1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD , VT, Legal); 407 setOperationAction(ISD::SUB , VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::STORE, VT, Promote); 435 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 436 437 // No other operations are legal. 438 setOperationAction(ISD::MUL , VT, Expand); 439 setOperationAction(ISD::SDIV, VT, Expand); 440 setOperationAction(ISD::SREM, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::UREM, VT, Expand); 443 setOperationAction(ISD::FDIV, VT, Expand); 444 setOperationAction(ISD::FREM, VT, Expand); 445 setOperationAction(ISD::FNEG, VT, Expand); 446 setOperationAction(ISD::FSQRT, VT, Expand); 447 setOperationAction(ISD::FLOG, VT, Expand); 448 setOperationAction(ISD::FLOG10, VT, Expand); 449 setOperationAction(ISD::FLOG2, VT, Expand); 450 setOperationAction(ISD::FEXP, VT, Expand); 451 setOperationAction(ISD::FEXP2, VT, Expand); 452 setOperationAction(ISD::FSIN, VT, Expand); 453 setOperationAction(ISD::FCOS, VT, Expand); 454 setOperationAction(ISD::FABS, VT, Expand); 455 setOperationAction(ISD::FPOWI, VT, Expand); 456 setOperationAction(ISD::FFLOOR, VT, Expand); 457 setOperationAction(ISD::FCEIL, VT, Expand); 458 setOperationAction(ISD::FTRUNC, VT, Expand); 459 setOperationAction(ISD::FRINT, VT, Expand); 460 setOperationAction(ISD::FNEARBYINT, VT, Expand); 461 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 462 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 463 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 464 setOperationAction(ISD::MULHU, VT, Expand); 465 setOperationAction(ISD::MULHS, VT, Expand); 466 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 467 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 468 setOperationAction(ISD::UDIVREM, VT, Expand); 469 setOperationAction(ISD::SDIVREM, VT, Expand); 470 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 471 setOperationAction(ISD::FPOW, VT, Expand); 472 setOperationAction(ISD::BSWAP, VT, Expand); 473 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 474 setOperationAction(ISD::CTTZ, VT, Expand); 475 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::VSELECT, VT, Expand); 477 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 478 479 for (MVT InnerVT : MVT::vector_valuetypes()) { 480 setTruncStoreAction(VT, InnerVT, Expand); 481 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 482 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 483 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 484 } 485 } 486 487 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 488 // with merges, splats, etc. 489 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 490 491 setOperationAction(ISD::AND , MVT::v4i32, Legal); 492 setOperationAction(ISD::OR , MVT::v4i32, Legal); 493 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 494 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 495 setOperationAction(ISD::SELECT, MVT::v4i32, 496 Subtarget.useCRBits() ? Legal : Expand); 497 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 498 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 499 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 500 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 501 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 502 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 503 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 504 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 506 507 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 508 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 509 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 511 512 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 513 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 514 515 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 516 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 517 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 518 } 519 520 521 if (Subtarget.hasP8Altivec()) 522 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 523 else 524 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 525 526 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 527 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 528 529 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 531 532 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 536 537 // Altivec does not contain unordered floating-point compare instructions 538 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 539 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 542 543 if (Subtarget.hasVSX()) { 544 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 545 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 546 547 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 548 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 549 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 550 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 551 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 552 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 556 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 557 558 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 559 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 560 561 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 562 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 563 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 564 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 565 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 566 567 // Share the Altivec comparison restrictions. 568 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 569 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 570 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 571 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 572 573 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 574 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 575 576 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 577 578 if (Subtarget.hasP8Vector()) 579 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 580 581 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 582 583 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 584 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 585 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 586 587 if (Subtarget.hasP8Altivec()) { 588 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 589 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 590 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 591 592 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 593 } 594 else { 595 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 596 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 597 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 598 599 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 600 601 // VSX v2i64 only supports non-arithmetic operations. 602 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 603 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 604 } 605 606 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 607 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 608 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 609 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 610 611 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 612 613 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 614 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 615 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 616 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 617 618 // Vector operation legalization checks the result type of 619 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 620 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 621 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 622 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 623 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 624 625 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 626 } 627 628 if (Subtarget.hasP8Altivec()) { 629 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 630 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 631 } 632 } 633 634 if (Subtarget.hasQPX()) { 635 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 636 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 637 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 638 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 639 640 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 641 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 642 643 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 644 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 645 646 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 647 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 648 649 if (!Subtarget.useCRBits()) 650 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 651 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 652 653 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 654 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 655 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 656 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 657 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 658 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 659 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 660 661 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 662 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 663 664 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 665 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 666 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 667 668 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 669 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 670 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 671 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 672 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 673 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 674 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 675 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 676 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 677 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 678 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 679 680 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 681 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 682 683 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 684 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 685 686 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 687 688 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 689 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 690 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 691 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 692 693 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 694 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 695 696 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 697 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 698 699 if (!Subtarget.useCRBits()) 700 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 701 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 702 703 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 704 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 705 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 706 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 707 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 709 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 710 711 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 712 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 713 714 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 715 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 716 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 717 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 718 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 719 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 720 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 721 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 722 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 723 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 724 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 725 726 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 727 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 728 729 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 730 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 731 732 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 733 734 setOperationAction(ISD::AND , MVT::v4i1, Legal); 735 setOperationAction(ISD::OR , MVT::v4i1, Legal); 736 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 737 738 if (!Subtarget.useCRBits()) 739 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 740 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 741 742 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 743 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 744 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 746 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 747 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 748 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 749 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 750 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 751 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 752 753 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 754 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 755 756 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 757 758 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 759 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 760 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 761 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 762 763 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 764 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 765 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 766 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 767 768 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 769 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 770 771 // These need to set FE_INEXACT, and so cannot be vectorized here. 772 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 773 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 774 775 if (TM.Options.UnsafeFPMath) { 776 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 777 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 778 779 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 780 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 781 } else { 782 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 783 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 784 785 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 786 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 787 } 788 } 789 790 if (Subtarget.has64BitSupport()) 791 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 792 793 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 794 795 if (!isPPC64) { 796 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 797 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 798 } 799 800 setBooleanContents(ZeroOrOneBooleanContent); 801 802 if (Subtarget.hasAltivec()) { 803 // Altivec instructions set fields to all zeros or all ones. 804 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 805 } 806 807 if (!isPPC64) { 808 // These libcalls are not available in 32-bit. 809 setLibcallName(RTLIB::SHL_I128, nullptr); 810 setLibcallName(RTLIB::SRL_I128, nullptr); 811 setLibcallName(RTLIB::SRA_I128, nullptr); 812 } 813 814 if (isPPC64) { 815 setStackPointerRegisterToSaveRestore(PPC::X1); 816 setExceptionPointerRegister(PPC::X3); 817 setExceptionSelectorRegister(PPC::X4); 818 } else { 819 setStackPointerRegisterToSaveRestore(PPC::R1); 820 setExceptionPointerRegister(PPC::R3); 821 setExceptionSelectorRegister(PPC::R4); 822 } 823 824 // We have target-specific dag combine patterns for the following nodes: 825 setTargetDAGCombine(ISD::SINT_TO_FP); 826 if (Subtarget.hasFPCVT()) 827 setTargetDAGCombine(ISD::UINT_TO_FP); 828 setTargetDAGCombine(ISD::LOAD); 829 setTargetDAGCombine(ISD::STORE); 830 setTargetDAGCombine(ISD::BR_CC); 831 if (Subtarget.useCRBits()) 832 setTargetDAGCombine(ISD::BRCOND); 833 setTargetDAGCombine(ISD::BSWAP); 834 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 835 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 836 setTargetDAGCombine(ISD::INTRINSIC_VOID); 837 838 setTargetDAGCombine(ISD::SIGN_EXTEND); 839 setTargetDAGCombine(ISD::ZERO_EXTEND); 840 setTargetDAGCombine(ISD::ANY_EXTEND); 841 842 if (Subtarget.useCRBits()) { 843 setTargetDAGCombine(ISD::TRUNCATE); 844 setTargetDAGCombine(ISD::SETCC); 845 setTargetDAGCombine(ISD::SELECT_CC); 846 } 847 848 // Use reciprocal estimates. 849 if (TM.Options.UnsafeFPMath) { 850 setTargetDAGCombine(ISD::FDIV); 851 setTargetDAGCombine(ISD::FSQRT); 852 } 853 854 // Darwin long double math library functions have $LDBL128 appended. 855 if (Subtarget.isDarwin()) { 856 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 857 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 858 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 859 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 860 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 861 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 862 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 863 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 864 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 865 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 866 } 867 868 // With 32 condition bits, we don't need to sink (and duplicate) compares 869 // aggressively in CodeGenPrep. 870 if (Subtarget.useCRBits()) { 871 setHasMultipleConditionRegisters(); 872 setJumpIsExpensive(); 873 } 874 875 setMinFunctionAlignment(2); 876 if (Subtarget.isDarwin()) 877 setPrefFunctionAlignment(4); 878 879 switch (Subtarget.getDarwinDirective()) { 880 default: break; 881 case PPC::DIR_970: 882 case PPC::DIR_A2: 883 case PPC::DIR_E500mc: 884 case PPC::DIR_E5500: 885 case PPC::DIR_PWR4: 886 case PPC::DIR_PWR5: 887 case PPC::DIR_PWR5X: 888 case PPC::DIR_PWR6: 889 case PPC::DIR_PWR6X: 890 case PPC::DIR_PWR7: 891 case PPC::DIR_PWR8: 892 setPrefFunctionAlignment(4); 893 setPrefLoopAlignment(4); 894 break; 895 } 896 897 setInsertFencesForAtomic(true); 898 899 if (Subtarget.enableMachineScheduler()) 900 setSchedulingPreference(Sched::Source); 901 else 902 setSchedulingPreference(Sched::Hybrid); 903 904 computeRegisterProperties(STI.getRegisterInfo()); 905 906 // The Freescale cores do better with aggressive inlining of memcpy and 907 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 908 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 909 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 910 MaxStoresPerMemset = 32; 911 MaxStoresPerMemsetOptSize = 16; 912 MaxStoresPerMemcpy = 32; 913 MaxStoresPerMemcpyOptSize = 8; 914 MaxStoresPerMemmove = 32; 915 MaxStoresPerMemmoveOptSize = 8; 916 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 917 // The A2 also benefits from (very) aggressive inlining of memcpy and 918 // friends. The overhead of a the function call, even when warm, can be 919 // over one hundred cycles. 920 MaxStoresPerMemset = 128; 921 MaxStoresPerMemcpy = 128; 922 MaxStoresPerMemmove = 128; 923 } 924 } 925 926 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 927 /// the desired ByVal argument alignment. 928 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 929 unsigned MaxMaxAlign) { 930 if (MaxAlign == MaxMaxAlign) 931 return; 932 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 933 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 934 MaxAlign = 32; 935 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 936 MaxAlign = 16; 937 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 938 unsigned EltAlign = 0; 939 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 940 if (EltAlign > MaxAlign) 941 MaxAlign = EltAlign; 942 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 943 for (auto *EltTy : STy->elements()) { 944 unsigned EltAlign = 0; 945 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 946 if (EltAlign > MaxAlign) 947 MaxAlign = EltAlign; 948 if (MaxAlign == MaxMaxAlign) 949 break; 950 } 951 } 952 } 953 954 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 955 /// function arguments in the caller parameter area. 956 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 957 const DataLayout &DL) const { 958 // Darwin passes everything on 4 byte boundary. 959 if (Subtarget.isDarwin()) 960 return 4; 961 962 // 16byte and wider vectors are passed on 16byte boundary. 963 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 964 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 965 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 966 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 967 return Align; 968 } 969 970 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 971 switch ((PPCISD::NodeType)Opcode) { 972 case PPCISD::FIRST_NUMBER: break; 973 case PPCISD::FSEL: return "PPCISD::FSEL"; 974 case PPCISD::FCFID: return "PPCISD::FCFID"; 975 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 976 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 977 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 978 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 979 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 980 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 981 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 982 case PPCISD::FRE: return "PPCISD::FRE"; 983 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 984 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 985 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 986 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 987 case PPCISD::VPERM: return "PPCISD::VPERM"; 988 case PPCISD::CMPB: return "PPCISD::CMPB"; 989 case PPCISD::Hi: return "PPCISD::Hi"; 990 case PPCISD::Lo: return "PPCISD::Lo"; 991 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 992 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 993 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 994 case PPCISD::SRL: return "PPCISD::SRL"; 995 case PPCISD::SRA: return "PPCISD::SRA"; 996 case PPCISD::SHL: return "PPCISD::SHL"; 997 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 998 case PPCISD::CALL: return "PPCISD::CALL"; 999 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1000 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1001 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1002 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1003 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1004 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1005 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1006 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1007 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1008 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1009 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1010 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1011 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1012 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1013 case PPCISD::VCMP: return "PPCISD::VCMP"; 1014 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1015 case PPCISD::LBRX: return "PPCISD::LBRX"; 1016 case PPCISD::STBRX: return "PPCISD::STBRX"; 1017 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1018 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1019 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1020 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1021 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1022 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1023 case PPCISD::BDZ: return "PPCISD::BDZ"; 1024 case PPCISD::MFFS: return "PPCISD::MFFS"; 1025 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1026 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1027 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1028 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1029 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1030 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1031 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1032 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1033 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1034 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1035 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1036 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1037 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1038 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1039 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1040 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1041 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1042 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1043 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1044 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1045 case PPCISD::SC: return "PPCISD::SC"; 1046 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1047 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1048 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1049 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1050 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1051 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1052 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1053 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1054 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1055 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1056 } 1057 return nullptr; 1058 } 1059 1060 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1061 EVT VT) const { 1062 if (!VT.isVector()) 1063 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1064 1065 if (Subtarget.hasQPX()) 1066 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1067 1068 return VT.changeVectorElementTypeToInteger(); 1069 } 1070 1071 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1072 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1073 return true; 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // Node matching predicates, for use by the tblgen matching code. 1078 //===----------------------------------------------------------------------===// 1079 1080 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1081 static bool isFloatingPointZero(SDValue Op) { 1082 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1083 return CFP->getValueAPF().isZero(); 1084 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1085 // Maybe this has already been legalized into the constant pool? 1086 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1087 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1088 return CFP->getValueAPF().isZero(); 1089 } 1090 return false; 1091 } 1092 1093 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1094 /// true if Op is undef or if it matches the specified value. 1095 static bool isConstantOrUndef(int Op, int Val) { 1096 return Op < 0 || Op == Val; 1097 } 1098 1099 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1100 /// VPKUHUM instruction. 1101 /// The ShuffleKind distinguishes between big-endian operations with 1102 /// two different inputs (0), either-endian operations with two identical 1103 /// inputs (1), and little-endian operations with two different inputs (2). 1104 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1105 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1106 SelectionDAG &DAG) { 1107 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1108 if (ShuffleKind == 0) { 1109 if (IsLE) 1110 return false; 1111 for (unsigned i = 0; i != 16; ++i) 1112 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1113 return false; 1114 } else if (ShuffleKind == 2) { 1115 if (!IsLE) 1116 return false; 1117 for (unsigned i = 0; i != 16; ++i) 1118 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1119 return false; 1120 } else if (ShuffleKind == 1) { 1121 unsigned j = IsLE ? 0 : 1; 1122 for (unsigned i = 0; i != 8; ++i) 1123 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1124 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1125 return false; 1126 } 1127 return true; 1128 } 1129 1130 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1131 /// VPKUWUM instruction. 1132 /// The ShuffleKind distinguishes between big-endian operations with 1133 /// two different inputs (0), either-endian operations with two identical 1134 /// inputs (1), and little-endian operations with two different inputs (2). 1135 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1136 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1137 SelectionDAG &DAG) { 1138 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1139 if (ShuffleKind == 0) { 1140 if (IsLE) 1141 return false; 1142 for (unsigned i = 0; i != 16; i += 2) 1143 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1144 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1145 return false; 1146 } else if (ShuffleKind == 2) { 1147 if (!IsLE) 1148 return false; 1149 for (unsigned i = 0; i != 16; i += 2) 1150 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1151 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1152 return false; 1153 } else if (ShuffleKind == 1) { 1154 unsigned j = IsLE ? 0 : 2; 1155 for (unsigned i = 0; i != 8; i += 2) 1156 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1157 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1158 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1159 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1160 return false; 1161 } 1162 return true; 1163 } 1164 1165 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1166 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1167 /// current subtarget. 1168 /// 1169 /// The ShuffleKind distinguishes between big-endian operations with 1170 /// two different inputs (0), either-endian operations with two identical 1171 /// inputs (1), and little-endian operations with two different inputs (2). 1172 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1173 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1174 SelectionDAG &DAG) { 1175 const PPCSubtarget& Subtarget = 1176 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1177 if (!Subtarget.hasP8Vector()) 1178 return false; 1179 1180 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1181 if (ShuffleKind == 0) { 1182 if (IsLE) 1183 return false; 1184 for (unsigned i = 0; i != 16; i += 4) 1185 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1186 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1187 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1188 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1189 return false; 1190 } else if (ShuffleKind == 2) { 1191 if (!IsLE) 1192 return false; 1193 for (unsigned i = 0; i != 16; i += 4) 1194 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1195 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1196 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1197 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1198 return false; 1199 } else if (ShuffleKind == 1) { 1200 unsigned j = IsLE ? 0 : 4; 1201 for (unsigned i = 0; i != 8; i += 4) 1202 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1203 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1204 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1205 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1206 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1207 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1208 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1209 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1210 return false; 1211 } 1212 return true; 1213 } 1214 1215 /// isVMerge - Common function, used to match vmrg* shuffles. 1216 /// 1217 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1218 unsigned LHSStart, unsigned RHSStart) { 1219 if (N->getValueType(0) != MVT::v16i8) 1220 return false; 1221 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1222 "Unsupported merge size!"); 1223 1224 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1225 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1226 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1227 LHSStart+j+i*UnitSize) || 1228 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1229 RHSStart+j+i*UnitSize)) 1230 return false; 1231 } 1232 return true; 1233 } 1234 1235 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1236 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1237 /// The ShuffleKind distinguishes between big-endian merges with two 1238 /// different inputs (0), either-endian merges with two identical inputs (1), 1239 /// and little-endian merges with two different inputs (2). For the latter, 1240 /// the input operands are swapped (see PPCInstrAltivec.td). 1241 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1242 unsigned ShuffleKind, SelectionDAG &DAG) { 1243 if (DAG.getDataLayout().isLittleEndian()) { 1244 if (ShuffleKind == 1) // unary 1245 return isVMerge(N, UnitSize, 0, 0); 1246 else if (ShuffleKind == 2) // swapped 1247 return isVMerge(N, UnitSize, 0, 16); 1248 else 1249 return false; 1250 } else { 1251 if (ShuffleKind == 1) // unary 1252 return isVMerge(N, UnitSize, 8, 8); 1253 else if (ShuffleKind == 0) // normal 1254 return isVMerge(N, UnitSize, 8, 24); 1255 else 1256 return false; 1257 } 1258 } 1259 1260 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1261 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1262 /// The ShuffleKind distinguishes between big-endian merges with two 1263 /// different inputs (0), either-endian merges with two identical inputs (1), 1264 /// and little-endian merges with two different inputs (2). For the latter, 1265 /// the input operands are swapped (see PPCInstrAltivec.td). 1266 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1267 unsigned ShuffleKind, SelectionDAG &DAG) { 1268 if (DAG.getDataLayout().isLittleEndian()) { 1269 if (ShuffleKind == 1) // unary 1270 return isVMerge(N, UnitSize, 8, 8); 1271 else if (ShuffleKind == 2) // swapped 1272 return isVMerge(N, UnitSize, 8, 24); 1273 else 1274 return false; 1275 } else { 1276 if (ShuffleKind == 1) // unary 1277 return isVMerge(N, UnitSize, 0, 0); 1278 else if (ShuffleKind == 0) // normal 1279 return isVMerge(N, UnitSize, 0, 16); 1280 else 1281 return false; 1282 } 1283 } 1284 1285 /** 1286 * \brief Common function used to match vmrgew and vmrgow shuffles 1287 * 1288 * The indexOffset determines whether to look for even or odd words in 1289 * the shuffle mask. This is based on the of the endianness of the target 1290 * machine. 1291 * - Little Endian: 1292 * - Use offset of 0 to check for odd elements 1293 * - Use offset of 4 to check for even elements 1294 * - Big Endian: 1295 * - Use offset of 0 to check for even elements 1296 * - Use offset of 4 to check for odd elements 1297 * A detailed description of the vector element ordering for little endian and 1298 * big endian can be found at 1299 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1300 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1301 * compiler differences mean to you 1302 * 1303 * The mask to the shuffle vector instruction specifies the indices of the 1304 * elements from the two input vectors to place in the result. The elements are 1305 * numbered in array-access order, starting with the first vector. These vectors 1306 * are always of type v16i8, thus each vector will contain 16 elements of size 1307 * 8. More info on the shuffle vector can be found in the 1308 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1309 * Language Reference. 1310 * 1311 * The RHSStartValue indicates whether the same input vectors are used (unary) 1312 * or two different input vectors are used, based on the following: 1313 * - If the instruction uses the same vector for both inputs, the range of the 1314 * indices will be 0 to 15. In this case, the RHSStart value passed should 1315 * be 0. 1316 * - If the instruction has two different vectors then the range of the 1317 * indices will be 0 to 31. In this case, the RHSStart value passed should 1318 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1319 * to 31 specify elements in the second vector). 1320 * 1321 * \param[in] N The shuffle vector SD Node to analyze 1322 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1323 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1324 * vector to the shuffle_vector instruction 1325 * \return true iff this shuffle vector represents an even or odd word merge 1326 */ 1327 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1328 unsigned RHSStartValue) { 1329 if (N->getValueType(0) != MVT::v16i8) 1330 return false; 1331 1332 for (unsigned i = 0; i < 2; ++i) 1333 for (unsigned j = 0; j < 4; ++j) 1334 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1335 i*RHSStartValue+j+IndexOffset) || 1336 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1337 i*RHSStartValue+j+IndexOffset+8)) 1338 return false; 1339 return true; 1340 } 1341 1342 /** 1343 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1344 * vmrgow instructions. 1345 * 1346 * \param[in] N The shuffle vector SD Node to analyze 1347 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1348 * \param[in] ShuffleKind Identify the type of merge: 1349 * - 0 = big-endian merge with two different inputs; 1350 * - 1 = either-endian merge with two identical inputs; 1351 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1352 * little-endian merges). 1353 * \param[in] DAG The current SelectionDAG 1354 * \return true iff this shuffle mask 1355 */ 1356 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1357 unsigned ShuffleKind, SelectionDAG &DAG) { 1358 if (DAG.getDataLayout().isLittleEndian()) { 1359 unsigned indexOffset = CheckEven ? 4 : 0; 1360 if (ShuffleKind == 1) // Unary 1361 return isVMerge(N, indexOffset, 0); 1362 else if (ShuffleKind == 2) // swapped 1363 return isVMerge(N, indexOffset, 16); 1364 else 1365 return false; 1366 } 1367 else { 1368 unsigned indexOffset = CheckEven ? 0 : 4; 1369 if (ShuffleKind == 1) // Unary 1370 return isVMerge(N, indexOffset, 0); 1371 else if (ShuffleKind == 0) // Normal 1372 return isVMerge(N, indexOffset, 16); 1373 else 1374 return false; 1375 } 1376 return false; 1377 } 1378 1379 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1380 /// amount, otherwise return -1. 1381 /// The ShuffleKind distinguishes between big-endian operations with two 1382 /// different inputs (0), either-endian operations with two identical inputs 1383 /// (1), and little-endian operations with two different inputs (2). For the 1384 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1385 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1386 SelectionDAG &DAG) { 1387 if (N->getValueType(0) != MVT::v16i8) 1388 return -1; 1389 1390 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1391 1392 // Find the first non-undef value in the shuffle mask. 1393 unsigned i; 1394 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1395 /*search*/; 1396 1397 if (i == 16) return -1; // all undef. 1398 1399 // Otherwise, check to see if the rest of the elements are consecutively 1400 // numbered from this value. 1401 unsigned ShiftAmt = SVOp->getMaskElt(i); 1402 if (ShiftAmt < i) return -1; 1403 1404 ShiftAmt -= i; 1405 bool isLE = DAG.getDataLayout().isLittleEndian(); 1406 1407 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1408 // Check the rest of the elements to see if they are consecutive. 1409 for (++i; i != 16; ++i) 1410 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1411 return -1; 1412 } else if (ShuffleKind == 1) { 1413 // Check the rest of the elements to see if they are consecutive. 1414 for (++i; i != 16; ++i) 1415 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1416 return -1; 1417 } else 1418 return -1; 1419 1420 if (isLE) 1421 ShiftAmt = 16 - ShiftAmt; 1422 1423 return ShiftAmt; 1424 } 1425 1426 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1427 /// specifies a splat of a single element that is suitable for input to 1428 /// VSPLTB/VSPLTH/VSPLTW. 1429 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1430 assert(N->getValueType(0) == MVT::v16i8 && 1431 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1432 1433 // The consecutive indices need to specify an element, not part of two 1434 // different elements. So abandon ship early if this isn't the case. 1435 if (N->getMaskElt(0) % EltSize != 0) 1436 return false; 1437 1438 // This is a splat operation if each element of the permute is the same, and 1439 // if the value doesn't reference the second vector. 1440 unsigned ElementBase = N->getMaskElt(0); 1441 1442 // FIXME: Handle UNDEF elements too! 1443 if (ElementBase >= 16) 1444 return false; 1445 1446 // Check that the indices are consecutive, in the case of a multi-byte element 1447 // splatted with a v16i8 mask. 1448 for (unsigned i = 1; i != EltSize; ++i) 1449 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1450 return false; 1451 1452 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1453 if (N->getMaskElt(i) < 0) continue; 1454 for (unsigned j = 0; j != EltSize; ++j) 1455 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1456 return false; 1457 } 1458 return true; 1459 } 1460 1461 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1462 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1463 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1464 SelectionDAG &DAG) { 1465 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1466 assert(isSplatShuffleMask(SVOp, EltSize)); 1467 if (DAG.getDataLayout().isLittleEndian()) 1468 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1469 else 1470 return SVOp->getMaskElt(0) / EltSize; 1471 } 1472 1473 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1474 /// by using a vspltis[bhw] instruction of the specified element size, return 1475 /// the constant being splatted. The ByteSize field indicates the number of 1476 /// bytes of each element [124] -> [bhw]. 1477 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1478 SDValue OpVal(nullptr, 0); 1479 1480 // If ByteSize of the splat is bigger than the element size of the 1481 // build_vector, then we have a case where we are checking for a splat where 1482 // multiple elements of the buildvector are folded together into a single 1483 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1484 unsigned EltSize = 16/N->getNumOperands(); 1485 if (EltSize < ByteSize) { 1486 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1487 SDValue UniquedVals[4]; 1488 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1489 1490 // See if all of the elements in the buildvector agree across. 1491 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1492 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1493 // If the element isn't a constant, bail fully out. 1494 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1495 1496 1497 if (!UniquedVals[i&(Multiple-1)].getNode()) 1498 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1499 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1500 return SDValue(); // no match. 1501 } 1502 1503 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1504 // either constant or undef values that are identical for each chunk. See 1505 // if these chunks can form into a larger vspltis*. 1506 1507 // Check to see if all of the leading entries are either 0 or -1. If 1508 // neither, then this won't fit into the immediate field. 1509 bool LeadingZero = true; 1510 bool LeadingOnes = true; 1511 for (unsigned i = 0; i != Multiple-1; ++i) { 1512 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1513 1514 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1515 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1516 } 1517 // Finally, check the least significant entry. 1518 if (LeadingZero) { 1519 if (!UniquedVals[Multiple-1].getNode()) 1520 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1521 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1522 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1523 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1524 } 1525 if (LeadingOnes) { 1526 if (!UniquedVals[Multiple-1].getNode()) 1527 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1528 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1529 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1530 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1531 } 1532 1533 return SDValue(); 1534 } 1535 1536 // Check to see if this buildvec has a single non-undef value in its elements. 1537 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1538 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1539 if (!OpVal.getNode()) 1540 OpVal = N->getOperand(i); 1541 else if (OpVal != N->getOperand(i)) 1542 return SDValue(); 1543 } 1544 1545 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1546 1547 unsigned ValSizeInBytes = EltSize; 1548 uint64_t Value = 0; 1549 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1550 Value = CN->getZExtValue(); 1551 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1552 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1553 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1554 } 1555 1556 // If the splat value is larger than the element value, then we can never do 1557 // this splat. The only case that we could fit the replicated bits into our 1558 // immediate field for would be zero, and we prefer to use vxor for it. 1559 if (ValSizeInBytes < ByteSize) return SDValue(); 1560 1561 // If the element value is larger than the splat value, check if it consists 1562 // of a repeated bit pattern of size ByteSize. 1563 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1564 return SDValue(); 1565 1566 // Properly sign extend the value. 1567 int MaskVal = SignExtend32(Value, ByteSize * 8); 1568 1569 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1570 if (MaskVal == 0) return SDValue(); 1571 1572 // Finally, if this value fits in a 5 bit sext field, return it 1573 if (SignExtend32<5>(MaskVal) == MaskVal) 1574 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1575 return SDValue(); 1576 } 1577 1578 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1579 /// amount, otherwise return -1. 1580 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1581 EVT VT = N->getValueType(0); 1582 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1583 return -1; 1584 1585 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1586 1587 // Find the first non-undef value in the shuffle mask. 1588 unsigned i; 1589 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1590 /*search*/; 1591 1592 if (i == 4) return -1; // all undef. 1593 1594 // Otherwise, check to see if the rest of the elements are consecutively 1595 // numbered from this value. 1596 unsigned ShiftAmt = SVOp->getMaskElt(i); 1597 if (ShiftAmt < i) return -1; 1598 ShiftAmt -= i; 1599 1600 // Check the rest of the elements to see if they are consecutive. 1601 for (++i; i != 4; ++i) 1602 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1603 return -1; 1604 1605 return ShiftAmt; 1606 } 1607 1608 //===----------------------------------------------------------------------===// 1609 // Addressing Mode Selection 1610 //===----------------------------------------------------------------------===// 1611 1612 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1613 /// or 64-bit immediate, and if the value can be accurately represented as a 1614 /// sign extension from a 16-bit value. If so, this returns true and the 1615 /// immediate. 1616 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1617 if (!isa<ConstantSDNode>(N)) 1618 return false; 1619 1620 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1621 if (N->getValueType(0) == MVT::i32) 1622 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1623 else 1624 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1625 } 1626 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1627 return isIntS16Immediate(Op.getNode(), Imm); 1628 } 1629 1630 1631 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1632 /// can be represented as an indexed [r+r] operation. Returns false if it 1633 /// can be more efficiently represented with [r+imm]. 1634 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1635 SDValue &Index, 1636 SelectionDAG &DAG) const { 1637 short imm = 0; 1638 if (N.getOpcode() == ISD::ADD) { 1639 if (isIntS16Immediate(N.getOperand(1), imm)) 1640 return false; // r+i 1641 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1642 return false; // r+i 1643 1644 Base = N.getOperand(0); 1645 Index = N.getOperand(1); 1646 return true; 1647 } else if (N.getOpcode() == ISD::OR) { 1648 if (isIntS16Immediate(N.getOperand(1), imm)) 1649 return false; // r+i can fold it if we can. 1650 1651 // If this is an or of disjoint bitfields, we can codegen this as an add 1652 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1653 // disjoint. 1654 APInt LHSKnownZero, LHSKnownOne; 1655 APInt RHSKnownZero, RHSKnownOne; 1656 DAG.computeKnownBits(N.getOperand(0), 1657 LHSKnownZero, LHSKnownOne); 1658 1659 if (LHSKnownZero.getBoolValue()) { 1660 DAG.computeKnownBits(N.getOperand(1), 1661 RHSKnownZero, RHSKnownOne); 1662 // If all of the bits are known zero on the LHS or RHS, the add won't 1663 // carry. 1664 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1665 Base = N.getOperand(0); 1666 Index = N.getOperand(1); 1667 return true; 1668 } 1669 } 1670 } 1671 1672 return false; 1673 } 1674 1675 // If we happen to be doing an i64 load or store into a stack slot that has 1676 // less than a 4-byte alignment, then the frame-index elimination may need to 1677 // use an indexed load or store instruction (because the offset may not be a 1678 // multiple of 4). The extra register needed to hold the offset comes from the 1679 // register scavenger, and it is possible that the scavenger will need to use 1680 // an emergency spill slot. As a result, we need to make sure that a spill slot 1681 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1682 // stack slot. 1683 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1684 // FIXME: This does not handle the LWA case. 1685 if (VT != MVT::i64) 1686 return; 1687 1688 // NOTE: We'll exclude negative FIs here, which come from argument 1689 // lowering, because there are no known test cases triggering this problem 1690 // using packed structures (or similar). We can remove this exclusion if 1691 // we find such a test case. The reason why this is so test-case driven is 1692 // because this entire 'fixup' is only to prevent crashes (from the 1693 // register scavenger) on not-really-valid inputs. For example, if we have: 1694 // %a = alloca i1 1695 // %b = bitcast i1* %a to i64* 1696 // store i64* a, i64 b 1697 // then the store should really be marked as 'align 1', but is not. If it 1698 // were marked as 'align 1' then the indexed form would have been 1699 // instruction-selected initially, and the problem this 'fixup' is preventing 1700 // won't happen regardless. 1701 if (FrameIdx < 0) 1702 return; 1703 1704 MachineFunction &MF = DAG.getMachineFunction(); 1705 MachineFrameInfo *MFI = MF.getFrameInfo(); 1706 1707 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1708 if (Align >= 4) 1709 return; 1710 1711 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1712 FuncInfo->setHasNonRISpills(); 1713 } 1714 1715 /// Returns true if the address N can be represented by a base register plus 1716 /// a signed 16-bit displacement [r+imm], and if it is not better 1717 /// represented as reg+reg. If Aligned is true, only accept displacements 1718 /// suitable for STD and friends, i.e. multiples of 4. 