1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD, VT, Legal); 407 setOperationAction(ISD::SUB, VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::SELECT_CC, VT, Promote); 435 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 436 setOperationAction(ISD::STORE, VT, Promote); 437 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 438 439 // No other operations are legal. 440 setOperationAction(ISD::MUL , VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UDIV, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::FDIV, VT, Expand); 446 setOperationAction(ISD::FREM, VT, Expand); 447 setOperationAction(ISD::FNEG, VT, Expand); 448 setOperationAction(ISD::FSQRT, VT, Expand); 449 setOperationAction(ISD::FLOG, VT, Expand); 450 setOperationAction(ISD::FLOG10, VT, Expand); 451 setOperationAction(ISD::FLOG2, VT, Expand); 452 setOperationAction(ISD::FEXP, VT, Expand); 453 setOperationAction(ISD::FEXP2, VT, Expand); 454 setOperationAction(ISD::FSIN, VT, Expand); 455 setOperationAction(ISD::FCOS, VT, Expand); 456 setOperationAction(ISD::FABS, VT, Expand); 457 setOperationAction(ISD::FPOWI, VT, Expand); 458 setOperationAction(ISD::FFLOOR, VT, Expand); 459 setOperationAction(ISD::FCEIL, VT, Expand); 460 setOperationAction(ISD::FTRUNC, VT, Expand); 461 setOperationAction(ISD::FRINT, VT, Expand); 462 setOperationAction(ISD::FNEARBYINT, VT, Expand); 463 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 464 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 465 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 469 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::UDIVREM, VT, Expand); 471 setOperationAction(ISD::SDIVREM, VT, Expand); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 473 setOperationAction(ISD::FPOW, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 480 481 for (MVT InnerVT : MVT::vector_valuetypes()) { 482 setTruncStoreAction(VT, InnerVT, Expand); 483 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 484 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 485 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 486 } 487 } 488 489 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 490 // with merges, splats, etc. 491 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 492 493 setOperationAction(ISD::AND , MVT::v4i32, Legal); 494 setOperationAction(ISD::OR , MVT::v4i32, Legal); 495 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 496 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 497 setOperationAction(ISD::SELECT, MVT::v4i32, 498 Subtarget.useCRBits() ? Legal : Expand); 499 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 500 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 501 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 502 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 503 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 504 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 505 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 506 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 507 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 508 509 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 511 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 512 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 513 514 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 515 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 516 517 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 518 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 519 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 520 } 521 522 if (Subtarget.hasP8Altivec()) 523 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 524 else 525 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 526 527 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 528 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 529 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 531 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 532 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 536 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 537 538 // Altivec does not contain unordered floating-point compare instructions 539 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 542 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 543 544 if (Subtarget.hasVSX()) { 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 546 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 547 if (Subtarget.hasP8Vector()) { 548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 549 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 550 } 551 if (Subtarget.hasDirectMove()) { 552 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 553 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 554 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 555 // FIXME: this is causing bootstrap failures, disable temporarily 556 //setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 557 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 558 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 560 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 561 } 562 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 563 564 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 565 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 566 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 567 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 568 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 569 570 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 571 572 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 573 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 574 575 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 576 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 579 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 580 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 581 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 582 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 583 584 // Share the Altivec comparison restrictions. 585 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 586 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 587 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 588 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 589 590 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 591 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 592 593 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 594 595 if (Subtarget.hasP8Vector()) 596 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 597 598 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 599 600 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 601 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 602 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 603 604 if (Subtarget.hasP8Altivec()) { 605 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 606 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 607 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 608 609 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 610 } 611 else { 612 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 613 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 614 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 615 616 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 617 618 // VSX v2i64 only supports non-arithmetic operations. 619 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 620 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 621 } 622 623 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 624 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 625 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 626 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 627 628 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 629 630 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 631 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 632 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 633 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 634 635 // Vector operation legalization checks the result type of 636 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 637 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 638 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 639 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 640 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 641 642 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 643 } 644 645 if (Subtarget.hasP8Altivec()) { 646 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 647 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 648 } 649 } 650 651 if (Subtarget.hasQPX()) { 652 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 653 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 654 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 655 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 656 657 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 658 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 659 660 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 661 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 662 663 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 664 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 665 666 if (!Subtarget.useCRBits()) 667 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 668 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 669 670 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 671 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 672 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 673 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 674 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 675 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 676 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 677 678 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 679 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 680 681 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 682 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 683 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 684 685 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 686 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 687 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 688 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 689 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 690 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 691 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 692 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 693 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 694 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 695 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 696 697 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 698 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 699 700 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 701 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 702 703 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 704 705 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 706 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 707 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 708 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 709 710 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 711 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 712 713 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 714 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 715 716 if (!Subtarget.useCRBits()) 717 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 718 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 719 720 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 721 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 722 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 723 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 724 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 725 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 726 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 727 728 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 729 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 730 731 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 732 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 733 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 734 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 735 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 736 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 737 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 738 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 739 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 740 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 741 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 742 743 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 744 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 745 746 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 747 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 748 749 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 750 751 setOperationAction(ISD::AND , MVT::v4i1, Legal); 752 setOperationAction(ISD::OR , MVT::v4i1, Legal); 753 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 754 755 if (!Subtarget.useCRBits()) 756 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 757 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 758 759 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 760 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 761 762 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 763 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 764 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 765 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 766 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 767 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 768 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 769 770 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 771 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 772 773 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 774 775 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 776 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 777 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 778 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 779 780 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 781 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 782 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 783 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 784 785 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 786 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 787 788 // These need to set FE_INEXACT, and so cannot be vectorized here. 789 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 790 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 791 792 if (TM.Options.UnsafeFPMath) { 793 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 794 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 795 796 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 797 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 798 } else { 799 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 800 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 801 802 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 803 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 804 } 805 } 806 807 if (Subtarget.has64BitSupport()) 808 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 809 810 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 811 812 if (!isPPC64) { 813 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 814 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 815 } 816 817 setBooleanContents(ZeroOrOneBooleanContent); 818 819 if (Subtarget.hasAltivec()) { 820 // Altivec instructions set fields to all zeros or all ones. 821 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 822 } 823 824 if (!isPPC64) { 825 // These libcalls are not available in 32-bit. 826 setLibcallName(RTLIB::SHL_I128, nullptr); 827 setLibcallName(RTLIB::SRL_I128, nullptr); 828 setLibcallName(RTLIB::SRA_I128, nullptr); 829 } 830 831 if (isPPC64) { 832 setStackPointerRegisterToSaveRestore(PPC::X1); 833 setExceptionPointerRegister(PPC::X3); 834 setExceptionSelectorRegister(PPC::X4); 835 } else { 836 setStackPointerRegisterToSaveRestore(PPC::R1); 837 setExceptionPointerRegister(PPC::R3); 838 setExceptionSelectorRegister(PPC::R4); 839 } 840 841 // We have target-specific dag combine patterns for the following nodes: 842 setTargetDAGCombine(ISD::SINT_TO_FP); 843 if (Subtarget.hasFPCVT()) 844 setTargetDAGCombine(ISD::UINT_TO_FP); 845 setTargetDAGCombine(ISD::LOAD); 846 setTargetDAGCombine(ISD::STORE); 847 setTargetDAGCombine(ISD::BR_CC); 848 if (Subtarget.useCRBits()) 849 setTargetDAGCombine(ISD::BRCOND); 850 setTargetDAGCombine(ISD::BSWAP); 851 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 852 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 853 setTargetDAGCombine(ISD::INTRINSIC_VOID); 854 855 setTargetDAGCombine(ISD::SIGN_EXTEND); 856 setTargetDAGCombine(ISD::ZERO_EXTEND); 857 setTargetDAGCombine(ISD::ANY_EXTEND); 858 859 if (Subtarget.useCRBits()) { 860 setTargetDAGCombine(ISD::TRUNCATE); 861 setTargetDAGCombine(ISD::SETCC); 862 setTargetDAGCombine(ISD::SELECT_CC); 863 } 864 865 // Use reciprocal estimates. 866 if (TM.Options.UnsafeFPMath) { 867 setTargetDAGCombine(ISD::FDIV); 868 setTargetDAGCombine(ISD::FSQRT); 869 } 870 871 // Darwin long double math library functions have $LDBL128 appended. 872 if (Subtarget.isDarwin()) { 873 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 874 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 875 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 876 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 877 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 878 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 879 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 880 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 881 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 882 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 883 } 884 885 // With 32 condition bits, we don't need to sink (and duplicate) compares 886 // aggressively in CodeGenPrep. 887 if (Subtarget.useCRBits()) { 888 setHasMultipleConditionRegisters(); 889 setJumpIsExpensive(); 890 } 891 892 setMinFunctionAlignment(2); 893 if (Subtarget.isDarwin()) 894 setPrefFunctionAlignment(4); 895 896 switch (Subtarget.getDarwinDirective()) { 897 default: break; 898 case PPC::DIR_970: 899 case PPC::DIR_A2: 900 case PPC::DIR_E500mc: 901 case PPC::DIR_E5500: 902 case PPC::DIR_PWR4: 903 case PPC::DIR_PWR5: 904 case PPC::DIR_PWR5X: 905 case PPC::DIR_PWR6: 906 case PPC::DIR_PWR6X: 907 case PPC::DIR_PWR7: 908 case PPC::DIR_PWR8: 909 setPrefFunctionAlignment(4); 910 setPrefLoopAlignment(4); 911 break; 912 } 913 914 setInsertFencesForAtomic(true); 915 916 if (Subtarget.enableMachineScheduler()) 917 setSchedulingPreference(Sched::Source); 918 else 919 setSchedulingPreference(Sched::Hybrid); 920 921 computeRegisterProperties(STI.getRegisterInfo()); 922 923 // The Freescale cores do better with aggressive inlining of memcpy and 924 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 925 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 926 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 927 MaxStoresPerMemset = 32; 928 MaxStoresPerMemsetOptSize = 16; 929 MaxStoresPerMemcpy = 32; 930 MaxStoresPerMemcpyOptSize = 8; 931 MaxStoresPerMemmove = 32; 932 MaxStoresPerMemmoveOptSize = 8; 933 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 934 // The A2 also benefits from (very) aggressive inlining of memcpy and 935 // friends. The overhead of a the function call, even when warm, can be 936 // over one hundred cycles. 937 MaxStoresPerMemset = 128; 938 MaxStoresPerMemcpy = 128; 939 MaxStoresPerMemmove = 128; 940 } 941 } 942 943 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 944 /// the desired ByVal argument alignment. 945 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 946 unsigned MaxMaxAlign) { 947 if (MaxAlign == MaxMaxAlign) 948 return; 949 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 950 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 951 MaxAlign = 32; 952 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 953 MaxAlign = 16; 954 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 955 unsigned EltAlign = 0; 956 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 957 if (EltAlign > MaxAlign) 958 MaxAlign = EltAlign; 959 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 960 for (auto *EltTy : STy->elements()) { 961 unsigned EltAlign = 0; 962 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 963 if (EltAlign > MaxAlign) 964 MaxAlign = EltAlign; 965 if (MaxAlign == MaxMaxAlign) 966 break; 967 } 968 } 969 } 970 971 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 972 /// function arguments in the caller parameter area. 973 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 974 const DataLayout &DL) const { 975 // Darwin passes everything on 4 byte boundary. 976 if (Subtarget.isDarwin()) 977 return 4; 978 979 // 16byte and wider vectors are passed on 16byte boundary. 980 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 981 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 982 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 983 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 984 return Align; 985 } 986 987 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 988 switch ((PPCISD::NodeType)Opcode) { 989 case PPCISD::FIRST_NUMBER: break; 990 case PPCISD::FSEL: return "PPCISD::FSEL"; 991 case PPCISD::FCFID: return "PPCISD::FCFID"; 992 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 993 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 994 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 995 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 996 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 997 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 998 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 999 case PPCISD::FRE: return "PPCISD::FRE"; 1000 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1001 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1002 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1003 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1004 case PPCISD::VPERM: return "PPCISD::VPERM"; 1005 case PPCISD::CMPB: return "PPCISD::CMPB"; 1006 case PPCISD::Hi: return "PPCISD::Hi"; 1007 case PPCISD::Lo: return "PPCISD::Lo"; 1008 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1009 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1010 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1011 case PPCISD::SRL: return "PPCISD::SRL"; 1012 case PPCISD::SRA: return "PPCISD::SRA"; 1013 case PPCISD::SHL: return "PPCISD::SHL"; 1014 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1015 case PPCISD::CALL: return "PPCISD::CALL"; 1016 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1017 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1018 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1019 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1020 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1021 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1022 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1023 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1024 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1025 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1026 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1027 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1028 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1029 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1030 case PPCISD::VCMP: return "PPCISD::VCMP"; 1031 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1032 case PPCISD::LBRX: return "PPCISD::LBRX"; 1033 case PPCISD::STBRX: return "PPCISD::STBRX"; 1034 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1035 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1036 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1037 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1038 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1039 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1040 case PPCISD::BDZ: return "PPCISD::BDZ"; 1041 case PPCISD::MFFS: return "PPCISD::MFFS"; 1042 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1043 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1044 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1045 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1046 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1047 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1048 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1049 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1050 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1051 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1052 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1053 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1054 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1055 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1056 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1057 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1058 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1059 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1060 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1061 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1062 case PPCISD::SC: return "PPCISD::SC"; 1063 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1064 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1065 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1066 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1067 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1068 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1069 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1070 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1071 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1072 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1073 } 1074 return nullptr; 1075 } 1076 1077 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1078 EVT VT) const { 1079 if (!VT.isVector()) 1080 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1081 1082 if (Subtarget.hasQPX()) 1083 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1084 1085 return VT.changeVectorElementTypeToInteger(); 1086 } 1087 1088 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1089 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1090 return true; 1091 } 1092 1093 //===----------------------------------------------------------------------===// 1094 // Node matching predicates, for use by the tblgen matching code. 1095 //===----------------------------------------------------------------------===// 1096 1097 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1098 static bool isFloatingPointZero(SDValue Op) { 1099 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1100 return CFP->getValueAPF().isZero(); 1101 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1102 // Maybe this has already been legalized into the constant pool? 1103 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1104 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1105 return CFP->getValueAPF().isZero(); 1106 } 1107 return false; 1108 } 1109 1110 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1111 /// true if Op is undef or if it matches the specified value. 1112 static bool isConstantOrUndef(int Op, int Val) { 1113 return Op < 0 || Op == Val; 1114 } 1115 1116 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1117 /// VPKUHUM instruction. 1118 /// The ShuffleKind distinguishes between big-endian operations with 1119 /// two different inputs (0), either-endian operations with two identical 1120 /// inputs (1), and little-endian operations with two different inputs (2). 1121 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1122 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1123 SelectionDAG &DAG) { 1124 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1125 if (ShuffleKind == 0) { 1126 if (IsLE) 1127 return false; 1128 for (unsigned i = 0; i != 16; ++i) 1129 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1130 return false; 1131 } else if (ShuffleKind == 2) { 1132 if (!IsLE) 1133 return false; 1134 for (unsigned i = 0; i != 16; ++i) 1135 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1136 return false; 1137 } else if (ShuffleKind == 1) { 1138 unsigned j = IsLE ? 0 : 1; 1139 for (unsigned i = 0; i != 8; ++i) 1140 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1141 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1142 return false; 1143 } 1144 return true; 1145 } 1146 1147 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1148 /// VPKUWUM instruction. 1149 /// The ShuffleKind distinguishes between big-endian operations with 1150 /// two different inputs (0), either-endian operations with two identical 1151 /// inputs (1), and little-endian operations with two different inputs (2). 1152 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1153 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1154 SelectionDAG &DAG) { 1155 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1156 if (ShuffleKind == 0) { 1157 if (IsLE) 1158 return false; 1159 for (unsigned i = 0; i != 16; i += 2) 1160 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1161 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1162 return false; 1163 } else if (ShuffleKind == 2) { 1164 if (!IsLE) 1165 return false; 1166 for (unsigned i = 0; i != 16; i += 2) 1167 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1168 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1169 return false; 1170 } else if (ShuffleKind == 1) { 1171 unsigned j = IsLE ? 0 : 2; 1172 for (unsigned i = 0; i != 8; i += 2) 1173 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1174 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1175 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1176 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1177 return false; 1178 } 1179 return true; 1180 } 1181 1182 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1183 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1184 /// current subtarget. 1185 /// 1186 /// The ShuffleKind distinguishes between big-endian operations with 1187 /// two different inputs (0), either-endian operations with two identical 1188 /// inputs (1), and little-endian operations with two different inputs (2). 1189 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1190 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1191 SelectionDAG &DAG) { 1192 const PPCSubtarget& Subtarget = 1193 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1194 if (!Subtarget.hasP8Vector()) 1195 return false; 1196 1197 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1198 if (ShuffleKind == 0) { 1199 if (IsLE) 1200 return false; 1201 for (unsigned i = 0; i != 16; i += 4) 1202 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1203 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1204 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1205 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1206 return false; 1207 } else if (ShuffleKind == 2) { 1208 if (!IsLE) 1209 return false; 1210 for (unsigned i = 0; i != 16; i += 4) 1211 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1212 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1213 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1214 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1215 return false; 1216 } else if (ShuffleKind == 1) { 1217 unsigned j = IsLE ? 0 : 4; 1218 for (unsigned i = 0; i != 8; i += 4) 1219 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1220 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1221 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1222 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1223 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1224 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1225 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1226 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1227 return false; 1228 } 1229 return true; 1230 } 1231 1232 /// isVMerge - Common function, used to match vmrg* shuffles. 1233 /// 1234 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1235 unsigned LHSStart, unsigned RHSStart) { 1236 if (N->getValueType(0) != MVT::v16i8) 1237 return false; 1238 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1239 "Unsupported merge size!"); 1240 1241 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1242 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1243 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1244 LHSStart+j+i*UnitSize) || 1245 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1246 RHSStart+j+i*UnitSize)) 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1253 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1254 /// The ShuffleKind distinguishes between big-endian merges with two 1255 /// different inputs (0), either-endian merges with two identical inputs (1), 1256 /// and little-endian merges with two different inputs (2). For the latter, 1257 /// the input operands are swapped (see PPCInstrAltivec.td). 1258 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1259 unsigned ShuffleKind, SelectionDAG &DAG) { 1260 if (DAG.getDataLayout().isLittleEndian()) { 1261 if (ShuffleKind == 1) // unary 1262 return isVMerge(N, UnitSize, 0, 0); 1263 else if (ShuffleKind == 2) // swapped 1264 return isVMerge(N, UnitSize, 0, 16); 1265 else 1266 return false; 1267 } else { 1268 if (ShuffleKind == 1) // unary 1269 return isVMerge(N, UnitSize, 8, 8); 1270 else if (ShuffleKind == 0) // normal 1271 return isVMerge(N, UnitSize, 8, 24); 1272 else 1273 return false; 1274 } 1275 } 1276 1277 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1278 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1279 /// The ShuffleKind distinguishes between big-endian merges with two 1280 /// different inputs (0), either-endian merges with two identical inputs (1), 1281 /// and little-endian merges with two different inputs (2). For the latter, 1282 /// the input operands are swapped (see PPCInstrAltivec.td). 1283 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1284 unsigned ShuffleKind, SelectionDAG &DAG) { 1285 if (DAG.getDataLayout().isLittleEndian()) { 1286 if (ShuffleKind == 1) // unary 1287 return isVMerge(N, UnitSize, 8, 8); 1288 else if (ShuffleKind == 2) // swapped 1289 return isVMerge(N, UnitSize, 8, 24); 1290 else 1291 return false; 1292 } else { 1293 if (ShuffleKind == 1) // unary 1294 return isVMerge(N, UnitSize, 0, 0); 1295 else if (ShuffleKind == 0) // normal 1296 return isVMerge(N, UnitSize, 0, 16); 1297 else 1298 return false; 1299 } 1300 } 1301 1302 /** 1303 * \brief Common function used to match vmrgew and vmrgow shuffles 1304 * 1305 * The indexOffset determines whether to look for even or odd words in 1306 * the shuffle mask. This is based on the of the endianness of the target 1307 * machine. 1308 * - Little Endian: 1309 * - Use offset of 0 to check for odd elements 1310 * - Use offset of 4 to check for even elements 1311 * - Big Endian: 1312 * - Use offset of 0 to check for even elements 1313 * - Use offset of 4 to check for odd elements 1314 * A detailed description of the vector element ordering for little endian and 1315 * big endian can be found at 1316 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1317 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1318 * compiler differences mean to you 1319 * 1320 * The mask to the shuffle vector instruction specifies the indices of the 1321 * elements from the two input vectors to place in the result. The elements are 1322 * numbered in array-access order, starting with the first vector. These vectors 1323 * are always of type v16i8, thus each vector will contain 16 elements of size 1324 * 8. More info on the shuffle vector can be found in the 1325 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1326 * Language Reference. 1327 * 1328 * The RHSStartValue indicates whether the same input vectors are used (unary) 1329 * or two different input vectors are used, based on the following: 1330 * - If the instruction uses the same vector for both inputs, the range of the 1331 * indices will be 0 to 15. In this case, the RHSStart value passed should 1332 * be 0. 1333 * - If the instruction has two different vectors then the range of the 1334 * indices will be 0 to 31. In this case, the RHSStart value passed should 1335 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1336 * to 31 specify elements in the second vector). 1337 * 1338 * \param[in] N The shuffle vector SD Node to analyze 1339 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1340 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1341 * vector to the shuffle_vector instruction 1342 * \return true iff this shuffle vector represents an even or odd word merge 1343 */ 1344 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1345 unsigned RHSStartValue) { 1346 if (N->getValueType(0) != MVT::v16i8) 1347 return false; 1348 1349 for (unsigned i = 0; i < 2; ++i) 1350 for (unsigned j = 0; j < 4; ++j) 1351 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1352 i*RHSStartValue+j+IndexOffset) || 1353 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1354 i*RHSStartValue+j+IndexOffset+8)) 1355 return false; 1356 return true; 1357 } 1358 1359 /** 1360 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1361 * vmrgow instructions. 1362 * 1363 * \param[in] N The shuffle vector SD Node to analyze 1364 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1365 * \param[in] ShuffleKind Identify the type of merge: 1366 * - 0 = big-endian merge with two different inputs; 1367 * - 1 = either-endian merge with two identical inputs; 1368 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1369 * little-endian merges). 1370 * \param[in] DAG The current SelectionDAG 1371 * \return true iff this shuffle mask 1372 */ 1373 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1374 unsigned ShuffleKind, SelectionDAG &DAG) { 1375 if (DAG.getDataLayout().isLittleEndian()) { 1376 unsigned indexOffset = CheckEven ? 4 : 0; 1377 if (ShuffleKind == 1) // Unary 1378 return isVMerge(N, indexOffset, 0); 1379 else if (ShuffleKind == 2) // swapped 1380 return isVMerge(N, indexOffset, 16); 1381 else 1382 return false; 1383 } 1384 else { 1385 unsigned indexOffset = CheckEven ? 0 : 4; 1386 if (ShuffleKind == 1) // Unary 1387 return isVMerge(N, indexOffset, 0); 1388 else if (ShuffleKind == 0) // Normal 1389 return isVMerge(N, indexOffset, 16); 1390 else 1391 return false; 1392 } 1393 return false; 1394 } 1395 1396 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1397 /// amount, otherwise return -1. 1398 /// The ShuffleKind distinguishes between big-endian operations with two 1399 /// different inputs (0), either-endian operations with two identical inputs 1400 /// (1), and little-endian operations with two different inputs (2). For the 1401 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1402 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1403 SelectionDAG &DAG) { 1404 if (N->getValueType(0) != MVT::v16i8) 1405 return -1; 1406 1407 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1408 1409 // Find the first non-undef value in the shuffle mask. 1410 unsigned i; 1411 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1412 /*search*/; 1413 1414 if (i == 16) return -1; // all undef. 1415 1416 // Otherwise, check to see if the rest of the elements are consecutively 1417 // numbered from this value. 1418 unsigned ShiftAmt = SVOp->getMaskElt(i); 1419 if (ShiftAmt < i) return -1; 1420 1421 ShiftAmt -= i; 1422 bool isLE = DAG.getDataLayout().isLittleEndian(); 1423 1424 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1425 // Check the rest of the elements to see if they are consecutive. 1426 for (++i; i != 16; ++i) 1427 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1428 return -1; 1429 } else if (ShuffleKind == 1) { 1430 // Check the rest of the elements to see if they are consecutive. 1431 for (++i; i != 16; ++i) 1432 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1433 return -1; 1434 } else 1435 return -1; 1436 1437 if (isLE) 1438 ShiftAmt = 16 - ShiftAmt; 1439 1440 return ShiftAmt; 1441 } 1442 1443 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1444 /// specifies a splat of a single element that is suitable for input to 1445 /// VSPLTB/VSPLTH/VSPLTW. 1446 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1447 assert(N->getValueType(0) == MVT::v16i8 && 1448 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1449 1450 // The consecutive indices need to specify an element, not part of two 1451 // different elements. So abandon ship early if this isn't the case. 1452 if (N->getMaskElt(0) % EltSize != 0) 1453 return false; 1454 1455 // This is a splat operation if each element of the permute is the same, and 1456 // if the value doesn't reference the second vector. 1457 unsigned ElementBase = N->getMaskElt(0); 1458 1459 // FIXME: Handle UNDEF elements too! 1460 if (ElementBase >= 16) 1461 return false; 1462 1463 // Check that the indices are consecutive, in the case of a multi-byte element 1464 // splatted with a v16i8 mask. 1465 for (unsigned i = 1; i != EltSize; ++i) 1466 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1467 return false; 1468 1469 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1470 if (N->getMaskElt(i) < 0) continue; 1471 for (unsigned j = 0; j != EltSize; ++j) 1472 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1473 return false; 1474 } 1475 return true; 1476 } 1477 1478 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1479 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1480 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1481 SelectionDAG &DAG) { 1482 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1483 assert(isSplatShuffleMask(SVOp, EltSize)); 1484 if (DAG.getDataLayout().isLittleEndian()) 1485 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1486 else 1487 return SVOp->getMaskElt(0) / EltSize; 1488 } 1489 1490 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1491 /// by using a vspltis[bhw] instruction of the specified element size, return 1492 /// the constant being splatted. The ByteSize field indicates the number of 1493 /// bytes of each element [124] -> [bhw]. 1494 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1495 SDValue OpVal(nullptr, 0); 1496 1497 // If ByteSize of the splat is bigger than the element size of the 1498 // build_vector, then we have a case where we are checking for a splat where 1499 // multiple elements of the buildvector are folded together into a single 1500 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1501 unsigned EltSize = 16/N->getNumOperands(); 1502 if (EltSize < ByteSize) { 1503 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1504 SDValue UniquedVals[4]; 1505 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1506 1507 // See if all of the elements in the buildvector agree across. 1508 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1509 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1510 // If the element isn't a constant, bail fully out. 1511 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1512 1513 1514 if (!UniquedVals[i&(Multiple-1)].getNode()) 1515 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1516 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1517 return SDValue(); // no match. 1518 } 1519 1520 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1521 // either constant or undef values that are identical for each chunk. See 1522 // if these chunks can form into a larger vspltis*. 1523 1524 // Check to see if all of the leading entries are either 0 or -1. If 1525 // neither, then this won't fit into the immediate field. 1526 bool LeadingZero = true; 1527 bool LeadingOnes = true; 1528 for (unsigned i = 0; i != Multiple-1; ++i) { 1529 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1530 1531 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1532 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1533 } 1534 // Finally, check the least significant entry. 1535 if (LeadingZero) { 1536 if (!UniquedVals[Multiple-1].getNode()) 1537 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1538 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1539 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1540 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1541 } 1542 if (LeadingOnes) { 1543 if (!UniquedVals[Multiple-1].getNode()) 1544 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1545 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1546 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1547 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1548 } 1549 1550 return SDValue(); 1551 } 1552 1553 // Check to see if this buildvec has a single non-undef value in its elements. 1554 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1555 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1556 if (!OpVal.getNode()) 1557 OpVal = N->getOperand(i); 1558 else if (OpVal != N->getOperand(i)) 1559 return SDValue(); 1560 } 1561 1562 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1563 1564 unsigned ValSizeInBytes = EltSize; 1565 uint64_t Value = 0; 1566 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1567 Value = CN->getZExtValue(); 1568 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1569 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1570 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1571 } 1572 1573 // If the splat value is larger than the element value, then we can never do 1574 // this splat. The only case that we could fit the replicated bits into our 1575 // immediate field for would be zero, and we prefer to use vxor for it. 1576 if (ValSizeInBytes < ByteSize) return SDValue(); 1577 1578 // If the element value is larger than the splat value, check if it consists 1579 // of a repeated bit pattern of size ByteSize. 1580 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1581 return SDValue(); 1582 1583 // Properly sign extend the value. 1584 int MaskVal = SignExtend32(Value, ByteSize * 8); 1585 1586 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1587 if (MaskVal == 0) return SDValue(); 1588 1589 // Finally, if this value fits in a 5 bit sext field, return it 1590 if (SignExtend32<5>(MaskVal) == MaskVal) 1591 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1592 return SDValue(); 1593 } 1594 1595 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1596 /// amount, otherwise return -1. 1597 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1598 EVT VT = N->getValueType(0); 1599 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1600 return -1; 1601 1602 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1603 1604 // Find the first non-undef value in the shuffle mask. 1605 unsigned i; 1606 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1607 /*search*/; 1608 1609 if (i == 4) return -1; // all undef. 1610 1611 // Otherwise, check to see if the rest of the elements are consecutively 1612 // numbered from this value. 1613 unsigned ShiftAmt = SVOp->getMaskElt(i); 1614 if (ShiftAmt < i) return -1; 1615 ShiftAmt -= i; 1616 1617 // Check the rest of the elements to see if they are consecutive. 1618 for (++i; i != 4; ++i) 1619 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1620 return -1; 1621 1622 return ShiftAmt; 1623 } 1624 1625 //===----------------------------------------------------------------------===// 1626 // Addressing Mode Selection 1627 //===----------------------------------------------------------------------===// 1628 1629 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1630 /// or 64-bit immediate, and if the value can be accurately represented as a 1631 /// sign extension from a 16-bit value. If so, this returns true and the 1632 /// immediate. 