1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCPerfectShuffle.h"
19 #include "PPCTargetMachine.h"
20 #include "PPCTargetObjectFile.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 // FIXME: Remove this once soft-float is supported.
46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
48 
49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
51 
52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
54 
55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
57 
58 // FIXME: Remove this once the bug has been fixed!
59 extern cl::opt<bool> ANDIGlueBug;
60 
61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
62                                      const PPCSubtarget &STI)
63     : TargetLowering(TM), Subtarget(STI) {
64   // Use _setjmp/_longjmp instead of setjmp/longjmp.
65   setUseUnderscoreSetJmp(true);
66   setUseUnderscoreLongJmp(true);
67 
68   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
69   // arguments are at least 4/8 bytes aligned.
70   bool isPPC64 = Subtarget.isPPC64();
71   setMinStackArgumentAlignment(isPPC64 ? 8:4);
72 
73   // Set up the register classes.
74   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
75   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
76   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
77 
78   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
79   for (MVT VT : MVT::integer_valuetypes()) {
80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
81     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
82   }
83 
84   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
85 
86   // PowerPC has pre-inc load and store's.
87   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
88   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
89   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
90   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
92   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
94   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
100   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
101 
102   if (Subtarget.useCRBits()) {
103     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
104 
105     if (isPPC64 || Subtarget.hasFPCVT()) {
106       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
107       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
108                          isPPC64 ? MVT::i64 : MVT::i32);
109       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
110       AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
111                          isPPC64 ? MVT::i64 : MVT::i32);
112     } else {
113       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
114       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
115     }
116 
117     // PowerPC does not support direct load / store of condition registers
118     setOperationAction(ISD::LOAD, MVT::i1, Custom);
119     setOperationAction(ISD::STORE, MVT::i1, Custom);
120 
121     // FIXME: Remove this once the ANDI glue bug is fixed:
122     if (ANDIGlueBug)
123       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
124 
125     for (MVT VT : MVT::integer_valuetypes()) {
126       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
128       setTruncStoreAction(VT, MVT::i1, Expand);
129     }
130 
131     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
132   }
133 
134   // This is used in the ppcf128->int sequence.  Note it has different semantics
135   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
136   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
137 
138   // We do not currently implement these libm ops for PowerPC.
139   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
140   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
141   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
142   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
143   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
144   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
145 
146   // PowerPC has no SREM/UREM instructions
147   setOperationAction(ISD::SREM, MVT::i32, Expand);
148   setOperationAction(ISD::UREM, MVT::i32, Expand);
149   setOperationAction(ISD::SREM, MVT::i64, Expand);
150   setOperationAction(ISD::UREM, MVT::i64, Expand);
151 
152   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
153   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
154   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
155   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
156   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
157   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
158   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
159   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
160   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
161 
162   // We don't support sin/cos/sqrt/fmod/pow
163   setOperationAction(ISD::FSIN , MVT::f64, Expand);
164   setOperationAction(ISD::FCOS , MVT::f64, Expand);
165   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
166   setOperationAction(ISD::FREM , MVT::f64, Expand);
167   setOperationAction(ISD::FPOW , MVT::f64, Expand);
168   setOperationAction(ISD::FMA  , MVT::f64, Legal);
169   setOperationAction(ISD::FSIN , MVT::f32, Expand);
170   setOperationAction(ISD::FCOS , MVT::f32, Expand);
171   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
172   setOperationAction(ISD::FREM , MVT::f32, Expand);
173   setOperationAction(ISD::FPOW , MVT::f32, Expand);
174   setOperationAction(ISD::FMA  , MVT::f32, Legal);
175 
176   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
177 
178   // If we're enabling GP optimizations, use hardware square root
179   if (!Subtarget.hasFSQRT() &&
180       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
181         Subtarget.hasFRE()))
182     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
183 
184   if (!Subtarget.hasFSQRT() &&
185       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
186         Subtarget.hasFRES()))
187     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
188 
189   if (Subtarget.hasFCPSGN()) {
190     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
191     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
192   } else {
193     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
194     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
195   }
196 
197   if (Subtarget.hasFPRND()) {
198     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
199     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
200     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
201     setOperationAction(ISD::FROUND, MVT::f64, Legal);
202 
203     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
204     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
205     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
206     setOperationAction(ISD::FROUND, MVT::f32, Legal);
207   }
208 
209   // PowerPC does not have BSWAP, CTPOP or CTTZ
210   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
211   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
212   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
213   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
214   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
215   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
216   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
217   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
218 
219   if (Subtarget.hasPOPCNTD()) {
220     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
221     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
222   } else {
223     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
224     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
225   }
226 
227   // PowerPC does not have ROTR
228   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
229   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
230 
231   if (!Subtarget.useCRBits()) {
232     // PowerPC does not have Select
233     setOperationAction(ISD::SELECT, MVT::i32, Expand);
234     setOperationAction(ISD::SELECT, MVT::i64, Expand);
235     setOperationAction(ISD::SELECT, MVT::f32, Expand);
236     setOperationAction(ISD::SELECT, MVT::f64, Expand);
237   }
238 
239   // PowerPC wants to turn select_cc of FP into fsel when possible.
240   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
241   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
242 
243   // PowerPC wants to optimize integer setcc a bit
244   if (!Subtarget.useCRBits())
245     setOperationAction(ISD::SETCC, MVT::i32, Custom);
246 
247   // PowerPC does not have BRCOND which requires SetCC
248   if (!Subtarget.useCRBits())
249     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
250 
251   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
252 
253   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
254   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
255 
256   // PowerPC does not have [U|S]INT_TO_FP
257   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
258   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
259 
260   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
261   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
262   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
263   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
264 
265   // We cannot sextinreg(i1).  Expand to shifts.
266   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
267 
268   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
269   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
270   // support continuation, user-level threading, and etc.. As a result, no
271   // other SjLj exception interfaces are implemented and please don't build
272   // your own exception handling based on them.
273   // LLVM/Clang supports zero-cost DWARF exception handling.
274   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
275   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
276 
277   // We want to legalize GlobalAddress and ConstantPool nodes into the
278   // appropriate instructions to materialize the address.
279   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
280   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
281   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
282   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
283   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
284   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
285   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
287   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
288   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
289 
290   // TRAP is legal.
291   setOperationAction(ISD::TRAP, MVT::Other, Legal);
292 
293   // TRAMPOLINE is custom lowered.
294   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
295   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
296 
297   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
299 
300   if (Subtarget.isSVR4ABI()) {
301     if (isPPC64) {
302       // VAARG always uses double-word chunks, so promote anything smaller.
303       setOperationAction(ISD::VAARG, MVT::i1, Promote);
304       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
305       setOperationAction(ISD::VAARG, MVT::i8, Promote);
306       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
307       setOperationAction(ISD::VAARG, MVT::i16, Promote);
308       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
309       setOperationAction(ISD::VAARG, MVT::i32, Promote);
310       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
311       setOperationAction(ISD::VAARG, MVT::Other, Expand);
312     } else {
313       // VAARG is custom lowered with the 32-bit SVR4 ABI.
314       setOperationAction(ISD::VAARG, MVT::Other, Custom);
315       setOperationAction(ISD::VAARG, MVT::i64, Custom);
316     }
317   } else
318     setOperationAction(ISD::VAARG, MVT::Other, Expand);
319 
320   if (Subtarget.isSVR4ABI() && !isPPC64)
321     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
322     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
323   else
324     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
325 
326   // Use the default implementation.
327   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
328   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
329   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
331   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
332 
333   // We want to custom lower some of our intrinsics.
334   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
335 
336   // To handle counter-based loop conditions.
337   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
338 
339   // Comparisons that require checking two conditions.
340   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
341   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
342   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
343   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
344   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
345   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
346   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
347   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
348   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
349   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
350   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
351   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
352 
353   if (Subtarget.has64BitSupport()) {
354     // They also have instructions for converting between i64 and fp.
355     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
356     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
357     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
358     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
359     // This is just the low 32 bits of a (signed) fp->i64 conversion.
360     // We cannot do this with Promote because i64 is not a legal type.
361     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
362 
363     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
364       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
365   } else {
366     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
367     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
368   }
369 
370   // With the instructions enabled under FPCVT, we can do everything.
371   if (Subtarget.hasFPCVT()) {
372     if (Subtarget.has64BitSupport()) {
373       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
374       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
375       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
376       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
377     }
378 
379     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
380     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
383   }
384 
385   if (Subtarget.use64BitRegs()) {
386     // 64-bit PowerPC implementations can support i64 types directly
387     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
388     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
389     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
390     // 64-bit PowerPC wants to expand i128 shifts itself.
391     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
392     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
393     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
394   } else {
395     // 32-bit PowerPC wants to expand i64 shifts itself.
396     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
397     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
398     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
399   }
400 
401   if (Subtarget.hasAltivec()) {
402     // First set operation action for all vector types to expand. Then we
403     // will selectively turn on ones that can be effectively codegen'd.
404     for (MVT VT : MVT::vector_valuetypes()) {
405       // add/sub are legal for all supported vector VT's.
406       setOperationAction(ISD::ADD , VT, Legal);
407       setOperationAction(ISD::SUB , VT, Legal);
408 
409       // Vector instructions introduced in P8
410       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
411         setOperationAction(ISD::CTPOP, VT, Legal);
412         setOperationAction(ISD::CTLZ, VT, Legal);
413       }
414       else {
415         setOperationAction(ISD::CTPOP, VT, Expand);
416         setOperationAction(ISD::CTLZ, VT, Expand);
417       }
418 
419       // We promote all shuffles to v16i8.
420       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
421       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
422 
423       // We promote all non-typed operations to v4i32.
424       setOperationAction(ISD::AND   , VT, Promote);
425       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
426       setOperationAction(ISD::OR    , VT, Promote);
427       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
428       setOperationAction(ISD::XOR   , VT, Promote);
429       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
430       setOperationAction(ISD::LOAD  , VT, Promote);
431       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
432       setOperationAction(ISD::SELECT, VT, Promote);
433       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
434       setOperationAction(ISD::STORE, VT, Promote);
435       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
436 
437       // No other operations are legal.
438       setOperationAction(ISD::MUL , VT, Expand);
439       setOperationAction(ISD::SDIV, VT, Expand);
440       setOperationAction(ISD::SREM, VT, Expand);
441       setOperationAction(ISD::UDIV, VT, Expand);
442       setOperationAction(ISD::UREM, VT, Expand);
443       setOperationAction(ISD::FDIV, VT, Expand);
444       setOperationAction(ISD::FREM, VT, Expand);
445       setOperationAction(ISD::FNEG, VT, Expand);
446       setOperationAction(ISD::FSQRT, VT, Expand);
447       setOperationAction(ISD::FLOG, VT, Expand);
448       setOperationAction(ISD::FLOG10, VT, Expand);
449       setOperationAction(ISD::FLOG2, VT, Expand);
450       setOperationAction(ISD::FEXP, VT, Expand);
451       setOperationAction(ISD::FEXP2, VT, Expand);
452       setOperationAction(ISD::FSIN, VT, Expand);
453       setOperationAction(ISD::FCOS, VT, Expand);
454       setOperationAction(ISD::FABS, VT, Expand);
455       setOperationAction(ISD::FPOWI, VT, Expand);
456       setOperationAction(ISD::FFLOOR, VT, Expand);
457       setOperationAction(ISD::FCEIL,  VT, Expand);
458       setOperationAction(ISD::FTRUNC, VT, Expand);
459       setOperationAction(ISD::FRINT,  VT, Expand);
460       setOperationAction(ISD::FNEARBYINT, VT, Expand);
461       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
462       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
463       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
464       setOperationAction(ISD::MULHU, VT, Expand);
465       setOperationAction(ISD::MULHS, VT, Expand);
466       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
467       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
468       setOperationAction(ISD::UDIVREM, VT, Expand);
469       setOperationAction(ISD::SDIVREM, VT, Expand);
470       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
471       setOperationAction(ISD::FPOW, VT, Expand);
472       setOperationAction(ISD::BSWAP, VT, Expand);
473       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
474       setOperationAction(ISD::CTTZ, VT, Expand);
475       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
476       setOperationAction(ISD::VSELECT, VT, Expand);
477       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
478 
479       for (MVT InnerVT : MVT::vector_valuetypes()) {
480         setTruncStoreAction(VT, InnerVT, Expand);
481         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
482         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
483         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
484       }
485     }
486 
487     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
488     // with merges, splats, etc.
489     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
490 
491     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
492     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
493     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
494     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
495     setOperationAction(ISD::SELECT, MVT::v4i32,
496                        Subtarget.useCRBits() ? Legal : Expand);
497     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
498     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
499     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
500     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
501     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
502     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
503     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
504     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
505     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
506 
507     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
508     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
509     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
510     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
511 
512     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
513     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
514 
515     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
516       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
517       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
518     }
519 
520 
521     if (Subtarget.hasP8Altivec())
522       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
523     else
524       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
525 
526     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
527     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
528 
529     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
530     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
531 
532     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
533     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
534     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
535     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
536 
537     // Altivec does not contain unordered floating-point compare instructions
538     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
539     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
540     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
541     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
542 
543     if (Subtarget.hasVSX()) {
544       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
545       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
546 
547       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
548       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
549       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
550       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
551       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
552 
553       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
554 
555       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
556       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
557 
558       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
559       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
560 
561       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
562       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
563       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
564       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
565       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
566 
567       // Share the Altivec comparison restrictions.
568       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
569       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
570       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
571       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
572 
573       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
574       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
575 
576       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
577 
578       if (Subtarget.hasP8Vector())
579         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
580 
581       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
582 
583       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
584       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
585       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
586 
587       if (Subtarget.hasP8Altivec()) {
588         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
589         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
590         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
591 
592         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
593       }
594       else {
595         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
596         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
597         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
598 
599         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
600 
601         // VSX v2i64 only supports non-arithmetic operations.
602         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
603         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
604       }
605 
606       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
607       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
608       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
609       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
610 
611       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
612 
613       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
614       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
615       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
616       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
617 
618       // Vector operation legalization checks the result type of
619       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
620       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
621       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
622       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
623       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
624 
625       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
626     }
627 
628     if (Subtarget.hasP8Altivec()) {
629       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
630       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
631     }
632   }
633 
634   if (Subtarget.hasQPX()) {
635     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
636     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
637     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
638     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
639 
640     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
641     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
642 
643     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
644     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
645 
646     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
647     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
648 
649     if (!Subtarget.useCRBits())
650       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
651     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
652 
653     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
654     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
655     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
656     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
657     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
658     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
659     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
660 
661     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
662     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
663 
664     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
665     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
666     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
667 
668     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
669     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
670     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
671     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
672     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
673     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
674     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
675     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
676     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
677     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
678     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
679 
680     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
681     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
682 
683     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
684     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
685 
686     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
687 
688     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
689     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
690     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
691     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
692 
693     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
694     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
695 
696     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
697     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
698 
699     if (!Subtarget.useCRBits())
700       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
701     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
702 
703     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
704     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
705     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
706     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
707     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
708     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
709     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
710 
711     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
712     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
713 
714     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
715     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
716     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
717     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
718     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
719     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
720     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
721     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
722     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
723     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
724     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
725 
726     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
727     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
728 
729     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
730     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
731 
732     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
733 
734     setOperationAction(ISD::AND , MVT::v4i1, Legal);
735     setOperationAction(ISD::OR , MVT::v4i1, Legal);
736     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
737 
738     if (!Subtarget.useCRBits())
739       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
740     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
741 
742     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
743     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
744 
745     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
746     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
747     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
748     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
749     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
750     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
751     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
752 
753     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
754     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
755 
756     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
757 
758     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
759     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
760     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
761     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
762 
763     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
764     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
765     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
766     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
767 
768     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
769     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
770 
771     // These need to set FE_INEXACT, and so cannot be vectorized here.
772     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
773     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
774 
775     if (TM.Options.UnsafeFPMath) {
776       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
777       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
778 
779       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
780       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
781     } else {
782       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
783       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
784 
785       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
786       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
787     }
788   }
789 
790   if (Subtarget.has64BitSupport())
791     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
792 
793   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
794 
795   if (!isPPC64) {
796     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
797     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
798   }
799 
800   setBooleanContents(ZeroOrOneBooleanContent);
801 
802   if (Subtarget.hasAltivec()) {
803     // Altivec instructions set fields to all zeros or all ones.
804     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
805   }
806 
807   if (!isPPC64) {
808     // These libcalls are not available in 32-bit.
809     setLibcallName(RTLIB::SHL_I128, nullptr);
810     setLibcallName(RTLIB::SRL_I128, nullptr);
811     setLibcallName(RTLIB::SRA_I128, nullptr);
812   }
813 
814   if (isPPC64) {
815     setStackPointerRegisterToSaveRestore(PPC::X1);
816     setExceptionPointerRegister(PPC::X3);
817     setExceptionSelectorRegister(PPC::X4);
818   } else {
819     setStackPointerRegisterToSaveRestore(PPC::R1);
820     setExceptionPointerRegister(PPC::R3);
821     setExceptionSelectorRegister(PPC::R4);
822   }
823 
824   // We have target-specific dag combine patterns for the following nodes:
825   setTargetDAGCombine(ISD::SINT_TO_FP);
826   if (Subtarget.hasFPCVT())
827     setTargetDAGCombine(ISD::UINT_TO_FP);
828   setTargetDAGCombine(ISD::LOAD);
829   setTargetDAGCombine(ISD::STORE);
830   setTargetDAGCombine(ISD::BR_CC);
831   if (Subtarget.useCRBits())
832     setTargetDAGCombine(ISD::BRCOND);
833   setTargetDAGCombine(ISD::BSWAP);
834   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
835   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
836   setTargetDAGCombine(ISD::INTRINSIC_VOID);
837 
838   setTargetDAGCombine(ISD::SIGN_EXTEND);
839   setTargetDAGCombine(ISD::ZERO_EXTEND);
840   setTargetDAGCombine(ISD::ANY_EXTEND);
841 
842   if (Subtarget.useCRBits()) {
843     setTargetDAGCombine(ISD::TRUNCATE);
844     setTargetDAGCombine(ISD::SETCC);
845     setTargetDAGCombine(ISD::SELECT_CC);
846   }
847 
848   // Use reciprocal estimates.
849   if (TM.Options.UnsafeFPMath) {
850     setTargetDAGCombine(ISD::FDIV);
851     setTargetDAGCombine(ISD::FSQRT);
852   }
853 
854   // Darwin long double math library functions have $LDBL128 appended.
855   if (Subtarget.isDarwin()) {
856     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
857     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
858     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
859     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
860     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
861     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
862     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
863     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
864     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
865     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
866   }
867 
868   // With 32 condition bits, we don't need to sink (and duplicate) compares
869   // aggressively in CodeGenPrep.
870   if (Subtarget.useCRBits()) {
871     setHasMultipleConditionRegisters();
872     setJumpIsExpensive();
873   }
874 
875   setMinFunctionAlignment(2);
876   if (Subtarget.isDarwin())
877     setPrefFunctionAlignment(4);
878 
879   switch (Subtarget.getDarwinDirective()) {
880   default: break;
881   case PPC::DIR_970:
882   case PPC::DIR_A2:
883   case PPC::DIR_E500mc:
884   case PPC::DIR_E5500:
885   case PPC::DIR_PWR4:
886   case PPC::DIR_PWR5:
887   case PPC::DIR_PWR5X:
888   case PPC::DIR_PWR6:
889   case PPC::DIR_PWR6X:
890   case PPC::DIR_PWR7:
891   case PPC::DIR_PWR8:
892     setPrefFunctionAlignment(4);
893     setPrefLoopAlignment(4);
894     break;
895   }
896 
897   setInsertFencesForAtomic(true);
898 
899   if (Subtarget.enableMachineScheduler())
900     setSchedulingPreference(Sched::Source);
901   else
902     setSchedulingPreference(Sched::Hybrid);
903 
904   computeRegisterProperties(STI.getRegisterInfo());
905 
906   // The Freescale cores do better with aggressive inlining of memcpy and
907   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
908   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
909       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
910     MaxStoresPerMemset = 32;
911     MaxStoresPerMemsetOptSize = 16;
912     MaxStoresPerMemcpy = 32;
913     MaxStoresPerMemcpyOptSize = 8;
914     MaxStoresPerMemmove = 32;
915     MaxStoresPerMemmoveOptSize = 8;
916   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
917     // The A2 also benefits from (very) aggressive inlining of memcpy and
918     // friends. The overhead of a the function call, even when warm, can be
919     // over one hundred cycles.
920     MaxStoresPerMemset = 128;
921     MaxStoresPerMemcpy = 128;
922     MaxStoresPerMemmove = 128;
923   }
924 }
925 
926 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
927 /// the desired ByVal argument alignment.
928 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
929                              unsigned MaxMaxAlign) {
930   if (MaxAlign == MaxMaxAlign)
931     return;
932   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
933     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
934       MaxAlign = 32;
935     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
936       MaxAlign = 16;
937   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
938     unsigned EltAlign = 0;
939     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
940     if (EltAlign > MaxAlign)
941       MaxAlign = EltAlign;
942   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
943     for (auto *EltTy : STy->elements()) {
944       unsigned EltAlign = 0;
945       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
946       if (EltAlign > MaxAlign)
947         MaxAlign = EltAlign;
948       if (MaxAlign == MaxMaxAlign)
949         break;
950     }
951   }
952 }
953 
954 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
955 /// function arguments in the caller parameter area.
956 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
957                                                   const DataLayout &DL) const {
958   // Darwin passes everything on 4 byte boundary.
959   if (Subtarget.isDarwin())
960     return 4;
961 
962   // 16byte and wider vectors are passed on 16byte boundary.
963   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
964   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
965   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
966     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
967   return Align;
968 }
969 
970 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
971   switch ((PPCISD::NodeType)Opcode) {
972   case PPCISD::FIRST_NUMBER:    break;
973   case PPCISD::FSEL:            return "PPCISD::FSEL";
974   case PPCISD::FCFID:           return "PPCISD::FCFID";
975   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
976   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
977   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
978   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
979   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
980   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
981   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
982   case PPCISD::FRE:             return "PPCISD::FRE";
983   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
984   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
985   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
986   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
987   case PPCISD::VPERM:           return "PPCISD::VPERM";
988   case PPCISD::CMPB:            return "PPCISD::CMPB";
989   case PPCISD::Hi:              return "PPCISD::Hi";
990   case PPCISD::Lo:              return "PPCISD::Lo";
991   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
992   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
993   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
994   case PPCISD::SRL:             return "PPCISD::SRL";
995   case PPCISD::SRA:             return "PPCISD::SRA";
996   case PPCISD::SHL:             return "PPCISD::SHL";
997   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
998   case PPCISD::CALL:            return "PPCISD::CALL";
999   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1000   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1001   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1002   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1003   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1004   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1005   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1006   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1007   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1008   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1009   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1010   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1011   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1012   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1013   case PPCISD::VCMP:            return "PPCISD::VCMP";
1014   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1015   case PPCISD::LBRX:            return "PPCISD::LBRX";
1016   case PPCISD::STBRX:           return "PPCISD::STBRX";
1017   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1018   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1019   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1020   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1021   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1022   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1023   case PPCISD::BDZ:             return "PPCISD::BDZ";
1024   case PPCISD::MFFS:            return "PPCISD::MFFS";
1025   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1026   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1027   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1028   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1029   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1030   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1031   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1032   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1033   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1034   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1035   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1036   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1037   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1038   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1039   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1040   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1041   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1042   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1043   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1044   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1045   case PPCISD::SC:              return "PPCISD::SC";
1046   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1047   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1048   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1049   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1050   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1051   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1052   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1053   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1054   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1055   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1056   }
1057   return nullptr;
1058 }
1059 
1060 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1061                                           EVT VT) const {
1062   if (!VT.isVector())
1063     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1064 
1065   if (Subtarget.hasQPX())
1066     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1067 
1068   return VT.changeVectorElementTypeToInteger();
1069 }
1070 
1071 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1072   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1073   return true;
1074 }
1075 
1076 //===----------------------------------------------------------------------===//
1077 // Node matching predicates, for use by the tblgen matching code.
1078 //===----------------------------------------------------------------------===//
1079 
1080 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1081 static bool isFloatingPointZero(SDValue Op) {
1082   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1083     return CFP->getValueAPF().isZero();
1084   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1085     // Maybe this has already been legalized into the constant pool?
1086     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1087       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1088         return CFP->getValueAPF().isZero();
1089   }
1090   return false;
1091 }
1092 
1093 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1094 /// true if Op is undef or if it matches the specified value.
1095 static bool isConstantOrUndef(int Op, int Val) {
1096   return Op < 0 || Op == Val;
1097 }
1098 
1099 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1100 /// VPKUHUM instruction.
1101 /// The ShuffleKind distinguishes between big-endian operations with
1102 /// two different inputs (0), either-endian operations with two identical
1103 /// inputs (1), and little-endian operations with two different inputs (2).
1104 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1105 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1106                                SelectionDAG &DAG) {
1107   bool IsLE = DAG.getDataLayout().isLittleEndian();
1108   if (ShuffleKind == 0) {
1109     if (IsLE)
1110       return false;
1111     for (unsigned i = 0; i != 16; ++i)
1112       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1113         return false;
1114   } else if (ShuffleKind == 2) {
1115     if (!IsLE)
1116       return false;
1117     for (unsigned i = 0; i != 16; ++i)
1118       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1119         return false;
1120   } else if (ShuffleKind == 1) {
1121     unsigned j = IsLE ? 0 : 1;
1122     for (unsigned i = 0; i != 8; ++i)
1123       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1124           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1125         return false;
1126   }
1127   return true;
1128 }
1129 
1130 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1131 /// VPKUWUM instruction.
1132 /// The ShuffleKind distinguishes between big-endian operations with
1133 /// two different inputs (0), either-endian operations with two identical
1134 /// inputs (1), and little-endian operations with two different inputs (2).
1135 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1136 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1137                                SelectionDAG &DAG) {
1138   bool IsLE = DAG.getDataLayout().isLittleEndian();
1139   if (ShuffleKind == 0) {
1140     if (IsLE)
1141       return false;
1142     for (unsigned i = 0; i != 16; i += 2)
1143       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1144           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1145         return false;
1146   } else if (ShuffleKind == 2) {
1147     if (!IsLE)
1148       return false;
1149     for (unsigned i = 0; i != 16; i += 2)
1150       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1151           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1152         return false;
1153   } else if (ShuffleKind == 1) {
1154     unsigned j = IsLE ? 0 : 2;
1155     for (unsigned i = 0; i != 8; i += 2)
1156       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1157           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1158           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1159           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1160         return false;
1161   }
1162   return true;
1163 }
1164 
1165 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1166 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1167 /// current subtarget.
1168 ///
1169 /// The ShuffleKind distinguishes between big-endian operations with
1170 /// two different inputs (0), either-endian operations with two identical
1171 /// inputs (1), and little-endian operations with two different inputs (2).
1172 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1173 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1174                                SelectionDAG &DAG) {
1175   const PPCSubtarget& Subtarget =
1176     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1177   if (!Subtarget.hasP8Vector())
1178     return false;
1179 
1180   bool IsLE = DAG.getDataLayout().isLittleEndian();
1181   if (ShuffleKind == 0) {
1182     if (IsLE)
1183       return false;
1184     for (unsigned i = 0; i != 16; i += 4)
1185       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1186           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1187           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1188           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1189         return false;
1190   } else if (ShuffleKind == 2) {
1191     if (!IsLE)
1192       return false;
1193     for (unsigned i = 0; i != 16; i += 4)
1194       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1195           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1196           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1197           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1198         return false;
1199   } else if (ShuffleKind == 1) {
1200     unsigned j = IsLE ? 0 : 4;
1201     for (unsigned i = 0; i != 8; i += 4)
1202       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1203           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1204           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1205           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1206           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1207           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1208           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1209           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1210         return false;
1211   }
1212   return true;
1213 }
1214 
1215 /// isVMerge - Common function, used to match vmrg* shuffles.
1216 ///
1217 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1218                      unsigned LHSStart, unsigned RHSStart) {
1219   if (N->getValueType(0) != MVT::v16i8)
1220     return false;
1221   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1222          "Unsupported merge size!");
1223 
1224   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1225     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1226       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1227                              LHSStart+j+i*UnitSize) ||
1228           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1229                              RHSStart+j+i*UnitSize))
1230         return false;
1231     }
1232   return true;
1233 }
1234 
1235 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1236 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1237 /// The ShuffleKind distinguishes between big-endian merges with two
1238 /// different inputs (0), either-endian merges with two identical inputs (1),
1239 /// and little-endian merges with two different inputs (2).  For the latter,
1240 /// the input operands are swapped (see PPCInstrAltivec.td).
1241 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1242                              unsigned ShuffleKind, SelectionDAG &DAG) {
1243   if (DAG.getDataLayout().isLittleEndian()) {
1244     if (ShuffleKind == 1) // unary
1245       return isVMerge(N, UnitSize, 0, 0);
1246     else if (ShuffleKind == 2) // swapped
1247       return isVMerge(N, UnitSize, 0, 16);
1248     else
1249       return false;
1250   } else {
1251     if (ShuffleKind == 1) // unary
1252       return isVMerge(N, UnitSize, 8, 8);
1253     else if (ShuffleKind == 0) // normal
1254       return isVMerge(N, UnitSize, 8, 24);
1255     else
1256       return false;
1257   }
1258 }
1259 
1260 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1261 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1262 /// The ShuffleKind distinguishes between big-endian merges with two
1263 /// different inputs (0), either-endian merges with two identical inputs (1),
1264 /// and little-endian merges with two different inputs (2).  For the latter,
1265 /// the input operands are swapped (see PPCInstrAltivec.td).
1266 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1267                              unsigned ShuffleKind, SelectionDAG &DAG) {
1268   if (DAG.getDataLayout().isLittleEndian()) {
1269     if (ShuffleKind == 1) // unary
1270       return isVMerge(N, UnitSize, 8, 8);
1271     else if (ShuffleKind == 2) // swapped
1272       return isVMerge(N, UnitSize, 8, 24);
1273     else
1274       return false;
1275   } else {
1276     if (ShuffleKind == 1) // unary
1277       return isVMerge(N, UnitSize, 0, 0);
1278     else if (ShuffleKind == 0) // normal
1279       return isVMerge(N, UnitSize, 0, 16);
1280     else
1281       return false;
1282   }
1283 }
1284 
1285 /**
1286  * \brief Common function used to match vmrgew and vmrgow shuffles
1287  *
1288  * The indexOffset determines whether to look for even or odd words in
1289  * the shuffle mask. This is based on the of the endianness of the target
1290  * machine.
1291  *   - Little Endian:
1292  *     - Use offset of 0 to check for odd elements
1293  *     - Use offset of 4 to check for even elements
1294  *   - Big Endian:
1295  *     - Use offset of 0 to check for even elements
1296  *     - Use offset of 4 to check for odd elements
1297  * A detailed description of the vector element ordering for little endian and
1298  * big endian can be found at
1299  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1300  * Targeting your applications - what little endian and big endian IBM XL C/C++
1301  * compiler differences mean to you
1302  *
1303  * The mask to the shuffle vector instruction specifies the indices of the
1304  * elements from the two input vectors to place in the result. The elements are
1305  * numbered in array-access order, starting with the first vector. These vectors
1306  * are always of type v16i8, thus each vector will contain 16 elements of size
1307  * 8. More info on the shuffle vector can be found in the
1308  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1309  * Language Reference.
1310  *
1311  * The RHSStartValue indicates whether the same input vectors are used (unary)
1312  * or two different input vectors are used, based on the following:
1313  *   - If the instruction uses the same vector for both inputs, the range of the
1314  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1315  *     be 0.
1316  *   - If the instruction has two different vectors then the range of the
1317  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1318  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1319  *     to 31 specify elements in the second vector).
1320  *
1321  * \param[in] N The shuffle vector SD Node to analyze
1322  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1323  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1324  * vector to the shuffle_vector instruction
1325  * \return true iff this shuffle vector represents an even or odd word merge
1326  */
1327 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1328                      unsigned RHSStartValue) {
1329   if (N->getValueType(0) != MVT::v16i8)
1330     return false;
1331 
1332   for (unsigned i = 0; i < 2; ++i)
1333     for (unsigned j = 0; j < 4; ++j)
1334       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1335                              i*RHSStartValue+j+IndexOffset) ||
1336           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1337                              i*RHSStartValue+j+IndexOffset+8))
1338         return false;
1339   return true;
1340 }
1341 
1342 /**
1343  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1344  * vmrgow instructions.
1345  *
1346  * \param[in] N The shuffle vector SD Node to analyze
1347  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1348  * \param[in] ShuffleKind Identify the type of merge:
1349  *   - 0 = big-endian merge with two different inputs;
1350  *   - 1 = either-endian merge with two identical inputs;
1351  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1352  *     little-endian merges).
1353  * \param[in] DAG The current SelectionDAG
1354  * \return true iff this shuffle mask
1355  */
1356 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1357                               unsigned ShuffleKind, SelectionDAG &DAG) {
1358   if (DAG.getDataLayout().isLittleEndian()) {
1359     unsigned indexOffset = CheckEven ? 4 : 0;
1360     if (ShuffleKind == 1) // Unary
1361       return isVMerge(N, indexOffset, 0);
1362     else if (ShuffleKind == 2) // swapped
1363       return isVMerge(N, indexOffset, 16);
1364     else
1365       return false;
1366   }
1367   else {
1368     unsigned indexOffset = CheckEven ? 0 : 4;
1369     if (ShuffleKind == 1) // Unary
1370       return isVMerge(N, indexOffset, 0);
1371     else if (ShuffleKind == 0) // Normal
1372       return isVMerge(N, indexOffset, 16);
1373     else
1374       return false;
1375   }
1376   return false;
1377 }
1378 
1379 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1380 /// amount, otherwise return -1.
1381 /// The ShuffleKind distinguishes between big-endian operations with two
1382 /// different inputs (0), either-endian operations with two identical inputs
1383 /// (1), and little-endian operations with two different inputs (2).  For the
1384 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1385 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1386                              SelectionDAG &DAG) {
1387   if (N->getValueType(0) != MVT::v16i8)
1388     return -1;
1389 
1390   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1391 
1392   // Find the first non-undef value in the shuffle mask.
1393   unsigned i;
1394   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1395     /*search*/;
1396 
1397   if (i == 16) return -1;  // all undef.
1398 
1399   // Otherwise, check to see if the rest of the elements are consecutively
1400   // numbered from this value.
1401   unsigned ShiftAmt = SVOp->getMaskElt(i);
1402   if (ShiftAmt < i) return -1;
1403 
1404   ShiftAmt -= i;
1405   bool isLE = DAG.getDataLayout().isLittleEndian();
1406 
1407   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1408     // Check the rest of the elements to see if they are consecutive.
1409     for (++i; i != 16; ++i)
1410       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1411         return -1;
1412   } else if (ShuffleKind == 1) {
1413     // Check the rest of the elements to see if they are consecutive.
1414     for (++i; i != 16; ++i)
1415       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1416         return -1;
1417   } else
1418     return -1;
1419 
1420   if (isLE)
1421     ShiftAmt = 16 - ShiftAmt;
1422 
1423   return ShiftAmt;
1424 }
1425 
1426 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1427 /// specifies a splat of a single element that is suitable for input to
1428 /// VSPLTB/VSPLTH/VSPLTW.
1429 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1430   assert(N->getValueType(0) == MVT::v16i8 &&
1431          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1432 
1433   // The consecutive indices need to specify an element, not part of two
1434   // different elements.  So abandon ship early if this isn't the case.
1435   if (N->getMaskElt(0) % EltSize != 0)
1436     return false;
1437 
1438   // This is a splat operation if each element of the permute is the same, and
1439   // if the value doesn't reference the second vector.
1440   unsigned ElementBase = N->getMaskElt(0);
1441 
1442   // FIXME: Handle UNDEF elements too!
1443   if (ElementBase >= 16)
1444     return false;
1445 
1446   // Check that the indices are consecutive, in the case of a multi-byte element
1447   // splatted with a v16i8 mask.
1448   for (unsigned i = 1; i != EltSize; ++i)
1449     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1450       return false;
1451 
1452   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1453     if (N->getMaskElt(i) < 0) continue;
1454     for (unsigned j = 0; j != EltSize; ++j)
1455       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1456         return false;
1457   }
1458   return true;
1459 }
1460 
1461 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1462 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1463 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1464                                 SelectionDAG &DAG) {
1465   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1466   assert(isSplatShuffleMask(SVOp, EltSize));
1467   if (DAG.getDataLayout().isLittleEndian())
1468     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1469   else
1470     return SVOp->getMaskElt(0) / EltSize;
1471 }
1472 
1473 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1474 /// by using a vspltis[bhw] instruction of the specified element size, return
1475 /// the constant being splatted.  The ByteSize field indicates the number of
1476 /// bytes of each element [124] -> [bhw].
1477 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1478   SDValue OpVal(nullptr, 0);
1479 
1480   // If ByteSize of the splat is bigger than the element size of the
1481   // build_vector, then we have a case where we are checking for a splat where
1482   // multiple elements of the buildvector are folded together into a single
1483   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1484   unsigned EltSize = 16/N->getNumOperands();
1485   if (EltSize < ByteSize) {
1486     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1487     SDValue UniquedVals[4];
1488     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1489 
1490     // See if all of the elements in the buildvector agree across.
1491     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1492       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1493       // If the element isn't a constant, bail fully out.
1494       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1495 
1496 
1497       if (!UniquedVals[i&(Multiple-1)].getNode())
1498         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1499       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1500         return SDValue();  // no match.
1501     }
1502 
1503     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1504     // either constant or undef values that are identical for each chunk.  See
1505     // if these chunks can form into a larger vspltis*.
1506 
1507     // Check to see if all of the leading entries are either 0 or -1.  If
1508     // neither, then this won't fit into the immediate field.
1509     bool LeadingZero = true;
1510     bool LeadingOnes = true;
1511     for (unsigned i = 0; i != Multiple-1; ++i) {
1512       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1513 
1514       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1515       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1516     }
1517     // Finally, check the least significant entry.
1518     if (LeadingZero) {
1519       if (!UniquedVals[Multiple-1].getNode())
1520         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1521       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1522       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1523         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1524     }
1525     if (LeadingOnes) {
1526       if (!UniquedVals[Multiple-1].getNode())
1527         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1528       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1529       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1530         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1531     }
1532 
1533     return SDValue();
1534   }
1535 
1536   // Check to see if this buildvec has a single non-undef value in its elements.
1537   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1538     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1539     if (!OpVal.getNode())
1540       OpVal = N->getOperand(i);
1541     else if (OpVal != N->getOperand(i))
1542       return SDValue();
1543   }
1544 
1545   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1546 
1547   unsigned ValSizeInBytes = EltSize;
1548   uint64_t Value = 0;
1549   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1550     Value = CN->getZExtValue();
1551   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1552     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1553     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1554   }
1555 
1556   // If the splat value is larger than the element value, then we can never do
1557   // this splat.  The only case that we could fit the replicated bits into our
1558   // immediate field for would be zero, and we prefer to use vxor for it.
1559   if (ValSizeInBytes < ByteSize) return SDValue();
1560 
1561   // If the element value is larger than the splat value, check if it consists
1562   // of a repeated bit pattern of size ByteSize.
1563   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1564     return SDValue();
1565 
1566   // Properly sign extend the value.
1567   int MaskVal = SignExtend32(Value, ByteSize * 8);
1568 
1569   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1570   if (MaskVal == 0) return SDValue();
1571 
1572   // Finally, if this value fits in a 5 bit sext field, return it
1573   if (SignExtend32<5>(MaskVal) == MaskVal)
1574     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1575   return SDValue();
1576 }
1577 
1578 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1579 /// amount, otherwise return -1.
1580 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1581   EVT VT = N->getValueType(0);
1582   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1583     return -1;
1584 
1585   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1586 
1587   // Find the first non-undef value in the shuffle mask.
1588   unsigned i;
1589   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1590     /*search*/;
1591 
1592   if (i == 4) return -1;  // all undef.
1593 
1594   // Otherwise, check to see if the rest of the elements are consecutively
1595   // numbered from this value.
1596   unsigned ShiftAmt = SVOp->getMaskElt(i);
1597   if (ShiftAmt < i) return -1;
1598   ShiftAmt -= i;
1599 
1600   // Check the rest of the elements to see if they are consecutive.
1601   for (++i; i != 4; ++i)
1602     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1603       return -1;
1604 
1605   return ShiftAmt;
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 //  Addressing Mode Selection
1610 //===----------------------------------------------------------------------===//
1611 
1612 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1613 /// or 64-bit immediate, and if the value can be accurately represented as a
1614 /// sign extension from a 16-bit value.  If so, this returns true and the
1615 /// immediate.
1616 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1617   if (!isa<ConstantSDNode>(N))
1618     return false;
1619 
1620   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1621   if (N->getValueType(0) == MVT::i32)
1622     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1623   else
1624     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1625 }
1626 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1627   return isIntS16Immediate(Op.getNode(), Imm);
1628 }
1629 
1630 
1631 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1632 /// can be represented as an indexed [r+r] operation.  Returns false if it
1633 /// can be more efficiently represented with [r+imm].
1634 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1635                                             SDValue &Index,
1636                                             SelectionDAG &DAG) const {
1637   short imm = 0;
1638   if (N.getOpcode() == ISD::ADD) {
1639     if (isIntS16Immediate(N.getOperand(1), imm))
1640       return false;    // r+i
1641     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1642       return false;    // r+i
1643 
1644     Base = N.getOperand(0);
1645     Index = N.getOperand(1);
1646     return true;
1647   } else if (N.getOpcode() == ISD::OR) {
1648     if (isIntS16Immediate(N.getOperand(1), imm))
1649       return false;    // r+i can fold it if we can.
1650 
1651     // If this is an or of disjoint bitfields, we can codegen this as an add
1652     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1653     // disjoint.
1654     APInt LHSKnownZero, LHSKnownOne;
1655     APInt RHSKnownZero, RHSKnownOne;
1656     DAG.computeKnownBits(N.getOperand(0),
1657                          LHSKnownZero, LHSKnownOne);
1658 
1659     if (LHSKnownZero.getBoolValue()) {
1660       DAG.computeKnownBits(N.getOperand(1),
1661                            RHSKnownZero, RHSKnownOne);
1662       // If all of the bits are known zero on the LHS or RHS, the add won't
1663       // carry.
1664       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1665         Base = N.getOperand(0);
1666         Index = N.getOperand(1);
1667         return true;
1668       }
1669     }
1670   }
1671 
1672   return false;
1673 }
1674 
1675 // If we happen to be doing an i64 load or store into a stack slot that has
1676 // less than a 4-byte alignment, then the frame-index elimination may need to
1677 // use an indexed load or store instruction (because the offset may not be a
1678 // multiple of 4). The extra register needed to hold the offset comes from the
1679 // register scavenger, and it is possible that the scavenger will need to use
1680 // an emergency spill slot. As a result, we need to make sure that a spill slot
1681 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1682 // stack slot.
1683 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1684   // FIXME: This does not handle the LWA case.