1719 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1720 SDValue &Base, 1721 SelectionDAG &DAG, 1722 bool Aligned) const { 1723 // FIXME dl should come from parent load or store, not from address 1724 SDLoc dl(N); 1725 // If this can be more profitably realized as r+r, fail. 1726 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1727 return false; 1728 1729 if (N.getOpcode() == ISD::ADD) { 1730 short imm = 0; 1731 if (isIntS16Immediate(N.getOperand(1), imm) && 1732 (!Aligned || (imm & 3) == 0)) { 1733 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1734 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1735 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1736 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1737 } else { 1738 Base = N.getOperand(0); 1739 } 1740 return true; // [r+i] 1741 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1742 // Match LOAD (ADD (X, Lo(G))). 1743 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1744 && "Cannot handle constant offsets yet!"); 1745 Disp = N.getOperand(1).getOperand(0); // The global address. 1746 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1747 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1748 Disp.getOpcode() == ISD::TargetConstantPool || 1749 Disp.getOpcode() == ISD::TargetJumpTable); 1750 Base = N.getOperand(0); 1751 return true; // [&g+r] 1752 } 1753 } else if (N.getOpcode() == ISD::OR) { 1754 short imm = 0; 1755 if (isIntS16Immediate(N.getOperand(1), imm) && 1756 (!Aligned || (imm & 3) == 0)) { 1757 // If this is an or of disjoint bitfields, we can codegen this as an add 1758 // (for better address arithmetic) if the LHS and RHS of the OR are 1759 // provably disjoint. 1760 APInt LHSKnownZero, LHSKnownOne; 1761 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1762 1763 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1764 // If all of the bits are known zero on the LHS or RHS, the add won't 1765 // carry. 1766 if (FrameIndexSDNode *FI = 1767 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1768 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1769 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1770 } else { 1771 Base = N.getOperand(0); 1772 } 1773 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1774 return true; 1775 } 1776 } 1777 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1778 // Loading from a constant address. 1779 1780 // If this address fits entirely in a 16-bit sext immediate field, codegen 1781 // this as "d, 0" 1782 short Imm; 1783 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1784 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1785 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1786 CN->getValueType(0)); 1787 return true; 1788 } 1789 1790 // Handle 32-bit sext immediates with LIS + addr mode. 1791 if ((CN->getValueType(0) == MVT::i32 || 1792 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1793 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1794 int Addr = (int)CN->getZExtValue(); 1795 1796 // Otherwise, break this down into an LIS + disp. 1797 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1798 1799 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1800 MVT::i32); 1801 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1802 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1803 return true; 1804 } 1805 } 1806 1807 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1808 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1809 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1810 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1811 } else 1812 Base = N; 1813 return true; // [r+0] 1814 } 1815 1816 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1817 /// represented as an indexed [r+r] operation. 1818 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1819 SDValue &Index, 1820 SelectionDAG &DAG) const { 1821 // Check to see if we can easily represent this as an [r+r] address. This 1822 // will fail if it thinks that the address is more profitably represented as 1823 // reg+imm, e.g. where imm = 0. 1824 if (SelectAddressRegReg(N, Base, Index, DAG)) 1825 return true; 1826 1827 // If the operand is an addition, always emit this as [r+r], since this is 1828 // better (for code size, and execution, as the memop does the add for free) 1829 // than emitting an explicit add. 1830 if (N.getOpcode() == ISD::ADD) { 1831 Base = N.getOperand(0); 1832 Index = N.getOperand(1); 1833 return true; 1834 } 1835 1836 // Otherwise, do it the hard way, using R0 as the base register. 1837 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1838 N.getValueType()); 1839 Index = N; 1840 return true; 1841 } 1842 1843 /// getPreIndexedAddressParts - returns true by value, base pointer and 1844 /// offset pointer and addressing mode by reference if the node's address 1845 /// can be legally represented as pre-indexed load / store address. 1846 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1847 SDValue &Offset, 1848 ISD::MemIndexedMode &AM, 1849 SelectionDAG &DAG) const { 1850 if (DisablePPCPreinc) return false; 1851 1852 bool isLoad = true; 1853 SDValue Ptr; 1854 EVT VT; 1855 unsigned Alignment; 1856 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1857 Ptr = LD->getBasePtr(); 1858 VT = LD->getMemoryVT(); 1859 Alignment = LD->getAlignment(); 1860 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1861 Ptr = ST->getBasePtr(); 1862 VT = ST->getMemoryVT(); 1863 Alignment = ST->getAlignment(); 1864 isLoad = false; 1865 } else 1866 return false; 1867 1868 // PowerPC doesn't have preinc load/store instructions for vectors (except 1869 // for QPX, which does have preinc r+r forms). 1870 if (VT.isVector()) { 1871 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1872 return false; 1873 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1874 AM = ISD::PRE_INC; 1875 return true; 1876 } 1877 } 1878 1879 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1880 1881 // Common code will reject creating a pre-inc form if the base pointer 1882 // is a frame index, or if N is a store and the base pointer is either 1883 // the same as or a predecessor of the value being stored. Check for 1884 // those situations here, and try with swapped Base/Offset instead. 1885 bool Swap = false; 1886 1887 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1888 Swap = true; 1889 else if (!isLoad) { 1890 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1891 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1892 Swap = true; 1893 } 1894 1895 if (Swap) 1896 std::swap(Base, Offset); 1897 1898 AM = ISD::PRE_INC; 1899 return true; 1900 } 1901 1902 // LDU/STU can only handle immediates that are a multiple of 4. 1903 if (VT != MVT::i64) { 1904 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1905 return false; 1906 } else { 1907 // LDU/STU need an address with at least 4-byte alignment. 1908 if (Alignment < 4) 1909 return false; 1910 1911 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1912 return false; 1913 } 1914 1915 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1916 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1917 // sext i32 to i64 when addr mode is r+i. 1918 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1919 LD->getExtensionType() == ISD::SEXTLOAD && 1920 isa<ConstantSDNode>(Offset)) 1921 return false; 1922 } 1923 1924 AM = ISD::PRE_INC; 1925 return true; 1926 } 1927 1928 //===----------------------------------------------------------------------===// 1929 // LowerOperation implementation 1930 //===----------------------------------------------------------------------===// 1931 1932 /// GetLabelAccessInfo - Return true if we should reference labels using a 1933 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1934 static bool GetLabelAccessInfo(const TargetMachine &TM, 1935 const PPCSubtarget &Subtarget, 1936 unsigned &HiOpFlags, unsigned &LoOpFlags, 1937 const GlobalValue *GV = nullptr) { 1938 HiOpFlags = PPCII::MO_HA; 1939 LoOpFlags = PPCII::MO_LO; 1940 1941 // Don't use the pic base if not in PIC relocation model. 1942 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1943 1944 if (isPIC) { 1945 HiOpFlags |= PPCII::MO_PIC_FLAG; 1946 LoOpFlags |= PPCII::MO_PIC_FLAG; 1947 } 1948 1949 // If this is a reference to a global value that requires a non-lazy-ptr, make 1950 // sure that instruction lowering adds it. 1951 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1952 HiOpFlags |= PPCII::MO_NLP_FLAG; 1953 LoOpFlags |= PPCII::MO_NLP_FLAG; 1954 1955 if (GV->hasHiddenVisibility()) { 1956 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1957 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1958 } 1959 } 1960 1961 return isPIC; 1962 } 1963 1964 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1965 SelectionDAG &DAG) { 1966 SDLoc DL(HiPart); 1967 EVT PtrVT = HiPart.getValueType(); 1968 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1969 1970 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1971 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1972 1973 // With PIC, the first instruction is actually "GR+hi(&G)". 1974 if (isPIC) 1975 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1976 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1977 1978 // Generate non-pic code that has direct accesses to the constant pool. 1979 // The address of the global is just (hi(&g)+lo(&g)). 1980 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1981 } 1982 1983 static void setUsesTOCBasePtr(MachineFunction &MF) { 1984 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1985 FuncInfo->setUsesTOCBasePtr(); 1986 } 1987 1988 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1989 setUsesTOCBasePtr(DAG.getMachineFunction()); 1990 } 1991 1992 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 1993 SDValue GA) { 1994 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1995 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 1996 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 1997 1998 SDValue Ops[] = { GA, Reg }; 1999 return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl, 2000 DAG.getVTList(VT, MVT::Other), Ops, VT, 2001 MachinePointerInfo::getGOT(), 0, false, true, 2002 false, 0); 2003 } 2004 2005 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2006 SelectionDAG &DAG) const { 2007 EVT PtrVT = Op.getValueType(); 2008 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2009 const Constant *C = CP->getConstVal(); 2010 2011 // 64-bit SVR4 ABI code is always position-independent. 2012 // The actual address of the GlobalValue is stored in the TOC. 2013 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2014 setUsesTOCBasePtr(DAG); 2015 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2016 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2017 } 2018 2019 unsigned MOHiFlag, MOLoFlag; 2020 bool isPIC = 2021 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2022 2023 if (isPIC && Subtarget.isSVR4ABI()) { 2024 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2025 PPCII::MO_PIC_FLAG); 2026 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2027 } 2028 2029 SDValue CPIHi = 2030 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2031 SDValue CPILo = 2032 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2033 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2034 } 2035 2036 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2037 EVT PtrVT = Op.getValueType(); 2038 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2039 2040 // 64-bit SVR4 ABI code is always position-independent. 2041 // The actual address of the GlobalValue is stored in the TOC. 2042 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2043 setUsesTOCBasePtr(DAG); 2044 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2045 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2046 } 2047 2048 unsigned MOHiFlag, MOLoFlag; 2049 bool isPIC = 2050 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2051 2052 if (isPIC && Subtarget.isSVR4ABI()) { 2053 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2054 PPCII::MO_PIC_FLAG); 2055 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2056 } 2057 2058 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2059 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2060 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2061 } 2062 2063 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2064 SelectionDAG &DAG) const { 2065 EVT PtrVT = Op.getValueType(); 2066 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2067 const BlockAddress *BA = BASDN->getBlockAddress(); 2068 2069 // 64-bit SVR4 ABI code is always position-independent. 2070 // The actual BlockAddress is stored in the TOC. 2071 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2072 setUsesTOCBasePtr(DAG); 2073 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2074 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2075 } 2076 2077 unsigned MOHiFlag, MOLoFlag; 2078 bool isPIC = 2079 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2080 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2081 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2082 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2083 } 2084 2085 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2086 SelectionDAG &DAG) const { 2087 2088 // FIXME: TLS addresses currently use medium model code sequences, 2089 // which is the most useful form. Eventually support for small and 2090 // large models could be added if users need it, at the cost of 2091 // additional complexity. 2092 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2093 if (DAG.getTarget().Options.EmulatedTLS) 2094 return LowerToTLSEmulatedModel(GA, DAG); 2095 2096 SDLoc dl(GA); 2097 const GlobalValue *GV = GA->getGlobal(); 2098 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2099 bool is64bit = Subtarget.isPPC64(); 2100 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2101 PICLevel::Level picLevel = M->getPICLevel(); 2102 2103 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2104 2105 if (Model == TLSModel::LocalExec) { 2106 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2107 PPCII::MO_TPREL_HA); 2108 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2109 PPCII::MO_TPREL_LO); 2110 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2111 is64bit ? MVT::i64 : MVT::i32); 2112 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2113 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2114 } 2115 2116 if (Model == TLSModel::InitialExec) { 2117 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2118 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2119 PPCII::MO_TLS); 2120 SDValue GOTPtr; 2121 if (is64bit) { 2122 setUsesTOCBasePtr(DAG); 2123 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2124 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2125 PtrVT, GOTReg, TGA); 2126 } else 2127 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2128 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2129 PtrVT, TGA, GOTPtr); 2130 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2131 } 2132 2133 if (Model == TLSModel::GeneralDynamic) { 2134 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2135 SDValue GOTPtr; 2136 if (is64bit) { 2137 setUsesTOCBasePtr(DAG); 2138 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2139 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2140 GOTReg, TGA); 2141 } else { 2142 if (picLevel == PICLevel::Small) 2143 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2144 else 2145 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2146 } 2147 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2148 GOTPtr, TGA, TGA); 2149 } 2150 2151 if (Model == TLSModel::LocalDynamic) { 2152 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2153 SDValue GOTPtr; 2154 if (is64bit) { 2155 setUsesTOCBasePtr(DAG); 2156 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2157 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2158 GOTReg, TGA); 2159 } else { 2160 if (picLevel == PICLevel::Small) 2161 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2162 else 2163 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2164 } 2165 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2166 PtrVT, GOTPtr, TGA, TGA); 2167 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2168 PtrVT, TLSAddr, TGA); 2169 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2170 } 2171 2172 llvm_unreachable("Unknown TLS model!"); 2173 } 2174 2175 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2176 SelectionDAG &DAG) const { 2177 EVT PtrVT = Op.getValueType(); 2178 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2179 SDLoc DL(GSDN); 2180 const GlobalValue *GV = GSDN->getGlobal(); 2181 2182 // 64-bit SVR4 ABI code is always position-independent. 2183 // The actual address of the GlobalValue is stored in the TOC. 2184 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2185 setUsesTOCBasePtr(DAG); 2186 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2187 return getTOCEntry(DAG, DL, true, GA); 2188 } 2189 2190 unsigned MOHiFlag, MOLoFlag; 2191 bool isPIC = 2192 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2193 2194 if (isPIC && Subtarget.isSVR4ABI()) { 2195 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2196 GSDN->getOffset(), 2197 PPCII::MO_PIC_FLAG); 2198 return getTOCEntry(DAG, DL, false, GA); 2199 } 2200 2201 SDValue GAHi = 2202 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2203 SDValue GALo = 2204 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2205 2206 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2207 2208 // If the global reference is actually to a non-lazy-pointer, we have to do an 2209 // extra load to get the address of the global. 2210 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2211 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2212 false, false, false, 0); 2213 return Ptr; 2214 } 2215 2216 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2217 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2218 SDLoc dl(Op); 2219 2220 if (Op.getValueType() == MVT::v2i64) { 2221 // When the operands themselves are v2i64 values, we need to do something 2222 // special because VSX has no underlying comparison operations for these. 2223 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2224 // Equality can be handled by casting to the legal type for Altivec 2225 // comparisons, everything else needs to be expanded. 2226 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2227 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2228 DAG.getSetCC(dl, MVT::v4i32, 2229 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2230 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2231 CC)); 2232 } 2233 2234 return SDValue(); 2235 } 2236 2237 // We handle most of these in the usual way. 2238 return Op; 2239 } 2240 2241 // If we're comparing for equality to zero, expose the fact that this is 2242 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2243 // fold the new nodes. 2244 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2245 if (C->isNullValue() && CC == ISD::SETEQ) { 2246 EVT VT = Op.getOperand(0).getValueType(); 2247 SDValue Zext = Op.getOperand(0); 2248 if (VT.bitsLT(MVT::i32)) { 2249 VT = MVT::i32; 2250 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2251 } 2252 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2253 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2254 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2255 DAG.getConstant(Log2b, dl, MVT::i32)); 2256 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2257 } 2258 // Leave comparisons against 0 and -1 alone for now, since they're usually 2259 // optimized. FIXME: revisit this when we can custom lower all setcc 2260 // optimizations. 2261 if (C->isAllOnesValue() || C->isNullValue()) 2262 return SDValue(); 2263 } 2264 2265 // If we have an integer seteq/setne, turn it into a compare against zero 2266 // by xor'ing the rhs with the lhs, which is faster than setting a 2267 // condition register, reading it back out, and masking the correct bit. The 2268 // normal approach here uses sub to do this instead of xor. Using xor exposes 2269 // the result to other bit-twiddling opportunities. 2270 EVT LHSVT = Op.getOperand(0).getValueType(); 2271 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2272 EVT VT = Op.getValueType(); 2273 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2274 Op.getOperand(1)); 2275 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2276 } 2277 return SDValue(); 2278 } 2279 2280 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2281 const PPCSubtarget &Subtarget) const { 2282 SDNode *Node = Op.getNode(); 2283 EVT VT = Node->getValueType(0); 2284 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2285 SDValue InChain = Node->getOperand(0); 2286 SDValue VAListPtr = Node->getOperand(1); 2287 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2288 SDLoc dl(Node); 2289 2290 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2291 2292 // gpr_index 2293 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2294 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2295 false, false, false, 0); 2296 InChain = GprIndex.getValue(1); 2297 2298 if (VT == MVT::i64) { 2299 // Check if GprIndex is even 2300 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2301 DAG.getConstant(1, dl, MVT::i32)); 2302 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2303 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2304 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2305 DAG.getConstant(1, dl, MVT::i32)); 2306 // Align GprIndex to be even if it isn't 2307 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2308 GprIndex); 2309 } 2310 2311 // fpr index is 1 byte after gpr 2312 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2313 DAG.getConstant(1, dl, MVT::i32)); 2314 2315 // fpr 2316 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2317 FprPtr, MachinePointerInfo(SV), MVT::i8, 2318 false, false, false, 0); 2319 InChain = FprIndex.getValue(1); 2320 2321 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2322 DAG.getConstant(8, dl, MVT::i32)); 2323 2324 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2325 DAG.getConstant(4, dl, MVT::i32)); 2326 2327 // areas 2328 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2329 MachinePointerInfo(), false, false, 2330 false, 0); 2331 InChain = OverflowArea.getValue(1); 2332 2333 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2334 MachinePointerInfo(), false, false, 2335 false, 0); 2336 InChain = RegSaveArea.getValue(1); 2337 2338 // select overflow_area if index > 8 2339 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2340 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2341 2342 // adjustment constant gpr_index * 4/8 2343 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2344 VT.isInteger() ? GprIndex : FprIndex, 2345 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2346 MVT::i32)); 2347 2348 // OurReg = RegSaveArea + RegConstant 2349 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2350 RegConstant); 2351 2352 // Floating types are 32 bytes into RegSaveArea 2353 if (VT.isFloatingPoint()) 2354 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2355 DAG.getConstant(32, dl, MVT::i32)); 2356 2357 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2358 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2359 VT.isInteger() ? GprIndex : FprIndex, 2360 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2361 MVT::i32)); 2362 2363 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2364 VT.isInteger() ? VAListPtr : FprPtr, 2365 MachinePointerInfo(SV), 2366 MVT::i8, false, false, 0); 2367 2368 // determine if we should load from reg_save_area or overflow_area 2369 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2370 2371 // increase overflow_area by 4/8 if gpr/fpr > 8 2372 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2373 DAG.getConstant(VT.isInteger() ? 4 : 8, 2374 dl, MVT::i32)); 2375 2376 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2377 OverflowAreaPlusN); 2378 2379 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2380 OverflowAreaPtr, 2381 MachinePointerInfo(), 2382 MVT::i32, false, false, 0); 2383 2384 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2385 false, false, false, 0); 2386 } 2387 2388 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2389 const PPCSubtarget &Subtarget) const { 2390 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2391 2392 // We have to copy the entire va_list struct: 2393 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2394 return DAG.getMemcpy(Op.getOperand(0), Op, 2395 Op.getOperand(1), Op.getOperand(2), 2396 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2397 false, MachinePointerInfo(), MachinePointerInfo()); 2398 } 2399 2400 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2401 SelectionDAG &DAG) const { 2402 return Op.getOperand(0); 2403 } 2404 2405 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2406 SelectionDAG &DAG) const { 2407 SDValue Chain = Op.getOperand(0); 2408 SDValue Trmp = Op.getOperand(1); // trampoline 2409 SDValue FPtr = Op.getOperand(2); // nested function 2410 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2411 SDLoc dl(Op); 2412 2413 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2414 bool isPPC64 = (PtrVT == MVT::i64); 2415 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2416 2417 TargetLowering::ArgListTy Args; 2418 TargetLowering::ArgListEntry Entry; 2419 2420 Entry.Ty = IntPtrTy; 2421 Entry.Node = Trmp; Args.push_back(Entry); 2422 2423 // TrampSize == (isPPC64 ? 48 : 40); 2424 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2425 isPPC64 ? MVT::i64 : MVT::i32); 2426 Args.push_back(Entry); 2427 2428 Entry.Node = FPtr; Args.push_back(Entry); 2429 Entry.Node = Nest; Args.push_back(Entry); 2430 2431 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2432 TargetLowering::CallLoweringInfo CLI(DAG); 2433 CLI.setDebugLoc(dl).setChain(Chain) 2434 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2435 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2436 std::move(Args), 0); 2437 2438 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2439 return CallResult.second; 2440 } 2441 2442 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2443 const PPCSubtarget &Subtarget) const { 2444 MachineFunction &MF = DAG.getMachineFunction(); 2445 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2446 2447 SDLoc dl(Op); 2448 2449 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2450 // vastart just stores the address of the VarArgsFrameIndex slot into the 2451 // memory location argument. 2452 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2453 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2454 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2455 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2456 MachinePointerInfo(SV), 2457 false, false, 0); 2458 } 2459 2460 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2461 // We suppose the given va_list is already allocated. 2462 // 2463 // typedef struct { 2464 // char gpr; /* index into the array of 8 GPRs 2465 // * stored in the register save area 2466 // * gpr=0 corresponds to r3, 2467 // * gpr=1 to r4, etc. 2468 // */ 2469 // char fpr; /* index into the array of 8 FPRs 2470 // * stored in the register save area 2471 // * fpr=0 corresponds to f1, 2472 // * fpr=1 to f2, etc. 2473 // */ 2474 // char *overflow_arg_area; 2475 // /* location on stack that holds 2476 // * the next overflow argument 2477 // */ 2478 // char *reg_save_area; 2479 // /* where r3:r10 and f1:f8 (if saved) 2480 // * are stored 2481 // */ 2482 // } va_list[1]; 2483 2484 2485 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2486 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2487 2488 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2489 2490 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2491 PtrVT); 2492 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2493 PtrVT); 2494 2495 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2496 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2497 2498 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2499 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2500 2501 uint64_t FPROffset = 1; 2502 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2503 2504 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2505 2506 // Store first byte : number of int regs 2507 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2508 Op.getOperand(1), 2509 MachinePointerInfo(SV), 2510 MVT::i8, false, false, 0); 2511 uint64_t nextOffset = FPROffset; 2512 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2513 ConstFPROffset); 2514 2515 // Store second byte : number of float regs 2516 SDValue secondStore = 2517 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2518 MachinePointerInfo(SV, nextOffset), MVT::i8, 2519 false, false, 0); 2520 nextOffset += StackOffset; 2521 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2522 2523 // Store second word : arguments given on stack 2524 SDValue thirdStore = 2525 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2526 MachinePointerInfo(SV, nextOffset), 2527 false, false, 0); 2528 nextOffset += FrameOffset; 2529 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2530 2531 // Store third word : arguments given in registers 2532 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2533 MachinePointerInfo(SV, nextOffset), 2534 false, false, 0); 2535 2536 } 2537 2538 #include "PPCGenCallingConv.inc" 2539 2540 // Function whose sole purpose is to kill compiler warnings 2541 // stemming from unused functions included from PPCGenCallingConv.inc. 2542 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2543 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2544 } 2545 2546 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2547 CCValAssign::LocInfo &LocInfo, 2548 ISD::ArgFlagsTy &ArgFlags, 2549 CCState &State) { 2550 return true; 2551 } 2552 2553 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2554 MVT &LocVT, 2555 CCValAssign::LocInfo &LocInfo, 2556 ISD::ArgFlagsTy &ArgFlags, 2557 CCState &State) { 2558 static const MCPhysReg ArgRegs[] = { 2559 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2560 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2561 }; 2562 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2563 2564 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2565 2566 // Skip one register if the first unallocated register has an even register 2567 // number and there are still argument registers available which have not been 2568 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2569 // need to skip a register if RegNum is odd. 2570 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2571 State.AllocateReg(ArgRegs[RegNum]); 2572 } 2573 2574 // Always return false here, as this function only makes sure that the first 2575 // unallocated register has an odd register number and does not actually 2576 // allocate a register for the current argument. 2577 return false; 2578 } 2579 2580 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2581 MVT &LocVT, 2582 CCValAssign::LocInfo &LocInfo, 2583 ISD::ArgFlagsTy &ArgFlags, 2584 CCState &State) { 2585 static const MCPhysReg ArgRegs[] = { 2586 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2587 PPC::F8 2588 }; 2589 2590 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2591 2592 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2593 2594 // If there is only one Floating-point register left we need to put both f64 2595 // values of a split ppc_fp128 value on the stack. 2596 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2597 State.AllocateReg(ArgRegs[RegNum]); 2598 } 2599 2600 // Always return false here, as this function only makes sure that the two f64 2601 // values a ppc_fp128 value is split into are both passed in registers or both 2602 // passed on the stack and does not actually allocate a register for the 2603 // current argument. 2604 return false; 2605 } 2606 2607 /// FPR - The set of FP registers that should be allocated for arguments, 2608 /// on Darwin. 2609 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2610 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2611 PPC::F11, PPC::F12, PPC::F13}; 2612 2613 /// QFPR - The set of QPX registers that should be allocated for arguments. 2614 static const MCPhysReg QFPR[] = { 2615 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2616 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2617 2618 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2619 /// the stack. 2620 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2621 unsigned PtrByteSize) { 2622 unsigned ArgSize = ArgVT.getStoreSize(); 2623 if (Flags.isByVal()) 2624 ArgSize = Flags.getByValSize(); 2625 2626 // Round up to multiples of the pointer size, except for array members, 2627 // which are always packed. 2628 if (!Flags.isInConsecutiveRegs()) 2629 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2630 2631 return ArgSize; 2632 } 2633 2634 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2635 /// on the stack. 2636 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2637 ISD::ArgFlagsTy Flags, 2638 unsigned PtrByteSize) { 2639 unsigned Align = PtrByteSize; 2640 2641 // Altivec parameters are padded to a 16 byte boundary. 2642 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2643 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2644 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2645 ArgVT == MVT::v1i128) 2646 Align = 16; 2647 // QPX vector types stored in double-precision are padded to a 32 byte 2648 // boundary. 2649 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2650 Align = 32; 2651 2652 // ByVal parameters are aligned as requested. 2653 if (Flags.isByVal()) { 2654 unsigned BVAlign = Flags.getByValAlign(); 2655 if (BVAlign > PtrByteSize) { 2656 if (BVAlign % PtrByteSize != 0) 2657 llvm_unreachable( 2658 "ByVal alignment is not a multiple of the pointer size"); 2659 2660 Align = BVAlign; 2661 } 2662 } 2663 2664 // Array members are always packed to their original alignment. 2665 if (Flags.isInConsecutiveRegs()) { 2666 // If the array member was split into multiple registers, the first 2667 // needs to be aligned to the size of the full type. (Except for 2668 // ppcf128, which is only aligned as its f64 components.) 2669 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2670 Align = OrigVT.getStoreSize(); 2671 else 2672 Align = ArgVT.getStoreSize(); 2673 } 2674 2675 return Align; 2676 } 2677 2678 /// CalculateStackSlotUsed - Return whether this argument will use its 2679 /// stack slot (instead of being passed in registers). ArgOffset, 2680 /// AvailableFPRs, and AvailableVRs must hold the current argument 2681 /// position, and will be updated to account for this argument. 2682 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2683 ISD::ArgFlagsTy Flags, 2684 unsigned PtrByteSize, 2685 unsigned LinkageSize, 2686 unsigned ParamAreaSize, 2687 unsigned &ArgOffset, 2688 unsigned &AvailableFPRs, 2689 unsigned &AvailableVRs, bool HasQPX) { 2690 bool UseMemory = false; 2691 2692 // Respect alignment of argument on the stack. 2693 unsigned Align = 2694 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2695 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2696 // If there's no space left in the argument save area, we must 2697 // use memory (this check also catches zero-sized arguments). 2698 if (ArgOffset >= LinkageSize + ParamAreaSize) 2699 UseMemory = true; 2700 2701 // Allocate argument on the stack. 2702 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2703 if (Flags.isInConsecutiveRegsLast()) 2704 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2705 // If we overran the argument save area, we must use memory 2706 // (this check catches arguments passed partially in memory) 2707 if (ArgOffset > LinkageSize + ParamAreaSize) 2708 UseMemory = true; 2709 2710 // However, if the argument is actually passed in an FPR or a VR, 2711 // we don't use memory after all. 2712 if (!Flags.isByVal()) { 2713 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2714 // QPX registers overlap with the scalar FP registers. 2715 (HasQPX && (ArgVT == MVT::v4f32 || 2716 ArgVT == MVT::v4f64 || 2717 ArgVT == MVT::v4i1))) 2718 if (AvailableFPRs > 0) { 2719 --AvailableFPRs; 2720 return false; 2721 } 2722 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2723 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2724 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2725 ArgVT == MVT::v1i128) 2726 if (AvailableVRs > 0) { 2727 --AvailableVRs; 2728 return false; 2729 } 2730 } 2731 2732 return UseMemory; 2733 } 2734 2735 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2736 /// ensure minimum alignment required for target. 2737 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2738 unsigned NumBytes) { 2739 unsigned TargetAlign = Lowering->getStackAlignment(); 2740 unsigned AlignMask = TargetAlign - 1; 2741 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2742 return NumBytes; 2743 } 2744 2745 SDValue 2746 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2747 CallingConv::ID CallConv, bool isVarArg, 2748 const SmallVectorImpl<ISD::InputArg> 2749 &Ins, 2750 SDLoc dl, SelectionDAG &DAG, 2751 SmallVectorImpl<SDValue> &InVals) 2752 const { 2753 if (Subtarget.isSVR4ABI()) { 2754 if (Subtarget.isPPC64()) 2755 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2756 dl, DAG, InVals); 2757 else 2758 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2759 dl, DAG, InVals); 2760 } else { 2761 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2762 dl, DAG, InVals); 2763 } 2764 } 2765 2766 SDValue 2767 PPCTargetLowering::LowerFormalArguments_32SVR4( 2768 SDValue Chain, 2769 CallingConv::ID CallConv, bool isVarArg, 2770 const SmallVectorImpl<ISD::InputArg> 2771 &Ins, 2772 SDLoc dl, SelectionDAG &DAG, 2773 SmallVectorImpl<SDValue> &InVals) const { 2774 2775 // 32-bit SVR4 ABI Stack Frame Layout: 2776 // +-----------------------------------+ 2777 // +--> | Back chain | 2778 // | +-----------------------------------+ 2779 // | | Floating-point register save area | 2780 // | +-----------------------------------+ 2781 // | | General register save area | 2782 // | +-----------------------------------+ 2783 // | | CR save word | 2784 // | +-----------------------------------+ 2785 // | | VRSAVE save word | 2786 // | +-----------------------------------+ 2787 // | | Alignment padding | 2788 // | +-----------------------------------+ 2789 // | | Vector register save area | 2790 // | +-----------------------------------+ 2791 // | | Local variable space | 2792 // | +-----------------------------------+ 2793 // | | Parameter list area | 2794 // | +-----------------------------------+ 2795 // | | LR save word | 2796 // | +-----------------------------------+ 2797 // SP--> +--- | Back chain | 2798 // +-----------------------------------+ 2799 // 2800 // Specifications: 2801 // System V Application Binary Interface PowerPC Processor Supplement 2802 // AltiVec Technology Programming Interface Manual 2803 2804 MachineFunction &MF = DAG.getMachineFunction(); 2805 MachineFrameInfo *MFI = MF.getFrameInfo(); 2806 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2807 2808 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2809 // Potential tail calls could cause overwriting of argument stack slots. 2810 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2811 (CallConv == CallingConv::Fast)); 2812 unsigned PtrByteSize = 4; 2813 2814 // Assign locations to all of the incoming arguments. 2815 SmallVector<CCValAssign, 16> ArgLocs; 2816 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2817 *DAG.getContext()); 2818 2819 // Reserve space for the linkage area on the stack. 2820 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2821 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2822 2823 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2824 2825 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2826 CCValAssign &VA = ArgLocs[i]; 2827 2828 // Arguments stored in registers. 2829 if (VA.isRegLoc()) { 2830 const TargetRegisterClass *RC; 2831 EVT ValVT = VA.getValVT(); 2832 2833 switch (ValVT.getSimpleVT().SimpleTy) { 2834 default: 2835 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2836 case MVT::i1: 2837 case MVT::i32: 2838 RC = &PPC::GPRCRegClass; 2839 break; 2840 case MVT::f32: 2841 if (Subtarget.hasP8Vector()) 2842 RC = &PPC::VSSRCRegClass; 2843 else 2844 RC = &PPC::F4RCRegClass; 2845 break; 2846 case MVT::f64: 2847 if (Subtarget.hasVSX()) 2848 RC = &PPC::VSFRCRegClass; 2849 else 2850 RC = &PPC::F8RCRegClass; 2851 break; 2852 case MVT::v16i8: 2853 case MVT::v8i16: 2854 case MVT::v4i32: 2855 RC = &PPC::VRRCRegClass; 2856 break; 2857 case MVT::v4f32: 2858 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2859 break; 2860 case MVT::v2f64: 2861 case MVT::v2i64: 2862 RC = &PPC::VSHRCRegClass; 2863 break; 2864 case MVT::v4f64: 2865 RC = &PPC::QFRCRegClass; 2866 break; 2867 case MVT::v4i1: 2868 RC = &PPC::QBRCRegClass; 2869 break; 2870 } 2871 2872 // Transform the arguments stored in physical registers into virtual ones. 2873 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2874 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2875 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2876 2877 if (ValVT == MVT::i1) 2878 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2879 2880 InVals.push_back(ArgValue); 2881 } else { 2882 // Argument stored in memory. 2883 assert(VA.isMemLoc()); 2884 2885 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2886 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2887 isImmutable); 2888 2889 // Create load nodes to retrieve arguments from the stack. 2890 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2891 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2892 MachinePointerInfo(), 2893 false, false, false, 0)); 2894 } 2895 } 2896 2897 // Assign locations to all of the incoming aggregate by value arguments. 2898 // Aggregates passed by value are stored in the local variable space of the 2899 // caller's stack frame, right above the parameter list area. 2900 SmallVector<CCValAssign, 16> ByValArgLocs; 2901 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2902 ByValArgLocs, *DAG.getContext()); 2903 2904 // Reserve stack space for the allocations in CCInfo. 2905 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2906 2907 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2908 2909 // Area that is at least reserved in the caller of this function. 2910 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2911 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2912 2913 // Set the size that is at least reserved in caller of this function. Tail 2914 // call optimized function's reserved stack space needs to be aligned so that 2915 // taking the difference between two stack areas will result in an aligned 2916 // stack. 2917 MinReservedArea = 2918 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2919 FuncInfo->setMinReservedArea(MinReservedArea); 2920 2921 SmallVector<SDValue, 8> MemOps; 2922 2923 // If the function takes variable number of arguments, make a frame index for 2924 // the start of the first vararg value... for expansion of llvm.va_start. 2925 if (isVarArg) { 2926 static const MCPhysReg GPArgRegs[] = { 2927 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2928 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2929 }; 2930 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2931 2932 static const MCPhysReg FPArgRegs[] = { 2933 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2934 PPC::F8 2935 }; 2936 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2937 if (DisablePPCFloatInVariadic) 2938 NumFPArgRegs = 0; 2939 2940 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2941 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2942 2943 // Make room for NumGPArgRegs and NumFPArgRegs. 2944 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2945 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2946 2947 FuncInfo->setVarArgsStackOffset( 2948 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2949 CCInfo.getNextStackOffset(), true)); 2950 2951 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2952 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2953 2954 // The fixed integer arguments of a variadic function are stored to the 2955 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2956 // the result of va_next. 2957 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2958 // Get an existing live-in vreg, or add a new one. 2959 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2960 if (!VReg) 2961 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2962 2963 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2964 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2965 MachinePointerInfo(), false, false, 0); 2966 MemOps.push_back(Store); 2967 // Increment the address by four for the next argument to store 2968 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2969 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2970 } 2971 2972 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2973 // is set. 2974 // The double arguments are stored to the VarArgsFrameIndex 2975 // on the stack. 2976 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2977 // Get an existing live-in vreg, or add a new one. 2978 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2979 if (!VReg) 2980 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2981 2982 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2983 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2984 MachinePointerInfo(), false, false, 0); 2985 MemOps.push_back(Store); 2986 // Increment the address by eight for the next argument to store 2987 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2988 PtrVT); 2989 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2990 } 2991 } 2992 2993 if (!MemOps.empty()) 2994 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 2995 2996 return Chain; 2997 } 2998 2999 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3000 // value to MVT::i64 and then truncate to the correct register size. 3001 SDValue 3002 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3003 SelectionDAG &DAG, SDValue ArgVal, 3004 SDLoc dl) const { 3005 if (Flags.isSExt()) 3006 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3007 DAG.getValueType(ObjectVT)); 3008 else if (Flags.isZExt()) 3009 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3010 DAG.getValueType(ObjectVT)); 3011 3012 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3013 } 3014 3015 SDValue 3016 PPCTargetLowering::LowerFormalArguments_64SVR4( 3017 SDValue Chain, 3018 CallingConv::ID CallConv, bool isVarArg, 3019 const SmallVectorImpl<ISD::InputArg> 3020 &Ins, 3021 SDLoc dl, SelectionDAG &DAG, 3022 SmallVectorImpl<SDValue> &InVals) const { 3023 // TODO: add description of PPC stack frame format, or at least some docs. 3024 // 3025 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3026 bool isLittleEndian = Subtarget.isLittleEndian(); 3027 MachineFunction &MF = DAG.getMachineFunction(); 3028 MachineFrameInfo *MFI = MF.getFrameInfo(); 3029 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3030 3031 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3032 "fastcc not supported on varargs functions"); 3033 3034 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3035 // Potential tail calls could cause overwriting of argument stack slots. 3036 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3037 (CallConv == CallingConv::Fast)); 3038 unsigned PtrByteSize = 8; 3039 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3040 3041 static const MCPhysReg GPR[] = { 3042 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3043 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3044 }; 3045 static const MCPhysReg VR[] = { 3046 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3047 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3048 }; 3049 static const MCPhysReg VSRH[] = { 3050 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3051 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3052 }; 3053 3054 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3055 const unsigned Num_FPR_Regs = 13; 3056 const unsigned Num_VR_Regs = array_lengthof(VR); 3057 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3058 3059 // Do a first pass over the arguments to determine whether the ABI 3060 // guarantees that our caller has allocated the parameter save area 3061 // on its stack frame. In the ELFv1 ABI, this is always the case; 3062 // in the ELFv2 ABI, it is true if this is a vararg function or if 3063 // any parameter is located in a stack slot. 3064 3065 bool HasParameterArea = !isELFv2ABI || isVarArg; 3066 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3067 unsigned NumBytes = LinkageSize; 3068 unsigned AvailableFPRs = Num_FPR_Regs; 3069 unsigned AvailableVRs = Num_VR_Regs; 3070 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3071 if (Ins[i].Flags.isNest()) 3072 continue; 3073 3074 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3075 PtrByteSize, LinkageSize, ParamAreaSize, 3076 NumBytes, AvailableFPRs, AvailableVRs, 3077 Subtarget.hasQPX())) 3078 HasParameterArea = true; 3079 } 3080 3081 // Add DAG nodes to load the arguments or copy them out of registers. On 3082 // entry to a function on PPC, the arguments start after the linkage area, 3083 // although the first ones are often in registers. 3084 3085 unsigned ArgOffset = LinkageSize; 3086 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3087 unsigned &QFPR_idx = FPR_idx; 3088 SmallVector<SDValue, 8> MemOps; 3089 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3090 unsigned CurArgIdx = 0; 3091 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3092 SDValue ArgVal; 3093 bool needsLoad = false; 3094 EVT ObjectVT = Ins[ArgNo].VT; 3095 EVT OrigVT = Ins[ArgNo].ArgVT; 3096 unsigned ObjSize = ObjectVT.getStoreSize(); 3097 unsigned ArgSize = ObjSize; 3098 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3099 if (Ins[ArgNo].isOrigArg()) { 3100 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3101 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3102 } 3103 // We re-align the argument offset for each argument, except when using the 3104 // fast calling convention, when we need to make sure we do that only when 3105 // we'll actually use a stack slot. 3106 unsigned CurArgOffset, Align; 3107 auto ComputeArgOffset = [&]() { 3108 /* Respect alignment of argument on the stack. */ 3109 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3110 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3111 CurArgOffset = ArgOffset; 3112 }; 3113 3114 if (CallConv != CallingConv::Fast) { 3115 ComputeArgOffset(); 3116 3117 /* Compute GPR index associated with argument offset. */ 3118 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3119 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3120 } 3121 3122 // FIXME the codegen can be much improved in some cases. 3123 // We do not have to keep everything in memory. 