 17571 SDValue RHS = N.getOperand(1); 17572 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17573 const APInt &ConstImm = CN->getAPIntValue(); 17574 if (ConstImm.isSignedIntN(16)) { 17575 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17576 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17577 setAlignFlagsForFI(N, FlagSet, DAG); 17578 } 17579 if (ConstImm.isSignedIntN(34)) 17580 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17581 else 17582 FlagSet |= PPC::MOF_RPlusR; // Register. 17583 } else if (RHS.getOpcode() == PPCISD::Lo && 17584 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17585 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17586 else 17587 FlagSet |= PPC::MOF_RPlusR; 17588 } else { // The address computation is not a constant or an addition. 17589 setAlignFlagsForFI(N, FlagSet, DAG); 17590 FlagSet |= PPC::MOF_NotAddNorCst; 17591 } 17592 } 17593 17594 static bool isPCRelNode(SDValue N) { 17595 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17596 isValidPCRelNode<ConstantPoolSDNode>(N) || 17597 isValidPCRelNode<GlobalAddressSDNode>(N) || 17598 isValidPCRelNode<JumpTableSDNode>(N) || 17599 isValidPCRelNode<BlockAddressSDNode>(N)); 17600 } 17601 17602 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17603 /// the address flags of the load/store instruction that is to be matched. 17604 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17605 SelectionDAG &DAG) const { 17606 unsigned FlagSet = PPC::MOF_None; 17607 17608 // Compute subtarget flags. 17609 if (!Subtarget.hasP9Vector()) 17610 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17611 else { 17612 FlagSet |= PPC::MOF_SubtargetP9; 17613 if (Subtarget.hasPrefixInstrs()) 17614 FlagSet |= PPC::MOF_SubtargetP10; 17615 } 17616 if (Subtarget.hasSPE()) 17617 FlagSet |= PPC::MOF_SubtargetSPE; 17618 17619 // Check if we have a PCRel node and return early. 17620 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17621 return FlagSet; 17622 17623 // If the node is the paired load/store intrinsics, compute flags for 17624 // address computation and return early. 17625 unsigned ParentOp = Parent->getOpcode(); 17626 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17627 (ParentOp == ISD::INTRINSIC_VOID))) { 17628 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17629 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17630 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17631 ? Parent->getOperand(2) 17632 : Parent->getOperand(3); 17633 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17634 FlagSet |= PPC::MOF_Vector; 17635 return FlagSet; 17636 } 17637 } 17638 17639 // Mark this as something we don't want to handle here if it is atomic 17640 // or pre-increment instruction. 17641 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17642 if (LSB->isIndexed()) 17643 return PPC::MOF_None; 17644 17645 // Compute in-memory type flags. This is based on if there are scalars, 17646 // floats or vectors. 17647 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17648 assert(MN && "Parent should be a MemSDNode!"); 17649 EVT MemVT = MN->getMemoryVT(); 17650 unsigned Size = MemVT.getSizeInBits(); 17651 if (MemVT.isScalarInteger()) { 17652 assert(Size <= 128 && 17653 "Not expecting scalar integers larger than 16 bytes!"); 17654 if (Size < 32) 17655 FlagSet |= PPC::MOF_SubWordInt; 17656 else if (Size == 32) 17657 FlagSet |= PPC::MOF_WordInt; 17658 else 17659 FlagSet |= PPC::MOF_DoubleWordInt; 17660 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17661 if (Size == 128) 17662 FlagSet |= PPC::MOF_Vector; 17663 else if (Size == 256) { 17664 assert(Subtarget.pairedVectorMemops() && 17665 "256-bit vectors are only available when paired vector memops is " 17666 "enabled!"); 17667 FlagSet |= PPC::MOF_Vector; 17668 } else 17669 llvm_unreachable("Not expecting illegal vectors!"); 17670 } else { // Floating point type: can be scalar, f128 or vector types. 17671 if (Size == 32 || Size == 64) 17672 FlagSet |= PPC::MOF_ScalarFloat; 17673 else if (MemVT == MVT::f128 || MemVT.isVector()) 17674 FlagSet |= PPC::MOF_Vector; 17675 else 17676 llvm_unreachable("Not expecting illegal scalar floats!"); 17677 } 17678 17679 // Compute flags for address computation. 17680 computeFlagsForAddressComputation(N, FlagSet, DAG); 17681 17682 // Compute type extension flags. 17683 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17684 switch (LN->getExtensionType()) { 17685 case ISD::SEXTLOAD: 17686 FlagSet |= PPC::MOF_SExt; 17687 break; 17688 case ISD::EXTLOAD: 17689 case ISD::ZEXTLOAD: 17690 FlagSet |= PPC::MOF_ZExt; 17691 break; 17692 case ISD::NON_EXTLOAD: 17693 FlagSet |= PPC::MOF_NoExt; 17694 break; 17695 } 17696 } else 17697 FlagSet |= PPC::MOF_NoExt; 17698 17699 // For integers, no extension is the same as zero extension. 17700 // We set the extension mode to zero extension so we don't have 17701 // to add separate entries in AddrModesMap for loads and stores. 17702 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17703 FlagSet |= PPC::MOF_ZExt; 17704 FlagSet &= ~PPC::MOF_NoExt; 17705 } 17706 17707 // If we don't have prefixed instructions, 34-bit constants should be 17708 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17709 bool IsNonP1034BitConst = 17710 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17711 FlagSet) == PPC::MOF_RPlusSImm34; 17712 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17713 IsNonP1034BitConst) 17714 FlagSet |= PPC::MOF_NotAddNorCst; 17715 17716 return FlagSet; 17717 } 17718 17719 /// SelectForceXFormMode - Given the specified address, force it to be 17720 /// represented as an indexed [r+r] operation (an XForm instruction). 