1633 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1634 if (!isa<ConstantSDNode>(N)) 1635 return false; 1636 1637 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1638 if (N->getValueType(0) == MVT::i32) 1639 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1640 else 1641 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1642 } 1643 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1644 return isIntS16Immediate(Op.getNode(), Imm); 1645 } 1646 1647 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1648 /// can be represented as an indexed [r+r] operation. Returns false if it 1649 /// can be more efficiently represented with [r+imm]. 1650 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1651 SDValue &Index, 1652 SelectionDAG &DAG) const { 1653 short imm = 0; 1654 if (N.getOpcode() == ISD::ADD) { 1655 if (isIntS16Immediate(N.getOperand(1), imm)) 1656 return false; // r+i 1657 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1658 return false; // r+i 1659 1660 Base = N.getOperand(0); 1661 Index = N.getOperand(1); 1662 return true; 1663 } else if (N.getOpcode() == ISD::OR) { 1664 if (isIntS16Immediate(N.getOperand(1), imm)) 1665 return false; // r+i can fold it if we can. 1666 1667 // If this is an or of disjoint bitfields, we can codegen this as an add 1668 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1669 // disjoint. 1670 APInt LHSKnownZero, LHSKnownOne; 1671 APInt RHSKnownZero, RHSKnownOne; 1672 DAG.computeKnownBits(N.getOperand(0), 1673 LHSKnownZero, LHSKnownOne); 1674 1675 if (LHSKnownZero.getBoolValue()) { 1676 DAG.computeKnownBits(N.getOperand(1), 1677 RHSKnownZero, RHSKnownOne); 1678 // If all of the bits are known zero on the LHS or RHS, the add won't 1679 // carry. 1680 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1681 Base = N.getOperand(0); 1682 Index = N.getOperand(1); 1683 return true; 1684 } 1685 } 1686 } 1687 1688 return false; 1689 } 1690 1691 // If we happen to be doing an i64 load or store into a stack slot that has 1692 // less than a 4-byte alignment, then the frame-index elimination may need to 1693 // use an indexed load or store instruction (because the offset may not be a 1694 // multiple of 4). The extra register needed to hold the offset comes from the 1695 // register scavenger, and it is possible that the scavenger will need to use 1696 // an emergency spill slot. As a result, we need to make sure that a spill slot 1697 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1698 // stack slot. 1699 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1700 // FIXME: This does not handle the LWA case. 1701 if (VT != MVT::i64) 1702 return; 1703 1704 // NOTE: We'll exclude negative FIs here, which come from argument 1705 // lowering, because there are no known test cases triggering this problem 1706 // using packed structures (or similar). We can remove this exclusion if 1707 // we find such a test case. The reason why this is so test-case driven is 1708 // because this entire 'fixup' is only to prevent crashes (from the 1709 // register scavenger) on not-really-valid inputs. For example, if we have: 1710 // %a = alloca i1 1711 // %b = bitcast i1* %a to i64* 1712 // store i64* a, i64 b 1713 // then the store should really be marked as 'align 1', but is not. If it 1714 // were marked as 'align 1' then the indexed form would have been 1715 // instruction-selected initially, and the problem this 'fixup' is preventing 1716 // won't happen regardless. 1717 if (FrameIdx < 0) 1718 return; 1719 1720 MachineFunction &MF = DAG.getMachineFunction(); 1721 MachineFrameInfo *MFI = MF.getFrameInfo(); 1722 1723 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1724 if (Align >= 4) 1725 return; 1726 1727 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1728 FuncInfo->setHasNonRISpills(); 1729 } 1730 1731 /// Returns true if the address N can be represented by a base register plus 1732 /// a signed 16-bit displacement [r+imm], and if it is not better 1733 /// represented as reg+reg. If Aligned is true, only accept displacements 1734 /// suitable for STD and friends, i.e. multiples of 4. 1735 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1736 SDValue &Base, 1737 SelectionDAG &DAG, 1738 bool Aligned) const { 1739 // FIXME dl should come from parent load or store, not from address 1740 SDLoc dl(N); 1741 // If this can be more profitably realized as r+r, fail. 1742 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1743 return false; 1744 1745 if (N.getOpcode() == ISD::ADD) { 1746 short imm = 0; 1747 if (isIntS16Immediate(N.getOperand(1), imm) && 1748 (!Aligned || (imm & 3) == 0)) { 1749 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1750 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1751 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1752 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1753 } else { 1754 Base = N.getOperand(0); 1755 } 1756 return true; // [r+i] 1757 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1758 // Match LOAD (ADD (X, Lo(G))). 1759 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1760 && "Cannot handle constant offsets yet!"); 1761 Disp = N.getOperand(1).getOperand(0); // The global address. 1762 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1763 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1764 Disp.getOpcode() == ISD::TargetConstantPool || 1765 Disp.getOpcode() == ISD::TargetJumpTable); 1766 Base = N.getOperand(0); 1767 return true; // [&g+r] 1768 } 1769 } else if (N.getOpcode() == ISD::OR) { 1770 short imm = 0; 1771 if (isIntS16Immediate(N.getOperand(1), imm) && 1772 (!Aligned || (imm & 3) == 0)) { 1773 // If this is an or of disjoint bitfields, we can codegen this as an add 1774 // (for better address arithmetic) if the LHS and RHS of the OR are 1775 // provably disjoint. 1776 APInt LHSKnownZero, LHSKnownOne; 1777 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1778 1779 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1780 // If all of the bits are known zero on the LHS or RHS, the add won't 1781 // carry. 1782 if (FrameIndexSDNode *FI = 1783 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1784 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1785 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1786 } else { 1787 Base = N.getOperand(0); 1788 } 1789 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1790 return true; 1791 } 1792 } 1793 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1794 // Loading from a constant address. 1795 1796 // If this address fits entirely in a 16-bit sext immediate field, codegen 1797 // this as "d, 0" 1798 short Imm; 1799 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1800 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1801 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1802 CN->getValueType(0)); 1803 return true; 1804 } 1805 1806 // Handle 32-bit sext immediates with LIS + addr mode. 1807 if ((CN->getValueType(0) == MVT::i32 || 1808 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1809 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1810 int Addr = (int)CN->getZExtValue(); 1811 1812 // Otherwise, break this down into an LIS + disp. 1813 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1814 1815 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1816 MVT::i32); 1817 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1818 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1819 return true; 1820 } 1821 } 1822 1823 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1824 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1825 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1826 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1827 } else 1828 Base = N; 1829 return true; // [r+0] 1830 } 1831 1832 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1833 /// represented as an indexed [r+r] operation. 1834 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1835 SDValue &Index, 1836 SelectionDAG &DAG) const { 1837 // Check to see if we can easily represent this as an [r+r] address. This 1838 // will fail if it thinks that the address is more profitably represented as 1839 // reg+imm, e.g. where imm = 0. 1840 if (SelectAddressRegReg(N, Base, Index, DAG)) 1841 return true; 1842 1843 // If the operand is an addition, always emit this as [r+r], since this is 1844 // better (for code size, and execution, as the memop does the add for free) 1845 // than emitting an explicit add. 1846 if (N.getOpcode() == ISD::ADD) { 1847 Base = N.getOperand(0); 1848 Index = N.getOperand(1); 1849 return true; 1850 } 1851 1852 // Otherwise, do it the hard way, using R0 as the base register. 1853 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1854 N.getValueType()); 1855 Index = N; 1856 return true; 1857 } 1858 1859 /// getPreIndexedAddressParts - returns true by value, base pointer and 1860 /// offset pointer and addressing mode by reference if the node's address 1861 /// can be legally represented as pre-indexed load / store address. 1862 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1863 SDValue &Offset, 1864 ISD::MemIndexedMode &AM, 1865 SelectionDAG &DAG) const { 1866 if (DisablePPCPreinc) return false; 1867 1868 bool isLoad = true; 1869 SDValue Ptr; 1870 EVT VT; 1871 unsigned Alignment; 1872 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1873 Ptr = LD->getBasePtr(); 1874 VT = LD->getMemoryVT(); 1875 Alignment = LD->getAlignment(); 1876 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1877 Ptr = ST->getBasePtr(); 1878 VT = ST->getMemoryVT(); 1879 Alignment = ST->getAlignment(); 1880 isLoad = false; 1881 } else 1882 return false; 1883 1884 // PowerPC doesn't have preinc load/store instructions for vectors (except 1885 // for QPX, which does have preinc r+r forms). 1886 if (VT.isVector()) { 1887 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1888 return false; 1889 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1890 AM = ISD::PRE_INC; 1891 return true; 1892 } 1893 } 1894 1895 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1896 1897 // Common code will reject creating a pre-inc form if the base pointer 1898 // is a frame index, or if N is a store and the base pointer is either 1899 // the same as or a predecessor of the value being stored. Check for 1900 // those situations here, and try with swapped Base/Offset instead. 1901 bool Swap = false; 1902 1903 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1904 Swap = true; 1905 else if (!isLoad) { 1906 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1907 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1908 Swap = true; 1909 } 1910 1911 if (Swap) 1912 std::swap(Base, Offset); 1913 1914 AM = ISD::PRE_INC; 1915 return true; 1916 } 1917 1918 // LDU/STU can only handle immediates that are a multiple of 4. 1919 if (VT != MVT::i64) { 1920 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1921 return false; 1922 } else { 1923 // LDU/STU need an address with at least 4-byte alignment. 1924 if (Alignment < 4) 1925 return false; 1926 1927 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1928 return false; 1929 } 1930 1931 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1932 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1933 // sext i32 to i64 when addr mode is r+i. 1934 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1935 LD->getExtensionType() == ISD::SEXTLOAD && 1936 isa<ConstantSDNode>(Offset)) 1937 return false; 1938 } 1939 1940 AM = ISD::PRE_INC; 1941 return true; 1942 } 1943 1944 //===----------------------------------------------------------------------===// 1945 // LowerOperation implementation 1946 //===----------------------------------------------------------------------===// 1947 1948 /// GetLabelAccessInfo - Return true if we should reference labels using a 1949 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1950 static bool GetLabelAccessInfo(const TargetMachine &TM, 1951 const PPCSubtarget &Subtarget, 1952 unsigned &HiOpFlags, unsigned &LoOpFlags, 1953 const GlobalValue *GV = nullptr) { 1954 HiOpFlags = PPCII::MO_HA; 1955 LoOpFlags = PPCII::MO_LO; 1956 1957 // Don't use the pic base if not in PIC relocation model. 1958 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1959 1960 if (isPIC) { 1961 HiOpFlags |= PPCII::MO_PIC_FLAG; 1962 LoOpFlags |= PPCII::MO_PIC_FLAG; 1963 } 1964 1965 // If this is a reference to a global value that requires a non-lazy-ptr, make 1966 // sure that instruction lowering adds it. 1967 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1968 HiOpFlags |= PPCII::MO_NLP_FLAG; 1969 LoOpFlags |= PPCII::MO_NLP_FLAG; 1970 1971 if (GV->hasHiddenVisibility()) { 1972 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1973 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1974 } 1975 } 1976 1977 return isPIC; 1978 } 1979 1980 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1981 SelectionDAG &DAG) { 1982 SDLoc DL(HiPart); 1983 EVT PtrVT = HiPart.getValueType(); 1984 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1985 1986 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1987 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1988 1989 // With PIC, the first instruction is actually "GR+hi(&G)". 1990 if (isPIC) 1991 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1992 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1993 1994 // Generate non-pic code that has direct accesses to the constant pool. 1995 // The address of the global is just (hi(&g)+lo(&g)). 1996 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1997 } 1998 1999 static void setUsesTOCBasePtr(MachineFunction &MF) { 2000 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2001 FuncInfo->setUsesTOCBasePtr(); 2002 } 2003 2004 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2005 setUsesTOCBasePtr(DAG.getMachineFunction()); 2006 } 2007 2008 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2009 SDValue GA) { 2010 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2011 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2012 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2013 2014 SDValue Ops[] = { GA, Reg }; 2015 return DAG.getMemIntrinsicNode( 2016 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2017 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2018 false, 0); 2019 } 2020 2021 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2022 SelectionDAG &DAG) const { 2023 EVT PtrVT = Op.getValueType(); 2024 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2025 const Constant *C = CP->getConstVal(); 2026 2027 // 64-bit SVR4 ABI code is always position-independent. 2028 // The actual address of the GlobalValue is stored in the TOC. 2029 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2030 setUsesTOCBasePtr(DAG); 2031 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2032 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2033 } 2034 2035 unsigned MOHiFlag, MOLoFlag; 2036 bool isPIC = 2037 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2038 2039 if (isPIC && Subtarget.isSVR4ABI()) { 2040 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2041 PPCII::MO_PIC_FLAG); 2042 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2043 } 2044 2045 SDValue CPIHi = 2046 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2047 SDValue CPILo = 2048 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2049 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2050 } 2051 2052 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2053 EVT PtrVT = Op.getValueType(); 2054 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2055 2056 // 64-bit SVR4 ABI code is always position-independent. 2057 // The actual address of the GlobalValue is stored in the TOC. 2058 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2059 setUsesTOCBasePtr(DAG); 2060 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2061 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2062 } 2063 2064 unsigned MOHiFlag, MOLoFlag; 2065 bool isPIC = 2066 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2067 2068 if (isPIC && Subtarget.isSVR4ABI()) { 2069 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2070 PPCII::MO_PIC_FLAG); 2071 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2072 } 2073 2074 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2075 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2076 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2077 } 2078 2079 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2080 SelectionDAG &DAG) const { 2081 EVT PtrVT = Op.getValueType(); 2082 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2083 const BlockAddress *BA = BASDN->getBlockAddress(); 2084 2085 // 64-bit SVR4 ABI code is always position-independent. 2086 // The actual BlockAddress is stored in the TOC. 2087 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2088 setUsesTOCBasePtr(DAG); 2089 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2090 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2091 } 2092 2093 unsigned MOHiFlag, MOLoFlag; 2094 bool isPIC = 2095 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2096 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2097 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2098 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2099 } 2100 2101 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2102 SelectionDAG &DAG) const { 2103 2104 // FIXME: TLS addresses currently use medium model code sequences, 2105 // which is the most useful form. Eventually support for small and 2106 // large models could be added if users need it, at the cost of 2107 // additional complexity. 2108 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2109 if (DAG.getTarget().Options.EmulatedTLS) 2110 return LowerToTLSEmulatedModel(GA, DAG); 2111 2112 SDLoc dl(GA); 2113 const GlobalValue *GV = GA->getGlobal(); 2114 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2115 bool is64bit = Subtarget.isPPC64(); 2116 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2117 PICLevel::Level picLevel = M->getPICLevel(); 2118 2119 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2120 2121 if (Model == TLSModel::LocalExec) { 2122 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2123 PPCII::MO_TPREL_HA); 2124 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2125 PPCII::MO_TPREL_LO); 2126 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2127 is64bit ? MVT::i64 : MVT::i32); 2128 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2129 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2130 } 2131 2132 if (Model == TLSModel::InitialExec) { 2133 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2134 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2135 PPCII::MO_TLS); 2136 SDValue GOTPtr; 2137 if (is64bit) { 2138 setUsesTOCBasePtr(DAG); 2139 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2140 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2141 PtrVT, GOTReg, TGA); 2142 } else 2143 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2144 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2145 PtrVT, TGA, GOTPtr); 2146 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2147 } 2148 2149 if (Model == TLSModel::GeneralDynamic) { 2150 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2151 SDValue GOTPtr; 2152 if (is64bit) { 2153 setUsesTOCBasePtr(DAG); 2154 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2155 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2156 GOTReg, TGA); 2157 } else { 2158 if (picLevel == PICLevel::Small) 2159 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2160 else 2161 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2162 } 2163 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2164 GOTPtr, TGA, TGA); 2165 } 2166 2167 if (Model == TLSModel::LocalDynamic) { 2168 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2169 SDValue GOTPtr; 2170 if (is64bit) { 2171 setUsesTOCBasePtr(DAG); 2172 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2173 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2174 GOTReg, TGA); 2175 } else { 2176 if (picLevel == PICLevel::Small) 2177 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2178 else 2179 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2180 } 2181 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2182 PtrVT, GOTPtr, TGA, TGA); 2183 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2184 PtrVT, TLSAddr, TGA); 2185 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2186 } 2187 2188 llvm_unreachable("Unknown TLS model!"); 2189 } 2190 2191 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2192 SelectionDAG &DAG) const { 2193 EVT PtrVT = Op.getValueType(); 2194 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2195 SDLoc DL(GSDN); 2196 const GlobalValue *GV = GSDN->getGlobal(); 2197 2198 // 64-bit SVR4 ABI code is always position-independent. 2199 // The actual address of the GlobalValue is stored in the TOC. 2200 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2201 setUsesTOCBasePtr(DAG); 2202 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2203 return getTOCEntry(DAG, DL, true, GA); 2204 } 2205 2206 unsigned MOHiFlag, MOLoFlag; 2207 bool isPIC = 2208 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2209 2210 if (isPIC && Subtarget.isSVR4ABI()) { 2211 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2212 GSDN->getOffset(), 2213 PPCII::MO_PIC_FLAG); 2214 return getTOCEntry(DAG, DL, false, GA); 2215 } 2216 2217 SDValue GAHi = 2218 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2219 SDValue GALo = 2220 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2221 2222 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2223 2224 // If the global reference is actually to a non-lazy-pointer, we have to do an 2225 // extra load to get the address of the global. 2226 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2227 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2228 false, false, false, 0); 2229 return Ptr; 2230 } 2231 2232 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2233 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2234 SDLoc dl(Op); 2235 2236 if (Op.getValueType() == MVT::v2i64) { 2237 // When the operands themselves are v2i64 values, we need to do something 2238 // special because VSX has no underlying comparison operations for these. 2239 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2240 // Equality can be handled by casting to the legal type for Altivec 2241 // comparisons, everything else needs to be expanded. 2242 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2243 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2244 DAG.getSetCC(dl, MVT::v4i32, 2245 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2246 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2247 CC)); 2248 } 2249 2250 return SDValue(); 2251 } 2252 2253 // We handle most of these in the usual way. 2254 return Op; 2255 } 2256 2257 // If we're comparing for equality to zero, expose the fact that this is 2258 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2259 // fold the new nodes. 2260 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2261 if (C->isNullValue() && CC == ISD::SETEQ) { 2262 EVT VT = Op.getOperand(0).getValueType(); 2263 SDValue Zext = Op.getOperand(0); 2264 if (VT.bitsLT(MVT::i32)) { 2265 VT = MVT::i32; 2266 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2267 } 2268 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2269 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2270 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2271 DAG.getConstant(Log2b, dl, MVT::i32)); 2272 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2273 } 2274 // Leave comparisons against 0 and -1 alone for now, since they're usually 2275 // optimized. FIXME: revisit this when we can custom lower all setcc 2276 // optimizations. 2277 if (C->isAllOnesValue() || C->isNullValue()) 2278 return SDValue(); 2279 } 2280 2281 // If we have an integer seteq/setne, turn it into a compare against zero 2282 // by xor'ing the rhs with the lhs, which is faster than setting a 2283 // condition register, reading it back out, and masking the correct bit. The 2284 // normal approach here uses sub to do this instead of xor. Using xor exposes 2285 // the result to other bit-twiddling opportunities. 2286 EVT LHSVT = Op.getOperand(0).getValueType(); 2287 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2288 EVT VT = Op.getValueType(); 2289 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2290 Op.getOperand(1)); 2291 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2292 } 2293 return SDValue(); 2294 } 2295 2296 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2297 const PPCSubtarget &Subtarget) const { 2298 SDNode *Node = Op.getNode(); 2299 EVT VT = Node->getValueType(0); 2300 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2301 SDValue InChain = Node->getOperand(0); 2302 SDValue VAListPtr = Node->getOperand(1); 2303 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2304 SDLoc dl(Node); 2305 2306 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2307 2308 // gpr_index 2309 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2310 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2311 false, false, false, 0); 2312 InChain = GprIndex.getValue(1); 2313 2314 if (VT == MVT::i64) { 2315 // Check if GprIndex is even 2316 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2317 DAG.getConstant(1, dl, MVT::i32)); 2318 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2319 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2320 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2321 DAG.getConstant(1, dl, MVT::i32)); 2322 // Align GprIndex to be even if it isn't 2323 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2324 GprIndex); 2325 } 2326 2327 // fpr index is 1 byte after gpr 2328 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2329 DAG.getConstant(1, dl, MVT::i32)); 2330 2331 // fpr 2332 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2333 FprPtr, MachinePointerInfo(SV), MVT::i8, 2334 false, false, false, 0); 2335 InChain = FprIndex.getValue(1); 2336 2337 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2338 DAG.getConstant(8, dl, MVT::i32)); 2339 2340 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2341 DAG.getConstant(4, dl, MVT::i32)); 2342 2343 // areas 2344 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2345 MachinePointerInfo(), false, false, 2346 false, 0); 2347 InChain = OverflowArea.getValue(1); 2348 2349 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2350 MachinePointerInfo(), false, false, 2351 false, 0); 2352 InChain = RegSaveArea.getValue(1); 2353 2354 // select overflow_area if index > 8 2355 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2356 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2357 2358 // adjustment constant gpr_index * 4/8 2359 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2360 VT.isInteger() ? GprIndex : FprIndex, 2361 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2362 MVT::i32)); 2363 2364 // OurReg = RegSaveArea + RegConstant 2365 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2366 RegConstant); 2367 2368 // Floating types are 32 bytes into RegSaveArea 2369 if (VT.isFloatingPoint()) 2370 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2371 DAG.getConstant(32, dl, MVT::i32)); 2372 2373 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2374 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2375 VT.isInteger() ? GprIndex : FprIndex, 2376 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2377 MVT::i32)); 2378 2379 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2380 VT.isInteger() ? VAListPtr : FprPtr, 2381 MachinePointerInfo(SV), 2382 MVT::i8, false, false, 0); 2383 2384 // determine if we should load from reg_save_area or overflow_area 2385 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2386 2387 // increase overflow_area by 4/8 if gpr/fpr > 8 2388 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2389 DAG.getConstant(VT.isInteger() ? 4 : 8, 2390 dl, MVT::i32)); 2391 2392 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2393 OverflowAreaPlusN); 2394 2395 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2396 OverflowAreaPtr, 2397 MachinePointerInfo(), 2398 MVT::i32, false, false, 0); 2399 2400 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2401 false, false, false, 0); 2402 } 2403 2404 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2405 const PPCSubtarget &Subtarget) const { 2406 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2407 2408 // We have to copy the entire va_list struct: 2409 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2410 return DAG.getMemcpy(Op.getOperand(0), Op, 2411 Op.getOperand(1), Op.getOperand(2), 2412 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2413 false, MachinePointerInfo(), MachinePointerInfo()); 2414 } 2415 2416 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2417 SelectionDAG &DAG) const { 2418 return Op.getOperand(0); 2419 } 2420 2421 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2422 SelectionDAG &DAG) const { 2423 SDValue Chain = Op.getOperand(0); 2424 SDValue Trmp = Op.getOperand(1); // trampoline 2425 SDValue FPtr = Op.getOperand(2); // nested function 2426 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2427 SDLoc dl(Op); 2428 2429 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2430 bool isPPC64 = (PtrVT == MVT::i64); 2431 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2432 2433 TargetLowering::ArgListTy Args; 2434 TargetLowering::ArgListEntry Entry; 2435 2436 Entry.Ty = IntPtrTy; 2437 Entry.Node = Trmp; Args.push_back(Entry); 2438 2439 // TrampSize == (isPPC64 ? 48 : 40); 2440 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2441 isPPC64 ? MVT::i64 : MVT::i32); 2442 Args.push_back(Entry); 2443 2444 Entry.Node = FPtr; Args.push_back(Entry); 2445 Entry.Node = Nest; Args.push_back(Entry); 2446 2447 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2448 TargetLowering::CallLoweringInfo CLI(DAG); 2449 CLI.setDebugLoc(dl).setChain(Chain) 2450 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2451 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2452 std::move(Args), 0); 2453 2454 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2455 return CallResult.second; 2456 } 2457 2458 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2459 const PPCSubtarget &Subtarget) const { 2460 MachineFunction &MF = DAG.getMachineFunction(); 2461 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2462 2463 SDLoc dl(Op); 2464 2465 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2466 // vastart just stores the address of the VarArgsFrameIndex slot into the 2467 // memory location argument. 2468 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2469 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2470 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2471 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2472 MachinePointerInfo(SV), 2473 false, false, 0); 2474 } 2475 2476 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2477 // We suppose the given va_list is already allocated. 2478 // 2479 // typedef struct { 2480 // char gpr; /* index into the array of 8 GPRs 2481 // * stored in the register save area 2482 // * gpr=0 corresponds to r3, 2483 // * gpr=1 to r4, etc. 2484 // */ 2485 // char fpr; /* index into the array of 8 FPRs 2486 // * stored in the register save area 2487 // * fpr=0 corresponds to f1, 2488 // * fpr=1 to f2, etc. 2489 // */ 2490 // char *overflow_arg_area; 2491 // /* location on stack that holds 2492 // * the next overflow argument 2493 // */ 2494 // char *reg_save_area; 2495 // /* where r3:r10 and f1:f8 (if saved) 2496 // * are stored 2497 // */ 2498 // } va_list[1]; 2499 2500 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2501 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2502 2503 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2504 2505 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2506 PtrVT); 2507 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2508 PtrVT); 2509 2510 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2511 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2512 2513 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2514 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2515 2516 uint64_t FPROffset = 1; 2517 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2518 2519 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2520 2521 // Store first byte : number of int regs 2522 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2523 Op.getOperand(1), 2524 MachinePointerInfo(SV), 2525 MVT::i8, false, false, 0); 2526 uint64_t nextOffset = FPROffset; 2527 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2528 ConstFPROffset); 2529 2530 // Store second byte : number of float regs 2531 SDValue secondStore = 2532 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2533 MachinePointerInfo(SV, nextOffset), MVT::i8, 2534 false, false, 0); 2535 nextOffset += StackOffset; 2536 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2537 2538 // Store second word : arguments given on stack 2539 SDValue thirdStore = 2540 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2541 MachinePointerInfo(SV, nextOffset), 2542 false, false, 0); 2543 nextOffset += FrameOffset; 2544 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2545 2546 // Store third word : arguments given in registers 2547 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2548 MachinePointerInfo(SV, nextOffset), 2549 false, false, 0); 2550 2551 } 2552 2553 #include "PPCGenCallingConv.inc" 2554 2555 // Function whose sole purpose is to kill compiler warnings 2556 // stemming from unused functions included from PPCGenCallingConv.inc. 2557 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2558 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2559 } 2560 2561 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2562 CCValAssign::LocInfo &LocInfo, 2563 ISD::ArgFlagsTy &ArgFlags, 2564 CCState &State) { 2565 return true; 2566 } 2567 2568 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2569 MVT &LocVT, 2570 CCValAssign::LocInfo &LocInfo, 2571 ISD::ArgFlagsTy &ArgFlags, 2572 CCState &State) { 2573 static const MCPhysReg ArgRegs[] = { 2574 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2575 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2576 }; 2577 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2578 2579 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2580 2581 // Skip one register if the first unallocated register has an even register 2582 // number and there are still argument registers available which have not been 2583 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2584 // need to skip a register if RegNum is odd. 2585 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2586 State.AllocateReg(ArgRegs[RegNum]); 2587 } 2588 2589 // Always return false here, as this function only makes sure that the first 2590 // unallocated register has an odd register number and does not actually 2591 // allocate a register for the current argument. 2592 return false; 2593 } 2594 2595 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2596 MVT &LocVT, 2597 CCValAssign::LocInfo &LocInfo, 2598 ISD::ArgFlagsTy &ArgFlags, 2599 CCState &State) { 2600 static const MCPhysReg ArgRegs[] = { 2601 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2602 PPC::F8 2603 }; 2604 2605 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2606 2607 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2608 2609 // If there is only one Floating-point register left we need to put both f64 2610 // values of a split ppc_fp128 value on the stack. 2611 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2612 State.AllocateReg(ArgRegs[RegNum]); 2613 } 2614 2615 // Always return false here, as this function only makes sure that the two f64 2616 // values a ppc_fp128 value is split into are both passed in registers or both 2617 // passed on the stack and does not actually allocate a register for the 2618 // current argument. 2619 return false; 2620 } 2621 2622 /// FPR - The set of FP registers that should be allocated for arguments, 2623 /// on Darwin. 2624 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2625 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2626 PPC::F11, PPC::F12, PPC::F13}; 2627 2628 /// QFPR - The set of QPX registers that should be allocated for arguments. 2629 static const MCPhysReg QFPR[] = { 2630 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2631 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2632 2633 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2634 /// the stack. 2635 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2636 unsigned PtrByteSize) { 2637 unsigned ArgSize = ArgVT.getStoreSize(); 2638 if (Flags.isByVal()) 2639 ArgSize = Flags.getByValSize(); 2640 2641 // Round up to multiples of the pointer size, except for array members, 2642 // which are always packed. 2643 if (!Flags.isInConsecutiveRegs()) 2644 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2645 2646 return ArgSize; 2647 } 2648 2649 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2650 /// on the stack. 2651 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2652 ISD::ArgFlagsTy Flags, 2653 unsigned PtrByteSize) { 2654 unsigned Align = PtrByteSize; 2655 2656 // Altivec parameters are padded to a 16 byte boundary. 2657 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2658 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2659 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2660 ArgVT == MVT::v1i128) 2661 Align = 16; 2662 // QPX vector types stored in double-precision are padded to a 32 byte 2663 // boundary. 2664 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2665 Align = 32; 2666 2667 // ByVal parameters are aligned as requested. 2668 if (Flags.isByVal()) { 2669 unsigned BVAlign = Flags.getByValAlign(); 2670 if (BVAlign > PtrByteSize) { 2671 if (BVAlign % PtrByteSize != 0) 2672 llvm_unreachable( 2673 "ByVal alignment is not a multiple of the pointer size"); 2674 2675 Align = BVAlign; 2676 } 2677 } 2678 2679 // Array members are always packed to their original alignment. 2680 if (Flags.isInConsecutiveRegs()) { 2681 // If the array member was split into multiple registers, the first 2682 // needs to be aligned to the size of the full type. (Except for 2683 // ppcf128, which is only aligned as its f64 components.) 2684 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2685 Align = OrigVT.getStoreSize(); 2686 else 2687 Align = ArgVT.getStoreSize(); 2688 } 2689 2690 return Align; 2691 } 2692 2693 /// CalculateStackSlotUsed - Return whether this argument will use its 2694 /// stack slot (instead of being passed in registers). ArgOffset, 2695 /// AvailableFPRs, and AvailableVRs must hold the current argument 2696 /// position, and will be updated to account for this argument. 2697 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2698 ISD::ArgFlagsTy Flags, 2699 unsigned PtrByteSize, 2700 unsigned LinkageSize, 2701 unsigned ParamAreaSize, 2702 unsigned &ArgOffset, 2703 unsigned &AvailableFPRs, 2704 unsigned &AvailableVRs, bool HasQPX) { 2705 bool UseMemory = false; 2706 2707 // Respect alignment of argument on the stack. 2708 unsigned Align = 2709 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2710 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2711 // If there's no space left in the argument save area, we must 2712 // use memory (this check also catches zero-sized arguments). 2713 if (ArgOffset >= LinkageSize + ParamAreaSize) 2714 UseMemory = true; 2715 2716 // Allocate argument on the stack. 2717 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2718 if (Flags.isInConsecutiveRegsLast()) 2719 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2720 // If we overran the argument save area, we must use memory 2721 // (this check catches arguments passed partially in memory) 2722 if (ArgOffset > LinkageSize + ParamAreaSize) 2723 UseMemory = true; 2724 2725 // However, if the argument is actually passed in an FPR or a VR, 2726 // we don't use memory after all. 2727 if (!Flags.isByVal()) { 2728 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2729 // QPX registers overlap with the scalar FP registers. 2730 (HasQPX && (ArgVT == MVT::v4f32 || 2731 ArgVT == MVT::v4f64 || 2732 ArgVT == MVT::v4i1))) 2733 if (AvailableFPRs > 0) { 2734 --AvailableFPRs; 2735 return false; 2736 } 2737 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2738 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2739 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2740 ArgVT == MVT::v1i128) 2741 if (AvailableVRs > 0) { 2742 --AvailableVRs; 2743 return false; 2744 } 2745 } 2746 2747 return UseMemory; 2748 } 2749 2750 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2751 /// ensure minimum alignment required for target. 2752 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2753 unsigned NumBytes) { 2754 unsigned TargetAlign = Lowering->getStackAlignment(); 2755 unsigned AlignMask = TargetAlign - 1; 2756 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2757 return NumBytes; 2758 } 2759 2760 SDValue 2761 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2762 CallingConv::ID CallConv, bool isVarArg, 2763 const SmallVectorImpl<ISD::InputArg> 2764 &Ins, 2765 SDLoc dl, SelectionDAG &DAG, 2766 SmallVectorImpl<SDValue> &InVals) 2767 const { 2768 if (Subtarget.isSVR4ABI()) { 2769 if (Subtarget.isPPC64()) 2770 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2771 dl, DAG, InVals); 2772 else 2773 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2774 dl, DAG, InVals); 2775 } else { 2776 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2777 dl, DAG, InVals); 2778 } 2779 } 2780 2781 SDValue 2782 PPCTargetLowering::LowerFormalArguments_32SVR4( 2783 SDValue Chain, 2784 CallingConv::ID CallConv, bool isVarArg, 2785 const SmallVectorImpl<ISD::InputArg> 2786 &Ins, 2787 SDLoc dl, SelectionDAG &DAG, 2788 SmallVectorImpl<SDValue> &InVals) const { 2789 2790 // 32-bit SVR4 ABI Stack Frame Layout: 2791 // +-----------------------------------+ 2792 // +--> | Back chain | 2793 // | +-----------------------------------+ 2794 // | | Floating-point register save area | 2795 // | +-----------------------------------+ 2796 // | | General register save area | 2797 // | +-----------------------------------+ 2798 // | | CR save word | 2799 // | +-----------------------------------+ 2800 // | | VRSAVE save word | 2801 // | +-----------------------------------+ 2802 // | | Alignment padding | 2803 // | +-----------------------------------+ 2804 // | | Vector register save area | 2805 // | +-----------------------------------+ 2806 // | | Local variable space | 2807 // | +-----------------------------------+ 2808 // | | Parameter list area | 2809 // | +-----------------------------------+ 2810 // | | LR save word | 2811 // | +-----------------------------------+ 2812 // SP--> +--- | Back chain | 2813 // +-----------------------------------+ 2814 // 2815 // Specifications: 2816 // System V Application Binary Interface PowerPC Processor Supplement 2817 // AltiVec Technology Programming Interface Manual 2818 2819 MachineFunction &MF = DAG.getMachineFunction(); 2820 MachineFrameInfo *MFI = MF.getFrameInfo(); 2821 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2822 2823 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2824 // Potential tail calls could cause overwriting of argument stack slots. 2825 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2826 (CallConv == CallingConv::Fast)); 2827 unsigned PtrByteSize = 4; 2828 2829 // Assign locations to all of the incoming arguments. 2830 SmallVector<CCValAssign, 16> ArgLocs; 2831 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2832 *DAG.getContext()); 2833 2834 // Reserve space for the linkage area on the stack. 2835 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2836 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2837 2838 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2839 2840 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2841 CCValAssign &VA = ArgLocs[i]; 2842 2843 // Arguments stored in registers. 2844 if (VA.isRegLoc()) { 2845 const TargetRegisterClass *RC; 2846 EVT ValVT = VA.getValVT(); 2847 2848 switch (ValVT.getSimpleVT().SimpleTy) { 2849 default: 2850 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2851 case MVT::i1: 2852 case MVT::i32: 2853 RC = &PPC::GPRCRegClass; 2854 break; 2855 case MVT::f32: 2856 if (Subtarget.hasP8Vector()) 2857 RC = &PPC::VSSRCRegClass; 2858 else 2859 RC = &PPC::F4RCRegClass; 2860 break; 2861 case MVT::f64: 2862 if (Subtarget.hasVSX()) 2863 RC = &PPC::VSFRCRegClass; 2864 else 2865 RC = &PPC::F8RCRegClass; 2866 break; 2867 case MVT::v16i8: 2868 case MVT::v8i16: 2869 case MVT::v4i32: 2870 RC = &PPC::VRRCRegClass; 2871 break; 2872 case MVT::v4f32: 2873 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2874 break; 2875 case MVT::v2f64: 2876 case MVT::v2i64: 2877 RC = &PPC::VSHRCRegClass; 2878 break; 2879 case MVT::v4f64: 2880 RC = &PPC::QFRCRegClass; 2881 break; 2882 case MVT::v4i1: 2883 RC = &PPC::QBRCRegClass; 2884 break; 2885 } 2886 2887 // Transform the arguments stored in physical registers into virtual ones. 2888 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2889 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2890 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2891 2892 if (ValVT == MVT::i1) 2893 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2894 2895 InVals.push_back(ArgValue); 2896 } else { 2897 // Argument stored in memory. 2898 assert(VA.isMemLoc()); 2899 2900 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2901 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2902 isImmutable); 2903 2904 // Create load nodes to retrieve arguments from the stack. 2905 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2906 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2907 MachinePointerInfo(), 2908 false, false, false, 0)); 2909 } 2910 } 2911 2912 // Assign locations to all of the incoming aggregate by value arguments. 2913 // Aggregates passed by value are stored in the local variable space of the 2914 // caller's stack frame, right above the parameter list area. 2915 SmallVector<CCValAssign, 16> ByValArgLocs; 2916 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2917 ByValArgLocs, *DAG.getContext()); 2918 2919 // Reserve stack space for the allocations in CCInfo. 2920 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2921 2922 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2923 2924 // Area that is at least reserved in the caller of this function. 2925 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2926 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2927 2928 // Set the size that is at least reserved in caller of this function. Tail 2929 // call optimized function's reserved stack space needs to be aligned so that 2930 // taking the difference between two stack areas will result in an aligned 2931 // stack. 2932 MinReservedArea = 2933 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2934 FuncInfo->setMinReservedArea(MinReservedArea); 2935 2936 SmallVector<SDValue, 8> MemOps; 2937 2938 // If the function takes variable number of arguments, make a frame index for 2939 // the start of the first vararg value... for expansion of llvm.va_start. 2940 if (isVarArg) { 2941 static const MCPhysReg GPArgRegs[] = { 2942 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2943 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2944 }; 2945 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2946 2947 static const MCPhysReg FPArgRegs[] = { 2948 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2949 PPC::F8 2950 }; 2951 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2952 if (DisablePPCFloatInVariadic) 2953 NumFPArgRegs = 0; 2954 2955 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2956 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2957 2958 // Make room for NumGPArgRegs and NumFPArgRegs. 2959 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2960 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2961 2962 FuncInfo->setVarArgsStackOffset( 2963 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2964 CCInfo.getNextStackOffset(), true)); 2965 2966 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2967 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2968 2969 // The fixed integer arguments of a variadic function are stored to the 2970 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2971 // the result of va_next. 2972 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2973 // Get an existing live-in vreg, or add a new one. 2974 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2975 if (!VReg) 2976 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2977 2978 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2979 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2980 MachinePointerInfo(), false, false, 0); 2981 MemOps.push_back(Store); 2982 // Increment the address by four for the next argument to store 2983 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2984 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2985 } 2986 2987 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2988 // is set. 2989 // The double arguments are stored to the VarArgsFrameIndex 2990 // on the stack. 