3124 if (Flags.isByVal()) { 3125 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3126 3127 if (CallConv == CallingConv::Fast) 3128 ComputeArgOffset(); 3129 3130 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3131 ObjSize = Flags.getByValSize(); 3132 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3133 // Empty aggregate parameters do not take up registers. Examples: 3134 // struct { } a; 3135 // union { } b; 3136 // int c[0]; 3137 // etc. However, we have to provide a place-holder in InVals, so 3138 // pretend we have an 8-byte item at the current address for that 3139 // purpose. 3140 if (!ObjSize) { 3141 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3142 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3143 InVals.push_back(FIN); 3144 continue; 3145 } 3146 3147 // Create a stack object covering all stack doublewords occupied 3148 // by the argument. If the argument is (fully or partially) on 3149 // the stack, or if the argument is fully in registers but the 3150 // caller has allocated the parameter save anyway, we can refer 3151 // directly to the caller's stack frame. Otherwise, create a 3152 // local copy in our own frame. 3153 int FI; 3154 if (HasParameterArea || 3155 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3156 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3157 else 3158 FI = MFI->CreateStackObject(ArgSize, Align, false); 3159 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3160 3161 // Handle aggregates smaller than 8 bytes. 3162 if (ObjSize < PtrByteSize) { 3163 // The value of the object is its address, which differs from the 3164 // address of the enclosing doubleword on big-endian systems. 3165 SDValue Arg = FIN; 3166 if (!isLittleEndian) { 3167 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3168 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3169 } 3170 InVals.push_back(Arg); 3171 3172 if (GPR_idx != Num_GPR_Regs) { 3173 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3174 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3175 SDValue Store; 3176 3177 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3178 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3179 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3180 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3181 MachinePointerInfo(FuncArg), 3182 ObjType, false, false, 0); 3183 } else { 3184 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3185 // store the whole register as-is to the parameter save area 3186 // slot. 3187 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3188 MachinePointerInfo(FuncArg), 3189 false, false, 0); 3190 } 3191 3192 MemOps.push_back(Store); 3193 } 3194 // Whether we copied from a register or not, advance the offset 3195 // into the parameter save area by a full doubleword. 3196 ArgOffset += PtrByteSize; 3197 continue; 3198 } 3199 3200 // The value of the object is its address, which is the address of 3201 // its first stack doubleword. 3202 InVals.push_back(FIN); 3203 3204 // Store whatever pieces of the object are in registers to memory. 3205 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3206 if (GPR_idx == Num_GPR_Regs) 3207 break; 3208 3209 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3210 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3211 SDValue Addr = FIN; 3212 if (j) { 3213 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3214 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3215 } 3216 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3217 MachinePointerInfo(FuncArg, j), 3218 false, false, 0); 3219 MemOps.push_back(Store); 3220 ++GPR_idx; 3221 } 3222 ArgOffset += ArgSize; 3223 continue; 3224 } 3225 3226 switch (ObjectVT.getSimpleVT().SimpleTy) { 3227 default: llvm_unreachable("Unhandled argument type!"); 3228 case MVT::i1: 3229 case MVT::i32: 3230 case MVT::i64: 3231 if (Flags.isNest()) { 3232 // The 'nest' parameter, if any, is passed in R11. 3233 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3234 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3235 3236 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3237 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3238 3239 break; 3240 } 3241 3242 // These can be scalar arguments or elements of an integer array type 3243 // passed directly. Clang may use those instead of "byval" aggregate 3244 // types to avoid forcing arguments to memory unnecessarily. 3245 if (GPR_idx != Num_GPR_Regs) { 3246 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3247 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3248 3249 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3250 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3251 // value to MVT::i64 and then truncate to the correct register size. 3252 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3253 } else { 3254 if (CallConv == CallingConv::Fast) 3255 ComputeArgOffset(); 3256 3257 needsLoad = true; 3258 ArgSize = PtrByteSize; 3259 } 3260 if (CallConv != CallingConv::Fast || needsLoad) 3261 ArgOffset += 8; 3262 break; 3263 3264 case MVT::f32: 3265 case MVT::f64: 3266 // These can be scalar arguments or elements of a float array type 3267 // passed directly. The latter are used to implement ELFv2 homogenous 3268 // float aggregates. 3269 if (FPR_idx != Num_FPR_Regs) { 3270 unsigned VReg; 3271 3272 if (ObjectVT == MVT::f32) 3273 VReg = MF.addLiveIn(FPR[FPR_idx], 3274 Subtarget.hasP8Vector() 3275 ? &PPC::VSSRCRegClass 3276 : &PPC::F4RCRegClass); 3277 else 3278 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3279 ? &PPC::VSFRCRegClass 3280 : &PPC::F8RCRegClass); 3281 3282 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3283 ++FPR_idx; 3284 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3285 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3286 // once we support fp <-> gpr moves. 3287 3288 // This can only ever happen in the presence of f32 array types, 3289 // since otherwise we never run out of FPRs before running out 3290 // of GPRs. 3291 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3292 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3293 3294 if (ObjectVT == MVT::f32) { 3295 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3296 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3297 DAG.getConstant(32, dl, MVT::i32)); 3298 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3299 } 3300 3301 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3302 } else { 3303 if (CallConv == CallingConv::Fast) 3304 ComputeArgOffset(); 3305 3306 needsLoad = true; 3307 } 3308 3309 // When passing an array of floats, the array occupies consecutive 3310 // space in the argument area; only round up to the next doubleword 3311 // at the end of the array. Otherwise, each float takes 8 bytes. 3312 if (CallConv != CallingConv::Fast || needsLoad) { 3313 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3314 ArgOffset += ArgSize; 3315 if (Flags.isInConsecutiveRegsLast()) 3316 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3317 } 3318 break; 3319 case MVT::v4f32: 3320 case MVT::v4i32: 3321 case MVT::v8i16: 3322 case MVT::v16i8: 3323 case MVT::v2f64: 3324 case MVT::v2i64: 3325 case MVT::v1i128: 3326 if (!Subtarget.hasQPX()) { 3327 // These can be scalar arguments or elements of a vector array type 3328 // passed directly. The latter are used to implement ELFv2 homogenous 3329 // vector aggregates. 3330 if (VR_idx != Num_VR_Regs) { 3331 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3332 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3333 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3334 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3335 ++VR_idx; 3336 } else { 3337 if (CallConv == CallingConv::Fast) 3338 ComputeArgOffset(); 3339 3340 needsLoad = true; 3341 } 3342 if (CallConv != CallingConv::Fast || needsLoad) 3343 ArgOffset += 16; 3344 break; 3345 } // not QPX 3346 3347 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3348 "Invalid QPX parameter type"); 3349 /* fall through */ 3350 3351 case MVT::v4f64: 3352 case MVT::v4i1: 3353 // QPX vectors are treated like their scalar floating-point subregisters 3354 // (except that they're larger). 3355 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3356 if (QFPR_idx != Num_QFPR_Regs) { 3357 const TargetRegisterClass *RC; 3358 switch (ObjectVT.getSimpleVT().SimpleTy) { 3359 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3360 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3361 default: RC = &PPC::QBRCRegClass; break; 3362 } 3363 3364 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3365 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3366 ++QFPR_idx; 3367 } else { 3368 if (CallConv == CallingConv::Fast) 3369 ComputeArgOffset(); 3370 needsLoad = true; 3371 } 3372 if (CallConv != CallingConv::Fast || needsLoad) 3373 ArgOffset += Sz; 3374 break; 3375 } 3376 3377 // We need to load the argument to a virtual register if we determined 3378 // above that we ran out of physical registers of the appropriate type. 3379 if (needsLoad) { 3380 if (ObjSize < ArgSize && !isLittleEndian) 3381 CurArgOffset += ArgSize - ObjSize; 3382 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3383 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3384 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3385 false, false, false, 0); 3386 } 3387 3388 InVals.push_back(ArgVal); 3389 } 3390 3391 // Area that is at least reserved in the caller of this function. 3392 unsigned MinReservedArea; 3393 if (HasParameterArea) 3394 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3395 else 3396 MinReservedArea = LinkageSize; 3397 3398 // Set the size that is at least reserved in caller of this function. Tail 3399 // call optimized functions' reserved stack space needs to be aligned so that 3400 // taking the difference between two stack areas will result in an aligned 3401 // stack. 3402 MinReservedArea = 3403 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3404 FuncInfo->setMinReservedArea(MinReservedArea); 3405 3406 // If the function takes variable number of arguments, make a frame index for 3407 // the start of the first vararg value... for expansion of llvm.va_start. 3408 if (isVarArg) { 3409 int Depth = ArgOffset; 3410 3411 FuncInfo->setVarArgsFrameIndex( 3412 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3413 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3414 3415 // If this function is vararg, store any remaining integer argument regs 3416 // to their spots on the stack so that they may be loaded by deferencing the 3417 // result of va_next. 3418 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3419 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3420 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3421 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3422 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3423 MachinePointerInfo(), false, false, 0); 3424 MemOps.push_back(Store); 3425 // Increment the address by four for the next argument to store 3426 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3427 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3428 } 3429 } 3430 3431 if (!MemOps.empty()) 3432 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3433 3434 return Chain; 3435 } 3436 3437 SDValue 3438 PPCTargetLowering::LowerFormalArguments_Darwin( 3439 SDValue Chain, 3440 CallingConv::ID CallConv, bool isVarArg, 3441 const SmallVectorImpl<ISD::InputArg> 3442 &Ins, 3443 SDLoc dl, SelectionDAG &DAG, 3444 SmallVectorImpl<SDValue> &InVals) const { 3445 // TODO: add description of PPC stack frame format, or at least some docs. 3446 // 3447 MachineFunction &MF = DAG.getMachineFunction(); 3448 MachineFrameInfo *MFI = MF.getFrameInfo(); 3449 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3450 3451 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3452 bool isPPC64 = PtrVT == MVT::i64; 3453 // Potential tail calls could cause overwriting of argument stack slots. 3454 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3455 (CallConv == CallingConv::Fast)); 3456 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3457 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3458 unsigned ArgOffset = LinkageSize; 3459 // Area that is at least reserved in caller of this function. 3460 unsigned MinReservedArea = ArgOffset; 3461 3462 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3463 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3464 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3465 }; 3466 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3467 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3468 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3469 }; 3470 static const MCPhysReg VR[] = { 3471 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3472 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3473 }; 3474 3475 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3476 const unsigned Num_FPR_Regs = 13; 3477 const unsigned Num_VR_Regs = array_lengthof( VR); 3478 3479 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3480 3481 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3482 3483 // In 32-bit non-varargs functions, the stack space for vectors is after the 3484 // stack space for non-vectors. We do not use this space unless we have 3485 // too many vectors to fit in registers, something that only occurs in 3486 // constructed examples:), but we have to walk the arglist to figure 3487 // that out...for the pathological case, compute VecArgOffset as the 3488 // start of the vector parameter area. Computing VecArgOffset is the 3489 // entire point of the following loop. 3490 unsigned VecArgOffset = ArgOffset; 3491 if (!isVarArg && !isPPC64) { 3492 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3493 ++ArgNo) { 3494 EVT ObjectVT = Ins[ArgNo].VT; 3495 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3496 3497 if (Flags.isByVal()) { 3498 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3499 unsigned ObjSize = Flags.getByValSize(); 3500 unsigned ArgSize = 3501 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3502 VecArgOffset += ArgSize; 3503 continue; 3504 } 3505 3506 switch(ObjectVT.getSimpleVT().SimpleTy) { 3507 default: llvm_unreachable("Unhandled argument type!"); 3508 case MVT::i1: 3509 case MVT::i32: 3510 case MVT::f32: 3511 VecArgOffset += 4; 3512 break; 3513 case MVT::i64: // PPC64 3514 case MVT::f64: 3515 // FIXME: We are guaranteed to be !isPPC64 at this point. 3516 // Does MVT::i64 apply? 3517 VecArgOffset += 8; 3518 break; 3519 case MVT::v4f32: 3520 case MVT::v4i32: 3521 case MVT::v8i16: 3522 case MVT::v16i8: 3523 // Nothing to do, we're only looking at Nonvector args here. 3524 break; 3525 } 3526 } 3527 } 3528 // We've found where the vector parameter area in memory is. Skip the 3529 // first 12 parameters; these don't use that memory. 3530 VecArgOffset = ((VecArgOffset+15)/16)*16; 3531 VecArgOffset += 12*16; 3532 3533 // Add DAG nodes to load the arguments or copy them out of registers. On 3534 // entry to a function on PPC, the arguments start after the linkage area, 3535 // although the first ones are often in registers. 3536 3537 SmallVector<SDValue, 8> MemOps; 3538 unsigned nAltivecParamsAtEnd = 0; 3539 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3540 unsigned CurArgIdx = 0; 3541 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3542 SDValue ArgVal; 3543 bool needsLoad = false; 3544 EVT ObjectVT = Ins[ArgNo].VT; 3545 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3546 unsigned ArgSize = ObjSize; 3547 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3548 if (Ins[ArgNo].isOrigArg()) { 3549 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3550 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3551 } 3552 unsigned CurArgOffset = ArgOffset; 3553 3554 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3555 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3556 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3557 if (isVarArg || isPPC64) { 3558 MinReservedArea = ((MinReservedArea+15)/16)*16; 3559 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3560 Flags, 3561 PtrByteSize); 3562 } else nAltivecParamsAtEnd++; 3563 } else 3564 // Calculate min reserved area. 3565 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3566 Flags, 3567 PtrByteSize); 3568 3569 // FIXME the codegen can be much improved in some cases. 3570 // We do not have to keep everything in memory. 3571 if (Flags.isByVal()) { 3572 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3573 3574 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3575 ObjSize = Flags.getByValSize(); 3576 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3577 // Objects of size 1 and 2 are right justified, everything else is 3578 // left justified. This means the memory address is adjusted forwards. 3579 if (ObjSize==1 || ObjSize==2) { 3580 CurArgOffset = CurArgOffset + (4 - ObjSize); 3581 } 3582 // The value of the object is its address. 3583 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3584 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3585 InVals.push_back(FIN); 3586 if (ObjSize==1 || ObjSize==2) { 3587 if (GPR_idx != Num_GPR_Regs) { 3588 unsigned VReg; 3589 if (isPPC64) 3590 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3591 else 3592 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3593 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3594 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3595 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3596 MachinePointerInfo(FuncArg), 3597 ObjType, false, false, 0); 3598 MemOps.push_back(Store); 3599 ++GPR_idx; 3600 } 3601 3602 ArgOffset += PtrByteSize; 3603 3604 continue; 3605 } 3606 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3607 // Store whatever pieces of the object are in registers 3608 // to memory. ArgOffset will be the address of the beginning 3609 // of the object. 3610 if (GPR_idx != Num_GPR_Regs) { 3611 unsigned VReg; 3612 if (isPPC64) 3613 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3614 else 3615 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3616 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3617 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3618 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3619 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3620 MachinePointerInfo(FuncArg, j), 3621 false, false, 0); 3622 MemOps.push_back(Store); 3623 ++GPR_idx; 3624 ArgOffset += PtrByteSize; 3625 } else { 3626 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3627 break; 3628 } 3629 } 3630 continue; 3631 } 3632 3633 switch (ObjectVT.getSimpleVT().SimpleTy) { 3634 default: llvm_unreachable("Unhandled argument type!"); 3635 case MVT::i1: 3636 case MVT::i32: 3637 if (!isPPC64) { 3638 if (GPR_idx != Num_GPR_Regs) { 3639 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3640 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3641 3642 if (ObjectVT == MVT::i1) 3643 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3644 3645 ++GPR_idx; 3646 } else { 3647 needsLoad = true; 3648 ArgSize = PtrByteSize; 3649 } 3650 // All int arguments reserve stack space in the Darwin ABI. 3651 ArgOffset += PtrByteSize; 3652 break; 3653 } 3654 // FALLTHROUGH 3655 case MVT::i64: // PPC64 3656 if (GPR_idx != Num_GPR_Regs) { 3657 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3658 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3659 3660 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3661 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3662 // value to MVT::i64 and then truncate to the correct register size. 3663 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3664 3665 ++GPR_idx; 3666 } else { 3667 needsLoad = true; 3668 ArgSize = PtrByteSize; 3669 } 3670 // All int arguments reserve stack space in the Darwin ABI. 3671 ArgOffset += 8; 3672 break; 3673 3674 case MVT::f32: 3675 case MVT::f64: 3676 // Every 4 bytes of argument space consumes one of the GPRs available for 3677 // argument passing. 3678 if (GPR_idx != Num_GPR_Regs) { 3679 ++GPR_idx; 3680 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3681 ++GPR_idx; 3682 } 3683 if (FPR_idx != Num_FPR_Regs) { 3684 unsigned VReg; 3685 3686 if (ObjectVT == MVT::f32) 3687 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3688 else 3689 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3690 3691 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3692 ++FPR_idx; 3693 } else { 3694 needsLoad = true; 3695 } 3696 3697 // All FP arguments reserve stack space in the Darwin ABI. 3698 ArgOffset += isPPC64 ? 8 : ObjSize; 3699 break; 3700 case MVT::v4f32: 3701 case MVT::v4i32: 3702 case MVT::v8i16: 3703 case MVT::v16i8: 3704 // Note that vector arguments in registers don't reserve stack space, 3705 // except in varargs functions. 3706 if (VR_idx != Num_VR_Regs) { 3707 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3708 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3709 if (isVarArg) { 3710 while ((ArgOffset % 16) != 0) { 3711 ArgOffset += PtrByteSize; 3712 if (GPR_idx != Num_GPR_Regs) 3713 GPR_idx++; 3714 } 3715 ArgOffset += 16; 3716 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3717 } 3718 ++VR_idx; 3719 } else { 3720 if (!isVarArg && !isPPC64) { 3721 // Vectors go after all the nonvectors. 3722 CurArgOffset = VecArgOffset; 3723 VecArgOffset += 16; 3724 } else { 3725 // Vectors are aligned. 3726 ArgOffset = ((ArgOffset+15)/16)*16; 3727 CurArgOffset = ArgOffset; 3728 ArgOffset += 16; 3729 } 3730 needsLoad = true; 3731 } 3732 break; 3733 } 3734 3735 // We need to load the argument to a virtual register if we determined above 3736 // that we ran out of physical registers of the appropriate type. 3737 if (needsLoad) { 3738 int FI = MFI->CreateFixedObject(ObjSize, 3739 CurArgOffset + (ArgSize - ObjSize), 3740 isImmutable); 3741 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3742 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3743 false, false, false, 0); 3744 } 3745 3746 InVals.push_back(ArgVal); 3747 } 3748 3749 // Allow for Altivec parameters at the end, if needed. 3750 if (nAltivecParamsAtEnd) { 3751 MinReservedArea = ((MinReservedArea+15)/16)*16; 3752 MinReservedArea += 16*nAltivecParamsAtEnd; 3753 } 3754 3755 // Area that is at least reserved in the caller of this function. 3756 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3757 3758 // Set the size that is at least reserved in caller of this function. Tail 3759 // call optimized functions' reserved stack space needs to be aligned so that 3760 // taking the difference between two stack areas will result in an aligned 3761 // stack. 3762 MinReservedArea = 3763 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3764 FuncInfo->setMinReservedArea(MinReservedArea); 3765 3766 // If the function takes variable number of arguments, make a frame index for 3767 // the start of the first vararg value... for expansion of llvm.va_start. 3768 if (isVarArg) { 3769 int Depth = ArgOffset; 3770 3771 FuncInfo->setVarArgsFrameIndex( 3772 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3773 Depth, true)); 3774 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3775 3776 // If this function is vararg, store any remaining integer argument regs 3777 // to their spots on the stack so that they may be loaded by deferencing the 3778 // result of va_next. 3779 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3780 unsigned VReg; 3781 3782 if (isPPC64) 3783 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3784 else 3785 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3786 3787 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3788 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3789 MachinePointerInfo(), false, false, 0); 3790 MemOps.push_back(Store); 3791 // Increment the address by four for the next argument to store 3792 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3793 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3794 } 3795 } 3796 3797 if (!MemOps.empty()) 3798 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3799 3800 return Chain; 3801 } 3802 3803 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3804 /// adjusted to accommodate the arguments for the tailcall. 3805 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3806 unsigned ParamSize) { 3807 3808 if (!isTailCall) return 0; 3809 3810 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3811 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3812 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3813 // Remember only if the new adjustement is bigger. 3814 if (SPDiff < FI->getTailCallSPDelta()) 3815 FI->setTailCallSPDelta(SPDiff); 3816 3817 return SPDiff; 3818 } 3819 3820 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3821 /// for tail call optimization. Targets which want to do tail call 3822 /// optimization should implement this function. 3823 bool 3824 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3825 CallingConv::ID CalleeCC, 3826 bool isVarArg, 3827 const SmallVectorImpl<ISD::InputArg> &Ins, 3828 SelectionDAG& DAG) const { 3829 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3830 return false; 3831 3832 // Variable argument functions are not supported. 3833 if (isVarArg) 3834 return false; 3835 3836 MachineFunction &MF = DAG.getMachineFunction(); 3837 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3838 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3839 // Functions containing by val parameters are not supported. 3840 for (unsigned i = 0; i != Ins.size(); i++) { 3841 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3842 if (Flags.isByVal()) return false; 3843 } 3844 3845 // Non-PIC/GOT tail calls are supported. 3846 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3847 return true; 3848 3849 // At the moment we can only do local tail calls (in same module, hidden 3850 // or protected) if we are generating PIC. 3851 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3852 return G->getGlobal()->hasHiddenVisibility() 3853 || G->getGlobal()->hasProtectedVisibility(); 3854 } 3855 3856 return false; 3857 } 3858 3859 /// isCallCompatibleAddress - Return the immediate to use if the specified 3860 /// 32-bit value is representable in the immediate field of a BxA instruction. 3861 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3862 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3863 if (!C) return nullptr; 3864 3865 int Addr = C->getZExtValue(); 3866 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3867 SignExtend32<26>(Addr) != Addr) 3868 return nullptr; // Top 6 bits have to be sext of immediate. 3869 3870 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3871 DAG.getTargetLoweringInfo().getPointerTy( 3872 DAG.getDataLayout())).getNode(); 3873 } 3874 3875 namespace { 3876 3877 struct TailCallArgumentInfo { 3878 SDValue Arg; 3879 SDValue FrameIdxOp; 3880 int FrameIdx; 3881 3882 TailCallArgumentInfo() : FrameIdx(0) {} 3883 }; 3884 3885 } 3886 3887 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3888 static void 3889 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3890 SDValue Chain, 3891 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3892 SmallVectorImpl<SDValue> &MemOpChains, 3893 SDLoc dl) { 3894 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3895 SDValue Arg = TailCallArgs[i].Arg; 3896 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3897 int FI = TailCallArgs[i].FrameIdx; 3898 // Store relative to framepointer. 3899 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 3900 MachinePointerInfo::getFixedStack(FI), 3901 false, false, 0)); 3902 } 3903 } 3904 3905 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3906 /// the appropriate stack slot for the tail call optimized function call. 3907 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3908 MachineFunction &MF, 3909 SDValue Chain, 3910 SDValue OldRetAddr, 3911 SDValue OldFP, 3912 int SPDiff, 3913 bool isPPC64, 3914 bool isDarwinABI, 3915 SDLoc dl) { 3916 if (SPDiff) { 3917 // Calculate the new stack slot for the return address. 3918 int SlotSize = isPPC64 ? 8 : 4; 3919 const PPCFrameLowering *FL = 3920 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3921 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3922 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3923 NewRetAddrLoc, true); 3924 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3925 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3926 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3927 MachinePointerInfo::getFixedStack(NewRetAddr), 3928 false, false, 0); 3929 3930 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3931 // slot as the FP is never overwritten. 3932 if (isDarwinABI) { 3933 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3934 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3935 true); 3936 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3937 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 3938 MachinePointerInfo::getFixedStack(NewFPIdx), 3939 false, false, 0); 3940 } 3941 } 3942 return Chain; 3943 } 3944 3945 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3946 /// the position of the argument. 3947 static void 3948 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3949 SDValue Arg, int SPDiff, unsigned ArgOffset, 3950 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3951 int Offset = ArgOffset + SPDiff; 3952 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3953 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3954 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3955 SDValue FIN = DAG.getFrameIndex(FI, VT); 3956 TailCallArgumentInfo Info; 3957 Info.Arg = Arg; 3958 Info.FrameIdxOp = FIN; 3959 Info.FrameIdx = FI; 3960 TailCallArguments.push_back(Info); 3961 } 3962 3963 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3964 /// stack slot. Returns the chain as result and the loaded frame pointers in 3965 /// LROpOut/FPOpout. Used when tail calling. 3966 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3967 int SPDiff, 3968 SDValue Chain, 3969 SDValue &LROpOut, 3970 SDValue &FPOpOut, 3971 bool isDarwinABI, 3972 SDLoc dl) const { 3973 if (SPDiff) { 3974 // Load the LR and FP stack slot for later adjusting. 3975 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3976 LROpOut = getReturnAddrFrameIndex(DAG); 3977 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3978 false, false, false, 0); 3979 Chain = SDValue(LROpOut.getNode(), 1); 3980 3981 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3982 // slot as the FP is never overwritten. 3983 if (isDarwinABI) { 3984 FPOpOut = getFramePointerFrameIndex(DAG); 3985 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3986 false, false, false, 0); 3987 Chain = SDValue(FPOpOut.getNode(), 1); 3988 } 3989 } 3990 return Chain; 3991 } 3992 3993 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 3994 /// by "Src" to address "Dst" of size "Size". Alignment information is 3995 /// specified by the specific parameter attribute. The copy will be passed as 3996 /// a byval function parameter. 3997 /// Sometimes what we are copying is the end of a larger object, the part that 3998 /// does not fit in registers. 3999 static SDValue 4000 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4001 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4002 SDLoc dl) { 4003 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4004 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4005 false, false, false, MachinePointerInfo(), 4006 MachinePointerInfo()); 4007 } 4008 4009 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4010 /// tail calls. 4011 static void 4012 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4013 SDValue Arg, SDValue PtrOff, int SPDiff, 4014 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4015 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4016 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4017 SDLoc dl) { 4018 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4019 if (!isTailCall) { 4020 if (isVector) { 4021 SDValue StackPtr; 4022 if (isPPC64) 4023 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4024 else 4025 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4026 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4027 DAG.getConstant(ArgOffset, dl, PtrVT)); 4028 } 4029 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4030 MachinePointerInfo(), false, false, 0)); 4031 // Calculate and remember argument location. 4032 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4033 TailCallArguments); 4034 } 4035 4036 static 4037 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4038 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4039 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4040 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4041 MachineFunction &MF = DAG.getMachineFunction(); 4042 4043 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4044 // might overwrite each other in case of tail call optimization. 4045 SmallVector<SDValue, 8> MemOpChains2; 4046 // Do not flag preceding copytoreg stuff together with the following stuff. 4047 InFlag = SDValue(); 4048 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4049 MemOpChains2, dl); 4050 if (!MemOpChains2.empty()) 4051 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4052 4053 // Store the return address to the appropriate stack slot. 4054 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4055 isPPC64, isDarwinABI, dl); 4056 4057 // Emit callseq_end just before tailcall node. 4058 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4059 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4060 InFlag = Chain.getValue(1); 4061 } 4062 4063 // Is this global address that of a function that can be called by name? (as 4064 // opposed to something that must hold a descriptor for an indirect call). 4065 static bool isFunctionGlobalAddress(SDValue Callee) { 4066 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4067 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4068 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4069 return false; 4070 4071 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4072 } 4073 4074 return false; 4075 } 4076 4077 static 4078 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4079 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4080 bool isTailCall, bool IsPatchPoint, bool hasNest, 4081 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4082 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4083 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4084 4085 bool isPPC64 = Subtarget.isPPC64(); 4086 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4087 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4088 4089 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4090 NodeTys.push_back(MVT::Other); // Returns a chain 4091 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4092 4093 unsigned CallOpc = PPCISD::CALL; 4094 4095 bool needIndirectCall = true; 4096 if (!isSVR4ABI || !isPPC64) 4097 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4098 // If this is an absolute destination address, use the munged value. 4099 Callee = SDValue(Dest, 0); 4100 needIndirectCall = false; 4101 } 4102 4103 if (isFunctionGlobalAddress(Callee)) { 4104 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4105 // A call to a TLS address is actually an indirect call to a 4106 // thread-specific pointer. 4107 unsigned OpFlags = 0; 4108 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4109 (Subtarget.getTargetTriple().isMacOSX() && 4110 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4111 !G->getGlobal()->isStrongDefinitionForLinker()) || 4112 (Subtarget.isTargetELF() && !isPPC64 && 4113 !G->getGlobal()->hasLocalLinkage() && 4114 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4115 // PC-relative references to external symbols should go through $stub, 4116 // unless we're building with the leopard linker or later, which 4117 // automatically synthesizes these stubs. 4118 OpFlags = PPCII::MO_PLT_OR_STUB; 4119 } 4120 4121 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4122 // every direct call is) turn it into a TargetGlobalAddress / 4123 // TargetExternalSymbol node so that legalize doesn't hack it. 4124 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4125 Callee.getValueType(), 0, OpFlags); 4126 needIndirectCall = false; 4127 } 4128 4129 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4130 unsigned char OpFlags = 0; 4131 4132 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4133 (Subtarget.getTargetTriple().isMacOSX() && 4134 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4135 (Subtarget.isTargetELF() && !isPPC64 && 4136 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4137 // PC-relative references to external symbols should go through $stub, 4138 // unless we're building with the leopard linker or later, which 4139 // automatically synthesizes these stubs. 4140 OpFlags = PPCII::MO_PLT_OR_STUB; 4141 } 4142 4143 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4144 OpFlags); 4145 needIndirectCall = false; 4146 } 4147 4148 if (IsPatchPoint) { 4149 // We'll form an invalid direct call when lowering a patchpoint; the full 4150 // sequence for an indirect call is complicated, and many of the 4151 // instructions introduced might have side effects (and, thus, can't be 4152 // removed later). The call itself will be removed as soon as the 4153 // argument/return lowering is complete, so the fact that it has the wrong 4154 // kind of operands should not really matter. 4155 needIndirectCall = false; 4156 } 4157 4158 if (needIndirectCall) { 4159 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4160 // to do the call, we can't use PPCISD::CALL. 4161 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4162 4163 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4164 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4165 // entry point, but to the function descriptor (the function entry point 4166 // address is part of the function descriptor though). 4167 // The function descriptor is a three doubleword structure with the 4168 // following fields: function entry point, TOC base address and 4169 // environment pointer. 4170 // Thus for a call through a function pointer, the following actions need 4171 // to be performed: 4172 // 1. Save the TOC of the caller in the TOC save area of its stack 4173 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4174 // 2. Load the address of the function entry point from the function 4175 // descriptor. 4176 // 3. Load the TOC of the callee from the function descriptor into r2. 4177 // 4. Load the environment pointer from the function descriptor into 4178 // r11. 4179 // 5. Branch to the function entry point address. 4180 // 6. On return of the callee, the TOC of the caller needs to be 4181 // restored (this is done in FinishCall()). 4182 // 4183 // The loads are scheduled at the beginning of the call sequence, and the 4184 // register copies are flagged together to ensure that no other 4185 // operations can be scheduled in between. E.g. without flagging the 4186 // copies together, a TOC access in the caller could be scheduled between 4187 // the assignment of the callee TOC and the branch to the callee, which 4188 // results in the TOC access going through the TOC of the callee instead 4189 // of going through the TOC of the caller, which leads to incorrect code. 4190 4191 // Load the address of the function entry point from the function 4192 // descriptor. 4193 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4194 if (LDChain.getValueType() == MVT::Glue) 4195 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4196 4197 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4198 4199 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4200 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4201 false, false, LoadsInv, 8); 4202 4203 // Load environment pointer into r11. 4204 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4205 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4206 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4207 MPI.getWithOffset(16), false, false, 4208 LoadsInv, 8); 4209 4210 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4211 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4212 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4213 MPI.getWithOffset(8), false, false, 4214 LoadsInv, 8); 4215 4216 setUsesTOCBasePtr(DAG); 4217 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4218 InFlag); 4219 Chain = TOCVal.getValue(0); 4220 InFlag = TOCVal.getValue(1); 4221 4222 // If the function call has an explicit 'nest' parameter, it takes the 4223 // place of the environment pointer. 4224 if (!hasNest) { 4225 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4226 InFlag); 4227 4228 Chain = EnvVal.getValue(0); 4229 InFlag = EnvVal.getValue(1); 4230 } 4231 4232 MTCTROps[0] = Chain; 4233 MTCTROps[1] = LoadFuncPtr; 4234 MTCTROps[2] = InFlag; 4235 } 4236 4237 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4238 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4239 InFlag = Chain.getValue(1); 4240 4241 NodeTys.clear(); 4242 NodeTys.push_back(MVT::Other); 4243 NodeTys.push_back(MVT::Glue); 4244 Ops.push_back(Chain); 4245 CallOpc = PPCISD::BCTRL; 4246 Callee.setNode(nullptr); 4247 // Add use of X11 (holding environment pointer) 4248 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4249 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4250 // Add CTR register as callee so a bctr can be emitted later. 4251 if (isTailCall) 4252 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4253 } 4254 4255 // If this is a direct call, pass the chain and the callee. 4256 if (Callee.getNode()) { 4257 Ops.push_back(Chain); 4258 Ops.push_back(Callee); 4259 } 4260 // If this is a tail call add stack pointer delta. 4261 if (isTailCall) 4262 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4263 4264 // Add argument registers to the end of the list so that they are known live 4265 // into the call. 4266 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4267 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4268 RegsToPass[i].second.getValueType())); 4269 4270 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4271 // into the call. 4272 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4273 setUsesTOCBasePtr(DAG); 4274 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4275 } 4276 4277 return CallOpc; 4278 } 4279 4280 static 4281 bool isLocalCall(const SDValue &Callee) 4282 { 4283 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4284 return G->getGlobal()->isStrongDefinitionForLinker(); 4285 return false; 4286 } 4287 4288 SDValue 4289 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4290 CallingConv::ID CallConv, bool isVarArg, 4291 const SmallVectorImpl<ISD::InputArg> &Ins, 4292 SDLoc dl, SelectionDAG &DAG, 4293 SmallVectorImpl<SDValue> &InVals) const { 4294 4295 SmallVector<CCValAssign, 16> RVLocs; 4296 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4297 *DAG.getContext()); 4298 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4299 4300 // Copy all of the result registers out of their specified physreg. 4301 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4302 CCValAssign &VA = RVLocs[i]; 4303 assert(VA.isRegLoc() && "Can only return in registers!"); 4304 4305 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4306 VA.getLocReg(), VA.getLocVT(), InFlag); 4307 Chain = Val.getValue(1); 4308 InFlag = Val.getValue(2); 4309 4310 switch (VA.getLocInfo()) { 4311 default: llvm_unreachable("Unknown loc info!"); 4312 case CCValAssign::Full: break; 4313 case CCValAssign::AExt: 4314 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4315 break; 4316 case CCValAssign::ZExt: 4317 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4318 DAG.getValueType(VA.getValVT())); 4319 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4320 break; 4321 case CCValAssign::SExt: 4322 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4323 DAG.getValueType(VA.getValVT())); 4324 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4325 break; 4326 } 4327 4328 InVals.push_back(Val); 4329 } 4330 4331 return Chain; 4332 } 4333 4334 SDValue 4335 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4336 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4337 bool hasNest, SelectionDAG &DAG, 4338 SmallVector<std::pair<unsigned, SDValue>, 8> 4339 &RegsToPass, 4340 SDValue InFlag, SDValue Chain, 4341 SDValue CallSeqStart, SDValue &Callee, 4342 int SPDiff, unsigned NumBytes, 4343 const SmallVectorImpl<ISD::InputArg> &Ins, 4344 SmallVectorImpl<SDValue> &InVals, 4345 ImmutableCallSite *CS) const { 4346 4347 std::vector<EVT> NodeTys; 4348 SmallVector<SDValue, 8> Ops; 4349 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4350 SPDiff, isTailCall, IsPatchPoint, hasNest, 4351 RegsToPass, Ops, NodeTys, CS, Subtarget); 4352 4353 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4354 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4355 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4356 4357 // When performing tail call optimization the callee pops its arguments off 4358 // the stack. Account for this here so these bytes can be pushed back on in 4359 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4360 int BytesCalleePops = 4361 (CallConv == CallingConv::Fast && 4362 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4363 4364 // Add a register mask operand representing the call-preserved registers. 4365 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4366 const uint32_t *Mask = 4367 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4368 assert(Mask && "Missing call preserved mask for calling convention"); 4369 Ops.push_back(DAG.getRegisterMask(Mask)); 4370 4371 if (InFlag.getNode()) 4372 Ops.push_back(InFlag); 4373 4374 // Emit tail call. 4375 if (isTailCall) { 4376 assert(((Callee.getOpcode() == ISD::Register && 4377 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4378 Callee.getOpcode() == ISD::TargetExternalSymbol || 4379 Callee.getOpcode() == ISD::TargetGlobalAddress || 4380 isa<ConstantSDNode>(Callee)) && 4381 "Expecting an global address, external symbol, absolute value or register"); 4382 4383 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4384 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4385 } 4386 4387 // Add a NOP immediately after the branch instruction when using the 64-bit 4388 // SVR4 ABI. At link time, if caller and callee are in a different module and 4389 // thus have a different TOC, the call will be replaced with a call to a stub 4390 // function which saves the current TOC, loads the TOC of the callee and 4391 // branches to the callee. The NOP will be replaced with a load instruction 4392 // which restores the TOC of the caller from the TOC save slot of the current 4393 // stack frame. If caller and callee belong to the same module (and have the 4394 // same TOC), the NOP will remain unchanged. 4395 4396 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4397 !IsPatchPoint) { 4398 if (CallOpc == PPCISD::BCTRL) { 4399 // This is a call through a function pointer. 4400 // Restore the caller TOC from the save area into R2. 4401 // See PrepareCall() for more information about calls through function 4402 // pointers in the 64-bit SVR4 ABI. 4403 // We are using a target-specific load with r2 hard coded, because the 4404 // result of a target-independent load would never go directly into r2, 4405 // since r2 is a reserved register (which prevents the register allocator 4406 // from allocating it), resulting in an additional register being 4407 // allocated and an unnecessary move instruction being generated. 4408 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4409 4410 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4411 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4412 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4413 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4414 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4415 4416 // The address needs to go after the chain input but before the flag (or 4417 // any other variadic arguments). 4418 Ops.insert(std::next(Ops.begin()), AddTOC); 4419 } else if ((CallOpc == PPCISD::CALL) && 4420 (!isLocalCall(Callee) || 4421 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4422 // Otherwise insert NOP for non-local calls. 4423 CallOpc = PPCISD::CALL_NOP; 4424 } 4425 4426 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4427 InFlag = Chain.getValue(1); 4428 4429 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4430 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4431 InFlag, dl); 4432 if (!Ins.empty()) 4433 InFlag = Chain.getValue(1); 4434 4435 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4436 Ins, dl, DAG, InVals); 4437 } 4438 4439 SDValue 4440 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4441 SmallVectorImpl<SDValue> &InVals) const { 4442 SelectionDAG &DAG = CLI.DAG; 4443 SDLoc &dl = CLI.DL; 4444 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4445 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4446 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4447 SDValue Chain = CLI.Chain; 4448 SDValue Callee = CLI.Callee; 4449 bool &isTailCall = CLI.IsTailCall; 4450 CallingConv::ID CallConv = CLI.CallConv; 4451 bool isVarArg = CLI.IsVarArg; 4452 bool IsPatchPoint = CLI.IsPatchPoint; 4453 ImmutableCallSite *CS = CLI.CS; 4454 4455 if (isTailCall) 4456 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4457 Ins, DAG); 4458 4459 if (!isTailCall && CS && CS->isMustTailCall()) 4460 report_fatal_error("failed to perform tail call elimination on a call " 4461 "site marked musttail"); 4462 4463 if (Subtarget.isSVR4ABI()) { 4464 if (Subtarget.isPPC64()) 4465 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4466 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4467 dl, DAG, InVals, CS); 4468 else 4469 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4470 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4471 dl, DAG, InVals, CS); 4472 } 4473 4474 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4475 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4476 dl, DAG, InVals, CS); 4477 } 4478 4479 SDValue 4480 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4481 CallingConv::ID CallConv, bool isVarArg, 4482 bool isTailCall, bool IsPatchPoint, 4483 const SmallVectorImpl<ISD::OutputArg> &Outs, 4484 const SmallVectorImpl<SDValue> &OutVals, 4485 const SmallVectorImpl<ISD::InputArg> &Ins, 4486 SDLoc dl, SelectionDAG &DAG, 4487 SmallVectorImpl<SDValue> &InVals, 4488 ImmutableCallSite *CS) const { 4489 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4490 // of the 32-bit SVR4 ABI stack frame layout. 4491 4492 assert((CallConv == CallingConv::C || 4493 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4494 4495 unsigned PtrByteSize = 4; 4496 4497 MachineFunction &MF = DAG.getMachineFunction(); 4498 4499 // Mark this function as potentially containing a function that contains a 4500 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4501 // and restoring the callers stack pointer in this functions epilog. This is 4502 // done because by tail calling the called function might overwrite the value 4503 // in this function's (MF) stack pointer stack slot 0(SP). 4504 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4505 CallConv == CallingConv::Fast) 4506 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4507 4508 // Count how many bytes are to be pushed on the stack, including the linkage 4509 // area, parameter list area and the part of the local variable space which 4510 // contains copies of aggregates which are passed by value. 4511 4512 // Assign locations to all of the outgoing arguments. 4513 SmallVector<CCValAssign, 16> ArgLocs; 4514 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4515 *DAG.getContext()); 4516 4517 // Reserve space for the linkage area on the stack. 