1685   if (VT != MVT::i64)
1686     return;
1687 
1688   // NOTE: We'll exclude negative FIs here, which come from argument
1689   // lowering, because there are no known test cases triggering this problem
1690   // using packed structures (or similar). We can remove this exclusion if
1691   // we find such a test case. The reason why this is so test-case driven is
1692   // because this entire 'fixup' is only to prevent crashes (from the
1693   // register scavenger) on not-really-valid inputs. For example, if we have:
1694   //   %a = alloca i1
1695   //   %b = bitcast i1* %a to i64*
1696   //   store i64* a, i64 b
1697   // then the store should really be marked as 'align 1', but is not. If it
1698   // were marked as 'align 1' then the indexed form would have been
1699   // instruction-selected initially, and the problem this 'fixup' is preventing
1700   // won't happen regardless.
1701   if (FrameIdx < 0)
1702     return;
1703 
1704   MachineFunction &MF = DAG.getMachineFunction();
1705   MachineFrameInfo *MFI = MF.getFrameInfo();
1706 
1707   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1708   if (Align >= 4)
1709     return;
1710 
1711   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1712   FuncInfo->setHasNonRISpills();
1713 }
1714 
1715 /// Returns true if the address N can be represented by a base register plus
1716 /// a signed 16-bit displacement [r+imm], and if it is not better
1717 /// represented as reg+reg.  If Aligned is true, only accept displacements
1718 /// suitable for STD and friends, i.e. multiples of 4.
1719 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1720                                             SDValue &Base,
1721                                             SelectionDAG &DAG,
1722                                             bool Aligned) const {
1723   // FIXME dl should come from parent load or store, not from address
1724   SDLoc dl(N);
1725   // If this can be more profitably realized as r+r, fail.
1726   if (SelectAddressRegReg(N, Disp, Base, DAG))
1727     return false;
1728 
1729   if (N.getOpcode() == ISD::ADD) {
1730     short imm = 0;
1731     if (isIntS16Immediate(N.getOperand(1), imm) &&
1732         (!Aligned || (imm & 3) == 0)) {
1733       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1734       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1735         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1736         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1737       } else {
1738         Base = N.getOperand(0);
1739       }
1740       return true; // [r+i]
1741     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1742       // Match LOAD (ADD (X, Lo(G))).
1743       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1744              && "Cannot handle constant offsets yet!");
1745       Disp = N.getOperand(1).getOperand(0);  // The global address.
1746       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1747              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1748              Disp.getOpcode() == ISD::TargetConstantPool ||
1749              Disp.getOpcode() == ISD::TargetJumpTable);
1750       Base = N.getOperand(0);
1751       return true;  // [&g+r]
1752     }
1753   } else if (N.getOpcode() == ISD::OR) {
1754     short imm = 0;
1755     if (isIntS16Immediate(N.getOperand(1), imm) &&
1756         (!Aligned || (imm & 3) == 0)) {
1757       // If this is an or of disjoint bitfields, we can codegen this as an add
1758       // (for better address arithmetic) if the LHS and RHS of the OR are
1759       // provably disjoint.
1760       APInt LHSKnownZero, LHSKnownOne;
1761       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1762 
1763       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1764         // If all of the bits are known zero on the LHS or RHS, the add won't
1765         // carry.
1766         if (FrameIndexSDNode *FI =
1767               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1768           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1769           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1770         } else {
1771           Base = N.getOperand(0);
1772         }
1773         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1774         return true;
1775       }
1776     }
1777   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1778     // Loading from a constant address.
1779 
1780     // If this address fits entirely in a 16-bit sext immediate field, codegen
1781     // this as "d, 0"
1782     short Imm;
1783     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1784       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1785       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1786                              CN->getValueType(0));
1787       return true;
1788     }
1789 
1790     // Handle 32-bit sext immediates with LIS + addr mode.
1791     if ((CN->getValueType(0) == MVT::i32 ||
1792          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1793         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1794       int Addr = (int)CN->getZExtValue();
1795 
1796       // Otherwise, break this down into an LIS + disp.
1797       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1798 
1799       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1800                                    MVT::i32);
1801       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1802       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1803       return true;
1804     }
1805   }
1806 
1807   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1808   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1809     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1810     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1811   } else
1812     Base = N;
1813   return true;      // [r+0]
1814 }
1815 
1816 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1817 /// represented as an indexed [r+r] operation.
1818 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1819                                                 SDValue &Index,
1820                                                 SelectionDAG &DAG) const {
1821   // Check to see if we can easily represent this as an [r+r] address.  This
1822   // will fail if it thinks that the address is more profitably represented as
1823   // reg+imm, e.g. where imm = 0.
1824   if (SelectAddressRegReg(N, Base, Index, DAG))
1825     return true;
1826 
1827   // If the operand is an addition, always emit this as [r+r], since this is
1828   // better (for code size, and execution, as the memop does the add for free)
1829   // than emitting an explicit add.
1830   if (N.getOpcode() == ISD::ADD) {
1831     Base = N.getOperand(0);
1832     Index = N.getOperand(1);
1833     return true;
1834   }
1835 
1836   // Otherwise, do it the hard way, using R0 as the base register.
1837   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1838                          N.getValueType());
1839   Index = N;
1840   return true;
1841 }
1842 
1843 /// getPreIndexedAddressParts - returns true by value, base pointer and
1844 /// offset pointer and addressing mode by reference if the node's address
1845 /// can be legally represented as pre-indexed load / store address.
1846 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1847                                                   SDValue &Offset,
1848                                                   ISD::MemIndexedMode &AM,
1849                                                   SelectionDAG &DAG) const {
1850   if (DisablePPCPreinc) return false;
1851 
1852   bool isLoad = true;
1853   SDValue Ptr;
1854   EVT VT;
1855   unsigned Alignment;
1856   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1857     Ptr = LD->getBasePtr();
1858     VT = LD->getMemoryVT();
1859     Alignment = LD->getAlignment();
1860   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1861     Ptr = ST->getBasePtr();
1862     VT  = ST->getMemoryVT();
1863     Alignment = ST->getAlignment();
1864     isLoad = false;
1865   } else
1866     return false;
1867 
1868   // PowerPC doesn't have preinc load/store instructions for vectors (except
1869   // for QPX, which does have preinc r+r forms).
1870   if (VT.isVector()) {
1871     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1872       return false;
1873     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1874       AM = ISD::PRE_INC;
1875       return true;
1876     }
1877   }
1878 
1879   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1880 
1881     // Common code will reject creating a pre-inc form if the base pointer
1882     // is a frame index, or if N is a store and the base pointer is either
1883     // the same as or a predecessor of the value being stored.  Check for
1884     // those situations here, and try with swapped Base/Offset instead.
1885     bool Swap = false;
1886 
1887     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1888       Swap = true;
1889     else if (!isLoad) {
1890       SDValue Val = cast<StoreSDNode>(N)->getValue();
1891       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1892         Swap = true;
1893     }
1894 
1895     if (Swap)
1896       std::swap(Base, Offset);
1897 
1898     AM = ISD::PRE_INC;
1899     return true;
1900   }
1901 
1902   // LDU/STU can only handle immediates that are a multiple of 4.
1903   if (VT != MVT::i64) {
1904     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1905       return false;
1906   } else {
1907     // LDU/STU need an address with at least 4-byte alignment.
1908     if (Alignment < 4)
1909       return false;
1910 
1911     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1912       return false;
1913   }
1914 
1915   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1916     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1917     // sext i32 to i64 when addr mode is r+i.
1918     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1919         LD->getExtensionType() == ISD::SEXTLOAD &&
1920         isa<ConstantSDNode>(Offset))
1921       return false;
1922   }
1923 
1924   AM = ISD::PRE_INC;
1925   return true;
1926 }
1927 
1928 //===----------------------------------------------------------------------===//
1929 //  LowerOperation implementation
1930 //===----------------------------------------------------------------------===//
1931 
1932 /// GetLabelAccessInfo - Return true if we should reference labels using a
1933 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1934 static bool GetLabelAccessInfo(const TargetMachine &TM,
1935                                const PPCSubtarget &Subtarget,
1936                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1937                                const GlobalValue *GV = nullptr) {
1938   HiOpFlags = PPCII::MO_HA;
1939   LoOpFlags = PPCII::MO_LO;
1940 
1941   // Don't use the pic base if not in PIC relocation model.
1942   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1943 
1944   if (isPIC) {
1945     HiOpFlags |= PPCII::MO_PIC_FLAG;
1946     LoOpFlags |= PPCII::MO_PIC_FLAG;
1947   }
1948 
1949   // If this is a reference to a global value that requires a non-lazy-ptr, make
1950   // sure that instruction lowering adds it.
1951   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1952     HiOpFlags |= PPCII::MO_NLP_FLAG;
1953     LoOpFlags |= PPCII::MO_NLP_FLAG;
1954 
1955     if (GV->hasHiddenVisibility()) {
1956       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1957       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1958     }
1959   }
1960 
1961   return isPIC;
1962 }
1963 
1964 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1965                              SelectionDAG &DAG) {
1966   SDLoc DL(HiPart);
1967   EVT PtrVT = HiPart.getValueType();
1968   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1969 
1970   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1971   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1972 
1973   // With PIC, the first instruction is actually "GR+hi(&G)".
1974   if (isPIC)
1975     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1976                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1977 
1978   // Generate non-pic code that has direct accesses to the constant pool.
1979   // The address of the global is just (hi(&g)+lo(&g)).
1980   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1981 }
1982 
1983 static void setUsesTOCBasePtr(MachineFunction &MF) {
1984   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1985   FuncInfo->setUsesTOCBasePtr();
1986 }
1987 
1988 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
1989   setUsesTOCBasePtr(DAG.getMachineFunction());
1990 }
1991 
1992 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
1993                            SDValue GA) {
1994   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1995   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
1996                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
1997 
1998   SDValue Ops[] = { GA, Reg };
1999   return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl,
2000                                  DAG.getVTList(VT, MVT::Other), Ops, VT,
2001                                  MachinePointerInfo::getGOT(), 0, false, true,
2002                                  false, 0);
2003 }
2004 
2005 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2006                                              SelectionDAG &DAG) const {
2007   EVT PtrVT = Op.getValueType();
2008   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2009   const Constant *C = CP->getConstVal();
2010 
2011   // 64-bit SVR4 ABI code is always position-independent.
2012   // The actual address of the GlobalValue is stored in the TOC.
2013   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2014     setUsesTOCBasePtr(DAG);
2015     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2016     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2017   }
2018 
2019   unsigned MOHiFlag, MOLoFlag;
2020   bool isPIC =
2021       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2022 
2023   if (isPIC && Subtarget.isSVR4ABI()) {
2024     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2025                                            PPCII::MO_PIC_FLAG);
2026     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2027   }
2028 
2029   SDValue CPIHi =
2030     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2031   SDValue CPILo =
2032     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2033   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
2034 }
2035 
2036 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2037   EVT PtrVT = Op.getValueType();
2038   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2039 
2040   // 64-bit SVR4 ABI code is always position-independent.
2041   // The actual address of the GlobalValue is stored in the TOC.
2042   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2043     setUsesTOCBasePtr(DAG);
2044     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2045     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2046   }
2047 
2048   unsigned MOHiFlag, MOLoFlag;
2049   bool isPIC =
2050       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2051 
2052   if (isPIC && Subtarget.isSVR4ABI()) {
2053     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2054                                         PPCII::MO_PIC_FLAG);
2055     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2056   }
2057 
2058   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2059   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2060   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
2061 }
2062 
2063 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2064                                              SelectionDAG &DAG) const {
2065   EVT PtrVT = Op.getValueType();
2066   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2067   const BlockAddress *BA = BASDN->getBlockAddress();
2068 
2069   // 64-bit SVR4 ABI code is always position-independent.
2070   // The actual BlockAddress is stored in the TOC.
2071   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2072     setUsesTOCBasePtr(DAG);
2073     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2074     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2075   }
2076 
2077   unsigned MOHiFlag, MOLoFlag;
2078   bool isPIC =
2079       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2080   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2081   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2082   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
2083 }
2084 
2085 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2086                                               SelectionDAG &DAG) const {
2087 
2088   // FIXME: TLS addresses currently use medium model code sequences,
2089   // which is the most useful form.  Eventually support for small and
2090   // large models could be added if users need it, at the cost of
2091   // additional complexity.
2092   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2093   if (DAG.getTarget().Options.EmulatedTLS)
2094     return LowerToTLSEmulatedModel(GA, DAG);
2095 
2096   SDLoc dl(GA);
2097   const GlobalValue *GV = GA->getGlobal();
2098   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2099   bool is64bit = Subtarget.isPPC64();
2100   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2101   PICLevel::Level picLevel = M->getPICLevel();
2102 
2103   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2104 
2105   if (Model == TLSModel::LocalExec) {
2106     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2107                                                PPCII::MO_TPREL_HA);
2108     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2109                                                PPCII::MO_TPREL_LO);
2110     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2111                                      is64bit ? MVT::i64 : MVT::i32);
2112     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2113     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2114   }
2115 
2116   if (Model == TLSModel::InitialExec) {
2117     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2118     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2119                                                 PPCII::MO_TLS);
2120     SDValue GOTPtr;
2121     if (is64bit) {
2122       setUsesTOCBasePtr(DAG);
2123       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2124       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2125                            PtrVT, GOTReg, TGA);
2126     } else
2127       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2128     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2129                                    PtrVT, TGA, GOTPtr);
2130     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2131   }
2132 
2133   if (Model == TLSModel::GeneralDynamic) {
2134     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2135     SDValue GOTPtr;
2136     if (is64bit) {
2137       setUsesTOCBasePtr(DAG);
2138       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2139       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2140                                    GOTReg, TGA);
2141     } else {
2142       if (picLevel == PICLevel::Small)
2143         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2144       else
2145         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2146     }
2147     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2148                        GOTPtr, TGA, TGA);
2149   }
2150 
2151   if (Model == TLSModel::LocalDynamic) {
2152     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2153     SDValue GOTPtr;
2154     if (is64bit) {
2155       setUsesTOCBasePtr(DAG);
2156       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2157       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2158                            GOTReg, TGA);
2159     } else {
2160       if (picLevel == PICLevel::Small)
2161         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2162       else
2163         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2164     }
2165     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2166                                   PtrVT, GOTPtr, TGA, TGA);
2167     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2168                                       PtrVT, TLSAddr, TGA);
2169     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2170   }
2171 
2172   llvm_unreachable("Unknown TLS model!");
2173 }
2174 
2175 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2176                                               SelectionDAG &DAG) const {
2177   EVT PtrVT = Op.getValueType();
2178   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2179   SDLoc DL(GSDN);
2180   const GlobalValue *GV = GSDN->getGlobal();
2181 
2182   // 64-bit SVR4 ABI code is always position-independent.
2183   // The actual address of the GlobalValue is stored in the TOC.
2184   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2185     setUsesTOCBasePtr(DAG);
2186     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2187     return getTOCEntry(DAG, DL, true, GA);
2188   }
2189 
2190   unsigned MOHiFlag, MOLoFlag;
2191   bool isPIC =
2192       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2193 
2194   if (isPIC && Subtarget.isSVR4ABI()) {
2195     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2196                                             GSDN->getOffset(),
2197                                             PPCII::MO_PIC_FLAG);
2198     return getTOCEntry(DAG, DL, false, GA);
2199   }
2200 
2201   SDValue GAHi =
2202     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2203   SDValue GALo =
2204     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2205 
2206   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2207 
2208   // If the global reference is actually to a non-lazy-pointer, we have to do an
2209   // extra load to get the address of the global.
2210   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2211     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2212                       false, false, false, 0);
2213   return Ptr;
2214 }
2215 
2216 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2217   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2218   SDLoc dl(Op);
2219 
2220   if (Op.getValueType() == MVT::v2i64) {
2221     // When the operands themselves are v2i64 values, we need to do something
2222     // special because VSX has no underlying comparison operations for these.
2223     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2224       // Equality can be handled by casting to the legal type for Altivec
2225       // comparisons, everything else needs to be expanded.
2226       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2227         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2228                  DAG.getSetCC(dl, MVT::v4i32,
2229                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2230                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2231                    CC));
2232       }
2233 
2234       return SDValue();
2235     }
2236 
2237     // We handle most of these in the usual way.
2238     return Op;
2239   }
2240 
2241   // If we're comparing for equality to zero, expose the fact that this is
2242   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2243   // fold the new nodes.
2244   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2245     if (C->isNullValue() && CC == ISD::SETEQ) {
2246       EVT VT = Op.getOperand(0).getValueType();
2247       SDValue Zext = Op.getOperand(0);
2248       if (VT.bitsLT(MVT::i32)) {
2249         VT = MVT::i32;
2250         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2251       }
2252       unsigned Log2b = Log2_32(VT.getSizeInBits());
2253       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2254       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2255                                 DAG.getConstant(Log2b, dl, MVT::i32));
2256       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2257     }
2258     // Leave comparisons against 0 and -1 alone for now, since they're usually
2259     // optimized.  FIXME: revisit this when we can custom lower all setcc
2260     // optimizations.
2261     if (C->isAllOnesValue() || C->isNullValue())
2262       return SDValue();
2263   }
2264 
2265   // If we have an integer seteq/setne, turn it into a compare against zero
2266   // by xor'ing the rhs with the lhs, which is faster than setting a
2267   // condition register, reading it back out, and masking the correct bit.  The
2268   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2269   // the result to other bit-twiddling opportunities.
2270   EVT LHSVT = Op.getOperand(0).getValueType();
2271   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2272     EVT VT = Op.getValueType();
2273     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2274                                 Op.getOperand(1));
2275     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2276   }
2277   return SDValue();
2278 }
2279 
2280 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2281                                       const PPCSubtarget &Subtarget) const {
2282   SDNode *Node = Op.getNode();
2283   EVT VT = Node->getValueType(0);
2284   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2285   SDValue InChain = Node->getOperand(0);
2286   SDValue VAListPtr = Node->getOperand(1);
2287   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2288   SDLoc dl(Node);
2289 
2290   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2291 
2292   // gpr_index
2293   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2294                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2295                                     false, false, false, 0);
2296   InChain = GprIndex.getValue(1);
2297 
2298   if (VT == MVT::i64) {
2299     // Check if GprIndex is even
2300     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2301                                  DAG.getConstant(1, dl, MVT::i32));
2302     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2303                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2304     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2305                                           DAG.getConstant(1, dl, MVT::i32));
2306     // Align GprIndex to be even if it isn't
2307     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2308                            GprIndex);
2309   }
2310 
2311   // fpr index is 1 byte after gpr
2312   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2313                                DAG.getConstant(1, dl, MVT::i32));
2314 
2315   // fpr
2316   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2317                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2318                                     false, false, false, 0);
2319   InChain = FprIndex.getValue(1);
2320 
2321   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2322                                        DAG.getConstant(8, dl, MVT::i32));
2323 
2324   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2325                                         DAG.getConstant(4, dl, MVT::i32));
2326 
2327   // areas
2328   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2329                                      MachinePointerInfo(), false, false,
2330                                      false, 0);
2331   InChain = OverflowArea.getValue(1);
2332 
2333   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2334                                     MachinePointerInfo(), false, false,
2335                                     false, 0);
2336   InChain = RegSaveArea.getValue(1);
2337 
2338   // select overflow_area if index > 8
2339   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2340                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2341 
2342   // adjustment constant gpr_index * 4/8
2343   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2344                                     VT.isInteger() ? GprIndex : FprIndex,
2345                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2346                                                     MVT::i32));
2347 
2348   // OurReg = RegSaveArea + RegConstant
2349   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2350                                RegConstant);
2351 
2352   // Floating types are 32 bytes into RegSaveArea
2353   if (VT.isFloatingPoint())
2354     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2355                          DAG.getConstant(32, dl, MVT::i32));
2356 
2357   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2358   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2359                                    VT.isInteger() ? GprIndex : FprIndex,
2360                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2361                                                    MVT::i32));
2362 
2363   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2364                               VT.isInteger() ? VAListPtr : FprPtr,
2365                               MachinePointerInfo(SV),
2366                               MVT::i8, false, false, 0);
2367 
2368   // determine if we should load from reg_save_area or overflow_area
2369   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2370 
2371   // increase overflow_area by 4/8 if gpr/fpr > 8
2372   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2373                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2374                                           dl, MVT::i32));
2375 
2376   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2377                              OverflowAreaPlusN);
2378 
2379   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2380                               OverflowAreaPtr,
2381                               MachinePointerInfo(),
2382                               MVT::i32, false, false, 0);
2383 
2384   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2385                      false, false, false, 0);
2386 }
2387 
2388 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2389                                        const PPCSubtarget &Subtarget) const {
2390   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2391 
2392   // We have to copy the entire va_list struct:
2393   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2394   return DAG.getMemcpy(Op.getOperand(0), Op,
2395                        Op.getOperand(1), Op.getOperand(2),
2396                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2397                        false, MachinePointerInfo(), MachinePointerInfo());
2398 }
2399 
2400 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2401                                                   SelectionDAG &DAG) const {
2402   return Op.getOperand(0);
2403 }
2404 
2405 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2406                                                 SelectionDAG &DAG) const {
2407   SDValue Chain = Op.getOperand(0);
2408   SDValue Trmp = Op.getOperand(1); // trampoline
2409   SDValue FPtr = Op.getOperand(2); // nested function
2410   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2411   SDLoc dl(Op);
2412 
2413   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2414   bool isPPC64 = (PtrVT == MVT::i64);
2415   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2416 
2417   TargetLowering::ArgListTy Args;
2418   TargetLowering::ArgListEntry Entry;
2419 
2420   Entry.Ty = IntPtrTy;
2421   Entry.Node = Trmp; Args.push_back(Entry);
2422 
2423   // TrampSize == (isPPC64 ? 48 : 40);
2424   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2425                                isPPC64 ? MVT::i64 : MVT::i32);
2426   Args.push_back(Entry);
2427 
2428   Entry.Node = FPtr; Args.push_back(Entry);
2429   Entry.Node = Nest; Args.push_back(Entry);
2430 
2431   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2432   TargetLowering::CallLoweringInfo CLI(DAG);
2433   CLI.setDebugLoc(dl).setChain(Chain)
2434     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2435                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2436                std::move(Args), 0);
2437 
2438   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2439   return CallResult.second;
2440 }
2441 
2442 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2443                                         const PPCSubtarget &Subtarget) const {
2444   MachineFunction &MF = DAG.getMachineFunction();
2445   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2446 
2447   SDLoc dl(Op);
2448 
2449   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2450     // vastart just stores the address of the VarArgsFrameIndex slot into the
2451     // memory location argument.
2452     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2453     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2454     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2455     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2456                         MachinePointerInfo(SV),
2457                         false, false, 0);
2458   }
2459 
2460   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2461   // We suppose the given va_list is already allocated.
2462   //
2463   // typedef struct {
2464   //  char gpr;     /* index into the array of 8 GPRs
2465   //                 * stored in the register save area
2466   //                 * gpr=0 corresponds to r3,
2467   //                 * gpr=1 to r4, etc.
2468   //                 */
2469   //  char fpr;     /* index into the array of 8 FPRs
2470   //                 * stored in the register save area
2471   //                 * fpr=0 corresponds to f1,
2472   //                 * fpr=1 to f2, etc.
2473   //                 */
2474   //  char *overflow_arg_area;
2475   //                /* location on stack that holds
2476   //                 * the next overflow argument
2477   //                 */
2478   //  char *reg_save_area;
2479   //               /* where r3:r10 and f1:f8 (if saved)
2480   //                * are stored
2481   //                */
2482   // } va_list[1];
2483 
2484 
2485   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2486   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2487 
2488   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2489 
2490   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2491                                             PtrVT);
2492   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2493                                  PtrVT);
2494 
2495   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2496   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2497 
2498   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2499   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2500 
2501   uint64_t FPROffset = 1;
2502   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2503 
2504   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2505 
2506   // Store first byte : number of int regs
2507   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2508                                          Op.getOperand(1),
2509                                          MachinePointerInfo(SV),
2510                                          MVT::i8, false, false, 0);
2511   uint64_t nextOffset = FPROffset;
2512   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2513                                   ConstFPROffset);
2514 
2515   // Store second byte : number of float regs
2516   SDValue secondStore =
2517     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2518                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2519                       false, false, 0);
2520   nextOffset += StackOffset;
2521   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2522 
2523   // Store second word : arguments given on stack
2524   SDValue thirdStore =
2525     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2526                  MachinePointerInfo(SV, nextOffset),
2527                  false, false, 0);
2528   nextOffset += FrameOffset;
2529   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2530 
2531   // Store third word : arguments given in registers
2532   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2533                       MachinePointerInfo(SV, nextOffset),
2534                       false, false, 0);
2535 
2536 }
2537 
2538 #include "PPCGenCallingConv.inc"
2539 
2540 // Function whose sole purpose is to kill compiler warnings
2541 // stemming from unused functions included from PPCGenCallingConv.inc.
2542 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2543   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2544 }
2545 
2546 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2547                                       CCValAssign::LocInfo &LocInfo,
2548                                       ISD::ArgFlagsTy &ArgFlags,
2549                                       CCState &State) {
2550   return true;
2551 }
2552 
2553 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2554                                              MVT &LocVT,
2555                                              CCValAssign::LocInfo &LocInfo,
2556                                              ISD::ArgFlagsTy &ArgFlags,
2557                                              CCState &State) {
2558   static const MCPhysReg ArgRegs[] = {
2559     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2560     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2561   };
2562   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2563 
2564   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2565 
2566   // Skip one register if the first unallocated register has an even register
2567   // number and there are still argument registers available which have not been
2568   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2569   // need to skip a register if RegNum is odd.
2570   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2571     State.AllocateReg(ArgRegs[RegNum]);
2572   }
2573 
2574   // Always return false here, as this function only makes sure that the first
2575   // unallocated register has an odd register number and does not actually
2576   // allocate a register for the current argument.
2577   return false;
2578 }
2579 
2580 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2581                                                MVT &LocVT,
2582                                                CCValAssign::LocInfo &LocInfo,
2583                                                ISD::ArgFlagsTy &ArgFlags,
2584                                                CCState &State) {
2585   static const MCPhysReg ArgRegs[] = {
2586     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2587     PPC::F8
2588   };
2589 
2590   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2591 
2592   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2593 
2594   // If there is only one Floating-point register left we need to put both f64
2595   // values of a split ppc_fp128 value on the stack.
2596   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2597     State.AllocateReg(ArgRegs[RegNum]);
2598   }
2599 
2600   // Always return false here, as this function only makes sure that the two f64
2601   // values a ppc_fp128 value is split into are both passed in registers or both
2602   // passed on the stack and does not actually allocate a register for the
2603   // current argument.
2604   return false;
2605 }
2606 
2607 /// FPR - The set of FP registers that should be allocated for arguments,
2608 /// on Darwin.
2609 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2610                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2611                                 PPC::F11, PPC::F12, PPC::F13};
2612 
2613 /// QFPR - The set of QPX registers that should be allocated for arguments.
2614 static const MCPhysReg QFPR[] = {
2615     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2616     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2617 
2618 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2619 /// the stack.
2620 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2621                                        unsigned PtrByteSize) {
2622   unsigned ArgSize = ArgVT.getStoreSize();
2623   if (Flags.isByVal())
2624     ArgSize = Flags.getByValSize();
2625 
2626   // Round up to multiples of the pointer size, except for array members,
2627   // which are always packed.
2628   if (!Flags.isInConsecutiveRegs())
2629     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2630 
2631   return ArgSize;
2632 }
2633 
2634 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2635 /// on the stack.
2636 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2637                                             ISD::ArgFlagsTy Flags,
2638                                             unsigned PtrByteSize) {
2639   unsigned Align = PtrByteSize;
2640 
2641   // Altivec parameters are padded to a 16 byte boundary.
2642   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2643       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2644       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2645       ArgVT == MVT::v1i128)
2646     Align = 16;
2647   // QPX vector types stored in double-precision are padded to a 32 byte
2648   // boundary.
2649   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2650     Align = 32;
2651 
2652   // ByVal parameters are aligned as requested.
2653   if (Flags.isByVal()) {
2654     unsigned BVAlign = Flags.getByValAlign();
2655     if (BVAlign > PtrByteSize) {
2656       if (BVAlign % PtrByteSize != 0)
2657           llvm_unreachable(
2658             "ByVal alignment is not a multiple of the pointer size");
2659 
2660       Align = BVAlign;
2661     }
2662   }
2663 
2664   // Array members are always packed to their original alignment.
2665   if (Flags.isInConsecutiveRegs()) {
2666     // If the array member was split into multiple registers, the first
2667     // needs to be aligned to the size of the full type.  (Except for
2668     // ppcf128, which is only aligned as its f64 components.)
2669     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2670       Align = OrigVT.getStoreSize();
2671     else
2672       Align = ArgVT.getStoreSize();
2673   }
2674 
2675   return Align;
2676 }
2677 
2678 /// CalculateStackSlotUsed - Return whether this argument will use its
2679 /// stack slot (instead of being passed in registers).  ArgOffset,
2680 /// AvailableFPRs, and AvailableVRs must hold the current argument
2681 /// position, and will be updated to account for this argument.
2682 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2683                                    ISD::ArgFlagsTy Flags,
2684                                    unsigned PtrByteSize,
2685                                    unsigned LinkageSize,
2686                                    unsigned ParamAreaSize,
2687                                    unsigned &ArgOffset,
2688                                    unsigned &AvailableFPRs,
2689                                    unsigned &AvailableVRs, bool HasQPX) {
2690   bool UseMemory = false;
2691 
2692   // Respect alignment of argument on the stack.
2693   unsigned Align =
2694     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2695   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2696   // If there's no space left in the argument save area, we must
2697   // use memory (this check also catches zero-sized arguments).
2698   if (ArgOffset >= LinkageSize + ParamAreaSize)
2699     UseMemory = true;
2700 
2701   // Allocate argument on the stack.
2702   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2703   if (Flags.isInConsecutiveRegsLast())
2704     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2705   // If we overran the argument save area, we must use memory
2706   // (this check catches arguments passed partially in memory)
2707   if (ArgOffset > LinkageSize + ParamAreaSize)
2708     UseMemory = true;
2709 
2710   // However, if the argument is actually passed in an FPR or a VR,
2711   // we don't use memory after all.
2712   if (!Flags.isByVal()) {
2713     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2714         // QPX registers overlap with the scalar FP registers.
2715         (HasQPX && (ArgVT == MVT::v4f32 ||
2716                     ArgVT == MVT::v4f64 ||
2717                     ArgVT == MVT::v4i1)))
2718       if (AvailableFPRs > 0) {
2719         --AvailableFPRs;
2720         return false;
2721       }
2722     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2723         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2724         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2725         ArgVT == MVT::v1i128)
2726       if (AvailableVRs > 0) {
2727         --AvailableVRs;
2728         return false;
2729       }
2730   }
2731 
2732   return UseMemory;
2733 }
2734 
2735 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2736 /// ensure minimum alignment required for target.
2737 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2738                                      unsigned NumBytes) {
2739   unsigned TargetAlign = Lowering->getStackAlignment();
2740   unsigned AlignMask = TargetAlign - 1;
2741   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2742   return NumBytes;
2743 }
2744 
2745 SDValue
2746 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2747                                         CallingConv::ID CallConv, bool isVarArg,
2748                                         const SmallVectorImpl<ISD::InputArg>
2749                                           &Ins,
2750                                         SDLoc dl, SelectionDAG &DAG,
2751                                         SmallVectorImpl<SDValue> &InVals)
2752                                           const {
2753   if (Subtarget.isSVR4ABI()) {
2754     if (Subtarget.isPPC64())
2755       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2756                                          dl, DAG, InVals);
2757     else
2758       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2759                                          dl, DAG, InVals);
2760   } else {
2761     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2762                                        dl, DAG, InVals);
2763   }
2764 }
2765 
2766 SDValue
2767 PPCTargetLowering::LowerFormalArguments_32SVR4(
2768                                       SDValue Chain,
2769                                       CallingConv::ID CallConv, bool isVarArg,
2770                                       const SmallVectorImpl<ISD::InputArg>
2771                                         &Ins,
2772                                       SDLoc dl, SelectionDAG &DAG,
2773                                       SmallVectorImpl<SDValue> &InVals) const {
2774 
2775   // 32-bit SVR4 ABI Stack Frame Layout:
2776   //              +-----------------------------------+
2777   //        +-->  |            Back chain             |
2778   //        |     +-----------------------------------+
2779   //        |     | Floating-point register save area |
2780   //        |     +-----------------------------------+
2781   //        |     |    General register save area     |
2782   //        |     +-----------------------------------+
2783   //        |     |          CR save word             |
2784   //        |     +-----------------------------------+
2785   //        |     |         VRSAVE save word          |
2786   //        |     +-----------------------------------+
2787   //        |     |         Alignment padding         |
2788   //        |     +-----------------------------------+
2789   //        |     |     Vector register save area     |
2790   //        |     +-----------------------------------+
2791   //        |     |       Local variable space        |
2792   //        |     +-----------------------------------+
2793   //        |     |        Parameter list area        |
2794   //        |     +-----------------------------------+
2795   //        |     |           LR save word            |
2796   //        |     +-----------------------------------+
2797   // SP-->  +---  |            Back chain             |
2798   //              +-----------------------------------+
2799   //
2800   // Specifications:
2801   //   System V Application Binary Interface PowerPC Processor Supplement
2802   //   AltiVec Technology Programming Interface Manual
2803 
2804   MachineFunction &MF = DAG.getMachineFunction();
2805   MachineFrameInfo *MFI = MF.getFrameInfo();
2806   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2807 
2808   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2809   // Potential tail calls could cause overwriting of argument stack slots.
2810   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2811                        (CallConv == CallingConv::Fast));
2812   unsigned PtrByteSize = 4;
2813 
2814   // Assign locations to all of the incoming arguments.
2815   SmallVector<CCValAssign, 16> ArgLocs;
2816   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2817                  *DAG.getContext());
2818 
2819   // Reserve space for the linkage area on the stack.
2820   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2821   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2822 
2823   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2824 
2825   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2826     CCValAssign &VA = ArgLocs[i];
2827 
2828     // Arguments stored in registers.
2829     if (VA.isRegLoc()) {
2830       const TargetRegisterClass *RC;
2831       EVT ValVT = VA.getValVT();
2832 
2833       switch (ValVT.getSimpleVT().SimpleTy) {
2834         default:
2835           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2836         case MVT::i1:
2837         case MVT::i32:
2838           RC = &PPC::GPRCRegClass;
2839           break;
2840         case MVT::f32:
2841           if (Subtarget.hasP8Vector())
2842             RC = &PPC::VSSRCRegClass;
2843           else
2844             RC = &PPC::F4RCRegClass;
2845           break;
2846         case MVT::f64:
2847           if (Subtarget.hasVSX())
2848             RC = &PPC::VSFRCRegClass;
2849           else
2850             RC = &PPC::F8RCRegClass;
2851           break;
2852         case MVT::v16i8:
2853         case MVT::v8i16:
2854         case MVT::v4i32:
2855           RC = &PPC::VRRCRegClass;
2856           break;
2857         case MVT::v4f32:
2858           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2859           break;
2860         case MVT::v2f64:
2861         case MVT::v2i64:
2862           RC = &PPC::VSHRCRegClass;
2863           break;
2864         case MVT::v4f64:
2865           RC = &PPC::QFRCRegClass;
2866           break;
2867         case MVT::v4i1:
2868           RC = &PPC::QBRCRegClass;
2869           break;
2870       }
2871 
2872       // Transform the arguments stored in physical registers into virtual ones.
2873       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2874       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2875                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2876 
2877       if (ValVT == MVT::i1)
2878         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2879 
2880       InVals.push_back(ArgValue);
2881     } else {
2882       // Argument stored in memory.
2883       assert(VA.isMemLoc());
2884 
2885       unsigned ArgSize = VA.getLocVT().getStoreSize();
2886       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2887                                       isImmutable);
2888 
2889       // Create load nodes to retrieve arguments from the stack.
2890       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2891       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2892                                    MachinePointerInfo(),
2893                                    false, false, false, 0));
2894     }
2895   }
2896 
2897   // Assign locations to all of the incoming aggregate by value arguments.
2898   // Aggregates passed by value are stored in the local variable space of the
2899   // caller's stack frame, right above the parameter list area.
2900   SmallVector<CCValAssign, 16> ByValArgLocs;
2901   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2902                       ByValArgLocs, *DAG.getContext());
2903 
2904   // Reserve stack space for the allocations in CCInfo.
2905   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2906 
2907   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2908 
2909   // Area that is at least reserved in the caller of this function.
2910   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2911   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2912 
2913   // Set the size that is at least reserved in caller of this function.  Tail
2914   // call optimized function's reserved stack space needs to be aligned so that
2915   // taking the difference between two stack areas will result in an aligned
2916   // stack.
2917   MinReservedArea =
2918       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2919   FuncInfo->setMinReservedArea(MinReservedArea);
2920 
2921   SmallVector<SDValue, 8> MemOps;
2922 
2923   // If the function takes variable number of arguments, make a frame index for
2924   // the start of the first vararg value... for expansion of llvm.va_start.
2925   if (isVarArg) {
2926     static const MCPhysReg GPArgRegs[] = {
2927       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2928       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2929     };
2930     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2931 
2932     static const MCPhysReg FPArgRegs[] = {
2933       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2934       PPC::F8
2935     };
2936     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2937     if (DisablePPCFloatInVariadic)
2938       NumFPArgRegs = 0;
2939 
2940     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2941     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2942 
2943     // Make room for NumGPArgRegs and NumFPArgRegs.
2944     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2945                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2946 
2947     FuncInfo->setVarArgsStackOffset(
2948       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2949                              CCInfo.getNextStackOffset(), true));
2950 
2951     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2952     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2953 
2954     // The fixed integer arguments of a variadic function are stored to the
2955     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2956     // the result of va_next.
2957     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2958       // Get an existing live-in vreg, or add a new one.
2959       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2960       if (!VReg)
2961         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2962 
2963       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2964       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2965                                    MachinePointerInfo(), false, false, 0);
2966       MemOps.push_back(Store);
2967       // Increment the address by four for the next argument to store
2968       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
2969       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2970     }
2971 
2972     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2973     // is set.
2974     // The double arguments are stored to the VarArgsFrameIndex
2975     // on the stack.
2976     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2977       // Get an existing live-in vreg, or add a new one.
2978       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2979       if (!VReg)
2980         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2981 
2982       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2983       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2984                                    MachinePointerInfo(), false, false, 0);
2985       MemOps.push_back(Store);
2986       // Increment the address by eight for the next argument to store
2987       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
2988                                          PtrVT);
2989       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2990     }
2991   }
2992 
2993   if (!MemOps.empty())
2994     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2995 
2996   return Chain;
2997 }
2998 
2999 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3000 // value to MVT::i64 and then truncate to the correct register size.
3001 SDValue
3002 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
3003                                      SelectionDAG &DAG, SDValue ArgVal,
3004                                      SDLoc dl) const {
3005   if (Flags.isSExt())
3006     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3007                          DAG.getValueType(ObjectVT));
3008   else if (Flags.isZExt())
3009     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3010                          DAG.getValueType(ObjectVT));
3011 
3012   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3013 }
3014 
3015 SDValue
3016 PPCTargetLowering::LowerFormalArguments_64SVR4(
3017                                       SDValue Chain,
3018                                       CallingConv::ID CallConv, bool isVarArg,
3019                                       const SmallVectorImpl<ISD::InputArg>
3020                                         &Ins,
3021                                       SDLoc dl, SelectionDAG &DAG,
3022                                       SmallVectorImpl<SDValue> &InVals) const {
3023   // TODO: add description of PPC stack frame format, or at least some docs.
3024   //
3025   bool isELFv2ABI = Subtarget.isELFv2ABI();
3026   bool isLittleEndian = Subtarget.isLittleEndian();
3027   MachineFunction &MF = DAG.getMachineFunction();
3028   MachineFrameInfo *MFI = MF.getFrameInfo();
3029   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3030 
3031   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3032          "fastcc not supported on varargs functions");
3033 
3034   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3035   // Potential tail calls could cause overwriting of argument stack slots.
3036   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3037                        (CallConv == CallingConv::Fast));
3038   unsigned PtrByteSize = 8;
3039   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3040 
3041   static const MCPhysReg GPR[] = {
3042     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3043     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3044   };
3045   static const MCPhysReg VR[] = {
3046     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3047     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3048   };
3049   static const MCPhysReg VSRH[] = {
3050     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3051     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3052   };
3053 
3054   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3055   const unsigned Num_FPR_Regs = 13;
3056   const unsigned Num_VR_Regs  = array_lengthof(VR);
3057   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3058 
3059   // Do a first pass over the arguments to determine whether the ABI
3060   // guarantees that our caller has allocated the parameter save area
3061   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3062   // in the ELFv2 ABI, it is true if this is a vararg function or if
3063   // any parameter is located in a stack slot.
3064 
3065   bool HasParameterArea = !isELFv2ABI || isVarArg;
3066   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3067   unsigned NumBytes = LinkageSize;
3068   unsigned AvailableFPRs = Num_FPR_Regs;
3069   unsigned AvailableVRs = Num_VR_Regs;
3070   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3071     if (Ins[i].Flags.isNest())
3072       continue;
3073 
3074     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3075                                PtrByteSize, LinkageSize, ParamAreaSize,
3076                                NumBytes, AvailableFPRs, AvailableVRs,
3077                                Subtarget.hasQPX()))
3078       HasParameterArea = true;
3079   }
3080 
3081   // Add DAG nodes to load the arguments or copy them out of registers.  On
3082   // entry to a function on PPC, the arguments start after the linkage area,
3083   // although the first ones are often in registers.
3084 
3085   unsigned ArgOffset = LinkageSize;
3086   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3087   unsigned &QFPR_idx = FPR_idx;
3088   SmallVector<SDValue, 8> MemOps;
3089   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3090   unsigned CurArgIdx = 0;
3091   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3092     SDValue ArgVal;
3093     bool needsLoad = false;
3094     EVT ObjectVT = Ins[ArgNo].VT;
3095     EVT OrigVT = Ins[ArgNo].ArgVT;
3096     unsigned ObjSize = ObjectVT.getStoreSize();
3097     unsigned ArgSize = ObjSize;
3098     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3099     if (Ins[ArgNo].isOrigArg()) {
3100       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3101       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3102     }
3103     // We re-align the argument offset for each argument, except when using the
3104     // fast calling convention, when we need to make sure we do that only when
3105     // we'll actually use a stack slot.
3106     unsigned CurArgOffset, Align;
3107     auto ComputeArgOffset = [&]() {
3108       /* Respect alignment of argument on the stack.  */
3109       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3110       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3111       CurArgOffset = ArgOffset;
3112     };
3113 
3114     if (CallConv != CallingConv::Fast) {
3115       ComputeArgOffset();
3116 
3117       /* Compute GPR index associated with argument offset.  */
3118       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3119       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3120     }
3121 
3122     // FIXME the codegen can be much improved in some cases.
3123     // We do not have to keep everything in memory.