17721 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17722 SDValue &Base, 17723 SelectionDAG &DAG) const { 17724 17725 PPC::AddrMode Mode = PPC::AM_XForm; 17726 int16_t ForceXFormImm = 0; 17727 if (provablyDisjointOr(DAG, N) && 17728 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17729 Disp = N.getOperand(0); 17730 Base = N.getOperand(1); 17731 return Mode; 17732 } 17733 17734 // If the address is the result of an add, we will utilize the fact that the 17735 // address calculation includes an implicit add. However, we can reduce 17736 // register pressure if we do not materialize a constant just for use as the 17737 // index register. We only get rid of the add if it is not an add of a 17738 // value and a 16-bit signed constant and both have a single use. 17739 if (N.getOpcode() == ISD::ADD && 17740 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17741 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17742 Disp = N.getOperand(0); 17743 Base = N.getOperand(1); 17744 return Mode; 17745 } 17746 17747 // Otherwise, use R0 as the base register. 17748 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17749 N.getValueType()); 17750 Base = N; 17751 17752 return Mode; 17753 } 17754 17755 bool PPCTargetLowering::splitValueIntoRegisterParts( 17756 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17757 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17758 EVT ValVT = Val.getValueType(); 17759 // If we are splitting a scalar integer into f64 parts (i.e. so they 17760 // can be placed into VFRC registers), we need to zero extend and 17761 // bitcast the values. This will ensure the value is placed into a 17762 // VSR using direct moves or stack operations as needed. 17763 if (PartVT == MVT::f64 && 17764 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17765 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17766 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17767 Parts[0] = Val; 17768 return true; 17769 } 17770 return false; 17771 } 17772 17773 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17774 SelectionDAG &DAG) const { 17775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17776 TargetLowering::CallLoweringInfo CLI(DAG); 17777 EVT RetVT = Op.getValueType(); 17778 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 17779 SDValue Callee = 17780 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17781 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17782 TargetLowering::ArgListTy Args; 17783 TargetLowering::ArgListEntry Entry; 17784 for (const SDValue &N : Op->op_values()) { 17785 EVT ArgVT = N.getValueType(); 17786 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17787 Entry.Node = N; 17788 Entry.Ty = ArgTy; 17789 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17790 Entry.IsZExt = !Entry.IsSExt; 17791 Args.push_back(Entry); 17792 } 17793 17794 SDValue InChain = DAG.getEntryNode(); 17795 SDValue TCChain = InChain; 17796 const Function &F = DAG.getMachineFunction().getFunction(); 17797 bool isTailCall = 17798 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 17799 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 17800 if (isTailCall) 17801 InChain = TCChain; 17802 CLI.setDebugLoc(SDLoc(Op)) 17803 .setChain(InChain) 17804 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 17805 .setTailCall(isTailCall) 17806 .setSExtResult(SignExtend) 17807 .setZExtResult(!SignExtend) 17808 .setIsPostTypeLegalization(true); 17809 return TLI.LowerCallTo(CLI).first; 17810 } 17811 17812 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17813 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17814 SelectionDAG &DAG) const { 17815 if (Op.getValueType() == MVT::f32) 17816 return lowerToLibCall(LibCallFloatName, Op, DAG); 17817 17818 if (Op.getValueType() == MVT::f64) 17819 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17820 17821 return SDValue(); 17822 } 17823 17824 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17825 SDNodeFlags Flags = Op.getNode()->getFlags(); 17826 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17827 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17828 } 17829 17830 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17831 return Op.getNode()->getFlags().hasApproximateFuncs(); 17832 } 17833 17834 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17835 const char *LibCallFloatName, 17836 const char *LibCallDoubleNameFinite, 17837 const char *LibCallFloatNameFinite, 17838 SDValue Op, 17839 SelectionDAG &DAG) const { 17840 if (!isLowringToMASSSafe(Op)) 17841 return SDValue(); 17842 17843 if (!isLowringToMASSFiniteSafe(Op)) 17844 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17845 DAG); 17846 17847 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17848 LibCallDoubleNameFinite, Op, DAG); 17849 } 17850 17851 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17852 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17853 "__xl_powf_finite", Op, DAG); 17854 } 17855 17856 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17857 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17858 "__xl_sinf_finite", Op, DAG); 17859 } 17860 17861 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17862 