4518 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4519 PtrByteSize); 4520 4521 if (isVarArg) { 4522 // Handle fixed and variable vector arguments differently. 4523 // Fixed vector arguments go into registers as long as registers are 4524 // available. Variable vector arguments always go into memory. 4525 unsigned NumArgs = Outs.size(); 4526 4527 for (unsigned i = 0; i != NumArgs; ++i) { 4528 MVT ArgVT = Outs[i].VT; 4529 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4530 bool Result; 4531 4532 if (Outs[i].IsFixed) { 4533 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4534 CCInfo); 4535 } else { 4536 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4537 ArgFlags, CCInfo); 4538 } 4539 4540 if (Result) { 4541 #ifndef NDEBUG 4542 errs() << "Call operand #" << i << " has unhandled type " 4543 << EVT(ArgVT).getEVTString() << "\n"; 4544 #endif 4545 llvm_unreachable(nullptr); 4546 } 4547 } 4548 } else { 4549 // All arguments are treated the same. 4550 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4551 } 4552 4553 // Assign locations to all of the outgoing aggregate by value arguments. 4554 SmallVector<CCValAssign, 16> ByValArgLocs; 4555 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4556 ByValArgLocs, *DAG.getContext()); 4557 4558 // Reserve stack space for the allocations in CCInfo. 4559 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4560 4561 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4562 4563 // Size of the linkage area, parameter list area and the part of the local 4564 // space variable where copies of aggregates which are passed by value are 4565 // stored. 4566 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4567 4568 // Calculate by how many bytes the stack has to be adjusted in case of tail 4569 // call optimization. 4570 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4571 4572 // Adjust the stack pointer for the new arguments... 4573 // These operations are automatically eliminated by the prolog/epilog pass 4574 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4575 dl); 4576 SDValue CallSeqStart = Chain; 4577 4578 // Load the return address and frame pointer so it can be moved somewhere else 4579 // later. 4580 SDValue LROp, FPOp; 4581 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4582 dl); 4583 4584 // Set up a copy of the stack pointer for use loading and storing any 4585 // arguments that may not fit in the registers available for argument 4586 // passing. 4587 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4588 4589 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4590 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4591 SmallVector<SDValue, 8> MemOpChains; 4592 4593 bool seenFloatArg = false; 4594 // Walk the register/memloc assignments, inserting copies/loads. 4595 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4596 i != e; 4597 ++i) { 4598 CCValAssign &VA = ArgLocs[i]; 4599 SDValue Arg = OutVals[i]; 4600 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4601 4602 if (Flags.isByVal()) { 4603 // Argument is an aggregate which is passed by value, thus we need to 4604 // create a copy of it in the local variable space of the current stack 4605 // frame (which is the stack frame of the caller) and pass the address of 4606 // this copy to the callee. 4607 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4608 CCValAssign &ByValVA = ByValArgLocs[j++]; 4609 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4610 4611 // Memory reserved in the local variable space of the callers stack frame. 4612 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4613 4614 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4615 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4616 StackPtr, PtrOff); 4617 4618 // Create a copy of the argument in the local area of the current 4619 // stack frame. 4620 SDValue MemcpyCall = 4621 CreateCopyOfByValArgument(Arg, PtrOff, 4622 CallSeqStart.getNode()->getOperand(0), 4623 Flags, DAG, dl); 4624 4625 // This must go outside the CALLSEQ_START..END. 4626 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4627 CallSeqStart.getNode()->getOperand(1), 4628 SDLoc(MemcpyCall)); 4629 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4630 NewCallSeqStart.getNode()); 4631 Chain = CallSeqStart = NewCallSeqStart; 4632 4633 // Pass the address of the aggregate copy on the stack either in a 4634 // physical register or in the parameter list area of the current stack 4635 // frame to the callee. 4636 Arg = PtrOff; 4637 } 4638 4639 if (VA.isRegLoc()) { 4640 if (Arg.getValueType() == MVT::i1) 4641 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4642 4643 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4644 // Put argument in a physical register. 4645 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4646 } else { 4647 // Put argument in the parameter list area of the current stack frame. 4648 assert(VA.isMemLoc()); 4649 unsigned LocMemOffset = VA.getLocMemOffset(); 4650 4651 if (!isTailCall) { 4652 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4653 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4654 StackPtr, PtrOff); 4655 4656 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4657 MachinePointerInfo(), 4658 false, false, 0)); 4659 } else { 4660 // Calculate and remember argument location. 4661 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4662 TailCallArguments); 4663 } 4664 } 4665 } 4666 4667 if (!MemOpChains.empty()) 4668 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4669 4670 // Build a sequence of copy-to-reg nodes chained together with token chain 4671 // and flag operands which copy the outgoing args into the appropriate regs. 4672 SDValue InFlag; 4673 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4674 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4675 RegsToPass[i].second, InFlag); 4676 InFlag = Chain.getValue(1); 4677 } 4678 4679 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4680 // registers. 4681 if (isVarArg) { 4682 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4683 SDValue Ops[] = { Chain, InFlag }; 4684 4685 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4686 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4687 4688 InFlag = Chain.getValue(1); 4689 } 4690 4691 if (isTailCall) 4692 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4693 false, TailCallArguments); 4694 4695 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4696 /* unused except on PPC64 ELFv1 */ false, DAG, 4697 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4698 NumBytes, Ins, InVals, CS); 4699 } 4700 4701 // Copy an argument into memory, being careful to do this outside the 4702 // call sequence for the call to which the argument belongs. 4703 SDValue 4704 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4705 SDValue CallSeqStart, 4706 ISD::ArgFlagsTy Flags, 4707 SelectionDAG &DAG, 4708 SDLoc dl) const { 4709 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4710 CallSeqStart.getNode()->getOperand(0), 4711 Flags, DAG, dl); 4712 // The MEMCPY must go outside the CALLSEQ_START..END. 4713 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4714 CallSeqStart.getNode()->getOperand(1), 4715 SDLoc(MemcpyCall)); 4716 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4717 NewCallSeqStart.getNode()); 4718 return NewCallSeqStart; 4719 } 4720 4721 SDValue 4722 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4723 CallingConv::ID CallConv, bool isVarArg, 4724 bool isTailCall, bool IsPatchPoint, 4725 const SmallVectorImpl<ISD::OutputArg> &Outs, 4726 const SmallVectorImpl<SDValue> &OutVals, 4727 const SmallVectorImpl<ISD::InputArg> &Ins, 4728 SDLoc dl, SelectionDAG &DAG, 4729 SmallVectorImpl<SDValue> &InVals, 4730 ImmutableCallSite *CS) const { 4731 4732 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4733 bool isLittleEndian = Subtarget.isLittleEndian(); 4734 unsigned NumOps = Outs.size(); 4735 bool hasNest = false; 4736 4737 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4738 unsigned PtrByteSize = 8; 4739 4740 MachineFunction &MF = DAG.getMachineFunction(); 4741 4742 // Mark this function as potentially containing a function that contains a 4743 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4744 // and restoring the callers stack pointer in this functions epilog. This is 4745 // done because by tail calling the called function might overwrite the value 4746 // in this function's (MF) stack pointer stack slot 0(SP). 4747 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4748 CallConv == CallingConv::Fast) 4749 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4750 4751 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4752 "fastcc not supported on varargs functions"); 4753 4754 // Count how many bytes are to be pushed on the stack, including the linkage 4755 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4756 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4757 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4758 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4759 unsigned NumBytes = LinkageSize; 4760 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4761 unsigned &QFPR_idx = FPR_idx; 4762 4763 static const MCPhysReg GPR[] = { 4764 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4765 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4766 }; 4767 static const MCPhysReg VR[] = { 4768 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4769 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4770 }; 4771 static const MCPhysReg VSRH[] = { 4772 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4773 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4774 }; 4775 4776 const unsigned NumGPRs = array_lengthof(GPR); 4777 const unsigned NumFPRs = 13; 4778 const unsigned NumVRs = array_lengthof(VR); 4779 const unsigned NumQFPRs = NumFPRs; 4780 4781 // When using the fast calling convention, we don't provide backing for 4782 // arguments that will be in registers. 4783 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4784 4785 // Add up all the space actually used. 4786 for (unsigned i = 0; i != NumOps; ++i) { 4787 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4788 EVT ArgVT = Outs[i].VT; 4789 EVT OrigVT = Outs[i].ArgVT; 4790 4791 if (Flags.isNest()) 4792 continue; 4793 4794 if (CallConv == CallingConv::Fast) { 4795 if (Flags.isByVal()) 4796 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4797 else 4798 switch (ArgVT.getSimpleVT().SimpleTy) { 4799 default: llvm_unreachable("Unexpected ValueType for argument!"); 4800 case MVT::i1: 4801 case MVT::i32: 4802 case MVT::i64: 4803 if (++NumGPRsUsed <= NumGPRs) 4804 continue; 4805 break; 4806 case MVT::v4i32: 4807 case MVT::v8i16: 4808 case MVT::v16i8: 4809 case MVT::v2f64: 4810 case MVT::v2i64: 4811 case MVT::v1i128: 4812 if (++NumVRsUsed <= NumVRs) 4813 continue; 4814 break; 4815 case MVT::v4f32: 4816 // When using QPX, this is handled like a FP register, otherwise, it 4817 // is an Altivec register. 4818 if (Subtarget.hasQPX()) { 4819 if (++NumFPRsUsed <= NumFPRs) 4820 continue; 4821 } else { 4822 if (++NumVRsUsed <= NumVRs) 4823 continue; 4824 } 4825 break; 4826 case MVT::f32: 4827 case MVT::f64: 4828 case MVT::v4f64: // QPX 4829 case MVT::v4i1: // QPX 4830 if (++NumFPRsUsed <= NumFPRs) 4831 continue; 4832 break; 4833 } 4834 } 4835 4836 /* Respect alignment of argument on the stack. */ 4837 unsigned Align = 4838 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4839 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4840 4841 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4842 if (Flags.isInConsecutiveRegsLast()) 4843 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4844 } 4845 4846 unsigned NumBytesActuallyUsed = NumBytes; 4847 4848 // The prolog code of the callee may store up to 8 GPR argument registers to 4849 // the stack, allowing va_start to index over them in memory if its varargs. 4850 // Because we cannot tell if this is needed on the caller side, we have to 4851 // conservatively assume that it is needed. As such, make sure we have at 4852 // least enough stack space for the caller to store the 8 GPRs. 4853 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4854 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4855 4856 // Tail call needs the stack to be aligned. 4857 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4858 CallConv == CallingConv::Fast) 4859 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4860 4861 // Calculate by how many bytes the stack has to be adjusted in case of tail 4862 // call optimization. 4863 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4864 4865 // To protect arguments on the stack from being clobbered in a tail call, 4866 // force all the loads to happen before doing any other lowering. 4867 if (isTailCall) 4868 Chain = DAG.getStackArgumentTokenFactor(Chain); 4869 4870 // Adjust the stack pointer for the new arguments... 4871 // These operations are automatically eliminated by the prolog/epilog pass 4872 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4873 dl); 4874 SDValue CallSeqStart = Chain; 4875 4876 // Load the return address and frame pointer so it can be move somewhere else 4877 // later. 4878 SDValue LROp, FPOp; 4879 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4880 dl); 4881 4882 // Set up a copy of the stack pointer for use loading and storing any 4883 // arguments that may not fit in the registers available for argument 4884 // passing. 4885 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4886 4887 // Figure out which arguments are going to go in registers, and which in 4888 // memory. Also, if this is a vararg function, floating point operations 4889 // must be stored to our stack, and loaded into integer regs as well, if 4890 // any integer regs are available for argument passing. 4891 unsigned ArgOffset = LinkageSize; 4892 4893 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4894 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4895 4896 SmallVector<SDValue, 8> MemOpChains; 4897 for (unsigned i = 0; i != NumOps; ++i) { 4898 SDValue Arg = OutVals[i]; 4899 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4900 EVT ArgVT = Outs[i].VT; 4901 EVT OrigVT = Outs[i].ArgVT; 4902 4903 // PtrOff will be used to store the current argument to the stack if a 4904 // register cannot be found for it. 4905 SDValue PtrOff; 4906 4907 // We re-align the argument offset for each argument, except when using the 4908 // fast calling convention, when we need to make sure we do that only when 4909 // we'll actually use a stack slot. 4910 auto ComputePtrOff = [&]() { 4911 /* Respect alignment of argument on the stack. */ 4912 unsigned Align = 4913 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4914 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4915 4916 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4917 4918 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4919 }; 4920 4921 if (CallConv != CallingConv::Fast) { 4922 ComputePtrOff(); 4923 4924 /* Compute GPR index associated with argument offset. */ 4925 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4926 GPR_idx = std::min(GPR_idx, NumGPRs); 4927 } 4928 4929 // Promote integers to 64-bit values. 4930 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4931 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4932 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4933 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4934 } 4935 4936 // FIXME memcpy is used way more than necessary. Correctness first. 4937 // Note: "by value" is code for passing a structure by value, not 4938 // basic types. 4939 if (Flags.isByVal()) { 4940 // Note: Size includes alignment padding, so 4941 // struct x { short a; char b; } 4942 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4943 // These are the proper values we need for right-justifying the 4944 // aggregate in a parameter register. 4945 unsigned Size = Flags.getByValSize(); 4946 4947 // An empty aggregate parameter takes up no storage and no 4948 // registers. 4949 if (Size == 0) 4950 continue; 4951 4952 if (CallConv == CallingConv::Fast) 4953 ComputePtrOff(); 4954 4955 // All aggregates smaller than 8 bytes must be passed right-justified. 4956 if (Size==1 || Size==2 || Size==4) { 4957 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4958 if (GPR_idx != NumGPRs) { 4959 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4960 MachinePointerInfo(), VT, 4961 false, false, false, 0); 4962 MemOpChains.push_back(Load.getValue(1)); 4963 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4964 4965 ArgOffset += PtrByteSize; 4966 continue; 4967 } 4968 } 4969 4970 if (GPR_idx == NumGPRs && Size < 8) { 4971 SDValue AddPtr = PtrOff; 4972 if (!isLittleEndian) { 4973 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4974 PtrOff.getValueType()); 4975 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4976 } 4977 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4978 CallSeqStart, 4979 Flags, DAG, dl); 4980 ArgOffset += PtrByteSize; 4981 continue; 4982 } 4983 // Copy entire object into memory. There are cases where gcc-generated 4984 // code assumes it is there, even if it could be put entirely into 4985 // registers. (This is not what the doc says.) 4986 4987 // FIXME: The above statement is likely due to a misunderstanding of the 4988 // documents. All arguments must be copied into the parameter area BY 4989 // THE CALLEE in the event that the callee takes the address of any 4990 // formal argument. That has not yet been implemented. However, it is 4991 // reasonable to use the stack area as a staging area for the register 4992 // load. 4993 4994 // Skip this for small aggregates, as we will use the same slot for a 4995 // right-justified copy, below. 4996 if (Size >= 8) 4997 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 4998 CallSeqStart, 4999 Flags, DAG, dl); 5000 5001 // When a register is available, pass a small aggregate right-justified. 5002 if (Size < 8 && GPR_idx != NumGPRs) { 5003 // The easiest way to get this right-justified in a register 5004 // is to copy the structure into the rightmost portion of a 5005 // local variable slot, then load the whole slot into the 5006 // register. 5007 // FIXME: The memcpy seems to produce pretty awful code for 5008 // small aggregates, particularly for packed ones. 5009 // FIXME: It would be preferable to use the slot in the 5010 // parameter save area instead of a new local variable. 5011 SDValue AddPtr = PtrOff; 5012 if (!isLittleEndian) { 5013 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5014 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5015 } 5016 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5017 CallSeqStart, 5018 Flags, DAG, dl); 5019 5020 // Load the slot into the register. 5021 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5022 MachinePointerInfo(), 5023 false, false, false, 0); 5024 MemOpChains.push_back(Load.getValue(1)); 5025 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5026 5027 // Done with this argument. 5028 ArgOffset += PtrByteSize; 5029 continue; 5030 } 5031 5032 // For aggregates larger than PtrByteSize, copy the pieces of the 5033 // object that fit into registers from the parameter save area. 5034 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5035 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5036 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5037 if (GPR_idx != NumGPRs) { 5038 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5039 MachinePointerInfo(), 5040 false, false, false, 0); 5041 MemOpChains.push_back(Load.getValue(1)); 5042 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5043 ArgOffset += PtrByteSize; 5044 } else { 5045 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5046 break; 5047 } 5048 } 5049 continue; 5050 } 5051 5052 switch (Arg.getSimpleValueType().SimpleTy) { 5053 default: llvm_unreachable("Unexpected ValueType for argument!"); 5054 case MVT::i1: 5055 case MVT::i32: 5056 case MVT::i64: 5057 if (Flags.isNest()) { 5058 // The 'nest' parameter, if any, is passed in R11. 5059 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5060 hasNest = true; 5061 break; 5062 } 5063 5064 // These can be scalar arguments or elements of an integer array type 5065 // passed directly. Clang may use those instead of "byval" aggregate 5066 // types to avoid forcing arguments to memory unnecessarily. 5067 if (GPR_idx != NumGPRs) { 5068 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5069 } else { 5070 if (CallConv == CallingConv::Fast) 5071 ComputePtrOff(); 5072 5073 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5074 true, isTailCall, false, MemOpChains, 5075 TailCallArguments, dl); 5076 if (CallConv == CallingConv::Fast) 5077 ArgOffset += PtrByteSize; 5078 } 5079 if (CallConv != CallingConv::Fast) 5080 ArgOffset += PtrByteSize; 5081 break; 5082 case MVT::f32: 5083 case MVT::f64: { 5084 // These can be scalar arguments or elements of a float array type 5085 // passed directly. The latter are used to implement ELFv2 homogenous 5086 // float aggregates. 5087 5088 // Named arguments go into FPRs first, and once they overflow, the 5089 // remaining arguments go into GPRs and then the parameter save area. 5090 // Unnamed arguments for vararg functions always go to GPRs and 5091 // then the parameter save area. For now, put all arguments to vararg 5092 // routines always in both locations (FPR *and* GPR or stack slot). 5093 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5094 bool NeededLoad = false; 5095 5096 // First load the argument into the next available FPR. 5097 if (FPR_idx != NumFPRs) 5098 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5099 5100 // Next, load the argument into GPR or stack slot if needed. 5101 if (!NeedGPROrStack) 5102 ; 5103 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5104 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5105 // once we support fp <-> gpr moves. 5106 5107 // In the non-vararg case, this can only ever happen in the 5108 // presence of f32 array types, since otherwise we never run 5109 // out of FPRs before running out of GPRs. 5110 SDValue ArgVal; 5111 5112 // Double values are always passed in a single GPR. 5113 if (Arg.getValueType() != MVT::f32) { 5114 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5115 5116 // Non-array float values are extended and passed in a GPR. 5117 } else if (!Flags.isInConsecutiveRegs()) { 5118 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5119 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5120 5121 // If we have an array of floats, we collect every odd element 5122 // together with its predecessor into one GPR. 5123 } else if (ArgOffset % PtrByteSize != 0) { 5124 SDValue Lo, Hi; 5125 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5126 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5127 if (!isLittleEndian) 5128 std::swap(Lo, Hi); 5129 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5130 5131 // The final element, if even, goes into the first half of a GPR. 5132 } else if (Flags.isInConsecutiveRegsLast()) { 5133 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5134 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5135 if (!isLittleEndian) 5136 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5137 DAG.getConstant(32, dl, MVT::i32)); 5138 5139 // Non-final even elements are skipped; they will be handled 5140 // together the with subsequent argument on the next go-around. 5141 } else 5142 ArgVal = SDValue(); 5143 5144 if (ArgVal.getNode()) 5145 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5146 } else { 5147 if (CallConv == CallingConv::Fast) 5148 ComputePtrOff(); 5149 5150 // Single-precision floating-point values are mapped to the 5151 // second (rightmost) word of the stack doubleword. 5152 if (Arg.getValueType() == MVT::f32 && 5153 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5154 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5155 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5156 } 5157 5158 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5159 true, isTailCall, false, MemOpChains, 5160 TailCallArguments, dl); 5161 5162 NeededLoad = true; 5163 } 5164 // When passing an array of floats, the array occupies consecutive 5165 // space in the argument area; only round up to the next doubleword 5166 // at the end of the array. Otherwise, each float takes 8 bytes. 5167 if (CallConv != CallingConv::Fast || NeededLoad) { 5168 ArgOffset += (Arg.getValueType() == MVT::f32 && 5169 Flags.isInConsecutiveRegs()) ? 4 : 8; 5170 if (Flags.isInConsecutiveRegsLast()) 5171 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5172 } 5173 break; 5174 } 5175 case MVT::v4f32: 5176 case MVT::v4i32: 5177 case MVT::v8i16: 5178 case MVT::v16i8: 5179 case MVT::v2f64: 5180 case MVT::v2i64: 5181 case MVT::v1i128: 5182 if (!Subtarget.hasQPX()) { 5183 // These can be scalar arguments or elements of a vector array type 5184 // passed directly. The latter are used to implement ELFv2 homogenous 5185 // vector aggregates. 5186 5187 // For a varargs call, named arguments go into VRs or on the stack as 5188 // usual; unnamed arguments always go to the stack or the corresponding 5189 // GPRs when within range. For now, we always put the value in both 5190 // locations (or even all three). 5191 if (isVarArg) { 5192 // We could elide this store in the case where the object fits 5193 // entirely in R registers. Maybe later. 5194 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5195 MachinePointerInfo(), false, false, 0); 5196 MemOpChains.push_back(Store); 5197 if (VR_idx != NumVRs) { 5198 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5199 MachinePointerInfo(), 5200 false, false, false, 0); 5201 MemOpChains.push_back(Load.getValue(1)); 5202 5203 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5204 Arg.getSimpleValueType() == MVT::v2i64) ? 5205 VSRH[VR_idx] : VR[VR_idx]; 5206 ++VR_idx; 5207 5208 RegsToPass.push_back(std::make_pair(VReg, Load)); 5209 } 5210 ArgOffset += 16; 5211 for (unsigned i=0; i<16; i+=PtrByteSize) { 5212 if (GPR_idx == NumGPRs) 5213 break; 5214 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5215 DAG.getConstant(i, dl, PtrVT)); 5216 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5217 false, false, false, 0); 5218 MemOpChains.push_back(Load.getValue(1)); 5219 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5220 } 5221 break; 5222 } 5223 5224 // Non-varargs Altivec params go into VRs or on the stack. 5225 if (VR_idx != NumVRs) { 5226 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5227 Arg.getSimpleValueType() == MVT::v2i64) ? 5228 VSRH[VR_idx] : VR[VR_idx]; 5229 ++VR_idx; 5230 5231 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5232 } else { 5233 if (CallConv == CallingConv::Fast) 5234 ComputePtrOff(); 5235 5236 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5237 true, isTailCall, true, MemOpChains, 5238 TailCallArguments, dl); 5239 if (CallConv == CallingConv::Fast) 5240 ArgOffset += 16; 5241 } 5242 5243 if (CallConv != CallingConv::Fast) 5244 ArgOffset += 16; 5245 break; 5246 } // not QPX 5247 5248 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5249 "Invalid QPX parameter type"); 5250 5251 /* fall through */ 5252 case MVT::v4f64: 5253 case MVT::v4i1: { 5254 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5255 if (isVarArg) { 5256 // We could elide this store in the case where the object fits 5257 // entirely in R registers. Maybe later. 5258 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5259 MachinePointerInfo(), false, false, 0); 5260 MemOpChains.push_back(Store); 5261 if (QFPR_idx != NumQFPRs) { 5262 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5263 Store, PtrOff, MachinePointerInfo(), 5264 false, false, false, 0); 5265 MemOpChains.push_back(Load.getValue(1)); 5266 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5267 } 5268 ArgOffset += (IsF32 ? 16 : 32); 5269 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5270 if (GPR_idx == NumGPRs) 5271 break; 5272 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5273 DAG.getConstant(i, dl, PtrVT)); 5274 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5275 false, false, false, 0); 5276 MemOpChains.push_back(Load.getValue(1)); 5277 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5278 } 5279 break; 5280 } 5281 5282 // Non-varargs QPX params go into registers or on the stack. 5283 if (QFPR_idx != NumQFPRs) { 5284 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5285 } else { 5286 if (CallConv == CallingConv::Fast) 5287 ComputePtrOff(); 5288 5289 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5290 true, isTailCall, true, MemOpChains, 5291 TailCallArguments, dl); 5292 if (CallConv == CallingConv::Fast) 5293 ArgOffset += (IsF32 ? 16 : 32); 5294 } 5295 5296 if (CallConv != CallingConv::Fast) 5297 ArgOffset += (IsF32 ? 16 : 32); 5298 break; 5299 } 5300 } 5301 } 5302 5303 assert(NumBytesActuallyUsed == ArgOffset); 5304 (void)NumBytesActuallyUsed; 5305 5306 if (!MemOpChains.empty()) 5307 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5308 5309 // Check if this is an indirect call (MTCTR/BCTRL). 5310 // See PrepareCall() for more information about calls through function 5311 // pointers in the 64-bit SVR4 ABI. 5312 if (!isTailCall && !IsPatchPoint && 5313 !isFunctionGlobalAddress(Callee) && 5314 !isa<ExternalSymbolSDNode>(Callee)) { 5315 // Load r2 into a virtual register and store it to the TOC save area. 5316 setUsesTOCBasePtr(DAG); 5317 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5318 // TOC save area offset. 5319 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5320 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5321 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5322 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 5323 MachinePointerInfo::getStack(TOCSaveOffset), 5324 false, false, 0); 5325 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5326 // This does not mean the MTCTR instruction must use R12; it's easier 5327 // to model this as an extra parameter, so do that. 5328 if (isELFv2ABI && !IsPatchPoint) 5329 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5330 } 5331 5332 // Build a sequence of copy-to-reg nodes chained together with token chain 5333 // and flag operands which copy the outgoing args into the appropriate regs. 5334 SDValue InFlag; 5335 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5336 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5337 RegsToPass[i].second, InFlag); 5338 InFlag = Chain.getValue(1); 5339 } 5340 5341 if (isTailCall) 5342 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5343 FPOp, true, TailCallArguments); 5344 5345 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5346 hasNest, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5347 Callee, SPDiff, NumBytes, Ins, InVals, CS); 5348 } 5349 5350 SDValue 5351 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5352 CallingConv::ID CallConv, bool isVarArg, 5353 bool isTailCall, bool IsPatchPoint, 5354 const SmallVectorImpl<ISD::OutputArg> &Outs, 5355 const SmallVectorImpl<SDValue> &OutVals, 5356 const SmallVectorImpl<ISD::InputArg> &Ins, 5357 SDLoc dl, SelectionDAG &DAG, 5358 SmallVectorImpl<SDValue> &InVals, 5359 ImmutableCallSite *CS) const { 5360 5361 unsigned NumOps = Outs.size(); 5362 5363 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5364 bool isPPC64 = PtrVT == MVT::i64; 5365 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5366 5367 MachineFunction &MF = DAG.getMachineFunction(); 5368 5369 // Mark this function as potentially containing a function that contains a 5370 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5371 // and restoring the callers stack pointer in this functions epilog. This is 5372 // done because by tail calling the called function might overwrite the value 5373 // in this function's (MF) stack pointer stack slot 0(SP). 5374 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5375 CallConv == CallingConv::Fast) 5376 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5377 5378 // Count how many bytes are to be pushed on the stack, including the linkage 5379 // area, and parameter passing area. We start with 24/48 bytes, which is 5380 // prereserved space for [SP][CR][LR][3 x unused]. 5381 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5382 unsigned NumBytes = LinkageSize; 5383 5384 // Add up all the space actually used. 5385 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5386 // they all go in registers, but we must reserve stack space for them for 5387 // possible use by the caller. In varargs or 64-bit calls, parameters are 5388 // assigned stack space in order, with padding so Altivec parameters are 5389 // 16-byte aligned. 5390 unsigned nAltivecParamsAtEnd = 0; 5391 for (unsigned i = 0; i != NumOps; ++i) { 5392 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5393 EVT ArgVT = Outs[i].VT; 5394 // Varargs Altivec parameters are padded to a 16 byte boundary. 5395 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5396 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5397 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5398 if (!isVarArg && !isPPC64) { 5399 // Non-varargs Altivec parameters go after all the non-Altivec 5400 // parameters; handle those later so we know how much padding we need. 5401 nAltivecParamsAtEnd++; 5402 continue; 5403 } 5404 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5405 NumBytes = ((NumBytes+15)/16)*16; 5406 } 5407 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5408 } 5409 5410 // Allow for Altivec parameters at the end, if needed. 5411 if (nAltivecParamsAtEnd) { 5412 NumBytes = ((NumBytes+15)/16)*16; 5413 NumBytes += 16*nAltivecParamsAtEnd; 5414 } 5415 5416 // The prolog code of the callee may store up to 8 GPR argument registers to 5417 // the stack, allowing va_start to index over them in memory if its varargs. 5418 // Because we cannot tell if this is needed on the caller side, we have to 5419 // conservatively assume that it is needed. As such, make sure we have at 5420 // least enough stack space for the caller to store the 8 GPRs. 5421 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5422 5423 // Tail call needs the stack to be aligned. 5424 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5425 CallConv == CallingConv::Fast) 5426 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5427 5428 // Calculate by how many bytes the stack has to be adjusted in case of tail 5429 // call optimization. 5430 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5431 5432 // To protect arguments on the stack from being clobbered in a tail call, 5433 // force all the loads to happen before doing any other lowering. 5434 if (isTailCall) 5435 Chain = DAG.getStackArgumentTokenFactor(Chain); 5436 5437 // Adjust the stack pointer for the new arguments... 5438 // These operations are automatically eliminated by the prolog/epilog pass 5439 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5440 dl); 5441 SDValue CallSeqStart = Chain; 5442 5443 // Load the return address and frame pointer so it can be move somewhere else 5444 // later. 5445 SDValue LROp, FPOp; 5446 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5447 dl); 5448 5449 // Set up a copy of the stack pointer for use loading and storing any 5450 // arguments that may not fit in the registers available for argument 5451 // passing. 5452 SDValue StackPtr; 5453 if (isPPC64) 5454 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5455 else 5456 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5457 5458 // Figure out which arguments are going to go in registers, and which in 5459 // memory. Also, if this is a vararg function, floating point operations 5460 // must be stored to our stack, and loaded into integer regs as well, if 5461 // any integer regs are available for argument passing. 5462 unsigned ArgOffset = LinkageSize; 5463 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5464 5465 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5466 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5467 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5468 }; 5469 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5470 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5471 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5472 }; 5473 static const MCPhysReg VR[] = { 5474 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5475 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5476 }; 5477 const unsigned NumGPRs = array_lengthof(GPR_32); 5478 const unsigned NumFPRs = 13; 5479 const unsigned NumVRs = array_lengthof(VR); 5480 5481 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5482 5483 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5484 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5485 5486 SmallVector<SDValue, 8> MemOpChains; 5487 for (unsigned i = 0; i != NumOps; ++i) { 5488 SDValue Arg = OutVals[i]; 5489 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5490 5491 // PtrOff will be used to store the current argument to the stack if a 5492 // register cannot be found for it. 5493 SDValue PtrOff; 5494 5495 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5496 5497 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5498 5499 // On PPC64, promote integers to 64-bit values. 5500 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5501 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5502 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5503 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5504 } 5505 5506 // FIXME memcpy is used way more than necessary. Correctness first. 5507 // Note: "by value" is code for passing a structure by value, not 5508 // basic types. 5509 if (Flags.isByVal()) { 5510 unsigned Size = Flags.getByValSize(); 5511 // Very small objects are passed right-justified. Everything else is 5512 // passed left-justified. 5513 if (Size==1 || Size==2) { 5514 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5515 if (GPR_idx != NumGPRs) { 5516 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5517 MachinePointerInfo(), VT, 5518 false, false, false, 0); 5519 MemOpChains.push_back(Load.getValue(1)); 5520 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5521 5522 ArgOffset += PtrByteSize; 5523 } else { 5524 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5525 PtrOff.getValueType()); 5526 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5527 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5528 CallSeqStart, 5529 Flags, DAG, dl); 5530 ArgOffset += PtrByteSize; 5531 } 5532 continue; 5533 } 5534 // Copy entire object into memory. There are cases where gcc-generated 5535 // code assumes it is there, even if it could be put entirely into 5536 // registers. (This is not what the doc says.) 5537 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5538 CallSeqStart, 5539 Flags, DAG, dl); 5540 5541 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5542 // copy the pieces of the object that fit into registers from the 5543 // parameter save area. 5544 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5545 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5546 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5547 if (GPR_idx != NumGPRs) { 5548 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5549 MachinePointerInfo(), 5550 false, false, false, 0); 5551 MemOpChains.push_back(Load.getValue(1)); 5552 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5553 ArgOffset += PtrByteSize; 5554 } else { 5555 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5556 break; 5557 } 5558 } 5559 continue; 5560 } 5561 5562 switch (Arg.getSimpleValueType().SimpleTy) { 5563 default: llvm_unreachable("Unexpected ValueType for argument!"); 5564 case MVT::i1: 5565 case MVT::i32: 5566 case MVT::i64: 5567 if (GPR_idx != NumGPRs) { 5568 if (Arg.getValueType() == MVT::i1) 5569 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5570 5571 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5572 } else { 5573 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5574 isPPC64, isTailCall, false, MemOpChains, 5575 TailCallArguments, dl); 5576 } 5577 ArgOffset += PtrByteSize; 5578 break; 5579 case MVT::f32: 5580 case MVT::f64: 5581 if (FPR_idx != NumFPRs) { 5582 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5583 5584 if (isVarArg) { 5585 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5586 MachinePointerInfo(), false, false, 0); 5587 MemOpChains.push_back(Store); 5588 5589 // Float varargs are always shadowed in available integer registers 5590 if (GPR_idx != NumGPRs) { 5591 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5592 MachinePointerInfo(), false, false, 5593 false, 0); 5594 MemOpChains.push_back(Load.getValue(1)); 5595 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5596 } 5597 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5598 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5599 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5600 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5601 MachinePointerInfo(), 5602 false, false, false, 0); 5603 MemOpChains.push_back(Load.getValue(1)); 5604 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5605 } 5606 } else { 5607 // If we have any FPRs remaining, we may also have GPRs remaining. 5608 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5609 // GPRs. 5610 if (GPR_idx != NumGPRs) 5611 ++GPR_idx; 5612 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5613 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5614 ++GPR_idx; 5615 } 5616 } else 5617 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5618 isPPC64, isTailCall, false, MemOpChains, 5619 TailCallArguments, dl); 5620 if (isPPC64) 5621 ArgOffset += 8; 5622 else 5623 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5624 break; 5625 case MVT::v4f32: 5626 case MVT::v4i32: 5627 case MVT::v8i16: 5628 case MVT::v16i8: 5629 if (isVarArg) { 5630 // These go aligned on the stack, or in the corresponding R registers 5631 // when within range. The Darwin PPC ABI doc claims they also go in 5632 // V registers; in fact gcc does this only for arguments that are 5633 // prototyped, not for those that match the ... We do it for all 5634 // arguments, seems to work. 5635 while (ArgOffset % 16 !=0) { 5636 ArgOffset += PtrByteSize; 5637 if (GPR_idx != NumGPRs) 5638 GPR_idx++; 5639 } 5640 // We could elide this store in the case where the object fits 5641 // entirely in R registers. Maybe later. 5642 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5643 DAG.getConstant(ArgOffset, dl, PtrVT)); 5644 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5645 MachinePointerInfo(), false, false, 0); 5646 MemOpChains.push_back(Store); 5647 if (VR_idx != NumVRs) { 5648 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5649 MachinePointerInfo(), 5650 false, false, false, 0); 5651 MemOpChains.push_back(Load.getValue(1)); 5652 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5653 } 5654 ArgOffset += 16; 5655 for (unsigned i=0; i<16; i+=PtrByteSize) { 5656 if (GPR_idx == NumGPRs) 5657 break; 5658 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5659 DAG.getConstant(i, dl, PtrVT)); 5660 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5661 false, false, false, 0); 5662 MemOpChains.push_back(Load.getValue(1)); 5663 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5664 } 5665 break; 5666 } 5667 5668 // Non-varargs Altivec params generally go in registers, but have 5669 // stack space allocated at the end. 5670 if (VR_idx != NumVRs) { 5671 // Doesn't have GPR space allocated. 5672 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5673 } else if (nAltivecParamsAtEnd==0) { 5674 // We are emitting Altivec params in order. 5675 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5676 isPPC64, isTailCall, true, MemOpChains, 5677 TailCallArguments, dl); 5678 ArgOffset += 16; 5679 } 5680 break; 5681 } 5682 } 5683 // If all Altivec parameters fit in registers, as they usually do, 5684 // they get stack space following the non-Altivec parameters. We 5685 // don't track this here because nobody below needs it. 5686 // If there are more Altivec parameters than fit in registers emit 5687 // the stores here. 5688 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5689 unsigned j = 0; 5690 // Offset is aligned; skip 1st 12 params which go in V registers. 5691 ArgOffset = ((ArgOffset+15)/16)*16; 5692 ArgOffset += 12*16; 5693 for (unsigned i = 0; i != NumOps; ++i) { 5694 SDValue Arg = OutVals[i]; 5695 EVT ArgType = Outs[i].VT; 5696 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5697 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5698 if (++j > NumVRs) { 5699 SDValue PtrOff; 5700 // We are emitting Altivec params in order. 5701 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5702 isPPC64, isTailCall, true, MemOpChains, 5703 TailCallArguments, dl); 5704 ArgOffset += 16; 5705 } 5706 } 5707 } 5708 } 5709 5710 if (!MemOpChains.empty()) 5711 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5712 5713 // On Darwin, R12 must contain the address of an indirect callee. This does 5714 // not mean the MTCTR instruction must use R12; it's easier to model this as 5715 // an extra parameter, so do that. 5716 if (!isTailCall && 5717 !isFunctionGlobalAddress(Callee) && 5718 !isa<ExternalSymbolSDNode>(Callee) && 5719 !isBLACompatibleAddress(Callee, DAG)) 5720 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5721 PPC::R12), Callee)); 5722 5723 // Build a sequence of copy-to-reg nodes chained together with token chain 5724 // and flag operands which copy the outgoing args into the appropriate regs. 5725 SDValue InFlag; 5726 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5727 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5728 RegsToPass[i].second, InFlag); 5729 InFlag = Chain.getValue(1); 5730 } 5731 5732 if (isTailCall) 5733 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5734 FPOp, true, TailCallArguments); 5735 5736 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5737 /* unused except on PPC64 ELFv1 */ false, DAG, 5738 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5739 NumBytes, Ins, InVals, CS); 5740 } 5741 5742 bool 5743 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5744 MachineFunction &MF, bool isVarArg, 5745 const SmallVectorImpl<ISD::OutputArg> &Outs, 5746 LLVMContext &Context) const { 5747 SmallVector<CCValAssign, 16> RVLocs; 5748 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5749 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5750 } 5751 5752 SDValue 5753 PPCTargetLowering::LowerReturn(SDValue Chain, 5754 CallingConv::ID CallConv, bool isVarArg, 5755 const SmallVectorImpl<ISD::OutputArg> &Outs, 5756 const SmallVectorImpl<SDValue> &OutVals, 5757 SDLoc dl, SelectionDAG &DAG) const { 5758 5759 SmallVector<CCValAssign, 16> RVLocs; 5760 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5761 *DAG.getContext()); 5762 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5763 5764 SDValue Flag; 5765 SmallVector<SDValue, 4> RetOps(1, Chain); 5766 5767 // Copy the result values into the output registers. 5768 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5769 CCValAssign &VA = RVLocs[i]; 5770 assert(VA.isRegLoc() && "Can only return in registers!"); 5771 5772 SDValue Arg = OutVals[i]; 5773 5774 switch (VA.getLocInfo()) { 5775 default: llvm_unreachable("Unknown loc info!"); 5776 case CCValAssign::Full: break; 5777 case CCValAssign::AExt: 5778 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5779 break; 5780 case CCValAssign::ZExt: 5781 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5782 break; 5783 case CCValAssign::SExt: 5784 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5785 break; 5786 } 5787 5788 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5789 Flag = Chain.getValue(1); 5790 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5791 } 5792 5793 RetOps[0] = Chain; // Update chain. 5794 5795 // Add the flag if we have it. 5796 if (Flag.getNode()) 5797 RetOps.push_back(Flag); 5798 5799 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5800 } 5801 5802 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5803 const PPCSubtarget &Subtarget) const { 5804 // When we pop the dynamic allocation we need to restore the SP link. 5805 SDLoc dl(Op); 5806 5807 // Get the corect type for pointers. 5808 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5809 5810 // Construct the stack pointer operand. 5811 bool isPPC64 = Subtarget.isPPC64(); 5812 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5813 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5814 5815 // Get the operands for the STACKRESTORE. 5816 SDValue Chain = Op.getOperand(0); 5817 SDValue SaveSP = Op.getOperand(1); 5818 5819 // Load the old link SP. 5820 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5821 MachinePointerInfo(), 5822 false, false, false, 0); 5823 5824 // Restore the stack pointer. 5825 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5826 5827 // Store the old link SP. 5828 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5829 false, false, 0); 5830 } 5831 5832 5833 5834 SDValue 5835 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 5836 MachineFunction &MF = DAG.getMachineFunction(); 5837 bool isPPC64 = Subtarget.isPPC64(); 5838 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5839 5840 // Get current frame pointer save index. The users of this index will be 5841 // primarily DYNALLOC instructions. 5842 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5843 int RASI = FI->getReturnAddrSaveIndex(); 5844 5845 // If the frame pointer save index hasn't been defined yet. 5846 if (!RASI) { 5847 // Find out what the fix offset of the frame pointer save area. 5848 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5849 // Allocate the frame index for frame pointer save area. 5850 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5851 // Save the result. 5852 FI->setReturnAddrSaveIndex(RASI); 5853 } 5854 return DAG.getFrameIndex(RASI, PtrVT); 5855 } 5856 5857 SDValue 5858 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5859 MachineFunction &MF = DAG.getMachineFunction(); 5860 bool isPPC64 = Subtarget.isPPC64(); 5861 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5862 5863 // Get current frame pointer save index. The users of this index will be 5864 // primarily DYNALLOC instructions. 5865 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5866 int FPSI = FI->getFramePointerSaveIndex(); 5867 5868 // If the frame pointer save index hasn't been defined yet. 5869 if (!FPSI) { 5870 // Find out what the fix offset of the frame pointer save area. 5871 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5872 // Allocate the frame index for frame pointer save area. 5873 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5874 // Save the result. 5875 FI->setFramePointerSaveIndex(FPSI); 5876 } 5877 return DAG.getFrameIndex(FPSI, PtrVT); 5878 } 5879 5880 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5881 SelectionDAG &DAG, 5882 const PPCSubtarget &Subtarget) const { 5883 // Get the inputs. 5884 SDValue Chain = Op.getOperand(0); 5885 SDValue Size = Op.getOperand(1); 5886 SDLoc dl(Op); 5887 5888 // Get the corect type for pointers. 5889 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5890 // Negate the size. 5891 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5892 DAG.getConstant(0, dl, PtrVT), Size); 5893 // Construct a node for the frame pointer save index. 