3124     if (Flags.isByVal()) {
3125       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3126 
3127       if (CallConv == CallingConv::Fast)
3128         ComputeArgOffset();
3129 
3130       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3131       ObjSize = Flags.getByValSize();
3132       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3133       // Empty aggregate parameters do not take up registers.  Examples:
3134       //   struct { } a;
3135       //   union  { } b;
3136       //   int c[0];
3137       // etc.  However, we have to provide a place-holder in InVals, so
3138       // pretend we have an 8-byte item at the current address for that
3139       // purpose.
3140       if (!ObjSize) {
3141         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3142         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3143         InVals.push_back(FIN);
3144         continue;
3145       }
3146 
3147       // Create a stack object covering all stack doublewords occupied
3148       // by the argument.  If the argument is (fully or partially) on
3149       // the stack, or if the argument is fully in registers but the
3150       // caller has allocated the parameter save anyway, we can refer
3151       // directly to the caller's stack frame.  Otherwise, create a
3152       // local copy in our own frame.
3153       int FI;
3154       if (HasParameterArea ||
3155           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3156         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3157       else
3158         FI = MFI->CreateStackObject(ArgSize, Align, false);
3159       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3160 
3161       // Handle aggregates smaller than 8 bytes.
3162       if (ObjSize < PtrByteSize) {
3163         // The value of the object is its address, which differs from the
3164         // address of the enclosing doubleword on big-endian systems.
3165         SDValue Arg = FIN;
3166         if (!isLittleEndian) {
3167           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3168           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3169         }
3170         InVals.push_back(Arg);
3171 
3172         if (GPR_idx != Num_GPR_Regs) {
3173           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3174           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3175           SDValue Store;
3176 
3177           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3178             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3179                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3180             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3181                                       MachinePointerInfo(FuncArg),
3182                                       ObjType, false, false, 0);
3183           } else {
3184             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3185             // store the whole register as-is to the parameter save area
3186             // slot.
3187             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3188                                  MachinePointerInfo(FuncArg),
3189                                  false, false, 0);
3190           }
3191 
3192           MemOps.push_back(Store);
3193         }
3194         // Whether we copied from a register or not, advance the offset
3195         // into the parameter save area by a full doubleword.
3196         ArgOffset += PtrByteSize;
3197         continue;
3198       }
3199 
3200       // The value of the object is its address, which is the address of
3201       // its first stack doubleword.
3202       InVals.push_back(FIN);
3203 
3204       // Store whatever pieces of the object are in registers to memory.
3205       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3206         if (GPR_idx == Num_GPR_Regs)
3207           break;
3208 
3209         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3210         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3211         SDValue Addr = FIN;
3212         if (j) {
3213           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3214           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3215         }
3216         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3217                                      MachinePointerInfo(FuncArg, j),
3218                                      false, false, 0);
3219         MemOps.push_back(Store);
3220         ++GPR_idx;
3221       }
3222       ArgOffset += ArgSize;
3223       continue;
3224     }
3225 
3226     switch (ObjectVT.getSimpleVT().SimpleTy) {
3227     default: llvm_unreachable("Unhandled argument type!");
3228     case MVT::i1:
3229     case MVT::i32:
3230     case MVT::i64:
3231       if (Flags.isNest()) {
3232         // The 'nest' parameter, if any, is passed in R11.
3233         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3234         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3235 
3236         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3237           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3238 
3239         break;
3240       }
3241 
3242       // These can be scalar arguments or elements of an integer array type
3243       // passed directly.  Clang may use those instead of "byval" aggregate
3244       // types to avoid forcing arguments to memory unnecessarily.
3245       if (GPR_idx != Num_GPR_Regs) {
3246         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3247         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3248 
3249         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3250           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3251           // value to MVT::i64 and then truncate to the correct register size.
3252           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3253       } else {
3254         if (CallConv == CallingConv::Fast)
3255           ComputeArgOffset();
3256 
3257         needsLoad = true;
3258         ArgSize = PtrByteSize;
3259       }
3260       if (CallConv != CallingConv::Fast || needsLoad)
3261         ArgOffset += 8;
3262       break;
3263 
3264     case MVT::f32:
3265     case MVT::f64:
3266       // These can be scalar arguments or elements of a float array type
3267       // passed directly.  The latter are used to implement ELFv2 homogenous
3268       // float aggregates.
3269       if (FPR_idx != Num_FPR_Regs) {
3270         unsigned VReg;
3271 
3272         if (ObjectVT == MVT::f32)
3273           VReg = MF.addLiveIn(FPR[FPR_idx],
3274                               Subtarget.hasP8Vector()
3275                                   ? &PPC::VSSRCRegClass
3276                                   : &PPC::F4RCRegClass);
3277         else
3278           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3279                                                 ? &PPC::VSFRCRegClass
3280                                                 : &PPC::F8RCRegClass);
3281 
3282         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3283         ++FPR_idx;
3284       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3285         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3286         // once we support fp <-> gpr moves.
3287 
3288         // This can only ever happen in the presence of f32 array types,
3289         // since otherwise we never run out of FPRs before running out
3290         // of GPRs.
3291         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3292         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3293 
3294         if (ObjectVT == MVT::f32) {
3295           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3296             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3297                                  DAG.getConstant(32, dl, MVT::i32));
3298           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3299         }
3300 
3301         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3302       } else {
3303         if (CallConv == CallingConv::Fast)
3304           ComputeArgOffset();
3305 
3306         needsLoad = true;
3307       }
3308 
3309       // When passing an array of floats, the array occupies consecutive
3310       // space in the argument area; only round up to the next doubleword
3311       // at the end of the array.  Otherwise, each float takes 8 bytes.
3312       if (CallConv != CallingConv::Fast || needsLoad) {
3313         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3314         ArgOffset += ArgSize;
3315         if (Flags.isInConsecutiveRegsLast())
3316           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3317       }
3318       break;
3319     case MVT::v4f32:
3320     case MVT::v4i32:
3321     case MVT::v8i16:
3322     case MVT::v16i8:
3323     case MVT::v2f64:
3324     case MVT::v2i64:
3325     case MVT::v1i128:
3326       if (!Subtarget.hasQPX()) {
3327       // These can be scalar arguments or elements of a vector array type
3328       // passed directly.  The latter are used to implement ELFv2 homogenous
3329       // vector aggregates.
3330       if (VR_idx != Num_VR_Regs) {
3331         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3332                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3333                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3334         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3335         ++VR_idx;
3336       } else {
3337         if (CallConv == CallingConv::Fast)
3338           ComputeArgOffset();
3339 
3340         needsLoad = true;
3341       }
3342       if (CallConv != CallingConv::Fast || needsLoad)
3343         ArgOffset += 16;
3344       break;
3345       } // not QPX
3346 
3347       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3348              "Invalid QPX parameter type");
3349       /* fall through */
3350 
3351     case MVT::v4f64:
3352     case MVT::v4i1:
3353       // QPX vectors are treated like their scalar floating-point subregisters
3354       // (except that they're larger).
3355       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3356       if (QFPR_idx != Num_QFPR_Regs) {
3357         const TargetRegisterClass *RC;
3358         switch (ObjectVT.getSimpleVT().SimpleTy) {
3359         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3360         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3361         default:         RC = &PPC::QBRCRegClass; break;
3362         }
3363 
3364         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3365         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3366         ++QFPR_idx;
3367       } else {
3368         if (CallConv == CallingConv::Fast)
3369           ComputeArgOffset();
3370         needsLoad = true;
3371       }
3372       if (CallConv != CallingConv::Fast || needsLoad)
3373         ArgOffset += Sz;
3374       break;
3375     }
3376 
3377     // We need to load the argument to a virtual register if we determined
3378     // above that we ran out of physical registers of the appropriate type.
3379     if (needsLoad) {
3380       if (ObjSize < ArgSize && !isLittleEndian)
3381         CurArgOffset += ArgSize - ObjSize;
3382       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3383       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3384       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3385                            false, false, false, 0);
3386     }
3387 
3388     InVals.push_back(ArgVal);
3389   }
3390 
3391   // Area that is at least reserved in the caller of this function.
3392   unsigned MinReservedArea;
3393   if (HasParameterArea)
3394     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3395   else
3396     MinReservedArea = LinkageSize;
3397 
3398   // Set the size that is at least reserved in caller of this function.  Tail
3399   // call optimized functions' reserved stack space needs to be aligned so that
3400   // taking the difference between two stack areas will result in an aligned
3401   // stack.
3402   MinReservedArea =
3403       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3404   FuncInfo->setMinReservedArea(MinReservedArea);
3405 
3406   // If the function takes variable number of arguments, make a frame index for
3407   // the start of the first vararg value... for expansion of llvm.va_start.
3408   if (isVarArg) {
3409     int Depth = ArgOffset;
3410 
3411     FuncInfo->setVarArgsFrameIndex(
3412       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3413     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3414 
3415     // If this function is vararg, store any remaining integer argument regs
3416     // to their spots on the stack so that they may be loaded by deferencing the
3417     // result of va_next.
3418     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3419          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3420       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3421       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3422       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3423                                    MachinePointerInfo(), false, false, 0);
3424       MemOps.push_back(Store);
3425       // Increment the address by four for the next argument to store
3426       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3427       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3428     }
3429   }
3430 
3431   if (!MemOps.empty())
3432     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3433 
3434   return Chain;
3435 }
3436 
3437 SDValue
3438 PPCTargetLowering::LowerFormalArguments_Darwin(
3439                                       SDValue Chain,
3440                                       CallingConv::ID CallConv, bool isVarArg,
3441                                       const SmallVectorImpl<ISD::InputArg>
3442                                         &Ins,
3443                                       SDLoc dl, SelectionDAG &DAG,
3444                                       SmallVectorImpl<SDValue> &InVals) const {
3445   // TODO: add description of PPC stack frame format, or at least some docs.
3446   //
3447   MachineFunction &MF = DAG.getMachineFunction();
3448   MachineFrameInfo *MFI = MF.getFrameInfo();
3449   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3450 
3451   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3452   bool isPPC64 = PtrVT == MVT::i64;
3453   // Potential tail calls could cause overwriting of argument stack slots.
3454   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3455                        (CallConv == CallingConv::Fast));
3456   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3457   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3458   unsigned ArgOffset = LinkageSize;
3459   // Area that is at least reserved in caller of this function.
3460   unsigned MinReservedArea = ArgOffset;
3461 
3462   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3463     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3464     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3465   };
3466   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3467     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3468     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3469   };
3470   static const MCPhysReg VR[] = {
3471     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3472     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3473   };
3474 
3475   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3476   const unsigned Num_FPR_Regs = 13;
3477   const unsigned Num_VR_Regs  = array_lengthof( VR);
3478 
3479   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3480 
3481   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3482 
3483   // In 32-bit non-varargs functions, the stack space for vectors is after the
3484   // stack space for non-vectors.  We do not use this space unless we have
3485   // too many vectors to fit in registers, something that only occurs in
3486   // constructed examples:), but we have to walk the arglist to figure
3487   // that out...for the pathological case, compute VecArgOffset as the
3488   // start of the vector parameter area.  Computing VecArgOffset is the
3489   // entire point of the following loop.
3490   unsigned VecArgOffset = ArgOffset;
3491   if (!isVarArg && !isPPC64) {
3492     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3493          ++ArgNo) {
3494       EVT ObjectVT = Ins[ArgNo].VT;
3495       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3496 
3497       if (Flags.isByVal()) {
3498         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3499         unsigned ObjSize = Flags.getByValSize();
3500         unsigned ArgSize =
3501                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3502         VecArgOffset += ArgSize;
3503         continue;
3504       }
3505 
3506       switch(ObjectVT.getSimpleVT().SimpleTy) {
3507       default: llvm_unreachable("Unhandled argument type!");
3508       case MVT::i1:
3509       case MVT::i32:
3510       case MVT::f32:
3511         VecArgOffset += 4;
3512         break;
3513       case MVT::i64:  // PPC64
3514       case MVT::f64:
3515         // FIXME: We are guaranteed to be !isPPC64 at this point.
3516         // Does MVT::i64 apply?
3517         VecArgOffset += 8;
3518         break;
3519       case MVT::v4f32:
3520       case MVT::v4i32:
3521       case MVT::v8i16:
3522       case MVT::v16i8:
3523         // Nothing to do, we're only looking at Nonvector args here.
3524         break;
3525       }
3526     }
3527   }
3528   // We've found where the vector parameter area in memory is.  Skip the
3529   // first 12 parameters; these don't use that memory.
3530   VecArgOffset = ((VecArgOffset+15)/16)*16;
3531   VecArgOffset += 12*16;
3532 
3533   // Add DAG nodes to load the arguments or copy them out of registers.  On
3534   // entry to a function on PPC, the arguments start after the linkage area,
3535   // although the first ones are often in registers.
3536 
3537   SmallVector<SDValue, 8> MemOps;
3538   unsigned nAltivecParamsAtEnd = 0;
3539   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3540   unsigned CurArgIdx = 0;
3541   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3542     SDValue ArgVal;
3543     bool needsLoad = false;
3544     EVT ObjectVT = Ins[ArgNo].VT;
3545     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3546     unsigned ArgSize = ObjSize;
3547     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3548     if (Ins[ArgNo].isOrigArg()) {
3549       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3550       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3551     }
3552     unsigned CurArgOffset = ArgOffset;
3553 
3554     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3555     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3556         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3557       if (isVarArg || isPPC64) {
3558         MinReservedArea = ((MinReservedArea+15)/16)*16;
3559         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3560                                                   Flags,
3561                                                   PtrByteSize);
3562       } else  nAltivecParamsAtEnd++;
3563     } else
3564       // Calculate min reserved area.
3565       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3566                                                 Flags,
3567                                                 PtrByteSize);
3568 
3569     // FIXME the codegen can be much improved in some cases.
3570     // We do not have to keep everything in memory.
3571     if (Flags.isByVal()) {
3572       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3573 
3574       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3575       ObjSize = Flags.getByValSize();
3576       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3577       // Objects of size 1 and 2 are right justified, everything else is
3578       // left justified.  This means the memory address is adjusted forwards.
3579       if (ObjSize==1 || ObjSize==2) {
3580         CurArgOffset = CurArgOffset + (4 - ObjSize);
3581       }
3582       // The value of the object is its address.
3583       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3584       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3585       InVals.push_back(FIN);
3586       if (ObjSize==1 || ObjSize==2) {
3587         if (GPR_idx != Num_GPR_Regs) {
3588           unsigned VReg;
3589           if (isPPC64)
3590             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3591           else
3592             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3593           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3594           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3595           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3596                                             MachinePointerInfo(FuncArg),
3597                                             ObjType, false, false, 0);
3598           MemOps.push_back(Store);
3599           ++GPR_idx;
3600         }
3601 
3602         ArgOffset += PtrByteSize;
3603 
3604         continue;
3605       }
3606       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3607         // Store whatever pieces of the object are in registers
3608         // to memory.  ArgOffset will be the address of the beginning
3609         // of the object.
3610         if (GPR_idx != Num_GPR_Regs) {
3611           unsigned VReg;
3612           if (isPPC64)
3613             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3614           else
3615             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3616           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3617           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3618           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3619           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3620                                        MachinePointerInfo(FuncArg, j),
3621                                        false, false, 0);
3622           MemOps.push_back(Store);
3623           ++GPR_idx;
3624           ArgOffset += PtrByteSize;
3625         } else {
3626           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3627           break;
3628         }
3629       }
3630       continue;
3631     }
3632 
3633     switch (ObjectVT.getSimpleVT().SimpleTy) {
3634     default: llvm_unreachable("Unhandled argument type!");
3635     case MVT::i1:
3636     case MVT::i32:
3637       if (!isPPC64) {
3638         if (GPR_idx != Num_GPR_Regs) {
3639           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3640           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3641 
3642           if (ObjectVT == MVT::i1)
3643             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3644 
3645           ++GPR_idx;
3646         } else {
3647           needsLoad = true;
3648           ArgSize = PtrByteSize;
3649         }
3650         // All int arguments reserve stack space in the Darwin ABI.
3651         ArgOffset += PtrByteSize;
3652         break;
3653       }
3654       // FALLTHROUGH
3655     case MVT::i64:  // PPC64
3656       if (GPR_idx != Num_GPR_Regs) {
3657         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3658         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3659 
3660         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3661           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3662           // value to MVT::i64 and then truncate to the correct register size.
3663           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3664 
3665         ++GPR_idx;
3666       } else {
3667         needsLoad = true;
3668         ArgSize = PtrByteSize;
3669       }
3670       // All int arguments reserve stack space in the Darwin ABI.
3671       ArgOffset += 8;
3672       break;
3673 
3674     case MVT::f32:
3675     case MVT::f64:
3676       // Every 4 bytes of argument space consumes one of the GPRs available for
3677       // argument passing.
3678       if (GPR_idx != Num_GPR_Regs) {
3679         ++GPR_idx;
3680         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3681           ++GPR_idx;
3682       }
3683       if (FPR_idx != Num_FPR_Regs) {
3684         unsigned VReg;
3685 
3686         if (ObjectVT == MVT::f32)
3687           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3688         else
3689           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3690 
3691         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3692         ++FPR_idx;
3693       } else {
3694         needsLoad = true;
3695       }
3696 
3697       // All FP arguments reserve stack space in the Darwin ABI.
3698       ArgOffset += isPPC64 ? 8 : ObjSize;
3699       break;
3700     case MVT::v4f32:
3701     case MVT::v4i32:
3702     case MVT::v8i16:
3703     case MVT::v16i8:
3704       // Note that vector arguments in registers don't reserve stack space,
3705       // except in varargs functions.
3706       if (VR_idx != Num_VR_Regs) {
3707         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3708         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3709         if (isVarArg) {
3710           while ((ArgOffset % 16) != 0) {
3711             ArgOffset += PtrByteSize;
3712             if (GPR_idx != Num_GPR_Regs)
3713               GPR_idx++;
3714           }
3715           ArgOffset += 16;
3716           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3717         }
3718         ++VR_idx;
3719       } else {
3720         if (!isVarArg && !isPPC64) {
3721           // Vectors go after all the nonvectors.
3722           CurArgOffset = VecArgOffset;
3723           VecArgOffset += 16;
3724         } else {
3725           // Vectors are aligned.
3726           ArgOffset = ((ArgOffset+15)/16)*16;
3727           CurArgOffset = ArgOffset;
3728           ArgOffset += 16;
3729         }
3730         needsLoad = true;
3731       }
3732       break;
3733     }
3734 
3735     // We need to load the argument to a virtual register if we determined above
3736     // that we ran out of physical registers of the appropriate type.
3737     if (needsLoad) {
3738       int FI = MFI->CreateFixedObject(ObjSize,
3739                                       CurArgOffset + (ArgSize - ObjSize),
3740                                       isImmutable);
3741       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3742       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3743                            false, false, false, 0);
3744     }
3745 
3746     InVals.push_back(ArgVal);
3747   }
3748 
3749   // Allow for Altivec parameters at the end, if needed.
3750   if (nAltivecParamsAtEnd) {
3751     MinReservedArea = ((MinReservedArea+15)/16)*16;
3752     MinReservedArea += 16*nAltivecParamsAtEnd;
3753   }
3754 
3755   // Area that is at least reserved in the caller of this function.
3756   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3757 
3758   // Set the size that is at least reserved in caller of this function.  Tail
3759   // call optimized functions' reserved stack space needs to be aligned so that
3760   // taking the difference between two stack areas will result in an aligned
3761   // stack.
3762   MinReservedArea =
3763       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3764   FuncInfo->setMinReservedArea(MinReservedArea);
3765 
3766   // If the function takes variable number of arguments, make a frame index for
3767   // the start of the first vararg value... for expansion of llvm.va_start.
3768   if (isVarArg) {
3769     int Depth = ArgOffset;
3770 
3771     FuncInfo->setVarArgsFrameIndex(
3772       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3773                              Depth, true));
3774     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3775 
3776     // If this function is vararg, store any remaining integer argument regs
3777     // to their spots on the stack so that they may be loaded by deferencing the
3778     // result of va_next.
3779     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3780       unsigned VReg;
3781 
3782       if (isPPC64)
3783         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3784       else
3785         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3786 
3787       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3788       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3789                                    MachinePointerInfo(), false, false, 0);
3790       MemOps.push_back(Store);
3791       // Increment the address by four for the next argument to store
3792       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3793       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3794     }
3795   }
3796 
3797   if (!MemOps.empty())
3798     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3799 
3800   return Chain;
3801 }
3802 
3803 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3804 /// adjusted to accommodate the arguments for the tailcall.
3805 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3806                                    unsigned ParamSize) {
3807 
3808   if (!isTailCall) return 0;
3809 
3810   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3811   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3812   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3813   // Remember only if the new adjustement is bigger.
3814   if (SPDiff < FI->getTailCallSPDelta())
3815     FI->setTailCallSPDelta(SPDiff);
3816 
3817   return SPDiff;
3818 }
3819 
3820 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3821 /// for tail call optimization. Targets which want to do tail call
3822 /// optimization should implement this function.
3823 bool
3824 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3825                                                      CallingConv::ID CalleeCC,
3826                                                      bool isVarArg,
3827                                       const SmallVectorImpl<ISD::InputArg> &Ins,
3828                                                      SelectionDAG& DAG) const {
3829   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3830     return false;
3831 
3832   // Variable argument functions are not supported.
3833   if (isVarArg)
3834     return false;
3835 
3836   MachineFunction &MF = DAG.getMachineFunction();
3837   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3838   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3839     // Functions containing by val parameters are not supported.
3840     for (unsigned i = 0; i != Ins.size(); i++) {
3841        ISD::ArgFlagsTy Flags = Ins[i].Flags;
3842        if (Flags.isByVal()) return false;
3843     }
3844 
3845     // Non-PIC/GOT tail calls are supported.
3846     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3847       return true;
3848 
3849     // At the moment we can only do local tail calls (in same module, hidden
3850     // or protected) if we are generating PIC.
3851     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3852       return G->getGlobal()->hasHiddenVisibility()
3853           || G->getGlobal()->hasProtectedVisibility();
3854   }
3855 
3856   return false;
3857 }
3858 
3859 /// isCallCompatibleAddress - Return the immediate to use if the specified
3860 /// 32-bit value is representable in the immediate field of a BxA instruction.
3861 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3862   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3863   if (!C) return nullptr;
3864 
3865   int Addr = C->getZExtValue();
3866   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3867       SignExtend32<26>(Addr) != Addr)
3868     return nullptr;  // Top 6 bits have to be sext of immediate.
3869 
3870   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
3871                          DAG.getTargetLoweringInfo().getPointerTy(
3872                              DAG.getDataLayout())).getNode();
3873 }
3874 
3875 namespace {
3876 
3877 struct TailCallArgumentInfo {
3878   SDValue Arg;
3879   SDValue FrameIdxOp;
3880   int       FrameIdx;
3881 
3882   TailCallArgumentInfo() : FrameIdx(0) {}
3883 };
3884 
3885 }
3886 
3887 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3888 static void
3889 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3890                                            SDValue Chain,
3891                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3892                    SmallVectorImpl<SDValue> &MemOpChains,
3893                    SDLoc dl) {
3894   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3895     SDValue Arg = TailCallArgs[i].Arg;
3896     SDValue FIN = TailCallArgs[i].FrameIdxOp;
3897     int FI = TailCallArgs[i].FrameIdx;
3898     // Store relative to framepointer.
3899     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3900                                        MachinePointerInfo::getFixedStack(FI),
3901                                        false, false, 0));
3902   }
3903 }
3904 
3905 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3906 /// the appropriate stack slot for the tail call optimized function call.
3907 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3908                                                MachineFunction &MF,
3909                                                SDValue Chain,
3910                                                SDValue OldRetAddr,
3911                                                SDValue OldFP,
3912                                                int SPDiff,
3913                                                bool isPPC64,
3914                                                bool isDarwinABI,
3915                                                SDLoc dl) {
3916   if (SPDiff) {
3917     // Calculate the new stack slot for the return address.
3918     int SlotSize = isPPC64 ? 8 : 4;
3919     const PPCFrameLowering *FL =
3920         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
3921     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
3922     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3923                                                           NewRetAddrLoc, true);
3924     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3925     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3926     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3927                          MachinePointerInfo::getFixedStack(NewRetAddr),
3928                          false, false, 0);
3929 
3930     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3931     // slot as the FP is never overwritten.
3932     if (isDarwinABI) {
3933       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
3934       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3935                                                           true);
3936       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3937       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3938                            MachinePointerInfo::getFixedStack(NewFPIdx),
3939                            false, false, 0);
3940     }
3941   }
3942   return Chain;
3943 }
3944 
3945 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3946 /// the position of the argument.
3947 static void
3948 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3949                          SDValue Arg, int SPDiff, unsigned ArgOffset,
3950                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3951   int Offset = ArgOffset + SPDiff;
3952   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3953   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3954   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3955   SDValue FIN = DAG.getFrameIndex(FI, VT);
3956   TailCallArgumentInfo Info;
3957   Info.Arg = Arg;
3958   Info.FrameIdxOp = FIN;
3959   Info.FrameIdx = FI;
3960   TailCallArguments.push_back(Info);
3961 }
3962 
3963 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3964 /// stack slot. Returns the chain as result and the loaded frame pointers in
3965 /// LROpOut/FPOpout. Used when tail calling.
3966 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3967                                                         int SPDiff,
3968                                                         SDValue Chain,
3969                                                         SDValue &LROpOut,
3970                                                         SDValue &FPOpOut,
3971                                                         bool isDarwinABI,
3972                                                         SDLoc dl) const {
3973   if (SPDiff) {
3974     // Load the LR and FP stack slot for later adjusting.
3975     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3976     LROpOut = getReturnAddrFrameIndex(DAG);
3977     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3978                           false, false, false, 0);
3979     Chain = SDValue(LROpOut.getNode(), 1);
3980 
3981     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3982     // slot as the FP is never overwritten.
3983     if (isDarwinABI) {
3984       FPOpOut = getFramePointerFrameIndex(DAG);
3985       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3986                             false, false, false, 0);
3987       Chain = SDValue(FPOpOut.getNode(), 1);
3988     }
3989   }
3990   return Chain;
3991 }
3992 
3993 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3994 /// by "Src" to address "Dst" of size "Size".  Alignment information is
3995 /// specified by the specific parameter attribute. The copy will be passed as
3996 /// a byval function parameter.
3997 /// Sometimes what we are copying is the end of a larger object, the part that
3998 /// does not fit in registers.
3999 static SDValue
4000 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
4001                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
4002                           SDLoc dl) {
4003   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4004   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4005                        false, false, false, MachinePointerInfo(),
4006                        MachinePointerInfo());
4007 }
4008 
4009 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4010 /// tail calls.
4011 static void
4012 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
4013                  SDValue Arg, SDValue PtrOff, int SPDiff,
4014                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
4015                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4016                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
4017                  SDLoc dl) {
4018   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4019   if (!isTailCall) {
4020     if (isVector) {
4021       SDValue StackPtr;
4022       if (isPPC64)
4023         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4024       else
4025         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4026       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4027                            DAG.getConstant(ArgOffset, dl, PtrVT));
4028     }
4029     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4030                                        MachinePointerInfo(), false, false, 0));
4031   // Calculate and remember argument location.
4032   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4033                                   TailCallArguments);
4034 }
4035 
4036 static
4037 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4038                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4039                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
4040                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4041   MachineFunction &MF = DAG.getMachineFunction();
4042 
4043   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4044   // might overwrite each other in case of tail call optimization.
4045   SmallVector<SDValue, 8> MemOpChains2;
4046   // Do not flag preceding copytoreg stuff together with the following stuff.
4047   InFlag = SDValue();
4048   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4049                                     MemOpChains2, dl);
4050   if (!MemOpChains2.empty())
4051     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4052 
4053   // Store the return address to the appropriate stack slot.
4054   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4055                                         isPPC64, isDarwinABI, dl);
4056 
4057   // Emit callseq_end just before tailcall node.
4058   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4059                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4060   InFlag = Chain.getValue(1);
4061 }
4062 
4063 // Is this global address that of a function that can be called by name? (as
4064 // opposed to something that must hold a descriptor for an indirect call).
4065 static bool isFunctionGlobalAddress(SDValue Callee) {
4066   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4067     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4068         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4069       return false;
4070 
4071     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
4072   }
4073 
4074   return false;
4075 }
4076 
4077 static
4078 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
4079                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
4080                      bool isTailCall, bool IsPatchPoint, bool hasNest,
4081                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
4082                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4083                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4084 
4085   bool isPPC64 = Subtarget.isPPC64();
4086   bool isSVR4ABI = Subtarget.isSVR4ABI();
4087   bool isELFv2ABI = Subtarget.isELFv2ABI();
4088 
4089   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4090   NodeTys.push_back(MVT::Other);   // Returns a chain
4091   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4092 
4093   unsigned CallOpc = PPCISD::CALL;
4094 
4095   bool needIndirectCall = true;
4096   if (!isSVR4ABI || !isPPC64)
4097     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4098       // If this is an absolute destination address, use the munged value.
4099       Callee = SDValue(Dest, 0);
4100       needIndirectCall = false;
4101     }
4102 
4103   if (isFunctionGlobalAddress(Callee)) {
4104     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4105     // A call to a TLS address is actually an indirect call to a
4106     // thread-specific pointer.
4107     unsigned OpFlags = 0;
4108     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4109          (Subtarget.getTargetTriple().isMacOSX() &&
4110           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
4111          !G->getGlobal()->isStrongDefinitionForLinker()) ||
4112         (Subtarget.isTargetELF() && !isPPC64 &&
4113          !G->getGlobal()->hasLocalLinkage() &&
4114          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4115       // PC-relative references to external symbols should go through $stub,
4116       // unless we're building with the leopard linker or later, which
4117       // automatically synthesizes these stubs.
4118       OpFlags = PPCII::MO_PLT_OR_STUB;
4119     }
4120 
4121     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4122     // every direct call is) turn it into a TargetGlobalAddress /
4123     // TargetExternalSymbol node so that legalize doesn't hack it.
4124     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4125                                         Callee.getValueType(), 0, OpFlags);
4126     needIndirectCall = false;
4127   }
4128 
4129   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4130     unsigned char OpFlags = 0;
4131 
4132     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4133          (Subtarget.getTargetTriple().isMacOSX() &&
4134           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
4135         (Subtarget.isTargetELF() && !isPPC64 &&
4136          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4137       // PC-relative references to external symbols should go through $stub,
4138       // unless we're building with the leopard linker or later, which
4139       // automatically synthesizes these stubs.
4140       OpFlags = PPCII::MO_PLT_OR_STUB;
4141     }
4142 
4143     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4144                                          OpFlags);
4145     needIndirectCall = false;
4146   }
4147 
4148   if (IsPatchPoint) {
4149     // We'll form an invalid direct call when lowering a patchpoint; the full
4150     // sequence for an indirect call is complicated, and many of the
4151     // instructions introduced might have side effects (and, thus, can't be
4152     // removed later). The call itself will be removed as soon as the
4153     // argument/return lowering is complete, so the fact that it has the wrong
4154     // kind of operands should not really matter.
4155     needIndirectCall = false;
4156   }
4157 
4158   if (needIndirectCall) {
4159     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4160     // to do the call, we can't use PPCISD::CALL.
4161     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4162 
4163     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4164       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4165       // entry point, but to the function descriptor (the function entry point
4166       // address is part of the function descriptor though).
4167       // The function descriptor is a three doubleword structure with the
4168       // following fields: function entry point, TOC base address and
4169       // environment pointer.
4170       // Thus for a call through a function pointer, the following actions need
4171       // to be performed:
4172       //   1. Save the TOC of the caller in the TOC save area of its stack
4173       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4174       //   2. Load the address of the function entry point from the function
4175       //      descriptor.
4176       //   3. Load the TOC of the callee from the function descriptor into r2.
4177       //   4. Load the environment pointer from the function descriptor into
4178       //      r11.
4179       //   5. Branch to the function entry point address.
4180       //   6. On return of the callee, the TOC of the caller needs to be
4181       //      restored (this is done in FinishCall()).
4182       //
4183       // The loads are scheduled at the beginning of the call sequence, and the
4184       // register copies are flagged together to ensure that no other
4185       // operations can be scheduled in between. E.g. without flagging the
4186       // copies together, a TOC access in the caller could be scheduled between
4187       // the assignment of the callee TOC and the branch to the callee, which
4188       // results in the TOC access going through the TOC of the callee instead
4189       // of going through the TOC of the caller, which leads to incorrect code.
4190 
4191       // Load the address of the function entry point from the function
4192       // descriptor.
4193       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4194       if (LDChain.getValueType() == MVT::Glue)
4195         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4196 
4197       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4198 
4199       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4200       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4201                                         false, false, LoadsInv, 8);
4202 
4203       // Load environment pointer into r11.
4204       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4205       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4206       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4207                                        MPI.getWithOffset(16), false, false,
4208                                        LoadsInv, 8);
4209 
4210       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4211       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4212       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4213                                    MPI.getWithOffset(8), false, false,
4214                                    LoadsInv, 8);
4215 
4216       setUsesTOCBasePtr(DAG);
4217       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4218                                         InFlag);
4219       Chain = TOCVal.getValue(0);
4220       InFlag = TOCVal.getValue(1);
4221 
4222       // If the function call has an explicit 'nest' parameter, it takes the
4223       // place of the environment pointer.
4224       if (!hasNest) {
4225         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4226                                           InFlag);
4227 
4228         Chain = EnvVal.getValue(0);
4229         InFlag = EnvVal.getValue(1);
4230       }
4231 
4232       MTCTROps[0] = Chain;
4233       MTCTROps[1] = LoadFuncPtr;
4234       MTCTROps[2] = InFlag;
4235     }
4236 
4237     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4238                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4239     InFlag = Chain.getValue(1);
4240 
4241     NodeTys.clear();
4242     NodeTys.push_back(MVT::Other);
4243     NodeTys.push_back(MVT::Glue);
4244     Ops.push_back(Chain);
4245     CallOpc = PPCISD::BCTRL;
4246     Callee.setNode(nullptr);
4247     // Add use of X11 (holding environment pointer)
4248     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4249       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4250     // Add CTR register as callee so a bctr can be emitted later.
4251     if (isTailCall)
4252       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4253   }
4254 
4255   // If this is a direct call, pass the chain and the callee.
4256   if (Callee.getNode()) {
4257     Ops.push_back(Chain);
4258     Ops.push_back(Callee);
4259   }
4260   // If this is a tail call add stack pointer delta.
4261   if (isTailCall)
4262     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4263 
4264   // Add argument registers to the end of the list so that they are known live
4265   // into the call.
4266   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4267     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4268                                   RegsToPass[i].second.getValueType()));
4269 
4270   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4271   // into the call.
4272   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4273     setUsesTOCBasePtr(DAG);
4274     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4275   }
4276 
4277   return CallOpc;
4278 }
4279 
4280 static
4281 bool isLocalCall(const SDValue &Callee)
4282 {
4283   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4284     return G->getGlobal()->isStrongDefinitionForLinker();
4285   return false;
4286 }
4287 
4288 SDValue
4289 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4290                                    CallingConv::ID CallConv, bool isVarArg,
4291                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4292                                    SDLoc dl, SelectionDAG &DAG,
4293                                    SmallVectorImpl<SDValue> &InVals) const {
4294 
4295   SmallVector<CCValAssign, 16> RVLocs;
4296   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4297                     *DAG.getContext());
4298   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4299 
4300   // Copy all of the result registers out of their specified physreg.
4301   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4302     CCValAssign &VA = RVLocs[i];
4303     assert(VA.isRegLoc() && "Can only return in registers!");
4304 
4305     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4306                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4307     Chain = Val.getValue(1);
4308     InFlag = Val.getValue(2);
4309 
4310     switch (VA.getLocInfo()) {
4311     default: llvm_unreachable("Unknown loc info!");
4312     case CCValAssign::Full: break;
4313     case CCValAssign::AExt:
4314       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4315       break;
4316     case CCValAssign::ZExt:
4317       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4318                         DAG.getValueType(VA.getValVT()));
4319       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4320       break;
4321     case CCValAssign::SExt:
4322       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4323                         DAG.getValueType(VA.getValVT()));
4324       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4325       break;
4326     }
4327 
4328     InVals.push_back(Val);
4329   }
4330 
4331   return Chain;
4332 }
4333 
4334 SDValue
4335 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4336                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
4337                               bool hasNest, SelectionDAG &DAG,
4338                               SmallVector<std::pair<unsigned, SDValue>, 8>
4339                                 &RegsToPass,
4340                               SDValue InFlag, SDValue Chain,
4341                               SDValue CallSeqStart, SDValue &Callee,
4342                               int SPDiff, unsigned NumBytes,
4343                               const SmallVectorImpl<ISD::InputArg> &Ins,
4344                               SmallVectorImpl<SDValue> &InVals,
4345                               ImmutableCallSite *CS) const {
4346 
4347   std::vector<EVT> NodeTys;
4348   SmallVector<SDValue, 8> Ops;
4349   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4350                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4351                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4352 
4353   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4354   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4355     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4356 
4357   // When performing tail call optimization the callee pops its arguments off
4358   // the stack. Account for this here so these bytes can be pushed back on in
4359   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4360   int BytesCalleePops =
4361     (CallConv == CallingConv::Fast &&
4362      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4363 
4364   // Add a register mask operand representing the call-preserved registers.
4365   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4366   const uint32_t *Mask =
4367       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4368   assert(Mask && "Missing call preserved mask for calling convention");
4369   Ops.push_back(DAG.getRegisterMask(Mask));
4370 
4371   if (InFlag.getNode())
4372     Ops.push_back(InFlag);
4373 
4374   // Emit tail call.
4375   if (isTailCall) {
4376     assert(((Callee.getOpcode() == ISD::Register &&
4377              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4378             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4379             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4380             isa<ConstantSDNode>(Callee)) &&
4381     "Expecting an global address, external symbol, absolute value or register");
4382 
4383     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4384     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4385   }
4386 
4387   // Add a NOP immediately after the branch instruction when using the 64-bit
4388   // SVR4 ABI. At link time, if caller and callee are in a different module and
4389   // thus have a different TOC, the call will be replaced with a call to a stub
4390   // function which saves the current TOC, loads the TOC of the callee and
4391   // branches to the callee. The NOP will be replaced with a load instruction
4392   // which restores the TOC of the caller from the TOC save slot of the current
4393   // stack frame. If caller and callee belong to the same module (and have the
4394   // same TOC), the NOP will remain unchanged.
4395 
4396   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4397       !IsPatchPoint) {
4398     if (CallOpc == PPCISD::BCTRL) {
4399       // This is a call through a function pointer.
4400       // Restore the caller TOC from the save area into R2.
4401       // See PrepareCall() for more information about calls through function
4402       // pointers in the 64-bit SVR4 ABI.
4403       // We are using a target-specific load with r2 hard coded, because the
4404       // result of a target-independent load would never go directly into r2,
4405       // since r2 is a reserved register (which prevents the register allocator
4406       // from allocating it), resulting in an additional register being
4407       // allocated and an unnecessary move instruction being generated.
4408       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4409 
4410       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4411       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4412       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4413       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4414       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4415 
4416       // The address needs to go after the chain input but before the flag (or
4417       // any other variadic arguments).
4418       Ops.insert(std::next(Ops.begin()), AddTOC);
4419     } else if ((CallOpc == PPCISD::CALL) &&
4420                (!isLocalCall(Callee) ||
4421                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4422       // Otherwise insert NOP for non-local calls.
4423       CallOpc = PPCISD::CALL_NOP;
4424   }
4425 
4426   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4427   InFlag = Chain.getValue(1);
4428 
4429   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4430                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4431                              InFlag, dl);
4432   if (!Ins.empty())
4433     InFlag = Chain.getValue(1);
4434 
4435   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4436                          Ins, dl, DAG, InVals);
4437 }
4438 
4439 SDValue
4440 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4441                              SmallVectorImpl<SDValue> &InVals) const {
4442   SelectionDAG &DAG                     = CLI.DAG;
4443   SDLoc &dl                             = CLI.DL;
4444   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4445   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4446   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4447   SDValue Chain                         = CLI.Chain;
4448   SDValue Callee                        = CLI.Callee;
4449   bool &isTailCall                      = CLI.IsTailCall;
4450   CallingConv::ID CallConv              = CLI.CallConv;
4451   bool isVarArg                         = CLI.IsVarArg;
4452   bool IsPatchPoint                     = CLI.IsPatchPoint;
4453   ImmutableCallSite *CS                 = CLI.CS;
4454 
4455   if (isTailCall)
4456     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4457                                                    Ins, DAG);
4458 
4459   if (!isTailCall && CS && CS->isMustTailCall())
4460     report_fatal_error("failed to perform tail call elimination on a call "
4461                        "site marked musttail");
4462 
4463   if (Subtarget.isSVR4ABI()) {
4464     if (Subtarget.isPPC64())
4465       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4466                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4467                               dl, DAG, InVals, CS);
4468     else
4469       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4470                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4471                               dl, DAG, InVals, CS);
4472   }
4473 
4474   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4475                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4476                           dl, DAG, InVals, CS);
4477 }
4478 
4479 SDValue
4480 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4481                                     CallingConv::ID CallConv, bool isVarArg,
4482                                     bool isTailCall, bool IsPatchPoint,
4483                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4484                                     const SmallVectorImpl<SDValue> &OutVals,
4485                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4486                                     SDLoc dl, SelectionDAG &DAG,
4487                                     SmallVectorImpl<SDValue> &InVals,
4488                                     ImmutableCallSite *CS) const {
4489   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4490   // of the 32-bit SVR4 ABI stack frame layout.
4491 
4492   assert((CallConv == CallingConv::C ||
4493           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4494 
4495   unsigned PtrByteSize = 4;
4496 
4497   MachineFunction &MF = DAG.getMachineFunction();
4498 
4499   // Mark this function as potentially containing a function that contains a
4500   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4501   // and restoring the callers stack pointer in this functions epilog. This is
4502   // done because by tail calling the called function might overwrite the value
4503   // in this function's (MF) stack pointer stack slot 0(SP).
4504   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4505       CallConv == CallingConv::Fast)
4506     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4507 
4508   // Count how many bytes are to be pushed on the stack, including the linkage
4509   // area, parameter list area and the part of the local variable space which
4510   // contains copies of aggregates which are passed by value.
4511 
4512   // Assign locations to all of the outgoing arguments.
4513   SmallVector<CCValAssign, 16> ArgLocs;
4514   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4515                  *DAG.getContext());
4516 
4517   // Reserve space for the linkage area on the stack.
4518   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4519                        PtrByteSize);
4520 
4521   if (isVarArg) {
4522     // Handle fixed and variable vector arguments differently.
4523     // Fixed vector arguments go into registers as long as registers are
4524     // available. Variable vector arguments always go into memory.