2991 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2992 // Get an existing live-in vreg, or add a new one. 2993 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2994 if (!VReg) 2995 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2996 2997 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2998 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2999 MachinePointerInfo(), false, false, 0); 3000 MemOps.push_back(Store); 3001 // Increment the address by eight for the next argument to store 3002 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3003 PtrVT); 3004 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3005 } 3006 } 3007 3008 if (!MemOps.empty()) 3009 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3010 3011 return Chain; 3012 } 3013 3014 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3015 // value to MVT::i64 and then truncate to the correct register size. 3016 SDValue 3017 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3018 SelectionDAG &DAG, SDValue ArgVal, 3019 SDLoc dl) const { 3020 if (Flags.isSExt()) 3021 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3022 DAG.getValueType(ObjectVT)); 3023 else if (Flags.isZExt()) 3024 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3025 DAG.getValueType(ObjectVT)); 3026 3027 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3028 } 3029 3030 SDValue 3031 PPCTargetLowering::LowerFormalArguments_64SVR4( 3032 SDValue Chain, 3033 CallingConv::ID CallConv, bool isVarArg, 3034 const SmallVectorImpl<ISD::InputArg> 3035 &Ins, 3036 SDLoc dl, SelectionDAG &DAG, 3037 SmallVectorImpl<SDValue> &InVals) const { 3038 // TODO: add description of PPC stack frame format, or at least some docs. 3039 // 3040 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3041 bool isLittleEndian = Subtarget.isLittleEndian(); 3042 MachineFunction &MF = DAG.getMachineFunction(); 3043 MachineFrameInfo *MFI = MF.getFrameInfo(); 3044 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3045 3046 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3047 "fastcc not supported on varargs functions"); 3048 3049 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3050 // Potential tail calls could cause overwriting of argument stack slots. 3051 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3052 (CallConv == CallingConv::Fast)); 3053 unsigned PtrByteSize = 8; 3054 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3055 3056 static const MCPhysReg GPR[] = { 3057 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3058 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3059 }; 3060 static const MCPhysReg VR[] = { 3061 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3062 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3063 }; 3064 static const MCPhysReg VSRH[] = { 3065 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3066 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3067 }; 3068 3069 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3070 const unsigned Num_FPR_Regs = 13; 3071 const unsigned Num_VR_Regs = array_lengthof(VR); 3072 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3073 3074 // Do a first pass over the arguments to determine whether the ABI 3075 // guarantees that our caller has allocated the parameter save area 3076 // on its stack frame. In the ELFv1 ABI, this is always the case; 3077 // in the ELFv2 ABI, it is true if this is a vararg function or if 3078 // any parameter is located in a stack slot. 3079 3080 bool HasParameterArea = !isELFv2ABI || isVarArg; 3081 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3082 unsigned NumBytes = LinkageSize; 3083 unsigned AvailableFPRs = Num_FPR_Regs; 3084 unsigned AvailableVRs = Num_VR_Regs; 3085 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3086 if (Ins[i].Flags.isNest()) 3087 continue; 3088 3089 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3090 PtrByteSize, LinkageSize, ParamAreaSize, 3091 NumBytes, AvailableFPRs, AvailableVRs, 3092 Subtarget.hasQPX())) 3093 HasParameterArea = true; 3094 } 3095 3096 // Add DAG nodes to load the arguments or copy them out of registers. On 3097 // entry to a function on PPC, the arguments start after the linkage area, 3098 // although the first ones are often in registers. 3099 3100 unsigned ArgOffset = LinkageSize; 3101 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3102 unsigned &QFPR_idx = FPR_idx; 3103 SmallVector<SDValue, 8> MemOps; 3104 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3105 unsigned CurArgIdx = 0; 3106 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3107 SDValue ArgVal; 3108 bool needsLoad = false; 3109 EVT ObjectVT = Ins[ArgNo].VT; 3110 EVT OrigVT = Ins[ArgNo].ArgVT; 3111 unsigned ObjSize = ObjectVT.getStoreSize(); 3112 unsigned ArgSize = ObjSize; 3113 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3114 if (Ins[ArgNo].isOrigArg()) { 3115 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3116 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3117 } 3118 // We re-align the argument offset for each argument, except when using the 3119 // fast calling convention, when we need to make sure we do that only when 3120 // we'll actually use a stack slot. 3121 unsigned CurArgOffset, Align; 3122 auto ComputeArgOffset = [&]() { 3123 /* Respect alignment of argument on the stack. */ 3124 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3125 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3126 CurArgOffset = ArgOffset; 3127 }; 3128 3129 if (CallConv != CallingConv::Fast) { 3130 ComputeArgOffset(); 3131 3132 /* Compute GPR index associated with argument offset. */ 3133 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3134 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3135 } 3136 3137 // FIXME the codegen can be much improved in some cases. 3138 // We do not have to keep everything in memory. 3139 if (Flags.isByVal()) { 3140 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3141 3142 if (CallConv == CallingConv::Fast) 3143 ComputeArgOffset(); 3144 3145 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3146 ObjSize = Flags.getByValSize(); 3147 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3148 // Empty aggregate parameters do not take up registers. Examples: 3149 // struct { } a; 3150 // union { } b; 3151 // int c[0]; 3152 // etc. However, we have to provide a place-holder in InVals, so 3153 // pretend we have an 8-byte item at the current address for that 3154 // purpose. 3155 if (!ObjSize) { 3156 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3157 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3158 InVals.push_back(FIN); 3159 continue; 3160 } 3161 3162 // Create a stack object covering all stack doublewords occupied 3163 // by the argument. If the argument is (fully or partially) on 3164 // the stack, or if the argument is fully in registers but the 3165 // caller has allocated the parameter save anyway, we can refer 3166 // directly to the caller's stack frame. Otherwise, create a 3167 // local copy in our own frame. 3168 int FI; 3169 if (HasParameterArea || 3170 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3171 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3172 else 3173 FI = MFI->CreateStackObject(ArgSize, Align, false); 3174 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3175 3176 // Handle aggregates smaller than 8 bytes. 3177 if (ObjSize < PtrByteSize) { 3178 // The value of the object is its address, which differs from the 3179 // address of the enclosing doubleword on big-endian systems. 3180 SDValue Arg = FIN; 3181 if (!isLittleEndian) { 3182 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3183 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3184 } 3185 InVals.push_back(Arg); 3186 3187 if (GPR_idx != Num_GPR_Regs) { 3188 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3189 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3190 SDValue Store; 3191 3192 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3193 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3194 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3195 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3196 MachinePointerInfo(&*FuncArg), ObjType, 3197 false, false, 0); 3198 } else { 3199 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3200 // store the whole register as-is to the parameter save area 3201 // slot. 3202 Store = 3203 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3204 MachinePointerInfo(&*FuncArg), false, false, 0); 3205 } 3206 3207 MemOps.push_back(Store); 3208 } 3209 // Whether we copied from a register or not, advance the offset 3210 // into the parameter save area by a full doubleword. 3211 ArgOffset += PtrByteSize; 3212 continue; 3213 } 3214 3215 // The value of the object is its address, which is the address of 3216 // its first stack doubleword. 3217 InVals.push_back(FIN); 3218 3219 // Store whatever pieces of the object are in registers to memory. 3220 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3221 if (GPR_idx == Num_GPR_Regs) 3222 break; 3223 3224 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3225 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3226 SDValue Addr = FIN; 3227 if (j) { 3228 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3229 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3230 } 3231 SDValue Store = 3232 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3233 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3234 MemOps.push_back(Store); 3235 ++GPR_idx; 3236 } 3237 ArgOffset += ArgSize; 3238 continue; 3239 } 3240 3241 switch (ObjectVT.getSimpleVT().SimpleTy) { 3242 default: llvm_unreachable("Unhandled argument type!"); 3243 case MVT::i1: 3244 case MVT::i32: 3245 case MVT::i64: 3246 if (Flags.isNest()) { 3247 // The 'nest' parameter, if any, is passed in R11. 3248 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3249 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3250 3251 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3252 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3253 3254 break; 3255 } 3256 3257 // These can be scalar arguments or elements of an integer array type 3258 // passed directly. Clang may use those instead of "byval" aggregate 3259 // types to avoid forcing arguments to memory unnecessarily. 3260 if (GPR_idx != Num_GPR_Regs) { 3261 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3262 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3263 3264 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3265 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3266 // value to MVT::i64 and then truncate to the correct register size. 3267 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3268 } else { 3269 if (CallConv == CallingConv::Fast) 3270 ComputeArgOffset(); 3271 3272 needsLoad = true; 3273 ArgSize = PtrByteSize; 3274 } 3275 if (CallConv != CallingConv::Fast || needsLoad) 3276 ArgOffset += 8; 3277 break; 3278 3279 case MVT::f32: 3280 case MVT::f64: 3281 // These can be scalar arguments or elements of a float array type 3282 // passed directly. The latter are used to implement ELFv2 homogenous 3283 // float aggregates. 3284 if (FPR_idx != Num_FPR_Regs) { 3285 unsigned VReg; 3286 3287 if (ObjectVT == MVT::f32) 3288 VReg = MF.addLiveIn(FPR[FPR_idx], 3289 Subtarget.hasP8Vector() 3290 ? &PPC::VSSRCRegClass 3291 : &PPC::F4RCRegClass); 3292 else 3293 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3294 ? &PPC::VSFRCRegClass 3295 : &PPC::F8RCRegClass); 3296 3297 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3298 ++FPR_idx; 3299 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3300 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3301 // once we support fp <-> gpr moves. 3302 3303 // This can only ever happen in the presence of f32 array types, 3304 // since otherwise we never run out of FPRs before running out 3305 // of GPRs. 3306 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3307 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3308 3309 if (ObjectVT == MVT::f32) { 3310 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3311 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3312 DAG.getConstant(32, dl, MVT::i32)); 3313 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3314 } 3315 3316 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3317 } else { 3318 if (CallConv == CallingConv::Fast) 3319 ComputeArgOffset(); 3320 3321 needsLoad = true; 3322 } 3323 3324 // When passing an array of floats, the array occupies consecutive 3325 // space in the argument area; only round up to the next doubleword 3326 // at the end of the array. Otherwise, each float takes 8 bytes. 3327 if (CallConv != CallingConv::Fast || needsLoad) { 3328 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3329 ArgOffset += ArgSize; 3330 if (Flags.isInConsecutiveRegsLast()) 3331 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3332 } 3333 break; 3334 case MVT::v4f32: 3335 case MVT::v4i32: 3336 case MVT::v8i16: 3337 case MVT::v16i8: 3338 case MVT::v2f64: 3339 case MVT::v2i64: 3340 case MVT::v1i128: 3341 if (!Subtarget.hasQPX()) { 3342 // These can be scalar arguments or elements of a vector array type 3343 // passed directly. The latter are used to implement ELFv2 homogenous 3344 // vector aggregates. 3345 if (VR_idx != Num_VR_Regs) { 3346 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3347 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3348 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3349 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3350 ++VR_idx; 3351 } else { 3352 if (CallConv == CallingConv::Fast) 3353 ComputeArgOffset(); 3354 3355 needsLoad = true; 3356 } 3357 if (CallConv != CallingConv::Fast || needsLoad) 3358 ArgOffset += 16; 3359 break; 3360 } // not QPX 3361 3362 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3363 "Invalid QPX parameter type"); 3364 /* fall through */ 3365 3366 case MVT::v4f64: 3367 case MVT::v4i1: 3368 // QPX vectors are treated like their scalar floating-point subregisters 3369 // (except that they're larger). 3370 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3371 if (QFPR_idx != Num_QFPR_Regs) { 3372 const TargetRegisterClass *RC; 3373 switch (ObjectVT.getSimpleVT().SimpleTy) { 3374 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3375 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3376 default: RC = &PPC::QBRCRegClass; break; 3377 } 3378 3379 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3380 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3381 ++QFPR_idx; 3382 } else { 3383 if (CallConv == CallingConv::Fast) 3384 ComputeArgOffset(); 3385 needsLoad = true; 3386 } 3387 if (CallConv != CallingConv::Fast || needsLoad) 3388 ArgOffset += Sz; 3389 break; 3390 } 3391 3392 // We need to load the argument to a virtual register if we determined 3393 // above that we ran out of physical registers of the appropriate type. 3394 if (needsLoad) { 3395 if (ObjSize < ArgSize && !isLittleEndian) 3396 CurArgOffset += ArgSize - ObjSize; 3397 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3398 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3399 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3400 false, false, false, 0); 3401 } 3402 3403 InVals.push_back(ArgVal); 3404 } 3405 3406 // Area that is at least reserved in the caller of this function. 3407 unsigned MinReservedArea; 3408 if (HasParameterArea) 3409 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3410 else 3411 MinReservedArea = LinkageSize; 3412 3413 // Set the size that is at least reserved in caller of this function. Tail 3414 // call optimized functions' reserved stack space needs to be aligned so that 3415 // taking the difference between two stack areas will result in an aligned 3416 // stack. 3417 MinReservedArea = 3418 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3419 FuncInfo->setMinReservedArea(MinReservedArea); 3420 3421 // If the function takes variable number of arguments, make a frame index for 3422 // the start of the first vararg value... for expansion of llvm.va_start. 3423 if (isVarArg) { 3424 int Depth = ArgOffset; 3425 3426 FuncInfo->setVarArgsFrameIndex( 3427 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3428 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3429 3430 // If this function is vararg, store any remaining integer argument regs 3431 // to their spots on the stack so that they may be loaded by deferencing the 3432 // result of va_next. 3433 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3434 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3435 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3436 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3437 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3438 MachinePointerInfo(), false, false, 0); 3439 MemOps.push_back(Store); 3440 // Increment the address by four for the next argument to store 3441 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3442 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3443 } 3444 } 3445 3446 if (!MemOps.empty()) 3447 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3448 3449 return Chain; 3450 } 3451 3452 SDValue 3453 PPCTargetLowering::LowerFormalArguments_Darwin( 3454 SDValue Chain, 3455 CallingConv::ID CallConv, bool isVarArg, 3456 const SmallVectorImpl<ISD::InputArg> 3457 &Ins, 3458 SDLoc dl, SelectionDAG &DAG, 3459 SmallVectorImpl<SDValue> &InVals) const { 3460 // TODO: add description of PPC stack frame format, or at least some docs. 3461 // 3462 MachineFunction &MF = DAG.getMachineFunction(); 3463 MachineFrameInfo *MFI = MF.getFrameInfo(); 3464 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3465 3466 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3467 bool isPPC64 = PtrVT == MVT::i64; 3468 // Potential tail calls could cause overwriting of argument stack slots. 3469 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3470 (CallConv == CallingConv::Fast)); 3471 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3472 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3473 unsigned ArgOffset = LinkageSize; 3474 // Area that is at least reserved in caller of this function. 3475 unsigned MinReservedArea = ArgOffset; 3476 3477 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3478 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3479 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3480 }; 3481 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3482 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3483 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3484 }; 3485 static const MCPhysReg VR[] = { 3486 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3487 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3488 }; 3489 3490 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3491 const unsigned Num_FPR_Regs = 13; 3492 const unsigned Num_VR_Regs = array_lengthof( VR); 3493 3494 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3495 3496 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3497 3498 // In 32-bit non-varargs functions, the stack space for vectors is after the 3499 // stack space for non-vectors. We do not use this space unless we have 3500 // too many vectors to fit in registers, something that only occurs in 3501 // constructed examples:), but we have to walk the arglist to figure 3502 // that out...for the pathological case, compute VecArgOffset as the 3503 // start of the vector parameter area. Computing VecArgOffset is the 3504 // entire point of the following loop. 3505 unsigned VecArgOffset = ArgOffset; 3506 if (!isVarArg && !isPPC64) { 3507 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3508 ++ArgNo) { 3509 EVT ObjectVT = Ins[ArgNo].VT; 3510 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3511 3512 if (Flags.isByVal()) { 3513 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3514 unsigned ObjSize = Flags.getByValSize(); 3515 unsigned ArgSize = 3516 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3517 VecArgOffset += ArgSize; 3518 continue; 3519 } 3520 3521 switch(ObjectVT.getSimpleVT().SimpleTy) { 3522 default: llvm_unreachable("Unhandled argument type!"); 3523 case MVT::i1: 3524 case MVT::i32: 3525 case MVT::f32: 3526 VecArgOffset += 4; 3527 break; 3528 case MVT::i64: // PPC64 3529 case MVT::f64: 3530 // FIXME: We are guaranteed to be !isPPC64 at this point. 3531 // Does MVT::i64 apply? 3532 VecArgOffset += 8; 3533 break; 3534 case MVT::v4f32: 3535 case MVT::v4i32: 3536 case MVT::v8i16: 3537 case MVT::v16i8: 3538 // Nothing to do, we're only looking at Nonvector args here. 3539 break; 3540 } 3541 } 3542 } 3543 // We've found where the vector parameter area in memory is. Skip the 3544 // first 12 parameters; these don't use that memory. 3545 VecArgOffset = ((VecArgOffset+15)/16)*16; 3546 VecArgOffset += 12*16; 3547 3548 // Add DAG nodes to load the arguments or copy them out of registers. On 3549 // entry to a function on PPC, the arguments start after the linkage area, 3550 // although the first ones are often in registers. 3551 3552 SmallVector<SDValue, 8> MemOps; 3553 unsigned nAltivecParamsAtEnd = 0; 3554 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3555 unsigned CurArgIdx = 0; 3556 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3557 SDValue ArgVal; 3558 bool needsLoad = false; 3559 EVT ObjectVT = Ins[ArgNo].VT; 3560 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3561 unsigned ArgSize = ObjSize; 3562 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3563 if (Ins[ArgNo].isOrigArg()) { 3564 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3565 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3566 } 3567 unsigned CurArgOffset = ArgOffset; 3568 3569 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3570 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3571 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3572 if (isVarArg || isPPC64) { 3573 MinReservedArea = ((MinReservedArea+15)/16)*16; 3574 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3575 Flags, 3576 PtrByteSize); 3577 } else nAltivecParamsAtEnd++; 3578 } else 3579 // Calculate min reserved area. 3580 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3581 Flags, 3582 PtrByteSize); 3583 3584 // FIXME the codegen can be much improved in some cases. 3585 // We do not have to keep everything in memory. 3586 if (Flags.isByVal()) { 3587 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3588 3589 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3590 ObjSize = Flags.getByValSize(); 3591 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3592 // Objects of size 1 and 2 are right justified, everything else is 3593 // left justified. This means the memory address is adjusted forwards. 3594 if (ObjSize==1 || ObjSize==2) { 3595 CurArgOffset = CurArgOffset + (4 - ObjSize); 3596 } 3597 // The value of the object is its address. 3598 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3599 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3600 InVals.push_back(FIN); 3601 if (ObjSize==1 || ObjSize==2) { 3602 if (GPR_idx != Num_GPR_Regs) { 3603 unsigned VReg; 3604 if (isPPC64) 3605 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3606 else 3607 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3608 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3609 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3610 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3611 MachinePointerInfo(&*FuncArg), 3612 ObjType, false, false, 0); 3613 MemOps.push_back(Store); 3614 ++GPR_idx; 3615 } 3616 3617 ArgOffset += PtrByteSize; 3618 3619 continue; 3620 } 3621 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3622 // Store whatever pieces of the object are in registers 3623 // to memory. ArgOffset will be the address of the beginning 3624 // of the object. 3625 if (GPR_idx != Num_GPR_Regs) { 3626 unsigned VReg; 3627 if (isPPC64) 3628 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3629 else 3630 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3631 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3632 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3633 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3634 SDValue Store = 3635 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3636 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3637 MemOps.push_back(Store); 3638 ++GPR_idx; 3639 ArgOffset += PtrByteSize; 3640 } else { 3641 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3642 break; 3643 } 3644 } 3645 continue; 3646 } 3647 3648 switch (ObjectVT.getSimpleVT().SimpleTy) { 3649 default: llvm_unreachable("Unhandled argument type!"); 3650 case MVT::i1: 3651 case MVT::i32: 3652 if (!isPPC64) { 3653 if (GPR_idx != Num_GPR_Regs) { 3654 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3655 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3656 3657 if (ObjectVT == MVT::i1) 3658 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3659 3660 ++GPR_idx; 3661 } else { 3662 needsLoad = true; 3663 ArgSize = PtrByteSize; 3664 } 3665 // All int arguments reserve stack space in the Darwin ABI. 3666 ArgOffset += PtrByteSize; 3667 break; 3668 } 3669 // FALLTHROUGH 3670 case MVT::i64: // PPC64 3671 if (GPR_idx != Num_GPR_Regs) { 3672 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3673 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3674 3675 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3676 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3677 // value to MVT::i64 and then truncate to the correct register size. 3678 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3679 3680 ++GPR_idx; 3681 } else { 3682 needsLoad = true; 3683 ArgSize = PtrByteSize; 3684 } 3685 // All int arguments reserve stack space in the Darwin ABI. 3686 ArgOffset += 8; 3687 break; 3688 3689 case MVT::f32: 3690 case MVT::f64: 3691 // Every 4 bytes of argument space consumes one of the GPRs available for 3692 // argument passing. 3693 if (GPR_idx != Num_GPR_Regs) { 3694 ++GPR_idx; 3695 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3696 ++GPR_idx; 3697 } 3698 if (FPR_idx != Num_FPR_Regs) { 3699 unsigned VReg; 3700 3701 if (ObjectVT == MVT::f32) 3702 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3703 else 3704 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3705 3706 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3707 ++FPR_idx; 3708 } else { 3709 needsLoad = true; 3710 } 3711 3712 // All FP arguments reserve stack space in the Darwin ABI. 3713 ArgOffset += isPPC64 ? 8 : ObjSize; 3714 break; 3715 case MVT::v4f32: 3716 case MVT::v4i32: 3717 case MVT::v8i16: 3718 case MVT::v16i8: 3719 // Note that vector arguments in registers don't reserve stack space, 3720 // except in varargs functions. 3721 if (VR_idx != Num_VR_Regs) { 3722 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3723 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3724 if (isVarArg) { 3725 while ((ArgOffset % 16) != 0) { 3726 ArgOffset += PtrByteSize; 3727 if (GPR_idx != Num_GPR_Regs) 3728 GPR_idx++; 3729 } 3730 ArgOffset += 16; 3731 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3732 } 3733 ++VR_idx; 3734 } else { 3735 if (!isVarArg && !isPPC64) { 3736 // Vectors go after all the nonvectors. 3737 CurArgOffset = VecArgOffset; 3738 VecArgOffset += 16; 3739 } else { 3740 // Vectors are aligned. 3741 ArgOffset = ((ArgOffset+15)/16)*16; 3742 CurArgOffset = ArgOffset; 3743 ArgOffset += 16; 3744 } 3745 needsLoad = true; 3746 } 3747 break; 3748 } 3749 3750 // We need to load the argument to a virtual register if we determined above 3751 // that we ran out of physical registers of the appropriate type. 3752 if (needsLoad) { 3753 int FI = MFI->CreateFixedObject(ObjSize, 3754 CurArgOffset + (ArgSize - ObjSize), 3755 isImmutable); 3756 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3757 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3758 false, false, false, 0); 3759 } 3760 3761 InVals.push_back(ArgVal); 3762 } 3763 3764 // Allow for Altivec parameters at the end, if needed. 3765 if (nAltivecParamsAtEnd) { 3766 MinReservedArea = ((MinReservedArea+15)/16)*16; 3767 MinReservedArea += 16*nAltivecParamsAtEnd; 3768 } 3769 3770 // Area that is at least reserved in the caller of this function. 3771 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3772 3773 // Set the size that is at least reserved in caller of this function. Tail 3774 // call optimized functions' reserved stack space needs to be aligned so that 3775 // taking the difference between two stack areas will result in an aligned 3776 // stack. 3777 MinReservedArea = 3778 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3779 FuncInfo->setMinReservedArea(MinReservedArea); 3780 3781 // If the function takes variable number of arguments, make a frame index for 3782 // the start of the first vararg value... for expansion of llvm.va_start. 3783 if (isVarArg) { 3784 int Depth = ArgOffset; 3785 3786 FuncInfo->setVarArgsFrameIndex( 3787 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3788 Depth, true)); 3789 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3790 3791 // If this function is vararg, store any remaining integer argument regs 3792 // to their spots on the stack so that they may be loaded by deferencing the 3793 // result of va_next. 3794 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3795 unsigned VReg; 3796 3797 if (isPPC64) 3798 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3799 else 3800 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3801 3802 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3803 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3804 MachinePointerInfo(), false, false, 0); 3805 MemOps.push_back(Store); 3806 // Increment the address by four for the next argument to store 3807 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3808 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3809 } 3810 } 3811 3812 if (!MemOps.empty()) 3813 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3814 3815 return Chain; 3816 } 3817 3818 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3819 /// adjusted to accommodate the arguments for the tailcall. 3820 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3821 unsigned ParamSize) { 3822 3823 if (!isTailCall) return 0; 3824 3825 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3826 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3827 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3828 // Remember only if the new adjustement is bigger. 3829 if (SPDiff < FI->getTailCallSPDelta()) 3830 FI->setTailCallSPDelta(SPDiff); 3831 3832 return SPDiff; 3833 } 3834 3835 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3836 /// for tail call optimization. Targets which want to do tail call 3837 /// optimization should implement this function. 3838 bool 3839 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3840 CallingConv::ID CalleeCC, 3841 bool isVarArg, 3842 const SmallVectorImpl<ISD::InputArg> &Ins, 3843 SelectionDAG& DAG) const { 3844 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3845 return false; 3846 3847 // Variable argument functions are not supported. 3848 if (isVarArg) 3849 return false; 3850 3851 MachineFunction &MF = DAG.getMachineFunction(); 3852 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3853 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3854 // Functions containing by val parameters are not supported. 3855 for (unsigned i = 0; i != Ins.size(); i++) { 3856 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3857 if (Flags.isByVal()) return false; 3858 } 3859 3860 // Non-PIC/GOT tail calls are supported. 3861 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3862 return true; 3863 3864 // At the moment we can only do local tail calls (in same module, hidden 3865 // or protected) if we are generating PIC. 3866 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3867 return G->getGlobal()->hasHiddenVisibility() 3868 || G->getGlobal()->hasProtectedVisibility(); 3869 } 3870 3871 return false; 3872 } 3873 3874 /// isCallCompatibleAddress - Return the immediate to use if the specified 3875 /// 32-bit value is representable in the immediate field of a BxA instruction. 3876 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3877 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3878 if (!C) return nullptr; 3879 3880 int Addr = C->getZExtValue(); 3881 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3882 SignExtend32<26>(Addr) != Addr) 3883 return nullptr; // Top 6 bits have to be sext of immediate. 3884 3885 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3886 DAG.getTargetLoweringInfo().getPointerTy( 3887 DAG.getDataLayout())).getNode(); 3888 } 3889 3890 namespace { 3891 3892 struct TailCallArgumentInfo { 3893 SDValue Arg; 3894 SDValue FrameIdxOp; 3895 int FrameIdx; 3896 3897 TailCallArgumentInfo() : FrameIdx(0) {} 3898 }; 3899 } 3900 3901 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3902 static void 3903 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3904 SDValue Chain, 3905 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3906 SmallVectorImpl<SDValue> &MemOpChains, 3907 SDLoc dl) { 3908 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3909 SDValue Arg = TailCallArgs[i].Arg; 3910 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3911 int FI = TailCallArgs[i].FrameIdx; 3912 // Store relative to framepointer. 3913 MemOpChains.push_back(DAG.getStore( 3914 Chain, dl, Arg, FIN, 3915 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3916 false, 0)); 3917 } 3918 } 3919 3920 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3921 /// the appropriate stack slot for the tail call optimized function call. 3922 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3923 MachineFunction &MF, 3924 SDValue Chain, 3925 SDValue OldRetAddr, 3926 SDValue OldFP, 3927 int SPDiff, 3928 bool isPPC64, 3929 bool isDarwinABI, 3930 SDLoc dl) { 3931 if (SPDiff) { 3932 // Calculate the new stack slot for the return address. 3933 int SlotSize = isPPC64 ? 8 : 4; 3934 const PPCFrameLowering *FL = 3935 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3936 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3937 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3938 NewRetAddrLoc, true); 3939 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3940 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3941 Chain = DAG.getStore( 3942 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3943 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3944 false, false, 0); 3945 3946 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3947 // slot as the FP is never overwritten. 3948 if (isDarwinABI) { 3949 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3950 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3951 true); 3952 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3953 Chain = DAG.getStore( 3954 Chain, dl, OldFP, NewFramePtrIdx, 3955 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3956 false, false, 0); 3957 } 3958 } 3959 return Chain; 3960 } 3961 3962 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3963 /// the position of the argument. 3964 static void 3965 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3966 SDValue Arg, int SPDiff, unsigned ArgOffset, 3967 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3968 int Offset = ArgOffset + SPDiff; 3969 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3970 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3971 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3972 SDValue FIN = DAG.getFrameIndex(FI, VT); 3973 TailCallArgumentInfo Info; 3974 Info.Arg = Arg; 3975 Info.FrameIdxOp = FIN; 3976 Info.FrameIdx = FI; 3977 TailCallArguments.push_back(Info); 3978 } 3979 3980 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3981 /// stack slot. Returns the chain as result and the loaded frame pointers in 3982 /// LROpOut/FPOpout. Used when tail calling. 3983 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3984 int SPDiff, 3985 SDValue Chain, 3986 SDValue &LROpOut, 3987 SDValue &FPOpOut, 3988 bool isDarwinABI, 3989 SDLoc dl) const { 3990 if (SPDiff) { 3991 // Load the LR and FP stack slot for later adjusting. 3992 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3993 LROpOut = getReturnAddrFrameIndex(DAG); 3994 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3995 false, false, false, 0); 3996 Chain = SDValue(LROpOut.getNode(), 1); 3997 3998 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3999 // slot as the FP is never overwritten. 4000 if (isDarwinABI) { 4001 FPOpOut = getFramePointerFrameIndex(DAG); 4002 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4003 false, false, false, 0); 4004 Chain = SDValue(FPOpOut.getNode(), 1); 4005 } 4006 } 4007 return Chain; 4008 } 4009 4010 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4011 /// by "Src" to address "Dst" of size "Size". Alignment information is 4012 /// specified by the specific parameter attribute. The copy will be passed as 4013 /// a byval function parameter. 4014 /// Sometimes what we are copying is the end of a larger object, the part that 4015 /// does not fit in registers. 4016 static SDValue 4017 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4018 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4019 SDLoc dl) { 4020 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4021 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4022 false, false, false, MachinePointerInfo(), 4023 MachinePointerInfo()); 4024 } 4025 4026 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4027 /// tail calls. 4028 static void 4029 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4030 SDValue Arg, SDValue PtrOff, int SPDiff, 4031 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4032 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4033 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4034 SDLoc dl) { 4035 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4036 if (!isTailCall) { 4037 if (isVector) { 4038 SDValue StackPtr; 4039 if (isPPC64) 4040 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4041 else 4042 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4043 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4044 DAG.getConstant(ArgOffset, dl, PtrVT)); 4045 } 4046 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4047 MachinePointerInfo(), false, false, 0)); 4048 // Calculate and remember argument location. 4049 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4050 TailCallArguments); 4051 } 4052 4053 static 4054 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4055 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4056 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4057 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4058 MachineFunction &MF = DAG.getMachineFunction(); 4059 4060 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4061 // might overwrite each other in case of tail call optimization. 4062 SmallVector<SDValue, 8> MemOpChains2; 4063 // Do not flag preceding copytoreg stuff together with the following stuff. 4064 InFlag = SDValue(); 4065 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4066 MemOpChains2, dl); 4067 if (!MemOpChains2.empty()) 4068 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4069 4070 // Store the return address to the appropriate stack slot. 4071 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4072 isPPC64, isDarwinABI, dl); 4073 4074 // Emit callseq_end just before tailcall node. 4075 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4076 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4077 InFlag = Chain.getValue(1); 4078 } 4079 4080 // Is this global address that of a function that can be called by name? (as 4081 // opposed to something that must hold a descriptor for an indirect call). 4082 static bool isFunctionGlobalAddress(SDValue Callee) { 4083 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4084 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4085 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4086 return false; 4087 4088 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4089 } 4090 4091 return false; 4092 } 4093 4094 static 4095 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4096 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4097 bool isTailCall, bool IsPatchPoint, bool hasNest, 4098 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4099 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4100 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4101 4102 bool isPPC64 = Subtarget.isPPC64(); 4103 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4104 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4105 4106 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4107 NodeTys.push_back(MVT::Other); // Returns a chain 4108 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4109 4110 unsigned CallOpc = PPCISD::CALL; 4111 4112 bool needIndirectCall = true; 4113 if (!isSVR4ABI || !isPPC64) 4114 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4115 // If this is an absolute destination address, use the munged value. 4116 Callee = SDValue(Dest, 0); 4117 needIndirectCall = false; 4118 } 4119 4120 if (isFunctionGlobalAddress(Callee)) { 4121 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4122 // A call to a TLS address is actually an indirect call to a 4123 // thread-specific pointer. 4124 unsigned OpFlags = 0; 4125 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4126 (Subtarget.getTargetTriple().isMacOSX() && 4127 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4128 !G->getGlobal()->isStrongDefinitionForLinker()) || 4129 (Subtarget.isTargetELF() && !isPPC64 && 4130 !G->getGlobal()->hasLocalLinkage() && 4131 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4132 // PC-relative references to external symbols should go through $stub, 4133 // unless we're building with the leopard linker or later, which 4134 // automatically synthesizes these stubs. 4135 OpFlags = PPCII::MO_PLT_OR_STUB; 4136 } 4137 4138 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4139 // every direct call is) turn it into a TargetGlobalAddress / 4140 // TargetExternalSymbol node so that legalize doesn't hack it. 4141 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4142 Callee.getValueType(), 0, OpFlags); 4143 needIndirectCall = false; 4144 } 4145 4146 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4147 unsigned char OpFlags = 0; 4148 4149 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4150 (Subtarget.getTargetTriple().isMacOSX() && 4151 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4152 (Subtarget.isTargetELF() && !isPPC64 && 4153 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4154 // PC-relative references to external symbols should go through $stub, 4155 // unless we're building with the leopard linker or later, which 4156 // automatically synthesizes these stubs. 4157 OpFlags = PPCII::MO_PLT_OR_STUB; 4158 } 4159 4160 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4161 OpFlags); 4162 needIndirectCall = false; 4163 } 4164 4165 if (IsPatchPoint) { 4166 // We'll form an invalid direct call when lowering a patchpoint; the full 4167 // sequence for an indirect call is complicated, and many of the 4168 // instructions introduced might have side effects (and, thus, can't be 4169 // removed later). The call itself will be removed as soon as the 4170 // argument/return lowering is complete, so the fact that it has the wrong 4171 // kind of operands should not really matter. 4172 needIndirectCall = false; 4173 } 4174 4175 if (needIndirectCall) { 4176 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4177 // to do the call, we can't use PPCISD::CALL. 4178 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4179 4180 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4181 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4182 // entry point, but to the function descriptor (the function entry point 4183 // address is part of the function descriptor though). 4184 // The function descriptor is a three doubleword structure with the 4185 // following fields: function entry point, TOC base address and 4186 // environment pointer. 4187 // Thus for a call through a function pointer, the following actions need 4188 // to be performed: 4189 // 1. Save the TOC of the caller in the TOC save area of its stack 4190 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4191 // 2. Load the address of the function entry point from the function 4192 // descriptor. 4193 // 3. Load the TOC of the callee from the function descriptor into r2. 4194 // 4. Load the environment pointer from the function descriptor into 4195 // r11. 4196 // 5. Branch to the function entry point address. 4197 // 6. On return of the callee, the TOC of the caller needs to be 4198 // restored (this is done in FinishCall()). 4199 // 4200 // The loads are scheduled at the beginning of the call sequence, and the 4201 // register copies are flagged together to ensure that no other 4202 // operations can be scheduled in between. E.g. without flagging the 4203 // copies together, a TOC access in the caller could be scheduled between 4204 // the assignment of the callee TOC and the branch to the callee, which 4205 // results in the TOC access going through the TOC of the callee instead 4206 // of going through the TOC of the caller, which leads to incorrect code. 4207 4208 // Load the address of the function entry point from the function 4209 // descriptor. 4210 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4211 if (LDChain.getValueType() == MVT::Glue) 4212 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4213 4214 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4215 4216 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4217 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4218 false, false, LoadsInv, 8); 4219 4220 // Load environment pointer into r11. 4221 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4222 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4223 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4224 MPI.getWithOffset(16), false, false, 4225 LoadsInv, 8); 4226 4227 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4228 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4229 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4230 MPI.getWithOffset(8), false, false, 4231 LoadsInv, 8); 4232 4233 setUsesTOCBasePtr(DAG); 4234 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4235 InFlag); 4236 Chain = TOCVal.getValue(0); 4237 InFlag = TOCVal.getValue(1); 4238 4239 // If the function call has an explicit 'nest' parameter, it takes the 4240 // place of the environment pointer. 4241 if (!hasNest) { 4242 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4243 InFlag); 4244 4245 Chain = EnvVal.getValue(0); 4246 InFlag = EnvVal.getValue(1); 4247 } 4248 4249 MTCTROps[0] = Chain; 4250 MTCTROps[1] = LoadFuncPtr; 4251 MTCTROps[2] = InFlag; 4252 } 4253 4254 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4255 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4256 InFlag = Chain.getValue(1); 4257 4258 NodeTys.clear(); 4259 NodeTys.push_back(MVT::Other); 4260 NodeTys.push_back(MVT::Glue); 4261 Ops.push_back(Chain); 4262 CallOpc = PPCISD::BCTRL; 4263 Callee.setNode(nullptr); 4264 // Add use of X11 (holding environment pointer) 4265 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4266 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4267 // Add CTR register as callee so a bctr can be emitted later. 4268 if (isTailCall) 4269 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4270 } 4271 4272 // If this is a direct call, pass the chain and the callee. 4273 if (Callee.getNode()) { 4274 Ops.push_back(Chain); 4275 Ops.push_back(Callee); 4276 } 4277 // If this is a tail call add stack pointer delta. 