5894 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5895 // Build a DYNALLOC node. 5896 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5897 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5898 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5899 } 5900 5901 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5902 SelectionDAG &DAG) const { 5903 SDLoc DL(Op); 5904 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5905 DAG.getVTList(MVT::i32, MVT::Other), 5906 Op.getOperand(0), Op.getOperand(1)); 5907 } 5908 5909 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5910 SelectionDAG &DAG) const { 5911 SDLoc DL(Op); 5912 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5913 Op.getOperand(0), Op.getOperand(1)); 5914 } 5915 5916 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5917 if (Op.getValueType().isVector()) 5918 return LowerVectorLoad(Op, DAG); 5919 5920 assert(Op.getValueType() == MVT::i1 && 5921 "Custom lowering only for i1 loads"); 5922 5923 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5924 5925 SDLoc dl(Op); 5926 LoadSDNode *LD = cast<LoadSDNode>(Op); 5927 5928 SDValue Chain = LD->getChain(); 5929 SDValue BasePtr = LD->getBasePtr(); 5930 MachineMemOperand *MMO = LD->getMemOperand(); 5931 5932 SDValue NewLD = 5933 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5934 BasePtr, MVT::i8, MMO); 5935 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5936 5937 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5938 return DAG.getMergeValues(Ops, dl); 5939 } 5940 5941 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5942 if (Op.getOperand(1).getValueType().isVector()) 5943 return LowerVectorStore(Op, DAG); 5944 5945 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5946 "Custom lowering only for i1 stores"); 5947 5948 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5949 5950 SDLoc dl(Op); 5951 StoreSDNode *ST = cast<StoreSDNode>(Op); 5952 5953 SDValue Chain = ST->getChain(); 5954 SDValue BasePtr = ST->getBasePtr(); 5955 SDValue Value = ST->getValue(); 5956 MachineMemOperand *MMO = ST->getMemOperand(); 5957 5958 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5959 Value); 5960 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5961 } 5962 5963 // FIXME: Remove this once the ANDI glue bug is fixed: 5964 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5965 assert(Op.getValueType() == MVT::i1 && 5966 "Custom lowering only for i1 results"); 5967 5968 SDLoc DL(Op); 5969 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5970 Op.getOperand(0)); 5971 } 5972 5973 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5974 /// possible. 5975 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5976 // Not FP? Not a fsel. 5977 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5978 !Op.getOperand(2).getValueType().isFloatingPoint()) 5979 return Op; 5980 5981 // We might be able to do better than this under some circumstances, but in 5982 // general, fsel-based lowering of select is a finite-math-only optimization. 5983 // For more information, see section F.3 of the 2.06 ISA specification. 5984 if (!DAG.getTarget().Options.NoInfsFPMath || 5985 !DAG.getTarget().Options.NoNaNsFPMath) 5986 return Op; 5987 5988 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5989 5990 EVT ResVT = Op.getValueType(); 5991 EVT CmpVT = Op.getOperand(0).getValueType(); 5992 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5993 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 5994 SDLoc dl(Op); 5995 5996 // If the RHS of the comparison is a 0.0, we don't need to do the 5997 // subtraction at all. 5998 SDValue Sel1; 5999 if (isFloatingPointZero(RHS)) 6000 switch (CC) { 6001 default: break; // SETUO etc aren't handled by fsel. 6002 case ISD::SETNE: 6003 std::swap(TV, FV); 6004 case ISD::SETEQ: 6005 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6006 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6007 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6008 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6009 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6010 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6011 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6012 case ISD::SETULT: 6013 case ISD::SETLT: 6014 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6015 case ISD::SETOGE: 6016 case ISD::SETGE: 6017 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6018 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6019 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6020 case ISD::SETUGT: 6021 case ISD::SETGT: 6022 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6023 case ISD::SETOLE: 6024 case ISD::SETLE: 6025 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6026 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6027 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6028 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6029 } 6030 6031 SDValue Cmp; 6032 switch (CC) { 6033 default: break; // SETUO etc aren't handled by fsel. 6034 case ISD::SETNE: 6035 std::swap(TV, FV); 6036 case ISD::SETEQ: 6037 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6038 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6039 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6040 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6041 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6042 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6043 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6044 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6045 case ISD::SETULT: 6046 case ISD::SETLT: 6047 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6048 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6049 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6050 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6051 case ISD::SETOGE: 6052 case ISD::SETGE: 6053 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6054 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6055 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6056 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6057 case ISD::SETUGT: 6058 case ISD::SETGT: 6059 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6060 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6061 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6062 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6063 case ISD::SETOLE: 6064 case ISD::SETLE: 6065 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6066 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6067 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6068 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6069 } 6070 return Op; 6071 } 6072 6073 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6074 SelectionDAG &DAG, 6075 SDLoc dl) const { 6076 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6077 SDValue Src = Op.getOperand(0); 6078 if (Src.getValueType() == MVT::f32) 6079 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6080 6081 SDValue Tmp; 6082 switch (Op.getSimpleValueType().SimpleTy) { 6083 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6084 case MVT::i32: 6085 Tmp = DAG.getNode( 6086 Op.getOpcode() == ISD::FP_TO_SINT 6087 ? PPCISD::FCTIWZ 6088 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6089 dl, MVT::f64, Src); 6090 break; 6091 case MVT::i64: 6092 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6093 "i64 FP_TO_UINT is supported only with FPCVT"); 6094 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6095 PPCISD::FCTIDUZ, 6096 dl, MVT::f64, Src); 6097 break; 6098 } 6099 6100 // Convert the FP value to an int value through memory. 6101 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6102 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6103 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6104 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6105 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); 6106 6107 // Emit a store to the stack slot. 6108 SDValue Chain; 6109 if (i32Stack) { 6110 MachineFunction &MF = DAG.getMachineFunction(); 6111 MachineMemOperand *MMO = 6112 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6113 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6114 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6115 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6116 } else 6117 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6118 MPI, false, false, 0); 6119 6120 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6121 // add in a bias. 6122 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6123 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6124 DAG.getConstant(4, dl, FIPtr.getValueType())); 6125 MPI = MPI.getWithOffset(4); 6126 } 6127 6128 RLI.Chain = Chain; 6129 RLI.Ptr = FIPtr; 6130 RLI.MPI = MPI; 6131 } 6132 6133 /// \brief Custom lowers floating point to integer conversions to use 6134 /// the direct move instructions available in ISA 2.07 to avoid the 6135 /// need for load/store combinations. 6136 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6137 SelectionDAG &DAG, 6138 SDLoc dl) const { 6139 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6140 SDValue Src = Op.getOperand(0); 6141 6142 if (Src.getValueType() == MVT::f32) 6143 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6144 6145 SDValue Tmp; 6146 switch (Op.getSimpleValueType().SimpleTy) { 6147 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6148 case MVT::i32: 6149 Tmp = DAG.getNode( 6150 Op.getOpcode() == ISD::FP_TO_SINT 6151 ? PPCISD::FCTIWZ 6152 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6153 dl, MVT::f64, Src); 6154 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6155 break; 6156 case MVT::i64: 6157 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6158 "i64 FP_TO_UINT is supported only with FPCVT"); 6159 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6160 PPCISD::FCTIDUZ, 6161 dl, MVT::f64, Src); 6162 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6163 break; 6164 } 6165 return Tmp; 6166 } 6167 6168 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6169 SDLoc dl) const { 6170 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6171 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6172 6173 ReuseLoadInfo RLI; 6174 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6175 6176 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6177 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6178 RLI.Ranges); 6179 } 6180 6181 // We're trying to insert a regular store, S, and then a load, L. If the 6182 // incoming value, O, is a load, we might just be able to have our load use the 6183 // address used by O. However, we don't know if anything else will store to 6184 // that address before we can load from it. To prevent this situation, we need 6185 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6186 // the same chain operand as O, we create a token factor from the chain results 6187 // of O and L, and we replace all uses of O's chain result with that token 6188 // factor (see spliceIntoChain below for this last part). 6189 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6190 ReuseLoadInfo &RLI, 6191 SelectionDAG &DAG, 6192 ISD::LoadExtType ET) const { 6193 SDLoc dl(Op); 6194 if (ET == ISD::NON_EXTLOAD && 6195 (Op.getOpcode() == ISD::FP_TO_UINT || 6196 Op.getOpcode() == ISD::FP_TO_SINT) && 6197 isOperationLegalOrCustom(Op.getOpcode(), 6198 Op.getOperand(0).getValueType())) { 6199 6200 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6201 return true; 6202 } 6203 6204 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6205 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6206 LD->isNonTemporal()) 6207 return false; 6208 if (LD->getMemoryVT() != MemVT) 6209 return false; 6210 6211 RLI.Ptr = LD->getBasePtr(); 6212 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6213 assert(LD->getAddressingMode() == ISD::PRE_INC && 6214 "Non-pre-inc AM on PPC?"); 6215 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6216 LD->getOffset()); 6217 } 6218 6219 RLI.Chain = LD->getChain(); 6220 RLI.MPI = LD->getPointerInfo(); 6221 RLI.IsInvariant = LD->isInvariant(); 6222 RLI.Alignment = LD->getAlignment(); 6223 RLI.AAInfo = LD->getAAInfo(); 6224 RLI.Ranges = LD->getRanges(); 6225 6226 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6227 return true; 6228 } 6229 6230 // Given the head of the old chain, ResChain, insert a token factor containing 6231 // it and NewResChain, and make users of ResChain now be users of that token 6232 // factor. 6233 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6234 SDValue NewResChain, 6235 SelectionDAG &DAG) const { 6236 if (!ResChain) 6237 return; 6238 6239 SDLoc dl(NewResChain); 6240 6241 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6242 NewResChain, DAG.getUNDEF(MVT::Other)); 6243 assert(TF.getNode() != NewResChain.getNode() && 6244 "A new TF really is required here"); 6245 6246 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6247 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6248 } 6249 6250 /// \brief Custom lowers integer to floating point conversions to use 6251 /// the direct move instructions available in ISA 2.07 to avoid the 6252 /// need for load/store combinations. 6253 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6254 SelectionDAG &DAG, 6255 SDLoc dl) const { 6256 assert((Op.getValueType() == MVT::f32 || 6257 Op.getValueType() == MVT::f64) && 6258 "Invalid floating point type as target of conversion"); 6259 assert(Subtarget.hasFPCVT() && 6260 "Int to FP conversions with direct moves require FPCVT"); 6261 SDValue FP; 6262 SDValue Src = Op.getOperand(0); 6263 bool SinglePrec = Op.getValueType() == MVT::f32; 6264 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6265 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6266 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6267 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6268 6269 if (WordInt) { 6270 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6271 dl, MVT::f64, Src); 6272 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6273 } 6274 else { 6275 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6276 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6277 } 6278 6279 return FP; 6280 } 6281 6282 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6283 SelectionDAG &DAG) const { 6284 SDLoc dl(Op); 6285 6286 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6287 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6288 return SDValue(); 6289 6290 SDValue Value = Op.getOperand(0); 6291 // The values are now known to be -1 (false) or 1 (true). To convert this 6292 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6293 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6294 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6295 6296 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6297 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6298 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 6299 6300 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6301 6302 if (Op.getValueType() != MVT::v4f64) 6303 Value = DAG.getNode(ISD::FP_ROUND, dl, 6304 Op.getValueType(), Value, 6305 DAG.getIntPtrConstant(1, dl)); 6306 return Value; 6307 } 6308 6309 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6310 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6311 return SDValue(); 6312 6313 if (Op.getOperand(0).getValueType() == MVT::i1) 6314 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6315 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6316 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6317 6318 // If we have direct moves, we can do all the conversion, skip the store/load 6319 // however, without FPCVT we can't do most conversions. 6320 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6321 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6322 6323 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6324 "UINT_TO_FP is supported only with FPCVT"); 6325 6326 // If we have FCFIDS, then use it when converting to single-precision. 6327 // Otherwise, convert to double-precision and then round. 6328 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6329 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6330 : PPCISD::FCFIDS) 6331 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6332 : PPCISD::FCFID); 6333 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6334 ? MVT::f32 6335 : MVT::f64; 6336 6337 if (Op.getOperand(0).getValueType() == MVT::i64) { 6338 SDValue SINT = Op.getOperand(0); 6339 // When converting to single-precision, we actually need to convert 6340 // to double-precision first and then round to single-precision. 6341 // To avoid double-rounding effects during that operation, we have 6342 // to prepare the input operand. Bits that might be truncated when 6343 // converting to double-precision are replaced by a bit that won't 6344 // be lost at this stage, but is below the single-precision rounding 6345 // position. 6346 // 6347 // However, if -enable-unsafe-fp-math is in effect, accept double 6348 // rounding to avoid the extra overhead. 6349 if (Op.getValueType() == MVT::f32 && 6350 !Subtarget.hasFPCVT() && 6351 !DAG.getTarget().Options.UnsafeFPMath) { 6352 6353 // Twiddle input to make sure the low 11 bits are zero. (If this 6354 // is the case, we are guaranteed the value will fit into the 53 bit 6355 // mantissa of an IEEE double-precision value without rounding.) 6356 // If any of those low 11 bits were not zero originally, make sure 6357 // bit 12 (value 2048) is set instead, so that the final rounding 6358 // to single-precision gets the correct result. 6359 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6360 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6361 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6362 Round, DAG.getConstant(2047, dl, MVT::i64)); 6363 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6364 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6365 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6366 6367 // However, we cannot use that value unconditionally: if the magnitude 6368 // of the input value is small, the bit-twiddling we did above might 6369 // end up visibly changing the output. Fortunately, in that case, we 6370 // don't need to twiddle bits since the original input will convert 6371 // exactly to double-precision floating-point already. Therefore, 6372 // construct a conditional to use the original value if the top 11 6373 // bits are all sign-bit copies, and use the rounded value computed 6374 // above otherwise. 6375 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6376 SINT, DAG.getConstant(53, dl, MVT::i32)); 6377 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6378 Cond, DAG.getConstant(1, dl, MVT::i64)); 6379 Cond = DAG.getSetCC(dl, MVT::i32, 6380 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6381 6382 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6383 } 6384 6385 ReuseLoadInfo RLI; 6386 SDValue Bits; 6387 6388 MachineFunction &MF = DAG.getMachineFunction(); 6389 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6390 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6391 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6392 RLI.Ranges); 6393 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6394 } else if (Subtarget.hasLFIWAX() && 6395 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6396 MachineMemOperand *MMO = 6397 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6398 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6399 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6400 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6401 DAG.getVTList(MVT::f64, MVT::Other), 6402 Ops, MVT::i32, MMO); 6403 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6404 } else if (Subtarget.hasFPCVT() && 6405 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6406 MachineMemOperand *MMO = 6407 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6408 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6409 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6410 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6411 DAG.getVTList(MVT::f64, MVT::Other), 6412 Ops, MVT::i32, MMO); 6413 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6414 } else if (((Subtarget.hasLFIWAX() && 6415 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6416 (Subtarget.hasFPCVT() && 6417 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6418 SINT.getOperand(0).getValueType() == MVT::i32) { 6419 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6420 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6421 6422 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6423 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6424 6425 SDValue Store = 6426 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6427 MachinePointerInfo::getFixedStack(FrameIdx), 6428 false, false, 0); 6429 6430 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6431 "Expected an i32 store"); 6432 6433 RLI.Ptr = FIdx; 6434 RLI.Chain = Store; 6435 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6436 RLI.Alignment = 4; 6437 6438 MachineMemOperand *MMO = 6439 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6440 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6441 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6442 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6443 PPCISD::LFIWZX : PPCISD::LFIWAX, 6444 dl, DAG.getVTList(MVT::f64, MVT::Other), 6445 Ops, MVT::i32, MMO); 6446 } else 6447 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6448 6449 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6450 6451 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6452 FP = DAG.getNode(ISD::FP_ROUND, dl, 6453 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6454 return FP; 6455 } 6456 6457 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6458 "Unhandled INT_TO_FP type in custom expander!"); 6459 // Since we only generate this in 64-bit mode, we can take advantage of 6460 // 64-bit registers. In particular, sign extend the input value into the 6461 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6462 // then lfd it and fcfid it. 6463 MachineFunction &MF = DAG.getMachineFunction(); 6464 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6465 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6466 6467 SDValue Ld; 6468 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6469 ReuseLoadInfo RLI; 6470 bool ReusingLoad; 6471 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6472 DAG))) { 6473 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6474 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6475 6476 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6477 MachinePointerInfo::getFixedStack(FrameIdx), 6478 false, false, 0); 6479 6480 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6481 "Expected an i32 store"); 6482 6483 RLI.Ptr = FIdx; 6484 RLI.Chain = Store; 6485 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6486 RLI.Alignment = 4; 6487 } 6488 6489 MachineMemOperand *MMO = 6490 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6491 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6492 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6493 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6494 PPCISD::LFIWZX : PPCISD::LFIWAX, 6495 dl, DAG.getVTList(MVT::f64, MVT::Other), 6496 Ops, MVT::i32, MMO); 6497 if (ReusingLoad) 6498 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6499 } else { 6500 assert(Subtarget.isPPC64() && 6501 "i32->FP without LFIWAX supported only on PPC64"); 6502 6503 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6504 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6505 6506 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6507 Op.getOperand(0)); 6508 6509 // STD the extended value into the stack slot. 6510 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, 6511 MachinePointerInfo::getFixedStack(FrameIdx), 6512 false, false, 0); 6513 6514 // Load the value as a double. 6515 Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, 6516 MachinePointerInfo::getFixedStack(FrameIdx), 6517 false, false, false, 0); 6518 } 6519 6520 // FCFID it and return it. 6521 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6522 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6523 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6524 DAG.getIntPtrConstant(0, dl)); 6525 return FP; 6526 } 6527 6528 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6529 SelectionDAG &DAG) const { 6530 SDLoc dl(Op); 6531 /* 6532 The rounding mode is in bits 30:31 of FPSR, and has the following 6533 settings: 6534 00 Round to nearest 6535 01 Round to 0 6536 10 Round to +inf 6537 11 Round to -inf 6538 6539 FLT_ROUNDS, on the other hand, expects the following: 6540 -1 Undefined 6541 0 Round to 0 6542 1 Round to nearest 6543 2 Round to +inf 6544 3 Round to -inf 6545 6546 To perform the conversion, we do: 6547 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6548 */ 6549 6550 MachineFunction &MF = DAG.getMachineFunction(); 6551 EVT VT = Op.getValueType(); 6552 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6553 6554 // Save FP Control Word to register 6555 EVT NodeTys[] = { 6556 MVT::f64, // return register 6557 MVT::Glue // unused in this context 6558 }; 6559 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6560 6561 // Save FP register to stack slot 6562 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6563 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6564 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6565 StackSlot, MachinePointerInfo(), false, false,0); 6566 6567 // Load FP Control Word from low 32 bits of stack slot. 6568 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6569 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6570 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6571 false, false, false, 0); 6572 6573 // Transform as necessary 6574 SDValue CWD1 = 6575 DAG.getNode(ISD::AND, dl, MVT::i32, 6576 CWD, DAG.getConstant(3, dl, MVT::i32)); 6577 SDValue CWD2 = 6578 DAG.getNode(ISD::SRL, dl, MVT::i32, 6579 DAG.getNode(ISD::AND, dl, MVT::i32, 6580 DAG.getNode(ISD::XOR, dl, MVT::i32, 6581 CWD, DAG.getConstant(3, dl, MVT::i32)), 6582 DAG.getConstant(3, dl, MVT::i32)), 6583 DAG.getConstant(1, dl, MVT::i32)); 6584 6585 SDValue RetVal = 6586 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6587 6588 return DAG.getNode((VT.getSizeInBits() < 16 ? 6589 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6590 } 6591 6592 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6593 EVT VT = Op.getValueType(); 6594 unsigned BitWidth = VT.getSizeInBits(); 6595 SDLoc dl(Op); 6596 assert(Op.getNumOperands() == 3 && 6597 VT == Op.getOperand(1).getValueType() && 6598 "Unexpected SHL!"); 6599 6600 // Expand into a bunch of logical ops. Note that these ops 6601 // depend on the PPC behavior for oversized shift amounts. 6602 SDValue Lo = Op.getOperand(0); 6603 SDValue Hi = Op.getOperand(1); 6604 SDValue Amt = Op.getOperand(2); 6605 EVT AmtVT = Amt.getValueType(); 6606 6607 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6608 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6609 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6610 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6611 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6612 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6613 DAG.getConstant(-BitWidth, dl, AmtVT)); 6614 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6615 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6616 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6617 SDValue OutOps[] = { OutLo, OutHi }; 6618 return DAG.getMergeValues(OutOps, dl); 6619 } 6620 6621 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6622 EVT VT = Op.getValueType(); 6623 SDLoc dl(Op); 6624 unsigned BitWidth = VT.getSizeInBits(); 6625 assert(Op.getNumOperands() == 3 && 6626 VT == Op.getOperand(1).getValueType() && 6627 "Unexpected SRL!"); 6628 6629 // Expand into a bunch of logical ops. Note that these ops 6630 // depend on the PPC behavior for oversized shift amounts. 6631 SDValue Lo = Op.getOperand(0); 6632 SDValue Hi = Op.getOperand(1); 6633 SDValue Amt = Op.getOperand(2); 6634 EVT AmtVT = Amt.getValueType(); 6635 6636 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6637 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6638 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6639 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6640 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6641 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6642 DAG.getConstant(-BitWidth, dl, AmtVT)); 6643 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6644 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6645 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6646 SDValue OutOps[] = { OutLo, OutHi }; 6647 return DAG.getMergeValues(OutOps, dl); 6648 } 6649 6650 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6651 SDLoc dl(Op); 6652 EVT VT = Op.getValueType(); 6653 unsigned BitWidth = VT.getSizeInBits(); 6654 assert(Op.getNumOperands() == 3 && 6655 VT == Op.getOperand(1).getValueType() && 6656 "Unexpected SRA!"); 6657 6658 // Expand into a bunch of logical ops, followed by a select_cc. 6659 SDValue Lo = Op.getOperand(0); 6660 SDValue Hi = Op.getOperand(1); 6661 SDValue Amt = Op.getOperand(2); 6662 EVT AmtVT = Amt.getValueType(); 6663 6664 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6665 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6666 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6667 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6668 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6669 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6670 DAG.getConstant(-BitWidth, dl, AmtVT)); 6671 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6672 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6673 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6674 Tmp4, Tmp6, ISD::SETLE); 6675 SDValue OutOps[] = { OutLo, OutHi }; 6676 return DAG.getMergeValues(OutOps, dl); 6677 } 6678 6679 //===----------------------------------------------------------------------===// 6680 // Vector related lowering. 6681 // 6682 6683 /// BuildSplatI - Build a canonical splati of Val with an element size of 6684 /// SplatSize. Cast the result to VT. 6685 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6686 SelectionDAG &DAG, SDLoc dl) { 6687 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6688 6689 static const MVT VTys[] = { // canonical VT to use for each size. 6690 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6691 }; 6692 6693 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6694 6695 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6696 if (Val == -1) 6697 SplatSize = 1; 6698 6699 EVT CanonicalVT = VTys[SplatSize-1]; 6700 6701 // Build a canonical splat for this value. 6702 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6703 SmallVector<SDValue, 8> Ops; 6704 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6705 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6706 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6707 } 6708 6709 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6710 /// specified intrinsic ID. 6711 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6712 SelectionDAG &DAG, SDLoc dl, 6713 EVT DestVT = MVT::Other) { 6714 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6715 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6716 DAG.getConstant(IID, dl, MVT::i32), Op); 6717 } 6718 6719 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6720 /// specified intrinsic ID. 6721 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6722 SelectionDAG &DAG, SDLoc dl, 6723 EVT DestVT = MVT::Other) { 6724 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6725 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6726 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6727 } 6728 6729 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6730 /// specified intrinsic ID. 6731 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6732 SDValue Op2, SelectionDAG &DAG, 6733 SDLoc dl, EVT DestVT = MVT::Other) { 6734 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6735 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6736 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6737 } 6738 6739 6740 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6741 /// amount. The result has the specified value type. 6742 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6743 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6744 // Force LHS/RHS to be the right type. 6745 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6746 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6747 6748 int Ops[16]; 6749 for (unsigned i = 0; i != 16; ++i) 6750 Ops[i] = i + Amt; 6751 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6752 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6753 } 6754 6755 // If this is a case we can't handle, return null and let the default 6756 // expansion code take care of it. If we CAN select this case, and if it 6757 // selects to a single instruction, return Op. Otherwise, if we can codegen 6758 // this case more efficiently than a constant pool load, lower it to the 6759 // sequence of ops that should be used. 6760 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6761 SelectionDAG &DAG) const { 6762 SDLoc dl(Op); 6763 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6764 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6765 6766 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6767 // We first build an i32 vector, load it into a QPX register, 6768 // then convert it to a floating-point vector and compare it 6769 // to a zero vector to get the boolean result. 6770 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6771 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6772 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 6773 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6774 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6775 6776 assert(BVN->getNumOperands() == 4 && 6777 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6778 6779 bool IsConst = true; 6780 for (unsigned i = 0; i < 4; ++i) { 6781 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6782 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6783 IsConst = false; 6784 break; 6785 } 6786 } 6787 6788 if (IsConst) { 6789 Constant *One = 6790 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6791 Constant *NegOne = 6792 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6793 6794 SmallVector<Constant*, 4> CV(4, NegOne); 6795 for (unsigned i = 0; i < 4; ++i) { 6796 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6797 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6798 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6799 getConstantIntValue()->isZero()) 6800 continue; 6801 else 6802 CV[i] = One; 6803 } 6804 6805 Constant *CP = ConstantVector::get(CV); 6806 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6807 16 /* alignment */); 6808 6809 SmallVector<SDValue, 2> Ops; 6810 Ops.push_back(DAG.getEntryNode()); 6811 Ops.push_back(CPIdx); 6812 6813 SmallVector<EVT, 2> ValueVTs; 6814 ValueVTs.push_back(MVT::v4i1); 6815 ValueVTs.push_back(MVT::Other); // chain 6816 SDVTList VTs = DAG.getVTList(ValueVTs); 6817 6818 return DAG.getMemIntrinsicNode(PPCISD::QVLFSb, 6819 dl, VTs, Ops, MVT::v4f32, 6820 MachinePointerInfo::getConstantPool()); 6821 } 6822 6823 SmallVector<SDValue, 4> Stores; 6824 for (unsigned i = 0; i < 4; ++i) { 6825 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6826 6827 unsigned Offset = 4*i; 6828 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6829 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6830 6831 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6832 if (StoreSize > 4) { 6833 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6834 BVN->getOperand(i), Idx, 6835 PtrInfo.getWithOffset(Offset), 6836 MVT::i32, false, false, 0)); 6837 } else { 6838 SDValue StoreValue = BVN->getOperand(i); 6839 if (StoreSize < 4) 6840 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6841 6842 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6843 StoreValue, Idx, 6844 PtrInfo.getWithOffset(Offset), 6845 false, false, 0)); 6846 } 6847 } 6848 6849 SDValue StoreChain; 6850 if (!Stores.empty()) 6851 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6852 else 6853 StoreChain = DAG.getEntryNode(); 6854 6855 // Now load from v4i32 into the QPX register; this will extend it to 6856 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6857 // is typed as v4f64 because the QPX register integer states are not 6858 // explicitly represented. 6859 6860 SmallVector<SDValue, 2> Ops; 6861 Ops.push_back(StoreChain); 6862 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6863 Ops.push_back(FIdx); 6864 6865 SmallVector<EVT, 2> ValueVTs; 6866 ValueVTs.push_back(MVT::v4f64); 6867 ValueVTs.push_back(MVT::Other); // chain 6868 SDVTList VTs = DAG.getVTList(ValueVTs); 6869 6870 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6871 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6872 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6873 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6874 LoadedVect); 6875 6876 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6877 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6878 FPZeros, FPZeros, FPZeros, FPZeros); 6879 6880 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6881 } 6882 6883 // All other QPX vectors are handled by generic code. 6884 if (Subtarget.hasQPX()) 6885 return SDValue(); 6886 6887 // Check if this is a splat of a constant value. 6888 APInt APSplatBits, APSplatUndef; 6889 unsigned SplatBitSize; 6890 bool HasAnyUndefs; 6891 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6892 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6893 SplatBitSize > 32) 6894 return SDValue(); 6895 6896 unsigned SplatBits = APSplatBits.getZExtValue(); 6897 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6898 unsigned SplatSize = SplatBitSize / 8; 6899 6900 // First, handle single instruction cases. 6901 6902 // All zeros? 6903 if (SplatBits == 0) { 6904 // Canonicalize all zero vectors to be v4i32. 6905 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6906 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6907 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6908 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6909 } 6910 return Op; 6911 } 6912 6913 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6914 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6915 (32-SplatBitSize)); 6916 if (SextVal >= -16 && SextVal <= 15) 6917 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6918 6919 6920 // Two instruction sequences. 6921 6922 // If this value is in the range [-32,30] and is even, use: 6923 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6924 // If this value is in the range [17,31] and is odd, use: 6925 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6926 // If this value is in the range [-31,-17] and is odd, use: 6927 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6928 // Note the last two are three-instruction sequences. 6929 if (SextVal >= -32 && SextVal <= 31) { 6930 // To avoid having these optimizations undone by constant folding, 6931 // we convert to a pseudo that will be expanded later into one of 6932 // the above forms. 6933 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6934 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6935 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6936 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6937 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6938 if (VT == Op.getValueType()) 6939 return RetVal; 6940 else 6941 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6942 } 6943 6944 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6945 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6946 // for fneg/fabs. 6947 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6948 // Make -1 and vspltisw -1: 6949 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6950 6951 // Make the VSLW intrinsic, computing 0x8000_0000. 6952 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6953 OnesV, DAG, dl); 6954 6955 // xor by OnesV to invert it. 6956 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6957 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6958 } 6959 6960 // Check to see if this is a wide variety of vsplti*, binop self cases. 6961 static const signed char SplatCsts[] = { 6962 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6963 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6964 }; 6965 6966 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6967 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6968 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6969 int i = SplatCsts[idx]; 6970 6971 // Figure out what shift amount will be used by altivec if shifted by i in 6972 // this splat size. 6973 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6974 6975 // vsplti + shl self. 6976 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6977 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6978 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6979 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6980 Intrinsic::ppc_altivec_vslw 6981 }; 6982 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6983 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6984 } 6985 6986 // vsplti + srl self. 6987 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6988 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6989 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6990 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 6991 Intrinsic::ppc_altivec_vsrw 6992 }; 6993 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6994 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6995 } 6996 6997 // vsplti + sra self. 6998 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6999 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7000 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7001 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7002 Intrinsic::ppc_altivec_vsraw 7003 }; 7004 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7005 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7006 } 7007 7008 // vsplti + rol self. 7009 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7010 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7011 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7012 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7013 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7014 Intrinsic::ppc_altivec_vrlw 7015 }; 7016 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7017 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7018 } 7019 7020 // t = vsplti c, result = vsldoi t, t, 1 7021 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7022 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7023 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7024 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7025 } 7026 // t = vsplti c, result = vsldoi t, t, 2 7027 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7028 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7029 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7030 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7031 } 7032 // t = vsplti c, result = vsldoi t, t, 3 7033 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7034 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7035 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7036 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7037 } 7038 } 7039 7040 return SDValue(); 7041 } 7042 7043 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7044 /// the specified operations to build the shuffle. 7045 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7046 SDValue RHS, SelectionDAG &DAG, 7047 SDLoc dl) { 7048 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7049 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7050 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7051 7052 enum { 7053 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7054 OP_VMRGHW, 7055 OP_VMRGLW, 7056 OP_VSPLTISW0, 7057 OP_VSPLTISW1, 7058 OP_VSPLTISW2, 7059 OP_VSPLTISW3, 7060 OP_VSLDOI4, 7061 OP_VSLDOI8, 7062 OP_VSLDOI12 7063 }; 7064 7065 if (OpNum == OP_COPY) { 7066 if (LHSID == (1*9+2)*9+3) return LHS; 7067 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7068 return RHS; 7069 } 7070 7071 SDValue OpLHS, OpRHS; 7072 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7073 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7074 7075 int ShufIdxs[16]; 7076 switch (OpNum) { 7077 default: llvm_unreachable("Unknown i32 permute!"); 7078 case OP_VMRGHW: 7079 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7080 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7081 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7082 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7083 break; 7084 case OP_VMRGLW: 7085 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7086 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7087 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7088 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7089 break; 7090 case OP_VSPLTISW0: 7091 for (unsigned i = 0; i != 16; ++i) 7092 ShufIdxs[i] = (i&3)+0; 7093 break; 7094 case OP_VSPLTISW1: 7095 for (unsigned i = 0; i != 16; ++i) 7096 ShufIdxs[i] = (i&3)+4; 7097 break; 7098 case OP_VSPLTISW2: 7099 for (unsigned i = 0; i != 16; ++i) 7100 ShufIdxs[i] = (i&3)+8; 7101 break; 7102 case OP_VSPLTISW3: 7103 for (unsigned i = 0; i != 16; ++i) 7104 ShufIdxs[i] = (i&3)+12; 7105 break; 7106 case OP_VSLDOI4: 7107 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7108 case OP_VSLDOI8: 7109 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7110 case OP_VSLDOI12: 7111 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7112 } 7113 EVT VT = OpLHS.getValueType(); 7114 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7115 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7116 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7117 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7118 } 7119 7120 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7121 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7122 /// return the code it can be lowered into. Worst case, it can always be 7123 /// lowered into a vperm. 7124 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7125 SelectionDAG &DAG) const { 7126 SDLoc dl(Op); 7127 SDValue V1 = Op.getOperand(0); 7128 SDValue V2 = Op.getOperand(1); 7129 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7130 EVT VT = Op.getValueType(); 7131 bool isLittleEndian = Subtarget.isLittleEndian(); 7132 7133 if (Subtarget.hasQPX()) { 7134 if (VT.getVectorNumElements() != 4) 7135 return SDValue(); 7136 7137 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7138 7139 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7140 if (AlignIdx != -1) { 7141 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7142 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7143 } else if (SVOp->isSplat()) { 7144 int SplatIdx = SVOp->getSplatIndex(); 7145 if (SplatIdx >= 4) { 7146 std::swap(V1, V2); 7147 SplatIdx -= 4; 7148 } 7149 7150 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7151 // nothing to do. 7152 7153 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7154 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7155 } 7156 7157 // Lower this into a qvgpci/qvfperm pair. 7158 7159 // Compute the qvgpci literal 7160 unsigned idx = 0; 7161 for (unsigned i = 0; i < 4; ++i) { 7162 int m = SVOp->getMaskElt(i); 7163 unsigned mm = m >= 0 ? (unsigned) m : i; 7164 idx |= mm << (3-i)*3; 7165 } 7166 7167 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7168 DAG.getConstant(idx, dl, MVT::i32)); 7169 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7170 } 7171 7172 // Cases that are handled by instructions that take permute immediates 7173 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7174 // selected by the instruction selector. 7175 if (V2.getOpcode() == ISD::UNDEF) { 7176 if (PPC::isSplatShuffleMask(SVOp, 1) || 7177 PPC::isSplatShuffleMask(SVOp, 2) || 7178 PPC::isSplatShuffleMask(SVOp, 4) || 7179 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7180 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7181 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7182 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7183 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7184 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7185 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7186 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7187 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7188 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7189 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7190 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)) { 7191 return Op; 7192 } 7193 } 7194 7195 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7196 // and produce a fixed permutation. If any of these match, do not lower to 7197 // VPERM. 7198 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7199 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7200 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7201 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7202 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7203 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7204 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7205 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7206 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7207 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7208 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7209 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7210 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)) 7211 return Op; 7212 7213 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7214 // perfect shuffle table to emit an optimal matching sequence. 7215 ArrayRef<int> PermMask = SVOp->getMask(); 7216 7217 unsigned PFIndexes[4]; 7218 bool isFourElementShuffle = true; 7219 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7220 unsigned EltNo = 8; // Start out undef. 7221 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7222 if (PermMask[i*4+j] < 0) 7223 continue; // Undef, ignore it. 7224 7225 unsigned ByteSource = PermMask[i*4+j]; 7226 if ((ByteSource & 3) != j) { 7227 isFourElementShuffle = false; 7228 break; 7229 } 7230 7231 if (EltNo == 8) { 7232 EltNo = ByteSource/4; 7233 } else if (EltNo != ByteSource/4) { 7234 isFourElementShuffle = false; 7235 break; 7236 } 7237 } 7238 PFIndexes[i] = EltNo; 7239 } 7240 7241 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7242 // perfect shuffle vector to determine if it is cost effective to do this as 7243 // discrete instructions, or whether we should use a vperm. 7244 // For now, we skip this for little endian until such time as we have a 7245 // little-endian perfect shuffle table. 7246 if (isFourElementShuffle && !isLittleEndian) { 7247 // Compute the index in the perfect shuffle table. 7248 unsigned PFTableIndex = 7249 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7250 7251 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7252 unsigned Cost = (PFEntry >> 30); 7253 7254 // Determining when to avoid vperm is tricky. Many things affect the cost 7255 // of vperm, particularly how many times the perm mask needs to be computed. 