4525     unsigned NumArgs = Outs.size();
4526 
4527     for (unsigned i = 0; i != NumArgs; ++i) {
4528       MVT ArgVT = Outs[i].VT;
4529       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4530       bool Result;
4531 
4532       if (Outs[i].IsFixed) {
4533         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4534                                CCInfo);
4535       } else {
4536         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4537                                       ArgFlags, CCInfo);
4538       }
4539 
4540       if (Result) {
4541 #ifndef NDEBUG
4542         errs() << "Call operand #" << i << " has unhandled type "
4543              << EVT(ArgVT).getEVTString() << "\n";
4544 #endif
4545         llvm_unreachable(nullptr);
4546       }
4547     }
4548   } else {
4549     // All arguments are treated the same.
4550     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4551   }
4552 
4553   // Assign locations to all of the outgoing aggregate by value arguments.
4554   SmallVector<CCValAssign, 16> ByValArgLocs;
4555   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4556                       ByValArgLocs, *DAG.getContext());
4557 
4558   // Reserve stack space for the allocations in CCInfo.
4559   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4560 
4561   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4562 
4563   // Size of the linkage area, parameter list area and the part of the local
4564   // space variable where copies of aggregates which are passed by value are
4565   // stored.
4566   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4567 
4568   // Calculate by how many bytes the stack has to be adjusted in case of tail
4569   // call optimization.
4570   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4571 
4572   // Adjust the stack pointer for the new arguments...
4573   // These operations are automatically eliminated by the prolog/epilog pass
4574   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4575                                dl);
4576   SDValue CallSeqStart = Chain;
4577 
4578   // Load the return address and frame pointer so it can be moved somewhere else
4579   // later.
4580   SDValue LROp, FPOp;
4581   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4582                                        dl);
4583 
4584   // Set up a copy of the stack pointer for use loading and storing any
4585   // arguments that may not fit in the registers available for argument
4586   // passing.
4587   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4588 
4589   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4590   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4591   SmallVector<SDValue, 8> MemOpChains;
4592 
4593   bool seenFloatArg = false;
4594   // Walk the register/memloc assignments, inserting copies/loads.
4595   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4596        i != e;
4597        ++i) {
4598     CCValAssign &VA = ArgLocs[i];
4599     SDValue Arg = OutVals[i];
4600     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4601 
4602     if (Flags.isByVal()) {
4603       // Argument is an aggregate which is passed by value, thus we need to
4604       // create a copy of it in the local variable space of the current stack
4605       // frame (which is the stack frame of the caller) and pass the address of
4606       // this copy to the callee.
4607       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4608       CCValAssign &ByValVA = ByValArgLocs[j++];
4609       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4610 
4611       // Memory reserved in the local variable space of the callers stack frame.
4612       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4613 
4614       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4615       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4616                            StackPtr, PtrOff);
4617 
4618       // Create a copy of the argument in the local area of the current
4619       // stack frame.
4620       SDValue MemcpyCall =
4621         CreateCopyOfByValArgument(Arg, PtrOff,
4622                                   CallSeqStart.getNode()->getOperand(0),
4623                                   Flags, DAG, dl);
4624 
4625       // This must go outside the CALLSEQ_START..END.
4626       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4627                            CallSeqStart.getNode()->getOperand(1),
4628                            SDLoc(MemcpyCall));
4629       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4630                              NewCallSeqStart.getNode());
4631       Chain = CallSeqStart = NewCallSeqStart;
4632 
4633       // Pass the address of the aggregate copy on the stack either in a
4634       // physical register or in the parameter list area of the current stack
4635       // frame to the callee.
4636       Arg = PtrOff;
4637     }
4638 
4639     if (VA.isRegLoc()) {
4640       if (Arg.getValueType() == MVT::i1)
4641         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4642 
4643       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4644       // Put argument in a physical register.
4645       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4646     } else {
4647       // Put argument in the parameter list area of the current stack frame.
4648       assert(VA.isMemLoc());
4649       unsigned LocMemOffset = VA.getLocMemOffset();
4650 
4651       if (!isTailCall) {
4652         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4653         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4654                              StackPtr, PtrOff);
4655 
4656         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4657                                            MachinePointerInfo(),
4658                                            false, false, 0));
4659       } else {
4660         // Calculate and remember argument location.
4661         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4662                                  TailCallArguments);
4663       }
4664     }
4665   }
4666 
4667   if (!MemOpChains.empty())
4668     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4669 
4670   // Build a sequence of copy-to-reg nodes chained together with token chain
4671   // and flag operands which copy the outgoing args into the appropriate regs.
4672   SDValue InFlag;
4673   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4674     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4675                              RegsToPass[i].second, InFlag);
4676     InFlag = Chain.getValue(1);
4677   }
4678 
4679   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4680   // registers.
4681   if (isVarArg) {
4682     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4683     SDValue Ops[] = { Chain, InFlag };
4684 
4685     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4686                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4687 
4688     InFlag = Chain.getValue(1);
4689   }
4690 
4691   if (isTailCall)
4692     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4693                     false, TailCallArguments);
4694 
4695   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4696                     /* unused except on PPC64 ELFv1 */ false, DAG,
4697                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4698                     NumBytes, Ins, InVals, CS);
4699 }
4700 
4701 // Copy an argument into memory, being careful to do this outside the
4702 // call sequence for the call to which the argument belongs.
4703 SDValue
4704 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4705                                               SDValue CallSeqStart,
4706                                               ISD::ArgFlagsTy Flags,
4707                                               SelectionDAG &DAG,
4708                                               SDLoc dl) const {
4709   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4710                         CallSeqStart.getNode()->getOperand(0),
4711                         Flags, DAG, dl);
4712   // The MEMCPY must go outside the CALLSEQ_START..END.
4713   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4714                              CallSeqStart.getNode()->getOperand(1),
4715                              SDLoc(MemcpyCall));
4716   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4717                          NewCallSeqStart.getNode());
4718   return NewCallSeqStart;
4719 }
4720 
4721 SDValue
4722 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4723                                     CallingConv::ID CallConv, bool isVarArg,
4724                                     bool isTailCall, bool IsPatchPoint,
4725                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4726                                     const SmallVectorImpl<SDValue> &OutVals,
4727                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4728                                     SDLoc dl, SelectionDAG &DAG,
4729                                     SmallVectorImpl<SDValue> &InVals,
4730                                     ImmutableCallSite *CS) const {
4731 
4732   bool isELFv2ABI = Subtarget.isELFv2ABI();
4733   bool isLittleEndian = Subtarget.isLittleEndian();
4734   unsigned NumOps = Outs.size();
4735   bool hasNest = false;
4736 
4737   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4738   unsigned PtrByteSize = 8;
4739 
4740   MachineFunction &MF = DAG.getMachineFunction();
4741 
4742   // Mark this function as potentially containing a function that contains a
4743   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4744   // and restoring the callers stack pointer in this functions epilog. This is
4745   // done because by tail calling the called function might overwrite the value
4746   // in this function's (MF) stack pointer stack slot 0(SP).
4747   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4748       CallConv == CallingConv::Fast)
4749     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4750 
4751   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4752          "fastcc not supported on varargs functions");
4753 
4754   // Count how many bytes are to be pushed on the stack, including the linkage
4755   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4756   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4757   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4758   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4759   unsigned NumBytes = LinkageSize;
4760   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4761   unsigned &QFPR_idx = FPR_idx;
4762 
4763   static const MCPhysReg GPR[] = {
4764     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4765     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4766   };
4767   static const MCPhysReg VR[] = {
4768     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4769     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4770   };
4771   static const MCPhysReg VSRH[] = {
4772     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4773     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4774   };
4775 
4776   const unsigned NumGPRs = array_lengthof(GPR);
4777   const unsigned NumFPRs = 13;
4778   const unsigned NumVRs  = array_lengthof(VR);
4779   const unsigned NumQFPRs = NumFPRs;
4780 
4781   // When using the fast calling convention, we don't provide backing for
4782   // arguments that will be in registers.
4783   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4784 
4785   // Add up all the space actually used.
4786   for (unsigned i = 0; i != NumOps; ++i) {
4787     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4788     EVT ArgVT = Outs[i].VT;
4789     EVT OrigVT = Outs[i].ArgVT;
4790 
4791     if (Flags.isNest())
4792       continue;
4793 
4794     if (CallConv == CallingConv::Fast) {
4795       if (Flags.isByVal())
4796         NumGPRsUsed += (Flags.getByValSize()+7)/8;
4797       else
4798         switch (ArgVT.getSimpleVT().SimpleTy) {
4799         default: llvm_unreachable("Unexpected ValueType for argument!");
4800         case MVT::i1:
4801         case MVT::i32:
4802         case MVT::i64:
4803           if (++NumGPRsUsed <= NumGPRs)
4804             continue;
4805           break;
4806         case MVT::v4i32:
4807         case MVT::v8i16:
4808         case MVT::v16i8:
4809         case MVT::v2f64:
4810         case MVT::v2i64:
4811         case MVT::v1i128:
4812           if (++NumVRsUsed <= NumVRs)
4813             continue;
4814           break;
4815         case MVT::v4f32:
4816 	  // When using QPX, this is handled like a FP register, otherwise, it
4817 	  // is an Altivec register.
4818           if (Subtarget.hasQPX()) {
4819             if (++NumFPRsUsed <= NumFPRs)
4820               continue;
4821           } else {
4822             if (++NumVRsUsed <= NumVRs)
4823               continue;
4824           }
4825           break;
4826         case MVT::f32:
4827         case MVT::f64:
4828         case MVT::v4f64: // QPX
4829         case MVT::v4i1:  // QPX
4830           if (++NumFPRsUsed <= NumFPRs)
4831             continue;
4832           break;
4833         }
4834     }
4835 
4836     /* Respect alignment of argument on the stack.  */
4837     unsigned Align =
4838       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4839     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
4840 
4841     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4842     if (Flags.isInConsecutiveRegsLast())
4843       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4844   }
4845 
4846   unsigned NumBytesActuallyUsed = NumBytes;
4847 
4848   // The prolog code of the callee may store up to 8 GPR argument registers to
4849   // the stack, allowing va_start to index over them in memory if its varargs.
4850   // Because we cannot tell if this is needed on the caller side, we have to
4851   // conservatively assume that it is needed.  As such, make sure we have at
4852   // least enough stack space for the caller to store the 8 GPRs.
4853   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
4854   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4855 
4856   // Tail call needs the stack to be aligned.
4857   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4858       CallConv == CallingConv::Fast)
4859     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
4860 
4861   // Calculate by how many bytes the stack has to be adjusted in case of tail
4862   // call optimization.
4863   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4864 
4865   // To protect arguments on the stack from being clobbered in a tail call,
4866   // force all the loads to happen before doing any other lowering.
4867   if (isTailCall)
4868     Chain = DAG.getStackArgumentTokenFactor(Chain);
4869 
4870   // Adjust the stack pointer for the new arguments...
4871   // These operations are automatically eliminated by the prolog/epilog pass
4872   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4873                                dl);
4874   SDValue CallSeqStart = Chain;
4875 
4876   // Load the return address and frame pointer so it can be move somewhere else
4877   // later.
4878   SDValue LROp, FPOp;
4879   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4880                                        dl);
4881 
4882   // Set up a copy of the stack pointer for use loading and storing any
4883   // arguments that may not fit in the registers available for argument
4884   // passing.
4885   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4886 
4887   // Figure out which arguments are going to go in registers, and which in
4888   // memory.  Also, if this is a vararg function, floating point operations
4889   // must be stored to our stack, and loaded into integer regs as well, if
4890   // any integer regs are available for argument passing.
4891   unsigned ArgOffset = LinkageSize;
4892 
4893   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4894   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4895 
4896   SmallVector<SDValue, 8> MemOpChains;
4897   for (unsigned i = 0; i != NumOps; ++i) {
4898     SDValue Arg = OutVals[i];
4899     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4900     EVT ArgVT = Outs[i].VT;
4901     EVT OrigVT = Outs[i].ArgVT;
4902 
4903     // PtrOff will be used to store the current argument to the stack if a
4904     // register cannot be found for it.
4905     SDValue PtrOff;
4906 
4907     // We re-align the argument offset for each argument, except when using the
4908     // fast calling convention, when we need to make sure we do that only when
4909     // we'll actually use a stack slot.
4910     auto ComputePtrOff = [&]() {
4911       /* Respect alignment of argument on the stack.  */
4912       unsigned Align =
4913         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4914       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4915 
4916       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
4917 
4918       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4919     };
4920 
4921     if (CallConv != CallingConv::Fast) {
4922       ComputePtrOff();
4923 
4924       /* Compute GPR index associated with argument offset.  */
4925       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4926       GPR_idx = std::min(GPR_idx, NumGPRs);
4927     }
4928 
4929     // Promote integers to 64-bit values.
4930     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4931       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4932       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4933       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4934     }
4935 
4936     // FIXME memcpy is used way more than necessary.  Correctness first.
4937     // Note: "by value" is code for passing a structure by value, not
4938     // basic types.
4939     if (Flags.isByVal()) {
4940       // Note: Size includes alignment padding, so
4941       //   struct x { short a; char b; }
4942       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4943       // These are the proper values we need for right-justifying the
4944       // aggregate in a parameter register.
4945       unsigned Size = Flags.getByValSize();
4946 
4947       // An empty aggregate parameter takes up no storage and no
4948       // registers.
4949       if (Size == 0)
4950         continue;
4951 
4952       if (CallConv == CallingConv::Fast)
4953         ComputePtrOff();
4954 
4955       // All aggregates smaller than 8 bytes must be passed right-justified.
4956       if (Size==1 || Size==2 || Size==4) {
4957         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4958         if (GPR_idx != NumGPRs) {
4959           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4960                                         MachinePointerInfo(), VT,
4961                                         false, false, false, 0);
4962           MemOpChains.push_back(Load.getValue(1));
4963           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4964 
4965           ArgOffset += PtrByteSize;
4966           continue;
4967         }
4968       }
4969 
4970       if (GPR_idx == NumGPRs && Size < 8) {
4971         SDValue AddPtr = PtrOff;
4972         if (!isLittleEndian) {
4973           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
4974                                           PtrOff.getValueType());
4975           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4976         }
4977         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4978                                                           CallSeqStart,
4979                                                           Flags, DAG, dl);
4980         ArgOffset += PtrByteSize;
4981         continue;
4982       }
4983       // Copy entire object into memory.  There are cases where gcc-generated
4984       // code assumes it is there, even if it could be put entirely into
4985       // registers.  (This is not what the doc says.)
4986 
4987       // FIXME: The above statement is likely due to a misunderstanding of the
4988       // documents.  All arguments must be copied into the parameter area BY
4989       // THE CALLEE in the event that the callee takes the address of any
4990       // formal argument.  That has not yet been implemented.  However, it is
4991       // reasonable to use the stack area as a staging area for the register
4992       // load.
4993 
4994       // Skip this for small aggregates, as we will use the same slot for a
4995       // right-justified copy, below.
4996       if (Size >= 8)
4997         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4998                                                           CallSeqStart,
4999                                                           Flags, DAG, dl);
5000 
5001       // When a register is available, pass a small aggregate right-justified.
5002       if (Size < 8 && GPR_idx != NumGPRs) {
5003         // The easiest way to get this right-justified in a register
5004         // is to copy the structure into the rightmost portion of a
5005         // local variable slot, then load the whole slot into the
5006         // register.
5007         // FIXME: The memcpy seems to produce pretty awful code for
5008         // small aggregates, particularly for packed ones.
5009         // FIXME: It would be preferable to use the slot in the
5010         // parameter save area instead of a new local variable.
5011         SDValue AddPtr = PtrOff;
5012         if (!isLittleEndian) {
5013           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5014           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5015         }
5016         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5017                                                           CallSeqStart,
5018                                                           Flags, DAG, dl);
5019 
5020         // Load the slot into the register.
5021         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5022                                    MachinePointerInfo(),
5023                                    false, false, false, 0);
5024         MemOpChains.push_back(Load.getValue(1));
5025         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5026 
5027         // Done with this argument.
5028         ArgOffset += PtrByteSize;
5029         continue;
5030       }
5031 
5032       // For aggregates larger than PtrByteSize, copy the pieces of the
5033       // object that fit into registers from the parameter save area.
5034       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5035         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5036         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5037         if (GPR_idx != NumGPRs) {
5038           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5039                                      MachinePointerInfo(),
5040                                      false, false, false, 0);
5041           MemOpChains.push_back(Load.getValue(1));
5042           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5043           ArgOffset += PtrByteSize;
5044         } else {
5045           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5046           break;
5047         }
5048       }
5049       continue;
5050     }
5051 
5052     switch (Arg.getSimpleValueType().SimpleTy) {
5053     default: llvm_unreachable("Unexpected ValueType for argument!");
5054     case MVT::i1:
5055     case MVT::i32:
5056     case MVT::i64:
5057       if (Flags.isNest()) {
5058         // The 'nest' parameter, if any, is passed in R11.
5059         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5060         hasNest = true;
5061         break;
5062       }
5063 
5064       // These can be scalar arguments or elements of an integer array type
5065       // passed directly.  Clang may use those instead of "byval" aggregate
5066       // types to avoid forcing arguments to memory unnecessarily.
5067       if (GPR_idx != NumGPRs) {
5068         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5069       } else {
5070         if (CallConv == CallingConv::Fast)
5071           ComputePtrOff();
5072 
5073         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5074                          true, isTailCall, false, MemOpChains,
5075                          TailCallArguments, dl);
5076         if (CallConv == CallingConv::Fast)
5077           ArgOffset += PtrByteSize;
5078       }
5079       if (CallConv != CallingConv::Fast)
5080         ArgOffset += PtrByteSize;
5081       break;
5082     case MVT::f32:
5083     case MVT::f64: {
5084       // These can be scalar arguments or elements of a float array type
5085       // passed directly.  The latter are used to implement ELFv2 homogenous
5086       // float aggregates.
5087 
5088       // Named arguments go into FPRs first, and once they overflow, the
5089       // remaining arguments go into GPRs and then the parameter save area.
5090       // Unnamed arguments for vararg functions always go to GPRs and
5091       // then the parameter save area.  For now, put all arguments to vararg
5092       // routines always in both locations (FPR *and* GPR or stack slot).
5093       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5094       bool NeededLoad = false;
5095 
5096       // First load the argument into the next available FPR.
5097       if (FPR_idx != NumFPRs)
5098         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5099 
5100       // Next, load the argument into GPR or stack slot if needed.
5101       if (!NeedGPROrStack)
5102         ;
5103       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5104         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5105         // once we support fp <-> gpr moves.
5106 
5107         // In the non-vararg case, this can only ever happen in the
5108         // presence of f32 array types, since otherwise we never run
5109         // out of FPRs before running out of GPRs.
5110         SDValue ArgVal;
5111 
5112         // Double values are always passed in a single GPR.
5113         if (Arg.getValueType() != MVT::f32) {
5114           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5115 
5116         // Non-array float values are extended and passed in a GPR.
5117         } else if (!Flags.isInConsecutiveRegs()) {
5118           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5119           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5120 
5121         // If we have an array of floats, we collect every odd element
5122         // together with its predecessor into one GPR.
5123         } else if (ArgOffset % PtrByteSize != 0) {
5124           SDValue Lo, Hi;
5125           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5126           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5127           if (!isLittleEndian)
5128             std::swap(Lo, Hi);
5129           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5130 
5131         // The final element, if even, goes into the first half of a GPR.
5132         } else if (Flags.isInConsecutiveRegsLast()) {
5133           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5134           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5135           if (!isLittleEndian)
5136             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5137                                  DAG.getConstant(32, dl, MVT::i32));
5138 
5139         // Non-final even elements are skipped; they will be handled
5140         // together the with subsequent argument on the next go-around.
5141         } else
5142           ArgVal = SDValue();
5143 
5144         if (ArgVal.getNode())
5145           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5146       } else {
5147         if (CallConv == CallingConv::Fast)
5148           ComputePtrOff();
5149 
5150         // Single-precision floating-point values are mapped to the
5151         // second (rightmost) word of the stack doubleword.
5152         if (Arg.getValueType() == MVT::f32 &&
5153             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5154           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5155           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5156         }
5157 
5158         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5159                          true, isTailCall, false, MemOpChains,
5160                          TailCallArguments, dl);
5161 
5162         NeededLoad = true;
5163       }
5164       // When passing an array of floats, the array occupies consecutive
5165       // space in the argument area; only round up to the next doubleword
5166       // at the end of the array.  Otherwise, each float takes 8 bytes.
5167       if (CallConv != CallingConv::Fast || NeededLoad) {
5168         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5169                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5170         if (Flags.isInConsecutiveRegsLast())
5171           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5172       }
5173       break;
5174     }
5175     case MVT::v4f32:
5176     case MVT::v4i32:
5177     case MVT::v8i16:
5178     case MVT::v16i8:
5179     case MVT::v2f64:
5180     case MVT::v2i64:
5181     case MVT::v1i128:
5182       if (!Subtarget.hasQPX()) {
5183       // These can be scalar arguments or elements of a vector array type
5184       // passed directly.  The latter are used to implement ELFv2 homogenous
5185       // vector aggregates.
5186 
5187       // For a varargs call, named arguments go into VRs or on the stack as
5188       // usual; unnamed arguments always go to the stack or the corresponding
5189       // GPRs when within range.  For now, we always put the value in both
5190       // locations (or even all three).
5191       if (isVarArg) {
5192         // We could elide this store in the case where the object fits
5193         // entirely in R registers.  Maybe later.
5194         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5195                                      MachinePointerInfo(), false, false, 0);
5196         MemOpChains.push_back(Store);
5197         if (VR_idx != NumVRs) {
5198           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5199                                      MachinePointerInfo(),
5200                                      false, false, false, 0);
5201           MemOpChains.push_back(Load.getValue(1));
5202 
5203           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5204                            Arg.getSimpleValueType() == MVT::v2i64) ?
5205                           VSRH[VR_idx] : VR[VR_idx];
5206           ++VR_idx;
5207 
5208           RegsToPass.push_back(std::make_pair(VReg, Load));
5209         }
5210         ArgOffset += 16;
5211         for (unsigned i=0; i<16; i+=PtrByteSize) {
5212           if (GPR_idx == NumGPRs)
5213             break;
5214           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5215                                    DAG.getConstant(i, dl, PtrVT));
5216           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5217                                      false, false, false, 0);
5218           MemOpChains.push_back(Load.getValue(1));
5219           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5220         }
5221         break;
5222       }
5223 
5224       // Non-varargs Altivec params go into VRs or on the stack.
5225       if (VR_idx != NumVRs) {
5226         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5227                          Arg.getSimpleValueType() == MVT::v2i64) ?
5228                         VSRH[VR_idx] : VR[VR_idx];
5229         ++VR_idx;
5230 
5231         RegsToPass.push_back(std::make_pair(VReg, Arg));
5232       } else {
5233         if (CallConv == CallingConv::Fast)
5234           ComputePtrOff();
5235 
5236         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5237                          true, isTailCall, true, MemOpChains,
5238                          TailCallArguments, dl);
5239         if (CallConv == CallingConv::Fast)
5240           ArgOffset += 16;
5241       }
5242 
5243       if (CallConv != CallingConv::Fast)
5244         ArgOffset += 16;
5245       break;
5246       } // not QPX
5247 
5248       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5249              "Invalid QPX parameter type");
5250 
5251       /* fall through */
5252     case MVT::v4f64:
5253     case MVT::v4i1: {
5254       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5255       if (isVarArg) {
5256         // We could elide this store in the case where the object fits
5257         // entirely in R registers.  Maybe later.
5258         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5259                                      MachinePointerInfo(), false, false, 0);
5260         MemOpChains.push_back(Store);
5261         if (QFPR_idx != NumQFPRs) {
5262           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5263                                      Store, PtrOff, MachinePointerInfo(),
5264                                      false, false, false, 0);
5265           MemOpChains.push_back(Load.getValue(1));
5266           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5267         }
5268         ArgOffset += (IsF32 ? 16 : 32);
5269         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5270           if (GPR_idx == NumGPRs)
5271             break;
5272           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5273                                    DAG.getConstant(i, dl, PtrVT));
5274           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5275                                      false, false, false, 0);
5276           MemOpChains.push_back(Load.getValue(1));
5277           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5278         }
5279         break;
5280       }
5281 
5282       // Non-varargs QPX params go into registers or on the stack.
5283       if (QFPR_idx != NumQFPRs) {
5284         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5285       } else {
5286         if (CallConv == CallingConv::Fast)
5287           ComputePtrOff();
5288 
5289         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5290                          true, isTailCall, true, MemOpChains,
5291                          TailCallArguments, dl);
5292         if (CallConv == CallingConv::Fast)
5293           ArgOffset += (IsF32 ? 16 : 32);
5294       }
5295 
5296       if (CallConv != CallingConv::Fast)
5297         ArgOffset += (IsF32 ? 16 : 32);
5298       break;
5299       }
5300     }
5301   }
5302 
5303   assert(NumBytesActuallyUsed == ArgOffset);
5304   (void)NumBytesActuallyUsed;
5305 
5306   if (!MemOpChains.empty())
5307     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5308 
5309   // Check if this is an indirect call (MTCTR/BCTRL).
5310   // See PrepareCall() for more information about calls through function
5311   // pointers in the 64-bit SVR4 ABI.
5312   if (!isTailCall && !IsPatchPoint &&
5313       !isFunctionGlobalAddress(Callee) &&
5314       !isa<ExternalSymbolSDNode>(Callee)) {
5315     // Load r2 into a virtual register and store it to the TOC save area.
5316     setUsesTOCBasePtr(DAG);
5317     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5318     // TOC save area offset.
5319     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5320     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5321     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5322     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
5323                          MachinePointerInfo::getStack(TOCSaveOffset),
5324                          false, false, 0);
5325     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5326     // This does not mean the MTCTR instruction must use R12; it's easier
5327     // to model this as an extra parameter, so do that.
5328     if (isELFv2ABI && !IsPatchPoint)
5329       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5330   }
5331 
5332   // Build a sequence of copy-to-reg nodes chained together with token chain
5333   // and flag operands which copy the outgoing args into the appropriate regs.
5334   SDValue InFlag;
5335   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5336     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5337                              RegsToPass[i].second, InFlag);
5338     InFlag = Chain.getValue(1);
5339   }
5340 
5341   if (isTailCall)
5342     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5343                     FPOp, true, TailCallArguments);
5344 
5345   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5346 		    hasNest, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5347                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
5348 }
5349 
5350 SDValue
5351 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5352                                     CallingConv::ID CallConv, bool isVarArg,
5353                                     bool isTailCall, bool IsPatchPoint,
5354                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
5355                                     const SmallVectorImpl<SDValue> &OutVals,
5356                                     const SmallVectorImpl<ISD::InputArg> &Ins,
5357                                     SDLoc dl, SelectionDAG &DAG,
5358                                     SmallVectorImpl<SDValue> &InVals,
5359                                     ImmutableCallSite *CS) const {
5360 
5361   unsigned NumOps = Outs.size();
5362 
5363   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5364   bool isPPC64 = PtrVT == MVT::i64;
5365   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5366 
5367   MachineFunction &MF = DAG.getMachineFunction();
5368 
5369   // Mark this function as potentially containing a function that contains a
5370   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5371   // and restoring the callers stack pointer in this functions epilog. This is
5372   // done because by tail calling the called function might overwrite the value
5373   // in this function's (MF) stack pointer stack slot 0(SP).
5374   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5375       CallConv == CallingConv::Fast)
5376     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5377 
5378   // Count how many bytes are to be pushed on the stack, including the linkage
5379   // area, and parameter passing area.  We start with 24/48 bytes, which is
5380   // prereserved space for [SP][CR][LR][3 x unused].
5381   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5382   unsigned NumBytes = LinkageSize;
5383 
5384   // Add up all the space actually used.
5385   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5386   // they all go in registers, but we must reserve stack space for them for
5387   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5388   // assigned stack space in order, with padding so Altivec parameters are
5389   // 16-byte aligned.
5390   unsigned nAltivecParamsAtEnd = 0;
5391   for (unsigned i = 0; i != NumOps; ++i) {
5392     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5393     EVT ArgVT = Outs[i].VT;
5394     // Varargs Altivec parameters are padded to a 16 byte boundary.
5395     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5396         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5397         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5398       if (!isVarArg && !isPPC64) {
5399         // Non-varargs Altivec parameters go after all the non-Altivec
5400         // parameters; handle those later so we know how much padding we need.
5401         nAltivecParamsAtEnd++;
5402         continue;
5403       }
5404       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5405       NumBytes = ((NumBytes+15)/16)*16;
5406     }
5407     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5408   }
5409 
5410   // Allow for Altivec parameters at the end, if needed.
5411   if (nAltivecParamsAtEnd) {
5412     NumBytes = ((NumBytes+15)/16)*16;
5413     NumBytes += 16*nAltivecParamsAtEnd;
5414   }
5415 
5416   // The prolog code of the callee may store up to 8 GPR argument registers to
5417   // the stack, allowing va_start to index over them in memory if its varargs.
5418   // Because we cannot tell if this is needed on the caller side, we have to
5419   // conservatively assume that it is needed.  As such, make sure we have at
5420   // least enough stack space for the caller to store the 8 GPRs.
5421   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5422 
5423   // Tail call needs the stack to be aligned.
5424   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5425       CallConv == CallingConv::Fast)
5426     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5427 
5428   // Calculate by how many bytes the stack has to be adjusted in case of tail
5429   // call optimization.
5430   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5431 
5432   // To protect arguments on the stack from being clobbered in a tail call,
5433   // force all the loads to happen before doing any other lowering.
5434   if (isTailCall)
5435     Chain = DAG.getStackArgumentTokenFactor(Chain);
5436 
5437   // Adjust the stack pointer for the new arguments...
5438   // These operations are automatically eliminated by the prolog/epilog pass
5439   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5440                                dl);
5441   SDValue CallSeqStart = Chain;
5442 
5443   // Load the return address and frame pointer so it can be move somewhere else
5444   // later.
5445   SDValue LROp, FPOp;
5446   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5447                                        dl);
5448 
5449   // Set up a copy of the stack pointer for use loading and storing any
5450   // arguments that may not fit in the registers available for argument
5451   // passing.
5452   SDValue StackPtr;
5453   if (isPPC64)
5454     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5455   else
5456     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5457 
5458   // Figure out which arguments are going to go in registers, and which in
5459   // memory.  Also, if this is a vararg function, floating point operations
5460   // must be stored to our stack, and loaded into integer regs as well, if
5461   // any integer regs are available for argument passing.
5462   unsigned ArgOffset = LinkageSize;
5463   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5464 
5465   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5466     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5467     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5468   };
5469   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5470     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5471     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5472   };
5473   static const MCPhysReg VR[] = {
5474     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5475     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5476   };
5477   const unsigned NumGPRs = array_lengthof(GPR_32);
5478   const unsigned NumFPRs = 13;
5479   const unsigned NumVRs  = array_lengthof(VR);
5480 
5481   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5482 
5483   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5484   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5485 
5486   SmallVector<SDValue, 8> MemOpChains;
5487   for (unsigned i = 0; i != NumOps; ++i) {
5488     SDValue Arg = OutVals[i];
5489     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5490 
5491     // PtrOff will be used to store the current argument to the stack if a
5492     // register cannot be found for it.
5493     SDValue PtrOff;
5494 
5495     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5496 
5497     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5498 
5499     // On PPC64, promote integers to 64-bit values.
5500     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5501       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5502       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5503       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5504     }
5505 
5506     // FIXME memcpy is used way more than necessary.  Correctness first.
5507     // Note: "by value" is code for passing a structure by value, not
5508     // basic types.
5509     if (Flags.isByVal()) {
5510       unsigned Size = Flags.getByValSize();
5511       // Very small objects are passed right-justified.  Everything else is
5512       // passed left-justified.
5513       if (Size==1 || Size==2) {
5514         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5515         if (GPR_idx != NumGPRs) {
5516           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5517                                         MachinePointerInfo(), VT,
5518                                         false, false, false, 0);
5519           MemOpChains.push_back(Load.getValue(1));
5520           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5521 
5522           ArgOffset += PtrByteSize;
5523         } else {
5524           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5525                                           PtrOff.getValueType());
5526           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5527           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5528                                                             CallSeqStart,
5529                                                             Flags, DAG, dl);
5530           ArgOffset += PtrByteSize;
5531         }
5532         continue;
5533       }
5534       // Copy entire object into memory.  There are cases where gcc-generated
5535       // code assumes it is there, even if it could be put entirely into
5536       // registers.  (This is not what the doc says.)
5537       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5538                                                         CallSeqStart,
5539                                                         Flags, DAG, dl);
5540 
5541       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5542       // copy the pieces of the object that fit into registers from the
5543       // parameter save area.
5544       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5545         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5546         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5547         if (GPR_idx != NumGPRs) {
5548           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5549                                      MachinePointerInfo(),
5550                                      false, false, false, 0);
5551           MemOpChains.push_back(Load.getValue(1));
5552           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5553           ArgOffset += PtrByteSize;
5554         } else {
5555           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5556           break;
5557         }
5558       }
5559       continue;
5560     }
5561 
5562     switch (Arg.getSimpleValueType().SimpleTy) {
5563     default: llvm_unreachable("Unexpected ValueType for argument!");
5564     case MVT::i1:
5565     case MVT::i32:
5566     case MVT::i64:
5567       if (GPR_idx != NumGPRs) {
5568         if (Arg.getValueType() == MVT::i1)
5569           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5570 
5571         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5572       } else {
5573         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5574                          isPPC64, isTailCall, false, MemOpChains,
5575                          TailCallArguments, dl);
5576       }
5577       ArgOffset += PtrByteSize;
5578       break;
5579     case MVT::f32:
5580     case MVT::f64:
5581       if (FPR_idx != NumFPRs) {
5582         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5583 
5584         if (isVarArg) {
5585           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5586                                        MachinePointerInfo(), false, false, 0);
5587           MemOpChains.push_back(Store);
5588 
5589           // Float varargs are always shadowed in available integer registers
5590           if (GPR_idx != NumGPRs) {
5591             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5592                                        MachinePointerInfo(), false, false,
5593                                        false, 0);
5594             MemOpChains.push_back(Load.getValue(1));
5595             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5596           }
5597           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5598             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5599             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5600             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5601                                        MachinePointerInfo(),
5602                                        false, false, false, 0);
5603             MemOpChains.push_back(Load.getValue(1));
5604             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5605           }
5606         } else {
5607           // If we have any FPRs remaining, we may also have GPRs remaining.
5608           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5609           // GPRs.
5610           if (GPR_idx != NumGPRs)
5611             ++GPR_idx;
5612           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5613               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5614             ++GPR_idx;
5615         }
5616       } else
5617         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5618                          isPPC64, isTailCall, false, MemOpChains,
5619                          TailCallArguments, dl);
5620       if (isPPC64)
5621         ArgOffset += 8;
5622       else
5623         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5624       break;
5625     case MVT::v4f32:
5626     case MVT::v4i32:
5627     case MVT::v8i16:
5628     case MVT::v16i8:
5629       if (isVarArg) {
5630         // These go aligned on the stack, or in the corresponding R registers
5631         // when within range.  The Darwin PPC ABI doc claims they also go in
5632         // V registers; in fact gcc does this only for arguments that are
5633         // prototyped, not for those that match the ...  We do it for all
5634         // arguments, seems to work.
5635         while (ArgOffset % 16 !=0) {
5636           ArgOffset += PtrByteSize;
5637           if (GPR_idx != NumGPRs)
5638             GPR_idx++;
5639         }
5640         // We could elide this store in the case where the object fits
5641         // entirely in R registers.  Maybe later.
5642         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5643                              DAG.getConstant(ArgOffset, dl, PtrVT));
5644         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5645                                      MachinePointerInfo(), false, false, 0);
5646         MemOpChains.push_back(Store);
5647         if (VR_idx != NumVRs) {
5648           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5649                                      MachinePointerInfo(),
5650                                      false, false, false, 0);
5651           MemOpChains.push_back(Load.getValue(1));
5652           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5653         }
5654         ArgOffset += 16;
5655         for (unsigned i=0; i<16; i+=PtrByteSize) {
5656           if (GPR_idx == NumGPRs)
5657             break;
5658           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5659                                    DAG.getConstant(i, dl, PtrVT));
5660           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5661                                      false, false, false, 0);
5662           MemOpChains.push_back(Load.getValue(1));
5663           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5664         }
5665         break;
5666       }
5667 
5668       // Non-varargs Altivec params generally go in registers, but have
5669       // stack space allocated at the end.
5670       if (VR_idx != NumVRs) {
5671         // Doesn't have GPR space allocated.
5672         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5673       } else if (nAltivecParamsAtEnd==0) {
5674         // We are emitting Altivec params in order.
5675         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5676                          isPPC64, isTailCall, true, MemOpChains,
5677                          TailCallArguments, dl);
5678         ArgOffset += 16;
5679       }
5680       break;
5681     }
5682   }
5683   // If all Altivec parameters fit in registers, as they usually do,
5684   // they get stack space following the non-Altivec parameters.  We
5685   // don't track this here because nobody below needs it.
5686   // If there are more Altivec parameters than fit in registers emit
5687   // the stores here.
5688   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5689     unsigned j = 0;
5690     // Offset is aligned; skip 1st 12 params which go in V registers.
5691     ArgOffset = ((ArgOffset+15)/16)*16;
5692     ArgOffset += 12*16;
5693     for (unsigned i = 0; i != NumOps; ++i) {
5694       SDValue Arg = OutVals[i];
5695       EVT ArgType = Outs[i].VT;
5696       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5697           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5698         if (++j > NumVRs) {
5699           SDValue PtrOff;
5700           // We are emitting Altivec params in order.
5701           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5702                            isPPC64, isTailCall, true, MemOpChains,
5703                            TailCallArguments, dl);
5704           ArgOffset += 16;
5705         }
5706       }
5707     }
5708   }
5709 
5710   if (!MemOpChains.empty())
5711     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5712 
5713   // On Darwin, R12 must contain the address of an indirect callee.  This does
5714   // not mean the MTCTR instruction must use R12; it's easier to model this as
5715   // an extra parameter, so do that.
5716   if (!isTailCall &&
5717       !isFunctionGlobalAddress(Callee) &&
5718       !isa<ExternalSymbolSDNode>(Callee) &&
5719       !isBLACompatibleAddress(Callee, DAG))
5720     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5721                                                    PPC::R12), Callee));
5722 
5723   // Build a sequence of copy-to-reg nodes chained together with token chain
5724   // and flag operands which copy the outgoing args into the appropriate regs.
5725   SDValue InFlag;
5726   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5727     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5728                              RegsToPass[i].second, InFlag);
5729     InFlag = Chain.getValue(1);
5730   }
5731 
5732   if (isTailCall)
5733     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5734                     FPOp, true, TailCallArguments);
5735 
5736   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5737                     /* unused except on PPC64 ELFv1 */ false, DAG,
5738                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5739                     NumBytes, Ins, InVals, CS);
5740 }
5741 
5742 bool
5743 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5744                                   MachineFunction &MF, bool isVarArg,
5745                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5746                                   LLVMContext &Context) const {
5747   SmallVector<CCValAssign, 16> RVLocs;
5748   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5749   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5750 }
5751 
5752 SDValue
5753 PPCTargetLowering::LowerReturn(SDValue Chain,
5754                                CallingConv::ID CallConv, bool isVarArg,
5755                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5756                                const SmallVectorImpl<SDValue> &OutVals,
5757                                SDLoc dl, SelectionDAG &DAG) const {
5758 
5759   SmallVector<CCValAssign, 16> RVLocs;
5760   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5761                  *DAG.getContext());
5762   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5763 
5764   SDValue Flag;
5765   SmallVector<SDValue, 4> RetOps(1, Chain);
5766 
5767   // Copy the result values into the output registers.
5768   for (unsigned i = 0; i != RVLocs.size(); ++i) {
5769     CCValAssign &VA = RVLocs[i];
5770     assert(VA.isRegLoc() && "Can only return in registers!");
5771 
5772     SDValue Arg = OutVals[i];
5773 
5774     switch (VA.getLocInfo()) {
5775     default: llvm_unreachable("Unknown loc info!");
5776     case CCValAssign::Full: break;
5777     case CCValAssign::AExt:
5778       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5779       break;
5780     case CCValAssign::ZExt:
5781       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5782       break;
5783     case CCValAssign::SExt:
5784       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5785       break;
5786     }
5787 
5788     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5789     Flag = Chain.getValue(1);
5790     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5791   }
5792 
5793   RetOps[0] = Chain;  // Update chain.
5794 
5795   // Add the flag if we have it.
5796   if (Flag.getNode())
5797     RetOps.push_back(Flag);
5798 
5799   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
5800 }
5801 
5802 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
5803                                    const PPCSubtarget &Subtarget) const {
5804   // When we pop the dynamic allocation we need to restore the SP link.
5805   SDLoc dl(Op);
5806 
5807   // Get the corect type for pointers.
5808   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5809 
5810   // Construct the stack pointer operand.
5811   bool isPPC64 = Subtarget.isPPC64();
5812   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
5813   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
5814 
5815   // Get the operands for the STACKRESTORE.
5816   SDValue Chain = Op.getOperand(0);
5817   SDValue SaveSP = Op.getOperand(1);
5818 
5819   // Load the old link SP.
5820   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
5821                                    MachinePointerInfo(),
5822                                    false, false, false, 0);
5823 
5824   // Restore the stack pointer.
5825   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
5826 
5827   // Store the old link SP.
5828   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
5829                       false, false, 0);
5830 }
5831 
5832 
5833 
5834 SDValue
5835 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
5836   MachineFunction &MF = DAG.getMachineFunction();
5837   bool isPPC64 = Subtarget.isPPC64();
5838   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5839 
5840   // Get current frame pointer save index.  The users of this index will be
5841   // primarily DYNALLOC instructions.
5842   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5843   int RASI = FI->getReturnAddrSaveIndex();
5844 
5845   // If the frame pointer save index hasn't been defined yet.
5846   if (!RASI) {
5847     // Find out what the fix offset of the frame pointer save area.
5848     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
5849     // Allocate the frame index for frame pointer save area.
5850     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
5851     // Save the result.
5852     FI->setReturnAddrSaveIndex(RASI);
5853   }
5854   return DAG.getFrameIndex(RASI, PtrVT);
5855 }
5856 
5857 SDValue
5858 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
5859   MachineFunction &MF = DAG.getMachineFunction();
5860   bool isPPC64 = Subtarget.isPPC64();
5861   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5862 
5863   // Get current frame pointer save index.  The users of this index will be
5864   // primarily DYNALLOC instructions.
5865   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5866   int FPSI = FI->getFramePointerSaveIndex();
5867 
5868   // If the frame pointer save index hasn't been defined yet.
5869   if (!FPSI) {
5870     // Find out what the fix offset of the frame pointer save area.
5871     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
5872     // Allocate the frame index for frame pointer save area.
5873     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
5874     // Save the result.
5875     FI->setFramePointerSaveIndex(FPSI);
5876   }
5877   return DAG.getFrameIndex(FPSI, PtrVT);
5878 }
5879 
5880 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5881                                          SelectionDAG &DAG,
5882                                          const PPCSubtarget &Subtarget) const {
5883   // Get the inputs.
5884   SDValue Chain = Op.getOperand(0);
5885   SDValue Size  = Op.getOperand(1);
5886   SDLoc dl(Op);
5887 
5888   // Get the corect type for pointers.