4278 if (isTailCall) 4279 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4280 4281 // Add argument registers to the end of the list so that they are known live 4282 // into the call. 4283 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4284 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4285 RegsToPass[i].second.getValueType())); 4286 4287 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4288 // into the call. 4289 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4290 setUsesTOCBasePtr(DAG); 4291 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4292 } 4293 4294 return CallOpc; 4295 } 4296 4297 static 4298 bool isLocalCall(const SDValue &Callee) 4299 { 4300 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4301 return G->getGlobal()->isStrongDefinitionForLinker(); 4302 return false; 4303 } 4304 4305 SDValue 4306 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4307 CallingConv::ID CallConv, bool isVarArg, 4308 const SmallVectorImpl<ISD::InputArg> &Ins, 4309 SDLoc dl, SelectionDAG &DAG, 4310 SmallVectorImpl<SDValue> &InVals) const { 4311 4312 SmallVector<CCValAssign, 16> RVLocs; 4313 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4314 *DAG.getContext()); 4315 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4316 4317 // Copy all of the result registers out of their specified physreg. 4318 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4319 CCValAssign &VA = RVLocs[i]; 4320 assert(VA.isRegLoc() && "Can only return in registers!"); 4321 4322 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4323 VA.getLocReg(), VA.getLocVT(), InFlag); 4324 Chain = Val.getValue(1); 4325 InFlag = Val.getValue(2); 4326 4327 switch (VA.getLocInfo()) { 4328 default: llvm_unreachable("Unknown loc info!"); 4329 case CCValAssign::Full: break; 4330 case CCValAssign::AExt: 4331 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4332 break; 4333 case CCValAssign::ZExt: 4334 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4335 DAG.getValueType(VA.getValVT())); 4336 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4337 break; 4338 case CCValAssign::SExt: 4339 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4340 DAG.getValueType(VA.getValVT())); 4341 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4342 break; 4343 } 4344 4345 InVals.push_back(Val); 4346 } 4347 4348 return Chain; 4349 } 4350 4351 SDValue 4352 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4353 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4354 bool hasNest, SelectionDAG &DAG, 4355 SmallVector<std::pair<unsigned, SDValue>, 8> 4356 &RegsToPass, 4357 SDValue InFlag, SDValue Chain, 4358 SDValue CallSeqStart, SDValue &Callee, 4359 int SPDiff, unsigned NumBytes, 4360 const SmallVectorImpl<ISD::InputArg> &Ins, 4361 SmallVectorImpl<SDValue> &InVals, 4362 ImmutableCallSite *CS) const { 4363 4364 std::vector<EVT> NodeTys; 4365 SmallVector<SDValue, 8> Ops; 4366 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4367 SPDiff, isTailCall, IsPatchPoint, hasNest, 4368 RegsToPass, Ops, NodeTys, CS, Subtarget); 4369 4370 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4371 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4372 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4373 4374 // When performing tail call optimization the callee pops its arguments off 4375 // the stack. Account for this here so these bytes can be pushed back on in 4376 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4377 int BytesCalleePops = 4378 (CallConv == CallingConv::Fast && 4379 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4380 4381 // Add a register mask operand representing the call-preserved registers. 4382 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4383 const uint32_t *Mask = 4384 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4385 assert(Mask && "Missing call preserved mask for calling convention"); 4386 Ops.push_back(DAG.getRegisterMask(Mask)); 4387 4388 if (InFlag.getNode()) 4389 Ops.push_back(InFlag); 4390 4391 // Emit tail call. 4392 if (isTailCall) { 4393 assert(((Callee.getOpcode() == ISD::Register && 4394 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4395 Callee.getOpcode() == ISD::TargetExternalSymbol || 4396 Callee.getOpcode() == ISD::TargetGlobalAddress || 4397 isa<ConstantSDNode>(Callee)) && 4398 "Expecting an global address, external symbol, absolute value or register"); 4399 4400 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4401 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4402 } 4403 4404 // Add a NOP immediately after the branch instruction when using the 64-bit 4405 // SVR4 ABI. At link time, if caller and callee are in a different module and 4406 // thus have a different TOC, the call will be replaced with a call to a stub 4407 // function which saves the current TOC, loads the TOC of the callee and 4408 // branches to the callee. The NOP will be replaced with a load instruction 4409 // which restores the TOC of the caller from the TOC save slot of the current 4410 // stack frame. If caller and callee belong to the same module (and have the 4411 // same TOC), the NOP will remain unchanged. 4412 4413 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4414 !IsPatchPoint) { 4415 if (CallOpc == PPCISD::BCTRL) { 4416 // This is a call through a function pointer. 4417 // Restore the caller TOC from the save area into R2. 4418 // See PrepareCall() for more information about calls through function 4419 // pointers in the 64-bit SVR4 ABI. 4420 // We are using a target-specific load with r2 hard coded, because the 4421 // result of a target-independent load would never go directly into r2, 4422 // since r2 is a reserved register (which prevents the register allocator 4423 // from allocating it), resulting in an additional register being 4424 // allocated and an unnecessary move instruction being generated. 4425 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4426 4427 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4428 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4429 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4430 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4431 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4432 4433 // The address needs to go after the chain input but before the flag (or 4434 // any other variadic arguments). 4435 Ops.insert(std::next(Ops.begin()), AddTOC); 4436 } else if ((CallOpc == PPCISD::CALL) && 4437 (!isLocalCall(Callee) || 4438 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4439 // Otherwise insert NOP for non-local calls. 4440 CallOpc = PPCISD::CALL_NOP; 4441 } 4442 4443 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4444 InFlag = Chain.getValue(1); 4445 4446 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4447 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4448 InFlag, dl); 4449 if (!Ins.empty()) 4450 InFlag = Chain.getValue(1); 4451 4452 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4453 Ins, dl, DAG, InVals); 4454 } 4455 4456 SDValue 4457 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4458 SmallVectorImpl<SDValue> &InVals) const { 4459 SelectionDAG &DAG = CLI.DAG; 4460 SDLoc &dl = CLI.DL; 4461 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4462 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4463 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4464 SDValue Chain = CLI.Chain; 4465 SDValue Callee = CLI.Callee; 4466 bool &isTailCall = CLI.IsTailCall; 4467 CallingConv::ID CallConv = CLI.CallConv; 4468 bool isVarArg = CLI.IsVarArg; 4469 bool IsPatchPoint = CLI.IsPatchPoint; 4470 ImmutableCallSite *CS = CLI.CS; 4471 4472 if (isTailCall) 4473 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4474 Ins, DAG); 4475 4476 if (!isTailCall && CS && CS->isMustTailCall()) 4477 report_fatal_error("failed to perform tail call elimination on a call " 4478 "site marked musttail"); 4479 4480 if (Subtarget.isSVR4ABI()) { 4481 if (Subtarget.isPPC64()) 4482 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4483 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4484 dl, DAG, InVals, CS); 4485 else 4486 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4487 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4488 dl, DAG, InVals, CS); 4489 } 4490 4491 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4492 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4493 dl, DAG, InVals, CS); 4494 } 4495 4496 SDValue 4497 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4498 CallingConv::ID CallConv, bool isVarArg, 4499 bool isTailCall, bool IsPatchPoint, 4500 const SmallVectorImpl<ISD::OutputArg> &Outs, 4501 const SmallVectorImpl<SDValue> &OutVals, 4502 const SmallVectorImpl<ISD::InputArg> &Ins, 4503 SDLoc dl, SelectionDAG &DAG, 4504 SmallVectorImpl<SDValue> &InVals, 4505 ImmutableCallSite *CS) const { 4506 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4507 // of the 32-bit SVR4 ABI stack frame layout. 4508 4509 assert((CallConv == CallingConv::C || 4510 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4511 4512 unsigned PtrByteSize = 4; 4513 4514 MachineFunction &MF = DAG.getMachineFunction(); 4515 4516 // Mark this function as potentially containing a function that contains a 4517 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4518 // and restoring the callers stack pointer in this functions epilog. This is 4519 // done because by tail calling the called function might overwrite the value 4520 // in this function's (MF) stack pointer stack slot 0(SP). 4521 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4522 CallConv == CallingConv::Fast) 4523 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4524 4525 // Count how many bytes are to be pushed on the stack, including the linkage 4526 // area, parameter list area and the part of the local variable space which 4527 // contains copies of aggregates which are passed by value. 4528 4529 // Assign locations to all of the outgoing arguments. 4530 SmallVector<CCValAssign, 16> ArgLocs; 4531 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4532 *DAG.getContext()); 4533 4534 // Reserve space for the linkage area on the stack. 4535 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4536 PtrByteSize); 4537 4538 if (isVarArg) { 4539 // Handle fixed and variable vector arguments differently. 4540 // Fixed vector arguments go into registers as long as registers are 4541 // available. Variable vector arguments always go into memory. 4542 unsigned NumArgs = Outs.size(); 4543 4544 for (unsigned i = 0; i != NumArgs; ++i) { 4545 MVT ArgVT = Outs[i].VT; 4546 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4547 bool Result; 4548 4549 if (Outs[i].IsFixed) { 4550 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4551 CCInfo); 4552 } else { 4553 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4554 ArgFlags, CCInfo); 4555 } 4556 4557 if (Result) { 4558 #ifndef NDEBUG 4559 errs() << "Call operand #" << i << " has unhandled type " 4560 << EVT(ArgVT).getEVTString() << "\n"; 4561 #endif 4562 llvm_unreachable(nullptr); 4563 } 4564 } 4565 } else { 4566 // All arguments are treated the same. 4567 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4568 } 4569 4570 // Assign locations to all of the outgoing aggregate by value arguments. 4571 SmallVector<CCValAssign, 16> ByValArgLocs; 4572 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4573 ByValArgLocs, *DAG.getContext()); 4574 4575 // Reserve stack space for the allocations in CCInfo. 4576 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4577 4578 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4579 4580 // Size of the linkage area, parameter list area and the part of the local 4581 // space variable where copies of aggregates which are passed by value are 4582 // stored. 4583 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4584 4585 // Calculate by how many bytes the stack has to be adjusted in case of tail 4586 // call optimization. 4587 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4588 4589 // Adjust the stack pointer for the new arguments... 4590 // These operations are automatically eliminated by the prolog/epilog pass 4591 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4592 dl); 4593 SDValue CallSeqStart = Chain; 4594 4595 // Load the return address and frame pointer so it can be moved somewhere else 4596 // later. 4597 SDValue LROp, FPOp; 4598 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4599 dl); 4600 4601 // Set up a copy of the stack pointer for use loading and storing any 4602 // arguments that may not fit in the registers available for argument 4603 // passing. 4604 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4605 4606 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4607 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4608 SmallVector<SDValue, 8> MemOpChains; 4609 4610 bool seenFloatArg = false; 4611 // Walk the register/memloc assignments, inserting copies/loads. 4612 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4613 i != e; 4614 ++i) { 4615 CCValAssign &VA = ArgLocs[i]; 4616 SDValue Arg = OutVals[i]; 4617 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4618 4619 if (Flags.isByVal()) { 4620 // Argument is an aggregate which is passed by value, thus we need to 4621 // create a copy of it in the local variable space of the current stack 4622 // frame (which is the stack frame of the caller) and pass the address of 4623 // this copy to the callee. 4624 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4625 CCValAssign &ByValVA = ByValArgLocs[j++]; 4626 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4627 4628 // Memory reserved in the local variable space of the callers stack frame. 4629 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4630 4631 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4632 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4633 StackPtr, PtrOff); 4634 4635 // Create a copy of the argument in the local area of the current 4636 // stack frame. 4637 SDValue MemcpyCall = 4638 CreateCopyOfByValArgument(Arg, PtrOff, 4639 CallSeqStart.getNode()->getOperand(0), 4640 Flags, DAG, dl); 4641 4642 // This must go outside the CALLSEQ_START..END. 4643 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4644 CallSeqStart.getNode()->getOperand(1), 4645 SDLoc(MemcpyCall)); 4646 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4647 NewCallSeqStart.getNode()); 4648 Chain = CallSeqStart = NewCallSeqStart; 4649 4650 // Pass the address of the aggregate copy on the stack either in a 4651 // physical register or in the parameter list area of the current stack 4652 // frame to the callee. 4653 Arg = PtrOff; 4654 } 4655 4656 if (VA.isRegLoc()) { 4657 if (Arg.getValueType() == MVT::i1) 4658 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4659 4660 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4661 // Put argument in a physical register. 4662 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4663 } else { 4664 // Put argument in the parameter list area of the current stack frame. 4665 assert(VA.isMemLoc()); 4666 unsigned LocMemOffset = VA.getLocMemOffset(); 4667 4668 if (!isTailCall) { 4669 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4670 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4671 StackPtr, PtrOff); 4672 4673 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4674 MachinePointerInfo(), 4675 false, false, 0)); 4676 } else { 4677 // Calculate and remember argument location. 4678 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4679 TailCallArguments); 4680 } 4681 } 4682 } 4683 4684 if (!MemOpChains.empty()) 4685 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4686 4687 // Build a sequence of copy-to-reg nodes chained together with token chain 4688 // and flag operands which copy the outgoing args into the appropriate regs. 4689 SDValue InFlag; 4690 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4691 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4692 RegsToPass[i].second, InFlag); 4693 InFlag = Chain.getValue(1); 4694 } 4695 4696 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4697 // registers. 4698 if (isVarArg) { 4699 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4700 SDValue Ops[] = { Chain, InFlag }; 4701 4702 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4703 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4704 4705 InFlag = Chain.getValue(1); 4706 } 4707 4708 if (isTailCall) 4709 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4710 false, TailCallArguments); 4711 4712 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4713 /* unused except on PPC64 ELFv1 */ false, DAG, 4714 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4715 NumBytes, Ins, InVals, CS); 4716 } 4717 4718 // Copy an argument into memory, being careful to do this outside the 4719 // call sequence for the call to which the argument belongs. 4720 SDValue 4721 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4722 SDValue CallSeqStart, 4723 ISD::ArgFlagsTy Flags, 4724 SelectionDAG &DAG, 4725 SDLoc dl) const { 4726 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4727 CallSeqStart.getNode()->getOperand(0), 4728 Flags, DAG, dl); 4729 // The MEMCPY must go outside the CALLSEQ_START..END. 4730 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4731 CallSeqStart.getNode()->getOperand(1), 4732 SDLoc(MemcpyCall)); 4733 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4734 NewCallSeqStart.getNode()); 4735 return NewCallSeqStart; 4736 } 4737 4738 SDValue 4739 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4740 CallingConv::ID CallConv, bool isVarArg, 4741 bool isTailCall, bool IsPatchPoint, 4742 const SmallVectorImpl<ISD::OutputArg> &Outs, 4743 const SmallVectorImpl<SDValue> &OutVals, 4744 const SmallVectorImpl<ISD::InputArg> &Ins, 4745 SDLoc dl, SelectionDAG &DAG, 4746 SmallVectorImpl<SDValue> &InVals, 4747 ImmutableCallSite *CS) const { 4748 4749 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4750 bool isLittleEndian = Subtarget.isLittleEndian(); 4751 unsigned NumOps = Outs.size(); 4752 bool hasNest = false; 4753 4754 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4755 unsigned PtrByteSize = 8; 4756 4757 MachineFunction &MF = DAG.getMachineFunction(); 4758 4759 // Mark this function as potentially containing a function that contains a 4760 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4761 // and restoring the callers stack pointer in this functions epilog. This is 4762 // done because by tail calling the called function might overwrite the value 4763 // in this function's (MF) stack pointer stack slot 0(SP). 4764 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4765 CallConv == CallingConv::Fast) 4766 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4767 4768 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4769 "fastcc not supported on varargs functions"); 4770 4771 // Count how many bytes are to be pushed on the stack, including the linkage 4772 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4773 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4774 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4775 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4776 unsigned NumBytes = LinkageSize; 4777 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4778 unsigned &QFPR_idx = FPR_idx; 4779 4780 static const MCPhysReg GPR[] = { 4781 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4782 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4783 }; 4784 static const MCPhysReg VR[] = { 4785 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4786 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4787 }; 4788 static const MCPhysReg VSRH[] = { 4789 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4790 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4791 }; 4792 4793 const unsigned NumGPRs = array_lengthof(GPR); 4794 const unsigned NumFPRs = 13; 4795 const unsigned NumVRs = array_lengthof(VR); 4796 const unsigned NumQFPRs = NumFPRs; 4797 4798 // When using the fast calling convention, we don't provide backing for 4799 // arguments that will be in registers. 4800 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4801 4802 // Add up all the space actually used. 4803 for (unsigned i = 0; i != NumOps; ++i) { 4804 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4805 EVT ArgVT = Outs[i].VT; 4806 EVT OrigVT = Outs[i].ArgVT; 4807 4808 if (Flags.isNest()) 4809 continue; 4810 4811 if (CallConv == CallingConv::Fast) { 4812 if (Flags.isByVal()) 4813 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4814 else 4815 switch (ArgVT.getSimpleVT().SimpleTy) { 4816 default: llvm_unreachable("Unexpected ValueType for argument!"); 4817 case MVT::i1: 4818 case MVT::i32: 4819 case MVT::i64: 4820 if (++NumGPRsUsed <= NumGPRs) 4821 continue; 4822 break; 4823 case MVT::v4i32: 4824 case MVT::v8i16: 4825 case MVT::v16i8: 4826 case MVT::v2f64: 4827 case MVT::v2i64: 4828 case MVT::v1i128: 4829 if (++NumVRsUsed <= NumVRs) 4830 continue; 4831 break; 4832 case MVT::v4f32: 4833 // When using QPX, this is handled like a FP register, otherwise, it 4834 // is an Altivec register. 4835 if (Subtarget.hasQPX()) { 4836 if (++NumFPRsUsed <= NumFPRs) 4837 continue; 4838 } else { 4839 if (++NumVRsUsed <= NumVRs) 4840 continue; 4841 } 4842 break; 4843 case MVT::f32: 4844 case MVT::f64: 4845 case MVT::v4f64: // QPX 4846 case MVT::v4i1: // QPX 4847 if (++NumFPRsUsed <= NumFPRs) 4848 continue; 4849 break; 4850 } 4851 } 4852 4853 /* Respect alignment of argument on the stack. */ 4854 unsigned Align = 4855 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4856 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4857 4858 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4859 if (Flags.isInConsecutiveRegsLast()) 4860 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4861 } 4862 4863 unsigned NumBytesActuallyUsed = NumBytes; 4864 4865 // The prolog code of the callee may store up to 8 GPR argument registers to 4866 // the stack, allowing va_start to index over them in memory if its varargs. 4867 // Because we cannot tell if this is needed on the caller side, we have to 4868 // conservatively assume that it is needed. As such, make sure we have at 4869 // least enough stack space for the caller to store the 8 GPRs. 4870 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4871 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4872 4873 // Tail call needs the stack to be aligned. 4874 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4875 CallConv == CallingConv::Fast) 4876 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4877 4878 // Calculate by how many bytes the stack has to be adjusted in case of tail 4879 // call optimization. 4880 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4881 4882 // To protect arguments on the stack from being clobbered in a tail call, 4883 // force all the loads to happen before doing any other lowering. 4884 if (isTailCall) 4885 Chain = DAG.getStackArgumentTokenFactor(Chain); 4886 4887 // Adjust the stack pointer for the new arguments... 4888 // These operations are automatically eliminated by the prolog/epilog pass 4889 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4890 dl); 4891 SDValue CallSeqStart = Chain; 4892 4893 // Load the return address and frame pointer so it can be move somewhere else 4894 // later. 4895 SDValue LROp, FPOp; 4896 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4897 dl); 4898 4899 // Set up a copy of the stack pointer for use loading and storing any 4900 // arguments that may not fit in the registers available for argument 4901 // passing. 4902 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4903 4904 // Figure out which arguments are going to go in registers, and which in 4905 // memory. Also, if this is a vararg function, floating point operations 4906 // must be stored to our stack, and loaded into integer regs as well, if 4907 // any integer regs are available for argument passing. 4908 unsigned ArgOffset = LinkageSize; 4909 4910 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4911 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4912 4913 SmallVector<SDValue, 8> MemOpChains; 4914 for (unsigned i = 0; i != NumOps; ++i) { 4915 SDValue Arg = OutVals[i]; 4916 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4917 EVT ArgVT = Outs[i].VT; 4918 EVT OrigVT = Outs[i].ArgVT; 4919 4920 // PtrOff will be used to store the current argument to the stack if a 4921 // register cannot be found for it. 4922 SDValue PtrOff; 4923 4924 // We re-align the argument offset for each argument, except when using the 4925 // fast calling convention, when we need to make sure we do that only when 4926 // we'll actually use a stack slot. 4927 auto ComputePtrOff = [&]() { 4928 /* Respect alignment of argument on the stack. */ 4929 unsigned Align = 4930 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4931 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4932 4933 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4934 4935 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4936 }; 4937 4938 if (CallConv != CallingConv::Fast) { 4939 ComputePtrOff(); 4940 4941 /* Compute GPR index associated with argument offset. */ 4942 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4943 GPR_idx = std::min(GPR_idx, NumGPRs); 4944 } 4945 4946 // Promote integers to 64-bit values. 4947 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4948 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4949 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4950 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4951 } 4952 4953 // FIXME memcpy is used way more than necessary. Correctness first. 4954 // Note: "by value" is code for passing a structure by value, not 4955 // basic types. 4956 if (Flags.isByVal()) { 4957 // Note: Size includes alignment padding, so 4958 // struct x { short a; char b; } 4959 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4960 // These are the proper values we need for right-justifying the 4961 // aggregate in a parameter register. 4962 unsigned Size = Flags.getByValSize(); 4963 4964 // An empty aggregate parameter takes up no storage and no 4965 // registers. 4966 if (Size == 0) 4967 continue; 4968 4969 if (CallConv == CallingConv::Fast) 4970 ComputePtrOff(); 4971 4972 // All aggregates smaller than 8 bytes must be passed right-justified. 4973 if (Size==1 || Size==2 || Size==4) { 4974 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4975 if (GPR_idx != NumGPRs) { 4976 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4977 MachinePointerInfo(), VT, 4978 false, false, false, 0); 4979 MemOpChains.push_back(Load.getValue(1)); 4980 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4981 4982 ArgOffset += PtrByteSize; 4983 continue; 4984 } 4985 } 4986 4987 if (GPR_idx == NumGPRs && Size < 8) { 4988 SDValue AddPtr = PtrOff; 4989 if (!isLittleEndian) { 4990 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4991 PtrOff.getValueType()); 4992 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4993 } 4994 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4995 CallSeqStart, 4996 Flags, DAG, dl); 4997 ArgOffset += PtrByteSize; 4998 continue; 4999 } 5000 // Copy entire object into memory. There are cases where gcc-generated 5001 // code assumes it is there, even if it could be put entirely into 5002 // registers. (This is not what the doc says.) 5003 5004 // FIXME: The above statement is likely due to a misunderstanding of the 5005 // documents. All arguments must be copied into the parameter area BY 5006 // THE CALLEE in the event that the callee takes the address of any 5007 // formal argument. That has not yet been implemented. However, it is 5008 // reasonable to use the stack area as a staging area for the register 5009 // load. 5010 5011 // Skip this for small aggregates, as we will use the same slot for a 5012 // right-justified copy, below. 5013 if (Size >= 8) 5014 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5015 CallSeqStart, 5016 Flags, DAG, dl); 5017 5018 // When a register is available, pass a small aggregate right-justified. 5019 if (Size < 8 && GPR_idx != NumGPRs) { 5020 // The easiest way to get this right-justified in a register 5021 // is to copy the structure into the rightmost portion of a 5022 // local variable slot, then load the whole slot into the 5023 // register. 5024 // FIXME: The memcpy seems to produce pretty awful code for 5025 // small aggregates, particularly for packed ones. 5026 // FIXME: It would be preferable to use the slot in the 5027 // parameter save area instead of a new local variable. 5028 SDValue AddPtr = PtrOff; 5029 if (!isLittleEndian) { 5030 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5031 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5032 } 5033 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5034 CallSeqStart, 5035 Flags, DAG, dl); 5036 5037 // Load the slot into the register. 5038 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5039 MachinePointerInfo(), 5040 false, false, false, 0); 5041 MemOpChains.push_back(Load.getValue(1)); 5042 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5043 5044 // Done with this argument. 5045 ArgOffset += PtrByteSize; 5046 continue; 5047 } 5048 5049 // For aggregates larger than PtrByteSize, copy the pieces of the 5050 // object that fit into registers from the parameter save area. 5051 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5052 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5053 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5054 if (GPR_idx != NumGPRs) { 5055 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5056 MachinePointerInfo(), 5057 false, false, false, 0); 5058 MemOpChains.push_back(Load.getValue(1)); 5059 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5060 ArgOffset += PtrByteSize; 5061 } else { 5062 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5063 break; 5064 } 5065 } 5066 continue; 5067 } 5068 5069 switch (Arg.getSimpleValueType().SimpleTy) { 5070 default: llvm_unreachable("Unexpected ValueType for argument!"); 5071 case MVT::i1: 5072 case MVT::i32: 5073 case MVT::i64: 5074 if (Flags.isNest()) { 5075 // The 'nest' parameter, if any, is passed in R11. 5076 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5077 hasNest = true; 5078 break; 5079 } 5080 5081 // These can be scalar arguments or elements of an integer array type 5082 // passed directly. Clang may use those instead of "byval" aggregate 5083 // types to avoid forcing arguments to memory unnecessarily. 5084 if (GPR_idx != NumGPRs) { 5085 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5086 } else { 5087 if (CallConv == CallingConv::Fast) 5088 ComputePtrOff(); 5089 5090 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5091 true, isTailCall, false, MemOpChains, 5092 TailCallArguments, dl); 5093 if (CallConv == CallingConv::Fast) 5094 ArgOffset += PtrByteSize; 5095 } 5096 if (CallConv != CallingConv::Fast) 5097 ArgOffset += PtrByteSize; 5098 break; 5099 case MVT::f32: 5100 case MVT::f64: { 5101 // These can be scalar arguments or elements of a float array type 5102 // passed directly. The latter are used to implement ELFv2 homogenous 5103 // float aggregates. 5104 5105 // Named arguments go into FPRs first, and once they overflow, the 5106 // remaining arguments go into GPRs and then the parameter save area. 5107 // Unnamed arguments for vararg functions always go to GPRs and 5108 // then the parameter save area. For now, put all arguments to vararg 5109 // routines always in both locations (FPR *and* GPR or stack slot). 5110 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5111 bool NeededLoad = false; 5112 5113 // First load the argument into the next available FPR. 5114 if (FPR_idx != NumFPRs) 5115 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5116 5117 // Next, load the argument into GPR or stack slot if needed. 5118 if (!NeedGPROrStack) 5119 ; 5120 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5121 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5122 // once we support fp <-> gpr moves. 5123 5124 // In the non-vararg case, this can only ever happen in the 5125 // presence of f32 array types, since otherwise we never run 5126 // out of FPRs before running out of GPRs. 5127 SDValue ArgVal; 5128 5129 // Double values are always passed in a single GPR. 5130 if (Arg.getValueType() != MVT::f32) { 5131 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5132 5133 // Non-array float values are extended and passed in a GPR. 5134 } else if (!Flags.isInConsecutiveRegs()) { 5135 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5136 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5137 5138 // If we have an array of floats, we collect every odd element 5139 // together with its predecessor into one GPR. 5140 } else if (ArgOffset % PtrByteSize != 0) { 5141 SDValue Lo, Hi; 5142 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5143 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5144 if (!isLittleEndian) 5145 std::swap(Lo, Hi); 5146 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5147 5148 // The final element, if even, goes into the first half of a GPR. 5149 } else if (Flags.isInConsecutiveRegsLast()) { 5150 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5151 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5152 if (!isLittleEndian) 5153 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5154 DAG.getConstant(32, dl, MVT::i32)); 5155 5156 // Non-final even elements are skipped; they will be handled 5157 // together the with subsequent argument on the next go-around. 5158 } else 5159 ArgVal = SDValue(); 5160 5161 if (ArgVal.getNode()) 5162 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5163 } else { 5164 if (CallConv == CallingConv::Fast) 5165 ComputePtrOff(); 5166 5167 // Single-precision floating-point values are mapped to the 5168 // second (rightmost) word of the stack doubleword. 5169 if (Arg.getValueType() == MVT::f32 && 5170 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5171 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5172 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5173 } 5174 5175 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5176 true, isTailCall, false, MemOpChains, 5177 TailCallArguments, dl); 5178 5179 NeededLoad = true; 5180 } 5181 // When passing an array of floats, the array occupies consecutive 5182 // space in the argument area; only round up to the next doubleword 5183 // at the end of the array. Otherwise, each float takes 8 bytes. 5184 if (CallConv != CallingConv::Fast || NeededLoad) { 5185 ArgOffset += (Arg.getValueType() == MVT::f32 && 5186 Flags.isInConsecutiveRegs()) ? 4 : 8; 5187 if (Flags.isInConsecutiveRegsLast()) 5188 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5189 } 5190 break; 5191 } 5192 case MVT::v4f32: 5193 case MVT::v4i32: 5194 case MVT::v8i16: 5195 case MVT::v16i8: 5196 case MVT::v2f64: 5197 case MVT::v2i64: 5198 case MVT::v1i128: 5199 if (!Subtarget.hasQPX()) { 5200 // These can be scalar arguments or elements of a vector array type 5201 // passed directly. The latter are used to implement ELFv2 homogenous 5202 // vector aggregates. 5203 5204 // For a varargs call, named arguments go into VRs or on the stack as 5205 // usual; unnamed arguments always go to the stack or the corresponding 5206 // GPRs when within range. For now, we always put the value in both 5207 // locations (or even all three). 5208 if (isVarArg) { 5209 // We could elide this store in the case where the object fits 5210 // entirely in R registers. Maybe later. 5211 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5212 MachinePointerInfo(), false, false, 0); 5213 MemOpChains.push_back(Store); 5214 if (VR_idx != NumVRs) { 5215 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5216 MachinePointerInfo(), 5217 false, false, false, 0); 5218 MemOpChains.push_back(Load.getValue(1)); 5219 5220 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5221 Arg.getSimpleValueType() == MVT::v2i64) ? 5222 VSRH[VR_idx] : VR[VR_idx]; 5223 ++VR_idx; 5224 5225 RegsToPass.push_back(std::make_pair(VReg, Load)); 5226 } 5227 ArgOffset += 16; 5228 for (unsigned i=0; i<16; i+=PtrByteSize) { 5229 if (GPR_idx == NumGPRs) 5230 break; 5231 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5232 DAG.getConstant(i, dl, PtrVT)); 5233 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5234 false, false, false, 0); 5235 MemOpChains.push_back(Load.getValue(1)); 5236 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5237 } 5238 break; 5239 } 5240 5241 // Non-varargs Altivec params go into VRs or on the stack. 5242 if (VR_idx != NumVRs) { 5243 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5244 Arg.getSimpleValueType() == MVT::v2i64) ? 5245 VSRH[VR_idx] : VR[VR_idx]; 5246 ++VR_idx; 5247 5248 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5249 } else { 5250 if (CallConv == CallingConv::Fast) 5251 ComputePtrOff(); 5252 5253 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5254 true, isTailCall, true, MemOpChains, 5255 TailCallArguments, dl); 5256 if (CallConv == CallingConv::Fast) 5257 ArgOffset += 16; 5258 } 5259 5260 if (CallConv != CallingConv::Fast) 5261 ArgOffset += 16; 5262 break; 5263 } // not QPX 5264 5265 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5266 "Invalid QPX parameter type"); 5267 5268 /* fall through */ 5269 case MVT::v4f64: 5270 case MVT::v4i1: { 5271 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5272 if (isVarArg) { 5273 // We could elide this store in the case where the object fits 5274 // entirely in R registers. Maybe later. 5275 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5276 MachinePointerInfo(), false, false, 0); 5277 MemOpChains.push_back(Store); 5278 if (QFPR_idx != NumQFPRs) { 5279 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5280 Store, PtrOff, MachinePointerInfo(), 5281 false, false, false, 0); 5282 MemOpChains.push_back(Load.getValue(1)); 5283 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5284 } 5285 ArgOffset += (IsF32 ? 16 : 32); 5286 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5287 if (GPR_idx == NumGPRs) 5288 break; 5289 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5290 DAG.getConstant(i, dl, PtrVT)); 5291 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5292 false, false, false, 0); 5293 MemOpChains.push_back(Load.getValue(1)); 5294 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5295 } 5296 break; 5297 } 5298 5299 // Non-varargs QPX params go into registers or on the stack. 5300 if (QFPR_idx != NumQFPRs) { 5301 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5302 } else { 5303 if (CallConv == CallingConv::Fast) 5304 ComputePtrOff(); 5305 5306 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5307 true, isTailCall, true, MemOpChains, 5308 TailCallArguments, dl); 5309 if (CallConv == CallingConv::Fast) 5310 ArgOffset += (IsF32 ? 16 : 32); 5311 } 5312 5313 if (CallConv != CallingConv::Fast) 5314 ArgOffset += (IsF32 ? 16 : 32); 5315 break; 5316 } 5317 } 5318 } 5319 5320 assert(NumBytesActuallyUsed == ArgOffset); 5321 (void)NumBytesActuallyUsed; 5322 5323 if (!MemOpChains.empty()) 5324 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5325 5326 // Check if this is an indirect call (MTCTR/BCTRL). 5327 // See PrepareCall() for more information about calls through function 5328 // pointers in the 64-bit SVR4 ABI. 5329 if (!isTailCall && !IsPatchPoint && 5330 !isFunctionGlobalAddress(Callee) && 5331 !isa<ExternalSymbolSDNode>(Callee)) { 5332 // Load r2 into a virtual register and store it to the TOC save area. 5333 setUsesTOCBasePtr(DAG); 5334 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5335 // TOC save area offset. 5336 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5337 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5338 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5339 Chain = DAG.getStore( 5340 Val.getValue(1), dl, Val, AddPtr, 5341 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5342 false, false, 0); 5343 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5344 // This does not mean the MTCTR instruction must use R12; it's easier 5345 // to model this as an extra parameter, so do that. 5346 if (isELFv2ABI && !IsPatchPoint) 5347 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5348 } 5349 5350 // Build a sequence of copy-to-reg nodes chained together with token chain 5351 // and flag operands which copy the outgoing args into the appropriate regs. 5352 SDValue InFlag; 5353 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5354 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5355 RegsToPass[i].second, InFlag); 5356 InFlag = Chain.getValue(1); 5357 } 5358 5359 if (isTailCall) 5360 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5361 FPOp, true, TailCallArguments); 5362 5363 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5364 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5365 SPDiff, NumBytes, Ins, InVals, CS); 5366 } 5367 5368 SDValue 5369 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5370 CallingConv::ID CallConv, bool isVarArg, 5371 bool isTailCall, bool IsPatchPoint, 5372 const SmallVectorImpl<ISD::OutputArg> &Outs, 5373 const SmallVectorImpl<SDValue> &OutVals, 5374 const SmallVectorImpl<ISD::InputArg> &Ins, 5375 SDLoc dl, SelectionDAG &DAG, 5376 SmallVectorImpl<SDValue> &InVals, 5377 ImmutableCallSite *CS) const { 5378 5379 unsigned NumOps = Outs.size(); 5380 5381 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5382 bool isPPC64 = PtrVT == MVT::i64; 5383 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5384 5385 MachineFunction &MF = DAG.getMachineFunction(); 5386 5387 // Mark this function as potentially containing a function that contains a 5388 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5389 // and restoring the callers stack pointer in this functions epilog. This is 5390 // done because by tail calling the called function might overwrite the value 5391 // in this function's (MF) stack pointer stack slot 0(SP). 5392 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5393 CallConv == CallingConv::Fast) 5394 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5395 5396 // Count how many bytes are to be pushed on the stack, including the linkage 5397 // area, and parameter passing area. We start with 24/48 bytes, which is 5398 // prereserved space for [SP][CR][LR][3 x unused]. 5399 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5400 unsigned NumBytes = LinkageSize; 5401 5402 // Add up all the space actually used. 5403 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5404 // they all go in registers, but we must reserve stack space for them for 5405 // possible use by the caller. In varargs or 64-bit calls, parameters are 5406 // assigned stack space in order, with padding so Altivec parameters are 5407 // 16-byte aligned. 5408 unsigned nAltivecParamsAtEnd = 0; 5409 for (unsigned i = 0; i != NumOps; ++i) { 5410 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5411 EVT ArgVT = Outs[i].VT; 5412 // Varargs Altivec parameters are padded to a 16 byte boundary. 5413 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5414 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5415 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5416 if (!isVarArg && !isPPC64) { 5417 // Non-varargs Altivec parameters go after all the non-Altivec 5418 // parameters; handle those later so we know how much padding we need. 5419 nAltivecParamsAtEnd++; 5420 continue; 5421 } 5422 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5423 NumBytes = ((NumBytes+15)/16)*16; 5424 } 5425 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5426 } 5427 5428 // Allow for Altivec parameters at the end, if needed. 5429 if (nAltivecParamsAtEnd) { 5430 NumBytes = ((NumBytes+15)/16)*16; 5431 NumBytes += 16*nAltivecParamsAtEnd; 5432 } 5433 5434 // The prolog code of the callee may store up to 8 GPR argument registers to 5435 // the stack, allowing va_start to index over them in memory if its varargs. 5436 // Because we cannot tell if this is needed on the caller side, we have to 5437 // conservatively assume that it is needed. As such, make sure we have at 5438 // least enough stack space for the caller to store the 8 GPRs. 5439 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5440 5441 // Tail call needs the stack to be aligned. 5442 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5443 CallConv == CallingConv::Fast) 5444 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5445 5446 // Calculate by how many bytes the stack has to be adjusted in case of tail 5447 // call optimization. 5448 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5449 5450 // To protect arguments on the stack from being clobbered in a tail call, 5451 // force all the loads to happen before doing any other lowering. 5452 if (isTailCall) 5453 Chain = DAG.getStackArgumentTokenFactor(Chain); 5454 5455 // Adjust the stack pointer for the new arguments... 5456 // These operations are automatically eliminated by the prolog/epilog pass 5457 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5458 dl); 5459 SDValue CallSeqStart = Chain; 5460 5461 // Load the return address and frame pointer so it can be move somewhere else 5462 // later. 5463 SDValue LROp, FPOp; 5464 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5465 dl); 5466 5467 // Set up a copy of the stack pointer for use loading and storing any 5468 // arguments that may not fit in the registers available for argument 5469 // passing. 5470 SDValue StackPtr; 5471 if (isPPC64) 5472 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5473 else 5474 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5475 5476 // Figure out which arguments are going to go in registers, and which in 5477 // memory. Also, if this is a vararg function, floating point operations 5478 // must be stored to our stack, and loaded into integer regs as well, if 5479 // any integer regs are available for argument passing. 5480 unsigned ArgOffset = LinkageSize; 5481 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5482 5483 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5484 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5485 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5486 }; 5487 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5488 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5489 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5490 }; 5491 static const MCPhysReg VR[] = { 5492 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5493 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5494 }; 5495 const unsigned NumGPRs = array_lengthof(GPR_32); 5496 const unsigned NumFPRs = 13; 5497 const unsigned NumVRs = array_lengthof(VR); 5498 5499 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5500 5501 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5502 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5503 5504 SmallVector<SDValue, 8> MemOpChains; 5505 for (unsigned i = 0; i != NumOps; ++i) { 5506 SDValue Arg = OutVals[i]; 5507 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5508 5509 // PtrOff will be used to store the current argument to the stack if a 5510 // register cannot be found for it. 5511 SDValue PtrOff; 5512 5513 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5514 5515 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5516 5517 // On PPC64, promote integers to 64-bit values. 5518 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5519 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5520 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5521 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5522 } 5523 5524 // FIXME memcpy is used way more than necessary. Correctness first. 5525 // Note: "by value" is code for passing a structure by value, not 5526 // basic types. 5527 if (Flags.isByVal()) { 5528 unsigned Size = Flags.getByValSize(); 5529 // Very small objects are passed right-justified. Everything else is 5530 // passed left-justified. 