7256 // For example, if the perm mask can be hoisted out of a loop or is already 7257 // used (perhaps because there are multiple permutes with the same shuffle 7258 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7259 // the loop requires an extra register. 7260 // 7261 // As a compromise, we only emit discrete instructions if the shuffle can be 7262 // generated in 3 or fewer operations. When we have loop information 7263 // available, if this block is within a loop, we should avoid using vperm 7264 // for 3-operation perms and use a constant pool load instead. 7265 if (Cost < 3) 7266 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7267 } 7268 7269 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7270 // vector that will get spilled to the constant pool. 7271 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7272 7273 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7274 // that it is in input element units, not in bytes. Convert now. 7275 7276 // For little endian, the order of the input vectors is reversed, and 7277 // the permutation mask is complemented with respect to 31. This is 7278 // necessary to produce proper semantics with the big-endian-biased vperm 7279 // instruction. 7280 EVT EltVT = V1.getValueType().getVectorElementType(); 7281 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7282 7283 SmallVector<SDValue, 16> ResultMask; 7284 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7285 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7286 7287 for (unsigned j = 0; j != BytesPerElement; ++j) 7288 if (isLittleEndian) 7289 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7290 dl, MVT::i32)); 7291 else 7292 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7293 MVT::i32)); 7294 } 7295 7296 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7297 ResultMask); 7298 if (isLittleEndian) 7299 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7300 V2, V1, VPermMask); 7301 else 7302 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7303 V1, V2, VPermMask); 7304 } 7305 7306 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 7307 /// altivec comparison. If it is, return true and fill in Opc/isDot with 7308 /// information about the intrinsic. 7309 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 7310 bool &isDot, const PPCSubtarget &Subtarget) { 7311 unsigned IntrinsicID = 7312 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7313 CompareOpc = -1; 7314 isDot = false; 7315 switch (IntrinsicID) { 7316 default: return false; 7317 // Comparison predicates. 7318 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7319 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7320 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7321 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7322 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7323 case Intrinsic::ppc_altivec_vcmpequd_p: 7324 if (Subtarget.hasP8Altivec()) { 7325 CompareOpc = 199; 7326 isDot = 1; 7327 } 7328 else 7329 return false; 7330 7331 break; 7332 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7333 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7334 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7335 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7336 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7337 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7338 if (Subtarget.hasP8Altivec()) { 7339 CompareOpc = 967; 7340 isDot = 1; 7341 } 7342 else 7343 return false; 7344 7345 break; 7346 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7347 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7348 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7349 case Intrinsic::ppc_altivec_vcmpgtud_p: 7350 if (Subtarget.hasP8Altivec()) { 7351 CompareOpc = 711; 7352 isDot = 1; 7353 } 7354 else 7355 return false; 7356 7357 break; 7358 7359 // Normal Comparisons. 7360 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7361 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7362 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7363 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7364 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7365 case Intrinsic::ppc_altivec_vcmpequd: 7366 if (Subtarget.hasP8Altivec()) { 7367 CompareOpc = 199; 7368 isDot = 0; 7369 } 7370 else 7371 return false; 7372 7373 break; 7374 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7375 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7376 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7377 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7378 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7379 case Intrinsic::ppc_altivec_vcmpgtsd: 7380 if (Subtarget.hasP8Altivec()) { 7381 CompareOpc = 967; 7382 isDot = 0; 7383 } 7384 else 7385 return false; 7386 7387 break; 7388 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7389 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7390 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7391 case Intrinsic::ppc_altivec_vcmpgtud: 7392 if (Subtarget.hasP8Altivec()) { 7393 CompareOpc = 711; 7394 isDot = 0; 7395 } 7396 else 7397 return false; 7398 7399 break; 7400 } 7401 return true; 7402 } 7403 7404 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7405 /// lower, do it, otherwise return null. 7406 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7407 SelectionDAG &DAG) const { 7408 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7409 // opcode number of the comparison. 7410 SDLoc dl(Op); 7411 int CompareOpc; 7412 bool isDot; 7413 if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7414 return SDValue(); // Don't custom lower most intrinsics. 7415 7416 // If this is a non-dot comparison, make the VCMP node and we are done. 7417 if (!isDot) { 7418 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7419 Op.getOperand(1), Op.getOperand(2), 7420 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7421 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7422 } 7423 7424 // Create the PPCISD altivec 'dot' comparison node. 7425 SDValue Ops[] = { 7426 Op.getOperand(2), // LHS 7427 Op.getOperand(3), // RHS 7428 DAG.getConstant(CompareOpc, dl, MVT::i32) 7429 }; 7430 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7431 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7432 7433 // Now that we have the comparison, emit a copy from the CR to a GPR. 7434 // This is flagged to the above dot comparison. 7435 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7436 DAG.getRegister(PPC::CR6, MVT::i32), 7437 CompNode.getValue(1)); 7438 7439 // Unpack the result based on how the target uses it. 7440 unsigned BitNo; // Bit # of CR6. 7441 bool InvertBit; // Invert result? 7442 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7443 default: // Can't happen, don't crash on invalid number though. 7444 case 0: // Return the value of the EQ bit of CR6. 7445 BitNo = 0; InvertBit = false; 7446 break; 7447 case 1: // Return the inverted value of the EQ bit of CR6. 7448 BitNo = 0; InvertBit = true; 7449 break; 7450 case 2: // Return the value of the LT bit of CR6. 7451 BitNo = 2; InvertBit = false; 7452 break; 7453 case 3: // Return the inverted value of the LT bit of CR6. 7454 BitNo = 2; InvertBit = true; 7455 break; 7456 } 7457 7458 // Shift the bit into the low position. 7459 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7460 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7461 // Isolate the bit. 7462 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7463 DAG.getConstant(1, dl, MVT::i32)); 7464 7465 // If we are supposed to, toggle the bit. 7466 if (InvertBit) 7467 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7468 DAG.getConstant(1, dl, MVT::i32)); 7469 return Flags; 7470 } 7471 7472 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7473 SelectionDAG &DAG) const { 7474 SDLoc dl(Op); 7475 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7476 // instructions), but for smaller types, we need to first extend up to v2i32 7477 // before doing going farther. 7478 if (Op.getValueType() == MVT::v2i64) { 7479 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7480 if (ExtVT != MVT::v2i32) { 7481 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7482 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7483 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7484 ExtVT.getVectorElementType(), 4))); 7485 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7486 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7487 DAG.getValueType(MVT::v2i32)); 7488 } 7489 7490 return Op; 7491 } 7492 7493 return SDValue(); 7494 } 7495 7496 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7497 SelectionDAG &DAG) const { 7498 SDLoc dl(Op); 7499 // Create a stack slot that is 16-byte aligned. 7500 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7501 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7502 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7503 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7504 7505 // Store the input value into Value#0 of the stack slot. 7506 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7507 Op.getOperand(0), FIdx, MachinePointerInfo(), 7508 false, false, 0); 7509 // Load it out. 7510 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7511 false, false, false, 0); 7512 } 7513 7514 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7515 SelectionDAG &DAG) const { 7516 SDLoc dl(Op); 7517 SDNode *N = Op.getNode(); 7518 7519 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7520 "Unknown extract_vector_elt type"); 7521 7522 SDValue Value = N->getOperand(0); 7523 7524 // The first part of this is like the store lowering except that we don't 7525 // need to track the chain. 7526 7527 // The values are now known to be -1 (false) or 1 (true). To convert this 7528 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7529 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7530 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7531 7532 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7533 // understand how to form the extending load. 7534 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7535 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7536 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7537 7538 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7539 7540 // Now convert to an integer and store. 7541 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7542 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7543 Value); 7544 7545 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7546 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7547 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7548 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7549 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7550 7551 SDValue StoreChain = DAG.getEntryNode(); 7552 SmallVector<SDValue, 2> Ops; 7553 Ops.push_back(StoreChain); 7554 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7555 Ops.push_back(Value); 7556 Ops.push_back(FIdx); 7557 7558 SmallVector<EVT, 2> ValueVTs; 7559 ValueVTs.push_back(MVT::Other); // chain 7560 SDVTList VTs = DAG.getVTList(ValueVTs); 7561 7562 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7563 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7564 7565 // Extract the value requested. 7566 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7567 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7568 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7569 7570 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7571 PtrInfo.getWithOffset(Offset), 7572 false, false, false, 0); 7573 7574 if (!Subtarget.useCRBits()) 7575 return IntVal; 7576 7577 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7578 } 7579 7580 /// Lowering for QPX v4i1 loads 7581 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7582 SelectionDAG &DAG) const { 7583 SDLoc dl(Op); 7584 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7585 SDValue LoadChain = LN->getChain(); 7586 SDValue BasePtr = LN->getBasePtr(); 7587 7588 if (Op.getValueType() == MVT::v4f64 || 7589 Op.getValueType() == MVT::v4f32) { 7590 EVT MemVT = LN->getMemoryVT(); 7591 unsigned Alignment = LN->getAlignment(); 7592 7593 // If this load is properly aligned, then it is legal. 7594 if (Alignment >= MemVT.getStoreSize()) 7595 return Op; 7596 7597 EVT ScalarVT = Op.getValueType().getScalarType(), 7598 ScalarMemVT = MemVT.getScalarType(); 7599 unsigned Stride = ScalarMemVT.getStoreSize(); 7600 7601 SmallVector<SDValue, 8> Vals, LoadChains; 7602 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7603 SDValue Load; 7604 if (ScalarVT != ScalarMemVT) 7605 Load = 7606 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7607 BasePtr, 7608 LN->getPointerInfo().getWithOffset(Idx*Stride), 7609 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7610 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7611 LN->getAAInfo()); 7612 else 7613 Load = 7614 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7615 LN->getPointerInfo().getWithOffset(Idx*Stride), 7616 LN->isVolatile(), LN->isNonTemporal(), 7617 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7618 LN->getAAInfo()); 7619 7620 if (Idx == 0 && LN->isIndexed()) { 7621 assert(LN->getAddressingMode() == ISD::PRE_INC && 7622 "Unknown addressing mode on vector load"); 7623 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7624 LN->getAddressingMode()); 7625 } 7626 7627 Vals.push_back(Load); 7628 LoadChains.push_back(Load.getValue(1)); 7629 7630 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7631 DAG.getConstant(Stride, dl, 7632 BasePtr.getValueType())); 7633 } 7634 7635 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7636 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7637 Op.getValueType(), Vals); 7638 7639 if (LN->isIndexed()) { 7640 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7641 return DAG.getMergeValues(RetOps, dl); 7642 } 7643 7644 SDValue RetOps[] = { Value, TF }; 7645 return DAG.getMergeValues(RetOps, dl); 7646 } 7647 7648 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7649 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7650 7651 // To lower v4i1 from a byte array, we load the byte elements of the 7652 // vector and then reuse the BUILD_VECTOR logic. 7653 7654 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7655 for (unsigned i = 0; i < 4; ++i) { 7656 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7657 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7658 7659 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7660 dl, MVT::i32, LoadChain, Idx, 7661 LN->getPointerInfo().getWithOffset(i), 7662 MVT::i8 /* memory type */, 7663 LN->isVolatile(), LN->isNonTemporal(), 7664 LN->isInvariant(), 7665 1 /* alignment */, LN->getAAInfo())); 7666 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7667 } 7668 7669 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7670 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7671 7672 SDValue RVals[] = { Value, LoadChain }; 7673 return DAG.getMergeValues(RVals, dl); 7674 } 7675 7676 /// Lowering for QPX v4i1 stores 7677 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7678 SelectionDAG &DAG) const { 7679 SDLoc dl(Op); 7680 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7681 SDValue StoreChain = SN->getChain(); 7682 SDValue BasePtr = SN->getBasePtr(); 7683 SDValue Value = SN->getValue(); 7684 7685 if (Value.getValueType() == MVT::v4f64 || 7686 Value.getValueType() == MVT::v4f32) { 7687 EVT MemVT = SN->getMemoryVT(); 7688 unsigned Alignment = SN->getAlignment(); 7689 7690 // If this store is properly aligned, then it is legal. 7691 if (Alignment >= MemVT.getStoreSize()) 7692 return Op; 7693 7694 EVT ScalarVT = Value.getValueType().getScalarType(), 7695 ScalarMemVT = MemVT.getScalarType(); 7696 unsigned Stride = ScalarMemVT.getStoreSize(); 7697 7698 SmallVector<SDValue, 8> Stores; 7699 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7700 SDValue Ex = DAG.getNode( 7701 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7702 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7703 SDValue Store; 7704 if (ScalarVT != ScalarMemVT) 7705 Store = 7706 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7707 SN->getPointerInfo().getWithOffset(Idx*Stride), 7708 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7709 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7710 else 7711 Store = 7712 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7713 SN->getPointerInfo().getWithOffset(Idx*Stride), 7714 SN->isVolatile(), SN->isNonTemporal(), 7715 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7716 7717 if (Idx == 0 && SN->isIndexed()) { 7718 assert(SN->getAddressingMode() == ISD::PRE_INC && 7719 "Unknown addressing mode on vector store"); 7720 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7721 SN->getAddressingMode()); 7722 } 7723 7724 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7725 DAG.getConstant(Stride, dl, 7726 BasePtr.getValueType())); 7727 Stores.push_back(Store); 7728 } 7729 7730 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7731 7732 if (SN->isIndexed()) { 7733 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7734 return DAG.getMergeValues(RetOps, dl); 7735 } 7736 7737 return TF; 7738 } 7739 7740 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7741 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7742 7743 // The values are now known to be -1 (false) or 1 (true). To convert this 7744 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7745 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7746 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7747 7748 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7749 // understand how to form the extending load. 7750 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7751 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7752 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7753 7754 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7755 7756 // Now convert to an integer and store. 7757 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7758 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7759 Value); 7760 7761 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7762 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7763 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7764 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7765 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7766 7767 SmallVector<SDValue, 2> Ops; 7768 Ops.push_back(StoreChain); 7769 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7770 Ops.push_back(Value); 7771 Ops.push_back(FIdx); 7772 7773 SmallVector<EVT, 2> ValueVTs; 7774 ValueVTs.push_back(MVT::Other); // chain 7775 SDVTList VTs = DAG.getVTList(ValueVTs); 7776 7777 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7778 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7779 7780 // Move data into the byte array. 7781 SmallVector<SDValue, 4> Loads, LoadChains; 7782 for (unsigned i = 0; i < 4; ++i) { 7783 unsigned Offset = 4*i; 7784 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7785 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7786 7787 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7788 PtrInfo.getWithOffset(Offset), 7789 false, false, false, 0)); 7790 LoadChains.push_back(Loads[i].getValue(1)); 7791 } 7792 7793 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7794 7795 SmallVector<SDValue, 4> Stores; 7796 for (unsigned i = 0; i < 4; ++i) { 7797 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7798 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7799 7800 Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx, 7801 SN->getPointerInfo().getWithOffset(i), 7802 MVT::i8 /* memory type */, 7803 SN->isNonTemporal(), SN->isVolatile(), 7804 1 /* alignment */, SN->getAAInfo())); 7805 } 7806 7807 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7808 7809 return StoreChain; 7810 } 7811 7812 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7813 SDLoc dl(Op); 7814 if (Op.getValueType() == MVT::v4i32) { 7815 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7816 7817 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7818 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7819 7820 SDValue RHSSwap = // = vrlw RHS, 16 7821 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7822 7823 // Shrinkify inputs to v8i16. 7824 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7825 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7826 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7827 7828 // Low parts multiplied together, generating 32-bit results (we ignore the 7829 // top parts). 7830 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7831 LHS, RHS, DAG, dl, MVT::v4i32); 7832 7833 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7834 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7835 // Shift the high parts up 16 bits. 7836 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7837 Neg16, DAG, dl); 7838 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7839 } else if (Op.getValueType() == MVT::v8i16) { 7840 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7841 7842 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7843 7844 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7845 LHS, RHS, Zero, DAG, dl); 7846 } else if (Op.getValueType() == MVT::v16i8) { 7847 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7848 bool isLittleEndian = Subtarget.isLittleEndian(); 7849 7850 // Multiply the even 8-bit parts, producing 16-bit sums. 7851 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7852 LHS, RHS, DAG, dl, MVT::v8i16); 7853 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7854 7855 // Multiply the odd 8-bit parts, producing 16-bit sums. 7856 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7857 LHS, RHS, DAG, dl, MVT::v8i16); 7858 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7859 7860 // Merge the results together. Because vmuleub and vmuloub are 7861 // instructions with a big-endian bias, we must reverse the 7862 // element numbering and reverse the meaning of "odd" and "even" 7863 // when generating little endian code. 7864 int Ops[16]; 7865 for (unsigned i = 0; i != 8; ++i) { 7866 if (isLittleEndian) { 7867 Ops[i*2 ] = 2*i; 7868 Ops[i*2+1] = 2*i+16; 7869 } else { 7870 Ops[i*2 ] = 2*i+1; 7871 Ops[i*2+1] = 2*i+1+16; 7872 } 7873 } 7874 if (isLittleEndian) 7875 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7876 else 7877 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7878 } else { 7879 llvm_unreachable("Unknown mul to lower!"); 7880 } 7881 } 7882 7883 /// LowerOperation - Provide custom lowering hooks for some operations. 7884 /// 7885 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7886 switch (Op.getOpcode()) { 7887 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7888 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7889 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7890 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7891 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7892 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7893 case ISD::SETCC: return LowerSETCC(Op, DAG); 7894 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7895 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7896 case ISD::VASTART: 7897 return LowerVASTART(Op, DAG, Subtarget); 7898 7899 case ISD::VAARG: 7900 return LowerVAARG(Op, DAG, Subtarget); 7901 7902 case ISD::VACOPY: 7903 return LowerVACOPY(Op, DAG, Subtarget); 7904 7905 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7906 case ISD::DYNAMIC_STACKALLOC: 7907 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7908 7909 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7910 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7911 7912 case ISD::LOAD: return LowerLOAD(Op, DAG); 7913 case ISD::STORE: return LowerSTORE(Op, DAG); 7914 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7915 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7916 case ISD::FP_TO_UINT: 7917 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7918 SDLoc(Op)); 7919 case ISD::UINT_TO_FP: 7920 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7921 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7922 7923 // Lower 64-bit shifts. 7924 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7925 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7926 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7927 7928 // Vector-related lowering. 7929 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7930 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7931 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7932 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7933 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7934 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7935 case ISD::MUL: return LowerMUL(Op, DAG); 7936 7937 // For counter-based loop handling. 7938 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7939 7940 // Frame & Return address. 7941 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7942 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7943 } 7944 } 7945 7946 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7947 SmallVectorImpl<SDValue>&Results, 7948 SelectionDAG &DAG) const { 7949 SDLoc dl(N); 7950 switch (N->getOpcode()) { 7951 default: 7952 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7953 case ISD::READCYCLECOUNTER: { 7954 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7955 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7956 7957 Results.push_back(RTB); 7958 Results.push_back(RTB.getValue(1)); 7959 Results.push_back(RTB.getValue(2)); 7960 break; 7961 } 7962 case ISD::INTRINSIC_W_CHAIN: { 7963 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 7964 Intrinsic::ppc_is_decremented_ctr_nonzero) 7965 break; 7966 7967 assert(N->getValueType(0) == MVT::i1 && 7968 "Unexpected result type for CTR decrement intrinsic"); 7969 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 7970 N->getValueType(0)); 7971 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 7972 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 7973 N->getOperand(1)); 7974 7975 Results.push_back(NewInt); 7976 Results.push_back(NewInt.getValue(1)); 7977 break; 7978 } 7979 case ISD::VAARG: { 7980 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 7981 return; 7982 7983 EVT VT = N->getValueType(0); 7984 7985 if (VT == MVT::i64) { 7986 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 7987 7988 Results.push_back(NewNode); 7989 Results.push_back(NewNode.getValue(1)); 7990 } 7991 return; 7992 } 7993 case ISD::FP_ROUND_INREG: { 7994 assert(N->getValueType(0) == MVT::ppcf128); 7995 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 7996 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7997 MVT::f64, N->getOperand(0), 7998 DAG.getIntPtrConstant(0, dl)); 7999 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8000 MVT::f64, N->getOperand(0), 8001 DAG.getIntPtrConstant(1, dl)); 8002 8003 // Add the two halves of the long double in round-to-zero mode. 8004 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8005 8006 // We know the low half is about to be thrown away, so just use something 8007 // convenient. 8008 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8009 FPreg, FPreg)); 8010 return; 8011 } 8012 case ISD::FP_TO_SINT: 8013 case ISD::FP_TO_UINT: 8014 // LowerFP_TO_INT() can only handle f32 and f64. 8015 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8016 return; 8017 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8018 return; 8019 } 8020 } 8021 8022 8023 //===----------------------------------------------------------------------===// 8024 // Other Lowering Code 8025 //===----------------------------------------------------------------------===// 8026 8027 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8028 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8029 Function *Func = Intrinsic::getDeclaration(M, Id); 8030 return Builder.CreateCall(Func, {}); 8031 } 8032 8033 // The mappings for emitLeading/TrailingFence is taken from 8034 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8035 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8036 AtomicOrdering Ord, bool IsStore, 8037 bool IsLoad) const { 8038 if (Ord == SequentiallyConsistent) 8039 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8040 if (isAtLeastRelease(Ord)) 8041 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8042 return nullptr; 8043 } 8044 8045 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8046 AtomicOrdering Ord, bool IsStore, 8047 bool IsLoad) const { 8048 if (IsLoad && isAtLeastAcquire(Ord)) 8049 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8050 // FIXME: this is too conservative, a dependent branch + isync is enough. 8051 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8052 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8053 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8054 return nullptr; 8055 } 8056 8057 MachineBasicBlock * 8058 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8059 unsigned AtomicSize, 8060 unsigned BinOpcode) const { 8061 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8062 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8063 8064 auto LoadMnemonic = PPC::LDARX; 8065 auto StoreMnemonic = PPC::STDCX; 8066 switch (AtomicSize) { 8067 default: 8068 llvm_unreachable("Unexpected size of atomic entity"); 8069 case 1: 8070 LoadMnemonic = PPC::LBARX; 8071 StoreMnemonic = PPC::STBCX; 8072 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8073 break; 8074 case 2: 8075 LoadMnemonic = PPC::LHARX; 8076 StoreMnemonic = PPC::STHCX; 8077 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8078 break; 8079 case 4: 8080 LoadMnemonic = PPC::LWARX; 8081 StoreMnemonic = PPC::STWCX; 8082 break; 8083 case 8: 8084 LoadMnemonic = PPC::LDARX; 8085 StoreMnemonic = PPC::STDCX; 8086 break; 8087 } 8088 8089 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8090 MachineFunction *F = BB->getParent(); 8091 MachineFunction::iterator It = BB; 8092 ++It; 8093 8094 unsigned dest = MI->getOperand(0).getReg(); 8095 unsigned ptrA = MI->getOperand(1).getReg(); 8096 unsigned ptrB = MI->getOperand(2).getReg(); 8097 unsigned incr = MI->getOperand(3).getReg(); 8098 DebugLoc dl = MI->getDebugLoc(); 8099 8100 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8101 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8102 F->insert(It, loopMBB); 8103 F->insert(It, exitMBB); 8104 exitMBB->splice(exitMBB->begin(), BB, 8105 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8106 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8107 8108 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8109 unsigned TmpReg = (!BinOpcode) ? incr : 8110 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8111 : &PPC::GPRCRegClass); 8112 8113 // thisMBB: 8114 // ... 8115 // fallthrough --> loopMBB 8116 BB->addSuccessor(loopMBB); 8117 8118 // loopMBB: 8119 // l[wd]arx dest, ptr 8120 // add r0, dest, incr 8121 // st[wd]cx. r0, ptr 8122 // bne- loopMBB 8123 // fallthrough --> exitMBB 8124 BB = loopMBB; 8125 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8126 .addReg(ptrA).addReg(ptrB); 8127 if (BinOpcode) 8128 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8129 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8130 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8131 BuildMI(BB, dl, TII->get(PPC::BCC)) 8132 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8133 BB->addSuccessor(loopMBB); 8134 BB->addSuccessor(exitMBB); 8135 8136 // exitMBB: 8137 // ... 8138 BB = exitMBB; 8139 return BB; 8140 } 8141 8142 MachineBasicBlock * 8143 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8144 MachineBasicBlock *BB, 8145 bool is8bit, // operation 8146 unsigned BinOpcode) const { 8147 // If we support part-word atomic mnemonics, just use them 8148 if (Subtarget.hasPartwordAtomics()) 8149 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8150 8151 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8152 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8153 // In 64 bit mode we have to use 64 bits for addresses, even though the 8154 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8155 // registers without caring whether they're 32 or 64, but here we're 8156 // doing actual arithmetic on the addresses. 8157 bool is64bit = Subtarget.isPPC64(); 8158 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8159 8160 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8161 MachineFunction *F = BB->getParent(); 8162 MachineFunction::iterator It = BB; 8163 ++It; 8164 8165 unsigned dest = MI->getOperand(0).getReg(); 8166 unsigned ptrA = MI->getOperand(1).getReg(); 8167 unsigned ptrB = MI->getOperand(2).getReg(); 8168 unsigned incr = MI->getOperand(3).getReg(); 8169 DebugLoc dl = MI->getDebugLoc(); 8170 8171 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8172 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8173 F->insert(It, loopMBB); 8174 F->insert(It, exitMBB); 8175 exitMBB->splice(exitMBB->begin(), BB, 8176 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8177 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8178 8179 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8180 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8181 : &PPC::GPRCRegClass; 8182 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8183 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8184 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8185 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8186 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8187 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8188 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8189 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8190 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8191 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8192 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8193 unsigned Ptr1Reg; 8194 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8195 8196 // thisMBB: 8197 // ... 8198 // fallthrough --> loopMBB 8199 BB->addSuccessor(loopMBB); 8200 8201 // The 4-byte load must be aligned, while a char or short may be 8202 // anywhere in the word. Hence all this nasty bookkeeping code. 8203 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8204 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8205 // xori shift, shift1, 24 [16] 8206 // rlwinm ptr, ptr1, 0, 0, 29 8207 // slw incr2, incr, shift 8208 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8209 // slw mask, mask2, shift 8210 // loopMBB: 8211 // lwarx tmpDest, ptr 8212 // add tmp, tmpDest, incr2 8213 // andc tmp2, tmpDest, mask 8214 // and tmp3, tmp, mask 8215 // or tmp4, tmp3, tmp2 8216 // stwcx. tmp4, ptr 8217 // bne- loopMBB 8218 // fallthrough --> exitMBB 8219 // srw dest, tmpDest, shift 8220 if (ptrA != ZeroReg) { 8221 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8222 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8223 .addReg(ptrA).addReg(ptrB); 8224 } else { 8225 Ptr1Reg = ptrB; 8226 } 8227 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8228 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8229 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8230 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8231 if (is64bit) 8232 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8233 .addReg(Ptr1Reg).addImm(0).addImm(61); 8234 else 8235 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8236 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8237 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8238 .addReg(incr).addReg(ShiftReg); 8239 if (is8bit) 8240 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8241 else { 8242 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8243 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8244 } 8245 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8246 .addReg(Mask2Reg).addReg(ShiftReg); 8247 8248 BB = loopMBB; 8249 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8250 .addReg(ZeroReg).addReg(PtrReg); 8251 if (BinOpcode) 8252 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8253 .addReg(Incr2Reg).addReg(TmpDestReg); 8254 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8255 .addReg(TmpDestReg).addReg(MaskReg); 8256 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8257 .addReg(TmpReg).addReg(MaskReg); 8258 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8259 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8260 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8261 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8262 BuildMI(BB, dl, TII->get(PPC::BCC)) 8263 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8264 BB->addSuccessor(loopMBB); 8265 BB->addSuccessor(exitMBB); 8266 8267 // exitMBB: 8268 // ... 8269 BB = exitMBB; 8270 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8271 .addReg(ShiftReg); 8272 return BB; 8273 } 8274 8275 llvm::MachineBasicBlock* 8276 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8277 MachineBasicBlock *MBB) const { 8278 DebugLoc DL = MI->getDebugLoc(); 8279 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8280 8281 MachineFunction *MF = MBB->getParent(); 8282 MachineRegisterInfo &MRI = MF->getRegInfo(); 8283 8284 const BasicBlock *BB = MBB->getBasicBlock(); 8285 MachineFunction::iterator I = MBB; 8286 ++I; 8287 8288 // Memory Reference 8289 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8290 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8291 8292 unsigned DstReg = MI->getOperand(0).getReg(); 8293 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8294 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8295 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8296 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8297 8298 MVT PVT = getPointerTy(MF->getDataLayout()); 8299 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8300 "Invalid Pointer Size!"); 8301 // For v = setjmp(buf), we generate 8302 // 8303 // thisMBB: 8304 // SjLjSetup mainMBB 8305 // bl mainMBB 8306 // v_restore = 1 8307 // b sinkMBB 8308 // 8309 // mainMBB: 8310 // buf[LabelOffset] = LR 8311 // v_main = 0 8312 // 8313 // sinkMBB: 8314 // v = phi(main, restore) 8315 // 8316 8317 MachineBasicBlock *thisMBB = MBB; 8318 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8319 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8320 MF->insert(I, mainMBB); 8321 MF->insert(I, sinkMBB); 8322 8323 MachineInstrBuilder MIB; 8324 8325 // Transfer the remainder of BB and its successor edges to sinkMBB. 8326 sinkMBB->splice(sinkMBB->begin(), MBB, 8327 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8328 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8329 8330 // Note that the structure of the jmp_buf used here is not compatible 8331 // with that used by libc, and is not designed to be. Specifically, it 8332 // stores only those 'reserved' registers that LLVM does not otherwise 8333 // understand how to spill. Also, by convention, by the time this 8334 // intrinsic is called, Clang has already stored the frame address in the 8335 // first slot of the buffer and stack address in the third. Following the 8336 // X86 target code, we'll store the jump address in the second slot. We also 8337 // need to save the TOC pointer (R2) to handle jumps between shared 8338 // libraries, and that will be stored in the fourth slot. The thread 8339 // identifier (R13) is not affected. 8340 8341 // thisMBB: 8342 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8343 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8344 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8345 8346 // Prepare IP either in reg. 8347 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8348 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8349 unsigned BufReg = MI->getOperand(1).getReg(); 8350 8351 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8352 setUsesTOCBasePtr(*MBB->getParent()); 8353 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8354 .addReg(PPC::X2) 8355 .addImm(TOCOffset) 8356 .addReg(BufReg); 8357 MIB.setMemRefs(MMOBegin, MMOEnd); 8358 } 8359 8360 // Naked functions never have a base pointer, and so we use r1. For all 8361 // other functions, this decision must be delayed until during PEI. 8362 unsigned BaseReg; 8363 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8364 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8365 else 8366 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8367 8368 MIB = BuildMI(*thisMBB, MI, DL, 8369 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8370 .addReg(BaseReg) 8371 .addImm(BPOffset) 8372 .addReg(BufReg); 8373 MIB.setMemRefs(MMOBegin, MMOEnd); 8374 8375 // Setup 8376 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8377 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8378 MIB.addRegMask(TRI->getNoPreservedMask()); 8379 8380 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8381 8382 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8383 .addMBB(mainMBB); 8384 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8385 8386 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8387 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8388 8389 // mainMBB: 8390 // mainDstReg = 0 8391 MIB = 8392 BuildMI(mainMBB, DL, 8393 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8394 8395 // Store IP 8396 if (Subtarget.isPPC64()) { 8397 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8398 .addReg(LabelReg) 8399 .addImm(LabelOffset) 8400 .addReg(BufReg); 8401 } else { 8402 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8403 .addReg(LabelReg) 8404 .addImm(LabelOffset) 8405 .addReg(BufReg); 8406 } 8407 8408 MIB.setMemRefs(MMOBegin, MMOEnd); 8409 8410 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8411 mainMBB->addSuccessor(sinkMBB); 8412 8413 // sinkMBB: 8414 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8415 TII->get(PPC::PHI), DstReg) 8416 .addReg(mainDstReg).addMBB(mainMBB) 8417 .addReg(restoreDstReg).addMBB(thisMBB); 8418 8419 MI->eraseFromParent(); 8420 return sinkMBB; 8421 } 8422 8423 MachineBasicBlock * 8424 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8425 MachineBasicBlock *MBB) const { 8426 DebugLoc DL = MI->getDebugLoc(); 8427 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8428 8429 MachineFunction *MF = MBB->getParent(); 8430 MachineRegisterInfo &MRI = MF->getRegInfo(); 8431 8432 // Memory Reference 8433 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8434 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8435 8436 MVT PVT = getPointerTy(MF->getDataLayout()); 8437 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8438 "Invalid Pointer Size!"); 8439 8440 const TargetRegisterClass *RC = 8441 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8442 unsigned Tmp = MRI.createVirtualRegister(RC); 8443 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8444 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8445 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8446 unsigned BP = 8447 (PVT == MVT::i64) 8448 ? PPC::X30 8449 : (Subtarget.isSVR4ABI() && 8450 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8451 ? PPC::R29 8452 : PPC::R30); 8453 8454 MachineInstrBuilder MIB; 8455 8456 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8457 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8458 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8459 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8460 8461 unsigned BufReg = MI->getOperand(0).getReg(); 8462 8463 // Reload FP (the jumped-to function may not have had a 8464 // frame pointer, and if so, then its r31 will be restored 8465 // as necessary). 8466 if (PVT == MVT::i64) { 8467 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8468 .addImm(0) 8469 .addReg(BufReg); 8470 } else { 8471 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8472 .addImm(0) 8473 .addReg(BufReg); 8474 } 8475 MIB.setMemRefs(MMOBegin, MMOEnd); 8476 8477 // Reload IP 8478 if (PVT == MVT::i64) { 8479 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8480 .addImm(LabelOffset) 8481 .addReg(BufReg); 8482 } else { 8483 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8484 .addImm(LabelOffset) 8485 .addReg(BufReg); 8486 } 8487 MIB.setMemRefs(MMOBegin, MMOEnd); 8488 8489 // Reload SP 8490 if (PVT == MVT::i64) { 8491 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8492 .addImm(SPOffset) 8493 .addReg(BufReg); 8494 } else { 8495 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8496 .addImm(SPOffset) 8497 .addReg(BufReg); 8498 } 8499 MIB.setMemRefs(MMOBegin, MMOEnd); 8500 8501 // Reload BP 8502 if (PVT == MVT::i64) { 8503 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8504 .addImm(BPOffset) 8505 .addReg(BufReg); 8506 } else { 8507 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8508 .addImm(BPOffset) 8509 .addReg(BufReg); 8510 } 8511 MIB.setMemRefs(MMOBegin, MMOEnd); 8512 8513 // Reload TOC 8514 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8515 setUsesTOCBasePtr(*MBB->getParent()); 8516 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8517 .addImm(TOCOffset) 8518 .addReg(BufReg); 8519 8520 MIB.setMemRefs(MMOBegin, MMOEnd); 8521 } 8522 8523 // Jump 8524 BuildMI(*MBB, MI, DL, 8525 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8526 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8527 8528 MI->eraseFromParent(); 8529 return MBB; 8530 } 8531 8532 MachineBasicBlock * 8533 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8534 MachineBasicBlock *BB) const { 8535 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8536 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8537 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8538 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8539 // Call lowering should have added an r2 operand to indicate a dependence 8540 // on the TOC base pointer value. It can't however, because there is no 8541 // way to mark the dependence as implicit there, and so the stackmap code 8542 // will confuse it with a regular operand. Instead, add the dependence 8543 // here. 8544 setUsesTOCBasePtr(*BB->getParent()); 8545 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8546 } 8547 8548 return emitPatchPoint(MI, BB); 8549 } 8550 8551 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8552 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8553 return emitEHSjLjSetJmp(MI, BB); 8554 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8555 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8556 return emitEHSjLjLongJmp(MI, BB); 8557 } 8558 8559 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8560 8561 // To "insert" these instructions we actually have to insert their 8562 // control-flow patterns. 8563 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8564 MachineFunction::iterator It = BB; 8565 ++It; 8566 8567 MachineFunction *F = BB->getParent(); 8568 8569 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8570 MI->getOpcode() == PPC::SELECT_CC_I8 || 8571 MI->getOpcode() == PPC::SELECT_I4 || 8572 MI->getOpcode() == PPC::SELECT_I8)) { 8573 SmallVector<MachineOperand, 2> Cond; 8574 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8575 MI->getOpcode() == PPC::SELECT_CC_I8) 8576 Cond.push_back(MI->getOperand(4)); 8577 else 8578 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8579 Cond.push_back(MI->getOperand(1)); 8580 8581 DebugLoc dl = MI->getDebugLoc(); 8582 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8583 Cond, MI->getOperand(2).getReg(), 8584 MI->getOperand(3).getReg()); 8585 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8586 MI->getOpcode() == PPC::SELECT_CC_I8 || 8587 MI->getOpcode() == PPC::SELECT_CC_F4 || 8588 MI->getOpcode() == PPC::SELECT_CC_F8 || 8589 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8590 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8591 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8592 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8593 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8594 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8595 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8596 MI->getOpcode() == PPC::SELECT_I4 || 8597 MI->getOpcode() == PPC::SELECT_I8 || 8598 MI->getOpcode() == PPC::SELECT_F4 || 8599 MI->getOpcode() == PPC::SELECT_F8 || 8600 MI->getOpcode() == PPC::SELECT_QFRC || 8601 MI->getOpcode() == PPC::SELECT_QSRC || 8602 MI->getOpcode() == PPC::SELECT_QBRC || 8603 MI->getOpcode() == PPC::SELECT_VRRC || 8604 MI->getOpcode() == PPC::SELECT_VSFRC || 8605 MI->getOpcode() == PPC::SELECT_VSSRC || 8606 MI->getOpcode() == PPC::SELECT_VSRC) { 8607 // The incoming instruction knows the destination vreg to set, the 8608 // condition code register to branch on, the true/false values to 8609 // select between, and a branch opcode to use. 8610 8611 // thisMBB: 8612 // ... 8613 // TrueVal = ... 8614 // cmpTY ccX, r1, r2 8615 // bCC copy1MBB 8616 // fallthrough --> copy0MBB 8617 MachineBasicBlock *thisMBB = BB; 8618 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8619 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8620 DebugLoc dl = MI->getDebugLoc(); 8621 F->insert(It, copy0MBB); 8622 F->insert(It, sinkMBB); 8623 8624 // Transfer the remainder of BB and its successor edges to sinkMBB. 8625 sinkMBB->splice(sinkMBB->begin(), BB, 8626 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8627 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8628 8629 // Next, add the true and fallthrough blocks as its successors. 8630 BB->addSuccessor(copy0MBB); 8631 BB->addSuccessor(sinkMBB); 8632 8633 if (MI->getOpcode() == PPC::SELECT_I4 || 8634 MI->getOpcode() == PPC::SELECT_I8 || 8635 MI->getOpcode() == PPC::SELECT_F4 || 8636 MI->getOpcode() == PPC::SELECT_F8 || 8637 MI->getOpcode() == PPC::SELECT_QFRC || 8638 MI->getOpcode() == PPC::SELECT_QSRC || 8639 MI->getOpcode() == PPC::SELECT_QBRC || 8640 MI->getOpcode() == PPC::SELECT_VRRC || 8641 MI->getOpcode() == PPC::SELECT_VSFRC || 8642 MI->getOpcode() == PPC::SELECT_VSSRC || 8643 MI->getOpcode() == PPC::SELECT_VSRC) { 8644 BuildMI(BB, dl, TII->get(PPC::BC)) 8645 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8646 } else { 8647 unsigned SelectPred = MI->getOperand(4).getImm(); 8648 BuildMI(BB, dl, TII->get(PPC::BCC)) 8649 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8650 } 8651 8652 // copy0MBB: 8653 // %FalseValue = ... 8654 // # fallthrough to sinkMBB 8655 BB = copy0MBB; 8656 8657 // Update machine-CFG edges 8658 BB->addSuccessor(sinkMBB); 8659 8660 // sinkMBB: 8661 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8662 // ... 8663 BB = sinkMBB; 8664 BuildMI(*BB, BB->begin(), dl, 8665 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8666 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8667 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8668 } else if (MI->getOpcode() == PPC::ReadTB) { 8669 // To read the 64-bit time-base register on a 32-bit target, we read the 8670 // two halves. Should the counter have wrapped while it was being read, we 8671 // need to try again. 8672 // ... 8673 // readLoop: 8674 // mfspr Rx,TBU # load from TBU 8675 // mfspr Ry,TB # load from TB 8676 // mfspr Rz,TBU # load from TBU 8677 // cmpw crX,Rx,Rz # check if ‘old’=’new’ 8678 // bne readLoop # branch if they're not equal 8679 // ... 8680 8681 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8682 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8683 DebugLoc dl = MI->getDebugLoc(); 8684 F->insert(It, readMBB); 8685 F->insert(It, sinkMBB); 8686 8687 // Transfer the remainder of BB and its successor edges to sinkMBB. 