5889   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5890   // Negate the size.
5891   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
5892                                 DAG.getConstant(0, dl, PtrVT), Size);
5893   // Construct a node for the frame pointer save index.
5894   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5895   // Build a DYNALLOC node.
5896   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
5897   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
5898   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
5899 }
5900 
5901 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
5902                                                SelectionDAG &DAG) const {
5903   SDLoc DL(Op);
5904   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
5905                      DAG.getVTList(MVT::i32, MVT::Other),
5906                      Op.getOperand(0), Op.getOperand(1));
5907 }
5908 
5909 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
5910                                                 SelectionDAG &DAG) const {
5911   SDLoc DL(Op);
5912   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
5913                      Op.getOperand(0), Op.getOperand(1));
5914 }
5915 
5916 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5917   if (Op.getValueType().isVector())
5918     return LowerVectorLoad(Op, DAG);
5919 
5920   assert(Op.getValueType() == MVT::i1 &&
5921          "Custom lowering only for i1 loads");
5922 
5923   // First, load 8 bits into 32 bits, then truncate to 1 bit.
5924 
5925   SDLoc dl(Op);
5926   LoadSDNode *LD = cast<LoadSDNode>(Op);
5927 
5928   SDValue Chain = LD->getChain();
5929   SDValue BasePtr = LD->getBasePtr();
5930   MachineMemOperand *MMO = LD->getMemOperand();
5931 
5932   SDValue NewLD =
5933       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
5934                      BasePtr, MVT::i8, MMO);
5935   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
5936 
5937   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
5938   return DAG.getMergeValues(Ops, dl);
5939 }
5940 
5941 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5942   if (Op.getOperand(1).getValueType().isVector())
5943     return LowerVectorStore(Op, DAG);
5944 
5945   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
5946          "Custom lowering only for i1 stores");
5947 
5948   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
5949 
5950   SDLoc dl(Op);
5951   StoreSDNode *ST = cast<StoreSDNode>(Op);
5952 
5953   SDValue Chain = ST->getChain();
5954   SDValue BasePtr = ST->getBasePtr();
5955   SDValue Value = ST->getValue();
5956   MachineMemOperand *MMO = ST->getMemOperand();
5957 
5958   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
5959                       Value);
5960   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
5961 }
5962 
5963 // FIXME: Remove this once the ANDI glue bug is fixed:
5964 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
5965   assert(Op.getValueType() == MVT::i1 &&
5966          "Custom lowering only for i1 results");
5967 
5968   SDLoc DL(Op);
5969   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
5970                      Op.getOperand(0));
5971 }
5972 
5973 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
5974 /// possible.
5975 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5976   // Not FP? Not a fsel.
5977   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
5978       !Op.getOperand(2).getValueType().isFloatingPoint())
5979     return Op;
5980 
5981   // We might be able to do better than this under some circumstances, but in
5982   // general, fsel-based lowering of select is a finite-math-only optimization.
5983   // For more information, see section F.3 of the 2.06 ISA specification.
5984   if (!DAG.getTarget().Options.NoInfsFPMath ||
5985       !DAG.getTarget().Options.NoNaNsFPMath)
5986     return Op;
5987 
5988   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5989 
5990   EVT ResVT = Op.getValueType();
5991   EVT CmpVT = Op.getOperand(0).getValueType();
5992   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5993   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
5994   SDLoc dl(Op);
5995 
5996   // If the RHS of the comparison is a 0.0, we don't need to do the
5997   // subtraction at all.
5998   SDValue Sel1;
5999   if (isFloatingPointZero(RHS))
6000     switch (CC) {
6001     default: break;       // SETUO etc aren't handled by fsel.
6002     case ISD::SETNE:
6003       std::swap(TV, FV);
6004     case ISD::SETEQ:
6005       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6006         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6007       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6008       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6009         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6010       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6011                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6012     case ISD::SETULT:
6013     case ISD::SETLT:
6014       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6015     case ISD::SETOGE:
6016     case ISD::SETGE:
6017       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6018         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6019       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6020     case ISD::SETUGT:
6021     case ISD::SETGT:
6022       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6023     case ISD::SETOLE:
6024     case ISD::SETLE:
6025       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6026         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6027       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6028                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6029     }
6030 
6031   SDValue Cmp;
6032   switch (CC) {
6033   default: break;       // SETUO etc aren't handled by fsel.
6034   case ISD::SETNE:
6035     std::swap(TV, FV);
6036   case ISD::SETEQ:
6037     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
6038     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6039       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6040     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6041     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6042       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6043     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6044                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6045   case ISD::SETULT:
6046   case ISD::SETLT:
6047     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
6048     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6049       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6050     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6051   case ISD::SETOGE:
6052   case ISD::SETGE:
6053     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
6054     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6055       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6056     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6057   case ISD::SETUGT:
6058   case ISD::SETGT:
6059     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
6060     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6061       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6062     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6063   case ISD::SETOLE:
6064   case ISD::SETLE:
6065     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
6066     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6067       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6068     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6069   }
6070   return Op;
6071 }
6072 
6073 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6074                                                SelectionDAG &DAG,
6075                                                SDLoc dl) const {
6076   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6077   SDValue Src = Op.getOperand(0);
6078   if (Src.getValueType() == MVT::f32)
6079     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6080 
6081   SDValue Tmp;
6082   switch (Op.getSimpleValueType().SimpleTy) {
6083   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6084   case MVT::i32:
6085     Tmp = DAG.getNode(
6086         Op.getOpcode() == ISD::FP_TO_SINT
6087             ? PPCISD::FCTIWZ
6088             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6089         dl, MVT::f64, Src);
6090     break;
6091   case MVT::i64:
6092     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6093            "i64 FP_TO_UINT is supported only with FPCVT");
6094     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6095                                                         PPCISD::FCTIDUZ,
6096                       dl, MVT::f64, Src);
6097     break;
6098   }
6099 
6100   // Convert the FP value to an int value through memory.
6101   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6102     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6103   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6104   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6105   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
6106 
6107   // Emit a store to the stack slot.
6108   SDValue Chain;
6109   if (i32Stack) {
6110     MachineFunction &MF = DAG.getMachineFunction();
6111     MachineMemOperand *MMO =
6112       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6113     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6114     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6115               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6116   } else
6117     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6118                          MPI, false, false, 0);
6119 
6120   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6121   // add in a bias.
6122   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6123     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6124                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6125     MPI = MPI.getWithOffset(4);
6126   }
6127 
6128   RLI.Chain = Chain;
6129   RLI.Ptr = FIPtr;
6130   RLI.MPI = MPI;
6131 }
6132 
6133 /// \brief Custom lowers floating point to integer conversions to use
6134 /// the direct move instructions available in ISA 2.07 to avoid the
6135 /// need for load/store combinations.
6136 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6137                                                     SelectionDAG &DAG,
6138                                                     SDLoc dl) const {
6139   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6140   SDValue Src = Op.getOperand(0);
6141 
6142   if (Src.getValueType() == MVT::f32)
6143     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6144 
6145   SDValue Tmp;
6146   switch (Op.getSimpleValueType().SimpleTy) {
6147   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6148   case MVT::i32:
6149     Tmp = DAG.getNode(
6150         Op.getOpcode() == ISD::FP_TO_SINT
6151             ? PPCISD::FCTIWZ
6152             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6153         dl, MVT::f64, Src);
6154     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6155     break;
6156   case MVT::i64:
6157     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6158            "i64 FP_TO_UINT is supported only with FPCVT");
6159     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6160                                                         PPCISD::FCTIDUZ,
6161                       dl, MVT::f64, Src);
6162     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6163     break;
6164   }
6165   return Tmp;
6166 }
6167 
6168 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6169                                           SDLoc dl) const {
6170   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6171     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6172 
6173   ReuseLoadInfo RLI;
6174   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6175 
6176   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6177                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6178                      RLI.Ranges);
6179 }
6180 
6181 // We're trying to insert a regular store, S, and then a load, L. If the
6182 // incoming value, O, is a load, we might just be able to have our load use the
6183 // address used by O. However, we don't know if anything else will store to
6184 // that address before we can load from it. To prevent this situation, we need
6185 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6186 // the same chain operand as O, we create a token factor from the chain results
6187 // of O and L, and we replace all uses of O's chain result with that token
6188 // factor (see spliceIntoChain below for this last part).
6189 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6190                                             ReuseLoadInfo &RLI,
6191                                             SelectionDAG &DAG,
6192                                             ISD::LoadExtType ET) const {
6193   SDLoc dl(Op);
6194   if (ET == ISD::NON_EXTLOAD &&
6195       (Op.getOpcode() == ISD::FP_TO_UINT ||
6196        Op.getOpcode() == ISD::FP_TO_SINT) &&
6197       isOperationLegalOrCustom(Op.getOpcode(),
6198                                Op.getOperand(0).getValueType())) {
6199 
6200     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6201     return true;
6202   }
6203 
6204   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6205   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6206       LD->isNonTemporal())
6207     return false;
6208   if (LD->getMemoryVT() != MemVT)
6209     return false;
6210 
6211   RLI.Ptr = LD->getBasePtr();
6212   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
6213     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6214            "Non-pre-inc AM on PPC?");
6215     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6216                           LD->getOffset());
6217   }
6218 
6219   RLI.Chain = LD->getChain();
6220   RLI.MPI = LD->getPointerInfo();
6221   RLI.IsInvariant = LD->isInvariant();
6222   RLI.Alignment = LD->getAlignment();
6223   RLI.AAInfo = LD->getAAInfo();
6224   RLI.Ranges = LD->getRanges();
6225 
6226   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6227   return true;
6228 }
6229 
6230 // Given the head of the old chain, ResChain, insert a token factor containing
6231 // it and NewResChain, and make users of ResChain now be users of that token
6232 // factor.
6233 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6234                                         SDValue NewResChain,
6235                                         SelectionDAG &DAG) const {
6236   if (!ResChain)
6237     return;
6238 
6239   SDLoc dl(NewResChain);
6240 
6241   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6242                            NewResChain, DAG.getUNDEF(MVT::Other));
6243   assert(TF.getNode() != NewResChain.getNode() &&
6244          "A new TF really is required here");
6245 
6246   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6247   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6248 }
6249 
6250 /// \brief Custom lowers integer to floating point conversions to use
6251 /// the direct move instructions available in ISA 2.07 to avoid the
6252 /// need for load/store combinations.
6253 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6254                                                     SelectionDAG &DAG,
6255                                                     SDLoc dl) const {
6256   assert((Op.getValueType() == MVT::f32 ||
6257           Op.getValueType() == MVT::f64) &&
6258          "Invalid floating point type as target of conversion");
6259   assert(Subtarget.hasFPCVT() &&
6260          "Int to FP conversions with direct moves require FPCVT");
6261   SDValue FP;
6262   SDValue Src = Op.getOperand(0);
6263   bool SinglePrec = Op.getValueType() == MVT::f32;
6264   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6265   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6266   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6267                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6268 
6269   if (WordInt) {
6270     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6271                      dl, MVT::f64, Src);
6272     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6273   }
6274   else {
6275     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6276     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6277   }
6278 
6279   return FP;
6280 }
6281 
6282 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6283                                           SelectionDAG &DAG) const {
6284   SDLoc dl(Op);
6285 
6286   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6287     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6288       return SDValue();
6289 
6290     SDValue Value = Op.getOperand(0);
6291     // The values are now known to be -1 (false) or 1 (true). To convert this
6292     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6293     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6294     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6295 
6296     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
6297     FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6298                           FPHalfs, FPHalfs, FPHalfs, FPHalfs);
6299 
6300     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6301 
6302     if (Op.getValueType() != MVT::v4f64)
6303       Value = DAG.getNode(ISD::FP_ROUND, dl,
6304                           Op.getValueType(), Value,
6305                           DAG.getIntPtrConstant(1, dl));
6306     return Value;
6307   }
6308 
6309   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6310   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6311     return SDValue();
6312 
6313   if (Op.getOperand(0).getValueType() == MVT::i1)
6314     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6315                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6316                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6317 
6318   // If we have direct moves, we can do all the conversion, skip the store/load
6319   // however, without FPCVT we can't do most conversions.
6320   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
6321     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6322 
6323   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6324          "UINT_TO_FP is supported only with FPCVT");
6325 
6326   // If we have FCFIDS, then use it when converting to single-precision.
6327   // Otherwise, convert to double-precision and then round.
6328   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6329                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6330                                                             : PPCISD::FCFIDS)
6331                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6332                                                             : PPCISD::FCFID);
6333   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6334                   ? MVT::f32
6335                   : MVT::f64;
6336 
6337   if (Op.getOperand(0).getValueType() == MVT::i64) {
6338     SDValue SINT = Op.getOperand(0);
6339     // When converting to single-precision, we actually need to convert
6340     // to double-precision first and then round to single-precision.
6341     // To avoid double-rounding effects during that operation, we have
6342     // to prepare the input operand.  Bits that might be truncated when
6343     // converting to double-precision are replaced by a bit that won't
6344     // be lost at this stage, but is below the single-precision rounding
6345     // position.
6346     //
6347     // However, if -enable-unsafe-fp-math is in effect, accept double
6348     // rounding to avoid the extra overhead.
6349     if (Op.getValueType() == MVT::f32 &&
6350         !Subtarget.hasFPCVT() &&
6351         !DAG.getTarget().Options.UnsafeFPMath) {
6352 
6353       // Twiddle input to make sure the low 11 bits are zero.  (If this
6354       // is the case, we are guaranteed the value will fit into the 53 bit
6355       // mantissa of an IEEE double-precision value without rounding.)
6356       // If any of those low 11 bits were not zero originally, make sure
6357       // bit 12 (value 2048) is set instead, so that the final rounding
6358       // to single-precision gets the correct result.
6359       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6360                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6361       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6362                           Round, DAG.getConstant(2047, dl, MVT::i64));
6363       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6364       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6365                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6366 
6367       // However, we cannot use that value unconditionally: if the magnitude
6368       // of the input value is small, the bit-twiddling we did above might
6369       // end up visibly changing the output.  Fortunately, in that case, we
6370       // don't need to twiddle bits since the original input will convert
6371       // exactly to double-precision floating-point already.  Therefore,
6372       // construct a conditional to use the original value if the top 11
6373       // bits are all sign-bit copies, and use the rounded value computed
6374       // above otherwise.
6375       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6376                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6377       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6378                          Cond, DAG.getConstant(1, dl, MVT::i64));
6379       Cond = DAG.getSetCC(dl, MVT::i32,
6380                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6381 
6382       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6383     }
6384 
6385     ReuseLoadInfo RLI;
6386     SDValue Bits;
6387 
6388     MachineFunction &MF = DAG.getMachineFunction();
6389     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6390       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6391                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6392                          RLI.Ranges);
6393       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6394     } else if (Subtarget.hasLFIWAX() &&
6395                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6396       MachineMemOperand *MMO =
6397         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6398                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6399       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6400       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6401                                      DAG.getVTList(MVT::f64, MVT::Other),
6402                                      Ops, MVT::i32, MMO);
6403       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6404     } else if (Subtarget.hasFPCVT() &&
6405                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6406       MachineMemOperand *MMO =
6407         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6408                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6409       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6410       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6411                                      DAG.getVTList(MVT::f64, MVT::Other),
6412                                      Ops, MVT::i32, MMO);
6413       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6414     } else if (((Subtarget.hasLFIWAX() &&
6415                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6416                 (Subtarget.hasFPCVT() &&
6417                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6418                SINT.getOperand(0).getValueType() == MVT::i32) {
6419       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6420       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6421 
6422       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6423       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6424 
6425       SDValue Store =
6426         DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6427                      MachinePointerInfo::getFixedStack(FrameIdx),
6428                      false, false, 0);
6429 
6430       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6431              "Expected an i32 store");
6432 
6433       RLI.Ptr = FIdx;
6434       RLI.Chain = Store;
6435       RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
6436       RLI.Alignment = 4;
6437 
6438       MachineMemOperand *MMO =
6439         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6440                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6441       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6442       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6443                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6444                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6445                                      Ops, MVT::i32, MMO);
6446     } else
6447       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6448 
6449     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6450 
6451     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6452       FP = DAG.getNode(ISD::FP_ROUND, dl,
6453                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6454     return FP;
6455   }
6456 
6457   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6458          "Unhandled INT_TO_FP type in custom expander!");
6459   // Since we only generate this in 64-bit mode, we can take advantage of
6460   // 64-bit registers.  In particular, sign extend the input value into the
6461   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6462   // then lfd it and fcfid it.
6463   MachineFunction &MF = DAG.getMachineFunction();
6464   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6465   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6466 
6467   SDValue Ld;
6468   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6469     ReuseLoadInfo RLI;
6470     bool ReusingLoad;
6471     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6472                                             DAG))) {
6473       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6474       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6475 
6476       SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6477                                    MachinePointerInfo::getFixedStack(FrameIdx),
6478                                    false, false, 0);
6479 
6480       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6481              "Expected an i32 store");
6482 
6483       RLI.Ptr = FIdx;
6484       RLI.Chain = Store;
6485       RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
6486       RLI.Alignment = 4;
6487     }
6488 
6489     MachineMemOperand *MMO =
6490       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6491                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6492     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6493     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6494                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6495                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6496                                  Ops, MVT::i32, MMO);
6497     if (ReusingLoad)
6498       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6499   } else {
6500     assert(Subtarget.isPPC64() &&
6501            "i32->FP without LFIWAX supported only on PPC64");
6502 
6503     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6504     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6505 
6506     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6507                                 Op.getOperand(0));
6508 
6509     // STD the extended value into the stack slot.
6510     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
6511                                  MachinePointerInfo::getFixedStack(FrameIdx),
6512                                  false, false, 0);
6513 
6514     // Load the value as a double.
6515     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
6516                      MachinePointerInfo::getFixedStack(FrameIdx),
6517                      false, false, false, 0);
6518   }
6519 
6520   // FCFID it and return it.
6521   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6522   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6523     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6524                      DAG.getIntPtrConstant(0, dl));
6525   return FP;
6526 }
6527 
6528 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6529                                             SelectionDAG &DAG) const {
6530   SDLoc dl(Op);
6531   /*
6532    The rounding mode is in bits 30:31 of FPSR, and has the following
6533    settings:
6534      00 Round to nearest
6535      01 Round to 0
6536      10 Round to +inf
6537      11 Round to -inf
6538 
6539   FLT_ROUNDS, on the other hand, expects the following:
6540     -1 Undefined
6541      0 Round to 0
6542      1 Round to nearest
6543      2 Round to +inf
6544      3 Round to -inf
6545 
6546   To perform the conversion, we do:
6547     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6548   */
6549 
6550   MachineFunction &MF = DAG.getMachineFunction();
6551   EVT VT = Op.getValueType();
6552   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6553 
6554   // Save FP Control Word to register
6555   EVT NodeTys[] = {
6556     MVT::f64,    // return register
6557     MVT::Glue    // unused in this context
6558   };
6559   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6560 
6561   // Save FP register to stack slot
6562   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6563   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6564   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6565                                StackSlot, MachinePointerInfo(), false, false,0);
6566 
6567   // Load FP Control Word from low 32 bits of stack slot.
6568   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6569   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6570   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6571                             false, false, false, 0);
6572 
6573   // Transform as necessary
6574   SDValue CWD1 =
6575     DAG.getNode(ISD::AND, dl, MVT::i32,
6576                 CWD, DAG.getConstant(3, dl, MVT::i32));
6577   SDValue CWD2 =
6578     DAG.getNode(ISD::SRL, dl, MVT::i32,
6579                 DAG.getNode(ISD::AND, dl, MVT::i32,
6580                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6581                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6582                             DAG.getConstant(3, dl, MVT::i32)),
6583                 DAG.getConstant(1, dl, MVT::i32));
6584 
6585   SDValue RetVal =
6586     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6587 
6588   return DAG.getNode((VT.getSizeInBits() < 16 ?
6589                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6590 }
6591 
6592 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6593   EVT VT = Op.getValueType();
6594   unsigned BitWidth = VT.getSizeInBits();
6595   SDLoc dl(Op);
6596   assert(Op.getNumOperands() == 3 &&
6597          VT == Op.getOperand(1).getValueType() &&
6598          "Unexpected SHL!");
6599 
6600   // Expand into a bunch of logical ops.  Note that these ops
6601   // depend on the PPC behavior for oversized shift amounts.
6602   SDValue Lo = Op.getOperand(0);
6603   SDValue Hi = Op.getOperand(1);
6604   SDValue Amt = Op.getOperand(2);
6605   EVT AmtVT = Amt.getValueType();
6606 
6607   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6608                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6609   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6610   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6611   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6612   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6613                              DAG.getConstant(-BitWidth, dl, AmtVT));
6614   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6615   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6616   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6617   SDValue OutOps[] = { OutLo, OutHi };
6618   return DAG.getMergeValues(OutOps, dl);
6619 }
6620 
6621 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6622   EVT VT = Op.getValueType();
6623   SDLoc dl(Op);
6624   unsigned BitWidth = VT.getSizeInBits();
6625   assert(Op.getNumOperands() == 3 &&
6626          VT == Op.getOperand(1).getValueType() &&
6627          "Unexpected SRL!");
6628 
6629   // Expand into a bunch of logical ops.  Note that these ops
6630   // depend on the PPC behavior for oversized shift amounts.
6631   SDValue Lo = Op.getOperand(0);
6632   SDValue Hi = Op.getOperand(1);
6633   SDValue Amt = Op.getOperand(2);
6634   EVT AmtVT = Amt.getValueType();
6635 
6636   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6637                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6638   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6639   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6640   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6641   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6642                              DAG.getConstant(-BitWidth, dl, AmtVT));
6643   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6644   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6645   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6646   SDValue OutOps[] = { OutLo, OutHi };
6647   return DAG.getMergeValues(OutOps, dl);
6648 }
6649 
6650 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6651   SDLoc dl(Op);
6652   EVT VT = Op.getValueType();
6653   unsigned BitWidth = VT.getSizeInBits();
6654   assert(Op.getNumOperands() == 3 &&
6655          VT == Op.getOperand(1).getValueType() &&
6656          "Unexpected SRA!");
6657 
6658   // Expand into a bunch of logical ops, followed by a select_cc.
6659   SDValue Lo = Op.getOperand(0);
6660   SDValue Hi = Op.getOperand(1);
6661   SDValue Amt = Op.getOperand(2);
6662   EVT AmtVT = Amt.getValueType();
6663 
6664   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6665                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6666   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6667   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6668   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6669   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6670                              DAG.getConstant(-BitWidth, dl, AmtVT));
6671   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6672   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6673   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6674                                   Tmp4, Tmp6, ISD::SETLE);
6675   SDValue OutOps[] = { OutLo, OutHi };
6676   return DAG.getMergeValues(OutOps, dl);
6677 }
6678 
6679 //===----------------------------------------------------------------------===//
6680 // Vector related lowering.
6681 //
6682 
6683 /// BuildSplatI - Build a canonical splati of Val with an element size of
6684 /// SplatSize.  Cast the result to VT.
6685 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6686                              SelectionDAG &DAG, SDLoc dl) {
6687   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6688 
6689   static const MVT VTys[] = { // canonical VT to use for each size.
6690     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6691   };
6692 
6693   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6694 
6695   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6696   if (Val == -1)
6697     SplatSize = 1;
6698 
6699   EVT CanonicalVT = VTys[SplatSize-1];
6700 
6701   // Build a canonical splat for this value.
6702   SDValue Elt = DAG.getConstant(Val, dl, MVT::i32);
6703   SmallVector<SDValue, 8> Ops;
6704   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
6705   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
6706   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
6707 }
6708 
6709 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6710 /// specified intrinsic ID.
6711 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
6712                                 SelectionDAG &DAG, SDLoc dl,
6713                                 EVT DestVT = MVT::Other) {
6714   if (DestVT == MVT::Other) DestVT = Op.getValueType();
6715   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6716                      DAG.getConstant(IID, dl, MVT::i32), Op);
6717 }
6718 
6719 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6720 /// specified intrinsic ID.
6721 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6722                                 SelectionDAG &DAG, SDLoc dl,
6723                                 EVT DestVT = MVT::Other) {
6724   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6725   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6726                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
6727 }
6728 
6729 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6730 /// specified intrinsic ID.
6731 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6732                                 SDValue Op2, SelectionDAG &DAG,
6733                                 SDLoc dl, EVT DestVT = MVT::Other) {
6734   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6735   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6736                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
6737 }
6738 
6739 
6740 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6741 /// amount.  The result has the specified value type.
6742 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
6743                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
6744   // Force LHS/RHS to be the right type.
6745   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6746   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6747 
6748   int Ops[16];
6749   for (unsigned i = 0; i != 16; ++i)
6750     Ops[i] = i + Amt;
6751   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6752   return DAG.getNode(ISD::BITCAST, dl, VT, T);
6753 }
6754 
6755 // If this is a case we can't handle, return null and let the default
6756 // expansion code take care of it.  If we CAN select this case, and if it
6757 // selects to a single instruction, return Op.  Otherwise, if we can codegen
6758 // this case more efficiently than a constant pool load, lower it to the
6759 // sequence of ops that should be used.
6760 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
6761                                              SelectionDAG &DAG) const {
6762   SDLoc dl(Op);
6763   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6764   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
6765 
6766   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
6767     // We first build an i32 vector, load it into a QPX register,
6768     // then convert it to a floating-point vector and compare it
6769     // to a zero vector to get the boolean result.
6770     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6771     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6772     MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
6773     EVT PtrVT = getPointerTy(DAG.getDataLayout());
6774     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6775 
6776     assert(BVN->getNumOperands() == 4 &&
6777       "BUILD_VECTOR for v4i1 does not have 4 operands");
6778 
6779     bool IsConst = true;
6780     for (unsigned i = 0; i < 4; ++i) {
6781       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6782       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
6783         IsConst = false;
6784         break;
6785       }
6786     }
6787 
6788     if (IsConst) {
6789       Constant *One =
6790         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
6791       Constant *NegOne =
6792         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
6793 
6794       SmallVector<Constant*, 4> CV(4, NegOne);
6795       for (unsigned i = 0; i < 4; ++i) {
6796         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
6797           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
6798         else if (cast<ConstantSDNode>(BVN->getOperand(i))->
6799                    getConstantIntValue()->isZero())
6800           continue;
6801         else
6802           CV[i] = One;
6803       }
6804 
6805       Constant *CP = ConstantVector::get(CV);
6806       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
6807                                           16 /* alignment */);
6808 
6809       SmallVector<SDValue, 2> Ops;
6810       Ops.push_back(DAG.getEntryNode());
6811       Ops.push_back(CPIdx);
6812 
6813       SmallVector<EVT, 2> ValueVTs;
6814       ValueVTs.push_back(MVT::v4i1);
6815       ValueVTs.push_back(MVT::Other); // chain
6816       SDVTList VTs = DAG.getVTList(ValueVTs);
6817 
6818       return DAG.getMemIntrinsicNode(PPCISD::QVLFSb,
6819         dl, VTs, Ops, MVT::v4f32,
6820         MachinePointerInfo::getConstantPool());
6821     }
6822 
6823     SmallVector<SDValue, 4> Stores;
6824     for (unsigned i = 0; i < 4; ++i) {
6825       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6826 
6827       unsigned Offset = 4*i;
6828       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
6829       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
6830 
6831       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
6832       if (StoreSize > 4) {
6833         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
6834                                            BVN->getOperand(i), Idx,
6835                                            PtrInfo.getWithOffset(Offset),
6836                                            MVT::i32, false, false, 0));
6837       } else {
6838         SDValue StoreValue = BVN->getOperand(i);
6839         if (StoreSize < 4)
6840           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
6841 
6842         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
6843                                       StoreValue, Idx,
6844                                       PtrInfo.getWithOffset(Offset),
6845                                       false, false, 0));
6846       }
6847     }
6848 
6849     SDValue StoreChain;
6850     if (!Stores.empty())
6851       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6852     else
6853       StoreChain = DAG.getEntryNode();
6854 
6855     // Now load from v4i32 into the QPX register; this will extend it to
6856     // v4i64 but not yet convert it to a floating point. Nevertheless, this
6857     // is typed as v4f64 because the QPX register integer states are not
6858     // explicitly represented.
6859 
6860     SmallVector<SDValue, 2> Ops;
6861     Ops.push_back(StoreChain);
6862     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
6863     Ops.push_back(FIdx);
6864 
6865     SmallVector<EVT, 2> ValueVTs;
6866     ValueVTs.push_back(MVT::v4f64);
6867     ValueVTs.push_back(MVT::Other); // chain
6868     SDVTList VTs = DAG.getVTList(ValueVTs);
6869 
6870     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
6871       dl, VTs, Ops, MVT::v4i32, PtrInfo);
6872     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
6873       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
6874       LoadedVect);
6875 
6876     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64);
6877     FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6878                           FPZeros, FPZeros, FPZeros, FPZeros);
6879 
6880     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
6881   }
6882 
6883   // All other QPX vectors are handled by generic code.
6884   if (Subtarget.hasQPX())
6885     return SDValue();
6886 
6887   // Check if this is a splat of a constant value.
6888   APInt APSplatBits, APSplatUndef;
6889   unsigned SplatBitSize;
6890   bool HasAnyUndefs;
6891   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
6892                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
6893       SplatBitSize > 32)
6894     return SDValue();
6895 
6896   unsigned SplatBits = APSplatBits.getZExtValue();
6897   unsigned SplatUndef = APSplatUndef.getZExtValue();
6898   unsigned SplatSize = SplatBitSize / 8;
6899 
6900   // First, handle single instruction cases.
6901 
6902   // All zeros?
6903   if (SplatBits == 0) {
6904     // Canonicalize all zero vectors to be v4i32.
6905     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
6906       SDValue Z = DAG.getConstant(0, dl, MVT::i32);
6907       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
6908       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
6909     }
6910     return Op;
6911   }
6912 
6913   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
6914   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
6915                     (32-SplatBitSize));
6916   if (SextVal >= -16 && SextVal <= 15)
6917     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
6918 
6919 
6920   // Two instruction sequences.
6921 
6922   // If this value is in the range [-32,30] and is even, use:
6923   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
6924   // If this value is in the range [17,31] and is odd, use:
6925   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
6926   // If this value is in the range [-31,-17] and is odd, use:
6927   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
6928   // Note the last two are three-instruction sequences.
6929   if (SextVal >= -32 && SextVal <= 31) {
6930     // To avoid having these optimizations undone by constant folding,
6931     // we convert to a pseudo that will be expanded later into one of
6932     // the above forms.
6933     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
6934     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
6935               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
6936     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
6937     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
6938     if (VT == Op.getValueType())
6939       return RetVal;
6940     else
6941       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
6942   }
6943 
6944   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
6945   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
6946   // for fneg/fabs.
6947   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
6948     // Make -1 and vspltisw -1:
6949     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
6950 
6951     // Make the VSLW intrinsic, computing 0x8000_0000.
6952     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
6953                                    OnesV, DAG, dl);
6954 
6955     // xor by OnesV to invert it.
6956     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
6957     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6958   }
6959 
6960   // Check to see if this is a wide variety of vsplti*, binop self cases.
6961   static const signed char SplatCsts[] = {
6962     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
6963     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
6964   };
6965 
6966   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
6967     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
6968     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
6969     int i = SplatCsts[idx];
6970 
6971     // Figure out what shift amount will be used by altivec if shifted by i in
6972     // this splat size.
6973     unsigned TypeShiftAmt = i & (SplatBitSize-1);
6974 
6975     // vsplti + shl self.
6976     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
6977       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6978       static const unsigned IIDs[] = { // Intrinsic to use for each size.
6979         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
6980         Intrinsic::ppc_altivec_vslw
6981       };
6982       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6983       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6984     }
6985 
6986     // vsplti + srl self.
6987     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
6988       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6989       static const unsigned IIDs[] = { // Intrinsic to use for each size.
6990         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
6991         Intrinsic::ppc_altivec_vsrw
6992       };
6993       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6994       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6995     }
6996 
6997     // vsplti + sra self.
6998     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
6999       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7000       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7001         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7002         Intrinsic::ppc_altivec_vsraw
7003       };
7004       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7005       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7006     }
7007 
7008     // vsplti + rol self.
7009     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7010                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7011       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7012       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7013         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7014         Intrinsic::ppc_altivec_vrlw
7015       };
7016       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7017       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7018     }
7019 
7020     // t = vsplti c, result = vsldoi t, t, 1
7021     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7022       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7023       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7024       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7025     }
7026     // t = vsplti c, result = vsldoi t, t, 2
7027     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7028       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7029       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7030       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7031     }
7032     // t = vsplti c, result = vsldoi t, t, 3
7033     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7034       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7035       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7036       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7037     }
7038   }
7039 
7040   return SDValue();
7041 }
7042 
7043 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7044 /// the specified operations to build the shuffle.
7045 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7046                                       SDValue RHS, SelectionDAG &DAG,
7047                                       SDLoc dl) {
7048   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7049   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7050   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7051 
7052   enum {
7053     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7054     OP_VMRGHW,
7055     OP_VMRGLW,
7056     OP_VSPLTISW0,
7057     OP_VSPLTISW1,
7058     OP_VSPLTISW2,
7059     OP_VSPLTISW3,
7060     OP_VSLDOI4,
7061     OP_VSLDOI8,
7062     OP_VSLDOI12
7063   };
7064 
7065   if (OpNum == OP_COPY) {
7066     if (LHSID == (1*9+2)*9+3) return LHS;
7067     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7068     return RHS;
7069   }
7070 
7071   SDValue OpLHS, OpRHS;
7072   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7073   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7074 
7075   int ShufIdxs[16];
7076   switch (OpNum) {
7077   default: llvm_unreachable("Unknown i32 permute!");
7078   case OP_VMRGHW:
7079     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7080     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7081     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7082     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7083     break;
7084   case OP_VMRGLW:
7085     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7086     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7087     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7088     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7089     break;
7090   case OP_VSPLTISW0:
7091     for (unsigned i = 0; i != 16; ++i)
7092       ShufIdxs[i] = (i&3)+0;
7093     break;
7094   case OP_VSPLTISW1:
7095     for (unsigned i = 0; i != 16; ++i)
7096       ShufIdxs[i] = (i&3)+4;
7097     break;
7098   case OP_VSPLTISW2:
7099     for (unsigned i = 0; i != 16; ++i)
7100       ShufIdxs[i] = (i&3)+8;
7101     break;
7102   case OP_VSPLTISW3:
7103     for (unsigned i = 0; i != 16; ++i)
7104       ShufIdxs[i] = (i&3)+12;
7105     break;
7106   case OP_VSLDOI4:
7107     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7108   case OP_VSLDOI8:
7109     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7110   case OP_VSLDOI12:
7111     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7112   }
7113   EVT VT = OpLHS.getValueType();
7114   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7115   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7116   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7117   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7118 }
7119 
7120 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7121 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7122 /// return the code it can be lowered into.  Worst case, it can always be
7123 /// lowered into a vperm.
7124 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7125                                                SelectionDAG &DAG) const {
7126   SDLoc dl(Op);
7127   SDValue V1 = Op.getOperand(0);
7128   SDValue V2 = Op.getOperand(1);
7129   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7130   EVT VT = Op.getValueType();
7131   bool isLittleEndian = Subtarget.isLittleEndian();
7132 
7133   if (Subtarget.hasQPX()) {
7134     if (VT.getVectorNumElements() != 4)
7135       return SDValue();
7136 
7137     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7138 
7139     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7140     if (AlignIdx != -1) {
7141       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7142                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7143     } else if (SVOp->isSplat()) {
7144       int SplatIdx = SVOp->getSplatIndex();
7145       if (SplatIdx >= 4) {
7146         std::swap(V1, V2);
7147         SplatIdx -= 4;
7148       }
7149 
7150       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
7151       // nothing to do.
7152 
7153       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7154                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7155     }
7156 
7157     // Lower this into a qvgpci/qvfperm pair.
7158 
7159     // Compute the qvgpci literal
7160     unsigned idx = 0;
7161     for (unsigned i = 0; i < 4; ++i) {
7162       int m = SVOp->getMaskElt(i);
7163       unsigned mm = m >= 0 ? (unsigned) m : i;
7164       idx |= mm << (3-i)*3;
7165     }
7166 
7167     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7168                              DAG.getConstant(idx, dl, MVT::i32));
7169     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7170   }
7171 
7172   // Cases that are handled by instructions that take permute immediates
7173   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7174   // selected by the instruction selector.
7175   if (V2.getOpcode() == ISD::UNDEF) {
7176     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7177         PPC::isSplatShuffleMask(SVOp, 2) ||
7178         PPC::isSplatShuffleMask(SVOp, 4) ||
7179         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7180         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7181         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7182         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7183         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7184         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7185         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7186         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7187         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7188         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7189         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG)   ||
7190         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)) {
7191       return Op;
7192     }
7193   }
7194 
7195   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7196   // and produce a fixed permutation.  If any of these match, do not lower to
7197   // VPERM.
7198   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7199   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7200       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7201       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7202       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7203       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7204       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7205       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7206       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7207       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7208       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7209       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG)             ||
7210       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))
7211     return Op;
7212 
7213   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7214   // perfect shuffle table to emit an optimal matching sequence.
7215   ArrayRef<int> PermMask = SVOp->getMask();
7216 
7217   unsigned PFIndexes[4];
7218   bool isFourElementShuffle = true;
7219   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7220     unsigned EltNo = 8;   // Start out undef.
7221     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7222       if (PermMask[i*4+j] < 0)
7223         continue;   // Undef, ignore it.
7224 
7225       unsigned ByteSource = PermMask[i*4+j];
7226       if ((ByteSource & 3) != j) {
7227         isFourElementShuffle = false;
7228         break;
7229       }
7230 
7231       if (EltNo == 8) {
7232         EltNo = ByteSource/4;
7233       } else if (EltNo != ByteSource/4) {
7234         isFourElementShuffle = false;
7235         break;
7236       }
7237     }
7238     PFIndexes[i] = EltNo;
7239   }
7240 
7241   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7242   // perfect shuffle vector to determine if it is cost effective to do this as
7243   // discrete instructions, or whether we should use a vperm.
7244   // For now, we skip this for little endian until such time as we have a
7245   // little-endian perfect shuffle table.
7246   if (isFourElementShuffle && !isLittleEndian) {
7247     // Compute the index in the perfect shuffle table.
7248     unsigned PFTableIndex =
7249       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7250 
7251     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7252     unsigned Cost  = (PFEntry >> 30);
7253 
7254     // Determining when to avoid vperm is tricky.  Many things affect the cost
7255     // of vperm, particularly how many times the perm mask needs to be computed.
7256     // For example, if the perm mask can be hoisted out of a loop or is already
7257     // used (perhaps because there are multiple permutes with the same shuffle
7258     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7259     // the loop requires an extra register.
7260     //
7261     // As a compromise, we only emit discrete instructions if the shuffle can be
7262     // generated in 3 or fewer operations.  When we have loop information
7263     // available, if this block is within a loop, we should avoid using vperm
7264     // for 3-operation perms and use a constant pool load instead.
7265     if (Cost < 3)
7266       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7267   }
7268 
7269   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7270   // vector that will get spilled to the constant pool.
7271   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7272 
7273   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7274   // that it is in input element units, not in bytes.  Convert now.
7275 
7276   // For little endian, the order of the input vectors is reversed, and
7277   // the permutation mask is complemented with respect to 31.  This is
7278   // necessary to produce proper semantics with the big-endian-biased vperm
7279   // instruction.
7280   EVT EltVT = V1.getValueType().getVectorElementType();
7281   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7282 
7283   SmallVector<SDValue, 16> ResultMask;
7284   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7285     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7286 
7287     for (unsigned j = 0; j != BytesPerElement; ++j)
7288       if (isLittleEndian)
7289         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7290                                              dl, MVT::i32));
7291       else
7292         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7293                                              MVT::i32));
7294   }
7295 
7296   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7297                                   ResultMask);
7298   if (isLittleEndian)
7299     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7300                        V2, V1, VPermMask);
7301   else
7302     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7303                        V1, V2, VPermMask);
7304 }
7305 
7306 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
7307 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
7308 /// information about the intrinsic.
7309 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
7310                                   bool &isDot, const PPCSubtarget &Subtarget) {
7311   unsigned IntrinsicID =
7312     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7313   CompareOpc = -1;
7314   isDot = false;
7315   switch (IntrinsicID) {
7316   default: return false;
7317     // Comparison predicates.
7318   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7319   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7320   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7321   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7322   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7323   case Intrinsic::ppc_altivec_vcmpequd_p:
7324     if (Subtarget.hasP8Altivec()) {
7325       CompareOpc = 199;
7326       isDot = 1;
7327     }
7328     else
7329       return false;
7330 
7331     break;
7332   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7333   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7334   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7335   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7336   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7337   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7338     if (Subtarget.hasP8Altivec()) {
7339       CompareOpc = 967;
7340       isDot = 1;
7341     }
7342     else
7343       return false;
7344 
7345     break;
7346   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7347   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7348   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7349   case Intrinsic::ppc_altivec_vcmpgtud_p:
7350     if (Subtarget.hasP8Altivec()) {
7351       CompareOpc = 711;
7352       isDot = 1;
7353     }
7354     else
7355       return false;
7356 
7357     break;
7358 
7359     // Normal Comparisons.
7360   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7361   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7362   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7363   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7364   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7365   case Intrinsic::ppc_altivec_vcmpequd:
7366     if (Subtarget.hasP8Altivec()) {
7367       CompareOpc = 199;
7368       isDot = 0;
7369     }
7370     else
7371       return false;
7372 
7373     break;
7374   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7375   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7376   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7377   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7378   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7379   case Intrinsic::ppc_altivec_vcmpgtsd:
7380     if (Subtarget.hasP8Altivec()) {
7381       CompareOpc = 967;
7382       isDot = 0;
7383     }
7384     else
7385       return false;
7386 
7387     break;
7388   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7389   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7390   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7391   case Intrinsic::ppc_altivec_vcmpgtud:
7392     if (Subtarget.hasP8Altivec()) {
7393       CompareOpc = 711;
7394       isDot = 0;
7395     }
7396     else
7397       return false;
7398 
7399     break;
7400   }
7401   return true;
7402 }
7403 
7404 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7405 /// lower, do it, otherwise return null.
7406 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7407                                                    SelectionDAG &DAG) const {
7408   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7409   // opcode number of the comparison.
7410   SDLoc dl(Op);
7411   int CompareOpc;
7412   bool isDot;
7413   if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget))
7414     return SDValue();    // Don't custom lower most intrinsics.
7415 
7416   // If this is a non-dot comparison, make the VCMP node and we are done.
7417   if (!isDot) {
7418     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7419                               Op.getOperand(1), Op.getOperand(2),
7420                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7421     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7422   }
7423 
7424   // Create the PPCISD altivec 'dot' comparison node.
7425   SDValue Ops[] = {
7426     Op.getOperand(2),  // LHS
7427     Op.getOperand(3),  // RHS
7428     DAG.getConstant(CompareOpc, dl, MVT::i32)
7429   };
7430   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7431   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7432 
7433   // Now that we have the comparison, emit a copy from the CR to a GPR.