5531 if (Size==1 || Size==2) { 5532 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5533 if (GPR_idx != NumGPRs) { 5534 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5535 MachinePointerInfo(), VT, 5536 false, false, false, 0); 5537 MemOpChains.push_back(Load.getValue(1)); 5538 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5539 5540 ArgOffset += PtrByteSize; 5541 } else { 5542 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5543 PtrOff.getValueType()); 5544 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5545 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5546 CallSeqStart, 5547 Flags, DAG, dl); 5548 ArgOffset += PtrByteSize; 5549 } 5550 continue; 5551 } 5552 // Copy entire object into memory. There are cases where gcc-generated 5553 // code assumes it is there, even if it could be put entirely into 5554 // registers. (This is not what the doc says.) 5555 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5556 CallSeqStart, 5557 Flags, DAG, dl); 5558 5559 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5560 // copy the pieces of the object that fit into registers from the 5561 // parameter save area. 5562 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5563 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5564 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5565 if (GPR_idx != NumGPRs) { 5566 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5567 MachinePointerInfo(), 5568 false, false, false, 0); 5569 MemOpChains.push_back(Load.getValue(1)); 5570 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5571 ArgOffset += PtrByteSize; 5572 } else { 5573 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5574 break; 5575 } 5576 } 5577 continue; 5578 } 5579 5580 switch (Arg.getSimpleValueType().SimpleTy) { 5581 default: llvm_unreachable("Unexpected ValueType for argument!"); 5582 case MVT::i1: 5583 case MVT::i32: 5584 case MVT::i64: 5585 if (GPR_idx != NumGPRs) { 5586 if (Arg.getValueType() == MVT::i1) 5587 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5588 5589 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5590 } else { 5591 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5592 isPPC64, isTailCall, false, MemOpChains, 5593 TailCallArguments, dl); 5594 } 5595 ArgOffset += PtrByteSize; 5596 break; 5597 case MVT::f32: 5598 case MVT::f64: 5599 if (FPR_idx != NumFPRs) { 5600 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5601 5602 if (isVarArg) { 5603 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5604 MachinePointerInfo(), false, false, 0); 5605 MemOpChains.push_back(Store); 5606 5607 // Float varargs are always shadowed in available integer registers 5608 if (GPR_idx != NumGPRs) { 5609 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5610 MachinePointerInfo(), false, false, 5611 false, 0); 5612 MemOpChains.push_back(Load.getValue(1)); 5613 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5614 } 5615 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5616 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5617 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5618 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5619 MachinePointerInfo(), 5620 false, false, false, 0); 5621 MemOpChains.push_back(Load.getValue(1)); 5622 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5623 } 5624 } else { 5625 // If we have any FPRs remaining, we may also have GPRs remaining. 5626 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5627 // GPRs. 5628 if (GPR_idx != NumGPRs) 5629 ++GPR_idx; 5630 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5631 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5632 ++GPR_idx; 5633 } 5634 } else 5635 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5636 isPPC64, isTailCall, false, MemOpChains, 5637 TailCallArguments, dl); 5638 if (isPPC64) 5639 ArgOffset += 8; 5640 else 5641 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5642 break; 5643 case MVT::v4f32: 5644 case MVT::v4i32: 5645 case MVT::v8i16: 5646 case MVT::v16i8: 5647 if (isVarArg) { 5648 // These go aligned on the stack, or in the corresponding R registers 5649 // when within range. The Darwin PPC ABI doc claims they also go in 5650 // V registers; in fact gcc does this only for arguments that are 5651 // prototyped, not for those that match the ... We do it for all 5652 // arguments, seems to work. 5653 while (ArgOffset % 16 !=0) { 5654 ArgOffset += PtrByteSize; 5655 if (GPR_idx != NumGPRs) 5656 GPR_idx++; 5657 } 5658 // We could elide this store in the case where the object fits 5659 // entirely in R registers. Maybe later. 5660 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5661 DAG.getConstant(ArgOffset, dl, PtrVT)); 5662 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5663 MachinePointerInfo(), false, false, 0); 5664 MemOpChains.push_back(Store); 5665 if (VR_idx != NumVRs) { 5666 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5667 MachinePointerInfo(), 5668 false, false, false, 0); 5669 MemOpChains.push_back(Load.getValue(1)); 5670 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5671 } 5672 ArgOffset += 16; 5673 for (unsigned i=0; i<16; i+=PtrByteSize) { 5674 if (GPR_idx == NumGPRs) 5675 break; 5676 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5677 DAG.getConstant(i, dl, PtrVT)); 5678 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5679 false, false, false, 0); 5680 MemOpChains.push_back(Load.getValue(1)); 5681 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5682 } 5683 break; 5684 } 5685 5686 // Non-varargs Altivec params generally go in registers, but have 5687 // stack space allocated at the end. 5688 if (VR_idx != NumVRs) { 5689 // Doesn't have GPR space allocated. 5690 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5691 } else if (nAltivecParamsAtEnd==0) { 5692 // We are emitting Altivec params in order. 5693 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5694 isPPC64, isTailCall, true, MemOpChains, 5695 TailCallArguments, dl); 5696 ArgOffset += 16; 5697 } 5698 break; 5699 } 5700 } 5701 // If all Altivec parameters fit in registers, as they usually do, 5702 // they get stack space following the non-Altivec parameters. We 5703 // don't track this here because nobody below needs it. 5704 // If there are more Altivec parameters than fit in registers emit 5705 // the stores here. 5706 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5707 unsigned j = 0; 5708 // Offset is aligned; skip 1st 12 params which go in V registers. 5709 ArgOffset = ((ArgOffset+15)/16)*16; 5710 ArgOffset += 12*16; 5711 for (unsigned i = 0; i != NumOps; ++i) { 5712 SDValue Arg = OutVals[i]; 5713 EVT ArgType = Outs[i].VT; 5714 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5715 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5716 if (++j > NumVRs) { 5717 SDValue PtrOff; 5718 // We are emitting Altivec params in order. 5719 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5720 isPPC64, isTailCall, true, MemOpChains, 5721 TailCallArguments, dl); 5722 ArgOffset += 16; 5723 } 5724 } 5725 } 5726 } 5727 5728 if (!MemOpChains.empty()) 5729 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5730 5731 // On Darwin, R12 must contain the address of an indirect callee. This does 5732 // not mean the MTCTR instruction must use R12; it's easier to model this as 5733 // an extra parameter, so do that. 5734 if (!isTailCall && 5735 !isFunctionGlobalAddress(Callee) && 5736 !isa<ExternalSymbolSDNode>(Callee) && 5737 !isBLACompatibleAddress(Callee, DAG)) 5738 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5739 PPC::R12), Callee)); 5740 5741 // Build a sequence of copy-to-reg nodes chained together with token chain 5742 // and flag operands which copy the outgoing args into the appropriate regs. 5743 SDValue InFlag; 5744 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5745 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5746 RegsToPass[i].second, InFlag); 5747 InFlag = Chain.getValue(1); 5748 } 5749 5750 if (isTailCall) 5751 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5752 FPOp, true, TailCallArguments); 5753 5754 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5755 /* unused except on PPC64 ELFv1 */ false, DAG, 5756 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5757 NumBytes, Ins, InVals, CS); 5758 } 5759 5760 bool 5761 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5762 MachineFunction &MF, bool isVarArg, 5763 const SmallVectorImpl<ISD::OutputArg> &Outs, 5764 LLVMContext &Context) const { 5765 SmallVector<CCValAssign, 16> RVLocs; 5766 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5767 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5768 } 5769 5770 SDValue 5771 PPCTargetLowering::LowerReturn(SDValue Chain, 5772 CallingConv::ID CallConv, bool isVarArg, 5773 const SmallVectorImpl<ISD::OutputArg> &Outs, 5774 const SmallVectorImpl<SDValue> &OutVals, 5775 SDLoc dl, SelectionDAG &DAG) const { 5776 5777 SmallVector<CCValAssign, 16> RVLocs; 5778 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5779 *DAG.getContext()); 5780 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5781 5782 SDValue Flag; 5783 SmallVector<SDValue, 4> RetOps(1, Chain); 5784 5785 // Copy the result values into the output registers. 5786 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5787 CCValAssign &VA = RVLocs[i]; 5788 assert(VA.isRegLoc() && "Can only return in registers!"); 5789 5790 SDValue Arg = OutVals[i]; 5791 5792 switch (VA.getLocInfo()) { 5793 default: llvm_unreachable("Unknown loc info!"); 5794 case CCValAssign::Full: break; 5795 case CCValAssign::AExt: 5796 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5797 break; 5798 case CCValAssign::ZExt: 5799 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5800 break; 5801 case CCValAssign::SExt: 5802 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5803 break; 5804 } 5805 5806 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5807 Flag = Chain.getValue(1); 5808 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5809 } 5810 5811 RetOps[0] = Chain; // Update chain. 5812 5813 // Add the flag if we have it. 5814 if (Flag.getNode()) 5815 RetOps.push_back(Flag); 5816 5817 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5818 } 5819 5820 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5821 const PPCSubtarget &Subtarget) const { 5822 // When we pop the dynamic allocation we need to restore the SP link. 5823 SDLoc dl(Op); 5824 5825 // Get the corect type for pointers. 5826 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5827 5828 // Construct the stack pointer operand. 5829 bool isPPC64 = Subtarget.isPPC64(); 5830 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5831 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5832 5833 // Get the operands for the STACKRESTORE. 5834 SDValue Chain = Op.getOperand(0); 5835 SDValue SaveSP = Op.getOperand(1); 5836 5837 // Load the old link SP. 5838 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5839 MachinePointerInfo(), 5840 false, false, false, 0); 5841 5842 // Restore the stack pointer. 5843 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5844 5845 // Store the old link SP. 5846 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5847 false, false, 0); 5848 } 5849 5850 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5851 MachineFunction &MF = DAG.getMachineFunction(); 5852 bool isPPC64 = Subtarget.isPPC64(); 5853 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5854 5855 // Get current frame pointer save index. The users of this index will be 5856 // primarily DYNALLOC instructions. 5857 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5858 int RASI = FI->getReturnAddrSaveIndex(); 5859 5860 // If the frame pointer save index hasn't been defined yet. 5861 if (!RASI) { 5862 // Find out what the fix offset of the frame pointer save area. 5863 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5864 // Allocate the frame index for frame pointer save area. 5865 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5866 // Save the result. 5867 FI->setReturnAddrSaveIndex(RASI); 5868 } 5869 return DAG.getFrameIndex(RASI, PtrVT); 5870 } 5871 5872 SDValue 5873 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5874 MachineFunction &MF = DAG.getMachineFunction(); 5875 bool isPPC64 = Subtarget.isPPC64(); 5876 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5877 5878 // Get current frame pointer save index. The users of this index will be 5879 // primarily DYNALLOC instructions. 5880 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5881 int FPSI = FI->getFramePointerSaveIndex(); 5882 5883 // If the frame pointer save index hasn't been defined yet. 5884 if (!FPSI) { 5885 // Find out what the fix offset of the frame pointer save area. 5886 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5887 // Allocate the frame index for frame pointer save area. 5888 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5889 // Save the result. 5890 FI->setFramePointerSaveIndex(FPSI); 5891 } 5892 return DAG.getFrameIndex(FPSI, PtrVT); 5893 } 5894 5895 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5896 SelectionDAG &DAG, 5897 const PPCSubtarget &Subtarget) const { 5898 // Get the inputs. 5899 SDValue Chain = Op.getOperand(0); 5900 SDValue Size = Op.getOperand(1); 5901 SDLoc dl(Op); 5902 5903 // Get the corect type for pointers. 5904 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5905 // Negate the size. 5906 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5907 DAG.getConstant(0, dl, PtrVT), Size); 5908 // Construct a node for the frame pointer save index. 5909 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5910 // Build a DYNALLOC node. 5911 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5912 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5913 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5914 } 5915 5916 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5917 SelectionDAG &DAG) const { 5918 SDLoc DL(Op); 5919 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5920 DAG.getVTList(MVT::i32, MVT::Other), 5921 Op.getOperand(0), Op.getOperand(1)); 5922 } 5923 5924 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5925 SelectionDAG &DAG) const { 5926 SDLoc DL(Op); 5927 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5928 Op.getOperand(0), Op.getOperand(1)); 5929 } 5930 5931 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5932 if (Op.getValueType().isVector()) 5933 return LowerVectorLoad(Op, DAG); 5934 5935 assert(Op.getValueType() == MVT::i1 && 5936 "Custom lowering only for i1 loads"); 5937 5938 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5939 5940 SDLoc dl(Op); 5941 LoadSDNode *LD = cast<LoadSDNode>(Op); 5942 5943 SDValue Chain = LD->getChain(); 5944 SDValue BasePtr = LD->getBasePtr(); 5945 MachineMemOperand *MMO = LD->getMemOperand(); 5946 5947 SDValue NewLD = 5948 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5949 BasePtr, MVT::i8, MMO); 5950 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5951 5952 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5953 return DAG.getMergeValues(Ops, dl); 5954 } 5955 5956 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5957 if (Op.getOperand(1).getValueType().isVector()) 5958 return LowerVectorStore(Op, DAG); 5959 5960 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5961 "Custom lowering only for i1 stores"); 5962 5963 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5964 5965 SDLoc dl(Op); 5966 StoreSDNode *ST = cast<StoreSDNode>(Op); 5967 5968 SDValue Chain = ST->getChain(); 5969 SDValue BasePtr = ST->getBasePtr(); 5970 SDValue Value = ST->getValue(); 5971 MachineMemOperand *MMO = ST->getMemOperand(); 5972 5973 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5974 Value); 5975 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5976 } 5977 5978 // FIXME: Remove this once the ANDI glue bug is fixed: 5979 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5980 assert(Op.getValueType() == MVT::i1 && 5981 "Custom lowering only for i1 results"); 5982 5983 SDLoc DL(Op); 5984 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5985 Op.getOperand(0)); 5986 } 5987 5988 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5989 /// possible. 5990 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5991 // Not FP? Not a fsel. 5992 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5993 !Op.getOperand(2).getValueType().isFloatingPoint()) 5994 return Op; 5995 5996 // We might be able to do better than this under some circumstances, but in 5997 // general, fsel-based lowering of select is a finite-math-only optimization. 5998 // For more information, see section F.3 of the 2.06 ISA specification. 5999 if (!DAG.getTarget().Options.NoInfsFPMath || 6000 !DAG.getTarget().Options.NoNaNsFPMath) 6001 return Op; 6002 // TODO: Propagate flags from the select rather than global settings. 6003 SDNodeFlags Flags; 6004 Flags.setNoInfs(true); 6005 Flags.setNoNaNs(true); 6006 6007 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6008 6009 EVT ResVT = Op.getValueType(); 6010 EVT CmpVT = Op.getOperand(0).getValueType(); 6011 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6012 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6013 SDLoc dl(Op); 6014 6015 // If the RHS of the comparison is a 0.0, we don't need to do the 6016 // subtraction at all. 6017 SDValue Sel1; 6018 if (isFloatingPointZero(RHS)) 6019 switch (CC) { 6020 default: break; // SETUO etc aren't handled by fsel. 6021 case ISD::SETNE: 6022 std::swap(TV, FV); 6023 case ISD::SETEQ: 6024 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6025 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6026 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6027 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6028 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6029 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6030 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6031 case ISD::SETULT: 6032 case ISD::SETLT: 6033 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6034 case ISD::SETOGE: 6035 case ISD::SETGE: 6036 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6037 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6038 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6039 case ISD::SETUGT: 6040 case ISD::SETGT: 6041 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6042 case ISD::SETOLE: 6043 case ISD::SETLE: 6044 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6045 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6046 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6047 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6048 } 6049 6050 SDValue Cmp; 6051 switch (CC) { 6052 default: break; // SETUO etc aren't handled by fsel. 6053 case ISD::SETNE: 6054 std::swap(TV, FV); 6055 case ISD::SETEQ: 6056 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6057 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6058 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6059 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6060 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6061 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6062 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6063 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6064 case ISD::SETULT: 6065 case ISD::SETLT: 6066 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6067 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6068 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6069 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6070 case ISD::SETOGE: 6071 case ISD::SETGE: 6072 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6073 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6074 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6075 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6076 case ISD::SETUGT: 6077 case ISD::SETGT: 6078 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6079 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6080 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6081 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6082 case ISD::SETOLE: 6083 case ISD::SETLE: 6084 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6085 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6086 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6087 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6088 } 6089 return Op; 6090 } 6091 6092 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6093 SelectionDAG &DAG, 6094 SDLoc dl) const { 6095 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6096 SDValue Src = Op.getOperand(0); 6097 if (Src.getValueType() == MVT::f32) 6098 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6099 6100 SDValue Tmp; 6101 switch (Op.getSimpleValueType().SimpleTy) { 6102 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6103 case MVT::i32: 6104 Tmp = DAG.getNode( 6105 Op.getOpcode() == ISD::FP_TO_SINT 6106 ? PPCISD::FCTIWZ 6107 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6108 dl, MVT::f64, Src); 6109 break; 6110 case MVT::i64: 6111 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6112 "i64 FP_TO_UINT is supported only with FPCVT"); 6113 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6114 PPCISD::FCTIDUZ, 6115 dl, MVT::f64, Src); 6116 break; 6117 } 6118 6119 // Convert the FP value to an int value through memory. 6120 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6121 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6122 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6123 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6124 MachinePointerInfo MPI = 6125 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6126 6127 // Emit a store to the stack slot. 6128 SDValue Chain; 6129 if (i32Stack) { 6130 MachineFunction &MF = DAG.getMachineFunction(); 6131 MachineMemOperand *MMO = 6132 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6133 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6134 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6135 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6136 } else 6137 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6138 MPI, false, false, 0); 6139 6140 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6141 // add in a bias. 6142 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6143 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6144 DAG.getConstant(4, dl, FIPtr.getValueType())); 6145 MPI = MPI.getWithOffset(4); 6146 } 6147 6148 RLI.Chain = Chain; 6149 RLI.Ptr = FIPtr; 6150 RLI.MPI = MPI; 6151 } 6152 6153 /// \brief Custom lowers floating point to integer conversions to use 6154 /// the direct move instructions available in ISA 2.07 to avoid the 6155 /// need for load/store combinations. 6156 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6157 SelectionDAG &DAG, 6158 SDLoc dl) const { 6159 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6160 SDValue Src = Op.getOperand(0); 6161 6162 if (Src.getValueType() == MVT::f32) 6163 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6164 6165 SDValue Tmp; 6166 switch (Op.getSimpleValueType().SimpleTy) { 6167 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6168 case MVT::i32: 6169 Tmp = DAG.getNode( 6170 Op.getOpcode() == ISD::FP_TO_SINT 6171 ? PPCISD::FCTIWZ 6172 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6173 dl, MVT::f64, Src); 6174 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6175 break; 6176 case MVT::i64: 6177 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6178 "i64 FP_TO_UINT is supported only with FPCVT"); 6179 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6180 PPCISD::FCTIDUZ, 6181 dl, MVT::f64, Src); 6182 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6183 break; 6184 } 6185 return Tmp; 6186 } 6187 6188 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6189 SDLoc dl) const { 6190 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6191 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6192 6193 ReuseLoadInfo RLI; 6194 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6195 6196 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6197 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6198 RLI.Ranges); 6199 } 6200 6201 // We're trying to insert a regular store, S, and then a load, L. If the 6202 // incoming value, O, is a load, we might just be able to have our load use the 6203 // address used by O. However, we don't know if anything else will store to 6204 // that address before we can load from it. To prevent this situation, we need 6205 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6206 // the same chain operand as O, we create a token factor from the chain results 6207 // of O and L, and we replace all uses of O's chain result with that token 6208 // factor (see spliceIntoChain below for this last part). 6209 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6210 ReuseLoadInfo &RLI, 6211 SelectionDAG &DAG, 6212 ISD::LoadExtType ET) const { 6213 SDLoc dl(Op); 6214 if (ET == ISD::NON_EXTLOAD && 6215 (Op.getOpcode() == ISD::FP_TO_UINT || 6216 Op.getOpcode() == ISD::FP_TO_SINT) && 6217 isOperationLegalOrCustom(Op.getOpcode(), 6218 Op.getOperand(0).getValueType())) { 6219 6220 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6221 return true; 6222 } 6223 6224 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6225 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6226 LD->isNonTemporal()) 6227 return false; 6228 if (LD->getMemoryVT() != MemVT) 6229 return false; 6230 6231 RLI.Ptr = LD->getBasePtr(); 6232 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6233 assert(LD->getAddressingMode() == ISD::PRE_INC && 6234 "Non-pre-inc AM on PPC?"); 6235 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6236 LD->getOffset()); 6237 } 6238 6239 RLI.Chain = LD->getChain(); 6240 RLI.MPI = LD->getPointerInfo(); 6241 RLI.IsInvariant = LD->isInvariant(); 6242 RLI.Alignment = LD->getAlignment(); 6243 RLI.AAInfo = LD->getAAInfo(); 6244 RLI.Ranges = LD->getRanges(); 6245 6246 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6247 return true; 6248 } 6249 6250 // Given the head of the old chain, ResChain, insert a token factor containing 6251 // it and NewResChain, and make users of ResChain now be users of that token 6252 // factor. 6253 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6254 SDValue NewResChain, 6255 SelectionDAG &DAG) const { 6256 if (!ResChain) 6257 return; 6258 6259 SDLoc dl(NewResChain); 6260 6261 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6262 NewResChain, DAG.getUNDEF(MVT::Other)); 6263 assert(TF.getNode() != NewResChain.getNode() && 6264 "A new TF really is required here"); 6265 6266 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6267 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6268 } 6269 6270 /// \brief Custom lowers integer to floating point conversions to use 6271 /// the direct move instructions available in ISA 2.07 to avoid the 6272 /// need for load/store combinations. 6273 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6274 SelectionDAG &DAG, 6275 SDLoc dl) const { 6276 assert((Op.getValueType() == MVT::f32 || 6277 Op.getValueType() == MVT::f64) && 6278 "Invalid floating point type as target of conversion"); 6279 assert(Subtarget.hasFPCVT() && 6280 "Int to FP conversions with direct moves require FPCVT"); 6281 SDValue FP; 6282 SDValue Src = Op.getOperand(0); 6283 bool SinglePrec = Op.getValueType() == MVT::f32; 6284 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6285 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6286 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6287 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6288 6289 if (WordInt) { 6290 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6291 dl, MVT::f64, Src); 6292 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6293 } 6294 else { 6295 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6296 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6297 } 6298 6299 return FP; 6300 } 6301 6302 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6303 SelectionDAG &DAG) const { 6304 SDLoc dl(Op); 6305 6306 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6307 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6308 return SDValue(); 6309 6310 SDValue Value = Op.getOperand(0); 6311 // The values are now known to be -1 (false) or 1 (true). To convert this 6312 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6313 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6314 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6315 6316 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6317 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs, 6318 FPHalfs, FPHalfs); 6319 6320 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6321 6322 if (Op.getValueType() != MVT::v4f64) 6323 Value = DAG.getNode(ISD::FP_ROUND, dl, 6324 Op.getValueType(), Value, 6325 DAG.getIntPtrConstant(1, dl)); 6326 return Value; 6327 } 6328 6329 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6330 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6331 return SDValue(); 6332 6333 if (Op.getOperand(0).getValueType() == MVT::i1) 6334 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6335 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6336 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6337 6338 // If we have direct moves, we can do all the conversion, skip the store/load 6339 // however, without FPCVT we can't do most conversions. 6340 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6341 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6342 6343 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6344 "UINT_TO_FP is supported only with FPCVT"); 6345 6346 // If we have FCFIDS, then use it when converting to single-precision. 6347 // Otherwise, convert to double-precision and then round. 6348 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6349 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6350 : PPCISD::FCFIDS) 6351 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6352 : PPCISD::FCFID); 6353 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6354 ? MVT::f32 6355 : MVT::f64; 6356 6357 if (Op.getOperand(0).getValueType() == MVT::i64) { 6358 SDValue SINT = Op.getOperand(0); 6359 // When converting to single-precision, we actually need to convert 6360 // to double-precision first and then round to single-precision. 6361 // To avoid double-rounding effects during that operation, we have 6362 // to prepare the input operand. Bits that might be truncated when 6363 // converting to double-precision are replaced by a bit that won't 6364 // be lost at this stage, but is below the single-precision rounding 6365 // position. 6366 // 6367 // However, if -enable-unsafe-fp-math is in effect, accept double 6368 // rounding to avoid the extra overhead. 6369 if (Op.getValueType() == MVT::f32 && 6370 !Subtarget.hasFPCVT() && 6371 !DAG.getTarget().Options.UnsafeFPMath) { 6372 6373 // Twiddle input to make sure the low 11 bits are zero. (If this 6374 // is the case, we are guaranteed the value will fit into the 53 bit 6375 // mantissa of an IEEE double-precision value without rounding.) 6376 // If any of those low 11 bits were not zero originally, make sure 6377 // bit 12 (value 2048) is set instead, so that the final rounding 6378 // to single-precision gets the correct result. 6379 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6380 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6381 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6382 Round, DAG.getConstant(2047, dl, MVT::i64)); 6383 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6384 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6385 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6386 6387 // However, we cannot use that value unconditionally: if the magnitude 6388 // of the input value is small, the bit-twiddling we did above might 6389 // end up visibly changing the output. Fortunately, in that case, we 6390 // don't need to twiddle bits since the original input will convert 6391 // exactly to double-precision floating-point already. Therefore, 6392 // construct a conditional to use the original value if the top 11 6393 // bits are all sign-bit copies, and use the rounded value computed 6394 // above otherwise. 6395 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6396 SINT, DAG.getConstant(53, dl, MVT::i32)); 6397 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6398 Cond, DAG.getConstant(1, dl, MVT::i64)); 6399 Cond = DAG.getSetCC(dl, MVT::i32, 6400 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6401 6402 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6403 } 6404 6405 ReuseLoadInfo RLI; 6406 SDValue Bits; 6407 6408 MachineFunction &MF = DAG.getMachineFunction(); 6409 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6410 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6411 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6412 RLI.Ranges); 6413 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6414 } else if (Subtarget.hasLFIWAX() && 6415 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6416 MachineMemOperand *MMO = 6417 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6418 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6419 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6420 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6421 DAG.getVTList(MVT::f64, MVT::Other), 6422 Ops, MVT::i32, MMO); 6423 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6424 } else if (Subtarget.hasFPCVT() && 6425 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6426 MachineMemOperand *MMO = 6427 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6428 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6429 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6430 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6431 DAG.getVTList(MVT::f64, MVT::Other), 6432 Ops, MVT::i32, MMO); 6433 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6434 } else if (((Subtarget.hasLFIWAX() && 6435 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6436 (Subtarget.hasFPCVT() && 6437 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6438 SINT.getOperand(0).getValueType() == MVT::i32) { 6439 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6440 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6441 6442 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6443 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6444 6445 SDValue Store = DAG.getStore( 6446 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6447 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6448 false, false, 0); 6449 6450 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6451 "Expected an i32 store"); 6452 6453 RLI.Ptr = FIdx; 6454 RLI.Chain = Store; 6455 RLI.MPI = 6456 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6457 RLI.Alignment = 4; 6458 6459 MachineMemOperand *MMO = 6460 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6461 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6462 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6463 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6464 PPCISD::LFIWZX : PPCISD::LFIWAX, 6465 dl, DAG.getVTList(MVT::f64, MVT::Other), 6466 Ops, MVT::i32, MMO); 6467 } else 6468 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6469 6470 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6471 6472 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6473 FP = DAG.getNode(ISD::FP_ROUND, dl, 6474 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6475 return FP; 6476 } 6477 6478 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6479 "Unhandled INT_TO_FP type in custom expander!"); 6480 // Since we only generate this in 64-bit mode, we can take advantage of 6481 // 64-bit registers. In particular, sign extend the input value into the 6482 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6483 // then lfd it and fcfid it. 6484 MachineFunction &MF = DAG.getMachineFunction(); 6485 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6486 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6487 6488 SDValue Ld; 6489 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6490 ReuseLoadInfo RLI; 6491 bool ReusingLoad; 6492 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6493 DAG))) { 6494 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6495 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6496 6497 SDValue Store = DAG.getStore( 6498 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6499 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6500 false, false, 0); 6501 6502 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6503 "Expected an i32 store"); 6504 6505 RLI.Ptr = FIdx; 6506 RLI.Chain = Store; 6507 RLI.MPI = 6508 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6509 RLI.Alignment = 4; 6510 } 6511 6512 MachineMemOperand *MMO = 6513 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6514 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6515 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6516 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6517 PPCISD::LFIWZX : PPCISD::LFIWAX, 6518 dl, DAG.getVTList(MVT::f64, MVT::Other), 6519 Ops, MVT::i32, MMO); 6520 if (ReusingLoad) 6521 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6522 } else { 6523 assert(Subtarget.isPPC64() && 6524 "i32->FP without LFIWAX supported only on PPC64"); 6525 6526 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6527 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6528 6529 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6530 Op.getOperand(0)); 6531 6532 // STD the extended value into the stack slot. 6533 SDValue Store = DAG.getStore( 6534 DAG.getEntryNode(), dl, Ext64, FIdx, 6535 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6536 false, false, 0); 6537 6538 // Load the value as a double. 6539 Ld = DAG.getLoad( 6540 MVT::f64, dl, Store, FIdx, 6541 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6542 false, false, false, 0); 6543 } 6544 6545 // FCFID it and return it. 6546 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6547 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6548 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6549 DAG.getIntPtrConstant(0, dl)); 6550 return FP; 6551 } 6552 6553 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6554 SelectionDAG &DAG) const { 6555 SDLoc dl(Op); 6556 /* 6557 The rounding mode is in bits 30:31 of FPSR, and has the following 6558 settings: 6559 00 Round to nearest 6560 01 Round to 0 6561 10 Round to +inf 6562 11 Round to -inf 6563 6564 FLT_ROUNDS, on the other hand, expects the following: 6565 -1 Undefined 6566 0 Round to 0 6567 1 Round to nearest 6568 2 Round to +inf 6569 3 Round to -inf 6570 6571 To perform the conversion, we do: 6572 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6573 */ 6574 6575 MachineFunction &MF = DAG.getMachineFunction(); 6576 EVT VT = Op.getValueType(); 6577 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6578 6579 // Save FP Control Word to register 6580 EVT NodeTys[] = { 6581 MVT::f64, // return register 6582 MVT::Glue // unused in this context 6583 }; 6584 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6585 6586 // Save FP register to stack slot 6587 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6588 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6589 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6590 StackSlot, MachinePointerInfo(), false, false,0); 6591 6592 // Load FP Control Word from low 32 bits of stack slot. 6593 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6594 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6595 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6596 false, false, false, 0); 6597 6598 // Transform as necessary 6599 SDValue CWD1 = 6600 DAG.getNode(ISD::AND, dl, MVT::i32, 6601 CWD, DAG.getConstant(3, dl, MVT::i32)); 6602 SDValue CWD2 = 6603 DAG.getNode(ISD::SRL, dl, MVT::i32, 6604 DAG.getNode(ISD::AND, dl, MVT::i32, 6605 DAG.getNode(ISD::XOR, dl, MVT::i32, 6606 CWD, DAG.getConstant(3, dl, MVT::i32)), 6607 DAG.getConstant(3, dl, MVT::i32)), 6608 DAG.getConstant(1, dl, MVT::i32)); 6609 6610 SDValue RetVal = 6611 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6612 6613 return DAG.getNode((VT.getSizeInBits() < 16 ? 6614 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6615 } 6616 6617 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6618 EVT VT = Op.getValueType(); 6619 unsigned BitWidth = VT.getSizeInBits(); 6620 SDLoc dl(Op); 6621 assert(Op.getNumOperands() == 3 && 6622 VT == Op.getOperand(1).getValueType() && 6623 "Unexpected SHL!"); 6624 6625 // Expand into a bunch of logical ops. Note that these ops 6626 // depend on the PPC behavior for oversized shift amounts. 6627 SDValue Lo = Op.getOperand(0); 6628 SDValue Hi = Op.getOperand(1); 6629 SDValue Amt = Op.getOperand(2); 6630 EVT AmtVT = Amt.getValueType(); 6631 6632 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6633 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6634 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6635 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6636 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6637 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6638 DAG.getConstant(-BitWidth, dl, AmtVT)); 6639 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6640 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6641 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6642 SDValue OutOps[] = { OutLo, OutHi }; 6643 return DAG.getMergeValues(OutOps, dl); 6644 } 6645 6646 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6647 EVT VT = Op.getValueType(); 6648 SDLoc dl(Op); 6649 unsigned BitWidth = VT.getSizeInBits(); 6650 assert(Op.getNumOperands() == 3 && 6651 VT == Op.getOperand(1).getValueType() && 6652 "Unexpected SRL!"); 6653 6654 // Expand into a bunch of logical ops. Note that these ops 6655 // depend on the PPC behavior for oversized shift amounts. 6656 SDValue Lo = Op.getOperand(0); 6657 SDValue Hi = Op.getOperand(1); 6658 SDValue Amt = Op.getOperand(2); 6659 EVT AmtVT = Amt.getValueType(); 6660 6661 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6662 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6663 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6664 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6665 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6666 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6667 DAG.getConstant(-BitWidth, dl, AmtVT)); 6668 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6669 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6670 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6671 SDValue OutOps[] = { OutLo, OutHi }; 6672 return DAG.getMergeValues(OutOps, dl); 6673 } 6674 6675 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6676 SDLoc dl(Op); 6677 EVT VT = Op.getValueType(); 6678 unsigned BitWidth = VT.getSizeInBits(); 6679 assert(Op.getNumOperands() == 3 && 6680 VT == Op.getOperand(1).getValueType() && 6681 "Unexpected SRA!"); 6682 6683 // Expand into a bunch of logical ops, followed by a select_cc. 6684 SDValue Lo = Op.getOperand(0); 6685 SDValue Hi = Op.getOperand(1); 6686 SDValue Amt = Op.getOperand(2); 6687 EVT AmtVT = Amt.getValueType(); 6688 6689 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6690 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6691 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6692 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6693 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6694 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6695 DAG.getConstant(-BitWidth, dl, AmtVT)); 6696 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6697 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6698 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6699 Tmp4, Tmp6, ISD::SETLE); 6700 SDValue OutOps[] = { OutLo, OutHi }; 6701 return DAG.getMergeValues(OutOps, dl); 6702 } 6703 6704 //===----------------------------------------------------------------------===// 6705 // Vector related lowering. 6706 // 6707 6708 /// BuildSplatI - Build a canonical splati of Val with an element size of 6709 /// SplatSize. Cast the result to VT. 6710 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6711 SelectionDAG &DAG, SDLoc dl) { 6712 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6713 6714 static const MVT VTys[] = { // canonical VT to use for each size. 6715 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6716 }; 6717 6718 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6719 6720 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6721 if (Val == -1) 6722 SplatSize = 1; 6723 6724 EVT CanonicalVT = VTys[SplatSize-1]; 6725 6726 // Build a canonical splat for this value. 6727 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6728 SmallVector<SDValue, 8> Ops; 6729 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6730 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6731 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6732 } 6733 6734 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6735 /// specified intrinsic ID. 6736 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6737 SelectionDAG &DAG, SDLoc dl, 6738 EVT DestVT = MVT::Other) { 6739 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6740 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6741 DAG.getConstant(IID, dl, MVT::i32), Op); 6742 } 6743 6744 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6745 /// specified intrinsic ID. 6746 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6747 SelectionDAG &DAG, SDLoc dl, 6748 EVT DestVT = MVT::Other) { 6749 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6750 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6751 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6752 } 6753 6754 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6755 /// specified intrinsic ID. 6756 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6757 SDValue Op2, SelectionDAG &DAG, 6758 SDLoc dl, EVT DestVT = MVT::Other) { 6759 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6760 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6761 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6762 } 6763 6764 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6765 /// amount. The result has the specified value type. 6766 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6767 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6768 // Force LHS/RHS to be the right type. 6769 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6770 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6771 6772 int Ops[16]; 6773 for (unsigned i = 0; i != 16; ++i) 6774 Ops[i] = i + Amt; 6775 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6776 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6777 } 6778 6779 // If this is a case we can't handle, return null and let the default 6780 // expansion code take care of it. If we CAN select this case, and if it 6781 // selects to a single instruction, return Op. Otherwise, if we can codegen 6782 // this case more efficiently than a constant pool load, lower it to the 6783 // sequence of ops that should be used. 6784 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6785 SelectionDAG &DAG) const { 6786 SDLoc dl(Op); 6787 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6788 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6789 6790 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6791 // We first build an i32 vector, load it into a QPX register, 6792 // then convert it to a floating-point vector and compare it 6793 // to a zero vector to get the boolean result. 