8688 sinkMBB->splice(sinkMBB->begin(), BB, 8689 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8690 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8691 8692 BB->addSuccessor(readMBB); 8693 BB = readMBB; 8694 8695 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8696 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8697 unsigned LoReg = MI->getOperand(0).getReg(); 8698 unsigned HiReg = MI->getOperand(1).getReg(); 8699 8700 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8701 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8702 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8703 8704 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8705 8706 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8707 .addReg(HiReg).addReg(ReadAgainReg); 8708 BuildMI(BB, dl, TII->get(PPC::BCC)) 8709 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8710 8711 BB->addSuccessor(readMBB); 8712 BB->addSuccessor(sinkMBB); 8713 } 8714 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8715 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8716 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8717 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8718 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8719 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8720 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8721 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8722 8723 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8724 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8725 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8726 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8727 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8728 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8729 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8730 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8731 8732 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8733 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8734 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8735 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8736 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8737 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8738 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8739 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8740 8741 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8742 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8743 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8744 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8745 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8746 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8747 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8748 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8749 8750 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8751 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8752 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8753 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8754 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8755 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8756 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8757 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8758 8759 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8760 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8761 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8762 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8763 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8764 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8765 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8766 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8767 8768 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8769 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8770 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8771 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8772 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8773 BB = EmitAtomicBinary(MI, BB, 4, 0); 8774 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8775 BB = EmitAtomicBinary(MI, BB, 8, 0); 8776 8777 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8778 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8779 (Subtarget.hasPartwordAtomics() && 8780 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8781 (Subtarget.hasPartwordAtomics() && 8782 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8783 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8784 8785 auto LoadMnemonic = PPC::LDARX; 8786 auto StoreMnemonic = PPC::STDCX; 8787 switch(MI->getOpcode()) { 8788 default: 8789 llvm_unreachable("Compare and swap of unknown size"); 8790 case PPC::ATOMIC_CMP_SWAP_I8: 8791 LoadMnemonic = PPC::LBARX; 8792 StoreMnemonic = PPC::STBCX; 8793 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8794 break; 8795 case PPC::ATOMIC_CMP_SWAP_I16: 8796 LoadMnemonic = PPC::LHARX; 8797 StoreMnemonic = PPC::STHCX; 8798 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8799 break; 8800 case PPC::ATOMIC_CMP_SWAP_I32: 8801 LoadMnemonic = PPC::LWARX; 8802 StoreMnemonic = PPC::STWCX; 8803 break; 8804 case PPC::ATOMIC_CMP_SWAP_I64: 8805 LoadMnemonic = PPC::LDARX; 8806 StoreMnemonic = PPC::STDCX; 8807 break; 8808 } 8809 unsigned dest = MI->getOperand(0).getReg(); 8810 unsigned ptrA = MI->getOperand(1).getReg(); 8811 unsigned ptrB = MI->getOperand(2).getReg(); 8812 unsigned oldval = MI->getOperand(3).getReg(); 8813 unsigned newval = MI->getOperand(4).getReg(); 8814 DebugLoc dl = MI->getDebugLoc(); 8815 8816 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8817 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8818 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8819 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8820 F->insert(It, loop1MBB); 8821 F->insert(It, loop2MBB); 8822 F->insert(It, midMBB); 8823 F->insert(It, exitMBB); 8824 exitMBB->splice(exitMBB->begin(), BB, 8825 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8826 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8827 8828 // thisMBB: 8829 // ... 8830 // fallthrough --> loopMBB 8831 BB->addSuccessor(loop1MBB); 8832 8833 // loop1MBB: 8834 // l[bhwd]arx dest, ptr 8835 // cmp[wd] dest, oldval 8836 // bne- midMBB 8837 // loop2MBB: 8838 // st[bhwd]cx. newval, ptr 8839 // bne- loopMBB 8840 // b exitBB 8841 // midMBB: 8842 // st[bhwd]cx. dest, ptr 8843 // exitBB: 8844 BB = loop1MBB; 8845 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8846 .addReg(ptrA).addReg(ptrB); 8847 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8848 .addReg(oldval).addReg(dest); 8849 BuildMI(BB, dl, TII->get(PPC::BCC)) 8850 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8851 BB->addSuccessor(loop2MBB); 8852 BB->addSuccessor(midMBB); 8853 8854 BB = loop2MBB; 8855 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8856 .addReg(newval).addReg(ptrA).addReg(ptrB); 8857 BuildMI(BB, dl, TII->get(PPC::BCC)) 8858 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8859 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8860 BB->addSuccessor(loop1MBB); 8861 BB->addSuccessor(exitMBB); 8862 8863 BB = midMBB; 8864 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8865 .addReg(dest).addReg(ptrA).addReg(ptrB); 8866 BB->addSuccessor(exitMBB); 8867 8868 // exitMBB: 8869 // ... 8870 BB = exitMBB; 8871 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8872 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8873 // We must use 64-bit registers for addresses when targeting 64-bit, 8874 // since we're actually doing arithmetic on them. Other registers 8875 // can be 32-bit. 8876 bool is64bit = Subtarget.isPPC64(); 8877 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8878 8879 unsigned dest = MI->getOperand(0).getReg(); 8880 unsigned ptrA = MI->getOperand(1).getReg(); 8881 unsigned ptrB = MI->getOperand(2).getReg(); 8882 unsigned oldval = MI->getOperand(3).getReg(); 8883 unsigned newval = MI->getOperand(4).getReg(); 8884 DebugLoc dl = MI->getDebugLoc(); 8885 8886 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8887 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8888 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8889 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8890 F->insert(It, loop1MBB); 8891 F->insert(It, loop2MBB); 8892 F->insert(It, midMBB); 8893 F->insert(It, exitMBB); 8894 exitMBB->splice(exitMBB->begin(), BB, 8895 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8896 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8897 8898 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8899 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8900 : &PPC::GPRCRegClass; 8901 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8902 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8903 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8904 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8905 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8906 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8907 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8908 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8909 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8910 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8911 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8912 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8913 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8914 unsigned Ptr1Reg; 8915 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8916 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8917 // thisMBB: 8918 // ... 8919 // fallthrough --> loopMBB 8920 BB->addSuccessor(loop1MBB); 8921 8922 // The 4-byte load must be aligned, while a char or short may be 8923 // anywhere in the word. Hence all this nasty bookkeeping code. 8924 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8925 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8926 // xori shift, shift1, 24 [16] 8927 // rlwinm ptr, ptr1, 0, 0, 29 8928 // slw newval2, newval, shift 8929 // slw oldval2, oldval,shift 8930 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8931 // slw mask, mask2, shift 8932 // and newval3, newval2, mask 8933 // and oldval3, oldval2, mask 8934 // loop1MBB: 8935 // lwarx tmpDest, ptr 8936 // and tmp, tmpDest, mask 8937 // cmpw tmp, oldval3 8938 // bne- midMBB 8939 // loop2MBB: 8940 // andc tmp2, tmpDest, mask 8941 // or tmp4, tmp2, newval3 8942 // stwcx. tmp4, ptr 8943 // bne- loop1MBB 8944 // b exitBB 8945 // midMBB: 8946 // stwcx. tmpDest, ptr 8947 // exitBB: 8948 // srw dest, tmpDest, shift 8949 if (ptrA != ZeroReg) { 8950 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8951 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8952 .addReg(ptrA).addReg(ptrB); 8953 } else { 8954 Ptr1Reg = ptrB; 8955 } 8956 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8957 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8958 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8959 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8960 if (is64bit) 8961 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8962 .addReg(Ptr1Reg).addImm(0).addImm(61); 8963 else 8964 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8965 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8966 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 8967 .addReg(newval).addReg(ShiftReg); 8968 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 8969 .addReg(oldval).addReg(ShiftReg); 8970 if (is8bit) 8971 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8972 else { 8973 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8974 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 8975 .addReg(Mask3Reg).addImm(65535); 8976 } 8977 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8978 .addReg(Mask2Reg).addReg(ShiftReg); 8979 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 8980 .addReg(NewVal2Reg).addReg(MaskReg); 8981 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 8982 .addReg(OldVal2Reg).addReg(MaskReg); 8983 8984 BB = loop1MBB; 8985 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8986 .addReg(ZeroReg).addReg(PtrReg); 8987 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 8988 .addReg(TmpDestReg).addReg(MaskReg); 8989 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 8990 .addReg(TmpReg).addReg(OldVal3Reg); 8991 BuildMI(BB, dl, TII->get(PPC::BCC)) 8992 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8993 BB->addSuccessor(loop2MBB); 8994 BB->addSuccessor(midMBB); 8995 8996 BB = loop2MBB; 8997 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 8998 .addReg(TmpDestReg).addReg(MaskReg); 8999 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9000 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9001 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9002 .addReg(ZeroReg).addReg(PtrReg); 9003 BuildMI(BB, dl, TII->get(PPC::BCC)) 9004 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9005 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9006 BB->addSuccessor(loop1MBB); 9007 BB->addSuccessor(exitMBB); 9008 9009 BB = midMBB; 9010 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9011 .addReg(ZeroReg).addReg(PtrReg); 9012 BB->addSuccessor(exitMBB); 9013 9014 // exitMBB: 9015 // ... 9016 BB = exitMBB; 9017 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9018 .addReg(ShiftReg); 9019 } else if (MI->getOpcode() == PPC::FADDrtz) { 9020 // This pseudo performs an FADD with rounding mode temporarily forced 9021 // to round-to-zero. We emit this via custom inserter since the FPSCR 9022 // is not modeled at the SelectionDAG level. 9023 unsigned Dest = MI->getOperand(0).getReg(); 9024 unsigned Src1 = MI->getOperand(1).getReg(); 9025 unsigned Src2 = MI->getOperand(2).getReg(); 9026 DebugLoc dl = MI->getDebugLoc(); 9027 9028 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9029 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9030 9031 // Save FPSCR value. 9032 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9033 9034 // Set rounding mode to round-to-zero. 9035 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9036 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9037 9038 // Perform addition. 9039 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9040 9041 // Restore FPSCR value. 9042 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9043 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9044 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9045 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9046 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9047 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9048 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9049 PPC::ANDIo8 : PPC::ANDIo; 9050 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9051 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9052 9053 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9054 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9055 &PPC::GPRCRegClass : 9056 &PPC::G8RCRegClass); 9057 9058 DebugLoc dl = MI->getDebugLoc(); 9059 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9060 .addReg(MI->getOperand(1).getReg()).addImm(1); 9061 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9062 MI->getOperand(0).getReg()) 9063 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9064 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9065 DebugLoc Dl = MI->getDebugLoc(); 9066 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9067 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9068 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9069 return BB; 9070 } else { 9071 llvm_unreachable("Unexpected instr type to insert"); 9072 } 9073 9074 MI->eraseFromParent(); // The pseudo instruction is gone now. 9075 return BB; 9076 } 9077 9078 //===----------------------------------------------------------------------===// 9079 // Target Optimization Hooks 9080 //===----------------------------------------------------------------------===// 9081 9082 static std::string getRecipOp(const char *Base, EVT VT) { 9083 std::string RecipOp(Base); 9084 if (VT.getScalarType() == MVT::f64) 9085 RecipOp += "d"; 9086 else 9087 RecipOp += "f"; 9088 9089 if (VT.isVector()) 9090 RecipOp = "vec-" + RecipOp; 9091 9092 return RecipOp; 9093 } 9094 9095 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9096 DAGCombinerInfo &DCI, 9097 unsigned &RefinementSteps, 9098 bool &UseOneConstNR) const { 9099 EVT VT = Operand.getValueType(); 9100 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9101 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9102 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9103 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9104 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9105 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9106 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9107 std::string RecipOp = getRecipOp("sqrt", VT); 9108 if (!Recips.isEnabled(RecipOp)) 9109 return SDValue(); 9110 9111 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9112 UseOneConstNR = true; 9113 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9114 } 9115 return SDValue(); 9116 } 9117 9118 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9119 DAGCombinerInfo &DCI, 9120 unsigned &RefinementSteps) const { 9121 EVT VT = Operand.getValueType(); 9122 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9123 (VT == MVT::f64 && Subtarget.hasFRE()) || 9124 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9125 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9126 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9127 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9128 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9129 std::string RecipOp = getRecipOp("div", VT); 9130 if (!Recips.isEnabled(RecipOp)) 9131 return SDValue(); 9132 9133 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9134 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9135 } 9136 return SDValue(); 9137 } 9138 9139 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9140 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9141 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9142 // enabled for division), this functionality is redundant with the default 9143 // combiner logic (once the division -> reciprocal/multiply transformation 9144 // has taken place). As a result, this matters more for older cores than for 9145 // newer ones. 9146 9147 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9148 // reciprocal if there are two or more FDIVs (for embedded cores with only 9149 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9150 switch (Subtarget.getDarwinDirective()) { 9151 default: 9152 return 3; 9153 case PPC::DIR_440: 9154 case PPC::DIR_A2: 9155 case PPC::DIR_E500mc: 9156 case PPC::DIR_E5500: 9157 return 2; 9158 } 9159 } 9160 9161 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9162 unsigned Bytes, int Dist, 9163 SelectionDAG &DAG) { 9164 if (VT.getSizeInBits() / 8 != Bytes) 9165 return false; 9166 9167 SDValue BaseLoc = Base->getBasePtr(); 9168 if (Loc.getOpcode() == ISD::FrameIndex) { 9169 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9170 return false; 9171 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9172 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9173 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9174 int FS = MFI->getObjectSize(FI); 9175 int BFS = MFI->getObjectSize(BFI); 9176 if (FS != BFS || FS != (int)Bytes) return false; 9177 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9178 } 9179 9180 // Handle X+C 9181 if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && 9182 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) 9183 return true; 9184 9185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9186 const GlobalValue *GV1 = nullptr; 9187 const GlobalValue *GV2 = nullptr; 9188 int64_t Offset1 = 0; 9189 int64_t Offset2 = 0; 9190 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9191 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9192 if (isGA1 && isGA2 && GV1 == GV2) 9193 return Offset1 == (Offset2 + Dist*Bytes); 9194 return false; 9195 } 9196 9197 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9198 // not enforce equality of the chain operands. 9199 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9200 unsigned Bytes, int Dist, 9201 SelectionDAG &DAG) { 9202 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9203 EVT VT = LS->getMemoryVT(); 9204 SDValue Loc = LS->getBasePtr(); 9205 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9206 } 9207 9208 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9209 EVT VT; 9210 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9211 default: return false; 9212 case Intrinsic::ppc_qpx_qvlfd: 9213 case Intrinsic::ppc_qpx_qvlfda: 9214 VT = MVT::v4f64; 9215 break; 9216 case Intrinsic::ppc_qpx_qvlfs: 9217 case Intrinsic::ppc_qpx_qvlfsa: 9218 VT = MVT::v4f32; 9219 break; 9220 case Intrinsic::ppc_qpx_qvlfcd: 9221 case Intrinsic::ppc_qpx_qvlfcda: 9222 VT = MVT::v2f64; 9223 break; 9224 case Intrinsic::ppc_qpx_qvlfcs: 9225 case Intrinsic::ppc_qpx_qvlfcsa: 9226 VT = MVT::v2f32; 9227 break; 9228 case Intrinsic::ppc_qpx_qvlfiwa: 9229 case Intrinsic::ppc_qpx_qvlfiwz: 9230 case Intrinsic::ppc_altivec_lvx: 9231 case Intrinsic::ppc_altivec_lvxl: 9232 case Intrinsic::ppc_vsx_lxvw4x: 9233 VT = MVT::v4i32; 9234 break; 9235 case Intrinsic::ppc_vsx_lxvd2x: 9236 VT = MVT::v2f64; 9237 break; 9238 case Intrinsic::ppc_altivec_lvebx: 9239 VT = MVT::i8; 9240 break; 9241 case Intrinsic::ppc_altivec_lvehx: 9242 VT = MVT::i16; 9243 break; 9244 case Intrinsic::ppc_altivec_lvewx: 9245 VT = MVT::i32; 9246 break; 9247 } 9248 9249 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9250 } 9251 9252 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9253 EVT VT; 9254 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9255 default: return false; 9256 case Intrinsic::ppc_qpx_qvstfd: 9257 case Intrinsic::ppc_qpx_qvstfda: 9258 VT = MVT::v4f64; 9259 break; 9260 case Intrinsic::ppc_qpx_qvstfs: 9261 case Intrinsic::ppc_qpx_qvstfsa: 9262 VT = MVT::v4f32; 9263 break; 9264 case Intrinsic::ppc_qpx_qvstfcd: 9265 case Intrinsic::ppc_qpx_qvstfcda: 9266 VT = MVT::v2f64; 9267 break; 9268 case Intrinsic::ppc_qpx_qvstfcs: 9269 case Intrinsic::ppc_qpx_qvstfcsa: 9270 VT = MVT::v2f32; 9271 break; 9272 case Intrinsic::ppc_qpx_qvstfiw: 9273 case Intrinsic::ppc_qpx_qvstfiwa: 9274 case Intrinsic::ppc_altivec_stvx: 9275 case Intrinsic::ppc_altivec_stvxl: 9276 case Intrinsic::ppc_vsx_stxvw4x: 9277 VT = MVT::v4i32; 9278 break; 9279 case Intrinsic::ppc_vsx_stxvd2x: 9280 VT = MVT::v2f64; 9281 break; 9282 case Intrinsic::ppc_altivec_stvebx: 9283 VT = MVT::i8; 9284 break; 9285 case Intrinsic::ppc_altivec_stvehx: 9286 VT = MVT::i16; 9287 break; 9288 case Intrinsic::ppc_altivec_stvewx: 9289 VT = MVT::i32; 9290 break; 9291 } 9292 9293 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9294 } 9295 9296 return false; 9297 } 9298 9299 // Return true is there is a nearyby consecutive load to the one provided 9300 // (regardless of alignment). We search up and down the chain, looking though 9301 // token factors and other loads (but nothing else). As a result, a true result 9302 // indicates that it is safe to create a new consecutive load adjacent to the 9303 // load provided. 9304 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9305 SDValue Chain = LD->getChain(); 9306 EVT VT = LD->getMemoryVT(); 9307 9308 SmallSet<SDNode *, 16> LoadRoots; 9309 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9310 SmallSet<SDNode *, 16> Visited; 9311 9312 // First, search up the chain, branching to follow all token-factor operands. 9313 // If we find a consecutive load, then we're done, otherwise, record all 9314 // nodes just above the top-level loads and token factors. 9315 while (!Queue.empty()) { 9316 SDNode *ChainNext = Queue.pop_back_val(); 9317 if (!Visited.insert(ChainNext).second) 9318 continue; 9319 9320 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9321 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9322 return true; 9323 9324 if (!Visited.count(ChainLD->getChain().getNode())) 9325 Queue.push_back(ChainLD->getChain().getNode()); 9326 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9327 for (const SDUse &O : ChainNext->ops()) 9328 if (!Visited.count(O.getNode())) 9329 Queue.push_back(O.getNode()); 9330 } else 9331 LoadRoots.insert(ChainNext); 9332 } 9333 9334 // Second, search down the chain, starting from the top-level nodes recorded 9335 // in the first phase. These top-level nodes are the nodes just above all 9336 // loads and token factors. Starting with their uses, recursively look though 9337 // all loads (just the chain uses) and token factors to find a consecutive 9338 // load. 9339 Visited.clear(); 9340 Queue.clear(); 9341 9342 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9343 IE = LoadRoots.end(); I != IE; ++I) { 9344 Queue.push_back(*I); 9345 9346 while (!Queue.empty()) { 9347 SDNode *LoadRoot = Queue.pop_back_val(); 9348 if (!Visited.insert(LoadRoot).second) 9349 continue; 9350 9351 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9352 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9353 return true; 9354 9355 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9356 UE = LoadRoot->use_end(); UI != UE; ++UI) 9357 if (((isa<MemSDNode>(*UI) && 9358 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9359 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9360 Queue.push_back(*UI); 9361 } 9362 } 9363 9364 return false; 9365 } 9366 9367 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9368 DAGCombinerInfo &DCI) const { 9369 SelectionDAG &DAG = DCI.DAG; 9370 SDLoc dl(N); 9371 9372 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9373 // If we're tracking CR bits, we need to be careful that we don't have: 9374 // trunc(binary-ops(zext(x), zext(y))) 9375 // or 9376 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9377 // such that we're unnecessarily moving things into GPRs when it would be 9378 // better to keep them in CR bits. 9379 9380 // Note that trunc here can be an actual i1 trunc, or can be the effective 9381 // truncation that comes from a setcc or select_cc. 9382 if (N->getOpcode() == ISD::TRUNCATE && 9383 N->getValueType(0) != MVT::i1) 9384 return SDValue(); 9385 9386 if (N->getOperand(0).getValueType() != MVT::i32 && 9387 N->getOperand(0).getValueType() != MVT::i64) 9388 return SDValue(); 9389 9390 if (N->getOpcode() == ISD::SETCC || 9391 N->getOpcode() == ISD::SELECT_CC) { 9392 // If we're looking at a comparison, then we need to make sure that the 9393 // high bits (all except for the first) don't matter the result. 9394 ISD::CondCode CC = 9395 cast<CondCodeSDNode>(N->getOperand( 9396 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9397 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9398 9399 if (ISD::isSignedIntSetCC(CC)) { 9400 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9401 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9402 return SDValue(); 9403 } else if (ISD::isUnsignedIntSetCC(CC)) { 9404 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9405 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9406 !DAG.MaskedValueIsZero(N->getOperand(1), 9407 APInt::getHighBitsSet(OpBits, OpBits-1))) 9408 return SDValue(); 9409 } else { 9410 // This is neither a signed nor an unsigned comparison, just make sure 9411 // that the high bits are equal. 9412 APInt Op1Zero, Op1One; 9413 APInt Op2Zero, Op2One; 9414 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9415 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9416 9417 // We don't really care about what is known about the first bit (if 9418 // anything), so clear it in all masks prior to comparing them. 9419 Op1Zero.clearBit(0); Op1One.clearBit(0); 9420 Op2Zero.clearBit(0); Op2One.clearBit(0); 9421 9422 if (Op1Zero != Op2Zero || Op1One != Op2One) 9423 return SDValue(); 9424 } 9425 } 9426 9427 // We now know that the higher-order bits are irrelevant, we just need to 9428 // make sure that all of the intermediate operations are bit operations, and 9429 // all inputs are extensions. 9430 if (N->getOperand(0).getOpcode() != ISD::AND && 9431 N->getOperand(0).getOpcode() != ISD::OR && 9432 N->getOperand(0).getOpcode() != ISD::XOR && 9433 N->getOperand(0).getOpcode() != ISD::SELECT && 9434 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9435 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9436 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9437 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9438 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9439 return SDValue(); 9440 9441 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9442 N->getOperand(1).getOpcode() != ISD::AND && 9443 N->getOperand(1).getOpcode() != ISD::OR && 9444 N->getOperand(1).getOpcode() != ISD::XOR && 9445 N->getOperand(1).getOpcode() != ISD::SELECT && 9446 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9447 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9448 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9449 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9450 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9451 return SDValue(); 9452 9453 SmallVector<SDValue, 4> Inputs; 9454 SmallVector<SDValue, 8> BinOps, PromOps; 9455 SmallPtrSet<SDNode *, 16> Visited; 9456 9457 for (unsigned i = 0; i < 2; ++i) { 9458 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9459 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9460 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9461 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9462 isa<ConstantSDNode>(N->getOperand(i))) 9463 Inputs.push_back(N->getOperand(i)); 9464 else 9465 BinOps.push_back(N->getOperand(i)); 9466 9467 if (N->getOpcode() == ISD::TRUNCATE) 9468 break; 9469 } 9470 9471 // Visit all inputs, collect all binary operations (and, or, xor and 9472 // select) that are all fed by extensions. 9473 while (!BinOps.empty()) { 9474 SDValue BinOp = BinOps.back(); 9475 BinOps.pop_back(); 9476 9477 if (!Visited.insert(BinOp.getNode()).second) 9478 continue; 9479 9480 PromOps.push_back(BinOp); 9481 9482 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9483 // The condition of the select is not promoted. 9484 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9485 continue; 9486 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9487 continue; 9488 9489 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9490 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9491 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9492 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9493 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9494 Inputs.push_back(BinOp.getOperand(i)); 9495 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9496 BinOp.getOperand(i).getOpcode() == ISD::OR || 9497 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9498 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9499 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9500 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9501 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9502 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9503 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9504 BinOps.push_back(BinOp.getOperand(i)); 9505 } else { 9506 // We have an input that is not an extension or another binary 9507 // operation; we'll abort this transformation. 9508 return SDValue(); 9509 } 9510 } 9511 } 9512 9513 // Make sure that this is a self-contained cluster of operations (which 9514 // is not quite the same thing as saying that everything has only one 9515 // use). 9516 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9517 if (isa<ConstantSDNode>(Inputs[i])) 9518 continue; 9519 9520 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9521 UE = Inputs[i].getNode()->use_end(); 9522 UI != UE; ++UI) { 9523 SDNode *User = *UI; 9524 if (User != N && !Visited.count(User)) 9525 return SDValue(); 9526 9527 // Make sure that we're not going to promote the non-output-value 9528 // operand(s) or SELECT or SELECT_CC. 9529 // FIXME: Although we could sometimes handle this, and it does occur in 9530 // practice that one of the condition inputs to the select is also one of 9531 // the outputs, we currently can't deal with this. 9532 if (User->getOpcode() == ISD::SELECT) { 9533 if (User->getOperand(0) == Inputs[i]) 9534 return SDValue(); 9535 } else if (User->getOpcode() == ISD::SELECT_CC) { 9536 if (User->getOperand(0) == Inputs[i] || 9537 User->getOperand(1) == Inputs[i]) 9538 return SDValue(); 9539 } 9540 } 9541 } 9542 9543 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9544 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9545 UE = PromOps[i].getNode()->use_end(); 9546 UI != UE; ++UI) { 9547 SDNode *User = *UI; 9548 if (User != N && !Visited.count(User)) 9549 return SDValue(); 9550 9551 // Make sure that we're not going to promote the non-output-value 9552 // operand(s) or SELECT or SELECT_CC. 9553 // FIXME: Although we could sometimes handle this, and it does occur in 9554 // practice that one of the condition inputs to the select is also one of 9555 // the outputs, we currently can't deal with this. 9556 if (User->getOpcode() == ISD::SELECT) { 9557 if (User->getOperand(0) == PromOps[i]) 9558 return SDValue(); 9559 } else if (User->getOpcode() == ISD::SELECT_CC) { 9560 if (User->getOperand(0) == PromOps[i] || 9561 User->getOperand(1) == PromOps[i]) 9562 return SDValue(); 9563 } 9564 } 9565 } 9566 9567 // Replace all inputs with the extension operand. 9568 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9569 // Constants may have users outside the cluster of to-be-promoted nodes, 9570 // and so we need to replace those as we do the promotions. 9571 if (isa<ConstantSDNode>(Inputs[i])) 9572 continue; 9573 else 9574 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9575 } 9576 9577 // Replace all operations (these are all the same, but have a different 9578 // (i1) return type). DAG.getNode will validate that the types of 9579 // a binary operator match, so go through the list in reverse so that 9580 // we've likely promoted both operands first. Any intermediate truncations or 9581 // extensions disappear. 9582 while (!PromOps.empty()) { 9583 SDValue PromOp = PromOps.back(); 9584 PromOps.pop_back(); 9585 9586 if (PromOp.getOpcode() == ISD::TRUNCATE || 9587 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9588 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9589 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9590 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9591 PromOp.getOperand(0).getValueType() != MVT::i1) { 9592 // The operand is not yet ready (see comment below). 9593 PromOps.insert(PromOps.begin(), PromOp); 9594 continue; 9595 } 9596 9597 SDValue RepValue = PromOp.getOperand(0); 9598 if (isa<ConstantSDNode>(RepValue)) 9599 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9600 9601 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9602 continue; 9603 } 9604 9605 unsigned C; 9606 switch (PromOp.getOpcode()) { 9607 default: C = 0; break; 9608 case ISD::SELECT: C = 1; break; 9609 case ISD::SELECT_CC: C = 2; break; 9610 } 9611 9612 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9613 PromOp.getOperand(C).getValueType() != MVT::i1) || 9614 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9615 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9616 // The to-be-promoted operands of this node have not yet been 9617 // promoted (this should be rare because we're going through the 9618 // list backward, but if one of the operands has several users in 9619 // this cluster of to-be-promoted nodes, it is possible). 9620 PromOps.insert(PromOps.begin(), PromOp); 9621 continue; 9622 } 9623 9624 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9625 PromOp.getNode()->op_end()); 9626 9627 // If there are any constant inputs, make sure they're replaced now. 9628 for (unsigned i = 0; i < 2; ++i) 9629 if (isa<ConstantSDNode>(Ops[C+i])) 9630 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9631 9632 DAG.ReplaceAllUsesOfValueWith(PromOp, 9633 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9634 } 9635 9636 // Now we're left with the initial truncation itself. 9637 if (N->getOpcode() == ISD::TRUNCATE) 9638 return N->getOperand(0); 9639 9640 // Otherwise, this is a comparison. The operands to be compared have just 9641 // changed type (to i1), but everything else is the same. 9642 return SDValue(N, 0); 9643 } 9644 9645 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9646 DAGCombinerInfo &DCI) const { 9647 SelectionDAG &DAG = DCI.DAG; 9648 SDLoc dl(N); 9649 9650 // If we're tracking CR bits, we need to be careful that we don't have: 9651 // zext(binary-ops(trunc(x), trunc(y))) 9652 // or 9653 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9654 // such that we're unnecessarily moving things into CR bits that can more 9655 // efficiently stay in GPRs. Note that if we're not certain that the high 9656 // bits are set as required by the final extension, we still may need to do 9657 // some masking to get the proper behavior. 9658 9659 // This same functionality is important on PPC64 when dealing with 9660 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9661 // the return values of functions. Because it is so similar, it is handled 9662 // here as well. 9663 9664 if (N->getValueType(0) != MVT::i32 && 9665 N->getValueType(0) != MVT::i64) 9666 return SDValue(); 9667 9668 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9669 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9670 return SDValue(); 9671 9672 if (N->getOperand(0).getOpcode() != ISD::AND && 9673 N->getOperand(0).getOpcode() != ISD::OR && 9674 N->getOperand(0).getOpcode() != ISD::XOR && 9675 N->getOperand(0).getOpcode() != ISD::SELECT && 9676 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9677 return SDValue(); 9678 9679 SmallVector<SDValue, 4> Inputs; 9680 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9681 SmallPtrSet<SDNode *, 16> Visited; 9682 9683 // Visit all inputs, collect all binary operations (and, or, xor and 9684 // select) that are all fed by truncations. 9685 while (!BinOps.empty()) { 9686 SDValue BinOp = BinOps.back(); 9687 BinOps.pop_back(); 9688 9689 if (!Visited.insert(BinOp.getNode()).second) 9690 continue; 9691 9692 PromOps.push_back(BinOp); 9693 9694 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9695 // The condition of the select is not promoted. 9696 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9697 continue; 9698 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9699 continue; 9700 9701 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9702 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9703 Inputs.push_back(BinOp.getOperand(i)); 9704 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9705 BinOp.getOperand(i).getOpcode() == ISD::OR || 9706 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9707 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9708 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9709 BinOps.push_back(BinOp.getOperand(i)); 9710 } else { 9711 // We have an input that is not a truncation or another binary 9712 // operation; we'll abort this transformation. 9713 return SDValue(); 9714 } 9715 } 9716 } 9717 9718 // The operands of a select that must be truncated when the select is 9719 // promoted because the operand is actually part of the to-be-promoted set. 9720 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9721 9722 // Make sure that this is a self-contained cluster of operations (which 9723 // is not quite the same thing as saying that everything has only one 9724 // use). 9725 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9726 if (isa<ConstantSDNode>(Inputs[i])) 9727 continue; 9728 9729 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9730 UE = Inputs[i].getNode()->use_end(); 9731 UI != UE; ++UI) { 9732 SDNode *User = *UI; 9733 if (User != N && !Visited.count(User)) 9734 return SDValue(); 9735 9736 // If we're going to promote the non-output-value operand(s) or SELECT or 9737 // SELECT_CC, record them for truncation. 9738 if (User->getOpcode() == ISD::SELECT) { 9739 if (User->getOperand(0) == Inputs[i]) 9740 SelectTruncOp[0].insert(std::make_pair(User, 9741 User->getOperand(0).getValueType())); 9742 } else if (User->getOpcode() == ISD::SELECT_CC) { 9743 if (User->getOperand(0) == Inputs[i]) 9744 SelectTruncOp[0].insert(std::make_pair(User, 9745 User->getOperand(0).getValueType())); 9746 if (User->getOperand(1) == Inputs[i]) 9747 SelectTruncOp[1].insert(std::make_pair(User, 9748 User->getOperand(1).getValueType())); 9749 } 9750 } 9751 } 9752 9753 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9754 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9755 UE = PromOps[i].getNode()->use_end(); 9756 UI != UE; ++UI) { 9757 SDNode *User = *UI; 9758 if (User != N && !Visited.count(User)) 9759 return SDValue(); 9760 9761 // If we're going to promote the non-output-value operand(s) or SELECT or 9762 // SELECT_CC, record them for truncation. 9763 if (User->getOpcode() == ISD::SELECT) { 9764 if (User->getOperand(0) == PromOps[i]) 9765 SelectTruncOp[0].insert(std::make_pair(User, 9766 User->getOperand(0).getValueType())); 9767 } else if (User->getOpcode() == ISD::SELECT_CC) { 9768 if (User->getOperand(0) == PromOps[i]) 9769 SelectTruncOp[0].insert(std::make_pair(User, 9770 User->getOperand(0).getValueType())); 9771 if (User->getOperand(1) == PromOps[i]) 9772 SelectTruncOp[1].insert(std::make_pair(User, 9773 User->getOperand(1).getValueType())); 9774 } 9775 } 9776 } 9777 9778 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9779 bool ReallyNeedsExt = false; 9780 if (N->getOpcode() != ISD::ANY_EXTEND) { 9781 // If all of the inputs are not already sign/zero extended, then 9782 // we'll still need to do that at the end. 9783 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9784 if (isa<ConstantSDNode>(Inputs[i])) 9785 continue; 9786 9787 unsigned OpBits = 9788 Inputs[i].getOperand(0).getValueSizeInBits(); 9789 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9790 9791 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9792 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9793 APInt::getHighBitsSet(OpBits, 9794 OpBits-PromBits))) || 9795 (N->getOpcode() == ISD::SIGN_EXTEND && 9796 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9797 (OpBits-(PromBits-1)))) { 9798 ReallyNeedsExt = true; 9799 break; 9800 } 9801 } 9802 } 9803 9804 // Replace all inputs, either with the truncation operand, or a 9805 // truncation or extension to the final output type. 9806 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9807 // Constant inputs need to be replaced with the to-be-promoted nodes that 9808 // use them because they might have users outside of the cluster of 9809 // promoted nodes. 9810 if (isa<ConstantSDNode>(Inputs[i])) 9811 continue; 9812 9813 SDValue InSrc = Inputs[i].getOperand(0); 9814 if (Inputs[i].getValueType() == N->getValueType(0)) 9815 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9816 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9817 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9818 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9819 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9820 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9821 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9822 else 9823 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9824 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9825 } 9826 9827 // Replace all operations (these are all the same, but have a different 9828 // (promoted) return type). DAG.getNode will validate that the types of 9829 // a binary operator match, so go through the list in reverse so that 9830 // we've likely promoted both operands first. 9831 while (!PromOps.empty()) { 9832 SDValue PromOp = PromOps.back(); 9833 PromOps.pop_back(); 9834 9835 unsigned C; 9836 switch (PromOp.getOpcode()) { 9837 default: C = 0; break; 9838 case ISD::SELECT: C = 1; break; 9839 case ISD::SELECT_CC: C = 2; break; 9840 } 9841 9842 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9843 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9844 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9845 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9846 // The to-be-promoted operands of this node have not yet been 9847 // promoted (this should be rare because we're going through the 9848 // list backward, but if one of the operands has several users in 9849 // this cluster of to-be-promoted nodes, it is possible). 9850 PromOps.insert(PromOps.begin(), PromOp); 9851 continue; 9852 } 9853 9854 // For SELECT and SELECT_CC nodes, we do a similar check for any 9855 // to-be-promoted comparison inputs. 9856 if (PromOp.getOpcode() == ISD::SELECT || 9857 PromOp.getOpcode() == ISD::SELECT_CC) { 9858 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9859 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9860 (SelectTruncOp[1].count(PromOp.getNode()) && 9861 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9862 PromOps.insert(PromOps.begin(), PromOp); 9863 continue; 9864 } 9865 } 9866 9867 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9868 PromOp.getNode()->op_end()); 9869 9870 // If this node has constant inputs, then they'll need to be promoted here. 9871 for (unsigned i = 0; i < 2; ++i) { 9872 if (!isa<ConstantSDNode>(Ops[C+i])) 9873 continue; 9874 if (Ops[C+i].getValueType() == N->getValueType(0)) 9875 continue; 9876 9877 if (N->getOpcode() == ISD::SIGN_EXTEND) 9878 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9879 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9880 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9881 else 9882 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9883 } 9884 9885 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9886 // truncate them again to the original value type. 9887 if (PromOp.getOpcode() == ISD::SELECT || 9888 PromOp.getOpcode() == ISD::SELECT_CC) { 9889 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9890 if (SI0 != SelectTruncOp[0].end()) 9891 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9892 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9893 if (SI1 != SelectTruncOp[1].end()) 9894 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9895 } 9896 9897 DAG.ReplaceAllUsesOfValueWith(PromOp, 9898 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9899 } 9900 9901 // Now we're left with the initial extension itself. 9902 if (!ReallyNeedsExt) 9903 return N->getOperand(0); 9904 9905 // To zero extend, just mask off everything except for the first bit (in the 9906 // i1 case). 9907 if (N->getOpcode() == ISD::ZERO_EXTEND) 9908 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9909 DAG.getConstant(APInt::getLowBitsSet( 9910 N->getValueSizeInBits(0), PromBits), 9911 dl, N->getValueType(0))); 9912 9913 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9914 "Invalid extension type"); 9915 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9916 SDValue ShiftCst = 9917 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9918 return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 9919 DAG.getNode(ISD::SHL, dl, N->getValueType(0), 9920 N->getOperand(0), ShiftCst), ShiftCst); 9921 } 9922 9923 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9924 DAGCombinerInfo &DCI) const { 9925 assert((N->getOpcode() == ISD::SINT_TO_FP || 9926 N->getOpcode() == ISD::UINT_TO_FP) && 9927 "Need an int -> FP conversion node here"); 9928 9929 if (!Subtarget.has64BitSupport()) 9930 return SDValue(); 9931 9932 SelectionDAG &DAG = DCI.DAG; 9933 SDLoc dl(N); 9934 SDValue Op(N, 0); 9935 9936 // Don't handle ppc_fp128 here or i1 conversions. 9937 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9938 return SDValue(); 9939 if (Op.getOperand(0).getValueType() == MVT::i1) 9940 return SDValue(); 9941 9942 // For i32 intermediate values, unfortunately, the conversion functions 9943 // leave the upper 32 bits of the value are undefined. Within the set of 9944 // scalar instructions, we have no method for zero- or sign-extending the 9945 // value. Thus, we cannot handle i32 intermediate values here. 9946 if (Op.getOperand(0).getValueType() == MVT::i32) 9947 return SDValue(); 9948 9949 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 9950 "UINT_TO_FP is supported only with FPCVT"); 9951 9952 // If we have FCFIDS, then use it when converting to single-precision. 9953 // Otherwise, convert to double-precision and then round. 9954 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9955 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 9956 : PPCISD::FCFIDS) 9957 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 9958 : PPCISD::FCFID); 9959 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9960 ? MVT::f32 9961 : MVT::f64; 9962 9963 // If we're converting from a float, to an int, and back to a float again, 9964 // then we don't need the store/load pair at all. 9965 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 9966 Subtarget.hasFPCVT()) || 9967 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 9968 SDValue Src = Op.getOperand(0).getOperand(0); 9969 if (Src.getValueType() == MVT::f32) { 9970 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 9971 DCI.AddToWorklist(Src.getNode()); 9972 } 9973 9974 unsigned FCTOp = 9975 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 9976 PPCISD::FCTIDUZ; 9977 9978 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 9979 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 9980 9981 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 9982 FP = DAG.getNode(ISD::FP_ROUND, dl, 9983 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 9984 DCI.AddToWorklist(FP.getNode()); 9985 } 9986 9987 return FP; 9988 } 9989 9990 return SDValue(); 9991 } 9992 9993 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 9994 // builtins) into loads with swaps. 9995 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 9996 DAGCombinerInfo &DCI) const { 9997 SelectionDAG &DAG = DCI.DAG; 9998 SDLoc dl(N); 9999 SDValue Chain; 10000 SDValue Base; 10001 MachineMemOperand *MMO; 10002 10003 switch (N->getOpcode()) { 10004 default: 10005 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10006 case ISD::LOAD: { 10007 LoadSDNode *LD = cast<LoadSDNode>(N); 10008 Chain = LD->getChain(); 10009 Base = LD->getBasePtr(); 10010 MMO = LD->getMemOperand(); 10011 // If the MMO suggests this isn't a load of a full vector, leave 10012 // things alone. For a built-in, we have to make the change for 10013 // correctness, so if there is a size problem that will be a bug. 10014 if (MMO->getSize() < 16) 10015 return SDValue(); 10016 break; 10017 } 10018 case ISD::INTRINSIC_W_CHAIN: { 10019 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10020 Chain = Intrin->getChain(); 10021 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10022 // us what we want. Get operand 2 instead. 10023 Base = Intrin->getOperand(2); 10024 MMO = Intrin->getMemOperand(); 10025 break; 10026 } 10027 } 10028 10029 MVT VecTy = N->getValueType(0).getSimpleVT(); 10030 SDValue LoadOps[] = { Chain, Base }; 10031 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10032 DAG.getVTList(VecTy, MVT::Other), 10033 LoadOps, VecTy, MMO); 10034 DCI.AddToWorklist(Load.getNode()); 10035 Chain = Load.getValue(1); 10036 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10037 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10038 DCI.AddToWorklist(Swap.getNode()); 10039 return Swap; 10040 } 10041 10042 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10043 // builtins) into stores with swaps. 