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17863 "__xl_cosf_finite", Op, DAG); 17864 } 17865 17866 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17867 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17868 "__xl_logf_finite", Op, DAG); 17869 } 17870 17871 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17872 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17873 "__xl_log10f_finite", Op, DAG); 17874 } 17875 17876 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17877 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17878 "__xl_expf_finite", Op, DAG); 17879 } 17880 17881 // If we happen to match to an aligned D-Form, check if the Frame Index is 17882 // adequately aligned. If it is not, reset the mode to match to X-Form. 17883 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17884 PPC::AddrMode &Mode) { 17885 if (!isa<FrameIndexSDNode>(N)) 17886 return; 17887 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17888 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17889 Mode = PPC::AM_XForm; 17890 } 17891 17892 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17893 /// compute the address flags of the node, get the optimal address mode based 17894 /// on the flags, and set the Base and Disp based on the address mode. 17895 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17896 SDValue N, SDValue &Disp, 17897 SDValue &Base, 17898 SelectionDAG &DAG, 17899 MaybeAlign Align) const { 17900 SDLoc DL(Parent); 17901 17902 // Compute the address flags. 17903 unsigned Flags = computeMOFlags(Parent, N, DAG); 17904 17905 // Get the optimal address mode based on the Flags. 17906 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17907 17908 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17909 // Select an X-Form load if it is not. 17910 setXFormForUnalignedFI(N, Flags, Mode); 17911 17912 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17913 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17914 assert(Subtarget.isUsingPCRelativeCalls() && 17915 "Must be using PC-Relative calls when a valid PC-Relative node is " 17916 "present!"); 17917 Mode = PPC::AM_PCRel; 17918 } 17919 17920 // Set Base and Disp accordingly depending on the address mode. 17921 switch (Mode) { 17922 case PPC::AM_DForm: 17923 case PPC::AM_DSForm: 17924 case PPC::AM_DQForm: { 17925 // This is a register plus a 16-bit immediate. The base will be the 17926 // register and the displacement will be the immediate unless it 17927 // isn't sufficiently aligned. 17928 if (Flags & PPC::MOF_RPlusSImm16) { 17929 SDValue Op0 = N.getOperand(0); 17930 SDValue Op1 = N.getOperand(1); 17931 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17932 if (!Align || isAligned(*Align, Imm)) { 17933 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17934 Base = Op0; 17935 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17936 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17937 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17938 } 17939 break; 17940 } 17941 } 17942 // This is a register plus the @lo relocation. The base is the register 17943 // and the displacement is the global address. 17944 else if (Flags & PPC::MOF_RPlusLo) { 17945 Disp = N.getOperand(1).getOperand(0); // The global address. 17946 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17947 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17948 Disp.getOpcode() == ISD::TargetConstantPool || 17949 Disp.getOpcode() == ISD::TargetJumpTable); 17950 Base = N.getOperand(0); 17951 break; 17952 } 17953 // This is a constant address at most 32 bits. The base will be 17954 // zero or load-immediate-shifted and the displacement will be 17955 // the low 16 bits of the address. 17956 else if (Flags & PPC::MOF_AddrIsSImm32) { 17957 auto *CN = cast<ConstantSDNode>(N); 17958 EVT CNType = CN->getValueType(0); 17959 uint64_t CNImm = CN->getZExtValue(); 17960 // If this address fits entirely in a 16-bit sext immediate field, codegen 17961 // this as "d, 0". 17962 int16_t Imm; 17963 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17964 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17965 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17966 CNType); 17967 break; 17968 } 17969 // Handle 32-bit sext immediate with LIS + Addr mode. 17970 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17971 (!Align || isAligned(*Align, CNImm))) { 17972 int32_t Addr = (int32_t)CNImm; 17973 // Otherwise, break this down into LIS + Disp. 17974 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17975 Base = 17976 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17977 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17978 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17979 break; 17980 } 17981 } 17982 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17983 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17984 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17985 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17986 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17987 } else 17988 Base = N; 17989 break; 17990 } 17991 case PPC::AM_PrefixDForm: { 17992 int64_t Imm34 = 0; 17993 unsigned Opcode = N.getOpcode(); 17994 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17995 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17996 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17997 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17998 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17999 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18000 else 18001 Base = N.getOperand(0); 18002 } else if (isIntS34Immediate(N, Imm34)) { 18003 // The address is a 34-bit signed immediate. 