7434   // This is flagged to the above dot comparison.
7435   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7436                                 DAG.getRegister(PPC::CR6, MVT::i32),
7437                                 CompNode.getValue(1));
7438 
7439   // Unpack the result based on how the target uses it.
7440   unsigned BitNo;   // Bit # of CR6.
7441   bool InvertBit;   // Invert result?
7442   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7443   default:  // Can't happen, don't crash on invalid number though.
7444   case 0:   // Return the value of the EQ bit of CR6.
7445     BitNo = 0; InvertBit = false;
7446     break;
7447   case 1:   // Return the inverted value of the EQ bit of CR6.
7448     BitNo = 0; InvertBit = true;
7449     break;
7450   case 2:   // Return the value of the LT bit of CR6.
7451     BitNo = 2; InvertBit = false;
7452     break;
7453   case 3:   // Return the inverted value of the LT bit of CR6.
7454     BitNo = 2; InvertBit = true;
7455     break;
7456   }
7457 
7458   // Shift the bit into the low position.
7459   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7460                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7461   // Isolate the bit.
7462   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7463                       DAG.getConstant(1, dl, MVT::i32));
7464 
7465   // If we are supposed to, toggle the bit.
7466   if (InvertBit)
7467     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7468                         DAG.getConstant(1, dl, MVT::i32));
7469   return Flags;
7470 }
7471 
7472 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7473                                                   SelectionDAG &DAG) const {
7474   SDLoc dl(Op);
7475   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7476   // instructions), but for smaller types, we need to first extend up to v2i32
7477   // before doing going farther.
7478   if (Op.getValueType() == MVT::v2i64) {
7479     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7480     if (ExtVT != MVT::v2i32) {
7481       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7482       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7483                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7484                                         ExtVT.getVectorElementType(), 4)));
7485       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7486       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7487                        DAG.getValueType(MVT::v2i32));
7488     }
7489 
7490     return Op;
7491   }
7492 
7493   return SDValue();
7494 }
7495 
7496 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7497                                                    SelectionDAG &DAG) const {
7498   SDLoc dl(Op);
7499   // Create a stack slot that is 16-byte aligned.
7500   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7501   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7502   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7503   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7504 
7505   // Store the input value into Value#0 of the stack slot.
7506   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7507                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7508                                false, false, 0);
7509   // Load it out.
7510   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7511                      false, false, false, 0);
7512 }
7513 
7514 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7515                                                    SelectionDAG &DAG) const {
7516   SDLoc dl(Op);
7517   SDNode *N = Op.getNode();
7518 
7519   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7520          "Unknown extract_vector_elt type");
7521 
7522   SDValue Value = N->getOperand(0);
7523 
7524   // The first part of this is like the store lowering except that we don't
7525   // need to track the chain.
7526 
7527   // The values are now known to be -1 (false) or 1 (true). To convert this
7528   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7529   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7530   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7531 
7532   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7533   // understand how to form the extending load.
7534   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7535   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7536                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7537 
7538   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7539 
7540   // Now convert to an integer and store.
7541   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7542     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7543     Value);
7544 
7545   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7546   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7547   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
7548   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7549   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7550 
7551   SDValue StoreChain = DAG.getEntryNode();
7552   SmallVector<SDValue, 2> Ops;
7553   Ops.push_back(StoreChain);
7554   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7555   Ops.push_back(Value);
7556   Ops.push_back(FIdx);
7557 
7558   SmallVector<EVT, 2> ValueVTs;
7559   ValueVTs.push_back(MVT::Other); // chain
7560   SDVTList VTs = DAG.getVTList(ValueVTs);
7561 
7562   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7563     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7564 
7565   // Extract the value requested.
7566   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7567   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7568   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7569 
7570   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7571                                PtrInfo.getWithOffset(Offset),
7572                                false, false, false, 0);
7573 
7574   if (!Subtarget.useCRBits())
7575     return IntVal;
7576 
7577   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7578 }
7579 
7580 /// Lowering for QPX v4i1 loads
7581 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7582                                            SelectionDAG &DAG) const {
7583   SDLoc dl(Op);
7584   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7585   SDValue LoadChain = LN->getChain();
7586   SDValue BasePtr = LN->getBasePtr();
7587 
7588   if (Op.getValueType() == MVT::v4f64 ||
7589       Op.getValueType() == MVT::v4f32) {
7590     EVT MemVT = LN->getMemoryVT();
7591     unsigned Alignment = LN->getAlignment();
7592 
7593     // If this load is properly aligned, then it is legal.
7594     if (Alignment >= MemVT.getStoreSize())
7595       return Op;
7596 
7597     EVT ScalarVT = Op.getValueType().getScalarType(),
7598         ScalarMemVT = MemVT.getScalarType();
7599     unsigned Stride = ScalarMemVT.getStoreSize();
7600 
7601     SmallVector<SDValue, 8> Vals, LoadChains;
7602     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7603       SDValue Load;
7604       if (ScalarVT != ScalarMemVT)
7605         Load =
7606           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7607                          BasePtr,
7608                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7609                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7610                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7611                          LN->getAAInfo());
7612       else
7613         Load =
7614           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7615                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7616                        LN->isVolatile(), LN->isNonTemporal(),
7617                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7618                        LN->getAAInfo());
7619 
7620       if (Idx == 0 && LN->isIndexed()) {
7621         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7622                "Unknown addressing mode on vector load");
7623         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7624                                   LN->getAddressingMode());
7625       }
7626 
7627       Vals.push_back(Load);
7628       LoadChains.push_back(Load.getValue(1));
7629 
7630       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7631                             DAG.getConstant(Stride, dl,
7632                                             BasePtr.getValueType()));
7633     }
7634 
7635     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7636     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7637                                 Op.getValueType(), Vals);
7638 
7639     if (LN->isIndexed()) {
7640       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7641       return DAG.getMergeValues(RetOps, dl);
7642     }
7643 
7644     SDValue RetOps[] = { Value, TF };
7645     return DAG.getMergeValues(RetOps, dl);
7646   }
7647 
7648   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7649   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7650 
7651   // To lower v4i1 from a byte array, we load the byte elements of the
7652   // vector and then reuse the BUILD_VECTOR logic.
7653 
7654   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7655   for (unsigned i = 0; i < 4; ++i) {
7656     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7657     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7658 
7659     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7660                         dl, MVT::i32, LoadChain, Idx,
7661                         LN->getPointerInfo().getWithOffset(i),
7662                         MVT::i8 /* memory type */,
7663                         LN->isVolatile(), LN->isNonTemporal(),
7664                         LN->isInvariant(),
7665                         1 /* alignment */, LN->getAAInfo()));
7666     VectElmtChains.push_back(VectElmts[i].getValue(1));
7667   }
7668 
7669   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7670   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7671 
7672   SDValue RVals[] = { Value, LoadChain };
7673   return DAG.getMergeValues(RVals, dl);
7674 }
7675 
7676 /// Lowering for QPX v4i1 stores
7677 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7678                                             SelectionDAG &DAG) const {
7679   SDLoc dl(Op);
7680   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7681   SDValue StoreChain = SN->getChain();
7682   SDValue BasePtr = SN->getBasePtr();
7683   SDValue Value = SN->getValue();
7684 
7685   if (Value.getValueType() == MVT::v4f64 ||
7686       Value.getValueType() == MVT::v4f32) {
7687     EVT MemVT = SN->getMemoryVT();
7688     unsigned Alignment = SN->getAlignment();
7689 
7690     // If this store is properly aligned, then it is legal.
7691     if (Alignment >= MemVT.getStoreSize())
7692       return Op;
7693 
7694     EVT ScalarVT = Value.getValueType().getScalarType(),
7695         ScalarMemVT = MemVT.getScalarType();
7696     unsigned Stride = ScalarMemVT.getStoreSize();
7697 
7698     SmallVector<SDValue, 8> Stores;
7699     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7700       SDValue Ex = DAG.getNode(
7701           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7702           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
7703       SDValue Store;
7704       if (ScalarVT != ScalarMemVT)
7705         Store =
7706           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7707                             SN->getPointerInfo().getWithOffset(Idx*Stride),
7708                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7709                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7710       else
7711         Store =
7712           DAG.getStore(StoreChain, dl, Ex, BasePtr,
7713                        SN->getPointerInfo().getWithOffset(Idx*Stride),
7714                        SN->isVolatile(), SN->isNonTemporal(),
7715                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7716 
7717       if (Idx == 0 && SN->isIndexed()) {
7718         assert(SN->getAddressingMode() == ISD::PRE_INC &&
7719                "Unknown addressing mode on vector store");
7720         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7721                                     SN->getAddressingMode());
7722       }
7723 
7724       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7725                             DAG.getConstant(Stride, dl,
7726                                             BasePtr.getValueType()));
7727       Stores.push_back(Store);
7728     }
7729 
7730     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7731 
7732     if (SN->isIndexed()) {
7733       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7734       return DAG.getMergeValues(RetOps, dl);
7735     }
7736 
7737     return TF;
7738   }
7739 
7740   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7741   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7742 
7743   // The values are now known to be -1 (false) or 1 (true). To convert this
7744   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7745   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7746   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7747 
7748   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7749   // understand how to form the extending load.
7750   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7751   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7752                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7753 
7754   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7755 
7756   // Now convert to an integer and store.
7757   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7758     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7759     Value);
7760 
7761   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7762   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7763   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
7764   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7765   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7766 
7767   SmallVector<SDValue, 2> Ops;
7768   Ops.push_back(StoreChain);
7769   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7770   Ops.push_back(Value);
7771   Ops.push_back(FIdx);
7772 
7773   SmallVector<EVT, 2> ValueVTs;
7774   ValueVTs.push_back(MVT::Other); // chain
7775   SDVTList VTs = DAG.getVTList(ValueVTs);
7776 
7777   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7778     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7779 
7780   // Move data into the byte array.
7781   SmallVector<SDValue, 4> Loads, LoadChains;
7782   for (unsigned i = 0; i < 4; ++i) {
7783     unsigned Offset = 4*i;
7784     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7785     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7786 
7787     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7788                                    PtrInfo.getWithOffset(Offset),
7789                                    false, false, false, 0));
7790     LoadChains.push_back(Loads[i].getValue(1));
7791   }
7792 
7793   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7794 
7795   SmallVector<SDValue, 4> Stores;
7796   for (unsigned i = 0; i < 4; ++i) {
7797     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7798     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7799 
7800     Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx,
7801                                        SN->getPointerInfo().getWithOffset(i),
7802                                        MVT::i8 /* memory type */,
7803                                        SN->isNonTemporal(), SN->isVolatile(),
7804                                        1 /* alignment */, SN->getAAInfo()));
7805   }
7806 
7807   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7808 
7809   return StoreChain;
7810 }
7811 
7812 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
7813   SDLoc dl(Op);
7814   if (Op.getValueType() == MVT::v4i32) {
7815     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7816 
7817     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
7818     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
7819 
7820     SDValue RHSSwap =   // = vrlw RHS, 16
7821       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
7822 
7823     // Shrinkify inputs to v8i16.
7824     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
7825     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
7826     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
7827 
7828     // Low parts multiplied together, generating 32-bit results (we ignore the
7829     // top parts).
7830     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
7831                                         LHS, RHS, DAG, dl, MVT::v4i32);
7832 
7833     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
7834                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
7835     // Shift the high parts up 16 bits.
7836     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
7837                               Neg16, DAG, dl);
7838     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
7839   } else if (Op.getValueType() == MVT::v8i16) {
7840     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7841 
7842     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
7843 
7844     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
7845                             LHS, RHS, Zero, DAG, dl);
7846   } else if (Op.getValueType() == MVT::v16i8) {
7847     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7848     bool isLittleEndian = Subtarget.isLittleEndian();
7849 
7850     // Multiply the even 8-bit parts, producing 16-bit sums.
7851     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
7852                                            LHS, RHS, DAG, dl, MVT::v8i16);
7853     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
7854 
7855     // Multiply the odd 8-bit parts, producing 16-bit sums.
7856     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
7857                                           LHS, RHS, DAG, dl, MVT::v8i16);
7858     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
7859 
7860     // Merge the results together.  Because vmuleub and vmuloub are
7861     // instructions with a big-endian bias, we must reverse the
7862     // element numbering and reverse the meaning of "odd" and "even"
7863     // when generating little endian code.
7864     int Ops[16];
7865     for (unsigned i = 0; i != 8; ++i) {
7866       if (isLittleEndian) {
7867         Ops[i*2  ] = 2*i;
7868         Ops[i*2+1] = 2*i+16;
7869       } else {
7870         Ops[i*2  ] = 2*i+1;
7871         Ops[i*2+1] = 2*i+1+16;
7872       }
7873     }
7874     if (isLittleEndian)
7875       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
7876     else
7877       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
7878   } else {
7879     llvm_unreachable("Unknown mul to lower!");
7880   }
7881 }
7882 
7883 /// LowerOperation - Provide custom lowering hooks for some operations.
7884 ///
7885 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7886   switch (Op.getOpcode()) {
7887   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
7888   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7889   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7890   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7891   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7892   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7893   case ISD::SETCC:              return LowerSETCC(Op, DAG);
7894   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
7895   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
7896   case ISD::VASTART:
7897     return LowerVASTART(Op, DAG, Subtarget);
7898 
7899   case ISD::VAARG:
7900     return LowerVAARG(Op, DAG, Subtarget);
7901 
7902   case ISD::VACOPY:
7903     return LowerVACOPY(Op, DAG, Subtarget);
7904 
7905   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
7906   case ISD::DYNAMIC_STACKALLOC:
7907     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
7908 
7909   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
7910   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
7911 
7912   case ISD::LOAD:               return LowerLOAD(Op, DAG);
7913   case ISD::STORE:              return LowerSTORE(Op, DAG);
7914   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
7915   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
7916   case ISD::FP_TO_UINT:
7917   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
7918                                                       SDLoc(Op));
7919   case ISD::UINT_TO_FP:
7920   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
7921   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7922 
7923   // Lower 64-bit shifts.
7924   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
7925   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
7926   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
7927 
7928   // Vector-related lowering.
7929   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7930   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7931   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7932   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7933   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
7934   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7935   case ISD::MUL:                return LowerMUL(Op, DAG);
7936 
7937   // For counter-based loop handling.
7938   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
7939 
7940   // Frame & Return address.
7941   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7942   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7943   }
7944 }
7945 
7946 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
7947                                            SmallVectorImpl<SDValue>&Results,
7948                                            SelectionDAG &DAG) const {
7949   SDLoc dl(N);
7950   switch (N->getOpcode()) {
7951   default:
7952     llvm_unreachable("Do not know how to custom type legalize this operation!");
7953   case ISD::READCYCLECOUNTER: {
7954     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7955     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
7956 
7957     Results.push_back(RTB);
7958     Results.push_back(RTB.getValue(1));
7959     Results.push_back(RTB.getValue(2));
7960     break;
7961   }
7962   case ISD::INTRINSIC_W_CHAIN: {
7963     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
7964         Intrinsic::ppc_is_decremented_ctr_nonzero)
7965       break;
7966 
7967     assert(N->getValueType(0) == MVT::i1 &&
7968            "Unexpected result type for CTR decrement intrinsic");
7969     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
7970                                  N->getValueType(0));
7971     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
7972     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
7973                                  N->getOperand(1));
7974 
7975     Results.push_back(NewInt);
7976     Results.push_back(NewInt.getValue(1));
7977     break;
7978   }
7979   case ISD::VAARG: {
7980     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
7981       return;
7982 
7983     EVT VT = N->getValueType(0);
7984 
7985     if (VT == MVT::i64) {
7986       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
7987 
7988       Results.push_back(NewNode);
7989       Results.push_back(NewNode.getValue(1));
7990     }
7991     return;
7992   }
7993   case ISD::FP_ROUND_INREG: {
7994     assert(N->getValueType(0) == MVT::ppcf128);
7995     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
7996     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7997                              MVT::f64, N->getOperand(0),
7998                              DAG.getIntPtrConstant(0, dl));
7999     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8000                              MVT::f64, N->getOperand(0),
8001                              DAG.getIntPtrConstant(1, dl));
8002 
8003     // Add the two halves of the long double in round-to-zero mode.
8004     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8005 
8006     // We know the low half is about to be thrown away, so just use something
8007     // convenient.
8008     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8009                                 FPreg, FPreg));
8010     return;
8011   }
8012   case ISD::FP_TO_SINT:
8013   case ISD::FP_TO_UINT:
8014     // LowerFP_TO_INT() can only handle f32 and f64.
8015     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8016       return;
8017     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8018     return;
8019   }
8020 }
8021 
8022 
8023 //===----------------------------------------------------------------------===//
8024 //  Other Lowering Code
8025 //===----------------------------------------------------------------------===//
8026 
8027 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8028   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8029   Function *Func = Intrinsic::getDeclaration(M, Id);
8030   return Builder.CreateCall(Func, {});
8031 }
8032 
8033 // The mappings for emitLeading/TrailingFence is taken from
8034 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8035 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8036                                          AtomicOrdering Ord, bool IsStore,
8037                                          bool IsLoad) const {
8038   if (Ord == SequentiallyConsistent)
8039     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8040   if (isAtLeastRelease(Ord))
8041     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8042   return nullptr;
8043 }
8044 
8045 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8046                                           AtomicOrdering Ord, bool IsStore,
8047                                           bool IsLoad) const {
8048   if (IsLoad && isAtLeastAcquire(Ord))
8049     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8050   // FIXME: this is too conservative, a dependent branch + isync is enough.
8051   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8052   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8053   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8054   return nullptr;
8055 }
8056 
8057 MachineBasicBlock *
8058 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8059                                     unsigned AtomicSize,
8060                                     unsigned BinOpcode) const {
8061   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8062   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8063 
8064   auto LoadMnemonic = PPC::LDARX;
8065   auto StoreMnemonic = PPC::STDCX;
8066   switch (AtomicSize) {
8067   default:
8068     llvm_unreachable("Unexpected size of atomic entity");
8069   case 1:
8070     LoadMnemonic = PPC::LBARX;
8071     StoreMnemonic = PPC::STBCX;
8072     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8073     break;
8074   case 2:
8075     LoadMnemonic = PPC::LHARX;
8076     StoreMnemonic = PPC::STHCX;
8077     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8078     break;
8079   case 4:
8080     LoadMnemonic = PPC::LWARX;
8081     StoreMnemonic = PPC::STWCX;
8082     break;
8083   case 8:
8084     LoadMnemonic = PPC::LDARX;
8085     StoreMnemonic = PPC::STDCX;
8086     break;
8087   }
8088 
8089   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8090   MachineFunction *F = BB->getParent();
8091   MachineFunction::iterator It = BB;
8092   ++It;
8093 
8094   unsigned dest = MI->getOperand(0).getReg();
8095   unsigned ptrA = MI->getOperand(1).getReg();
8096   unsigned ptrB = MI->getOperand(2).getReg();
8097   unsigned incr = MI->getOperand(3).getReg();
8098   DebugLoc dl = MI->getDebugLoc();
8099 
8100   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8101   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8102   F->insert(It, loopMBB);
8103   F->insert(It, exitMBB);
8104   exitMBB->splice(exitMBB->begin(), BB,
8105                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8106   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8107 
8108   MachineRegisterInfo &RegInfo = F->getRegInfo();
8109   unsigned TmpReg = (!BinOpcode) ? incr :
8110     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8111                                            : &PPC::GPRCRegClass);
8112 
8113   //  thisMBB:
8114   //   ...
8115   //   fallthrough --> loopMBB
8116   BB->addSuccessor(loopMBB);
8117 
8118   //  loopMBB:
8119   //   l[wd]arx dest, ptr
8120   //   add r0, dest, incr
8121   //   st[wd]cx. r0, ptr
8122   //   bne- loopMBB
8123   //   fallthrough --> exitMBB
8124   BB = loopMBB;
8125   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8126     .addReg(ptrA).addReg(ptrB);
8127   if (BinOpcode)
8128     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8129   BuildMI(BB, dl, TII->get(StoreMnemonic))
8130     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8131   BuildMI(BB, dl, TII->get(PPC::BCC))
8132     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8133   BB->addSuccessor(loopMBB);
8134   BB->addSuccessor(exitMBB);
8135 
8136   //  exitMBB:
8137   //   ...
8138   BB = exitMBB;
8139   return BB;
8140 }
8141 
8142 MachineBasicBlock *
8143 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8144                                             MachineBasicBlock *BB,
8145                                             bool is8bit,    // operation
8146                                             unsigned BinOpcode) const {
8147   // If we support part-word atomic mnemonics, just use them
8148   if (Subtarget.hasPartwordAtomics())
8149     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8150 
8151   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8152   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8153   // In 64 bit mode we have to use 64 bits for addresses, even though the
8154   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8155   // registers without caring whether they're 32 or 64, but here we're
8156   // doing actual arithmetic on the addresses.
8157   bool is64bit = Subtarget.isPPC64();
8158   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8159 
8160   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8161   MachineFunction *F = BB->getParent();
8162   MachineFunction::iterator It = BB;
8163   ++It;
8164 
8165   unsigned dest = MI->getOperand(0).getReg();
8166   unsigned ptrA = MI->getOperand(1).getReg();
8167   unsigned ptrB = MI->getOperand(2).getReg();
8168   unsigned incr = MI->getOperand(3).getReg();
8169   DebugLoc dl = MI->getDebugLoc();
8170 
8171   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8172   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8173   F->insert(It, loopMBB);
8174   F->insert(It, exitMBB);
8175   exitMBB->splice(exitMBB->begin(), BB,
8176                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8177   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8178 
8179   MachineRegisterInfo &RegInfo = F->getRegInfo();
8180   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8181                                           : &PPC::GPRCRegClass;
8182   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8183   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8184   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8185   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8186   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8187   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8188   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8189   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8190   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8191   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8192   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8193   unsigned Ptr1Reg;
8194   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8195 
8196   //  thisMBB:
8197   //   ...
8198   //   fallthrough --> loopMBB
8199   BB->addSuccessor(loopMBB);
8200 
8201   // The 4-byte load must be aligned, while a char or short may be
8202   // anywhere in the word.  Hence all this nasty bookkeeping code.
8203   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8204   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8205   //   xori shift, shift1, 24 [16]
8206   //   rlwinm ptr, ptr1, 0, 0, 29
8207   //   slw incr2, incr, shift
8208   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8209   //   slw mask, mask2, shift
8210   //  loopMBB:
8211   //   lwarx tmpDest, ptr
8212   //   add tmp, tmpDest, incr2
8213   //   andc tmp2, tmpDest, mask
8214   //   and tmp3, tmp, mask
8215   //   or tmp4, tmp3, tmp2
8216   //   stwcx. tmp4, ptr
8217   //   bne- loopMBB
8218   //   fallthrough --> exitMBB
8219   //   srw dest, tmpDest, shift
8220   if (ptrA != ZeroReg) {
8221     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8222     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8223       .addReg(ptrA).addReg(ptrB);
8224   } else {
8225     Ptr1Reg = ptrB;
8226   }
8227   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8228       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8229   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8230       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8231   if (is64bit)
8232     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8233       .addReg(Ptr1Reg).addImm(0).addImm(61);
8234   else
8235     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8236       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8237   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8238       .addReg(incr).addReg(ShiftReg);
8239   if (is8bit)
8240     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8241   else {
8242     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8243     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8244   }
8245   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8246       .addReg(Mask2Reg).addReg(ShiftReg);
8247 
8248   BB = loopMBB;
8249   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8250     .addReg(ZeroReg).addReg(PtrReg);
8251   if (BinOpcode)
8252     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8253       .addReg(Incr2Reg).addReg(TmpDestReg);
8254   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8255     .addReg(TmpDestReg).addReg(MaskReg);
8256   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8257     .addReg(TmpReg).addReg(MaskReg);
8258   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8259     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8260   BuildMI(BB, dl, TII->get(PPC::STWCX))
8261     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8262   BuildMI(BB, dl, TII->get(PPC::BCC))
8263     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8264   BB->addSuccessor(loopMBB);
8265   BB->addSuccessor(exitMBB);
8266 
8267   //  exitMBB:
8268   //   ...
8269   BB = exitMBB;
8270   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8271     .addReg(ShiftReg);
8272   return BB;
8273 }
8274 
8275 llvm::MachineBasicBlock*
8276 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8277                                     MachineBasicBlock *MBB) const {
8278   DebugLoc DL = MI->getDebugLoc();
8279   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8280 
8281   MachineFunction *MF = MBB->getParent();
8282   MachineRegisterInfo &MRI = MF->getRegInfo();
8283 
8284   const BasicBlock *BB = MBB->getBasicBlock();
8285   MachineFunction::iterator I = MBB;
8286   ++I;
8287 
8288   // Memory Reference
8289   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8290   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8291 
8292   unsigned DstReg = MI->getOperand(0).getReg();
8293   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8294   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8295   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8296   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8297 
8298   MVT PVT = getPointerTy(MF->getDataLayout());
8299   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8300          "Invalid Pointer Size!");
8301   // For v = setjmp(buf), we generate
8302   //
8303   // thisMBB:
8304   //  SjLjSetup mainMBB
8305   //  bl mainMBB
8306   //  v_restore = 1
8307   //  b sinkMBB
8308   //
8309   // mainMBB:
8310   //  buf[LabelOffset] = LR
8311   //  v_main = 0
8312   //
8313   // sinkMBB:
8314   //  v = phi(main, restore)
8315   //
8316 
8317   MachineBasicBlock *thisMBB = MBB;
8318   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8319   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8320   MF->insert(I, mainMBB);
8321   MF->insert(I, sinkMBB);
8322 
8323   MachineInstrBuilder MIB;
8324 
8325   // Transfer the remainder of BB and its successor edges to sinkMBB.
8326   sinkMBB->splice(sinkMBB->begin(), MBB,
8327                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8328   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8329 
8330   // Note that the structure of the jmp_buf used here is not compatible
8331   // with that used by libc, and is not designed to be. Specifically, it
8332   // stores only those 'reserved' registers that LLVM does not otherwise
8333   // understand how to spill. Also, by convention, by the time this
8334   // intrinsic is called, Clang has already stored the frame address in the
8335   // first slot of the buffer and stack address in the third. Following the
8336   // X86 target code, we'll store the jump address in the second slot. We also
8337   // need to save the TOC pointer (R2) to handle jumps between shared
8338   // libraries, and that will be stored in the fourth slot. The thread
8339   // identifier (R13) is not affected.
8340 
8341   // thisMBB:
8342   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8343   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8344   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8345 
8346   // Prepare IP either in reg.
8347   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8348   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8349   unsigned BufReg = MI->getOperand(1).getReg();
8350 
8351   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8352     setUsesTOCBasePtr(*MBB->getParent());
8353     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8354             .addReg(PPC::X2)
8355             .addImm(TOCOffset)
8356             .addReg(BufReg);
8357     MIB.setMemRefs(MMOBegin, MMOEnd);
8358   }
8359 
8360   // Naked functions never have a base pointer, and so we use r1. For all
8361   // other functions, this decision must be delayed until during PEI.
8362   unsigned BaseReg;
8363   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8364     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8365   else
8366     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8367 
8368   MIB = BuildMI(*thisMBB, MI, DL,
8369                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8370             .addReg(BaseReg)
8371             .addImm(BPOffset)
8372             .addReg(BufReg);
8373   MIB.setMemRefs(MMOBegin, MMOEnd);
8374 
8375   // Setup
8376   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8377   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8378   MIB.addRegMask(TRI->getNoPreservedMask());
8379 
8380   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8381 
8382   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8383           .addMBB(mainMBB);
8384   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8385 
8386   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
8387   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
8388 
8389   // mainMBB:
8390   //  mainDstReg = 0
8391   MIB =
8392       BuildMI(mainMBB, DL,
8393               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8394 
8395   // Store IP
8396   if (Subtarget.isPPC64()) {
8397     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8398             .addReg(LabelReg)
8399             .addImm(LabelOffset)
8400             .addReg(BufReg);
8401   } else {
8402     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8403             .addReg(LabelReg)
8404             .addImm(LabelOffset)
8405             .addReg(BufReg);
8406   }
8407 
8408   MIB.setMemRefs(MMOBegin, MMOEnd);
8409 
8410   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8411   mainMBB->addSuccessor(sinkMBB);
8412 
8413   // sinkMBB:
8414   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8415           TII->get(PPC::PHI), DstReg)
8416     .addReg(mainDstReg).addMBB(mainMBB)
8417     .addReg(restoreDstReg).addMBB(thisMBB);
8418 
8419   MI->eraseFromParent();
8420   return sinkMBB;
8421 }
8422 
8423 MachineBasicBlock *
8424 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8425                                      MachineBasicBlock *MBB) const {
8426   DebugLoc DL = MI->getDebugLoc();
8427   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8428 
8429   MachineFunction *MF = MBB->getParent();
8430   MachineRegisterInfo &MRI = MF->getRegInfo();
8431 
8432   // Memory Reference
8433   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8434   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8435 
8436   MVT PVT = getPointerTy(MF->getDataLayout());
8437   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8438          "Invalid Pointer Size!");
8439 
8440   const TargetRegisterClass *RC =
8441     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8442   unsigned Tmp = MRI.createVirtualRegister(RC);
8443   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8444   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8445   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8446   unsigned BP =
8447       (PVT == MVT::i64)
8448           ? PPC::X30
8449           : (Subtarget.isSVR4ABI() &&
8450                      MF->getTarget().getRelocationModel() == Reloc::PIC_
8451                  ? PPC::R29
8452                  : PPC::R30);
8453 
8454   MachineInstrBuilder MIB;
8455 
8456   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8457   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8458   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8459   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8460 
8461   unsigned BufReg = MI->getOperand(0).getReg();
8462 
8463   // Reload FP (the jumped-to function may not have had a
8464   // frame pointer, and if so, then its r31 will be restored
8465   // as necessary).
8466   if (PVT == MVT::i64) {
8467     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8468             .addImm(0)
8469             .addReg(BufReg);
8470   } else {
8471     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8472             .addImm(0)
8473             .addReg(BufReg);
8474   }
8475   MIB.setMemRefs(MMOBegin, MMOEnd);
8476 
8477   // Reload IP
8478   if (PVT == MVT::i64) {
8479     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8480             .addImm(LabelOffset)
8481             .addReg(BufReg);
8482   } else {
8483     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8484             .addImm(LabelOffset)
8485             .addReg(BufReg);
8486   }
8487   MIB.setMemRefs(MMOBegin, MMOEnd);
8488 
8489   // Reload SP
8490   if (PVT == MVT::i64) {
8491     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8492             .addImm(SPOffset)
8493             .addReg(BufReg);
8494   } else {
8495     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8496             .addImm(SPOffset)
8497             .addReg(BufReg);
8498   }
8499   MIB.setMemRefs(MMOBegin, MMOEnd);
8500 
8501   // Reload BP
8502   if (PVT == MVT::i64) {
8503     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8504             .addImm(BPOffset)
8505             .addReg(BufReg);
8506   } else {
8507     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8508             .addImm(BPOffset)
8509             .addReg(BufReg);
8510   }
8511   MIB.setMemRefs(MMOBegin, MMOEnd);
8512 
8513   // Reload TOC
8514   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8515     setUsesTOCBasePtr(*MBB->getParent());
8516     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8517             .addImm(TOCOffset)
8518             .addReg(BufReg);
8519 
8520     MIB.setMemRefs(MMOBegin, MMOEnd);
8521   }
8522 
8523   // Jump
8524   BuildMI(*MBB, MI, DL,
8525           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8526   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8527 
8528   MI->eraseFromParent();
8529   return MBB;
8530 }
8531 
8532 MachineBasicBlock *
8533 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8534                                                MachineBasicBlock *BB) const {
8535   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8536       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8537     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8538         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8539       // Call lowering should have added an r2 operand to indicate a dependence
8540       // on the TOC base pointer value. It can't however, because there is no
8541       // way to mark the dependence as implicit there, and so the stackmap code
8542       // will confuse it with a regular operand. Instead, add the dependence
8543       // here.
8544       setUsesTOCBasePtr(*BB->getParent());
8545       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8546     }
8547 
8548     return emitPatchPoint(MI, BB);
8549   }
8550 
8551   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8552       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8553     return emitEHSjLjSetJmp(MI, BB);
8554   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8555              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8556     return emitEHSjLjLongJmp(MI, BB);
8557   }
8558 
8559   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8560 
8561   // To "insert" these instructions we actually have to insert their
8562   // control-flow patterns.
8563   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8564   MachineFunction::iterator It = BB;
8565   ++It;
8566 
8567   MachineFunction *F = BB->getParent();
8568 
8569   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8570                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8571                               MI->getOpcode() == PPC::SELECT_I4 ||
8572                               MI->getOpcode() == PPC::SELECT_I8)) {
8573     SmallVector<MachineOperand, 2> Cond;
8574     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8575         MI->getOpcode() == PPC::SELECT_CC_I8)
8576       Cond.push_back(MI->getOperand(4));
8577     else
8578       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8579     Cond.push_back(MI->getOperand(1));
8580 
8581     DebugLoc dl = MI->getDebugLoc();
8582     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8583                       Cond, MI->getOperand(2).getReg(),
8584                       MI->getOperand(3).getReg());
8585   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8586              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8587              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8588              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8589              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8590              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8591              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8592              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8593              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8594              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8595              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8596              MI->getOpcode() == PPC::SELECT_I4 ||
8597              MI->getOpcode() == PPC::SELECT_I8 ||
8598              MI->getOpcode() == PPC::SELECT_F4 ||
8599              MI->getOpcode() == PPC::SELECT_F8 ||
8600              MI->getOpcode() == PPC::SELECT_QFRC ||
8601              MI->getOpcode() == PPC::SELECT_QSRC ||
8602              MI->getOpcode() == PPC::SELECT_QBRC ||
8603              MI->getOpcode() == PPC::SELECT_VRRC ||
8604              MI->getOpcode() == PPC::SELECT_VSFRC ||
8605              MI->getOpcode() == PPC::SELECT_VSSRC ||
8606              MI->getOpcode() == PPC::SELECT_VSRC) {
8607     // The incoming instruction knows the destination vreg to set, the
8608     // condition code register to branch on, the true/false values to
8609     // select between, and a branch opcode to use.
8610 
8611     //  thisMBB:
8612     //  ...
8613     //   TrueVal = ...
8614     //   cmpTY ccX, r1, r2
8615     //   bCC copy1MBB
8616     //   fallthrough --> copy0MBB
8617     MachineBasicBlock *thisMBB = BB;
8618     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8619     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8620     DebugLoc dl = MI->getDebugLoc();
8621     F->insert(It, copy0MBB);
8622     F->insert(It, sinkMBB);
8623 
8624     // Transfer the remainder of BB and its successor edges to sinkMBB.
8625     sinkMBB->splice(sinkMBB->begin(), BB,
8626                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8627     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8628 
8629     // Next, add the true and fallthrough blocks as its successors.
8630     BB->addSuccessor(copy0MBB);
8631     BB->addSuccessor(sinkMBB);
8632 
8633     if (MI->getOpcode() == PPC::SELECT_I4 ||
8634         MI->getOpcode() == PPC::SELECT_I8 ||
8635         MI->getOpcode() == PPC::SELECT_F4 ||
8636         MI->getOpcode() == PPC::SELECT_F8 ||
8637         MI->getOpcode() == PPC::SELECT_QFRC ||
8638         MI->getOpcode() == PPC::SELECT_QSRC ||
8639         MI->getOpcode() == PPC::SELECT_QBRC ||
8640         MI->getOpcode() == PPC::SELECT_VRRC ||
8641         MI->getOpcode() == PPC::SELECT_VSFRC ||
8642         MI->getOpcode() == PPC::SELECT_VSSRC ||
8643         MI->getOpcode() == PPC::SELECT_VSRC) {
8644       BuildMI(BB, dl, TII->get(PPC::BC))
8645         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8646     } else {
8647       unsigned SelectPred = MI->getOperand(4).getImm();
8648       BuildMI(BB, dl, TII->get(PPC::BCC))
8649         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8650     }
8651 
8652     //  copy0MBB:
8653     //   %FalseValue = ...
8654     //   # fallthrough to sinkMBB
8655     BB = copy0MBB;
8656 
8657     // Update machine-CFG edges
8658     BB->addSuccessor(sinkMBB);
8659 
8660     //  sinkMBB:
8661     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8662     //  ...
8663     BB = sinkMBB;
8664     BuildMI(*BB, BB->begin(), dl,
8665             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8666       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8667       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8668   } else if (MI->getOpcode() == PPC::ReadTB) {
8669     // To read the 64-bit time-base register on a 32-bit target, we read the
8670     // two halves. Should the counter have wrapped while it was being read, we
8671     // need to try again.
8672     // ...
8673     // readLoop:
8674     // mfspr Rx,TBU # load from TBU
8675     // mfspr Ry,TB  # load from TB
8676     // mfspr Rz,TBU # load from TBU
8677     // cmpw crX,Rx,Rz # check if ‘old’=’new’
8678     // bne readLoop   # branch if they're not equal
8679     // ...
8680 
8681     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8682     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8683     DebugLoc dl = MI->getDebugLoc();
8684     F->insert(It, readMBB);
8685     F->insert(It, sinkMBB);
8686 
8687     // Transfer the remainder of BB and its successor edges to sinkMBB.
8688     sinkMBB->splice(sinkMBB->begin(), BB,
8689                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8690     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8691 
8692     BB->addSuccessor(readMBB);
8693     BB = readMBB;
8694 
8695     MachineRegisterInfo &RegInfo = F->getRegInfo();
8696     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8697     unsigned LoReg = MI->getOperand(0).getReg();
8698     unsigned HiReg = MI->getOperand(1).getReg();
8699 
8700     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8701     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8702     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8703 
8704     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8705 
8706     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8707       .addReg(HiReg).addReg(ReadAgainReg);
8708     BuildMI(BB, dl, TII->get(PPC::BCC))
8709       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8710 
8711     BB->addSuccessor(readMBB);
8712     BB->addSuccessor(sinkMBB);
8713   }
8714   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8715     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8716   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8717     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8718   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8719     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8720   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8721     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8722 
8723   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8724     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8725   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8726     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8727   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8728     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8729   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8730     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8731 
8732   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8733     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8734   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8735     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8736   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8737     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8738   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8739     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8740 
8741   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8742     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8743   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8744     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8745   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8746     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8747   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8748     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8749 
8750   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8751     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8752   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8753     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8754   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8755     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8756   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8757     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8758 
8759   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
8760     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
8761   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
8762     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
8763   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
8764     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
8765   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
8766     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
8767 
8768   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
8769     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
8770   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
8771     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
8772   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
8773     BB = EmitAtomicBinary(MI, BB, 4, 0);
8774   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
8775     BB = EmitAtomicBinary(MI, BB, 8, 0);
8776 
8777   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
8778            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
8779            (Subtarget.hasPartwordAtomics() &&
8780             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
8781            (Subtarget.hasPartwordAtomics() &&
8782             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
8783     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
8784 
8785     auto LoadMnemonic = PPC::LDARX;
8786     auto StoreMnemonic = PPC::STDCX;
8787     switch(MI->getOpcode()) {
8788     default:
8789       llvm_unreachable("Compare and swap of unknown size");
8790     case PPC::ATOMIC_CMP_SWAP_I8:
8791       LoadMnemonic = PPC::LBARX;
8792       StoreMnemonic = PPC::STBCX;
8793       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8794       break;
8795     case PPC::ATOMIC_CMP_SWAP_I16:
8796       LoadMnemonic = PPC::LHARX;
8797       StoreMnemonic = PPC::STHCX;
8798       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8799       break;
8800     case PPC::ATOMIC_CMP_SWAP_I32:
8801       LoadMnemonic = PPC::LWARX;
8802       StoreMnemonic = PPC::STWCX;
8803       break;
8804     case PPC::ATOMIC_CMP_SWAP_I64:
8805       LoadMnemonic = PPC::LDARX;
8806       StoreMnemonic = PPC::STDCX;
8807       break;
8808     }
8809     unsigned dest   = MI->getOperand(0).getReg();
8810     unsigned ptrA   = MI->getOperand(1).getReg();
8811     unsigned ptrB   = MI->getOperand(2).getReg();
8812     unsigned oldval = MI->getOperand(3).getReg();
8813     unsigned newval = MI->getOperand(4).getReg();
8814     DebugLoc dl     = MI->getDebugLoc();
8815 
8816     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8817     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8818     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8819     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8820     F->insert(It, loop1MBB);
8821     F->insert(It, loop2MBB);
8822     F->insert(It, midMBB);
8823     F->insert(It, exitMBB);
8824     exitMBB->splice(exitMBB->begin(), BB,
8825                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8826     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8827 
8828     //  thisMBB:
8829     //   ...
8830     //   fallthrough --> loopMBB
8831     BB->addSuccessor(loop1MBB);
8832 
8833     // loop1MBB:
8834     //   l[bhwd]arx dest, ptr
8835     //   cmp[wd] dest, oldval
8836     //   bne- midMBB
8837     // loop2MBB:
8838     //   st[bhwd]cx. newval, ptr
8839     //   bne- loopMBB
8840     //   b exitBB
8841     // midMBB:
8842     //   st[bhwd]cx. dest, ptr
8843     // exitBB:
8844     BB = loop1MBB;
8845     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8846       .addReg(ptrA).addReg(ptrB);
8847     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
8848       .addReg(oldval).addReg(dest);
8849     BuildMI(BB, dl, TII->get(PPC::BCC))
8850       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8851     BB->addSuccessor(loop2MBB);
8852     BB->addSuccessor(midMBB);
8853 
8854     BB = loop2MBB;
8855     BuildMI(BB, dl, TII->get(StoreMnemonic))
8856       .addReg(newval).addReg(ptrA).addReg(ptrB);
8857     BuildMI(BB, dl, TII->get(PPC::BCC))
8858       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8859     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8860     BB->addSuccessor(loop1MBB);
8861     BB->addSuccessor(exitMBB);
8862 
8863     BB = midMBB;
8864     BuildMI(BB, dl, TII->get(StoreMnemonic))
8865       .addReg(dest).addReg(ptrA).addReg(ptrB);
8866     BB->addSuccessor(exitMBB);
8867 
8868     //  exitMBB:
8869     //   ...
8870     BB = exitMBB;
8871   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
8872              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
8873     // We must use 64-bit registers for addresses when targeting 64-bit,
8874     // since we're actually doing arithmetic on them.  Other registers
8875     // can be 32-bit.
8876     bool is64bit = Subtarget.isPPC64();
8877     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
8878 
8879     unsigned dest   = MI->getOperand(0).getReg();
8880     unsigned ptrA   = MI->getOperand(1).getReg();
8881     unsigned ptrB   = MI->getOperand(2).getReg();
8882     unsigned oldval = MI->getOperand(3).getReg();
8883     unsigned newval = MI->getOperand(4).getReg();
8884     DebugLoc dl     = MI->getDebugLoc();
8885 
8886     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8887     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8888     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8889     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8890     F->insert(It, loop1MBB);
8891     F->insert(It, loop2MBB);
8892     F->insert(It, midMBB);
8893     F->insert(It, exitMBB);
8894     exitMBB->splice(exitMBB->begin(), BB,
8895                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8896     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8897 
8898     MachineRegisterInfo &RegInfo = F->getRegInfo();
8899     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8900                                             : &PPC::GPRCRegClass;
8901     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8902     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8903     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8904     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
8905     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
8906     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
8907     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
8908     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8909     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8910     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8911     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8912     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8913     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8914     unsigned Ptr1Reg;
8915     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
8916     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8917     //  thisMBB:
8918     //   ...