6794 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6795 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6796 MachinePointerInfo PtrInfo = 6797 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6798 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6799 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6800 6801 assert(BVN->getNumOperands() == 4 && 6802 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6803 6804 bool IsConst = true; 6805 for (unsigned i = 0; i < 4; ++i) { 6806 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6807 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6808 IsConst = false; 6809 break; 6810 } 6811 } 6812 6813 if (IsConst) { 6814 Constant *One = 6815 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6816 Constant *NegOne = 6817 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6818 6819 SmallVector<Constant*, 4> CV(4, NegOne); 6820 for (unsigned i = 0; i < 4; ++i) { 6821 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6822 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6823 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6824 getConstantIntValue()->isZero()) 6825 continue; 6826 else 6827 CV[i] = One; 6828 } 6829 6830 Constant *CP = ConstantVector::get(CV); 6831 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6832 16 /* alignment */); 6833 6834 SmallVector<SDValue, 2> Ops; 6835 Ops.push_back(DAG.getEntryNode()); 6836 Ops.push_back(CPIdx); 6837 6838 SmallVector<EVT, 2> ValueVTs; 6839 ValueVTs.push_back(MVT::v4i1); 6840 ValueVTs.push_back(MVT::Other); // chain 6841 SDVTList VTs = DAG.getVTList(ValueVTs); 6842 6843 return DAG.getMemIntrinsicNode( 6844 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6845 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6846 } 6847 6848 SmallVector<SDValue, 4> Stores; 6849 for (unsigned i = 0; i < 4; ++i) { 6850 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6851 6852 unsigned Offset = 4*i; 6853 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6854 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6855 6856 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6857 if (StoreSize > 4) { 6858 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6859 BVN->getOperand(i), Idx, 6860 PtrInfo.getWithOffset(Offset), 6861 MVT::i32, false, false, 0)); 6862 } else { 6863 SDValue StoreValue = BVN->getOperand(i); 6864 if (StoreSize < 4) 6865 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6866 6867 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6868 StoreValue, Idx, 6869 PtrInfo.getWithOffset(Offset), 6870 false, false, 0)); 6871 } 6872 } 6873 6874 SDValue StoreChain; 6875 if (!Stores.empty()) 6876 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6877 else 6878 StoreChain = DAG.getEntryNode(); 6879 6880 // Now load from v4i32 into the QPX register; this will extend it to 6881 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6882 // is typed as v4f64 because the QPX register integer states are not 6883 // explicitly represented. 6884 6885 SmallVector<SDValue, 2> Ops; 6886 Ops.push_back(StoreChain); 6887 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6888 Ops.push_back(FIdx); 6889 6890 SmallVector<EVT, 2> ValueVTs; 6891 ValueVTs.push_back(MVT::v4f64); 6892 ValueVTs.push_back(MVT::Other); // chain 6893 SDVTList VTs = DAG.getVTList(ValueVTs); 6894 6895 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6896 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6897 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6898 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6899 LoadedVect); 6900 6901 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6902 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6903 FPZeros, FPZeros, FPZeros, FPZeros); 6904 6905 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6906 } 6907 6908 // All other QPX vectors are handled by generic code. 6909 if (Subtarget.hasQPX()) 6910 return SDValue(); 6911 6912 // Check if this is a splat of a constant value. 6913 APInt APSplatBits, APSplatUndef; 6914 unsigned SplatBitSize; 6915 bool HasAnyUndefs; 6916 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6917 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6918 SplatBitSize > 32) 6919 return SDValue(); 6920 6921 unsigned SplatBits = APSplatBits.getZExtValue(); 6922 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6923 unsigned SplatSize = SplatBitSize / 8; 6924 6925 // First, handle single instruction cases. 6926 6927 // All zeros? 6928 if (SplatBits == 0) { 6929 // Canonicalize all zero vectors to be v4i32. 6930 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6931 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6932 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6933 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6934 } 6935 return Op; 6936 } 6937 6938 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6939 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6940 (32-SplatBitSize)); 6941 if (SextVal >= -16 && SextVal <= 15) 6942 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6943 6944 // Two instruction sequences. 6945 6946 // If this value is in the range [-32,30] and is even, use: 6947 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6948 // If this value is in the range [17,31] and is odd, use: 6949 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6950 // If this value is in the range [-31,-17] and is odd, use: 6951 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6952 // Note the last two are three-instruction sequences. 6953 if (SextVal >= -32 && SextVal <= 31) { 6954 // To avoid having these optimizations undone by constant folding, 6955 // we convert to a pseudo that will be expanded later into one of 6956 // the above forms. 6957 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6958 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6959 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6960 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6961 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6962 if (VT == Op.getValueType()) 6963 return RetVal; 6964 else 6965 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6966 } 6967 6968 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6969 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6970 // for fneg/fabs. 6971 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6972 // Make -1 and vspltisw -1: 6973 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6974 6975 // Make the VSLW intrinsic, computing 0x8000_0000. 6976 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6977 OnesV, DAG, dl); 6978 6979 // xor by OnesV to invert it. 6980 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6981 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6982 } 6983 6984 // Check to see if this is a wide variety of vsplti*, binop self cases. 6985 static const signed char SplatCsts[] = { 6986 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6987 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6988 }; 6989 6990 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6991 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6992 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6993 int i = SplatCsts[idx]; 6994 6995 // Figure out what shift amount will be used by altivec if shifted by i in 6996 // this splat size. 6997 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6998 6999 // vsplti + shl self. 7000 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7001 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7002 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7003 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7004 Intrinsic::ppc_altivec_vslw 7005 }; 7006 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7007 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7008 } 7009 7010 // vsplti + srl self. 7011 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7012 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7013 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7014 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7015 Intrinsic::ppc_altivec_vsrw 7016 }; 7017 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7018 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7019 } 7020 7021 // vsplti + sra self. 7022 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7023 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7024 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7025 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7026 Intrinsic::ppc_altivec_vsraw 7027 }; 7028 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7029 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7030 } 7031 7032 // vsplti + rol self. 7033 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7034 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7035 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7036 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7037 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7038 Intrinsic::ppc_altivec_vrlw 7039 }; 7040 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7041 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7042 } 7043 7044 // t = vsplti c, result = vsldoi t, t, 1 7045 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7046 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7047 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7048 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7049 } 7050 // t = vsplti c, result = vsldoi t, t, 2 7051 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7052 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7053 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7054 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7055 } 7056 // t = vsplti c, result = vsldoi t, t, 3 7057 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7058 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7059 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7060 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7061 } 7062 } 7063 7064 return SDValue(); 7065 } 7066 7067 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7068 /// the specified operations to build the shuffle. 7069 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7070 SDValue RHS, SelectionDAG &DAG, 7071 SDLoc dl) { 7072 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7073 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7074 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7075 7076 enum { 7077 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7078 OP_VMRGHW, 7079 OP_VMRGLW, 7080 OP_VSPLTISW0, 7081 OP_VSPLTISW1, 7082 OP_VSPLTISW2, 7083 OP_VSPLTISW3, 7084 OP_VSLDOI4, 7085 OP_VSLDOI8, 7086 OP_VSLDOI12 7087 }; 7088 7089 if (OpNum == OP_COPY) { 7090 if (LHSID == (1*9+2)*9+3) return LHS; 7091 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7092 return RHS; 7093 } 7094 7095 SDValue OpLHS, OpRHS; 7096 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7097 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7098 7099 int ShufIdxs[16]; 7100 switch (OpNum) { 7101 default: llvm_unreachable("Unknown i32 permute!"); 7102 case OP_VMRGHW: 7103 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7104 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7105 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7106 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7107 break; 7108 case OP_VMRGLW: 7109 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7110 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7111 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7112 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7113 break; 7114 case OP_VSPLTISW0: 7115 for (unsigned i = 0; i != 16; ++i) 7116 ShufIdxs[i] = (i&3)+0; 7117 break; 7118 case OP_VSPLTISW1: 7119 for (unsigned i = 0; i != 16; ++i) 7120 ShufIdxs[i] = (i&3)+4; 7121 break; 7122 case OP_VSPLTISW2: 7123 for (unsigned i = 0; i != 16; ++i) 7124 ShufIdxs[i] = (i&3)+8; 7125 break; 7126 case OP_VSPLTISW3: 7127 for (unsigned i = 0; i != 16; ++i) 7128 ShufIdxs[i] = (i&3)+12; 7129 break; 7130 case OP_VSLDOI4: 7131 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7132 case OP_VSLDOI8: 7133 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7134 case OP_VSLDOI12: 7135 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7136 } 7137 EVT VT = OpLHS.getValueType(); 7138 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7139 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7140 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7141 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7142 } 7143 7144 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7145 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7146 /// return the code it can be lowered into. Worst case, it can always be 7147 /// lowered into a vperm. 7148 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7149 SelectionDAG &DAG) const { 7150 SDLoc dl(Op); 7151 SDValue V1 = Op.getOperand(0); 7152 SDValue V2 = Op.getOperand(1); 7153 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7154 EVT VT = Op.getValueType(); 7155 bool isLittleEndian = Subtarget.isLittleEndian(); 7156 7157 if (Subtarget.hasQPX()) { 7158 if (VT.getVectorNumElements() != 4) 7159 return SDValue(); 7160 7161 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7162 7163 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7164 if (AlignIdx != -1) { 7165 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7166 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7167 } else if (SVOp->isSplat()) { 7168 int SplatIdx = SVOp->getSplatIndex(); 7169 if (SplatIdx >= 4) { 7170 std::swap(V1, V2); 7171 SplatIdx -= 4; 7172 } 7173 7174 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7175 // nothing to do. 7176 7177 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7178 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7179 } 7180 7181 // Lower this into a qvgpci/qvfperm pair. 7182 7183 // Compute the qvgpci literal 7184 unsigned idx = 0; 7185 for (unsigned i = 0; i < 4; ++i) { 7186 int m = SVOp->getMaskElt(i); 7187 unsigned mm = m >= 0 ? (unsigned) m : i; 7188 idx |= mm << (3-i)*3; 7189 } 7190 7191 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7192 DAG.getConstant(idx, dl, MVT::i32)); 7193 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7194 } 7195 7196 // Cases that are handled by instructions that take permute immediates 7197 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7198 // selected by the instruction selector. 7199 if (V2.getOpcode() == ISD::UNDEF) { 7200 if (PPC::isSplatShuffleMask(SVOp, 1) || 7201 PPC::isSplatShuffleMask(SVOp, 2) || 7202 PPC::isSplatShuffleMask(SVOp, 4) || 7203 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7204 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7205 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7206 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7207 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7208 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7209 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7210 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7211 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7212 (Subtarget.hasP8Altivec() && ( 7213 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7214 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7215 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7216 return Op; 7217 } 7218 } 7219 7220 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7221 // and produce a fixed permutation. If any of these match, do not lower to 7222 // VPERM. 7223 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7224 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7225 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7226 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7227 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7228 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7229 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7230 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7231 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7232 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7233 (Subtarget.hasP8Altivec() && ( 7234 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7235 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7236 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7237 return Op; 7238 7239 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7240 // perfect shuffle table to emit an optimal matching sequence. 7241 ArrayRef<int> PermMask = SVOp->getMask(); 7242 7243 unsigned PFIndexes[4]; 7244 bool isFourElementShuffle = true; 7245 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7246 unsigned EltNo = 8; // Start out undef. 7247 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7248 if (PermMask[i*4+j] < 0) 7249 continue; // Undef, ignore it. 7250 7251 unsigned ByteSource = PermMask[i*4+j]; 7252 if ((ByteSource & 3) != j) { 7253 isFourElementShuffle = false; 7254 break; 7255 } 7256 7257 if (EltNo == 8) { 7258 EltNo = ByteSource/4; 7259 } else if (EltNo != ByteSource/4) { 7260 isFourElementShuffle = false; 7261 break; 7262 } 7263 } 7264 PFIndexes[i] = EltNo; 7265 } 7266 7267 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7268 // perfect shuffle vector to determine if it is cost effective to do this as 7269 // discrete instructions, or whether we should use a vperm. 7270 // For now, we skip this for little endian until such time as we have a 7271 // little-endian perfect shuffle table. 7272 if (isFourElementShuffle && !isLittleEndian) { 7273 // Compute the index in the perfect shuffle table. 7274 unsigned PFTableIndex = 7275 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7276 7277 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7278 unsigned Cost = (PFEntry >> 30); 7279 7280 // Determining when to avoid vperm is tricky. Many things affect the cost 7281 // of vperm, particularly how many times the perm mask needs to be computed. 7282 // For example, if the perm mask can be hoisted out of a loop or is already 7283 // used (perhaps because there are multiple permutes with the same shuffle 7284 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7285 // the loop requires an extra register. 7286 // 7287 // As a compromise, we only emit discrete instructions if the shuffle can be 7288 // generated in 3 or fewer operations. When we have loop information 7289 // available, if this block is within a loop, we should avoid using vperm 7290 // for 3-operation perms and use a constant pool load instead. 7291 if (Cost < 3) 7292 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7293 } 7294 7295 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7296 // vector that will get spilled to the constant pool. 7297 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7298 7299 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7300 // that it is in input element units, not in bytes. Convert now. 7301 7302 // For little endian, the order of the input vectors is reversed, and 7303 // the permutation mask is complemented with respect to 31. This is 7304 // necessary to produce proper semantics with the big-endian-biased vperm 7305 // instruction. 7306 EVT EltVT = V1.getValueType().getVectorElementType(); 7307 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7308 7309 SmallVector<SDValue, 16> ResultMask; 7310 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7311 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7312 7313 for (unsigned j = 0; j != BytesPerElement; ++j) 7314 if (isLittleEndian) 7315 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7316 dl, MVT::i32)); 7317 else 7318 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7319 MVT::i32)); 7320 } 7321 7322 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7323 ResultMask); 7324 if (isLittleEndian) 7325 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7326 V2, V1, VPermMask); 7327 else 7328 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7329 V1, V2, VPermMask); 7330 } 7331 7332 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7333 /// vector comparison. If it is, return true and fill in Opc/isDot with 7334 /// information about the intrinsic. 7335 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7336 bool &isDot, const PPCSubtarget &Subtarget) { 7337 unsigned IntrinsicID = 7338 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7339 CompareOpc = -1; 7340 isDot = false; 7341 switch (IntrinsicID) { 7342 default: return false; 7343 // Comparison predicates. 7344 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7345 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7346 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7347 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7348 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7349 case Intrinsic::ppc_altivec_vcmpequd_p: 7350 if (Subtarget.hasP8Altivec()) { 7351 CompareOpc = 199; 7352 isDot = 1; 7353 } else 7354 return false; 7355 7356 break; 7357 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7358 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7359 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7360 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7361 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7362 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7363 if (Subtarget.hasP8Altivec()) { 7364 CompareOpc = 967; 7365 isDot = 1; 7366 } else 7367 return false; 7368 7369 break; 7370 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7371 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7372 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7373 case Intrinsic::ppc_altivec_vcmpgtud_p: 7374 if (Subtarget.hasP8Altivec()) { 7375 CompareOpc = 711; 7376 isDot = 1; 7377 } else 7378 return false; 7379 7380 break; 7381 // VSX predicate comparisons use the same infrastructure 7382 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7383 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7384 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7385 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7386 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7387 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7388 if (Subtarget.hasVSX()) { 7389 switch (IntrinsicID) { 7390 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7391 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7392 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7393 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7394 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7395 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7396 } 7397 isDot = 1; 7398 } 7399 else 7400 return false; 7401 7402 break; 7403 7404 // Normal Comparisons. 7405 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7406 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7407 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7408 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7409 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7410 case Intrinsic::ppc_altivec_vcmpequd: 7411 if (Subtarget.hasP8Altivec()) { 7412 CompareOpc = 199; 7413 isDot = 0; 7414 } else 7415 return false; 7416 7417 break; 7418 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7419 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7420 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7421 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7422 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7423 case Intrinsic::ppc_altivec_vcmpgtsd: 7424 if (Subtarget.hasP8Altivec()) { 7425 CompareOpc = 967; 7426 isDot = 0; 7427 } else 7428 return false; 7429 7430 break; 7431 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7432 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7433 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7434 case Intrinsic::ppc_altivec_vcmpgtud: 7435 if (Subtarget.hasP8Altivec()) { 7436 CompareOpc = 711; 7437 isDot = 0; 7438 } else 7439 return false; 7440 7441 break; 7442 } 7443 return true; 7444 } 7445 7446 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7447 /// lower, do it, otherwise return null. 7448 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7449 SelectionDAG &DAG) const { 7450 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7451 // opcode number of the comparison. 7452 SDLoc dl(Op); 7453 int CompareOpc; 7454 bool isDot; 7455 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7456 return SDValue(); // Don't custom lower most intrinsics. 7457 7458 // If this is a non-dot comparison, make the VCMP node and we are done. 7459 if (!isDot) { 7460 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7461 Op.getOperand(1), Op.getOperand(2), 7462 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7463 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7464 } 7465 7466 // Create the PPCISD altivec 'dot' comparison node. 7467 SDValue Ops[] = { 7468 Op.getOperand(2), // LHS 7469 Op.getOperand(3), // RHS 7470 DAG.getConstant(CompareOpc, dl, MVT::i32) 7471 }; 7472 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7473 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7474 7475 // Now that we have the comparison, emit a copy from the CR to a GPR. 7476 // This is flagged to the above dot comparison. 7477 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7478 DAG.getRegister(PPC::CR6, MVT::i32), 7479 CompNode.getValue(1)); 7480 7481 // Unpack the result based on how the target uses it. 7482 unsigned BitNo; // Bit # of CR6. 7483 bool InvertBit; // Invert result? 7484 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7485 default: // Can't happen, don't crash on invalid number though. 7486 case 0: // Return the value of the EQ bit of CR6. 7487 BitNo = 0; InvertBit = false; 7488 break; 7489 case 1: // Return the inverted value of the EQ bit of CR6. 7490 BitNo = 0; InvertBit = true; 7491 break; 7492 case 2: // Return the value of the LT bit of CR6. 7493 BitNo = 2; InvertBit = false; 7494 break; 7495 case 3: // Return the inverted value of the LT bit of CR6. 7496 BitNo = 2; InvertBit = true; 7497 break; 7498 } 7499 7500 // Shift the bit into the low position. 7501 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7502 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7503 // Isolate the bit. 7504 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7505 DAG.getConstant(1, dl, MVT::i32)); 7506 7507 // If we are supposed to, toggle the bit. 7508 if (InvertBit) 7509 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7510 DAG.getConstant(1, dl, MVT::i32)); 7511 return Flags; 7512 } 7513 7514 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7515 SelectionDAG &DAG) const { 7516 SDLoc dl(Op); 7517 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7518 // instructions), but for smaller types, we need to first extend up to v2i32 7519 // before doing going farther. 7520 if (Op.getValueType() == MVT::v2i64) { 7521 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7522 if (ExtVT != MVT::v2i32) { 7523 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7524 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7525 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7526 ExtVT.getVectorElementType(), 4))); 7527 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7528 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7529 DAG.getValueType(MVT::v2i32)); 7530 } 7531 7532 return Op; 7533 } 7534 7535 return SDValue(); 7536 } 7537 7538 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7539 SelectionDAG &DAG) const { 7540 SDLoc dl(Op); 7541 // Create a stack slot that is 16-byte aligned. 7542 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7543 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7544 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7545 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7546 7547 // Store the input value into Value#0 of the stack slot. 7548 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7549 Op.getOperand(0), FIdx, MachinePointerInfo(), 7550 false, false, 0); 7551 // Load it out. 7552 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7553 false, false, false, 0); 7554 } 7555 7556 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7557 SelectionDAG &DAG) const { 7558 SDLoc dl(Op); 7559 SDNode *N = Op.getNode(); 7560 7561 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7562 "Unknown extract_vector_elt type"); 7563 7564 SDValue Value = N->getOperand(0); 7565 7566 // The first part of this is like the store lowering except that we don't 7567 // need to track the chain. 7568 7569 // The values are now known to be -1 (false) or 1 (true). To convert this 7570 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7571 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7572 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7573 7574 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7575 // understand how to form the extending load. 7576 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7577 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7578 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7579 7580 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7581 7582 // Now convert to an integer and store. 7583 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7584 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7585 Value); 7586 7587 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7588 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7589 MachinePointerInfo PtrInfo = 7590 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7591 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7592 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7593 7594 SDValue StoreChain = DAG.getEntryNode(); 7595 SmallVector<SDValue, 2> Ops; 7596 Ops.push_back(StoreChain); 7597 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7598 Ops.push_back(Value); 7599 Ops.push_back(FIdx); 7600 7601 SmallVector<EVT, 2> ValueVTs; 7602 ValueVTs.push_back(MVT::Other); // chain 7603 SDVTList VTs = DAG.getVTList(ValueVTs); 7604 7605 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7606 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7607 7608 // Extract the value requested. 7609 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7610 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7611 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7612 7613 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7614 PtrInfo.getWithOffset(Offset), 7615 false, false, false, 0); 7616 7617 if (!Subtarget.useCRBits()) 7618 return IntVal; 7619 7620 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7621 } 7622 7623 /// Lowering for QPX v4i1 loads 7624 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7625 SelectionDAG &DAG) const { 7626 SDLoc dl(Op); 7627 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7628 SDValue LoadChain = LN->getChain(); 7629 SDValue BasePtr = LN->getBasePtr(); 7630 7631 if (Op.getValueType() == MVT::v4f64 || 7632 Op.getValueType() == MVT::v4f32) { 7633 EVT MemVT = LN->getMemoryVT(); 7634 unsigned Alignment = LN->getAlignment(); 7635 7636 // If this load is properly aligned, then it is legal. 7637 if (Alignment >= MemVT.getStoreSize()) 7638 return Op; 7639 7640 EVT ScalarVT = Op.getValueType().getScalarType(), 7641 ScalarMemVT = MemVT.getScalarType(); 7642 unsigned Stride = ScalarMemVT.getStoreSize(); 7643 7644 SmallVector<SDValue, 8> Vals, LoadChains; 7645 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7646 SDValue Load; 7647 if (ScalarVT != ScalarMemVT) 7648 Load = 7649 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7650 BasePtr, 7651 LN->getPointerInfo().getWithOffset(Idx*Stride), 7652 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7653 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7654 LN->getAAInfo()); 7655 else 7656 Load = 7657 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7658 LN->getPointerInfo().getWithOffset(Idx*Stride), 7659 LN->isVolatile(), LN->isNonTemporal(), 7660 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7661 LN->getAAInfo()); 7662 7663 if (Idx == 0 && LN->isIndexed()) { 7664 assert(LN->getAddressingMode() == ISD::PRE_INC && 7665 "Unknown addressing mode on vector load"); 7666 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7667 LN->getAddressingMode()); 7668 } 7669 7670 Vals.push_back(Load); 7671 LoadChains.push_back(Load.getValue(1)); 7672 7673 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7674 DAG.getConstant(Stride, dl, 7675 BasePtr.getValueType())); 7676 } 7677 7678 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7679 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7680 Op.getValueType(), Vals); 7681 7682 if (LN->isIndexed()) { 7683 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7684 return DAG.getMergeValues(RetOps, dl); 7685 } 7686 7687 SDValue RetOps[] = { Value, TF }; 7688 return DAG.getMergeValues(RetOps, dl); 7689 } 7690 7691 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7692 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7693 7694 // To lower v4i1 from a byte array, we load the byte elements of the 7695 // vector and then reuse the BUILD_VECTOR logic. 7696 7697 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7698 for (unsigned i = 0; i < 4; ++i) { 7699 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7700 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7701 7702 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7703 dl, MVT::i32, LoadChain, Idx, 7704 LN->getPointerInfo().getWithOffset(i), 7705 MVT::i8 /* memory type */, 7706 LN->isVolatile(), LN->isNonTemporal(), 7707 LN->isInvariant(), 7708 1 /* alignment */, LN->getAAInfo())); 7709 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7710 } 7711 7712 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7713 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7714 7715 SDValue RVals[] = { Value, LoadChain }; 7716 return DAG.getMergeValues(RVals, dl); 7717 } 7718 7719 /// Lowering for QPX v4i1 stores 7720 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7721 SelectionDAG &DAG) const { 7722 SDLoc dl(Op); 7723 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7724 SDValue StoreChain = SN->getChain(); 7725 SDValue BasePtr = SN->getBasePtr(); 7726 SDValue Value = SN->getValue(); 7727 7728 if (Value.getValueType() == MVT::v4f64 || 7729 Value.getValueType() == MVT::v4f32) { 7730 EVT MemVT = SN->getMemoryVT(); 7731 unsigned Alignment = SN->getAlignment(); 7732 7733 // If this store is properly aligned, then it is legal. 7734 if (Alignment >= MemVT.getStoreSize()) 7735 return Op; 7736 7737 EVT ScalarVT = Value.getValueType().getScalarType(), 7738 ScalarMemVT = MemVT.getScalarType(); 7739 unsigned Stride = ScalarMemVT.getStoreSize(); 7740 7741 SmallVector<SDValue, 8> Stores; 7742 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7743 SDValue Ex = DAG.getNode( 7744 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7745 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7746 SDValue Store; 7747 if (ScalarVT != ScalarMemVT) 7748 Store = 7749 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7750 SN->getPointerInfo().getWithOffset(Idx*Stride), 7751 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7752 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7753 else 7754 Store = 7755 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7756 SN->getPointerInfo().getWithOffset(Idx*Stride), 7757 SN->isVolatile(), SN->isNonTemporal(), 7758 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7759 7760 if (Idx == 0 && SN->isIndexed()) { 7761 assert(SN->getAddressingMode() == ISD::PRE_INC && 7762 "Unknown addressing mode on vector store"); 7763 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7764 SN->getAddressingMode()); 7765 } 7766 7767 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7768 DAG.getConstant(Stride, dl, 7769 BasePtr.getValueType())); 7770 Stores.push_back(Store); 7771 } 7772 7773 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7774 7775 if (SN->isIndexed()) { 7776 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7777 return DAG.getMergeValues(RetOps, dl); 7778 } 7779 7780 return TF; 7781 } 7782 7783 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7784 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7785 7786 // The values are now known to be -1 (false) or 1 (true). To convert this 7787 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7788 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7789 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7790 7791 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7792 // understand how to form the extending load. 7793 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7794 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7795 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7796 7797 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7798 7799 // Now convert to an integer and store. 7800 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7801 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7802 Value); 7803 7804 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7805 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7806 MachinePointerInfo PtrInfo = 7807 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7808 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7809 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7810 7811 SmallVector<SDValue, 2> Ops; 7812 Ops.push_back(StoreChain); 7813 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7814 Ops.push_back(Value); 7815 Ops.push_back(FIdx); 7816 7817 SmallVector<EVT, 2> ValueVTs; 7818 ValueVTs.push_back(MVT::Other); // chain 7819 SDVTList VTs = DAG.getVTList(ValueVTs); 7820 7821 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7822 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7823 7824 // Move data into the byte array. 7825 SmallVector<SDValue, 4> Loads, LoadChains; 7826 for (unsigned i = 0; i < 4; ++i) { 7827 unsigned Offset = 4*i; 7828 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7829 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7830 7831 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7832 PtrInfo.getWithOffset(Offset), 7833 false, false, false, 0)); 7834 LoadChains.push_back(Loads[i].getValue(1)); 7835 } 7836 7837 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7838 7839 SmallVector<SDValue, 4> Stores; 7840 for (unsigned i = 0; i < 4; ++i) { 7841 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7842 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7843 7844 Stores.push_back(DAG.getTruncStore( 7845 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7846 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7847 1 /* alignment */, SN->getAAInfo())); 7848 } 7849 7850 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7851 7852 return StoreChain; 7853 } 7854 7855 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7856 SDLoc dl(Op); 7857 if (Op.getValueType() == MVT::v4i32) { 7858 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7859 7860 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7861 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7862 7863 SDValue RHSSwap = // = vrlw RHS, 16 7864 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7865 7866 // Shrinkify inputs to v8i16. 7867 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7868 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7869 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7870 7871 // Low parts multiplied together, generating 32-bit results (we ignore the 7872 // top parts). 7873 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7874 LHS, RHS, DAG, dl, MVT::v4i32); 7875 7876 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7877 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7878 // Shift the high parts up 16 bits. 7879 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7880 Neg16, DAG, dl); 7881 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7882 } else if (Op.getValueType() == MVT::v8i16) { 7883 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7884 7885 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7886 7887 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7888 LHS, RHS, Zero, DAG, dl); 7889 } else if (Op.getValueType() == MVT::v16i8) { 7890 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7891 bool isLittleEndian = Subtarget.isLittleEndian(); 7892 7893 // Multiply the even 8-bit parts, producing 16-bit sums. 7894 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7895 LHS, RHS, DAG, dl, MVT::v8i16); 7896 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7897 7898 // Multiply the odd 8-bit parts, producing 16-bit sums. 7899 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7900 LHS, RHS, DAG, dl, MVT::v8i16); 7901 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7902 7903 // Merge the results together. Because vmuleub and vmuloub are 7904 // instructions with a big-endian bias, we must reverse the 7905 // element numbering and reverse the meaning of "odd" and "even" 7906 // when generating little endian code. 7907 int Ops[16]; 7908 for (unsigned i = 0; i != 8; ++i) { 7909 if (isLittleEndian) { 7910 Ops[i*2 ] = 2*i; 7911 Ops[i*2+1] = 2*i+16; 7912 } else { 7913 Ops[i*2 ] = 2*i+1; 7914 Ops[i*2+1] = 2*i+1+16; 7915 } 7916 } 7917 if (isLittleEndian) 7918 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7919 else 7920 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7921 } else { 7922 llvm_unreachable("Unknown mul to lower!"); 7923 } 7924 } 7925 7926 /// LowerOperation - Provide custom lowering hooks for some operations. 7927 /// 7928 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7929 switch (Op.getOpcode()) { 7930 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7931 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7932 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7933 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7934 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7935 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7936 case ISD::SETCC: return LowerSETCC(Op, DAG); 7937 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7938 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7939 case ISD::VASTART: 7940 return LowerVASTART(Op, DAG, Subtarget); 7941 7942 case ISD::VAARG: 7943 return LowerVAARG(Op, DAG, Subtarget); 7944 7945 case ISD::VACOPY: 7946 return LowerVACOPY(Op, DAG, Subtarget); 7947 7948 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7949 case ISD::DYNAMIC_STACKALLOC: 7950 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7951 7952 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7953 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7954 7955 case ISD::LOAD: return LowerLOAD(Op, DAG); 7956 case ISD::STORE: return LowerSTORE(Op, DAG); 7957 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7958 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7959 case ISD::FP_TO_UINT: 7960 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7961 SDLoc(Op)); 7962 case ISD::UINT_TO_FP: 7963 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7964 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7965 7966 // Lower 64-bit shifts. 7967 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7968 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7969 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7970 7971 // Vector-related lowering. 7972 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7973 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7974 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7975 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7976 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7977 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7978 case ISD::MUL: return LowerMUL(Op, DAG); 7979 7980 // For counter-based loop handling. 7981 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7982 7983 // Frame & Return address. 7984 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7985 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7986 } 7987 } 7988 7989 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7990 SmallVectorImpl<SDValue>&Results, 7991 SelectionDAG &DAG) const { 7992 SDLoc dl(N); 7993 switch (N->getOpcode()) { 7994 default: 7995 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7996 case ISD::READCYCLECOUNTER: { 7997 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7998 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7999 8000 Results.push_back(RTB); 8001 Results.push_back(RTB.getValue(1)); 8002 Results.push_back(RTB.getValue(2)); 8003 break; 8004 } 8005 case ISD::INTRINSIC_W_CHAIN: { 8006 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8007 Intrinsic::ppc_is_decremented_ctr_nonzero) 8008 break; 8009 8010 assert(N->getValueType(0) == MVT::i1 && 8011 "Unexpected result type for CTR decrement intrinsic"); 8012 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8013 N->getValueType(0)); 8014 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8015 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8016 N->getOperand(1)); 8017 8018 Results.push_back(NewInt); 8019 Results.push_back(NewInt.getValue(1)); 8020 break; 8021 } 8022 case ISD::VAARG: { 8023 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8024 return; 8025 8026 EVT VT = N->getValueType(0); 8027 8028 if (VT == MVT::i64) { 8029 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8030 8031 Results.push_back(NewNode); 8032 Results.push_back(NewNode.getValue(1)); 8033 } 8034 return; 8035 } 8036 case ISD::FP_ROUND_INREG: { 8037 assert(N->getValueType(0) == MVT::ppcf128); 8038 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8039 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8040 MVT::f64, N->getOperand(0), 8041 DAG.getIntPtrConstant(0, dl)); 8042 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8043 MVT::f64, N->getOperand(0), 8044 DAG.getIntPtrConstant(1, dl)); 8045 8046 // Add the two halves of the long double in round-to-zero mode. 8047 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8048 8049 // We know the low half is about to be thrown away, so just use something 8050 // convenient. 8051 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8052 FPreg, FPreg)); 8053 return; 8054 } 8055 case ISD::FP_TO_SINT: 8056 case ISD::FP_TO_UINT: 8057 // LowerFP_TO_INT() can only handle f32 and f64. 8058 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8059 return; 8060 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8061 return; 8062 } 8063 } 8064 8065 //===----------------------------------------------------------------------===// 8066 // Other Lowering Code 8067 //===----------------------------------------------------------------------===// 8068 8069 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8070 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8071 Function *Func = Intrinsic::getDeclaration(M, Id); 8072 return Builder.CreateCall(Func, {}); 8073 } 8074 8075 // The mappings for emitLeading/TrailingFence is taken from 8076 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8077 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8078 AtomicOrdering Ord, bool IsStore, 8079 bool IsLoad) const { 8080 if (Ord == SequentiallyConsistent) 8081 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8082 if (isAtLeastRelease(Ord)) 8083 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8084 return nullptr; 8085 } 8086 8087 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8088 AtomicOrdering Ord, bool IsStore, 8089 bool IsLoad) const { 8090 if (IsLoad && isAtLeastAcquire(Ord)) 8091 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8092 // FIXME: this is too conservative, a dependent branch + isync is enough. 8093 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8094 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8095 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8096 return nullptr; 8097 } 8098 8099 MachineBasicBlock * 8100 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8101 unsigned AtomicSize, 8102 unsigned BinOpcode) const { 8103 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8104 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8105 8106 auto LoadMnemonic = PPC::LDARX; 8107 auto StoreMnemonic = PPC::STDCX; 8108 switch (AtomicSize) { 8109 default: 8110 llvm_unreachable("Unexpected size of atomic entity"); 8111 case 1: 8112 LoadMnemonic = PPC::LBARX; 8113 StoreMnemonic = PPC::STBCX; 8114 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8115 break; 8116 case 2: 8117 LoadMnemonic = PPC::LHARX; 8118 StoreMnemonic = PPC::STHCX; 8119 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8120 break; 8121 case 4: 8122 LoadMnemonic = PPC::LWARX; 8123 StoreMnemonic = PPC::STWCX; 8124 break; 8125 case 8: 8126 LoadMnemonic = PPC::LDARX; 8127 StoreMnemonic = PPC::STDCX; 8128 break; 8129 } 8130 8131 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8132 MachineFunction *F = BB->getParent(); 8133 MachineFunction::iterator It = ++BB->getIterator(); 8134 8135 unsigned dest = MI->getOperand(0).getReg(); 8136 unsigned ptrA = MI->getOperand(1).getReg(); 8137 unsigned ptrB = MI->getOperand(2).getReg(); 8138 unsigned incr = MI->getOperand(3).getReg(); 8139 DebugLoc dl = MI->getDebugLoc(); 8140 8141 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8142 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8143 F->insert(It, loopMBB); 8144 F->insert(It, exitMBB); 8145 exitMBB->splice(exitMBB->begin(), BB, 8146 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8147 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8148 8149 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8150 unsigned TmpReg = (!BinOpcode) ? incr : 8151 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8152 : &PPC::GPRCRegClass); 8153 8154 // thisMBB: 8155 // ... 