10044 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10045 DAGCombinerInfo &DCI) const { 10046 SelectionDAG &DAG = DCI.DAG; 10047 SDLoc dl(N); 10048 SDValue Chain; 10049 SDValue Base; 10050 unsigned SrcOpnd; 10051 MachineMemOperand *MMO; 10052 10053 switch (N->getOpcode()) { 10054 default: 10055 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10056 case ISD::STORE: { 10057 StoreSDNode *ST = cast<StoreSDNode>(N); 10058 Chain = ST->getChain(); 10059 Base = ST->getBasePtr(); 10060 MMO = ST->getMemOperand(); 10061 SrcOpnd = 1; 10062 // If the MMO suggests this isn't a store of a full vector, leave 10063 // things alone. For a built-in, we have to make the change for 10064 // correctness, so if there is a size problem that will be a bug. 10065 if (MMO->getSize() < 16) 10066 return SDValue(); 10067 break; 10068 } 10069 case ISD::INTRINSIC_VOID: { 10070 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10071 Chain = Intrin->getChain(); 10072 // Intrin->getBasePtr() oddly does not get what we want. 10073 Base = Intrin->getOperand(3); 10074 MMO = Intrin->getMemOperand(); 10075 SrcOpnd = 2; 10076 break; 10077 } 10078 } 10079 10080 SDValue Src = N->getOperand(SrcOpnd); 10081 MVT VecTy = Src.getValueType().getSimpleVT(); 10082 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10083 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10084 DCI.AddToWorklist(Swap.getNode()); 10085 Chain = Swap.getValue(1); 10086 SDValue StoreOps[] = { Chain, Swap, Base }; 10087 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10088 DAG.getVTList(MVT::Other), 10089 StoreOps, VecTy, MMO); 10090 DCI.AddToWorklist(Store.getNode()); 10091 return Store; 10092 } 10093 10094 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10095 DAGCombinerInfo &DCI) const { 10096 SelectionDAG &DAG = DCI.DAG; 10097 SDLoc dl(N); 10098 switch (N->getOpcode()) { 10099 default: break; 10100 case PPCISD::SHL: 10101 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10102 if (C->isNullValue()) // 0 << V -> 0. 10103 return N->getOperand(0); 10104 } 10105 break; 10106 case PPCISD::SRL: 10107 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10108 if (C->isNullValue()) // 0 >>u V -> 0. 10109 return N->getOperand(0); 10110 } 10111 break; 10112 case PPCISD::SRA: 10113 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10114 if (C->isNullValue() || // 0 >>s V -> 0. 10115 C->isAllOnesValue()) // -1 >>s V -> -1. 10116 return N->getOperand(0); 10117 } 10118 break; 10119 case ISD::SIGN_EXTEND: 10120 case ISD::ZERO_EXTEND: 10121 case ISD::ANY_EXTEND: 10122 return DAGCombineExtBoolTrunc(N, DCI); 10123 case ISD::TRUNCATE: 10124 case ISD::SETCC: 10125 case ISD::SELECT_CC: 10126 return DAGCombineTruncBoolExt(N, DCI); 10127 case ISD::SINT_TO_FP: 10128 case ISD::UINT_TO_FP: 10129 return combineFPToIntToFP(N, DCI); 10130 case ISD::STORE: { 10131 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10132 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10133 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10134 N->getOperand(1).getValueType() == MVT::i32 && 10135 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10136 SDValue Val = N->getOperand(1).getOperand(0); 10137 if (Val.getValueType() == MVT::f32) { 10138 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10139 DCI.AddToWorklist(Val.getNode()); 10140 } 10141 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10142 DCI.AddToWorklist(Val.getNode()); 10143 10144 SDValue Ops[] = { 10145 N->getOperand(0), Val, N->getOperand(2), 10146 DAG.getValueType(N->getOperand(1).getValueType()) 10147 }; 10148 10149 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10150 DAG.getVTList(MVT::Other), Ops, 10151 cast<StoreSDNode>(N)->getMemoryVT(), 10152 cast<StoreSDNode>(N)->getMemOperand()); 10153 DCI.AddToWorklist(Val.getNode()); 10154 return Val; 10155 } 10156 10157 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10158 if (cast<StoreSDNode>(N)->isUnindexed() && 10159 N->getOperand(1).getOpcode() == ISD::BSWAP && 10160 N->getOperand(1).getNode()->hasOneUse() && 10161 (N->getOperand(1).getValueType() == MVT::i32 || 10162 N->getOperand(1).getValueType() == MVT::i16 || 10163 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10164 N->getOperand(1).getValueType() == MVT::i64))) { 10165 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10166 // Do an any-extend to 32-bits if this is a half-word input. 10167 if (BSwapOp.getValueType() == MVT::i16) 10168 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10169 10170 SDValue Ops[] = { 10171 N->getOperand(0), BSwapOp, N->getOperand(2), 10172 DAG.getValueType(N->getOperand(1).getValueType()) 10173 }; 10174 return 10175 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10176 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10177 cast<StoreSDNode>(N)->getMemOperand()); 10178 } 10179 10180 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10181 EVT VT = N->getOperand(1).getValueType(); 10182 if (VT.isSimple()) { 10183 MVT StoreVT = VT.getSimpleVT(); 10184 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10185 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10186 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10187 return expandVSXStoreForLE(N, DCI); 10188 } 10189 break; 10190 } 10191 case ISD::LOAD: { 10192 LoadSDNode *LD = cast<LoadSDNode>(N); 10193 EVT VT = LD->getValueType(0); 10194 10195 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10196 if (VT.isSimple()) { 10197 MVT LoadVT = VT.getSimpleVT(); 10198 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10199 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10200 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10201 return expandVSXLoadForLE(N, DCI); 10202 } 10203 10204 EVT MemVT = LD->getMemoryVT(); 10205 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10206 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10207 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10208 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10209 if (LD->isUnindexed() && VT.isVector() && 10210 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10211 // P8 and later hardware should just use LOAD. 10212 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10213 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10214 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10215 LD->getAlignment() >= ScalarABIAlignment)) && 10216 LD->getAlignment() < ABIAlignment) { 10217 // This is a type-legal unaligned Altivec or QPX load. 10218 SDValue Chain = LD->getChain(); 10219 SDValue Ptr = LD->getBasePtr(); 10220 bool isLittleEndian = Subtarget.isLittleEndian(); 10221 10222 // This implements the loading of unaligned vectors as described in 10223 // the venerable Apple Velocity Engine overview. Specifically: 10224 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10225 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10226 // 10227 // The general idea is to expand a sequence of one or more unaligned 10228 // loads into an alignment-based permutation-control instruction (lvsl 10229 // or lvsr), a series of regular vector loads (which always truncate 10230 // their input address to an aligned address), and a series of 10231 // permutations. The results of these permutations are the requested 10232 // loaded values. The trick is that the last "extra" load is not taken 10233 // from the address you might suspect (sizeof(vector) bytes after the 10234 // last requested load), but rather sizeof(vector) - 1 bytes after the 10235 // last requested vector. The point of this is to avoid a page fault if 10236 // the base address happened to be aligned. This works because if the 10237 // base address is aligned, then adding less than a full vector length 10238 // will cause the last vector in the sequence to be (re)loaded. 10239 // Otherwise, the next vector will be fetched as you might suspect was 10240 // necessary. 10241 10242 // We might be able to reuse the permutation generation from 10243 // a different base address offset from this one by an aligned amount. 10244 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10245 // optimization later. 10246 Intrinsic::ID Intr, IntrLD, IntrPerm; 10247 MVT PermCntlTy, PermTy, LDTy; 10248 if (Subtarget.hasAltivec()) { 10249 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10250 Intrinsic::ppc_altivec_lvsl; 10251 IntrLD = Intrinsic::ppc_altivec_lvx; 10252 IntrPerm = Intrinsic::ppc_altivec_vperm; 10253 PermCntlTy = MVT::v16i8; 10254 PermTy = MVT::v4i32; 10255 LDTy = MVT::v4i32; 10256 } else { 10257 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10258 Intrinsic::ppc_qpx_qvlpcls; 10259 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10260 Intrinsic::ppc_qpx_qvlfs; 10261 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10262 PermCntlTy = MVT::v4f64; 10263 PermTy = MVT::v4f64; 10264 LDTy = MemVT.getSimpleVT(); 10265 } 10266 10267 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10268 10269 // Create the new MMO for the new base load. It is like the original MMO, 10270 // but represents an area in memory almost twice the vector size centered 10271 // on the original address. If the address is unaligned, we might start 10272 // reading up to (sizeof(vector)-1) bytes below the address of the 10273 // original unaligned load. 10274 MachineFunction &MF = DAG.getMachineFunction(); 10275 MachineMemOperand *BaseMMO = 10276 MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1, 10277 2*MemVT.getStoreSize()-1); 10278 10279 // Create the new base load. 10280 SDValue LDXIntID = 10281 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10282 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10283 SDValue BaseLoad = 10284 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10285 DAG.getVTList(PermTy, MVT::Other), 10286 BaseLoadOps, LDTy, BaseMMO); 10287 10288 // Note that the value of IncOffset (which is provided to the next 10289 // load's pointer info offset value, and thus used to calculate the 10290 // alignment), and the value of IncValue (which is actually used to 10291 // increment the pointer value) are different! This is because we 10292 // require the next load to appear to be aligned, even though it 10293 // is actually offset from the base pointer by a lesser amount. 10294 int IncOffset = VT.getSizeInBits() / 8; 10295 int IncValue = IncOffset; 10296 10297 // Walk (both up and down) the chain looking for another load at the real 10298 // (aligned) offset (the alignment of the other load does not matter in 10299 // this case). If found, then do not use the offset reduction trick, as 10300 // that will prevent the loads from being later combined (as they would 10301 // otherwise be duplicates). 10302 if (!findConsecutiveLoad(LD, DAG)) 10303 --IncValue; 10304 10305 SDValue Increment = 10306 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10307 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10308 10309 MachineMemOperand *ExtraMMO = 10310 MF.getMachineMemOperand(LD->getMemOperand(), 10311 1, 2*MemVT.getStoreSize()-1); 10312 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10313 SDValue ExtraLoad = 10314 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10315 DAG.getVTList(PermTy, MVT::Other), 10316 ExtraLoadOps, LDTy, ExtraMMO); 10317 10318 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10319 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10320 10321 // Because vperm has a big-endian bias, we must reverse the order 10322 // of the input vectors and complement the permute control vector 10323 // when generating little endian code. We have already handled the 10324 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10325 // and ExtraLoad here. 10326 SDValue Perm; 10327 if (isLittleEndian) 10328 Perm = BuildIntrinsicOp(IntrPerm, 10329 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10330 else 10331 Perm = BuildIntrinsicOp(IntrPerm, 10332 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10333 10334 if (VT != PermTy) 10335 Perm = Subtarget.hasAltivec() ? 10336 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10337 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10338 DAG.getTargetConstant(1, dl, MVT::i64)); 10339 // second argument is 1 because this rounding 10340 // is always exact. 10341 10342 // The output of the permutation is our loaded result, the TokenFactor is 10343 // our new chain. 10344 DCI.CombineTo(N, Perm, TF); 10345 return SDValue(N, 0); 10346 } 10347 } 10348 break; 10349 case ISD::INTRINSIC_WO_CHAIN: { 10350 bool isLittleEndian = Subtarget.isLittleEndian(); 10351 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10352 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10353 : Intrinsic::ppc_altivec_lvsl); 10354 if ((IID == Intr || 10355 IID == Intrinsic::ppc_qpx_qvlpcld || 10356 IID == Intrinsic::ppc_qpx_qvlpcls) && 10357 N->getOperand(1)->getOpcode() == ISD::ADD) { 10358 SDValue Add = N->getOperand(1); 10359 10360 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10361 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10362 10363 if (DAG.MaskedValueIsZero( 10364 Add->getOperand(1), 10365 APInt::getAllOnesValue(Bits /* alignment */) 10366 .zext( 10367 Add.getValueType().getScalarType().getSizeInBits()))) { 10368 SDNode *BasePtr = Add->getOperand(0).getNode(); 10369 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10370 UE = BasePtr->use_end(); 10371 UI != UE; ++UI) { 10372 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10373 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10374 // We've found another LVSL/LVSR, and this address is an aligned 10375 // multiple of that one. The results will be the same, so use the 10376 // one we've just found instead. 10377 10378 return SDValue(*UI, 0); 10379 } 10380 } 10381 } 10382 10383 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10384 SDNode *BasePtr = Add->getOperand(0).getNode(); 10385 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10386 UE = BasePtr->use_end(); UI != UE; ++UI) { 10387 if (UI->getOpcode() == ISD::ADD && 10388 isa<ConstantSDNode>(UI->getOperand(1)) && 10389 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10390 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10391 (1ULL << Bits) == 0) { 10392 SDNode *OtherAdd = *UI; 10393 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10394 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10395 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10396 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10397 return SDValue(*VI, 0); 10398 } 10399 } 10400 } 10401 } 10402 } 10403 } 10404 } 10405 10406 break; 10407 case ISD::INTRINSIC_W_CHAIN: { 10408 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10409 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10410 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10411 default: 10412 break; 10413 case Intrinsic::ppc_vsx_lxvw4x: 10414 case Intrinsic::ppc_vsx_lxvd2x: 10415 return expandVSXLoadForLE(N, DCI); 10416 } 10417 } 10418 break; 10419 } 10420 case ISD::INTRINSIC_VOID: { 10421 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10422 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10423 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10424 default: 10425 break; 10426 case Intrinsic::ppc_vsx_stxvw4x: 10427 case Intrinsic::ppc_vsx_stxvd2x: 10428 return expandVSXStoreForLE(N, DCI); 10429 } 10430 } 10431 break; 10432 } 10433 case ISD::BSWAP: 10434 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10435 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10436 N->getOperand(0).hasOneUse() && 10437 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10438 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10439 N->getValueType(0) == MVT::i64))) { 10440 SDValue Load = N->getOperand(0); 10441 LoadSDNode *LD = cast<LoadSDNode>(Load); 10442 // Create the byte-swapping load. 10443 SDValue Ops[] = { 10444 LD->getChain(), // Chain 10445 LD->getBasePtr(), // Ptr 10446 DAG.getValueType(N->getValueType(0)) // VT 10447 }; 10448 SDValue BSLoad = 10449 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10450 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10451 MVT::i64 : MVT::i32, MVT::Other), 10452 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10453 10454 // If this is an i16 load, insert the truncate. 10455 SDValue ResVal = BSLoad; 10456 if (N->getValueType(0) == MVT::i16) 10457 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10458 10459 // First, combine the bswap away. This makes the value produced by the 10460 // load dead. 10461 DCI.CombineTo(N, ResVal); 10462 10463 // Next, combine the load away, we give it a bogus result value but a real 10464 // chain result. The result value is dead because the bswap is dead. 10465 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10466 10467 // Return N so it doesn't get rechecked! 10468 return SDValue(N, 0); 10469 } 10470 10471 break; 10472 case PPCISD::VCMP: { 10473 // If a VCMPo node already exists with exactly the same operands as this 10474 // node, use its result instead of this node (VCMPo computes both a CR6 and 10475 // a normal output). 10476 // 10477 if (!N->getOperand(0).hasOneUse() && 10478 !N->getOperand(1).hasOneUse() && 10479 !N->getOperand(2).hasOneUse()) { 10480 10481 // Scan all of the users of the LHS, looking for VCMPo's that match. 10482 SDNode *VCMPoNode = nullptr; 10483 10484 SDNode *LHSN = N->getOperand(0).getNode(); 10485 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10486 UI != E; ++UI) 10487 if (UI->getOpcode() == PPCISD::VCMPo && 10488 UI->getOperand(1) == N->getOperand(1) && 10489 UI->getOperand(2) == N->getOperand(2) && 10490 UI->getOperand(0) == N->getOperand(0)) { 10491 VCMPoNode = *UI; 10492 break; 10493 } 10494 10495 // If there is no VCMPo node, or if the flag value has a single use, don't 10496 // transform this. 10497 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10498 break; 10499 10500 // Look at the (necessarily single) use of the flag value. If it has a 10501 // chain, this transformation is more complex. Note that multiple things 10502 // could use the value result, which we should ignore. 10503 SDNode *FlagUser = nullptr; 10504 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10505 FlagUser == nullptr; ++UI) { 10506 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10507 SDNode *User = *UI; 10508 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10509 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10510 FlagUser = User; 10511 break; 10512 } 10513 } 10514 } 10515 10516 // If the user is a MFOCRF instruction, we know this is safe. 10517 // Otherwise we give up for right now. 10518 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10519 return SDValue(VCMPoNode, 0); 10520 } 10521 break; 10522 } 10523 case ISD::BRCOND: { 10524 SDValue Cond = N->getOperand(1); 10525 SDValue Target = N->getOperand(2); 10526 10527 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10528 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10529 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10530 10531 // We now need to make the intrinsic dead (it cannot be instruction 10532 // selected). 10533 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10534 assert(Cond.getNode()->hasOneUse() && 10535 "Counter decrement has more than one use"); 10536 10537 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10538 N->getOperand(0), Target); 10539 } 10540 } 10541 break; 10542 case ISD::BR_CC: { 10543 // If this is a branch on an altivec predicate comparison, lower this so 10544 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10545 // lowering is done pre-legalize, because the legalizer lowers the predicate 10546 // compare down to code that is difficult to reassemble. 10547 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10548 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10549 10550 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10551 // value. If so, pass-through the AND to get to the intrinsic. 10552 if (LHS.getOpcode() == ISD::AND && 10553 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10554 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10555 Intrinsic::ppc_is_decremented_ctr_nonzero && 10556 isa<ConstantSDNode>(LHS.getOperand(1)) && 10557 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10558 isZero()) 10559 LHS = LHS.getOperand(0); 10560 10561 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10562 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10563 Intrinsic::ppc_is_decremented_ctr_nonzero && 10564 isa<ConstantSDNode>(RHS)) { 10565 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10566 "Counter decrement comparison is not EQ or NE"); 10567 10568 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10569 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10570 (CC == ISD::SETNE && !Val); 10571 10572 // We now need to make the intrinsic dead (it cannot be instruction 10573 // selected). 10574 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10575 assert(LHS.getNode()->hasOneUse() && 10576 "Counter decrement has more than one use"); 10577 10578 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10579 N->getOperand(0), N->getOperand(4)); 10580 } 10581 10582 int CompareOpc; 10583 bool isDot; 10584 10585 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10586 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10587 getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10588 assert(isDot && "Can't compare against a vector result!"); 10589 10590 // If this is a comparison against something other than 0/1, then we know 10591 // that the condition is never/always true. 10592 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10593 if (Val != 0 && Val != 1) { 10594 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10595 return N->getOperand(0); 10596 // Always !=, turn it into an unconditional branch. 10597 return DAG.getNode(ISD::BR, dl, MVT::Other, 10598 N->getOperand(0), N->getOperand(4)); 10599 } 10600 10601 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10602 10603 // Create the PPCISD altivec 'dot' comparison node. 10604 SDValue Ops[] = { 10605 LHS.getOperand(2), // LHS of compare 10606 LHS.getOperand(3), // RHS of compare 10607 DAG.getConstant(CompareOpc, dl, MVT::i32) 10608 }; 10609 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10610 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10611 10612 // Unpack the result based on how the target uses it. 10613 PPC::Predicate CompOpc; 10614 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10615 default: // Can't happen, don't crash on invalid number though. 10616 case 0: // Branch on the value of the EQ bit of CR6. 10617 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10618 break; 10619 case 1: // Branch on the inverted value of the EQ bit of CR6. 10620 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10621 break; 10622 case 2: // Branch on the value of the LT bit of CR6. 10623 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10624 break; 10625 case 3: // Branch on the inverted value of the LT bit of CR6. 10626 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10627 break; 10628 } 10629 10630 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10631 DAG.getConstant(CompOpc, dl, MVT::i32), 10632 DAG.getRegister(PPC::CR6, MVT::i32), 10633 N->getOperand(4), CompNode.getValue(1)); 10634 } 10635 break; 10636 } 10637 } 10638 10639 return SDValue(); 10640 } 10641 10642 SDValue 10643 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10644 SelectionDAG &DAG, 10645 std::vector<SDNode *> *Created) const { 10646 // fold (sdiv X, pow2) 10647 EVT VT = N->getValueType(0); 10648 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10649 return SDValue(); 10650 if ((VT != MVT::i32 && VT != MVT::i64) || 10651 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10652 return SDValue(); 10653 10654 SDLoc DL(N); 10655 SDValue N0 = N->getOperand(0); 10656 10657 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10658 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10659 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10660 10661 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10662 if (Created) 10663 Created->push_back(Op.getNode()); 10664 10665 if (IsNegPow2) { 10666 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10667 if (Created) 10668 Created->push_back(Op.getNode()); 10669 } 10670 10671 return Op; 10672 } 10673 10674 //===----------------------------------------------------------------------===// 10675 // Inline Assembly Support 10676 //===----------------------------------------------------------------------===// 10677 10678 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10679 APInt &KnownZero, 10680 APInt &KnownOne, 10681 const SelectionDAG &DAG, 10682 unsigned Depth) const { 10683 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10684 switch (Op.getOpcode()) { 10685 default: break; 10686 case PPCISD::LBRX: { 10687 // lhbrx is known to have the top bits cleared out. 10688 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10689 KnownZero = 0xFFFF0000; 10690 break; 10691 } 10692 case ISD::INTRINSIC_WO_CHAIN: { 10693 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10694 default: break; 10695 case Intrinsic::ppc_altivec_vcmpbfp_p: 10696 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10697 case Intrinsic::ppc_altivec_vcmpequb_p: 10698 case Intrinsic::ppc_altivec_vcmpequh_p: 10699 case Intrinsic::ppc_altivec_vcmpequw_p: 10700 case Intrinsic::ppc_altivec_vcmpequd_p: 10701 case Intrinsic::ppc_altivec_vcmpgefp_p: 10702 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10703 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10704 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10705 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10706 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10707 case Intrinsic::ppc_altivec_vcmpgtub_p: 10708 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10709 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10710 case Intrinsic::ppc_altivec_vcmpgtud_p: 10711 KnownZero = ~1U; // All bits but the low one are known to be zero. 10712 break; 10713 } 10714 } 10715 } 10716 } 10717 10718 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10719 switch (Subtarget.getDarwinDirective()) { 10720 default: break; 10721 case PPC::DIR_970: 10722 case PPC::DIR_PWR4: 10723 case PPC::DIR_PWR5: 10724 case PPC::DIR_PWR5X: 10725 case PPC::DIR_PWR6: 10726 case PPC::DIR_PWR6X: 10727 case PPC::DIR_PWR7: 10728 case PPC::DIR_PWR8: { 10729 if (!ML) 10730 break; 10731 10732 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10733 10734 // For small loops (between 5 and 8 instructions), align to a 32-byte 10735 // boundary so that the entire loop fits in one instruction-cache line. 10736 uint64_t LoopSize = 0; 10737 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10738 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10739 LoopSize += TII->GetInstSizeInBytes(J); 10740 10741 if (LoopSize > 16 && LoopSize <= 32) 10742 return 5; 10743 10744 break; 10745 } 10746 } 10747 10748 return TargetLowering::getPrefLoopAlignment(ML); 10749 } 10750 10751 /// getConstraintType - Given a constraint, return the type of 10752 /// constraint it is for this target. 10753 PPCTargetLowering::ConstraintType 10754 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10755 if (Constraint.size() == 1) { 10756 switch (Constraint[0]) { 10757 default: break; 10758 case 'b': 10759 case 'r': 10760 case 'f': 10761 case 'v': 10762 case 'y': 10763 return C_RegisterClass; 10764 case 'Z': 10765 // FIXME: While Z does indicate a memory constraint, it specifically 10766 // indicates an r+r address (used in conjunction with the 'y' modifier 10767 // in the replacement string). Currently, we're forcing the base 10768 // register to be r0 in the asm printer (which is interpreted as zero) 10769 // and forming the complete address in the second register. This is 10770 // suboptimal. 10771 return C_Memory; 10772 } 10773 } else if (Constraint == "wc") { // individual CR bits. 10774 return C_RegisterClass; 10775 } else if (Constraint == "wa" || Constraint == "wd" || 10776 Constraint == "wf" || Constraint == "ws") { 10777 return C_RegisterClass; // VSX registers. 10778 } 10779 return TargetLowering::getConstraintType(Constraint); 10780 } 10781 10782 /// Examine constraint type and operand type and determine a weight value. 10783 /// This object must already have been set up with the operand type 10784 /// and the current alternative constraint selected. 10785 TargetLowering::ConstraintWeight 10786 PPCTargetLowering::getSingleConstraintMatchWeight( 10787 AsmOperandInfo &info, const char *constraint) const { 10788 ConstraintWeight weight = CW_Invalid; 10789 Value *CallOperandVal = info.CallOperandVal; 10790 // If we don't have a value, we can't do a match, 10791 // but allow it at the lowest weight. 10792 if (!CallOperandVal) 10793 return CW_Default; 10794 Type *type = CallOperandVal->getType(); 10795 10796 // Look at the constraint type. 10797 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10798 return CW_Register; // an individual CR bit. 10799 else if ((StringRef(constraint) == "wa" || 10800 StringRef(constraint) == "wd" || 10801 StringRef(constraint) == "wf") && 10802 type->isVectorTy()) 10803 return CW_Register; 10804 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10805 return CW_Register; 10806 10807 switch (*constraint) { 10808 default: 10809 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10810 break; 10811 case 'b': 10812 if (type->isIntegerTy()) 10813 weight = CW_Register; 10814 break; 10815 case 'f': 10816 if (type->isFloatTy()) 10817 weight = CW_Register; 10818 break; 10819 case 'd': 10820 if (type->isDoubleTy()) 10821 weight = CW_Register; 10822 break; 10823 case 'v': 10824 if (type->isVectorTy()) 10825 weight = CW_Register; 10826 break; 10827 case 'y': 10828 weight = CW_Register; 10829 break; 10830 case 'Z': 10831 weight = CW_Memory; 10832 break; 10833 } 10834 return weight; 10835 } 10836 10837 std::pair<unsigned, const TargetRegisterClass *> 10838 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10839 StringRef Constraint, 10840 MVT VT) const { 10841 if (Constraint.size() == 1) { 10842 // GCC RS6000 Constraint Letters 10843 switch (Constraint[0]) { 10844 case 'b': // R1-R31 10845 if (VT == MVT::i64 && Subtarget.isPPC64()) 10846 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10847 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10848 case 'r': // R0-R31 10849 if (VT == MVT::i64 && Subtarget.isPPC64()) 10850 return std::make_pair(0U, &PPC::G8RCRegClass); 10851 return std::make_pair(0U, &PPC::GPRCRegClass); 10852 case 'f': 10853 if (VT == MVT::f32 || VT == MVT::i32) 10854 return std::make_pair(0U, &PPC::F4RCRegClass); 10855 if (VT == MVT::f64 || VT == MVT::i64) 10856 return std::make_pair(0U, &PPC::F8RCRegClass); 10857 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10858 return std::make_pair(0U, &PPC::QFRCRegClass); 10859 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10860 return std::make_pair(0U, &PPC::QSRCRegClass); 10861 break; 10862 case 'v': 10863 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10864 return std::make_pair(0U, &PPC::QFRCRegClass); 10865 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10866 return std::make_pair(0U, &PPC::QSRCRegClass); 10867 return std::make_pair(0U, &PPC::VRRCRegClass); 10868 case 'y': // crrc 10869 return std::make_pair(0U, &PPC::CRRCRegClass); 10870 } 10871 } else if (Constraint == "wc") { // an individual CR bit. 10872 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10873 } else if (Constraint == "wa" || Constraint == "wd" || 10874 Constraint == "wf") { 10875 return std::make_pair(0U, &PPC::VSRCRegClass); 10876 } else if (Constraint == "ws") { 10877 if (VT == MVT::f32) 10878 return std::make_pair(0U, &PPC::VSSRCRegClass); 10879 else 10880 return std::make_pair(0U, &PPC::VSFRCRegClass); 10881 } 10882 10883 std::pair<unsigned, const TargetRegisterClass *> R = 10884 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10885 10886 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10887 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10888 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10889 // register. 10890 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10891 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10892 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10893 PPC::GPRCRegClass.contains(R.first)) 10894 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10895 PPC::sub_32, &PPC::G8RCRegClass), 10896 &PPC::G8RCRegClass); 10897 10898 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10899 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10900 R.first = PPC::CR0; 10901 R.second = &PPC::CRRCRegClass; 10902 } 10903 10904 return R; 10905 } 10906 10907 10908 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10909 /// vector. If it is invalid, don't add anything to Ops. 10910 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10911 std::string &Constraint, 10912 std::vector<SDValue>&Ops, 10913 SelectionDAG &DAG) const { 10914 SDValue Result; 10915 10916 // Only support length 1 constraints. 10917 if (Constraint.length() > 1) return; 10918 10919 char Letter = Constraint[0]; 10920 switch (Letter) { 10921 default: break; 10922 case 'I': 10923 case 'J': 10924 case 'K': 10925 case 'L': 10926 case 'M': 10927 case 'N': 10928 case 'O': 10929 case 'P': { 10930 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10931 if (!CST) return; // Must be an immediate to match. 10932 SDLoc dl(Op); 10933 int64_t Value = CST->getSExtValue(); 10934 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10935 // numbers are printed as such. 10936 switch (Letter) { 10937 default: llvm_unreachable("Unknown constraint letter!"); 10938 case 'I': // "I" is a signed 16-bit constant. 10939 if (isInt<16>(Value)) 10940 Result = DAG.getTargetConstant(Value, dl, TCVT); 10941 break; 10942 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 10943 if (isShiftedUInt<16, 16>(Value)) 10944 Result = DAG.getTargetConstant(Value, dl, TCVT); 10945 break; 10946 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 10947 if (isShiftedInt<16, 16>(Value)) 10948 Result = DAG.getTargetConstant(Value, dl, TCVT); 10949 break; 10950 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 10951 if (isUInt<16>(Value)) 10952 Result = DAG.getTargetConstant(Value, dl, TCVT); 10953 break; 10954 case 'M': // "M" is a constant that is greater than 31. 10955 if (Value > 31) 10956 Result = DAG.getTargetConstant(Value, dl, TCVT); 10957 break; 10958 case 'N': // "N" is a positive constant that is an exact power of two. 10959 if (Value > 0 && isPowerOf2_64(Value)) 10960 Result = DAG.getTargetConstant(Value, dl, TCVT); 10961 break; 10962 case 'O': // "O" is the constant zero. 10963 if (Value == 0) 10964 Result = DAG.getTargetConstant(Value, dl, TCVT); 10965 break; 10966 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 10967 if (isInt<16>(-Value)) 10968 Result = DAG.getTargetConstant(Value, dl, TCVT); 10969 break; 10970 } 10971 break; 10972 } 10973 } 10974 10975 if (Result.getNode()) { 10976 Ops.push_back(Result); 10977 return; 10978 } 10979 10980 // Handle standard constraint letters. 10981 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10982 } 10983 10984 // isLegalAddressingMode - Return true if the addressing mode represented 10985 // by AM is legal for this target, for a load/store of the specified type. 10986 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 10987 const AddrMode &AM, Type *Ty, 10988 unsigned AS) const { 10989 // PPC does not allow r+i addressing modes for vectors! 10990 if (Ty->isVectorTy() && AM.BaseOffs != 0) 10991 return false; 10992 10993 // PPC allows a sign-extended 16-bit immediate field. 10994 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 10995 return false; 10996 10997 // No global is ever allowed as a base. 10998 if (AM.BaseGV) 10999 return false; 11000 11001 // PPC only support r+r, 11002 switch (AM.Scale) { 11003 case 0: // "r+i" or just "i", depending on HasBaseReg. 11004 break; 11005 case 1: 11006 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11007 return false; 11008 // Otherwise we have r+r or r+i. 11009 break; 11010 case 2: 11011 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11012 return false; 11013 // Allow 2*r as r+r. 11014 break; 11015 default: 11016 // No other scales are supported. 11017 return false; 11018 } 11019 11020 return true; 11021 } 11022 11023 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11024 SelectionDAG &DAG) const { 11025 MachineFunction &MF = DAG.getMachineFunction(); 11026 MachineFrameInfo *MFI = MF.getFrameInfo(); 11027 MFI->setReturnAddressIsTaken(true); 11028 11029 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11030 return SDValue(); 11031 11032 SDLoc dl(Op); 11033 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11034 11035 // Make sure the function does not optimize away the store of the RA to 11036 // the stack. 11037 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11038 FuncInfo->setLRStoreRequired(); 11039 bool isPPC64 = Subtarget.isPPC64(); 11040 auto PtrVT = getPointerTy(MF.getDataLayout()); 11041 11042 if (Depth > 0) { 11043 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11044 SDValue Offset = 11045 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11046 isPPC64 ? MVT::i64 : MVT::i32); 11047 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11048 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11049 MachinePointerInfo(), false, false, false, 0); 11050 } 11051 11052 // Just load the return address off the stack. 11053 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11054 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11055 MachinePointerInfo(), false, false, false, 0); 11056 } 11057 11058 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11059 SelectionDAG &DAG) const { 11060 SDLoc dl(Op); 11061 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11062 11063 MachineFunction &MF = DAG.getMachineFunction(); 11064 MachineFrameInfo *MFI = MF.getFrameInfo(); 11065 MFI->setFrameAddressIsTaken(true); 11066 11067 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11068 bool isPPC64 = PtrVT == MVT::i64; 11069 11070 // Naked functions never have a frame pointer, and so we use r1. For all 11071 // other functions, this decision must be delayed until during PEI. 11072 unsigned FrameReg; 11073 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11074 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11075 else 11076 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11077 11078 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11079 PtrVT); 11080 while (Depth--) 11081 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11082 FrameAddr, MachinePointerInfo(), false, false, 11083 false, 0); 11084 return FrameAddr; 11085 } 11086 11087 // FIXME? Maybe this could be a TableGen attribute on some registers and 11088 // this table could be generated automatically from RegInfo. 11089 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11090 SelectionDAG &DAG) const { 11091 bool isPPC64 = Subtarget.isPPC64(); 11092 bool isDarwinABI = Subtarget.isDarwinABI(); 11093 11094 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11095 (!isPPC64 && VT != MVT::i32)) 11096 report_fatal_error("Invalid register global variable type"); 11097 11098 bool is64Bit = isPPC64 && VT == MVT::i64; 11099 unsigned Reg = StringSwitch<unsigned>(RegName) 11100 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11101 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11102 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11103 (is64Bit ? PPC::X13 : PPC::R13)) 11104 .Default(0); 11105 11106 if (Reg) 11107 return Reg; 11108 report_fatal_error("Invalid register name global variable"); 11109 } 11110 11111 bool 11112 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11113 // The PowerPC target isn't yet aware of offsets. 11114 return false; 11115 } 11116 11117 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11118 const CallInst &I, 11119 unsigned Intrinsic) const { 11120 11121 switch (Intrinsic) { 11122 case Intrinsic::ppc_qpx_qvlfd: 11123 case Intrinsic::ppc_qpx_qvlfs: 11124 case Intrinsic::ppc_qpx_qvlfcd: 11125 case Intrinsic::ppc_qpx_qvlfcs: 11126 case Intrinsic::ppc_qpx_qvlfiwa: 11127 case Intrinsic::ppc_qpx_qvlfiwz: 11128 case Intrinsic::ppc_altivec_lvx: 11129 case Intrinsic::ppc_altivec_lvxl: 11130 case Intrinsic::ppc_altivec_lvebx: 11131 case Intrinsic::ppc_altivec_lvehx: 11132 case Intrinsic::ppc_altivec_lvewx: 11133 case Intrinsic::ppc_vsx_lxvd2x: 11134 case Intrinsic::ppc_vsx_lxvw4x: { 11135 EVT VT; 11136 switch (Intrinsic) { 11137 case Intrinsic::ppc_altivec_lvebx: 11138 VT = MVT::i8; 11139 break; 11140 case Intrinsic::ppc_altivec_lvehx: 11141 VT = MVT::i16; 11142 break; 11143 case Intrinsic::ppc_altivec_lvewx: 11144 VT = MVT::i32; 11145 break; 11146 case Intrinsic::ppc_vsx_lxvd2x: 11147 VT = MVT::v2f64; 11148 break; 11149 case Intrinsic::ppc_qpx_qvlfd: 11150 VT = MVT::v4f64; 11151 break; 11152 case Intrinsic::ppc_qpx_qvlfs: 11153 VT = MVT::v4f32; 11154 break; 11155 case Intrinsic::ppc_qpx_qvlfcd: 11156 VT = MVT::v2f64; 11157 break; 11158 case Intrinsic::ppc_qpx_qvlfcs: 11159 VT = MVT::v2f32; 11160 break; 11161 default: 11162 VT = MVT::v4i32; 11163 break; 11164 } 11165 11166 Info.opc = ISD::INTRINSIC_W_CHAIN; 11167 Info.memVT = VT; 11168 Info.ptrVal = I.getArgOperand(0); 11169 Info.offset = -VT.getStoreSize()+1; 11170 Info.size = 2*VT.getStoreSize()-1; 11171 Info.align = 1; 11172 Info.vol = false; 11173 Info.readMem = true; 11174 Info.writeMem = false; 11175 return true; 11176 } 11177 case Intrinsic::ppc_qpx_qvlfda: 11178 case Intrinsic::ppc_qpx_qvlfsa: 11179 case Intrinsic::ppc_qpx_qvlfcda: 11180 case Intrinsic::ppc_qpx_qvlfcsa: 11181 case Intrinsic::ppc_qpx_qvlfiwaa: 11182 case Intrinsic::ppc_qpx_qvlfiwza: { 11183 EVT VT; 11184 switch (Intrinsic) { 11185 case Intrinsic::ppc_qpx_qvlfda: 11186 VT = MVT::v4f64; 11187 break; 11188 case Intrinsic::ppc_qpx_qvlfsa: 11189 VT = MVT::v4f32; 11190 break; 11191 case Intrinsic::ppc_qpx_qvlfcda: 11192 VT = MVT::v2f64; 11193 break; 11194 case Intrinsic::ppc_qpx_qvlfcsa: 11195 VT = MVT::v2f32; 11196 break; 11197 default: 11198 VT = MVT::v4i32; 11199 break; 11200 } 11201 11202 Info.opc = ISD::INTRINSIC_W_CHAIN; 11203 Info.memVT = VT; 11204 Info.ptrVal = I.getArgOperand(0); 11205 Info.offset = 0; 11206 Info.size = VT.getStoreSize(); 11207 Info.align = 1; 11208 Info.vol = false; 11209 Info.readMem = true; 11210 Info.writeMem = false; 11211 return true; 11212 } 11213 case Intrinsic::ppc_qpx_qvstfd: 11214 case Intrinsic::ppc_qpx_qvstfs: 11215 case Intrinsic::ppc_qpx_qvstfcd: 11216 case Intrinsic::ppc_qpx_qvstfcs: 11217 case Intrinsic::ppc_qpx_qvstfiw: 11218 case Intrinsic::ppc_altivec_stvx: 11219 case Intrinsic::ppc_altivec_stvxl: 11220 case Intrinsic::ppc_altivec_stvebx: 11221 case Intrinsic::ppc_altivec_stvehx: 11222 case Intrinsic::ppc_altivec_stvewx: 11223 case Intrinsic::ppc_vsx_stxvd2x: 11224 case Intrinsic::ppc_vsx_stxvw4x: { 11225 EVT VT; 11226 switch (Intrinsic) { 11227 case Intrinsic::ppc_altivec_stvebx: 11228 VT = MVT::i8; 11229 break; 11230 case Intrinsic::ppc_altivec_stvehx: 11231 VT = MVT::i16; 11232 break; 11233 case Intrinsic::ppc_altivec_stvewx: 11234 VT = MVT::i32; 11235 break; 11236 case Intrinsic::ppc_vsx_stxvd2x: 11237 VT = MVT::v2f64; 11238 break; 11239 case Intrinsic::ppc_qpx_qvstfd: 11240 VT = MVT::v4f64; 11241 break; 11242 case Intrinsic::ppc_qpx_qvstfs: 11243 VT = MVT::v4f32; 11244 break; 11245 case Intrinsic::ppc_qpx_qvstfcd: 11246 VT = MVT::v2f64; 11247 break; 11248 case Intrinsic::ppc_qpx_qvstfcs: 11249 VT = MVT::v2f32; 11250 break; 11251 default: 11252 VT = MVT::v4i32; 11253 break; 11254 } 11255 11256 Info.opc = ISD::INTRINSIC_VOID; 11257 Info.memVT = VT; 11258 Info.ptrVal = I.getArgOperand(1); 11259 Info.offset = -VT.getStoreSize()+1; 11260 Info.size = 2*VT.getStoreSize()-1; 11261 Info.align = 1; 11262 Info.vol = false; 11263 Info.readMem = false; 11264 Info.writeMem = true; 11265 return true; 11266 } 11267 case Intrinsic::ppc_qpx_qvstfda: 11268 case Intrinsic::ppc_qpx_qvstfsa: 11269 case Intrinsic::ppc_qpx_qvstfcda: 11270 case Intrinsic::ppc_qpx_qvstfcsa: 11271 case Intrinsic::ppc_qpx_qvstfiwa: { 11272 EVT VT; 11273 switch (Intrinsic) { 11274 case Intrinsic::ppc_qpx_qvstfda: 11275 VT = MVT::v4f64; 11276 break; 11277 case Intrinsic::ppc_qpx_qvstfsa: 11278 VT = MVT::v4f32; 11279 break; 11280 case Intrinsic::ppc_qpx_qvstfcda: 11281 VT = MVT::v2f64; 11282 break; 11283 case Intrinsic::ppc_qpx_qvstfcsa: 11284 VT = MVT::v2f32; 11285 break; 11286 default: 11287 VT = MVT::v4i32; 11288 break; 11289 } 11290 11291 Info.opc = ISD::INTRINSIC_VOID; 11292 Info.memVT = VT; 11293 Info.ptrVal = I.getArgOperand(1); 11294 Info.offset = 0; 11295 Info.size = VT.getStoreSize(); 11296 Info.align = 1; 11297 Info.vol = false; 11298 Info.readMem = false; 11299 Info.writeMem = true; 11300 return true; 11301 } 11302 default: 11303 break; 11304 } 11305 11306 return false; 11307 } 11308 11309 /// getOptimalMemOpType - Returns the target specific optimal type for load 11310 /// and store operations as a result of memset, memcpy, and memmove 11311 /// lowering. If DstAlign is zero that means it's safe to destination 11312 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11313 /// means there isn't a need to check it against alignment requirement, 11314 /// probably because the source does not need to be loaded. If 'IsMemset' is 11315 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11316 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11317 /// source is constant so it does not need to be loaded. 11318 /// It returns EVT::Other if the type should be determined using generic 11319 /// target-independent logic. 11320 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11321 unsigned DstAlign, unsigned SrcAlign, 11322 bool IsMemset, bool ZeroMemset, 11323 bool MemcpyStrSrc, 11324 MachineFunction &MF) const { 11325 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11326 const Function *F = MF.getFunction(); 11327 // When expanding a memset, require at least two QPX instructions to cover 11328 // the cost of loading the value to be stored from the constant pool. 11329 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11330 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11331 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11332 return MVT::v4f64; 11333 } 11334 11335 // We should use Altivec/VSX loads and stores when available. For unaligned 11336 // addresses, unaligned VSX loads are only fast starting with the P8. 11337 if (Subtarget.hasAltivec() && Size >= 16 && 11338 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11339 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11340 return MVT::v4i32; 11341 } 11342 11343 if (Subtarget.isPPC64()) { 11344 return MVT::i64; 11345 } 11346 11347 return MVT::i32; 11348 } 11349 11350 /// \brief Returns true if it is beneficial to convert a load of a constant 11351 /// to just the constant itself. 11352 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11353 Type *Ty) const { 11354 assert(Ty->isIntegerTy()); 11355 11356 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11357 if (BitSize == 0 || BitSize > 64) 11358 return false; 11359 return true; 11360 } 11361 11362 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11363 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11364 return false; 11365 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11366 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11367 return NumBits1 == 64 && NumBits2 == 32; 11368 } 11369 11370 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11371 if (!VT1.isInteger() || !VT2.isInteger()) 11372 return false; 11373 unsigned NumBits1 = VT1.getSizeInBits(); 11374 unsigned NumBits2 = VT2.getSizeInBits(); 11375 return NumBits1 == 64 && NumBits2 == 32; 11376 } 11377 11378 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11379 // Generally speaking, zexts are not free, but they are free when they can be 11380 // folded with other operations. 11381 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11382 EVT MemVT = LD->getMemoryVT(); 11383 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11384 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11385 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11386 LD->getExtensionType() == ISD::ZEXTLOAD)) 11387 return true; 11388 } 11389 11390 // FIXME: Add other cases... 11391 // - 32-bit shifts with a zext to i64 11392 // - zext after ctlz, bswap, etc. 11393 // - zext after and by a constant mask 11394 11395 return TargetLowering::isZExtFree(Val, VT2); 11396 } 11397 11398 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11399 assert(VT.isFloatingPoint()); 11400 return true; 11401 } 11402 11403 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11404 return isInt<16>(Imm) || isUInt<16>(Imm); 11405 } 11406 11407 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11408 return isInt<16>(Imm) || isUInt<16>(Imm); 11409 } 11410 11411 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11412 unsigned, 11413 unsigned, 11414 bool *Fast) const { 11415 if (DisablePPCUnaligned) 11416 return false; 11417 11418 // PowerPC supports unaligned memory access for simple non-vector types. 11419 // Although accessing unaligned addresses is not as efficient as accessing 11420 // aligned addresses, it is generally more efficient than manual expansion, 11421 // and generally only traps for software emulation when crossing page 11422 // boundaries. 11423 11424 if (!VT.isSimple()) 11425 return false; 11426 11427 if (VT.getSimpleVT().isVector()) { 11428 if (Subtarget.hasVSX()) { 11429 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11430 VT != MVT::v4f32 && VT != MVT::v4i32) 11431 return false; 11432 } else { 11433 return false; 11434 } 11435 } 11436 11437 if (VT == MVT::ppcf128) 11438 return false; 11439 11440 if (Fast) 11441 *Fast = true; 11442 11443 return true; 11444 } 11445 11446 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11447 VT = VT.getScalarType(); 11448 11449 if (!VT.isSimple()) 11450 return false; 11451 11452 switch (VT.getSimpleVT().SimpleTy) { 11453 case MVT::f32: 11454 case MVT::f64: 11455 return true; 11456 default: 11457 break; 11458 } 11459 11460 return false; 11461 } 11462 11463 const MCPhysReg * 11464 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11465 // LR is a callee-save register, but we must treat it as clobbered by any call 11466 // site. Hence we include LR in the scratch registers, which are in turn added 11467 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11468 // to CTR, which is used by any indirect call. 11469 static const MCPhysReg ScratchRegs[] = { 11470 PPC::X12, PPC::LR8, PPC::CTR8, 0 11471 }; 11472 11473 return ScratchRegs; 11474 } 11475 11476 bool 11477 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11478 EVT VT , unsigned DefinedValues) const { 11479 if (VT == MVT::v2i64) 11480 return false; 11481 11482 if (Subtarget.hasQPX()) { 11483 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11484 return true; 11485 } 11486 11487 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11488 } 11489 11490 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11491 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11492 return TargetLowering::getSchedulingPreference(N); 11493 11494 return Sched::ILP; 11495 } 11496 11497 // Create a fast isel object. 11498 FastISel * 11499 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11500 const TargetLibraryInfo *LibInfo) const { 11501 return PPC::createFastISel(FuncInfo, LibInfo); 11502 } 11503