8919     //   fallthrough --> loopMBB
8920     BB->addSuccessor(loop1MBB);
8921 
8922     // The 4-byte load must be aligned, while a char or short may be
8923     // anywhere in the word.  Hence all this nasty bookkeeping code.
8924     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8925     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8926     //   xori shift, shift1, 24 [16]
8927     //   rlwinm ptr, ptr1, 0, 0, 29
8928     //   slw newval2, newval, shift
8929     //   slw oldval2, oldval,shift
8930     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8931     //   slw mask, mask2, shift
8932     //   and newval3, newval2, mask
8933     //   and oldval3, oldval2, mask
8934     // loop1MBB:
8935     //   lwarx tmpDest, ptr
8936     //   and tmp, tmpDest, mask
8937     //   cmpw tmp, oldval3
8938     //   bne- midMBB
8939     // loop2MBB:
8940     //   andc tmp2, tmpDest, mask
8941     //   or tmp4, tmp2, newval3
8942     //   stwcx. tmp4, ptr
8943     //   bne- loop1MBB
8944     //   b exitBB
8945     // midMBB:
8946     //   stwcx. tmpDest, ptr
8947     // exitBB:
8948     //   srw dest, tmpDest, shift
8949     if (ptrA != ZeroReg) {
8950       Ptr1Reg = RegInfo.createVirtualRegister(RC);
8951       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8952         .addReg(ptrA).addReg(ptrB);
8953     } else {
8954       Ptr1Reg = ptrB;
8955     }
8956     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8957         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8958     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8959         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8960     if (is64bit)
8961       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8962         .addReg(Ptr1Reg).addImm(0).addImm(61);
8963     else
8964       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8965         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8966     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
8967         .addReg(newval).addReg(ShiftReg);
8968     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
8969         .addReg(oldval).addReg(ShiftReg);
8970     if (is8bit)
8971       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8972     else {
8973       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8974       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
8975         .addReg(Mask3Reg).addImm(65535);
8976     }
8977     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8978         .addReg(Mask2Reg).addReg(ShiftReg);
8979     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
8980         .addReg(NewVal2Reg).addReg(MaskReg);
8981     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
8982         .addReg(OldVal2Reg).addReg(MaskReg);
8983 
8984     BB = loop1MBB;
8985     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8986         .addReg(ZeroReg).addReg(PtrReg);
8987     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
8988         .addReg(TmpDestReg).addReg(MaskReg);
8989     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
8990         .addReg(TmpReg).addReg(OldVal3Reg);
8991     BuildMI(BB, dl, TII->get(PPC::BCC))
8992         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8993     BB->addSuccessor(loop2MBB);
8994     BB->addSuccessor(midMBB);
8995 
8996     BB = loop2MBB;
8997     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
8998         .addReg(TmpDestReg).addReg(MaskReg);
8999     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9000         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9001     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9002         .addReg(ZeroReg).addReg(PtrReg);
9003     BuildMI(BB, dl, TII->get(PPC::BCC))
9004       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9005     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9006     BB->addSuccessor(loop1MBB);
9007     BB->addSuccessor(exitMBB);
9008 
9009     BB = midMBB;
9010     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9011       .addReg(ZeroReg).addReg(PtrReg);
9012     BB->addSuccessor(exitMBB);
9013 
9014     //  exitMBB:
9015     //   ...
9016     BB = exitMBB;
9017     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9018       .addReg(ShiftReg);
9019   } else if (MI->getOpcode() == PPC::FADDrtz) {
9020     // This pseudo performs an FADD with rounding mode temporarily forced
9021     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9022     // is not modeled at the SelectionDAG level.
9023     unsigned Dest = MI->getOperand(0).getReg();
9024     unsigned Src1 = MI->getOperand(1).getReg();
9025     unsigned Src2 = MI->getOperand(2).getReg();
9026     DebugLoc dl   = MI->getDebugLoc();
9027 
9028     MachineRegisterInfo &RegInfo = F->getRegInfo();
9029     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9030 
9031     // Save FPSCR value.
9032     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9033 
9034     // Set rounding mode to round-to-zero.
9035     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9036     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9037 
9038     // Perform addition.
9039     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9040 
9041     // Restore FPSCR value.
9042     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9043   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9044              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9045              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9046              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9047     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9048                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9049                       PPC::ANDIo8 : PPC::ANDIo;
9050     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9051                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9052 
9053     MachineRegisterInfo &RegInfo = F->getRegInfo();
9054     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9055                                                   &PPC::GPRCRegClass :
9056                                                   &PPC::G8RCRegClass);
9057 
9058     DebugLoc dl   = MI->getDebugLoc();
9059     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9060       .addReg(MI->getOperand(1).getReg()).addImm(1);
9061     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9062             MI->getOperand(0).getReg())
9063       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9064   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9065     DebugLoc Dl = MI->getDebugLoc();
9066     MachineRegisterInfo &RegInfo = F->getRegInfo();
9067     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9068     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9069     return BB;
9070   } else {
9071     llvm_unreachable("Unexpected instr type to insert");
9072   }
9073 
9074   MI->eraseFromParent();   // The pseudo instruction is gone now.
9075   return BB;
9076 }
9077 
9078 //===----------------------------------------------------------------------===//
9079 // Target Optimization Hooks
9080 //===----------------------------------------------------------------------===//
9081 
9082 static std::string getRecipOp(const char *Base, EVT VT) {
9083   std::string RecipOp(Base);
9084   if (VT.getScalarType() == MVT::f64)
9085     RecipOp += "d";
9086   else
9087     RecipOp += "f";
9088 
9089   if (VT.isVector())
9090     RecipOp = "vec-" + RecipOp;
9091 
9092   return RecipOp;
9093 }
9094 
9095 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9096                                             DAGCombinerInfo &DCI,
9097                                             unsigned &RefinementSteps,
9098                                             bool &UseOneConstNR) const {
9099   EVT VT = Operand.getValueType();
9100   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9101       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9102       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9103       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9104       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9105       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9106     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9107     std::string RecipOp = getRecipOp("sqrt", VT);
9108     if (!Recips.isEnabled(RecipOp))
9109       return SDValue();
9110 
9111     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9112     UseOneConstNR = true;
9113     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9114   }
9115   return SDValue();
9116 }
9117 
9118 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9119                                             DAGCombinerInfo &DCI,
9120                                             unsigned &RefinementSteps) const {
9121   EVT VT = Operand.getValueType();
9122   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9123       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9124       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9125       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9126       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9127       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9128     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9129     std::string RecipOp = getRecipOp("div", VT);
9130     if (!Recips.isEnabled(RecipOp))
9131       return SDValue();
9132 
9133     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9134     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9135   }
9136   return SDValue();
9137 }
9138 
9139 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9140   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9141   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9142   // enabled for division), this functionality is redundant with the default
9143   // combiner logic (once the division -> reciprocal/multiply transformation
9144   // has taken place). As a result, this matters more for older cores than for
9145   // newer ones.
9146 
9147   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9148   // reciprocal if there are two or more FDIVs (for embedded cores with only
9149   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9150   switch (Subtarget.getDarwinDirective()) {
9151   default:
9152     return 3;
9153   case PPC::DIR_440:
9154   case PPC::DIR_A2:
9155   case PPC::DIR_E500mc:
9156   case PPC::DIR_E5500:
9157     return 2;
9158   }
9159 }
9160 
9161 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9162                             unsigned Bytes, int Dist,
9163                             SelectionDAG &DAG) {
9164   if (VT.getSizeInBits() / 8 != Bytes)
9165     return false;
9166 
9167   SDValue BaseLoc = Base->getBasePtr();
9168   if (Loc.getOpcode() == ISD::FrameIndex) {
9169     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9170       return false;
9171     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9172     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9173     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9174     int FS  = MFI->getObjectSize(FI);
9175     int BFS = MFI->getObjectSize(BFI);
9176     if (FS != BFS || FS != (int)Bytes) return false;
9177     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9178   }
9179 
9180   // Handle X+C
9181   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
9182       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
9183     return true;
9184 
9185   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9186   const GlobalValue *GV1 = nullptr;
9187   const GlobalValue *GV2 = nullptr;
9188   int64_t Offset1 = 0;
9189   int64_t Offset2 = 0;
9190   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9191   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9192   if (isGA1 && isGA2 && GV1 == GV2)
9193     return Offset1 == (Offset2 + Dist*Bytes);
9194   return false;
9195 }
9196 
9197 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9198 // not enforce equality of the chain operands.
9199 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9200                             unsigned Bytes, int Dist,
9201                             SelectionDAG &DAG) {
9202   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9203     EVT VT = LS->getMemoryVT();
9204     SDValue Loc = LS->getBasePtr();
9205     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9206   }
9207 
9208   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9209     EVT VT;
9210     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9211     default: return false;
9212     case Intrinsic::ppc_qpx_qvlfd:
9213     case Intrinsic::ppc_qpx_qvlfda:
9214       VT = MVT::v4f64;
9215       break;
9216     case Intrinsic::ppc_qpx_qvlfs:
9217     case Intrinsic::ppc_qpx_qvlfsa:
9218       VT = MVT::v4f32;
9219       break;
9220     case Intrinsic::ppc_qpx_qvlfcd:
9221     case Intrinsic::ppc_qpx_qvlfcda:
9222       VT = MVT::v2f64;
9223       break;
9224     case Intrinsic::ppc_qpx_qvlfcs:
9225     case Intrinsic::ppc_qpx_qvlfcsa:
9226       VT = MVT::v2f32;
9227       break;
9228     case Intrinsic::ppc_qpx_qvlfiwa:
9229     case Intrinsic::ppc_qpx_qvlfiwz:
9230     case Intrinsic::ppc_altivec_lvx:
9231     case Intrinsic::ppc_altivec_lvxl:
9232     case Intrinsic::ppc_vsx_lxvw4x:
9233       VT = MVT::v4i32;
9234       break;
9235     case Intrinsic::ppc_vsx_lxvd2x:
9236       VT = MVT::v2f64;
9237       break;
9238     case Intrinsic::ppc_altivec_lvebx:
9239       VT = MVT::i8;
9240       break;
9241     case Intrinsic::ppc_altivec_lvehx:
9242       VT = MVT::i16;
9243       break;
9244     case Intrinsic::ppc_altivec_lvewx:
9245       VT = MVT::i32;
9246       break;
9247     }
9248 
9249     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9250   }
9251 
9252   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9253     EVT VT;
9254     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9255     default: return false;
9256     case Intrinsic::ppc_qpx_qvstfd:
9257     case Intrinsic::ppc_qpx_qvstfda:
9258       VT = MVT::v4f64;
9259       break;
9260     case Intrinsic::ppc_qpx_qvstfs:
9261     case Intrinsic::ppc_qpx_qvstfsa:
9262       VT = MVT::v4f32;
9263       break;
9264     case Intrinsic::ppc_qpx_qvstfcd:
9265     case Intrinsic::ppc_qpx_qvstfcda:
9266       VT = MVT::v2f64;
9267       break;
9268     case Intrinsic::ppc_qpx_qvstfcs:
9269     case Intrinsic::ppc_qpx_qvstfcsa:
9270       VT = MVT::v2f32;
9271       break;
9272     case Intrinsic::ppc_qpx_qvstfiw:
9273     case Intrinsic::ppc_qpx_qvstfiwa:
9274     case Intrinsic::ppc_altivec_stvx:
9275     case Intrinsic::ppc_altivec_stvxl:
9276     case Intrinsic::ppc_vsx_stxvw4x:
9277       VT = MVT::v4i32;
9278       break;
9279     case Intrinsic::ppc_vsx_stxvd2x:
9280       VT = MVT::v2f64;
9281       break;
9282     case Intrinsic::ppc_altivec_stvebx:
9283       VT = MVT::i8;
9284       break;
9285     case Intrinsic::ppc_altivec_stvehx:
9286       VT = MVT::i16;
9287       break;
9288     case Intrinsic::ppc_altivec_stvewx:
9289       VT = MVT::i32;
9290       break;
9291     }
9292 
9293     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9294   }
9295 
9296   return false;
9297 }
9298 
9299 // Return true is there is a nearyby consecutive load to the one provided
9300 // (regardless of alignment). We search up and down the chain, looking though
9301 // token factors and other loads (but nothing else). As a result, a true result
9302 // indicates that it is safe to create a new consecutive load adjacent to the
9303 // load provided.
9304 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9305   SDValue Chain = LD->getChain();
9306   EVT VT = LD->getMemoryVT();
9307 
9308   SmallSet<SDNode *, 16> LoadRoots;
9309   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9310   SmallSet<SDNode *, 16> Visited;
9311 
9312   // First, search up the chain, branching to follow all token-factor operands.
9313   // If we find a consecutive load, then we're done, otherwise, record all
9314   // nodes just above the top-level loads and token factors.
9315   while (!Queue.empty()) {
9316     SDNode *ChainNext = Queue.pop_back_val();
9317     if (!Visited.insert(ChainNext).second)
9318       continue;
9319 
9320     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9321       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9322         return true;
9323 
9324       if (!Visited.count(ChainLD->getChain().getNode()))
9325         Queue.push_back(ChainLD->getChain().getNode());
9326     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9327       for (const SDUse &O : ChainNext->ops())
9328         if (!Visited.count(O.getNode()))
9329           Queue.push_back(O.getNode());
9330     } else
9331       LoadRoots.insert(ChainNext);
9332   }
9333 
9334   // Second, search down the chain, starting from the top-level nodes recorded
9335   // in the first phase. These top-level nodes are the nodes just above all
9336   // loads and token factors. Starting with their uses, recursively look though
9337   // all loads (just the chain uses) and token factors to find a consecutive
9338   // load.
9339   Visited.clear();
9340   Queue.clear();
9341 
9342   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9343        IE = LoadRoots.end(); I != IE; ++I) {
9344     Queue.push_back(*I);
9345 
9346     while (!Queue.empty()) {
9347       SDNode *LoadRoot = Queue.pop_back_val();
9348       if (!Visited.insert(LoadRoot).second)
9349         continue;
9350 
9351       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9352         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9353           return true;
9354 
9355       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9356            UE = LoadRoot->use_end(); UI != UE; ++UI)
9357         if (((isa<MemSDNode>(*UI) &&
9358             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9359             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9360           Queue.push_back(*UI);
9361     }
9362   }
9363 
9364   return false;
9365 }
9366 
9367 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9368                                                   DAGCombinerInfo &DCI) const {
9369   SelectionDAG &DAG = DCI.DAG;
9370   SDLoc dl(N);
9371 
9372   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9373   // If we're tracking CR bits, we need to be careful that we don't have:
9374   //   trunc(binary-ops(zext(x), zext(y)))
9375   // or
9376   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9377   // such that we're unnecessarily moving things into GPRs when it would be
9378   // better to keep them in CR bits.
9379 
9380   // Note that trunc here can be an actual i1 trunc, or can be the effective
9381   // truncation that comes from a setcc or select_cc.
9382   if (N->getOpcode() == ISD::TRUNCATE &&
9383       N->getValueType(0) != MVT::i1)
9384     return SDValue();
9385 
9386   if (N->getOperand(0).getValueType() != MVT::i32 &&
9387       N->getOperand(0).getValueType() != MVT::i64)
9388     return SDValue();
9389 
9390   if (N->getOpcode() == ISD::SETCC ||
9391       N->getOpcode() == ISD::SELECT_CC) {
9392     // If we're looking at a comparison, then we need to make sure that the
9393     // high bits (all except for the first) don't matter the result.
9394     ISD::CondCode CC =
9395       cast<CondCodeSDNode>(N->getOperand(
9396         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9397     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9398 
9399     if (ISD::isSignedIntSetCC(CC)) {
9400       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9401           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9402         return SDValue();
9403     } else if (ISD::isUnsignedIntSetCC(CC)) {
9404       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9405                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9406           !DAG.MaskedValueIsZero(N->getOperand(1),
9407                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9408         return SDValue();
9409     } else {
9410       // This is neither a signed nor an unsigned comparison, just make sure
9411       // that the high bits are equal.
9412       APInt Op1Zero, Op1One;
9413       APInt Op2Zero, Op2One;
9414       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9415       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9416 
9417       // We don't really care about what is known about the first bit (if
9418       // anything), so clear it in all masks prior to comparing them.
9419       Op1Zero.clearBit(0); Op1One.clearBit(0);
9420       Op2Zero.clearBit(0); Op2One.clearBit(0);
9421 
9422       if (Op1Zero != Op2Zero || Op1One != Op2One)
9423         return SDValue();
9424     }
9425   }
9426 
9427   // We now know that the higher-order bits are irrelevant, we just need to
9428   // make sure that all of the intermediate operations are bit operations, and
9429   // all inputs are extensions.
9430   if (N->getOperand(0).getOpcode() != ISD::AND &&
9431       N->getOperand(0).getOpcode() != ISD::OR  &&
9432       N->getOperand(0).getOpcode() != ISD::XOR &&
9433       N->getOperand(0).getOpcode() != ISD::SELECT &&
9434       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9435       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9436       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9437       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9438       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9439     return SDValue();
9440 
9441   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9442       N->getOperand(1).getOpcode() != ISD::AND &&
9443       N->getOperand(1).getOpcode() != ISD::OR  &&
9444       N->getOperand(1).getOpcode() != ISD::XOR &&
9445       N->getOperand(1).getOpcode() != ISD::SELECT &&
9446       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9447       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9448       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9449       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9450       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9451     return SDValue();
9452 
9453   SmallVector<SDValue, 4> Inputs;
9454   SmallVector<SDValue, 8> BinOps, PromOps;
9455   SmallPtrSet<SDNode *, 16> Visited;
9456 
9457   for (unsigned i = 0; i < 2; ++i) {
9458     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9459           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9460           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9461           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9462         isa<ConstantSDNode>(N->getOperand(i)))
9463       Inputs.push_back(N->getOperand(i));
9464     else
9465       BinOps.push_back(N->getOperand(i));
9466 
9467     if (N->getOpcode() == ISD::TRUNCATE)
9468       break;
9469   }
9470 
9471   // Visit all inputs, collect all binary operations (and, or, xor and
9472   // select) that are all fed by extensions.
9473   while (!BinOps.empty()) {
9474     SDValue BinOp = BinOps.back();
9475     BinOps.pop_back();
9476 
9477     if (!Visited.insert(BinOp.getNode()).second)
9478       continue;
9479 
9480     PromOps.push_back(BinOp);
9481 
9482     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9483       // The condition of the select is not promoted.
9484       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9485         continue;
9486       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9487         continue;
9488 
9489       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9490             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9491             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9492            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9493           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9494         Inputs.push_back(BinOp.getOperand(i));
9495       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9496                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9497                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9498                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9499                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9500                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9501                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9502                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9503                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9504         BinOps.push_back(BinOp.getOperand(i));
9505       } else {
9506         // We have an input that is not an extension or another binary
9507         // operation; we'll abort this transformation.
9508         return SDValue();
9509       }
9510     }
9511   }
9512 
9513   // Make sure that this is a self-contained cluster of operations (which
9514   // is not quite the same thing as saying that everything has only one
9515   // use).
9516   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9517     if (isa<ConstantSDNode>(Inputs[i]))
9518       continue;
9519 
9520     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9521                               UE = Inputs[i].getNode()->use_end();
9522          UI != UE; ++UI) {
9523       SDNode *User = *UI;
9524       if (User != N && !Visited.count(User))
9525         return SDValue();
9526 
9527       // Make sure that we're not going to promote the non-output-value
9528       // operand(s) or SELECT or SELECT_CC.
9529       // FIXME: Although we could sometimes handle this, and it does occur in
9530       // practice that one of the condition inputs to the select is also one of
9531       // the outputs, we currently can't deal with this.
9532       if (User->getOpcode() == ISD::SELECT) {
9533         if (User->getOperand(0) == Inputs[i])
9534           return SDValue();
9535       } else if (User->getOpcode() == ISD::SELECT_CC) {
9536         if (User->getOperand(0) == Inputs[i] ||
9537             User->getOperand(1) == Inputs[i])
9538           return SDValue();
9539       }
9540     }
9541   }
9542 
9543   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9544     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9545                               UE = PromOps[i].getNode()->use_end();
9546          UI != UE; ++UI) {
9547       SDNode *User = *UI;
9548       if (User != N && !Visited.count(User))
9549         return SDValue();
9550 
9551       // Make sure that we're not going to promote the non-output-value
9552       // operand(s) or SELECT or SELECT_CC.
9553       // FIXME: Although we could sometimes handle this, and it does occur in
9554       // practice that one of the condition inputs to the select is also one of
9555       // the outputs, we currently can't deal with this.
9556       if (User->getOpcode() == ISD::SELECT) {
9557         if (User->getOperand(0) == PromOps[i])
9558           return SDValue();
9559       } else if (User->getOpcode() == ISD::SELECT_CC) {
9560         if (User->getOperand(0) == PromOps[i] ||
9561             User->getOperand(1) == PromOps[i])
9562           return SDValue();
9563       }
9564     }
9565   }
9566 
9567   // Replace all inputs with the extension operand.
9568   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9569     // Constants may have users outside the cluster of to-be-promoted nodes,
9570     // and so we need to replace those as we do the promotions.
9571     if (isa<ConstantSDNode>(Inputs[i]))
9572       continue;
9573     else
9574       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9575   }
9576 
9577   // Replace all operations (these are all the same, but have a different
9578   // (i1) return type). DAG.getNode will validate that the types of
9579   // a binary operator match, so go through the list in reverse so that
9580   // we've likely promoted both operands first. Any intermediate truncations or
9581   // extensions disappear.
9582   while (!PromOps.empty()) {
9583     SDValue PromOp = PromOps.back();
9584     PromOps.pop_back();
9585 
9586     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9587         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9588         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9589         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9590       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9591           PromOp.getOperand(0).getValueType() != MVT::i1) {
9592         // The operand is not yet ready (see comment below).
9593         PromOps.insert(PromOps.begin(), PromOp);
9594         continue;
9595       }
9596 
9597       SDValue RepValue = PromOp.getOperand(0);
9598       if (isa<ConstantSDNode>(RepValue))
9599         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9600 
9601       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9602       continue;
9603     }
9604 
9605     unsigned C;
9606     switch (PromOp.getOpcode()) {
9607     default:             C = 0; break;
9608     case ISD::SELECT:    C = 1; break;
9609     case ISD::SELECT_CC: C = 2; break;
9610     }
9611 
9612     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9613          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9614         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9615          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9616       // The to-be-promoted operands of this node have not yet been
9617       // promoted (this should be rare because we're going through the
9618       // list backward, but if one of the operands has several users in
9619       // this cluster of to-be-promoted nodes, it is possible).
9620       PromOps.insert(PromOps.begin(), PromOp);
9621       continue;
9622     }
9623 
9624     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9625                                 PromOp.getNode()->op_end());
9626 
9627     // If there are any constant inputs, make sure they're replaced now.
9628     for (unsigned i = 0; i < 2; ++i)
9629       if (isa<ConstantSDNode>(Ops[C+i]))
9630         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9631 
9632     DAG.ReplaceAllUsesOfValueWith(PromOp,
9633       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9634   }
9635 
9636   // Now we're left with the initial truncation itself.
9637   if (N->getOpcode() == ISD::TRUNCATE)
9638     return N->getOperand(0);
9639 
9640   // Otherwise, this is a comparison. The operands to be compared have just
9641   // changed type (to i1), but everything else is the same.
9642   return SDValue(N, 0);
9643 }
9644 
9645 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9646                                                   DAGCombinerInfo &DCI) const {
9647   SelectionDAG &DAG = DCI.DAG;
9648   SDLoc dl(N);
9649 
9650   // If we're tracking CR bits, we need to be careful that we don't have:
9651   //   zext(binary-ops(trunc(x), trunc(y)))
9652   // or
9653   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9654   // such that we're unnecessarily moving things into CR bits that can more
9655   // efficiently stay in GPRs. Note that if we're not certain that the high
9656   // bits are set as required by the final extension, we still may need to do
9657   // some masking to get the proper behavior.
9658 
9659   // This same functionality is important on PPC64 when dealing with
9660   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9661   // the return values of functions. Because it is so similar, it is handled
9662   // here as well.
9663 
9664   if (N->getValueType(0) != MVT::i32 &&
9665       N->getValueType(0) != MVT::i64)
9666     return SDValue();
9667 
9668   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9669         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9670     return SDValue();
9671 
9672   if (N->getOperand(0).getOpcode() != ISD::AND &&
9673       N->getOperand(0).getOpcode() != ISD::OR  &&
9674       N->getOperand(0).getOpcode() != ISD::XOR &&
9675       N->getOperand(0).getOpcode() != ISD::SELECT &&
9676       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9677     return SDValue();
9678 
9679   SmallVector<SDValue, 4> Inputs;
9680   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9681   SmallPtrSet<SDNode *, 16> Visited;
9682 
9683   // Visit all inputs, collect all binary operations (and, or, xor and
9684   // select) that are all fed by truncations.
9685   while (!BinOps.empty()) {
9686     SDValue BinOp = BinOps.back();
9687     BinOps.pop_back();
9688 
9689     if (!Visited.insert(BinOp.getNode()).second)
9690       continue;
9691 
9692     PromOps.push_back(BinOp);
9693 
9694     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9695       // The condition of the select is not promoted.
9696       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9697         continue;
9698       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9699         continue;
9700 
9701       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9702           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9703         Inputs.push_back(BinOp.getOperand(i));
9704       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9705                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9706                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9707                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9708                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9709         BinOps.push_back(BinOp.getOperand(i));
9710       } else {
9711         // We have an input that is not a truncation or another binary
9712         // operation; we'll abort this transformation.
9713         return SDValue();
9714       }
9715     }
9716   }
9717 
9718   // The operands of a select that must be truncated when the select is
9719   // promoted because the operand is actually part of the to-be-promoted set.
9720   DenseMap<SDNode *, EVT> SelectTruncOp[2];
9721 
9722   // Make sure that this is a self-contained cluster of operations (which
9723   // is not quite the same thing as saying that everything has only one
9724   // use).
9725   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9726     if (isa<ConstantSDNode>(Inputs[i]))
9727       continue;
9728 
9729     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9730                               UE = Inputs[i].getNode()->use_end();
9731          UI != UE; ++UI) {
9732       SDNode *User = *UI;
9733       if (User != N && !Visited.count(User))
9734         return SDValue();
9735 
9736       // If we're going to promote the non-output-value operand(s) or SELECT or
9737       // SELECT_CC, record them for truncation.
9738       if (User->getOpcode() == ISD::SELECT) {
9739         if (User->getOperand(0) == Inputs[i])
9740           SelectTruncOp[0].insert(std::make_pair(User,
9741                                     User->getOperand(0).getValueType()));
9742       } else if (User->getOpcode() == ISD::SELECT_CC) {
9743         if (User->getOperand(0) == Inputs[i])
9744           SelectTruncOp[0].insert(std::make_pair(User,
9745                                     User->getOperand(0).getValueType()));
9746         if (User->getOperand(1) == Inputs[i])
9747           SelectTruncOp[1].insert(std::make_pair(User,
9748                                     User->getOperand(1).getValueType()));
9749       }
9750     }
9751   }
9752 
9753   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9754     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9755                               UE = PromOps[i].getNode()->use_end();
9756          UI != UE; ++UI) {
9757       SDNode *User = *UI;
9758       if (User != N && !Visited.count(User))
9759         return SDValue();
9760 
9761       // If we're going to promote the non-output-value operand(s) or SELECT or
9762       // SELECT_CC, record them for truncation.
9763       if (User->getOpcode() == ISD::SELECT) {
9764         if (User->getOperand(0) == PromOps[i])
9765           SelectTruncOp[0].insert(std::make_pair(User,
9766                                     User->getOperand(0).getValueType()));
9767       } else if (User->getOpcode() == ISD::SELECT_CC) {
9768         if (User->getOperand(0) == PromOps[i])
9769           SelectTruncOp[0].insert(std::make_pair(User,
9770                                     User->getOperand(0).getValueType()));
9771         if (User->getOperand(1) == PromOps[i])
9772           SelectTruncOp[1].insert(std::make_pair(User,
9773                                     User->getOperand(1).getValueType()));
9774       }
9775     }
9776   }
9777 
9778   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
9779   bool ReallyNeedsExt = false;
9780   if (N->getOpcode() != ISD::ANY_EXTEND) {
9781     // If all of the inputs are not already sign/zero extended, then
9782     // we'll still need to do that at the end.
9783     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9784       if (isa<ConstantSDNode>(Inputs[i]))
9785         continue;
9786 
9787       unsigned OpBits =
9788         Inputs[i].getOperand(0).getValueSizeInBits();
9789       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
9790 
9791       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
9792            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
9793                                   APInt::getHighBitsSet(OpBits,
9794                                                         OpBits-PromBits))) ||
9795           (N->getOpcode() == ISD::SIGN_EXTEND &&
9796            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
9797              (OpBits-(PromBits-1)))) {
9798         ReallyNeedsExt = true;
9799         break;
9800       }
9801     }
9802   }
9803 
9804   // Replace all inputs, either with the truncation operand, or a
9805   // truncation or extension to the final output type.
9806   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9807     // Constant inputs need to be replaced with the to-be-promoted nodes that
9808     // use them because they might have users outside of the cluster of
9809     // promoted nodes.
9810     if (isa<ConstantSDNode>(Inputs[i]))
9811       continue;
9812 
9813     SDValue InSrc = Inputs[i].getOperand(0);
9814     if (Inputs[i].getValueType() == N->getValueType(0))
9815       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
9816     else if (N->getOpcode() == ISD::SIGN_EXTEND)
9817       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9818         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
9819     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9820       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9821         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
9822     else
9823       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9824         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
9825   }
9826 
9827   // Replace all operations (these are all the same, but have a different
9828   // (promoted) return type). DAG.getNode will validate that the types of
9829   // a binary operator match, so go through the list in reverse so that
9830   // we've likely promoted both operands first.
9831   while (!PromOps.empty()) {
9832     SDValue PromOp = PromOps.back();
9833     PromOps.pop_back();
9834 
9835     unsigned C;
9836     switch (PromOp.getOpcode()) {
9837     default:             C = 0; break;
9838     case ISD::SELECT:    C = 1; break;
9839     case ISD::SELECT_CC: C = 2; break;
9840     }
9841 
9842     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9843          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
9844         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9845          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
9846       // The to-be-promoted operands of this node have not yet been
9847       // promoted (this should be rare because we're going through the
9848       // list backward, but if one of the operands has several users in
9849       // this cluster of to-be-promoted nodes, it is possible).
9850       PromOps.insert(PromOps.begin(), PromOp);
9851       continue;
9852     }
9853 
9854     // For SELECT and SELECT_CC nodes, we do a similar check for any
9855     // to-be-promoted comparison inputs.
9856     if (PromOp.getOpcode() == ISD::SELECT ||
9857         PromOp.getOpcode() == ISD::SELECT_CC) {
9858       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
9859            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
9860           (SelectTruncOp[1].count(PromOp.getNode()) &&
9861            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
9862         PromOps.insert(PromOps.begin(), PromOp);
9863         continue;
9864       }
9865     }
9866 
9867     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9868                                 PromOp.getNode()->op_end());
9869 
9870     // If this node has constant inputs, then they'll need to be promoted here.
9871     for (unsigned i = 0; i < 2; ++i) {
9872       if (!isa<ConstantSDNode>(Ops[C+i]))
9873         continue;
9874       if (Ops[C+i].getValueType() == N->getValueType(0))
9875         continue;
9876 
9877       if (N->getOpcode() == ISD::SIGN_EXTEND)
9878         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9879       else if (N->getOpcode() == ISD::ZERO_EXTEND)
9880         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9881       else
9882         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9883     }
9884 
9885     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
9886     // truncate them again to the original value type.
9887     if (PromOp.getOpcode() == ISD::SELECT ||
9888         PromOp.getOpcode() == ISD::SELECT_CC) {
9889       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
9890       if (SI0 != SelectTruncOp[0].end())
9891         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
9892       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
9893       if (SI1 != SelectTruncOp[1].end())
9894         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
9895     }
9896 
9897     DAG.ReplaceAllUsesOfValueWith(PromOp,
9898       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
9899   }
9900 
9901   // Now we're left with the initial extension itself.
9902   if (!ReallyNeedsExt)
9903     return N->getOperand(0);
9904 
9905   // To zero extend, just mask off everything except for the first bit (in the
9906   // i1 case).
9907   if (N->getOpcode() == ISD::ZERO_EXTEND)
9908     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
9909                        DAG.getConstant(APInt::getLowBitsSet(
9910                                          N->getValueSizeInBits(0), PromBits),
9911                                        dl, N->getValueType(0)));
9912 
9913   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
9914          "Invalid extension type");
9915   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
9916   SDValue ShiftCst =
9917     DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
9918   return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
9919                      DAG.getNode(ISD::SHL, dl, N->getValueType(0),
9920                                  N->getOperand(0), ShiftCst), ShiftCst);
9921 }
9922 
9923 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
9924                                               DAGCombinerInfo &DCI) const {
9925   assert((N->getOpcode() == ISD::SINT_TO_FP ||
9926           N->getOpcode() == ISD::UINT_TO_FP) &&
9927          "Need an int -> FP conversion node here");
9928 
9929   if (!Subtarget.has64BitSupport())
9930     return SDValue();
9931 
9932   SelectionDAG &DAG = DCI.DAG;
9933   SDLoc dl(N);
9934   SDValue Op(N, 0);
9935 
9936   // Don't handle ppc_fp128 here or i1 conversions.
9937   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
9938     return SDValue();
9939   if (Op.getOperand(0).getValueType() == MVT::i1)
9940     return SDValue();
9941 
9942   // For i32 intermediate values, unfortunately, the conversion functions
9943   // leave the upper 32 bits of the value are undefined. Within the set of
9944   // scalar instructions, we have no method for zero- or sign-extending the
9945   // value. Thus, we cannot handle i32 intermediate values here.
9946   if (Op.getOperand(0).getValueType() == MVT::i32)
9947     return SDValue();
9948 
9949   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
9950          "UINT_TO_FP is supported only with FPCVT");
9951 
9952   // If we have FCFIDS, then use it when converting to single-precision.
9953   // Otherwise, convert to double-precision and then round.
9954   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
9955                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
9956                                                             : PPCISD::FCFIDS)
9957                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
9958                                                             : PPCISD::FCFID);
9959   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
9960                   ? MVT::f32
9961                   : MVT::f64;
9962 
9963   // If we're converting from a float, to an int, and back to a float again,
9964   // then we don't need the store/load pair at all.
9965   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
9966        Subtarget.hasFPCVT()) ||
9967       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
9968     SDValue Src = Op.getOperand(0).getOperand(0);
9969     if (Src.getValueType() == MVT::f32) {
9970       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
9971       DCI.AddToWorklist(Src.getNode());
9972     }
9973 
9974     unsigned FCTOp =
9975       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
9976                                                         PPCISD::FCTIDUZ;
9977 
9978     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
9979     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
9980 
9981     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
9982       FP = DAG.getNode(ISD::FP_ROUND, dl,
9983                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
9984       DCI.AddToWorklist(FP.getNode());
9985     }
9986 
9987     return FP;
9988   }
9989 
9990   return SDValue();
9991 }
9992 
9993 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
9994 // builtins) into loads with swaps.
9995 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
9996                                               DAGCombinerInfo &DCI) const {
9997   SelectionDAG &DAG = DCI.DAG;
9998   SDLoc dl(N);
9999   SDValue Chain;
10000   SDValue Base;
10001   MachineMemOperand *MMO;
10002 
10003   switch (N->getOpcode()) {
10004   default:
10005     llvm_unreachable("Unexpected opcode for little endian VSX load");
10006   case ISD::LOAD: {
10007     LoadSDNode *LD = cast<LoadSDNode>(N);
10008     Chain = LD->getChain();
10009     Base = LD->getBasePtr();
10010     MMO = LD->getMemOperand();
10011     // If the MMO suggests this isn't a load of a full vector, leave
10012     // things alone.  For a built-in, we have to make the change for
10013     // correctness, so if there is a size problem that will be a bug.
10014     if (MMO->getSize() < 16)
10015       return SDValue();
10016     break;
10017   }
10018   case ISD::INTRINSIC_W_CHAIN: {
10019     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10020     Chain = Intrin->getChain();
10021     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10022     // us what we want. Get operand 2 instead.
10023     Base = Intrin->getOperand(2);
10024     MMO = Intrin->getMemOperand();
10025     break;
10026   }
10027   }
10028 
10029   MVT VecTy = N->getValueType(0).getSimpleVT();
10030   SDValue LoadOps[] = { Chain, Base };
10031   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10032                                          DAG.getVTList(VecTy, MVT::Other),
10033                                          LoadOps, VecTy, MMO);
10034   DCI.AddToWorklist(Load.getNode());
10035   Chain = Load.getValue(1);
10036   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10037                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
10038   DCI.AddToWorklist(Swap.getNode());
10039   return Swap;
10040 }
10041 
10042 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10043 // builtins) into stores with swaps.
10044 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10045                                                DAGCombinerInfo &DCI) const {
10046   SelectionDAG &DAG = DCI.DAG;
10047   SDLoc dl(N);
10048   SDValue Chain;
10049   SDValue Base;
10050   unsigned SrcOpnd;
10051   MachineMemOperand *MMO;
10052 
10053   switch (N->getOpcode()) {
10054   default:
10055     llvm_unreachable("Unexpected opcode for little endian VSX store");
10056   case ISD::STORE: {
10057     StoreSDNode *ST = cast<StoreSDNode>(N);
10058     Chain = ST->getChain();
10059     Base = ST->getBasePtr();
10060     MMO = ST->getMemOperand();
10061     SrcOpnd = 1;
10062     // If the MMO suggests this isn't a store of a full vector, leave
10063     // things alone.  For a built-in, we have to make the change for
10064     // correctness, so if there is a size problem that will be a bug.
10065     if (MMO->getSize() < 16)
10066       return SDValue();
10067     break;
10068   }
10069   case ISD::INTRINSIC_VOID: {
10070     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10071     Chain = Intrin->getChain();
10072     // Intrin->getBasePtr() oddly does not get what we want.
10073     Base = Intrin->getOperand(3);
10074     MMO = Intrin->getMemOperand();
10075     SrcOpnd = 2;
10076     break;
10077   }
10078   }
10079 
10080   SDValue Src = N->getOperand(SrcOpnd);
10081   MVT VecTy = Src.getValueType().getSimpleVT();
10082   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10083                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
10084   DCI.AddToWorklist(Swap.getNode());
10085   Chain = Swap.getValue(1);
10086   SDValue StoreOps[] = { Chain, Swap, Base };
10087   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10088                                           DAG.getVTList(MVT::Other),
10089                                           StoreOps, VecTy, MMO);
10090   DCI.AddToWorklist(Store.getNode());
10091   return Store;
10092 }
10093 
10094 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10095                                              DAGCombinerInfo &DCI) const {
10096   SelectionDAG &DAG = DCI.DAG;
10097   SDLoc dl(N);
10098   switch (N->getOpcode()) {
10099   default: break;
10100   case PPCISD::SHL:
10101     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10102       if (C->isNullValue())   // 0 << V -> 0.
10103         return N->getOperand(0);
10104     }
10105     break;
10106   case PPCISD::SRL:
10107     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10108       if (C->isNullValue())   // 0 >>u V -> 0.
10109         return N->getOperand(0);
10110     }
10111     break;
10112   case PPCISD::SRA:
10113     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10114       if (C->isNullValue() ||   //  0 >>s V -> 0.
10115           C->isAllOnesValue())    // -1 >>s V -> -1.
10116         return N->getOperand(0);
10117     }
10118     break;
10119   case ISD::SIGN_EXTEND:
10120   case ISD::ZERO_EXTEND:
10121   case ISD::ANY_EXTEND:
10122     return DAGCombineExtBoolTrunc(N, DCI);
10123   case ISD::TRUNCATE:
10124   case ISD::SETCC:
10125   case ISD::SELECT_CC:
10126     return DAGCombineTruncBoolExt(N, DCI);
10127   case ISD::SINT_TO_FP:
10128   case ISD::UINT_TO_FP:
10129     return combineFPToIntToFP(N, DCI);
10130   case ISD::STORE: {
10131     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10132     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10133         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10134         N->getOperand(1).getValueType() == MVT::i32 &&
10135         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10136       SDValue Val = N->getOperand(1).getOperand(0);
10137       if (Val.getValueType() == MVT::f32) {
10138         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10139         DCI.AddToWorklist(Val.getNode());
10140       }
10141       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10142       DCI.AddToWorklist(Val.getNode());
10143 
10144       SDValue Ops[] = {
10145         N->getOperand(0), Val, N->getOperand(2),
10146         DAG.getValueType(N->getOperand(1).getValueType())
10147       };
10148 
10149       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10150               DAG.getVTList(MVT::Other), Ops,
10151               cast<StoreSDNode>(N)->getMemoryVT(),
10152               cast<StoreSDNode>(N)->getMemOperand());
10153       DCI.AddToWorklist(Val.getNode());
10154       return Val;
10155     }
10156 
10157     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10158     if (cast<StoreSDNode>(N)->isUnindexed() &&
10159         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10160         N->getOperand(1).getNode()->hasOneUse() &&
10161         (N->getOperand(1).getValueType() == MVT::i32 ||
10162          N->getOperand(1).getValueType() == MVT::i16 ||
10163          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10164           N->getOperand(1).getValueType() == MVT::i64))) {
10165       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10166       // Do an any-extend to 32-bits if this is a half-word input.
10167       if (BSwapOp.getValueType() == MVT::i16)
10168         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10169 
10170       SDValue Ops[] = {
10171         N->getOperand(0), BSwapOp, N->getOperand(2),
10172         DAG.getValueType(N->getOperand(1).getValueType())
10173       };
10174       return
10175         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10176                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10177                                 cast<StoreSDNode>(N)->getMemOperand());
10178     }
10179 
10180     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10181     EVT VT = N->getOperand(1).getValueType();
10182     if (VT.isSimple()) {
10183       MVT StoreVT = VT.getSimpleVT();
10184       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10185           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10186            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10187         return expandVSXStoreForLE(N, DCI);
10188     }
10189     break;
10190   }
10191   case ISD::LOAD: {
10192     LoadSDNode *LD = cast<LoadSDNode>(N);
10193     EVT VT = LD->getValueType(0);
10194 
10195     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10196     if (VT.isSimple()) {
10197       MVT LoadVT = VT.getSimpleVT();
10198       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10199           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10200            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10201         return expandVSXLoadForLE(N, DCI);
10202     }
10203 
10204     EVT MemVT = LD->getMemoryVT();
10205     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10206     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10207     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10208     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10209     if (LD->isUnindexed() && VT.isVector() &&
10210         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10211           // P8 and later hardware should just use LOAD.