8156 // fallthrough --> loopMBB 8157 BB->addSuccessor(loopMBB); 8158 8159 // loopMBB: 8160 // l[wd]arx dest, ptr 8161 // add r0, dest, incr 8162 // st[wd]cx. r0, ptr 8163 // bne- loopMBB 8164 // fallthrough --> exitMBB 8165 BB = loopMBB; 8166 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8167 .addReg(ptrA).addReg(ptrB); 8168 if (BinOpcode) 8169 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8170 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8171 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8172 BuildMI(BB, dl, TII->get(PPC::BCC)) 8173 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8174 BB->addSuccessor(loopMBB); 8175 BB->addSuccessor(exitMBB); 8176 8177 // exitMBB: 8178 // ... 8179 BB = exitMBB; 8180 return BB; 8181 } 8182 8183 MachineBasicBlock * 8184 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8185 MachineBasicBlock *BB, 8186 bool is8bit, // operation 8187 unsigned BinOpcode) const { 8188 // If we support part-word atomic mnemonics, just use them 8189 if (Subtarget.hasPartwordAtomics()) 8190 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8191 8192 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8193 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8194 // In 64 bit mode we have to use 64 bits for addresses, even though the 8195 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8196 // registers without caring whether they're 32 or 64, but here we're 8197 // doing actual arithmetic on the addresses. 8198 bool is64bit = Subtarget.isPPC64(); 8199 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8200 8201 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8202 MachineFunction *F = BB->getParent(); 8203 MachineFunction::iterator It = ++BB->getIterator(); 8204 8205 unsigned dest = MI->getOperand(0).getReg(); 8206 unsigned ptrA = MI->getOperand(1).getReg(); 8207 unsigned ptrB = MI->getOperand(2).getReg(); 8208 unsigned incr = MI->getOperand(3).getReg(); 8209 DebugLoc dl = MI->getDebugLoc(); 8210 8211 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8212 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8213 F->insert(It, loopMBB); 8214 F->insert(It, exitMBB); 8215 exitMBB->splice(exitMBB->begin(), BB, 8216 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8217 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8218 8219 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8220 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8221 : &PPC::GPRCRegClass; 8222 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8223 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8224 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8225 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8226 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8227 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8228 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8229 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8230 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8231 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8232 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8233 unsigned Ptr1Reg; 8234 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8235 8236 // thisMBB: 8237 // ... 8238 // fallthrough --> loopMBB 8239 BB->addSuccessor(loopMBB); 8240 8241 // The 4-byte load must be aligned, while a char or short may be 8242 // anywhere in the word. Hence all this nasty bookkeeping code. 8243 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8244 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8245 // xori shift, shift1, 24 [16] 8246 // rlwinm ptr, ptr1, 0, 0, 29 8247 // slw incr2, incr, shift 8248 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8249 // slw mask, mask2, shift 8250 // loopMBB: 8251 // lwarx tmpDest, ptr 8252 // add tmp, tmpDest, incr2 8253 // andc tmp2, tmpDest, mask 8254 // and tmp3, tmp, mask 8255 // or tmp4, tmp3, tmp2 8256 // stwcx. tmp4, ptr 8257 // bne- loopMBB 8258 // fallthrough --> exitMBB 8259 // srw dest, tmpDest, shift 8260 if (ptrA != ZeroReg) { 8261 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8262 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8263 .addReg(ptrA).addReg(ptrB); 8264 } else { 8265 Ptr1Reg = ptrB; 8266 } 8267 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8268 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8269 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8270 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8271 if (is64bit) 8272 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8273 .addReg(Ptr1Reg).addImm(0).addImm(61); 8274 else 8275 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8276 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8277 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8278 .addReg(incr).addReg(ShiftReg); 8279 if (is8bit) 8280 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8281 else { 8282 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8283 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8284 } 8285 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8286 .addReg(Mask2Reg).addReg(ShiftReg); 8287 8288 BB = loopMBB; 8289 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8290 .addReg(ZeroReg).addReg(PtrReg); 8291 if (BinOpcode) 8292 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8293 .addReg(Incr2Reg).addReg(TmpDestReg); 8294 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8295 .addReg(TmpDestReg).addReg(MaskReg); 8296 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8297 .addReg(TmpReg).addReg(MaskReg); 8298 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8299 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8300 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8301 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8302 BuildMI(BB, dl, TII->get(PPC::BCC)) 8303 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8304 BB->addSuccessor(loopMBB); 8305 BB->addSuccessor(exitMBB); 8306 8307 // exitMBB: 8308 // ... 8309 BB = exitMBB; 8310 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8311 .addReg(ShiftReg); 8312 return BB; 8313 } 8314 8315 llvm::MachineBasicBlock* 8316 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8317 MachineBasicBlock *MBB) const { 8318 DebugLoc DL = MI->getDebugLoc(); 8319 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8320 8321 MachineFunction *MF = MBB->getParent(); 8322 MachineRegisterInfo &MRI = MF->getRegInfo(); 8323 8324 const BasicBlock *BB = MBB->getBasicBlock(); 8325 MachineFunction::iterator I = ++MBB->getIterator(); 8326 8327 // Memory Reference 8328 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8329 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8330 8331 unsigned DstReg = MI->getOperand(0).getReg(); 8332 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8333 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8334 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8335 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8336 8337 MVT PVT = getPointerTy(MF->getDataLayout()); 8338 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8339 "Invalid Pointer Size!"); 8340 // For v = setjmp(buf), we generate 8341 // 8342 // thisMBB: 8343 // SjLjSetup mainMBB 8344 // bl mainMBB 8345 // v_restore = 1 8346 // b sinkMBB 8347 // 8348 // mainMBB: 8349 // buf[LabelOffset] = LR 8350 // v_main = 0 8351 // 8352 // sinkMBB: 8353 // v = phi(main, restore) 8354 // 8355 8356 MachineBasicBlock *thisMBB = MBB; 8357 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8358 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8359 MF->insert(I, mainMBB); 8360 MF->insert(I, sinkMBB); 8361 8362 MachineInstrBuilder MIB; 8363 8364 // Transfer the remainder of BB and its successor edges to sinkMBB. 8365 sinkMBB->splice(sinkMBB->begin(), MBB, 8366 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8367 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8368 8369 // Note that the structure of the jmp_buf used here is not compatible 8370 // with that used by libc, and is not designed to be. Specifically, it 8371 // stores only those 'reserved' registers that LLVM does not otherwise 8372 // understand how to spill. Also, by convention, by the time this 8373 // intrinsic is called, Clang has already stored the frame address in the 8374 // first slot of the buffer and stack address in the third. Following the 8375 // X86 target code, we'll store the jump address in the second slot. We also 8376 // need to save the TOC pointer (R2) to handle jumps between shared 8377 // libraries, and that will be stored in the fourth slot. The thread 8378 // identifier (R13) is not affected. 8379 8380 // thisMBB: 8381 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8382 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8383 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8384 8385 // Prepare IP either in reg. 8386 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8387 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8388 unsigned BufReg = MI->getOperand(1).getReg(); 8389 8390 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8391 setUsesTOCBasePtr(*MBB->getParent()); 8392 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8393 .addReg(PPC::X2) 8394 .addImm(TOCOffset) 8395 .addReg(BufReg); 8396 MIB.setMemRefs(MMOBegin, MMOEnd); 8397 } 8398 8399 // Naked functions never have a base pointer, and so we use r1. For all 8400 // other functions, this decision must be delayed until during PEI. 8401 unsigned BaseReg; 8402 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8403 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8404 else 8405 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8406 8407 MIB = BuildMI(*thisMBB, MI, DL, 8408 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8409 .addReg(BaseReg) 8410 .addImm(BPOffset) 8411 .addReg(BufReg); 8412 MIB.setMemRefs(MMOBegin, MMOEnd); 8413 8414 // Setup 8415 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8416 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8417 MIB.addRegMask(TRI->getNoPreservedMask()); 8418 8419 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8420 8421 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8422 .addMBB(mainMBB); 8423 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8424 8425 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8426 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8427 8428 // mainMBB: 8429 // mainDstReg = 0 8430 MIB = 8431 BuildMI(mainMBB, DL, 8432 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8433 8434 // Store IP 8435 if (Subtarget.isPPC64()) { 8436 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8437 .addReg(LabelReg) 8438 .addImm(LabelOffset) 8439 .addReg(BufReg); 8440 } else { 8441 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8442 .addReg(LabelReg) 8443 .addImm(LabelOffset) 8444 .addReg(BufReg); 8445 } 8446 8447 MIB.setMemRefs(MMOBegin, MMOEnd); 8448 8449 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8450 mainMBB->addSuccessor(sinkMBB); 8451 8452 // sinkMBB: 8453 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8454 TII->get(PPC::PHI), DstReg) 8455 .addReg(mainDstReg).addMBB(mainMBB) 8456 .addReg(restoreDstReg).addMBB(thisMBB); 8457 8458 MI->eraseFromParent(); 8459 return sinkMBB; 8460 } 8461 8462 MachineBasicBlock * 8463 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8464 MachineBasicBlock *MBB) const { 8465 DebugLoc DL = MI->getDebugLoc(); 8466 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8467 8468 MachineFunction *MF = MBB->getParent(); 8469 MachineRegisterInfo &MRI = MF->getRegInfo(); 8470 8471 // Memory Reference 8472 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8473 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8474 8475 MVT PVT = getPointerTy(MF->getDataLayout()); 8476 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8477 "Invalid Pointer Size!"); 8478 8479 const TargetRegisterClass *RC = 8480 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8481 unsigned Tmp = MRI.createVirtualRegister(RC); 8482 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8483 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8484 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8485 unsigned BP = 8486 (PVT == MVT::i64) 8487 ? PPC::X30 8488 : (Subtarget.isSVR4ABI() && 8489 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8490 ? PPC::R29 8491 : PPC::R30); 8492 8493 MachineInstrBuilder MIB; 8494 8495 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8496 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8497 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8498 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8499 8500 unsigned BufReg = MI->getOperand(0).getReg(); 8501 8502 // Reload FP (the jumped-to function may not have had a 8503 // frame pointer, and if so, then its r31 will be restored 8504 // as necessary). 8505 if (PVT == MVT::i64) { 8506 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8507 .addImm(0) 8508 .addReg(BufReg); 8509 } else { 8510 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8511 .addImm(0) 8512 .addReg(BufReg); 8513 } 8514 MIB.setMemRefs(MMOBegin, MMOEnd); 8515 8516 // Reload IP 8517 if (PVT == MVT::i64) { 8518 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8519 .addImm(LabelOffset) 8520 .addReg(BufReg); 8521 } else { 8522 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8523 .addImm(LabelOffset) 8524 .addReg(BufReg); 8525 } 8526 MIB.setMemRefs(MMOBegin, MMOEnd); 8527 8528 // Reload SP 8529 if (PVT == MVT::i64) { 8530 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8531 .addImm(SPOffset) 8532 .addReg(BufReg); 8533 } else { 8534 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8535 .addImm(SPOffset) 8536 .addReg(BufReg); 8537 } 8538 MIB.setMemRefs(MMOBegin, MMOEnd); 8539 8540 // Reload BP 8541 if (PVT == MVT::i64) { 8542 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8543 .addImm(BPOffset) 8544 .addReg(BufReg); 8545 } else { 8546 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8547 .addImm(BPOffset) 8548 .addReg(BufReg); 8549 } 8550 MIB.setMemRefs(MMOBegin, MMOEnd); 8551 8552 // Reload TOC 8553 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8554 setUsesTOCBasePtr(*MBB->getParent()); 8555 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8556 .addImm(TOCOffset) 8557 .addReg(BufReg); 8558 8559 MIB.setMemRefs(MMOBegin, MMOEnd); 8560 } 8561 8562 // Jump 8563 BuildMI(*MBB, MI, DL, 8564 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8565 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8566 8567 MI->eraseFromParent(); 8568 return MBB; 8569 } 8570 8571 MachineBasicBlock * 8572 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8573 MachineBasicBlock *BB) const { 8574 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8575 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8576 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8577 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8578 // Call lowering should have added an r2 operand to indicate a dependence 8579 // on the TOC base pointer value. It can't however, because there is no 8580 // way to mark the dependence as implicit there, and so the stackmap code 8581 // will confuse it with a regular operand. Instead, add the dependence 8582 // here. 8583 setUsesTOCBasePtr(*BB->getParent()); 8584 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8585 } 8586 8587 return emitPatchPoint(MI, BB); 8588 } 8589 8590 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8591 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8592 return emitEHSjLjSetJmp(MI, BB); 8593 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8594 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8595 return emitEHSjLjLongJmp(MI, BB); 8596 } 8597 8598 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8599 8600 // To "insert" these instructions we actually have to insert their 8601 // control-flow patterns. 8602 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8603 MachineFunction::iterator It = ++BB->getIterator(); 8604 8605 MachineFunction *F = BB->getParent(); 8606 8607 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8608 MI->getOpcode() == PPC::SELECT_CC_I8 || 8609 MI->getOpcode() == PPC::SELECT_I4 || 8610 MI->getOpcode() == PPC::SELECT_I8)) { 8611 SmallVector<MachineOperand, 2> Cond; 8612 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8613 MI->getOpcode() == PPC::SELECT_CC_I8) 8614 Cond.push_back(MI->getOperand(4)); 8615 else 8616 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8617 Cond.push_back(MI->getOperand(1)); 8618 8619 DebugLoc dl = MI->getDebugLoc(); 8620 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8621 Cond, MI->getOperand(2).getReg(), 8622 MI->getOperand(3).getReg()); 8623 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8624 MI->getOpcode() == PPC::SELECT_CC_I8 || 8625 MI->getOpcode() == PPC::SELECT_CC_F4 || 8626 MI->getOpcode() == PPC::SELECT_CC_F8 || 8627 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8628 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8629 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8630 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8631 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8632 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8633 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8634 MI->getOpcode() == PPC::SELECT_I4 || 8635 MI->getOpcode() == PPC::SELECT_I8 || 8636 MI->getOpcode() == PPC::SELECT_F4 || 8637 MI->getOpcode() == PPC::SELECT_F8 || 8638 MI->getOpcode() == PPC::SELECT_QFRC || 8639 MI->getOpcode() == PPC::SELECT_QSRC || 8640 MI->getOpcode() == PPC::SELECT_QBRC || 8641 MI->getOpcode() == PPC::SELECT_VRRC || 8642 MI->getOpcode() == PPC::SELECT_VSFRC || 8643 MI->getOpcode() == PPC::SELECT_VSSRC || 8644 MI->getOpcode() == PPC::SELECT_VSRC) { 8645 // The incoming instruction knows the destination vreg to set, the 8646 // condition code register to branch on, the true/false values to 8647 // select between, and a branch opcode to use. 8648 8649 // thisMBB: 8650 // ... 8651 // TrueVal = ... 8652 // cmpTY ccX, r1, r2 8653 // bCC copy1MBB 8654 // fallthrough --> copy0MBB 8655 MachineBasicBlock *thisMBB = BB; 8656 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8657 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8658 DebugLoc dl = MI->getDebugLoc(); 8659 F->insert(It, copy0MBB); 8660 F->insert(It, sinkMBB); 8661 8662 // Transfer the remainder of BB and its successor edges to sinkMBB. 8663 sinkMBB->splice(sinkMBB->begin(), BB, 8664 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8665 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8666 8667 // Next, add the true and fallthrough blocks as its successors. 8668 BB->addSuccessor(copy0MBB); 8669 BB->addSuccessor(sinkMBB); 8670 8671 if (MI->getOpcode() == PPC::SELECT_I4 || 8672 MI->getOpcode() == PPC::SELECT_I8 || 8673 MI->getOpcode() == PPC::SELECT_F4 || 8674 MI->getOpcode() == PPC::SELECT_F8 || 8675 MI->getOpcode() == PPC::SELECT_QFRC || 8676 MI->getOpcode() == PPC::SELECT_QSRC || 8677 MI->getOpcode() == PPC::SELECT_QBRC || 8678 MI->getOpcode() == PPC::SELECT_VRRC || 8679 MI->getOpcode() == PPC::SELECT_VSFRC || 8680 MI->getOpcode() == PPC::SELECT_VSSRC || 8681 MI->getOpcode() == PPC::SELECT_VSRC) { 8682 BuildMI(BB, dl, TII->get(PPC::BC)) 8683 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8684 } else { 8685 unsigned SelectPred = MI->getOperand(4).getImm(); 8686 BuildMI(BB, dl, TII->get(PPC::BCC)) 8687 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8688 } 8689 8690 // copy0MBB: 8691 // %FalseValue = ... 8692 // # fallthrough to sinkMBB 8693 BB = copy0MBB; 8694 8695 // Update machine-CFG edges 8696 BB->addSuccessor(sinkMBB); 8697 8698 // sinkMBB: 8699 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8700 // ... 8701 BB = sinkMBB; 8702 BuildMI(*BB, BB->begin(), dl, 8703 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8704 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8705 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8706 } else if (MI->getOpcode() == PPC::ReadTB) { 8707 // To read the 64-bit time-base register on a 32-bit target, we read the 8708 // two halves. Should the counter have wrapped while it was being read, we 8709 // need to try again. 8710 // ... 8711 // readLoop: 8712 // mfspr Rx,TBU # load from TBU 8713 // mfspr Ry,TB # load from TB 8714 // mfspr Rz,TBU # load from TBU 8715 // cmpw crX,Rx,Rz # check if 'old'='new' 8716 // bne readLoop # branch if they're not equal 8717 // ... 8718 8719 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8720 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8721 DebugLoc dl = MI->getDebugLoc(); 8722 F->insert(It, readMBB); 8723 F->insert(It, sinkMBB); 8724 8725 // Transfer the remainder of BB and its successor edges to sinkMBB. 8726 sinkMBB->splice(sinkMBB->begin(), BB, 8727 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8728 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8729 8730 BB->addSuccessor(readMBB); 8731 BB = readMBB; 8732 8733 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8734 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8735 unsigned LoReg = MI->getOperand(0).getReg(); 8736 unsigned HiReg = MI->getOperand(1).getReg(); 8737 8738 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8739 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8740 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8741 8742 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8743 8744 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8745 .addReg(HiReg).addReg(ReadAgainReg); 8746 BuildMI(BB, dl, TII->get(PPC::BCC)) 8747 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8748 8749 BB->addSuccessor(readMBB); 8750 BB->addSuccessor(sinkMBB); 8751 } 8752 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8753 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8754 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8755 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8756 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8757 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8758 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8759 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8760 8761 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8762 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8763 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8764 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8765 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8766 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8767 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8768 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8769 8770 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8771 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8772 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8773 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8774 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8775 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8776 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8777 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8778 8779 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8780 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8781 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8782 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8783 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8784 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8785 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8786 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8787 8788 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8789 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8790 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8791 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8792 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8793 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8794 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8795 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8796 8797 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8798 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8799 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8800 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8801 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8802 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8803 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8804 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8805 8806 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8807 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8808 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8809 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8810 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8811 BB = EmitAtomicBinary(MI, BB, 4, 0); 8812 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8813 BB = EmitAtomicBinary(MI, BB, 8, 0); 8814 8815 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8816 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8817 (Subtarget.hasPartwordAtomics() && 8818 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8819 (Subtarget.hasPartwordAtomics() && 8820 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8821 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8822 8823 auto LoadMnemonic = PPC::LDARX; 8824 auto StoreMnemonic = PPC::STDCX; 8825 switch(MI->getOpcode()) { 8826 default: 8827 llvm_unreachable("Compare and swap of unknown size"); 8828 case PPC::ATOMIC_CMP_SWAP_I8: 8829 LoadMnemonic = PPC::LBARX; 8830 StoreMnemonic = PPC::STBCX; 8831 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8832 break; 8833 case PPC::ATOMIC_CMP_SWAP_I16: 8834 LoadMnemonic = PPC::LHARX; 8835 StoreMnemonic = PPC::STHCX; 8836 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8837 break; 8838 case PPC::ATOMIC_CMP_SWAP_I32: 8839 LoadMnemonic = PPC::LWARX; 8840 StoreMnemonic = PPC::STWCX; 8841 break; 8842 case PPC::ATOMIC_CMP_SWAP_I64: 8843 LoadMnemonic = PPC::LDARX; 8844 StoreMnemonic = PPC::STDCX; 8845 break; 8846 } 8847 unsigned dest = MI->getOperand(0).getReg(); 8848 unsigned ptrA = MI->getOperand(1).getReg(); 8849 unsigned ptrB = MI->getOperand(2).getReg(); 8850 unsigned oldval = MI->getOperand(3).getReg(); 8851 unsigned newval = MI->getOperand(4).getReg(); 8852 DebugLoc dl = MI->getDebugLoc(); 8853 8854 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8855 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8856 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8857 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8858 F->insert(It, loop1MBB); 8859 F->insert(It, loop2MBB); 8860 F->insert(It, midMBB); 8861 F->insert(It, exitMBB); 8862 exitMBB->splice(exitMBB->begin(), BB, 8863 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8864 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8865 8866 // thisMBB: 8867 // ... 8868 // fallthrough --> loopMBB 8869 BB->addSuccessor(loop1MBB); 8870 8871 // loop1MBB: 8872 // l[bhwd]arx dest, ptr 8873 // cmp[wd] dest, oldval 8874 // bne- midMBB 8875 // loop2MBB: 8876 // st[bhwd]cx. newval, ptr 8877 // bne- loopMBB 8878 // b exitBB 8879 // midMBB: 8880 // st[bhwd]cx. dest, ptr 8881 // exitBB: 8882 BB = loop1MBB; 8883 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8884 .addReg(ptrA).addReg(ptrB); 8885 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8886 .addReg(oldval).addReg(dest); 8887 BuildMI(BB, dl, TII->get(PPC::BCC)) 8888 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8889 BB->addSuccessor(loop2MBB); 8890 BB->addSuccessor(midMBB); 8891 8892 BB = loop2MBB; 8893 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8894 .addReg(newval).addReg(ptrA).addReg(ptrB); 8895 BuildMI(BB, dl, TII->get(PPC::BCC)) 8896 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8897 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8898 BB->addSuccessor(loop1MBB); 8899 BB->addSuccessor(exitMBB); 8900 8901 BB = midMBB; 8902 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8903 .addReg(dest).addReg(ptrA).addReg(ptrB); 8904 BB->addSuccessor(exitMBB); 8905 8906 // exitMBB: 8907 // ... 8908 BB = exitMBB; 8909 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8910 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8911 // We must use 64-bit registers for addresses when targeting 64-bit, 8912 // since we're actually doing arithmetic on them. Other registers 8913 // can be 32-bit. 8914 bool is64bit = Subtarget.isPPC64(); 8915 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8916 8917 unsigned dest = MI->getOperand(0).getReg(); 8918 unsigned ptrA = MI->getOperand(1).getReg(); 8919 unsigned ptrB = MI->getOperand(2).getReg(); 8920 unsigned oldval = MI->getOperand(3).getReg(); 8921 unsigned newval = MI->getOperand(4).getReg(); 8922 DebugLoc dl = MI->getDebugLoc(); 8923 8924 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8925 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8926 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8927 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8928 F->insert(It, loop1MBB); 8929 F->insert(It, loop2MBB); 8930 F->insert(It, midMBB); 8931 F->insert(It, exitMBB); 8932 exitMBB->splice(exitMBB->begin(), BB, 8933 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8934 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8935 8936 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8937 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8938 : &PPC::GPRCRegClass; 8939 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8940 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8941 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8942 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8943 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8944 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8945 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8946 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8947 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8948 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8949 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8950 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8951 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8952 unsigned Ptr1Reg; 8953 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8954 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8955 // thisMBB: 8956 // ... 8957 // fallthrough --> loopMBB 8958 BB->addSuccessor(loop1MBB); 8959 8960 // The 4-byte load must be aligned, while a char or short may be 8961 // anywhere in the word. Hence all this nasty bookkeeping code. 8962 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8963 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8964 // xori shift, shift1, 24 [16] 8965 // rlwinm ptr, ptr1, 0, 0, 29 8966 // slw newval2, newval, shift 8967 // slw oldval2, oldval,shift 8968 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8969 // slw mask, mask2, shift 8970 // and newval3, newval2, mask 8971 // and oldval3, oldval2, mask 8972 // loop1MBB: 8973 // lwarx tmpDest, ptr 8974 // and tmp, tmpDest, mask 8975 // cmpw tmp, oldval3 8976 // bne- midMBB 8977 // loop2MBB: 8978 // andc tmp2, tmpDest, mask 8979 // or tmp4, tmp2, newval3 8980 // stwcx. tmp4, ptr 8981 // bne- loop1MBB 8982 // b exitBB 8983 // midMBB: 8984 // stwcx. tmpDest, ptr 8985 // exitBB: 8986 // srw dest, tmpDest, shift 8987 if (ptrA != ZeroReg) { 8988 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8989 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8990 .addReg(ptrA).addReg(ptrB); 8991 } else { 8992 Ptr1Reg = ptrB; 8993 } 8994 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8995 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8996 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8997 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8998 if (is64bit) 8999 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9000 .addReg(Ptr1Reg).addImm(0).addImm(61); 9001 else 9002 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9003 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9004 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9005 .addReg(newval).addReg(ShiftReg); 9006 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9007 .addReg(oldval).addReg(ShiftReg); 9008 if (is8bit) 9009 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9010 else { 9011 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9012 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9013 .addReg(Mask3Reg).addImm(65535); 9014 } 9015 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9016 .addReg(Mask2Reg).addReg(ShiftReg); 9017 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9018 .addReg(NewVal2Reg).addReg(MaskReg); 9019 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9020 .addReg(OldVal2Reg).addReg(MaskReg); 9021 9022 BB = loop1MBB; 9023 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9024 .addReg(ZeroReg).addReg(PtrReg); 9025 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9026 .addReg(TmpDestReg).addReg(MaskReg); 9027 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9028 .addReg(TmpReg).addReg(OldVal3Reg); 9029 BuildMI(BB, dl, TII->get(PPC::BCC)) 9030 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9031 BB->addSuccessor(loop2MBB); 9032 BB->addSuccessor(midMBB); 9033 9034 BB = loop2MBB; 9035 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9036 .addReg(TmpDestReg).addReg(MaskReg); 9037 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9038 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9039 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9040 .addReg(ZeroReg).addReg(PtrReg); 9041 BuildMI(BB, dl, TII->get(PPC::BCC)) 9042 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9043 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9044 BB->addSuccessor(loop1MBB); 9045 BB->addSuccessor(exitMBB); 9046 9047 BB = midMBB; 9048 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9049 .addReg(ZeroReg).addReg(PtrReg); 9050 BB->addSuccessor(exitMBB); 9051 9052 // exitMBB: 9053 // ... 9054 BB = exitMBB; 9055 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9056 .addReg(ShiftReg); 9057 } else if (MI->getOpcode() == PPC::FADDrtz) { 9058 // This pseudo performs an FADD with rounding mode temporarily forced 9059 // to round-to-zero. We emit this via custom inserter since the FPSCR 9060 // is not modeled at the SelectionDAG level. 9061 unsigned Dest = MI->getOperand(0).getReg(); 9062 unsigned Src1 = MI->getOperand(1).getReg(); 9063 unsigned Src2 = MI->getOperand(2).getReg(); 9064 DebugLoc dl = MI->getDebugLoc(); 9065 9066 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9067 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9068 9069 // Save FPSCR value. 9070 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9071 9072 // Set rounding mode to round-to-zero. 9073 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9074 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9075 9076 // Perform addition. 9077 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9078 9079 // Restore FPSCR value. 9080 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9081 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9082 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9083 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9084 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9085 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9086 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9087 PPC::ANDIo8 : PPC::ANDIo; 9088 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9089 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9090 9091 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9092 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9093 &PPC::GPRCRegClass : 9094 &PPC::G8RCRegClass); 9095 9096 DebugLoc dl = MI->getDebugLoc(); 9097 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9098 .addReg(MI->getOperand(1).getReg()).addImm(1); 9099 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9100 MI->getOperand(0).getReg()) 9101 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9102 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9103 DebugLoc Dl = MI->getDebugLoc(); 9104 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9105 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9106 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9107 return BB; 9108 } else { 9109 llvm_unreachable("Unexpected instr type to insert"); 9110 } 9111 9112 MI->eraseFromParent(); // The pseudo instruction is gone now. 9113 return BB; 9114 } 9115 9116 //===----------------------------------------------------------------------===// 9117 // Target Optimization Hooks 9118 //===----------------------------------------------------------------------===// 9119 9120 static std::string getRecipOp(const char *Base, EVT VT) { 9121 std::string RecipOp(Base); 9122 if (VT.getScalarType() == MVT::f64) 9123 RecipOp += "d"; 9124 else 9125 RecipOp += "f"; 9126 9127 if (VT.isVector()) 9128 RecipOp = "vec-" + RecipOp; 9129 9130 return RecipOp; 9131 } 9132 9133 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9134 DAGCombinerInfo &DCI, 9135 unsigned &RefinementSteps, 9136 bool &UseOneConstNR) const { 9137 EVT VT = Operand.getValueType(); 9138 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9139 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9140 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9141 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9142 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9143 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9144 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9145 std::string RecipOp = getRecipOp("sqrt", VT); 9146 if (!Recips.isEnabled(RecipOp)) 9147 return SDValue(); 9148 9149 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9150 UseOneConstNR = true; 9151 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9152 } 9153 return SDValue(); 9154 } 9155 9156 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9157 DAGCombinerInfo &DCI, 9158 unsigned &RefinementSteps) const { 9159 EVT VT = Operand.getValueType(); 9160 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9161 (VT == MVT::f64 && Subtarget.hasFRE()) || 9162 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9163 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9164 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9165 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9166 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9167 std::string RecipOp = getRecipOp("div", VT); 9168 if (!Recips.isEnabled(RecipOp)) 9169 return SDValue(); 9170 9171 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9172 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9173 } 9174 return SDValue(); 9175 } 9176 9177 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9178 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9179 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9180 // enabled for division), this functionality is redundant with the default 9181 // combiner logic (once the division -> reciprocal/multiply transformation 9182 // has taken place). As a result, this matters more for older cores than for 9183 // newer ones. 9184 9185 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9186 // reciprocal if there are two or more FDIVs (for embedded cores with only 9187 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9188 switch (Subtarget.getDarwinDirective()) { 9189 default: 9190 return 3; 9191 case PPC::DIR_440: 9192 case PPC::DIR_A2: 9193 case PPC::DIR_E500mc: 9194 case PPC::DIR_E5500: 9195 return 2; 9196 } 9197 } 9198 9199 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9200 // collapsed, and so we need to look through chains of them. 9201 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9202 int64_t& Offset, SelectionDAG &DAG) { 9203 if (DAG.isBaseWithConstantOffset(Loc)) { 9204 Base = Loc.getOperand(0); 9205 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9206 9207 // The base might itself be a base plus an offset, and if so, accumulate 9208 // that as well. 9209 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9210 } 9211 } 9212 9213 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9214 unsigned Bytes, int Dist, 9215 SelectionDAG &DAG) { 9216 if (VT.getSizeInBits() / 8 != Bytes) 9217 return false; 9218 9219 SDValue BaseLoc = Base->getBasePtr(); 9220 if (Loc.getOpcode() == ISD::FrameIndex) { 9221 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9222 return false; 9223 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9224 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9225 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9226 int FS = MFI->getObjectSize(FI); 9227 int BFS = MFI->getObjectSize(BFI); 9228 if (FS != BFS || FS != (int)Bytes) return false; 9229 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9230 } 9231 9232 SDValue Base1 = Loc, Base2 = BaseLoc; 9233 int64_t Offset1 = 0, Offset2 = 0; 9234 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9235 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9236 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9237 return true; 9238 9239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9240 const GlobalValue *GV1 = nullptr; 9241 const GlobalValue *GV2 = nullptr; 9242 Offset1 = 0; 9243 Offset2 = 0; 9244 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9245 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9246 if (isGA1 && isGA2 && GV1 == GV2) 9247 return Offset1 == (Offset2 + Dist*Bytes); 9248 return false; 9249 } 9250 9251 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9252 // not enforce equality of the chain operands. 9253 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9254 unsigned Bytes, int Dist, 9255 SelectionDAG &DAG) { 9256 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9257 EVT VT = LS->getMemoryVT(); 9258 SDValue Loc = LS->getBasePtr(); 9259 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9260 } 9261 9262 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9263 EVT VT; 9264 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9265 default: return false; 9266 case Intrinsic::ppc_qpx_qvlfd: 9267 case Intrinsic::ppc_qpx_qvlfda: 9268 VT = MVT::v4f64; 9269 break; 9270 case Intrinsic::ppc_qpx_qvlfs: 9271 case Intrinsic::ppc_qpx_qvlfsa: 9272 VT = MVT::v4f32; 9273 break; 9274 case Intrinsic::ppc_qpx_qvlfcd: 9275 case Intrinsic::ppc_qpx_qvlfcda: 9276 VT = MVT::v2f64; 9277 break; 9278 case Intrinsic::ppc_qpx_qvlfcs: 9279 case Intrinsic::ppc_qpx_qvlfcsa: 9280 VT = MVT::v2f32; 9281 break; 9282 case Intrinsic::ppc_qpx_qvlfiwa: 9283 case Intrinsic::ppc_qpx_qvlfiwz: 9284 case Intrinsic::ppc_altivec_lvx: 9285 case Intrinsic::ppc_altivec_lvxl: 9286 case Intrinsic::ppc_vsx_lxvw4x: 9287 VT = MVT::v4i32; 9288 break; 9289 case Intrinsic::ppc_vsx_lxvd2x: 9290 VT = MVT::v2f64; 9291 break; 9292 case Intrinsic::ppc_altivec_lvebx: 9293 VT = MVT::i8; 9294 break; 9295 case Intrinsic::ppc_altivec_lvehx: 9296 VT = MVT::i16; 9297 break; 9298 case Intrinsic::ppc_altivec_lvewx: 9299 VT = MVT::i32; 9300 break; 9301 } 9302 9303 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9304 } 9305 9306 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9307 EVT VT; 9308 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9309 default: return false; 9310 case Intrinsic::ppc_qpx_qvstfd: 9311 case Intrinsic::ppc_qpx_qvstfda: 9312 VT = MVT::v4f64; 9313 break; 9314 case Intrinsic::ppc_qpx_qvstfs: 9315 case Intrinsic::ppc_qpx_qvstfsa: 9316 VT = MVT::v4f32; 9317 break; 9318 case Intrinsic::ppc_qpx_qvstfcd: 9319 case Intrinsic::ppc_qpx_qvstfcda: 9320 VT = MVT::v2f64; 9321 break; 9322 case Intrinsic::ppc_qpx_qvstfcs: 9323 case Intrinsic::ppc_qpx_qvstfcsa: 9324 VT = MVT::v2f32; 9325 break; 9326 case Intrinsic::ppc_qpx_qvstfiw: 9327 case Intrinsic::ppc_qpx_qvstfiwa: 9328 case Intrinsic::ppc_altivec_stvx: 9329 case Intrinsic::ppc_altivec_stvxl: 9330 case Intrinsic::ppc_vsx_stxvw4x: 9331 VT = MVT::v4i32; 9332 break; 9333 case Intrinsic::ppc_vsx_stxvd2x: 9334 VT = MVT::v2f64; 9335 break; 9336 case Intrinsic::ppc_altivec_stvebx: 9337 VT = MVT::i8; 9338 break; 9339 case Intrinsic::ppc_altivec_stvehx: 9340 VT = MVT::i16; 9341 break; 9342 case Intrinsic::ppc_altivec_stvewx: 9343 VT = MVT::i32; 9344 break; 9345 } 9346 9347 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9348 } 9349 9350 return false; 9351 } 9352 9353 // Return true is there is a nearyby consecutive load to the one provided 9354 // (regardless of alignment). We search up and down the chain, looking though 9355 // token factors and other loads (but nothing else). As a result, a true result 9356 // indicates that it is safe to create a new consecutive load adjacent to the 9357 // load provided. 9358 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9359 SDValue Chain = LD->getChain(); 9360 EVT VT = LD->getMemoryVT(); 9361 9362 SmallSet<SDNode *, 16> LoadRoots; 9363 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9364 SmallSet<SDNode *, 16> Visited; 9365 9366 // First, search up the chain, branching to follow all token-factor operands. 9367 // If we find a consecutive load, then we're done, otherwise, record all 9368 // nodes just above the top-level loads and token factors. 9369 while (!Queue.empty()) { 9370 SDNode *ChainNext = Queue.pop_back_val(); 9371 if (!Visited.insert(ChainNext).second) 9372 continue; 9373 9374 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9375 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9376 return true; 9377 9378 if (!Visited.count(ChainLD->getChain().getNode())) 9379 Queue.push_back(ChainLD->getChain().getNode()); 9380 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9381 for (const SDUse &O : ChainNext->ops()) 9382 if (!Visited.count(O.getNode())) 9383 Queue.push_back(O.getNode()); 9384 } else 9385 LoadRoots.insert(ChainNext); 9386 } 9387 9388 // Second, search down the chain, starting from the top-level nodes recorded 9389 // in the first phase. These top-level nodes are the nodes just above all 9390 // loads and token factors. Starting with their uses, recursively look though 9391 // all loads (just the chain uses) and token factors to find a consecutive 9392 // load. 9393 Visited.clear(); 9394 Queue.clear(); 9395 9396 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9397 IE = LoadRoots.end(); I != IE; ++I) { 9398 Queue.push_back(*I); 9399 9400 while (!Queue.empty()) { 9401 SDNode *LoadRoot = Queue.pop_back_val(); 9402 if (!Visited.insert(LoadRoot).second) 9403 continue; 9404 9405 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9406 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9407 return true; 9408 9409 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9410 UE = LoadRoot->use_end(); UI != UE; ++UI) 9411 if (((isa<MemSDNode>(*UI) && 9412 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9413 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9414 Queue.push_back(*UI); 9415 } 9416 } 9417 9418 return false; 9419 } 9420 9421 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9422 DAGCombinerInfo &DCI) const { 9423 SelectionDAG &DAG = DCI.DAG; 9424 SDLoc dl(N); 9425 9426 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9427 // If we're tracking CR bits, we need to be careful that we don't have: 9428 // trunc(binary-ops(zext(x), zext(y))) 9429 // or 9430 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9431 // such that we're unnecessarily moving things into GPRs when it would be 9432 // better to keep them in CR bits. 9433 9434 // Note that trunc here can be an actual i1 trunc, or can be the effective 9435 // truncation that comes from a setcc or select_cc. 9436 if (N->getOpcode() == ISD::TRUNCATE && 9437 N->getValueType(0) != MVT::i1) 9438 return SDValue(); 9439 9440 if (N->getOperand(0).getValueType() != MVT::i32 && 9441 N->getOperand(0).getValueType() != MVT::i64) 9442 return SDValue(); 9443 9444 if (N->getOpcode() == ISD::SETCC || 9445 N->getOpcode() == ISD::SELECT_CC) { 9446 // If we're looking at a comparison, then we need to make sure that the 9447 // high bits (all except for the first) don't matter the result. 9448 ISD::CondCode CC = 9449 cast<CondCodeSDNode>(N->getOperand( 9450 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9451 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9452 9453 if (ISD::isSignedIntSetCC(CC)) { 9454 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9455 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9456 return SDValue(); 9457 } else if (ISD::isUnsignedIntSetCC(CC)) { 9458 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9459 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9460 !DAG.MaskedValueIsZero(N->getOperand(1), 9461 APInt::getHighBitsSet(OpBits, OpBits-1))) 9462 return SDValue(); 9463 } else { 9464 // This is neither a signed nor an unsigned comparison, just make sure 9465 // that the high bits are equal. 