18004 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18005 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18006 } 18007 break; 18008 } 18009 case PPC::AM_PCRel: { 18010 // When selecting PC-Relative instructions, "Base" is not utilized as 18011 // we select the address as [PC+imm]. 18012 Disp = N; 18013 break; 18014 } 18015 case PPC::AM_None: 18016 break; 18017 default: { // By default, X-Form is always available to be selected. 18018 // When a frame index is not aligned, we also match by XForm. 18019 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18020 Base = FI ? N : N.getOperand(1); 18021 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18022 N.getValueType()) 18023 : N.getOperand(0); 18024 break; 18025 } 18026 } 18027 return Mode; 18028 } 18029 18030 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18031 bool Return, 18032 bool IsVarArg) const { 18033 switch (CC) { 18034 case CallingConv::Cold: 18035 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18036 default: 18037 return CC_PPC64_ELF_FIS; 18038 } 18039 } 18040 18041 TargetLowering::AtomicExpansionKind 18042 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18043 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18044 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18045 return AtomicExpansionKind::MaskedIntrinsic; 18046 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18047 } 18048 18049 TargetLowering::AtomicExpansionKind 18050 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18051 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18052 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18053 return AtomicExpansionKind::MaskedIntrinsic; 18054 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18055 } 18056 18057 static Intrinsic::ID 18058 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18059 switch (BinOp) { 18060 default: 18061 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18062 case AtomicRMWInst::Xchg: 18063 return Intrinsic::ppc_atomicrmw_xchg_i128; 18064 case AtomicRMWInst::Add: 18065 return Intrinsic::ppc_atomicrmw_add_i128; 18066 case AtomicRMWInst::Sub: 18067 return Intrinsic::ppc_atomicrmw_sub_i128; 18068 case AtomicRMWInst::And: 18069 return Intrinsic::ppc_atomicrmw_and_i128; 18070 case AtomicRMWInst::Or: 18071 return Intrinsic::ppc_atomicrmw_or_i128; 18072 case AtomicRMWInst::Xor: 18073 return Intrinsic::ppc_atomicrmw_xor_i128; 18074 case AtomicRMWInst::Nand: 18075 return Intrinsic::ppc_atomicrmw_nand_i128; 18076 } 18077 } 18078 18079 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18080 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18081 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18082 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18083 "Only support quadword now"); 18084 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18085 Type *ValTy = Incr->getType(); 18086 assert(ValTy->getPrimitiveSizeInBits() == 128); 18087 Function *RMW = Intrinsic::getDeclaration( 18088 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18089 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18090 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18091 Value *IncrHi = 18092 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18093 Value *Addr = 18094 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18095 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18096 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18097 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18098 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18099 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18100 return Builder.CreateOr( 18101 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18102 } 18103 18104 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18105 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18106 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18107 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18108 "Only support quadword now"); 18109 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18110 Type *ValTy = CmpVal->getType(); 18111 assert(ValTy->getPrimitiveSizeInBits() == 128); 18112 Function *IntCmpXchg = 18113 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18114 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18115 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18116 Value *CmpHi = 18117 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18118 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18119 Value *NewHi = 18120 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18121 Value *Addr = 18122 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18123 emitLeadingFence(Builder, CI, Ord); 18124 Value *LoHi = 18125 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18126 emitTrailingFence(Builder, CI, Ord); 18127 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18128 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18129 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18130 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18131 return Builder.CreateOr( 18132 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18133 } 18134