10212           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10213                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10214          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10215           LD->getAlignment() >= ScalarABIAlignment)) &&
10216         LD->getAlignment() < ABIAlignment) {
10217       // This is a type-legal unaligned Altivec or QPX load.
10218       SDValue Chain = LD->getChain();
10219       SDValue Ptr = LD->getBasePtr();
10220       bool isLittleEndian = Subtarget.isLittleEndian();
10221 
10222       // This implements the loading of unaligned vectors as described in
10223       // the venerable Apple Velocity Engine overview. Specifically:
10224       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10225       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10226       //
10227       // The general idea is to expand a sequence of one or more unaligned
10228       // loads into an alignment-based permutation-control instruction (lvsl
10229       // or lvsr), a series of regular vector loads (which always truncate
10230       // their input address to an aligned address), and a series of
10231       // permutations.  The results of these permutations are the requested
10232       // loaded values.  The trick is that the last "extra" load is not taken
10233       // from the address you might suspect (sizeof(vector) bytes after the
10234       // last requested load), but rather sizeof(vector) - 1 bytes after the
10235       // last requested vector. The point of this is to avoid a page fault if
10236       // the base address happened to be aligned. This works because if the
10237       // base address is aligned, then adding less than a full vector length
10238       // will cause the last vector in the sequence to be (re)loaded.
10239       // Otherwise, the next vector will be fetched as you might suspect was
10240       // necessary.
10241 
10242       // We might be able to reuse the permutation generation from
10243       // a different base address offset from this one by an aligned amount.
10244       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10245       // optimization later.
10246       Intrinsic::ID Intr, IntrLD, IntrPerm;
10247       MVT PermCntlTy, PermTy, LDTy;
10248       if (Subtarget.hasAltivec()) {
10249         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10250                                  Intrinsic::ppc_altivec_lvsl;
10251         IntrLD = Intrinsic::ppc_altivec_lvx;
10252         IntrPerm = Intrinsic::ppc_altivec_vperm;
10253         PermCntlTy = MVT::v16i8;
10254         PermTy = MVT::v4i32;
10255         LDTy = MVT::v4i32;
10256       } else {
10257         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10258                                        Intrinsic::ppc_qpx_qvlpcls;
10259         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10260                                        Intrinsic::ppc_qpx_qvlfs;
10261         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10262         PermCntlTy = MVT::v4f64;
10263         PermTy = MVT::v4f64;
10264         LDTy = MemVT.getSimpleVT();
10265       }
10266 
10267       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10268 
10269       // Create the new MMO for the new base load. It is like the original MMO,
10270       // but represents an area in memory almost twice the vector size centered
10271       // on the original address. If the address is unaligned, we might start
10272       // reading up to (sizeof(vector)-1) bytes below the address of the
10273       // original unaligned load.
10274       MachineFunction &MF = DAG.getMachineFunction();
10275       MachineMemOperand *BaseMMO =
10276         MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1,
10277                                 2*MemVT.getStoreSize()-1);
10278 
10279       // Create the new base load.
10280       SDValue LDXIntID =
10281           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10282       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10283       SDValue BaseLoad =
10284         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10285                                 DAG.getVTList(PermTy, MVT::Other),
10286                                 BaseLoadOps, LDTy, BaseMMO);
10287 
10288       // Note that the value of IncOffset (which is provided to the next
10289       // load's pointer info offset value, and thus used to calculate the
10290       // alignment), and the value of IncValue (which is actually used to
10291       // increment the pointer value) are different! This is because we
10292       // require the next load to appear to be aligned, even though it
10293       // is actually offset from the base pointer by a lesser amount.
10294       int IncOffset = VT.getSizeInBits() / 8;
10295       int IncValue = IncOffset;
10296 
10297       // Walk (both up and down) the chain looking for another load at the real
10298       // (aligned) offset (the alignment of the other load does not matter in
10299       // this case). If found, then do not use the offset reduction trick, as
10300       // that will prevent the loads from being later combined (as they would
10301       // otherwise be duplicates).
10302       if (!findConsecutiveLoad(LD, DAG))
10303         --IncValue;
10304 
10305       SDValue Increment =
10306           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10307       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10308 
10309       MachineMemOperand *ExtraMMO =
10310         MF.getMachineMemOperand(LD->getMemOperand(),
10311                                 1, 2*MemVT.getStoreSize()-1);
10312       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10313       SDValue ExtraLoad =
10314         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10315                                 DAG.getVTList(PermTy, MVT::Other),
10316                                 ExtraLoadOps, LDTy, ExtraMMO);
10317 
10318       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10319         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10320 
10321       // Because vperm has a big-endian bias, we must reverse the order
10322       // of the input vectors and complement the permute control vector
10323       // when generating little endian code.  We have already handled the
10324       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10325       // and ExtraLoad here.
10326       SDValue Perm;
10327       if (isLittleEndian)
10328         Perm = BuildIntrinsicOp(IntrPerm,
10329                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10330       else
10331         Perm = BuildIntrinsicOp(IntrPerm,
10332                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10333 
10334       if (VT != PermTy)
10335         Perm = Subtarget.hasAltivec() ?
10336                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10337                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10338                                DAG.getTargetConstant(1, dl, MVT::i64));
10339                                // second argument is 1 because this rounding
10340                                // is always exact.
10341 
10342       // The output of the permutation is our loaded result, the TokenFactor is
10343       // our new chain.
10344       DCI.CombineTo(N, Perm, TF);
10345       return SDValue(N, 0);
10346     }
10347     }
10348     break;
10349     case ISD::INTRINSIC_WO_CHAIN: {
10350       bool isLittleEndian = Subtarget.isLittleEndian();
10351       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10352       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10353                                            : Intrinsic::ppc_altivec_lvsl);
10354       if ((IID == Intr ||
10355            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10356            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10357         N->getOperand(1)->getOpcode() == ISD::ADD) {
10358         SDValue Add = N->getOperand(1);
10359 
10360         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10361                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10362 
10363         if (DAG.MaskedValueIsZero(
10364                 Add->getOperand(1),
10365                 APInt::getAllOnesValue(Bits /* alignment */)
10366                     .zext(
10367                         Add.getValueType().getScalarType().getSizeInBits()))) {
10368           SDNode *BasePtr = Add->getOperand(0).getNode();
10369           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10370                                     UE = BasePtr->use_end();
10371                UI != UE; ++UI) {
10372             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10373                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10374               // We've found another LVSL/LVSR, and this address is an aligned
10375               // multiple of that one. The results will be the same, so use the
10376               // one we've just found instead.
10377 
10378               return SDValue(*UI, 0);
10379             }
10380           }
10381         }
10382 
10383         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10384           SDNode *BasePtr = Add->getOperand(0).getNode();
10385           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10386                UE = BasePtr->use_end(); UI != UE; ++UI) {
10387             if (UI->getOpcode() == ISD::ADD &&
10388                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10389                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10390                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10391                 (1ULL << Bits) == 0) {
10392               SDNode *OtherAdd = *UI;
10393               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10394                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10395                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10396                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10397                   return SDValue(*VI, 0);
10398                 }
10399               }
10400             }
10401           }
10402         }
10403       }
10404     }
10405 
10406     break;
10407   case ISD::INTRINSIC_W_CHAIN: {
10408     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10409     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10410       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10411       default:
10412         break;
10413       case Intrinsic::ppc_vsx_lxvw4x:
10414       case Intrinsic::ppc_vsx_lxvd2x:
10415         return expandVSXLoadForLE(N, DCI);
10416       }
10417     }
10418     break;
10419   }
10420   case ISD::INTRINSIC_VOID: {
10421     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10422     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10423       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10424       default:
10425         break;
10426       case Intrinsic::ppc_vsx_stxvw4x:
10427       case Intrinsic::ppc_vsx_stxvd2x:
10428         return expandVSXStoreForLE(N, DCI);
10429       }
10430     }
10431     break;
10432   }
10433   case ISD::BSWAP:
10434     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10435     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10436         N->getOperand(0).hasOneUse() &&
10437         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10438          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10439           N->getValueType(0) == MVT::i64))) {
10440       SDValue Load = N->getOperand(0);
10441       LoadSDNode *LD = cast<LoadSDNode>(Load);
10442       // Create the byte-swapping load.
10443       SDValue Ops[] = {
10444         LD->getChain(),    // Chain
10445         LD->getBasePtr(),  // Ptr
10446         DAG.getValueType(N->getValueType(0)) // VT
10447       };
10448       SDValue BSLoad =
10449         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10450                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10451                                               MVT::i64 : MVT::i32, MVT::Other),
10452                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10453 
10454       // If this is an i16 load, insert the truncate.
10455       SDValue ResVal = BSLoad;
10456       if (N->getValueType(0) == MVT::i16)
10457         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10458 
10459       // First, combine the bswap away.  This makes the value produced by the
10460       // load dead.
10461       DCI.CombineTo(N, ResVal);
10462 
10463       // Next, combine the load away, we give it a bogus result value but a real
10464       // chain result.  The result value is dead because the bswap is dead.
10465       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10466 
10467       // Return N so it doesn't get rechecked!
10468       return SDValue(N, 0);
10469     }
10470 
10471     break;
10472   case PPCISD::VCMP: {
10473     // If a VCMPo node already exists with exactly the same operands as this
10474     // node, use its result instead of this node (VCMPo computes both a CR6 and
10475     // a normal output).
10476     //
10477     if (!N->getOperand(0).hasOneUse() &&
10478         !N->getOperand(1).hasOneUse() &&
10479         !N->getOperand(2).hasOneUse()) {
10480 
10481       // Scan all of the users of the LHS, looking for VCMPo's that match.
10482       SDNode *VCMPoNode = nullptr;
10483 
10484       SDNode *LHSN = N->getOperand(0).getNode();
10485       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10486            UI != E; ++UI)
10487         if (UI->getOpcode() == PPCISD::VCMPo &&
10488             UI->getOperand(1) == N->getOperand(1) &&
10489             UI->getOperand(2) == N->getOperand(2) &&
10490             UI->getOperand(0) == N->getOperand(0)) {
10491           VCMPoNode = *UI;
10492           break;
10493         }
10494 
10495       // If there is no VCMPo node, or if the flag value has a single use, don't
10496       // transform this.
10497       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10498         break;
10499 
10500       // Look at the (necessarily single) use of the flag value.  If it has a
10501       // chain, this transformation is more complex.  Note that multiple things
10502       // could use the value result, which we should ignore.
10503       SDNode *FlagUser = nullptr;
10504       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10505            FlagUser == nullptr; ++UI) {
10506         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10507         SDNode *User = *UI;
10508         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10509           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10510             FlagUser = User;
10511             break;
10512           }
10513         }
10514       }
10515 
10516       // If the user is a MFOCRF instruction, we know this is safe.
10517       // Otherwise we give up for right now.
10518       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10519         return SDValue(VCMPoNode, 0);
10520     }
10521     break;
10522   }
10523   case ISD::BRCOND: {
10524     SDValue Cond = N->getOperand(1);
10525     SDValue Target = N->getOperand(2);
10526 
10527     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10528         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10529           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10530 
10531       // We now need to make the intrinsic dead (it cannot be instruction
10532       // selected).
10533       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10534       assert(Cond.getNode()->hasOneUse() &&
10535              "Counter decrement has more than one use");
10536 
10537       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10538                          N->getOperand(0), Target);
10539     }
10540   }
10541   break;
10542   case ISD::BR_CC: {
10543     // If this is a branch on an altivec predicate comparison, lower this so
10544     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10545     // lowering is done pre-legalize, because the legalizer lowers the predicate
10546     // compare down to code that is difficult to reassemble.
10547     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10548     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10549 
10550     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10551     // value. If so, pass-through the AND to get to the intrinsic.
10552     if (LHS.getOpcode() == ISD::AND &&
10553         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10554         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10555           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10556         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10557         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
10558           isZero())
10559       LHS = LHS.getOperand(0);
10560 
10561     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10562         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10563           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10564         isa<ConstantSDNode>(RHS)) {
10565       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10566              "Counter decrement comparison is not EQ or NE");
10567 
10568       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10569       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10570                     (CC == ISD::SETNE && !Val);
10571 
10572       // We now need to make the intrinsic dead (it cannot be instruction
10573       // selected).
10574       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10575       assert(LHS.getNode()->hasOneUse() &&
10576              "Counter decrement has more than one use");
10577 
10578       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10579                          N->getOperand(0), N->getOperand(4));
10580     }
10581 
10582     int CompareOpc;
10583     bool isDot;
10584 
10585     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10586         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10587         getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10588       assert(isDot && "Can't compare against a vector result!");
10589 
10590       // If this is a comparison against something other than 0/1, then we know
10591       // that the condition is never/always true.
10592       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10593       if (Val != 0 && Val != 1) {
10594         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10595           return N->getOperand(0);
10596         // Always !=, turn it into an unconditional branch.
10597         return DAG.getNode(ISD::BR, dl, MVT::Other,
10598                            N->getOperand(0), N->getOperand(4));
10599       }
10600 
10601       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10602 
10603       // Create the PPCISD altivec 'dot' comparison node.
10604       SDValue Ops[] = {
10605         LHS.getOperand(2),  // LHS of compare
10606         LHS.getOperand(3),  // RHS of compare
10607         DAG.getConstant(CompareOpc, dl, MVT::i32)
10608       };
10609       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10610       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10611 
10612       // Unpack the result based on how the target uses it.
10613       PPC::Predicate CompOpc;
10614       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
10615       default:  // Can't happen, don't crash on invalid number though.
10616       case 0:   // Branch on the value of the EQ bit of CR6.
10617         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
10618         break;
10619       case 1:   // Branch on the inverted value of the EQ bit of CR6.
10620         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
10621         break;
10622       case 2:   // Branch on the value of the LT bit of CR6.
10623         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
10624         break;
10625       case 3:   // Branch on the inverted value of the LT bit of CR6.
10626         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
10627         break;
10628       }
10629 
10630       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
10631                          DAG.getConstant(CompOpc, dl, MVT::i32),
10632                          DAG.getRegister(PPC::CR6, MVT::i32),
10633                          N->getOperand(4), CompNode.getValue(1));
10634     }
10635     break;
10636   }
10637   }
10638 
10639   return SDValue();
10640 }
10641 
10642 SDValue
10643 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10644                                   SelectionDAG &DAG,
10645                                   std::vector<SDNode *> *Created) const {
10646   // fold (sdiv X, pow2)
10647   EVT VT = N->getValueType(0);
10648   if (VT == MVT::i64 && !Subtarget.isPPC64())
10649     return SDValue();
10650   if ((VT != MVT::i32 && VT != MVT::i64) ||
10651       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
10652     return SDValue();
10653 
10654   SDLoc DL(N);
10655   SDValue N0 = N->getOperand(0);
10656 
10657   bool IsNegPow2 = (-Divisor).isPowerOf2();
10658   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
10659   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
10660 
10661   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
10662   if (Created)
10663     Created->push_back(Op.getNode());
10664 
10665   if (IsNegPow2) {
10666     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
10667     if (Created)
10668       Created->push_back(Op.getNode());
10669   }
10670 
10671   return Op;
10672 }
10673 
10674 //===----------------------------------------------------------------------===//
10675 // Inline Assembly Support
10676 //===----------------------------------------------------------------------===//
10677 
10678 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10679                                                       APInt &KnownZero,
10680                                                       APInt &KnownOne,
10681                                                       const SelectionDAG &DAG,
10682                                                       unsigned Depth) const {
10683   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
10684   switch (Op.getOpcode()) {
10685   default: break;
10686   case PPCISD::LBRX: {
10687     // lhbrx is known to have the top bits cleared out.
10688     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
10689       KnownZero = 0xFFFF0000;
10690     break;
10691   }
10692   case ISD::INTRINSIC_WO_CHAIN: {
10693     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
10694     default: break;
10695     case Intrinsic::ppc_altivec_vcmpbfp_p:
10696     case Intrinsic::ppc_altivec_vcmpeqfp_p:
10697     case Intrinsic::ppc_altivec_vcmpequb_p:
10698     case Intrinsic::ppc_altivec_vcmpequh_p:
10699     case Intrinsic::ppc_altivec_vcmpequw_p:
10700     case Intrinsic::ppc_altivec_vcmpequd_p:
10701     case Intrinsic::ppc_altivec_vcmpgefp_p:
10702     case Intrinsic::ppc_altivec_vcmpgtfp_p:
10703     case Intrinsic::ppc_altivec_vcmpgtsb_p:
10704     case Intrinsic::ppc_altivec_vcmpgtsh_p:
10705     case Intrinsic::ppc_altivec_vcmpgtsw_p:
10706     case Intrinsic::ppc_altivec_vcmpgtsd_p:
10707     case Intrinsic::ppc_altivec_vcmpgtub_p:
10708     case Intrinsic::ppc_altivec_vcmpgtuh_p:
10709     case Intrinsic::ppc_altivec_vcmpgtuw_p:
10710     case Intrinsic::ppc_altivec_vcmpgtud_p:
10711       KnownZero = ~1U;  // All bits but the low one are known to be zero.
10712       break;
10713     }
10714   }
10715   }
10716 }
10717 
10718 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10719   switch (Subtarget.getDarwinDirective()) {
10720   default: break;
10721   case PPC::DIR_970:
10722   case PPC::DIR_PWR4:
10723   case PPC::DIR_PWR5:
10724   case PPC::DIR_PWR5X:
10725   case PPC::DIR_PWR6:
10726   case PPC::DIR_PWR6X:
10727   case PPC::DIR_PWR7:
10728   case PPC::DIR_PWR8: {
10729     if (!ML)
10730       break;
10731 
10732     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10733 
10734     // For small loops (between 5 and 8 instructions), align to a 32-byte
10735     // boundary so that the entire loop fits in one instruction-cache line.
10736     uint64_t LoopSize = 0;
10737     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
10738       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
10739         LoopSize += TII->GetInstSizeInBytes(J);
10740 
10741     if (LoopSize > 16 && LoopSize <= 32)
10742       return 5;
10743 
10744     break;
10745   }
10746   }
10747 
10748   return TargetLowering::getPrefLoopAlignment(ML);
10749 }
10750 
10751 /// getConstraintType - Given a constraint, return the type of
10752 /// constraint it is for this target.
10753 PPCTargetLowering::ConstraintType
10754 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
10755   if (Constraint.size() == 1) {
10756     switch (Constraint[0]) {
10757     default: break;
10758     case 'b':
10759     case 'r':
10760     case 'f':
10761     case 'v':
10762     case 'y':
10763       return C_RegisterClass;
10764     case 'Z':
10765       // FIXME: While Z does indicate a memory constraint, it specifically
10766       // indicates an r+r address (used in conjunction with the 'y' modifier
10767       // in the replacement string). Currently, we're forcing the base
10768       // register to be r0 in the asm printer (which is interpreted as zero)
10769       // and forming the complete address in the second register. This is
10770       // suboptimal.
10771       return C_Memory;
10772     }
10773   } else if (Constraint == "wc") { // individual CR bits.
10774     return C_RegisterClass;
10775   } else if (Constraint == "wa" || Constraint == "wd" ||
10776              Constraint == "wf" || Constraint == "ws") {
10777     return C_RegisterClass; // VSX registers.
10778   }
10779   return TargetLowering::getConstraintType(Constraint);
10780 }
10781 
10782 /// Examine constraint type and operand type and determine a weight value.
10783 /// This object must already have been set up with the operand type
10784 /// and the current alternative constraint selected.
10785 TargetLowering::ConstraintWeight
10786 PPCTargetLowering::getSingleConstraintMatchWeight(
10787     AsmOperandInfo &info, const char *constraint) const {
10788   ConstraintWeight weight = CW_Invalid;
10789   Value *CallOperandVal = info.CallOperandVal;
10790     // If we don't have a value, we can't do a match,
10791     // but allow it at the lowest weight.
10792   if (!CallOperandVal)
10793     return CW_Default;
10794   Type *type = CallOperandVal->getType();
10795 
10796   // Look at the constraint type.
10797   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
10798     return CW_Register; // an individual CR bit.
10799   else if ((StringRef(constraint) == "wa" ||
10800             StringRef(constraint) == "wd" ||
10801             StringRef(constraint) == "wf") &&
10802            type->isVectorTy())
10803     return CW_Register;
10804   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
10805     return CW_Register;
10806 
10807   switch (*constraint) {
10808   default:
10809     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10810     break;
10811   case 'b':
10812     if (type->isIntegerTy())
10813       weight = CW_Register;
10814     break;
10815   case 'f':
10816     if (type->isFloatTy())
10817       weight = CW_Register;
10818     break;
10819   case 'd':
10820     if (type->isDoubleTy())
10821       weight = CW_Register;
10822     break;
10823   case 'v':
10824     if (type->isVectorTy())
10825       weight = CW_Register;
10826     break;
10827   case 'y':
10828     weight = CW_Register;
10829     break;
10830   case 'Z':
10831     weight = CW_Memory;
10832     break;
10833   }
10834   return weight;
10835 }
10836 
10837 std::pair<unsigned, const TargetRegisterClass *>
10838 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10839                                                 StringRef Constraint,
10840                                                 MVT VT) const {
10841   if (Constraint.size() == 1) {
10842     // GCC RS6000 Constraint Letters
10843     switch (Constraint[0]) {
10844     case 'b':   // R1-R31
10845       if (VT == MVT::i64 && Subtarget.isPPC64())
10846         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
10847       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
10848     case 'r':   // R0-R31
10849       if (VT == MVT::i64 && Subtarget.isPPC64())
10850         return std::make_pair(0U, &PPC::G8RCRegClass);
10851       return std::make_pair(0U, &PPC::GPRCRegClass);
10852     case 'f':
10853       if (VT == MVT::f32 || VT == MVT::i32)
10854         return std::make_pair(0U, &PPC::F4RCRegClass);
10855       if (VT == MVT::f64 || VT == MVT::i64)
10856         return std::make_pair(0U, &PPC::F8RCRegClass);
10857       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10858         return std::make_pair(0U, &PPC::QFRCRegClass);
10859       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10860         return std::make_pair(0U, &PPC::QSRCRegClass);
10861       break;
10862     case 'v':
10863       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10864         return std::make_pair(0U, &PPC::QFRCRegClass);
10865       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10866         return std::make_pair(0U, &PPC::QSRCRegClass);
10867       return std::make_pair(0U, &PPC::VRRCRegClass);
10868     case 'y':   // crrc
10869       return std::make_pair(0U, &PPC::CRRCRegClass);
10870     }
10871   } else if (Constraint == "wc") { // an individual CR bit.
10872     return std::make_pair(0U, &PPC::CRBITRCRegClass);
10873   } else if (Constraint == "wa" || Constraint == "wd" ||
10874              Constraint == "wf") {
10875     return std::make_pair(0U, &PPC::VSRCRegClass);
10876   } else if (Constraint == "ws") {
10877     if (VT == MVT::f32)
10878       return std::make_pair(0U, &PPC::VSSRCRegClass);
10879     else
10880       return std::make_pair(0U, &PPC::VSFRCRegClass);
10881   }
10882 
10883   std::pair<unsigned, const TargetRegisterClass *> R =
10884       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10885 
10886   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
10887   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
10888   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
10889   // register.
10890   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
10891   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
10892   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
10893       PPC::GPRCRegClass.contains(R.first))
10894     return std::make_pair(TRI->getMatchingSuperReg(R.first,
10895                             PPC::sub_32, &PPC::G8RCRegClass),
10896                           &PPC::G8RCRegClass);
10897 
10898   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
10899   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
10900     R.first = PPC::CR0;
10901     R.second = &PPC::CRRCRegClass;
10902   }
10903 
10904   return R;
10905 }
10906 
10907 
10908 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10909 /// vector.  If it is invalid, don't add anything to Ops.
10910 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10911                                                      std::string &Constraint,
10912                                                      std::vector<SDValue>&Ops,
10913                                                      SelectionDAG &DAG) const {
10914   SDValue Result;
10915 
10916   // Only support length 1 constraints.
10917   if (Constraint.length() > 1) return;
10918 
10919   char Letter = Constraint[0];
10920   switch (Letter) {
10921   default: break;
10922   case 'I':
10923   case 'J':
10924   case 'K':
10925   case 'L':
10926   case 'M':
10927   case 'N':
10928   case 'O':
10929   case 'P': {
10930     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
10931     if (!CST) return; // Must be an immediate to match.
10932     SDLoc dl(Op);
10933     int64_t Value = CST->getSExtValue();
10934     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
10935                          // numbers are printed as such.
10936     switch (Letter) {
10937     default: llvm_unreachable("Unknown constraint letter!");
10938     case 'I':  // "I" is a signed 16-bit constant.
10939       if (isInt<16>(Value))
10940         Result = DAG.getTargetConstant(Value, dl, TCVT);
10941       break;
10942     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
10943       if (isShiftedUInt<16, 16>(Value))
10944         Result = DAG.getTargetConstant(Value, dl, TCVT);
10945       break;
10946     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
10947       if (isShiftedInt<16, 16>(Value))
10948         Result = DAG.getTargetConstant(Value, dl, TCVT);
10949       break;
10950     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
10951       if (isUInt<16>(Value))
10952         Result = DAG.getTargetConstant(Value, dl, TCVT);
10953       break;
10954     case 'M':  // "M" is a constant that is greater than 31.
10955       if (Value > 31)
10956         Result = DAG.getTargetConstant(Value, dl, TCVT);
10957       break;
10958     case 'N':  // "N" is a positive constant that is an exact power of two.
10959       if (Value > 0 && isPowerOf2_64(Value))
10960         Result = DAG.getTargetConstant(Value, dl, TCVT);
10961       break;
10962     case 'O':  // "O" is the constant zero.
10963       if (Value == 0)
10964         Result = DAG.getTargetConstant(Value, dl, TCVT);
10965       break;
10966     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
10967       if (isInt<16>(-Value))
10968         Result = DAG.getTargetConstant(Value, dl, TCVT);
10969       break;
10970     }
10971     break;
10972   }
10973   }
10974 
10975   if (Result.getNode()) {
10976     Ops.push_back(Result);
10977     return;
10978   }
10979 
10980   // Handle standard constraint letters.
10981   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10982 }
10983 
10984 // isLegalAddressingMode - Return true if the addressing mode represented
10985 // by AM is legal for this target, for a load/store of the specified type.
10986 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
10987                                               const AddrMode &AM, Type *Ty,
10988                                               unsigned AS) const {
10989   // PPC does not allow r+i addressing modes for vectors!
10990   if (Ty->isVectorTy() && AM.BaseOffs != 0)
10991     return false;
10992 
10993   // PPC allows a sign-extended 16-bit immediate field.
10994   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
10995     return false;
10996 
10997   // No global is ever allowed as a base.
10998   if (AM.BaseGV)
10999     return false;
11000 
11001   // PPC only support r+r,
11002   switch (AM.Scale) {
11003   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11004     break;
11005   case 1:
11006     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11007       return false;
11008     // Otherwise we have r+r or r+i.
11009     break;
11010   case 2:
11011     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11012       return false;
11013     // Allow 2*r as r+r.
11014     break;
11015   default:
11016     // No other scales are supported.
11017     return false;
11018   }
11019 
11020   return true;
11021 }
11022 
11023 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11024                                            SelectionDAG &DAG) const {
11025   MachineFunction &MF = DAG.getMachineFunction();
11026   MachineFrameInfo *MFI = MF.getFrameInfo();
11027   MFI->setReturnAddressIsTaken(true);
11028 
11029   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11030     return SDValue();
11031 
11032   SDLoc dl(Op);
11033   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11034 
11035   // Make sure the function does not optimize away the store of the RA to
11036   // the stack.
11037   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11038   FuncInfo->setLRStoreRequired();
11039   bool isPPC64 = Subtarget.isPPC64();
11040   auto PtrVT = getPointerTy(MF.getDataLayout());
11041 
11042   if (Depth > 0) {
11043     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11044     SDValue Offset =
11045         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11046                         isPPC64 ? MVT::i64 : MVT::i32);
11047     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11048                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11049                        MachinePointerInfo(), false, false, false, 0);
11050   }
11051 
11052   // Just load the return address off the stack.
11053   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11054   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11055                      MachinePointerInfo(), false, false, false, 0);
11056 }
11057 
11058 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11059                                           SelectionDAG &DAG) const {
11060   SDLoc dl(Op);
11061   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11062 
11063   MachineFunction &MF = DAG.getMachineFunction();
11064   MachineFrameInfo *MFI = MF.getFrameInfo();
11065   MFI->setFrameAddressIsTaken(true);
11066 
11067   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11068   bool isPPC64 = PtrVT == MVT::i64;
11069 
11070   // Naked functions never have a frame pointer, and so we use r1. For all
11071   // other functions, this decision must be delayed until during PEI.
11072   unsigned FrameReg;
11073   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11074     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11075   else
11076     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11077 
11078   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11079                                          PtrVT);
11080   while (Depth--)
11081     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11082                             FrameAddr, MachinePointerInfo(), false, false,
11083                             false, 0);
11084   return FrameAddr;
11085 }
11086 
11087 // FIXME? Maybe this could be a TableGen attribute on some registers and
11088 // this table could be generated automatically from RegInfo.
11089 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11090                                               SelectionDAG &DAG) const {
11091   bool isPPC64 = Subtarget.isPPC64();
11092   bool isDarwinABI = Subtarget.isDarwinABI();
11093 
11094   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11095       (!isPPC64 && VT != MVT::i32))
11096     report_fatal_error("Invalid register global variable type");
11097 
11098   bool is64Bit = isPPC64 && VT == MVT::i64;
11099   unsigned Reg = StringSwitch<unsigned>(RegName)
11100                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11101                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11102                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11103                                   (is64Bit ? PPC::X13 : PPC::R13))
11104                    .Default(0);
11105 
11106   if (Reg)
11107     return Reg;
11108   report_fatal_error("Invalid register name global variable");
11109 }
11110 
11111 bool
11112 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11113   // The PowerPC target isn't yet aware of offsets.
11114   return false;
11115 }
11116 
11117 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11118                                            const CallInst &I,
11119                                            unsigned Intrinsic) const {
11120 
11121   switch (Intrinsic) {
11122   case Intrinsic::ppc_qpx_qvlfd:
11123   case Intrinsic::ppc_qpx_qvlfs:
11124   case Intrinsic::ppc_qpx_qvlfcd:
11125   case Intrinsic::ppc_qpx_qvlfcs:
11126   case Intrinsic::ppc_qpx_qvlfiwa:
11127   case Intrinsic::ppc_qpx_qvlfiwz:
11128   case Intrinsic::ppc_altivec_lvx:
11129   case Intrinsic::ppc_altivec_lvxl:
11130   case Intrinsic::ppc_altivec_lvebx:
11131   case Intrinsic::ppc_altivec_lvehx:
11132   case Intrinsic::ppc_altivec_lvewx:
11133   case Intrinsic::ppc_vsx_lxvd2x:
11134   case Intrinsic::ppc_vsx_lxvw4x: {
11135     EVT VT;
11136     switch (Intrinsic) {
11137     case Intrinsic::ppc_altivec_lvebx:
11138       VT = MVT::i8;
11139       break;
11140     case Intrinsic::ppc_altivec_lvehx:
11141       VT = MVT::i16;
11142       break;
11143     case Intrinsic::ppc_altivec_lvewx:
11144       VT = MVT::i32;
11145       break;
11146     case Intrinsic::ppc_vsx_lxvd2x:
11147       VT = MVT::v2f64;
11148       break;
11149     case Intrinsic::ppc_qpx_qvlfd:
11150       VT = MVT::v4f64;
11151       break;
11152     case Intrinsic::ppc_qpx_qvlfs:
11153       VT = MVT::v4f32;
11154       break;
11155     case Intrinsic::ppc_qpx_qvlfcd:
11156       VT = MVT::v2f64;
11157       break;
11158     case Intrinsic::ppc_qpx_qvlfcs:
11159       VT = MVT::v2f32;
11160       break;
11161     default:
11162       VT = MVT::v4i32;
11163       break;
11164     }
11165 
11166     Info.opc = ISD::INTRINSIC_W_CHAIN;
11167     Info.memVT = VT;
11168     Info.ptrVal = I.getArgOperand(0);
11169     Info.offset = -VT.getStoreSize()+1;
11170     Info.size = 2*VT.getStoreSize()-1;
11171     Info.align = 1;
11172     Info.vol = false;
11173     Info.readMem = true;
11174     Info.writeMem = false;
11175     return true;
11176   }
11177   case Intrinsic::ppc_qpx_qvlfda:
11178   case Intrinsic::ppc_qpx_qvlfsa:
11179   case Intrinsic::ppc_qpx_qvlfcda:
11180   case Intrinsic::ppc_qpx_qvlfcsa:
11181   case Intrinsic::ppc_qpx_qvlfiwaa:
11182   case Intrinsic::ppc_qpx_qvlfiwza: {
11183     EVT VT;
11184     switch (Intrinsic) {
11185     case Intrinsic::ppc_qpx_qvlfda:
11186       VT = MVT::v4f64;
11187       break;
11188     case Intrinsic::ppc_qpx_qvlfsa:
11189       VT = MVT::v4f32;
11190       break;
11191     case Intrinsic::ppc_qpx_qvlfcda:
11192       VT = MVT::v2f64;
11193       break;
11194     case Intrinsic::ppc_qpx_qvlfcsa:
11195       VT = MVT::v2f32;
11196       break;
11197     default:
11198       VT = MVT::v4i32;
11199       break;
11200     }
11201 
11202     Info.opc = ISD::INTRINSIC_W_CHAIN;
11203     Info.memVT = VT;
11204     Info.ptrVal = I.getArgOperand(0);
11205     Info.offset = 0;
11206     Info.size = VT.getStoreSize();
11207     Info.align = 1;
11208     Info.vol = false;
11209     Info.readMem = true;
11210     Info.writeMem = false;
11211     return true;
11212   }
11213   case Intrinsic::ppc_qpx_qvstfd:
11214   case Intrinsic::ppc_qpx_qvstfs:
11215   case Intrinsic::ppc_qpx_qvstfcd:
11216   case Intrinsic::ppc_qpx_qvstfcs:
11217   case Intrinsic::ppc_qpx_qvstfiw:
11218   case Intrinsic::ppc_altivec_stvx:
11219   case Intrinsic::ppc_altivec_stvxl:
11220   case Intrinsic::ppc_altivec_stvebx:
11221   case Intrinsic::ppc_altivec_stvehx:
11222   case Intrinsic::ppc_altivec_stvewx:
11223   case Intrinsic::ppc_vsx_stxvd2x:
11224   case Intrinsic::ppc_vsx_stxvw4x: {
11225     EVT VT;
11226     switch (Intrinsic) {
11227     case Intrinsic::ppc_altivec_stvebx:
11228       VT = MVT::i8;
11229       break;
11230     case Intrinsic::ppc_altivec_stvehx:
11231       VT = MVT::i16;
11232       break;
11233     case Intrinsic::ppc_altivec_stvewx:
11234       VT = MVT::i32;
11235       break;
11236     case Intrinsic::ppc_vsx_stxvd2x:
11237       VT = MVT::v2f64;
11238       break;
11239     case Intrinsic::ppc_qpx_qvstfd:
11240       VT = MVT::v4f64;
11241       break;
11242     case Intrinsic::ppc_qpx_qvstfs:
11243       VT = MVT::v4f32;
11244       break;
11245     case Intrinsic::ppc_qpx_qvstfcd:
11246       VT = MVT::v2f64;
11247       break;
11248     case Intrinsic::ppc_qpx_qvstfcs:
11249       VT = MVT::v2f32;
11250       break;
11251     default:
11252       VT = MVT::v4i32;
11253       break;
11254     }
11255 
11256     Info.opc = ISD::INTRINSIC_VOID;
11257     Info.memVT = VT;
11258     Info.ptrVal = I.getArgOperand(1);
11259     Info.offset = -VT.getStoreSize()+1;
11260     Info.size = 2*VT.getStoreSize()-1;
11261     Info.align = 1;
11262     Info.vol = false;
11263     Info.readMem = false;
11264     Info.writeMem = true;
11265     return true;
11266   }
11267   case Intrinsic::ppc_qpx_qvstfda:
11268   case Intrinsic::ppc_qpx_qvstfsa:
11269   case Intrinsic::ppc_qpx_qvstfcda:
11270   case Intrinsic::ppc_qpx_qvstfcsa:
11271   case Intrinsic::ppc_qpx_qvstfiwa: {
11272     EVT VT;
11273     switch (Intrinsic) {
11274     case Intrinsic::ppc_qpx_qvstfda:
11275       VT = MVT::v4f64;
11276       break;
11277     case Intrinsic::ppc_qpx_qvstfsa:
11278       VT = MVT::v4f32;
11279       break;
11280     case Intrinsic::ppc_qpx_qvstfcda:
11281       VT = MVT::v2f64;
11282       break;
11283     case Intrinsic::ppc_qpx_qvstfcsa:
11284       VT = MVT::v2f32;
11285       break;
11286     default:
11287       VT = MVT::v4i32;
11288       break;
11289     }
11290 
11291     Info.opc = ISD::INTRINSIC_VOID;
11292     Info.memVT = VT;
11293     Info.ptrVal = I.getArgOperand(1);
11294     Info.offset = 0;
11295     Info.size = VT.getStoreSize();
11296     Info.align = 1;
11297     Info.vol = false;
11298     Info.readMem = false;
11299     Info.writeMem = true;
11300     return true;
11301   }
11302   default:
11303     break;
11304   }
11305 
11306   return false;
11307 }
11308 
11309 /// getOptimalMemOpType - Returns the target specific optimal type for load
11310 /// and store operations as a result of memset, memcpy, and memmove
11311 /// lowering. If DstAlign is zero that means it's safe to destination
11312 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11313 /// means there isn't a need to check it against alignment requirement,
11314 /// probably because the source does not need to be loaded. If 'IsMemset' is
11315 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11316 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11317 /// source is constant so it does not need to be loaded.
11318 /// It returns EVT::Other if the type should be determined using generic
11319 /// target-independent logic.
11320 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11321                                            unsigned DstAlign, unsigned SrcAlign,
11322                                            bool IsMemset, bool ZeroMemset,
11323                                            bool MemcpyStrSrc,
11324                                            MachineFunction &MF) const {
11325   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11326     const Function *F = MF.getFunction();
11327     // When expanding a memset, require at least two QPX instructions to cover
11328     // the cost of loading the value to be stored from the constant pool.
11329     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11330        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11331         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11332       return MVT::v4f64;
11333     }
11334 
11335     // We should use Altivec/VSX loads and stores when available. For unaligned
11336     // addresses, unaligned VSX loads are only fast starting with the P8.
11337     if (Subtarget.hasAltivec() && Size >= 16 &&
11338         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11339          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11340       return MVT::v4i32;
11341   }
11342 
11343   if (Subtarget.isPPC64()) {
11344     return MVT::i64;
11345   }
11346 
11347   return MVT::i32;
11348 }
11349 
11350 /// \brief Returns true if it is beneficial to convert a load of a constant
11351 /// to just the constant itself.
11352 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11353                                                           Type *Ty) const {
11354   assert(Ty->isIntegerTy());
11355 
11356   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11357   if (BitSize == 0 || BitSize > 64)
11358     return false;
11359   return true;
11360 }
11361 
11362 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11363   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11364     return false;
11365   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11366   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11367   return NumBits1 == 64 && NumBits2 == 32;
11368 }
11369 
11370 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11371   if (!VT1.isInteger() || !VT2.isInteger())
11372     return false;
11373   unsigned NumBits1 = VT1.getSizeInBits();
11374   unsigned NumBits2 = VT2.getSizeInBits();
11375   return NumBits1 == 64 && NumBits2 == 32;
11376 }
11377 
11378 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11379   // Generally speaking, zexts are not free, but they are free when they can be
11380   // folded with other operations.
11381   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11382     EVT MemVT = LD->getMemoryVT();
11383     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11384          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11385         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11386          LD->getExtensionType() == ISD::ZEXTLOAD))
11387       return true;
11388   }
11389 
11390   // FIXME: Add other cases...
11391   //  - 32-bit shifts with a zext to i64
11392   //  - zext after ctlz, bswap, etc.
11393   //  - zext after and by a constant mask
11394 
11395   return TargetLowering::isZExtFree(Val, VT2);
11396 }
11397 
11398 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11399   assert(VT.isFloatingPoint());
11400   return true;
11401 }
11402 
11403 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11404   return isInt<16>(Imm) || isUInt<16>(Imm);
11405 }
11406 
11407 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11408   return isInt<16>(Imm) || isUInt<16>(Imm);
11409 }
11410 
11411 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11412                                                        unsigned,
11413                                                        unsigned,
11414                                                        bool *Fast) const {
11415   if (DisablePPCUnaligned)
11416     return false;
11417 
11418   // PowerPC supports unaligned memory access for simple non-vector types.
11419   // Although accessing unaligned addresses is not as efficient as accessing
11420   // aligned addresses, it is generally more efficient than manual expansion,
11421   // and generally only traps for software emulation when crossing page
11422   // boundaries.
11423 
11424   if (!VT.isSimple())
11425     return false;
11426 
11427   if (VT.getSimpleVT().isVector()) {
11428     if (Subtarget.hasVSX()) {
11429       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11430           VT != MVT::v4f32 && VT != MVT::v4i32)
11431         return false;
11432     } else {
11433       return false;
11434     }
11435   }
11436 
11437   if (VT == MVT::ppcf128)
11438     return false;
11439 
11440   if (Fast)
11441     *Fast = true;
11442 
11443   return true;
11444 }
11445 
11446 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11447   VT = VT.getScalarType();
11448 
11449   if (!VT.isSimple())
11450     return false;
11451 
11452   switch (VT.getSimpleVT().SimpleTy) {
11453   case MVT::f32:
11454   case MVT::f64:
11455     return true;
11456   default:
11457     break;
11458   }
11459 
11460   return false;
11461 }
11462 
11463 const MCPhysReg *
11464 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11465   // LR is a callee-save register, but we must treat it as clobbered by any call
11466   // site. Hence we include LR in the scratch registers, which are in turn added
11467   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11468   // to CTR, which is used by any indirect call.
11469   static const MCPhysReg ScratchRegs[] = {
11470     PPC::X12, PPC::LR8, PPC::CTR8, 0
11471   };
11472 
11473   return ScratchRegs;
11474 }
11475 
11476 bool
11477 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11478                      EVT VT , unsigned DefinedValues) const {
11479   if (VT == MVT::v2i64)
11480     return false;
11481 
11482   if (Subtarget.hasQPX()) {
11483     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11484       return true;
11485   }
11486 
11487   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11488 }
11489 
11490 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11491   if (DisableILPPref || Subtarget.enableMachineScheduler())
11492     return TargetLowering::getSchedulingPreference(N);
11493 
11494   return Sched::ILP;
11495 }
11496 
11497 // Create a fast isel object.
11498 FastISel *
11499 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11500                                   const TargetLibraryInfo *LibInfo) const {
11501   return PPC::createFastISel(FuncInfo, LibInfo);
11502 }
11503