9466 APInt Op1Zero, Op1One; 9467 APInt Op2Zero, Op2One; 9468 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9469 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9470 9471 // We don't really care about what is known about the first bit (if 9472 // anything), so clear it in all masks prior to comparing them. 9473 Op1Zero.clearBit(0); Op1One.clearBit(0); 9474 Op2Zero.clearBit(0); Op2One.clearBit(0); 9475 9476 if (Op1Zero != Op2Zero || Op1One != Op2One) 9477 return SDValue(); 9478 } 9479 } 9480 9481 // We now know that the higher-order bits are irrelevant, we just need to 9482 // make sure that all of the intermediate operations are bit operations, and 9483 // all inputs are extensions. 9484 if (N->getOperand(0).getOpcode() != ISD::AND && 9485 N->getOperand(0).getOpcode() != ISD::OR && 9486 N->getOperand(0).getOpcode() != ISD::XOR && 9487 N->getOperand(0).getOpcode() != ISD::SELECT && 9488 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9489 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9490 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9491 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9492 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9493 return SDValue(); 9494 9495 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9496 N->getOperand(1).getOpcode() != ISD::AND && 9497 N->getOperand(1).getOpcode() != ISD::OR && 9498 N->getOperand(1).getOpcode() != ISD::XOR && 9499 N->getOperand(1).getOpcode() != ISD::SELECT && 9500 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9501 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9502 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9503 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9504 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9505 return SDValue(); 9506 9507 SmallVector<SDValue, 4> Inputs; 9508 SmallVector<SDValue, 8> BinOps, PromOps; 9509 SmallPtrSet<SDNode *, 16> Visited; 9510 9511 for (unsigned i = 0; i < 2; ++i) { 9512 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9513 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9514 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9515 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9516 isa<ConstantSDNode>(N->getOperand(i))) 9517 Inputs.push_back(N->getOperand(i)); 9518 else 9519 BinOps.push_back(N->getOperand(i)); 9520 9521 if (N->getOpcode() == ISD::TRUNCATE) 9522 break; 9523 } 9524 9525 // Visit all inputs, collect all binary operations (and, or, xor and 9526 // select) that are all fed by extensions. 9527 while (!BinOps.empty()) { 9528 SDValue BinOp = BinOps.back(); 9529 BinOps.pop_back(); 9530 9531 if (!Visited.insert(BinOp.getNode()).second) 9532 continue; 9533 9534 PromOps.push_back(BinOp); 9535 9536 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9537 // The condition of the select is not promoted. 9538 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9539 continue; 9540 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9541 continue; 9542 9543 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9544 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9545 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9546 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9547 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9548 Inputs.push_back(BinOp.getOperand(i)); 9549 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9550 BinOp.getOperand(i).getOpcode() == ISD::OR || 9551 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9552 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9553 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9554 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9555 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9556 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9557 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9558 BinOps.push_back(BinOp.getOperand(i)); 9559 } else { 9560 // We have an input that is not an extension or another binary 9561 // operation; we'll abort this transformation. 9562 return SDValue(); 9563 } 9564 } 9565 } 9566 9567 // Make sure that this is a self-contained cluster of operations (which 9568 // is not quite the same thing as saying that everything has only one 9569 // use). 9570 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9571 if (isa<ConstantSDNode>(Inputs[i])) 9572 continue; 9573 9574 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9575 UE = Inputs[i].getNode()->use_end(); 9576 UI != UE; ++UI) { 9577 SDNode *User = *UI; 9578 if (User != N && !Visited.count(User)) 9579 return SDValue(); 9580 9581 // Make sure that we're not going to promote the non-output-value 9582 // operand(s) or SELECT or SELECT_CC. 9583 // FIXME: Although we could sometimes handle this, and it does occur in 9584 // practice that one of the condition inputs to the select is also one of 9585 // the outputs, we currently can't deal with this. 9586 if (User->getOpcode() == ISD::SELECT) { 9587 if (User->getOperand(0) == Inputs[i]) 9588 return SDValue(); 9589 } else if (User->getOpcode() == ISD::SELECT_CC) { 9590 if (User->getOperand(0) == Inputs[i] || 9591 User->getOperand(1) == Inputs[i]) 9592 return SDValue(); 9593 } 9594 } 9595 } 9596 9597 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9598 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9599 UE = PromOps[i].getNode()->use_end(); 9600 UI != UE; ++UI) { 9601 SDNode *User = *UI; 9602 if (User != N && !Visited.count(User)) 9603 return SDValue(); 9604 9605 // Make sure that we're not going to promote the non-output-value 9606 // operand(s) or SELECT or SELECT_CC. 9607 // FIXME: Although we could sometimes handle this, and it does occur in 9608 // practice that one of the condition inputs to the select is also one of 9609 // the outputs, we currently can't deal with this. 9610 if (User->getOpcode() == ISD::SELECT) { 9611 if (User->getOperand(0) == PromOps[i]) 9612 return SDValue(); 9613 } else if (User->getOpcode() == ISD::SELECT_CC) { 9614 if (User->getOperand(0) == PromOps[i] || 9615 User->getOperand(1) == PromOps[i]) 9616 return SDValue(); 9617 } 9618 } 9619 } 9620 9621 // Replace all inputs with the extension operand. 9622 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9623 // Constants may have users outside the cluster of to-be-promoted nodes, 9624 // and so we need to replace those as we do the promotions. 9625 if (isa<ConstantSDNode>(Inputs[i])) 9626 continue; 9627 else 9628 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9629 } 9630 9631 // Replace all operations (these are all the same, but have a different 9632 // (i1) return type). DAG.getNode will validate that the types of 9633 // a binary operator match, so go through the list in reverse so that 9634 // we've likely promoted both operands first. Any intermediate truncations or 9635 // extensions disappear. 9636 while (!PromOps.empty()) { 9637 SDValue PromOp = PromOps.back(); 9638 PromOps.pop_back(); 9639 9640 if (PromOp.getOpcode() == ISD::TRUNCATE || 9641 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9642 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9643 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9644 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9645 PromOp.getOperand(0).getValueType() != MVT::i1) { 9646 // The operand is not yet ready (see comment below). 9647 PromOps.insert(PromOps.begin(), PromOp); 9648 continue; 9649 } 9650 9651 SDValue RepValue = PromOp.getOperand(0); 9652 if (isa<ConstantSDNode>(RepValue)) 9653 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9654 9655 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9656 continue; 9657 } 9658 9659 unsigned C; 9660 switch (PromOp.getOpcode()) { 9661 default: C = 0; break; 9662 case ISD::SELECT: C = 1; break; 9663 case ISD::SELECT_CC: C = 2; break; 9664 } 9665 9666 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9667 PromOp.getOperand(C).getValueType() != MVT::i1) || 9668 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9669 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9670 // The to-be-promoted operands of this node have not yet been 9671 // promoted (this should be rare because we're going through the 9672 // list backward, but if one of the operands has several users in 9673 // this cluster of to-be-promoted nodes, it is possible). 9674 PromOps.insert(PromOps.begin(), PromOp); 9675 continue; 9676 } 9677 9678 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9679 PromOp.getNode()->op_end()); 9680 9681 // If there are any constant inputs, make sure they're replaced now. 9682 for (unsigned i = 0; i < 2; ++i) 9683 if (isa<ConstantSDNode>(Ops[C+i])) 9684 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9685 9686 DAG.ReplaceAllUsesOfValueWith(PromOp, 9687 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9688 } 9689 9690 // Now we're left with the initial truncation itself. 9691 if (N->getOpcode() == ISD::TRUNCATE) 9692 return N->getOperand(0); 9693 9694 // Otherwise, this is a comparison. The operands to be compared have just 9695 // changed type (to i1), but everything else is the same. 9696 return SDValue(N, 0); 9697 } 9698 9699 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9700 DAGCombinerInfo &DCI) const { 9701 SelectionDAG &DAG = DCI.DAG; 9702 SDLoc dl(N); 9703 9704 // If we're tracking CR bits, we need to be careful that we don't have: 9705 // zext(binary-ops(trunc(x), trunc(y))) 9706 // or 9707 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9708 // such that we're unnecessarily moving things into CR bits that can more 9709 // efficiently stay in GPRs. Note that if we're not certain that the high 9710 // bits are set as required by the final extension, we still may need to do 9711 // some masking to get the proper behavior. 9712 9713 // This same functionality is important on PPC64 when dealing with 9714 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9715 // the return values of functions. Because it is so similar, it is handled 9716 // here as well. 9717 9718 if (N->getValueType(0) != MVT::i32 && 9719 N->getValueType(0) != MVT::i64) 9720 return SDValue(); 9721 9722 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9723 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9724 return SDValue(); 9725 9726 if (N->getOperand(0).getOpcode() != ISD::AND && 9727 N->getOperand(0).getOpcode() != ISD::OR && 9728 N->getOperand(0).getOpcode() != ISD::XOR && 9729 N->getOperand(0).getOpcode() != ISD::SELECT && 9730 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9731 return SDValue(); 9732 9733 SmallVector<SDValue, 4> Inputs; 9734 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9735 SmallPtrSet<SDNode *, 16> Visited; 9736 9737 // Visit all inputs, collect all binary operations (and, or, xor and 9738 // select) that are all fed by truncations. 9739 while (!BinOps.empty()) { 9740 SDValue BinOp = BinOps.back(); 9741 BinOps.pop_back(); 9742 9743 if (!Visited.insert(BinOp.getNode()).second) 9744 continue; 9745 9746 PromOps.push_back(BinOp); 9747 9748 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9749 // The condition of the select is not promoted. 9750 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9751 continue; 9752 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9753 continue; 9754 9755 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9756 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9757 Inputs.push_back(BinOp.getOperand(i)); 9758 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9759 BinOp.getOperand(i).getOpcode() == ISD::OR || 9760 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9761 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9762 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9763 BinOps.push_back(BinOp.getOperand(i)); 9764 } else { 9765 // We have an input that is not a truncation or another binary 9766 // operation; we'll abort this transformation. 9767 return SDValue(); 9768 } 9769 } 9770 } 9771 9772 // The operands of a select that must be truncated when the select is 9773 // promoted because the operand is actually part of the to-be-promoted set. 9774 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9775 9776 // Make sure that this is a self-contained cluster of operations (which 9777 // is not quite the same thing as saying that everything has only one 9778 // use). 9779 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9780 if (isa<ConstantSDNode>(Inputs[i])) 9781 continue; 9782 9783 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9784 UE = Inputs[i].getNode()->use_end(); 9785 UI != UE; ++UI) { 9786 SDNode *User = *UI; 9787 if (User != N && !Visited.count(User)) 9788 return SDValue(); 9789 9790 // If we're going to promote the non-output-value operand(s) or SELECT or 9791 // SELECT_CC, record them for truncation. 9792 if (User->getOpcode() == ISD::SELECT) { 9793 if (User->getOperand(0) == Inputs[i]) 9794 SelectTruncOp[0].insert(std::make_pair(User, 9795 User->getOperand(0).getValueType())); 9796 } else if (User->getOpcode() == ISD::SELECT_CC) { 9797 if (User->getOperand(0) == Inputs[i]) 9798 SelectTruncOp[0].insert(std::make_pair(User, 9799 User->getOperand(0).getValueType())); 9800 if (User->getOperand(1) == Inputs[i]) 9801 SelectTruncOp[1].insert(std::make_pair(User, 9802 User->getOperand(1).getValueType())); 9803 } 9804 } 9805 } 9806 9807 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9808 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9809 UE = PromOps[i].getNode()->use_end(); 9810 UI != UE; ++UI) { 9811 SDNode *User = *UI; 9812 if (User != N && !Visited.count(User)) 9813 return SDValue(); 9814 9815 // If we're going to promote the non-output-value operand(s) or SELECT or 9816 // SELECT_CC, record them for truncation. 9817 if (User->getOpcode() == ISD::SELECT) { 9818 if (User->getOperand(0) == PromOps[i]) 9819 SelectTruncOp[0].insert(std::make_pair(User, 9820 User->getOperand(0).getValueType())); 9821 } else if (User->getOpcode() == ISD::SELECT_CC) { 9822 if (User->getOperand(0) == PromOps[i]) 9823 SelectTruncOp[0].insert(std::make_pair(User, 9824 User->getOperand(0).getValueType())); 9825 if (User->getOperand(1) == PromOps[i]) 9826 SelectTruncOp[1].insert(std::make_pair(User, 9827 User->getOperand(1).getValueType())); 9828 } 9829 } 9830 } 9831 9832 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9833 bool ReallyNeedsExt = false; 9834 if (N->getOpcode() != ISD::ANY_EXTEND) { 9835 // If all of the inputs are not already sign/zero extended, then 9836 // we'll still need to do that at the end. 9837 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9838 if (isa<ConstantSDNode>(Inputs[i])) 9839 continue; 9840 9841 unsigned OpBits = 9842 Inputs[i].getOperand(0).getValueSizeInBits(); 9843 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9844 9845 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9846 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9847 APInt::getHighBitsSet(OpBits, 9848 OpBits-PromBits))) || 9849 (N->getOpcode() == ISD::SIGN_EXTEND && 9850 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9851 (OpBits-(PromBits-1)))) { 9852 ReallyNeedsExt = true; 9853 break; 9854 } 9855 } 9856 } 9857 9858 // Replace all inputs, either with the truncation operand, or a 9859 // truncation or extension to the final output type. 9860 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9861 // Constant inputs need to be replaced with the to-be-promoted nodes that 9862 // use them because they might have users outside of the cluster of 9863 // promoted nodes. 9864 if (isa<ConstantSDNode>(Inputs[i])) 9865 continue; 9866 9867 SDValue InSrc = Inputs[i].getOperand(0); 9868 if (Inputs[i].getValueType() == N->getValueType(0)) 9869 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9870 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9871 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9872 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9873 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9874 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9875 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9876 else 9877 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9878 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9879 } 9880 9881 // Replace all operations (these are all the same, but have a different 9882 // (promoted) return type). DAG.getNode will validate that the types of 9883 // a binary operator match, so go through the list in reverse so that 9884 // we've likely promoted both operands first. 9885 while (!PromOps.empty()) { 9886 SDValue PromOp = PromOps.back(); 9887 PromOps.pop_back(); 9888 9889 unsigned C; 9890 switch (PromOp.getOpcode()) { 9891 default: C = 0; break; 9892 case ISD::SELECT: C = 1; break; 9893 case ISD::SELECT_CC: C = 2; break; 9894 } 9895 9896 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9897 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9898 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9899 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9900 // The to-be-promoted operands of this node have not yet been 9901 // promoted (this should be rare because we're going through the 9902 // list backward, but if one of the operands has several users in 9903 // this cluster of to-be-promoted nodes, it is possible). 9904 PromOps.insert(PromOps.begin(), PromOp); 9905 continue; 9906 } 9907 9908 // For SELECT and SELECT_CC nodes, we do a similar check for any 9909 // to-be-promoted comparison inputs. 9910 if (PromOp.getOpcode() == ISD::SELECT || 9911 PromOp.getOpcode() == ISD::SELECT_CC) { 9912 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9913 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9914 (SelectTruncOp[1].count(PromOp.getNode()) && 9915 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9916 PromOps.insert(PromOps.begin(), PromOp); 9917 continue; 9918 } 9919 } 9920 9921 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9922 PromOp.getNode()->op_end()); 9923 9924 // If this node has constant inputs, then they'll need to be promoted here. 9925 for (unsigned i = 0; i < 2; ++i) { 9926 if (!isa<ConstantSDNode>(Ops[C+i])) 9927 continue; 9928 if (Ops[C+i].getValueType() == N->getValueType(0)) 9929 continue; 9930 9931 if (N->getOpcode() == ISD::SIGN_EXTEND) 9932 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9933 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9934 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9935 else 9936 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9937 } 9938 9939 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9940 // truncate them again to the original value type. 9941 if (PromOp.getOpcode() == ISD::SELECT || 9942 PromOp.getOpcode() == ISD::SELECT_CC) { 9943 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9944 if (SI0 != SelectTruncOp[0].end()) 9945 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9946 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9947 if (SI1 != SelectTruncOp[1].end()) 9948 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9949 } 9950 9951 DAG.ReplaceAllUsesOfValueWith(PromOp, 9952 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9953 } 9954 9955 // Now we're left with the initial extension itself. 9956 if (!ReallyNeedsExt) 9957 return N->getOperand(0); 9958 9959 // To zero extend, just mask off everything except for the first bit (in the 9960 // i1 case). 9961 if (N->getOpcode() == ISD::ZERO_EXTEND) 9962 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9963 DAG.getConstant(APInt::getLowBitsSet( 9964 N->getValueSizeInBits(0), PromBits), 9965 dl, N->getValueType(0))); 9966 9967 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9968 "Invalid extension type"); 9969 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9970 SDValue ShiftCst = 9971 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9972 return DAG.getNode( 9973 ISD::SRA, dl, N->getValueType(0), 9974 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9975 ShiftCst); 9976 } 9977 9978 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9979 DAGCombinerInfo &DCI) const { 9980 assert((N->getOpcode() == ISD::SINT_TO_FP || 9981 N->getOpcode() == ISD::UINT_TO_FP) && 9982 "Need an int -> FP conversion node here"); 9983 9984 if (!Subtarget.has64BitSupport()) 9985 return SDValue(); 9986 9987 SelectionDAG &DAG = DCI.DAG; 9988 SDLoc dl(N); 9989 SDValue Op(N, 0); 9990 9991 // Don't handle ppc_fp128 here or i1 conversions. 9992 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9993 return SDValue(); 9994 if (Op.getOperand(0).getValueType() == MVT::i1) 9995 return SDValue(); 9996 9997 // For i32 intermediate values, unfortunately, the conversion functions 9998 // leave the upper 32 bits of the value are undefined. Within the set of 9999 // scalar instructions, we have no method for zero- or sign-extending the 10000 // value. Thus, we cannot handle i32 intermediate values here. 10001 if (Op.getOperand(0).getValueType() == MVT::i32) 10002 return SDValue(); 10003 10004 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10005 "UINT_TO_FP is supported only with FPCVT"); 10006 10007 // If we have FCFIDS, then use it when converting to single-precision. 10008 // Otherwise, convert to double-precision and then round. 10009 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10010 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10011 : PPCISD::FCFIDS) 10012 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10013 : PPCISD::FCFID); 10014 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10015 ? MVT::f32 10016 : MVT::f64; 10017 10018 // If we're converting from a float, to an int, and back to a float again, 10019 // then we don't need the store/load pair at all. 10020 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10021 Subtarget.hasFPCVT()) || 10022 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10023 SDValue Src = Op.getOperand(0).getOperand(0); 10024 if (Src.getValueType() == MVT::f32) { 10025 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10026 DCI.AddToWorklist(Src.getNode()); 10027 } else if (Src.getValueType() != MVT::f64) { 10028 // Make sure that we don't pick up a ppc_fp128 source value. 10029 return SDValue(); 10030 } 10031 10032 unsigned FCTOp = 10033 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10034 PPCISD::FCTIDUZ; 10035 10036 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10037 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10038 10039 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10040 FP = DAG.getNode(ISD::FP_ROUND, dl, 10041 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10042 DCI.AddToWorklist(FP.getNode()); 10043 } 10044 10045 return FP; 10046 } 10047 10048 return SDValue(); 10049 } 10050 10051 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10052 // builtins) into loads with swaps. 10053 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10054 DAGCombinerInfo &DCI) const { 10055 SelectionDAG &DAG = DCI.DAG; 10056 SDLoc dl(N); 10057 SDValue Chain; 10058 SDValue Base; 10059 MachineMemOperand *MMO; 10060 10061 switch (N->getOpcode()) { 10062 default: 10063 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10064 case ISD::LOAD: { 10065 LoadSDNode *LD = cast<LoadSDNode>(N); 10066 Chain = LD->getChain(); 10067 Base = LD->getBasePtr(); 10068 MMO = LD->getMemOperand(); 10069 // If the MMO suggests this isn't a load of a full vector, leave 10070 // things alone. For a built-in, we have to make the change for 10071 // correctness, so if there is a size problem that will be a bug. 10072 if (MMO->getSize() < 16) 10073 return SDValue(); 10074 break; 10075 } 10076 case ISD::INTRINSIC_W_CHAIN: { 10077 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10078 Chain = Intrin->getChain(); 10079 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10080 // us what we want. Get operand 2 instead. 10081 Base = Intrin->getOperand(2); 10082 MMO = Intrin->getMemOperand(); 10083 break; 10084 } 10085 } 10086 10087 MVT VecTy = N->getValueType(0).getSimpleVT(); 10088 SDValue LoadOps[] = { Chain, Base }; 10089 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10090 DAG.getVTList(VecTy, MVT::Other), 10091 LoadOps, VecTy, MMO); 10092 DCI.AddToWorklist(Load.getNode()); 10093 Chain = Load.getValue(1); 10094 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10095 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10096 DCI.AddToWorklist(Swap.getNode()); 10097 return Swap; 10098 } 10099 10100 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10101 // builtins) into stores with swaps. 10102 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10103 DAGCombinerInfo &DCI) const { 10104 SelectionDAG &DAG = DCI.DAG; 10105 SDLoc dl(N); 10106 SDValue Chain; 10107 SDValue Base; 10108 unsigned SrcOpnd; 10109 MachineMemOperand *MMO; 10110 10111 switch (N->getOpcode()) { 10112 default: 10113 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10114 case ISD::STORE: { 10115 StoreSDNode *ST = cast<StoreSDNode>(N); 10116 Chain = ST->getChain(); 10117 Base = ST->getBasePtr(); 10118 MMO = ST->getMemOperand(); 10119 SrcOpnd = 1; 10120 // If the MMO suggests this isn't a store of a full vector, leave 10121 // things alone. For a built-in, we have to make the change for 10122 // correctness, so if there is a size problem that will be a bug. 10123 if (MMO->getSize() < 16) 10124 return SDValue(); 10125 break; 10126 } 10127 case ISD::INTRINSIC_VOID: { 10128 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10129 Chain = Intrin->getChain(); 10130 // Intrin->getBasePtr() oddly does not get what we want. 10131 Base = Intrin->getOperand(3); 10132 MMO = Intrin->getMemOperand(); 10133 SrcOpnd = 2; 10134 break; 10135 } 10136 } 10137 10138 SDValue Src = N->getOperand(SrcOpnd); 10139 MVT VecTy = Src.getValueType().getSimpleVT(); 10140 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10141 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10142 DCI.AddToWorklist(Swap.getNode()); 10143 Chain = Swap.getValue(1); 10144 SDValue StoreOps[] = { Chain, Swap, Base }; 10145 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10146 DAG.getVTList(MVT::Other), 10147 StoreOps, VecTy, MMO); 10148 DCI.AddToWorklist(Store.getNode()); 10149 return Store; 10150 } 10151 10152 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10153 DAGCombinerInfo &DCI) const { 10154 SelectionDAG &DAG = DCI.DAG; 10155 SDLoc dl(N); 10156 switch (N->getOpcode()) { 10157 default: break; 10158 case PPCISD::SHL: 10159 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10160 if (C->isNullValue()) // 0 << V -> 0. 10161 return N->getOperand(0); 10162 } 10163 break; 10164 case PPCISD::SRL: 10165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10166 if (C->isNullValue()) // 0 >>u V -> 0. 10167 return N->getOperand(0); 10168 } 10169 break; 10170 case PPCISD::SRA: 10171 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10172 if (C->isNullValue() || // 0 >>s V -> 0. 10173 C->isAllOnesValue()) // -1 >>s V -> -1. 10174 return N->getOperand(0); 10175 } 10176 break; 10177 case ISD::SIGN_EXTEND: 10178 case ISD::ZERO_EXTEND: 10179 case ISD::ANY_EXTEND: 10180 return DAGCombineExtBoolTrunc(N, DCI); 10181 case ISD::TRUNCATE: 10182 case ISD::SETCC: 10183 case ISD::SELECT_CC: 10184 return DAGCombineTruncBoolExt(N, DCI); 10185 case ISD::SINT_TO_FP: 10186 case ISD::UINT_TO_FP: 10187 return combineFPToIntToFP(N, DCI); 10188 case ISD::STORE: { 10189 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10190 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10191 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10192 N->getOperand(1).getValueType() == MVT::i32 && 10193 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10194 SDValue Val = N->getOperand(1).getOperand(0); 10195 if (Val.getValueType() == MVT::f32) { 10196 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10197 DCI.AddToWorklist(Val.getNode()); 10198 } 10199 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10200 DCI.AddToWorklist(Val.getNode()); 10201 10202 SDValue Ops[] = { 10203 N->getOperand(0), Val, N->getOperand(2), 10204 DAG.getValueType(N->getOperand(1).getValueType()) 10205 }; 10206 10207 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10208 DAG.getVTList(MVT::Other), Ops, 10209 cast<StoreSDNode>(N)->getMemoryVT(), 10210 cast<StoreSDNode>(N)->getMemOperand()); 10211 DCI.AddToWorklist(Val.getNode()); 10212 return Val; 10213 } 10214 10215 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10216 if (cast<StoreSDNode>(N)->isUnindexed() && 10217 N->getOperand(1).getOpcode() == ISD::BSWAP && 10218 N->getOperand(1).getNode()->hasOneUse() && 10219 (N->getOperand(1).getValueType() == MVT::i32 || 10220 N->getOperand(1).getValueType() == MVT::i16 || 10221 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10222 N->getOperand(1).getValueType() == MVT::i64))) { 10223 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10224 // Do an any-extend to 32-bits if this is a half-word input. 10225 if (BSwapOp.getValueType() == MVT::i16) 10226 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10227 10228 SDValue Ops[] = { 10229 N->getOperand(0), BSwapOp, N->getOperand(2), 10230 DAG.getValueType(N->getOperand(1).getValueType()) 10231 }; 10232 return 10233 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10234 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10235 cast<StoreSDNode>(N)->getMemOperand()); 10236 } 10237 10238 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10239 EVT VT = N->getOperand(1).getValueType(); 10240 if (VT.isSimple()) { 10241 MVT StoreVT = VT.getSimpleVT(); 10242 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10243 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10244 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10245 return expandVSXStoreForLE(N, DCI); 10246 } 10247 break; 10248 } 10249 case ISD::LOAD: { 10250 LoadSDNode *LD = cast<LoadSDNode>(N); 10251 EVT VT = LD->getValueType(0); 10252 10253 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10254 if (VT.isSimple()) { 10255 MVT LoadVT = VT.getSimpleVT(); 10256 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10257 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10258 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10259 return expandVSXLoadForLE(N, DCI); 10260 } 10261 10262 EVT MemVT = LD->getMemoryVT(); 10263 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10264 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10265 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10266 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10267 if (LD->isUnindexed() && VT.isVector() && 10268 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10269 // P8 and later hardware should just use LOAD. 10270 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10271 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10272 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10273 LD->getAlignment() >= ScalarABIAlignment)) && 10274 LD->getAlignment() < ABIAlignment) { 10275 // This is a type-legal unaligned Altivec or QPX load. 10276 SDValue Chain = LD->getChain(); 10277 SDValue Ptr = LD->getBasePtr(); 10278 bool isLittleEndian = Subtarget.isLittleEndian(); 10279 10280 // This implements the loading of unaligned vectors as described in 10281 // the venerable Apple Velocity Engine overview. Specifically: 10282 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10283 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10284 // 10285 // The general idea is to expand a sequence of one or more unaligned 10286 // loads into an alignment-based permutation-control instruction (lvsl 10287 // or lvsr), a series of regular vector loads (which always truncate 10288 // their input address to an aligned address), and a series of 10289 // permutations. The results of these permutations are the requested 10290 // loaded values. The trick is that the last "extra" load is not taken 10291 // from the address you might suspect (sizeof(vector) bytes after the 10292 // last requested load), but rather sizeof(vector) - 1 bytes after the 10293 // last requested vector. The point of this is to avoid a page fault if 10294 // the base address happened to be aligned. This works because if the 10295 // base address is aligned, then adding less than a full vector length 10296 // will cause the last vector in the sequence to be (re)loaded. 10297 // Otherwise, the next vector will be fetched as you might suspect was 10298 // necessary. 10299 10300 // We might be able to reuse the permutation generation from 10301 // a different base address offset from this one by an aligned amount. 10302 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10303 // optimization later. 10304 Intrinsic::ID Intr, IntrLD, IntrPerm; 10305 MVT PermCntlTy, PermTy, LDTy; 10306 if (Subtarget.hasAltivec()) { 10307 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10308 Intrinsic::ppc_altivec_lvsl; 10309 IntrLD = Intrinsic::ppc_altivec_lvx; 10310 IntrPerm = Intrinsic::ppc_altivec_vperm; 10311 PermCntlTy = MVT::v16i8; 10312 PermTy = MVT::v4i32; 10313 LDTy = MVT::v4i32; 10314 } else { 10315 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10316 Intrinsic::ppc_qpx_qvlpcls; 10317 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10318 Intrinsic::ppc_qpx_qvlfs; 10319 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10320 PermCntlTy = MVT::v4f64; 10321 PermTy = MVT::v4f64; 10322 LDTy = MemVT.getSimpleVT(); 10323 } 10324 10325 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10326 10327 // Create the new MMO for the new base load. It is like the original MMO, 10328 // but represents an area in memory almost twice the vector size centered 10329 // on the original address. If the address is unaligned, we might start 10330 // reading up to (sizeof(vector)-1) bytes below the address of the 10331 // original unaligned load. 10332 MachineFunction &MF = DAG.getMachineFunction(); 10333 MachineMemOperand *BaseMMO = 10334 MF.getMachineMemOperand(LD->getMemOperand(), 10335 -(long)MemVT.getStoreSize()+1, 10336 2*MemVT.getStoreSize()-1); 10337 10338 // Create the new base load. 10339 SDValue LDXIntID = 10340 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10341 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10342 SDValue BaseLoad = 10343 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10344 DAG.getVTList(PermTy, MVT::Other), 10345 BaseLoadOps, LDTy, BaseMMO); 10346 10347 // Note that the value of IncOffset (which is provided to the next 10348 // load's pointer info offset value, and thus used to calculate the 10349 // alignment), and the value of IncValue (which is actually used to 10350 // increment the pointer value) are different! This is because we 10351 // require the next load to appear to be aligned, even though it 10352 // is actually offset from the base pointer by a lesser amount. 10353 int IncOffset = VT.getSizeInBits() / 8; 10354 int IncValue = IncOffset; 10355 10356 // Walk (both up and down) the chain looking for another load at the real 10357 // (aligned) offset (the alignment of the other load does not matter in 10358 // this case). If found, then do not use the offset reduction trick, as 10359 // that will prevent the loads from being later combined (as they would 10360 // otherwise be duplicates). 10361 if (!findConsecutiveLoad(LD, DAG)) 10362 --IncValue; 10363 10364 SDValue Increment = 10365 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10366 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10367 10368 MachineMemOperand *ExtraMMO = 10369 MF.getMachineMemOperand(LD->getMemOperand(), 10370 1, 2*MemVT.getStoreSize()-1); 10371 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10372 SDValue ExtraLoad = 10373 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10374 DAG.getVTList(PermTy, MVT::Other), 10375 ExtraLoadOps, LDTy, ExtraMMO); 10376 10377 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10378 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10379 10380 // Because vperm has a big-endian bias, we must reverse the order 10381 // of the input vectors and complement the permute control vector 10382 // when generating little endian code. We have already handled the 10383 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10384 // and ExtraLoad here. 10385 SDValue Perm; 10386 if (isLittleEndian) 10387 Perm = BuildIntrinsicOp(IntrPerm, 10388 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10389 else 10390 Perm = BuildIntrinsicOp(IntrPerm, 10391 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10392 10393 if (VT != PermTy) 10394 Perm = Subtarget.hasAltivec() ? 10395 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10396 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10397 DAG.getTargetConstant(1, dl, MVT::i64)); 10398 // second argument is 1 because this rounding 10399 // is always exact. 10400 10401 // The output of the permutation is our loaded result, the TokenFactor is 10402 // our new chain. 10403 DCI.CombineTo(N, Perm, TF); 10404 return SDValue(N, 0); 10405 } 10406 } 10407 break; 10408 case ISD::INTRINSIC_WO_CHAIN: { 10409 bool isLittleEndian = Subtarget.isLittleEndian(); 10410 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10411 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10412 : Intrinsic::ppc_altivec_lvsl); 10413 if ((IID == Intr || 10414 IID == Intrinsic::ppc_qpx_qvlpcld || 10415 IID == Intrinsic::ppc_qpx_qvlpcls) && 10416 N->getOperand(1)->getOpcode() == ISD::ADD) { 10417 SDValue Add = N->getOperand(1); 10418 10419 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10420 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10421 10422 if (DAG.MaskedValueIsZero( 10423 Add->getOperand(1), 10424 APInt::getAllOnesValue(Bits /* alignment */) 10425 .zext( 10426 Add.getValueType().getScalarType().getSizeInBits()))) { 10427 SDNode *BasePtr = Add->getOperand(0).getNode(); 10428 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10429 UE = BasePtr->use_end(); 10430 UI != UE; ++UI) { 10431 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10432 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10433 // We've found another LVSL/LVSR, and this address is an aligned 10434 // multiple of that one. The results will be the same, so use the 10435 // one we've just found instead. 10436 10437 return SDValue(*UI, 0); 10438 } 10439 } 10440 } 10441 10442 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10443 SDNode *BasePtr = Add->getOperand(0).getNode(); 10444 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10445 UE = BasePtr->use_end(); UI != UE; ++UI) { 10446 if (UI->getOpcode() == ISD::ADD && 10447 isa<ConstantSDNode>(UI->getOperand(1)) && 10448 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10449 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10450 (1ULL << Bits) == 0) { 10451 SDNode *OtherAdd = *UI; 10452 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10453 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10454 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10455 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10456 return SDValue(*VI, 0); 10457 } 10458 } 10459 } 10460 } 10461 } 10462 } 10463 } 10464 10465 break; 10466 case ISD::INTRINSIC_W_CHAIN: { 10467 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10468 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10469 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10470 default: 10471 break; 10472 case Intrinsic::ppc_vsx_lxvw4x: 10473 case Intrinsic::ppc_vsx_lxvd2x: 10474 return expandVSXLoadForLE(N, DCI); 10475 } 10476 } 10477 break; 10478 } 10479 case ISD::INTRINSIC_VOID: { 10480 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10481 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10482 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10483 default: 10484 break; 10485 case Intrinsic::ppc_vsx_stxvw4x: 10486 case Intrinsic::ppc_vsx_stxvd2x: 10487 return expandVSXStoreForLE(N, DCI); 10488 } 10489 } 10490 break; 10491 } 10492 case ISD::BSWAP: 10493 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10494 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10495 N->getOperand(0).hasOneUse() && 10496 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10497 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10498 N->getValueType(0) == MVT::i64))) { 10499 SDValue Load = N->getOperand(0); 10500 LoadSDNode *LD = cast<LoadSDNode>(Load); 10501 // Create the byte-swapping load. 10502 SDValue Ops[] = { 10503 LD->getChain(), // Chain 10504 LD->getBasePtr(), // Ptr 10505 DAG.getValueType(N->getValueType(0)) // VT 10506 }; 10507 SDValue BSLoad = 10508 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10509 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10510 MVT::i64 : MVT::i32, MVT::Other), 10511 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10512 10513 // If this is an i16 load, insert the truncate. 10514 SDValue ResVal = BSLoad; 10515 if (N->getValueType(0) == MVT::i16) 10516 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10517 10518 // First, combine the bswap away. This makes the value produced by the 10519 // load dead. 10520 DCI.CombineTo(N, ResVal); 10521 10522 // Next, combine the load away, we give it a bogus result value but a real 10523 // chain result. The result value is dead because the bswap is dead. 10524 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10525 10526 // Return N so it doesn't get rechecked! 10527 return SDValue(N, 0); 10528 } 10529 10530 break; 10531 case PPCISD::VCMP: { 10532 // If a VCMPo node already exists with exactly the same operands as this 10533 // node, use its result instead of this node (VCMPo computes both a CR6 and 10534 // a normal output). 10535 // 10536 if (!N->getOperand(0).hasOneUse() && 10537 !N->getOperand(1).hasOneUse() && 10538 !N->getOperand(2).hasOneUse()) { 10539 10540 // Scan all of the users of the LHS, looking for VCMPo's that match. 10541 SDNode *VCMPoNode = nullptr; 10542 10543 SDNode *LHSN = N->getOperand(0).getNode(); 10544 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10545 UI != E; ++UI) 10546 if (UI->getOpcode() == PPCISD::VCMPo && 10547 UI->getOperand(1) == N->getOperand(1) && 10548 UI->getOperand(2) == N->getOperand(2) && 10549 UI->getOperand(0) == N->getOperand(0)) { 10550 VCMPoNode = *UI; 10551 break; 10552 } 10553 10554 // If there is no VCMPo node, or if the flag value has a single use, don't 10555 // transform this. 10556 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10557 break; 10558 10559 // Look at the (necessarily single) use of the flag value. If it has a 10560 // chain, this transformation is more complex. Note that multiple things 10561 // could use the value result, which we should ignore. 10562 SDNode *FlagUser = nullptr; 10563 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10564 FlagUser == nullptr; ++UI) { 10565 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10566 SDNode *User = *UI; 10567 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10568 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10569 FlagUser = User; 10570 break; 10571 } 10572 } 10573 } 10574 10575 // If the user is a MFOCRF instruction, we know this is safe. 10576 // Otherwise we give up for right now. 10577 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10578 return SDValue(VCMPoNode, 0); 10579 } 10580 break; 10581 } 10582 case ISD::BRCOND: { 10583 SDValue Cond = N->getOperand(1); 10584 SDValue Target = N->getOperand(2); 10585 10586 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10587 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10588 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10589 10590 // We now need to make the intrinsic dead (it cannot be instruction 10591 // selected). 10592 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10593 assert(Cond.getNode()->hasOneUse() && 10594 "Counter decrement has more than one use"); 10595 10596 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10597 N->getOperand(0), Target); 10598 } 10599 } 10600 break; 10601 case ISD::BR_CC: { 10602 // If this is a branch on an altivec predicate comparison, lower this so 10603 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10604 // lowering is done pre-legalize, because the legalizer lowers the predicate 10605 // compare down to code that is difficult to reassemble. 10606 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10607 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10608 10609 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10610 // value. If so, pass-through the AND to get to the intrinsic. 10611 if (LHS.getOpcode() == ISD::AND && 10612 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10613 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10614 Intrinsic::ppc_is_decremented_ctr_nonzero && 10615 isa<ConstantSDNode>(LHS.getOperand(1)) && 10616 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10617 isZero()) 10618 LHS = LHS.getOperand(0); 10619 10620 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10621 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10622 Intrinsic::ppc_is_decremented_ctr_nonzero && 10623 isa<ConstantSDNode>(RHS)) { 10624 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10625 "Counter decrement comparison is not EQ or NE"); 10626 10627 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10628 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10629 (CC == ISD::SETNE && !Val); 10630 10631 // We now need to make the intrinsic dead (it cannot be instruction 10632 // selected). 10633 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10634 assert(LHS.getNode()->hasOneUse() && 10635 "Counter decrement has more than one use"); 10636 10637 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10638 N->getOperand(0), N->getOperand(4)); 10639 } 10640 10641 int CompareOpc; 10642 bool isDot; 10643 10644 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10645 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10646 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10647 assert(isDot && "Can't compare against a vector result!"); 10648 10649 // If this is a comparison against something other than 0/1, then we know 10650 // that the condition is never/always true. 10651 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10652 if (Val != 0 && Val != 1) { 10653 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10654 return N->getOperand(0); 10655 // Always !=, turn it into an unconditional branch. 10656 return DAG.getNode(ISD::BR, dl, MVT::Other, 10657 N->getOperand(0), N->getOperand(4)); 10658 } 10659 10660 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10661 10662 // Create the PPCISD altivec 'dot' comparison node. 10663 SDValue Ops[] = { 10664 LHS.getOperand(2), // LHS of compare 10665 LHS.getOperand(3), // RHS of compare 10666 DAG.getConstant(CompareOpc, dl, MVT::i32) 10667 }; 10668 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10669 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10670 10671 // Unpack the result based on how the target uses it. 10672 PPC::Predicate CompOpc; 10673 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10674 default: // Can't happen, don't crash on invalid number though. 10675 case 0: // Branch on the value of the EQ bit of CR6. 10676 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10677 break; 10678 case 1: // Branch on the inverted value of the EQ bit of CR6. 10679 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10680 break; 10681 case 2: // Branch on the value of the LT bit of CR6. 10682 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10683 break; 10684 case 3: // Branch on the inverted value of the LT bit of CR6. 10685 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10686 break; 10687 } 10688 10689 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10690 DAG.getConstant(CompOpc, dl, MVT::i32), 10691 DAG.getRegister(PPC::CR6, MVT::i32), 10692 N->getOperand(4), CompNode.getValue(1)); 10693 } 10694 break; 10695 } 10696 } 10697 10698 return SDValue(); 10699 } 10700 10701 SDValue 10702 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10703 SelectionDAG &DAG, 10704 std::vector<SDNode *> *Created) const { 10705 // fold (sdiv X, pow2) 10706 EVT VT = N->getValueType(0); 10707 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10708 return SDValue(); 10709 if ((VT != MVT::i32 && VT != MVT::i64) || 10710 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10711 return SDValue(); 10712 10713 SDLoc DL(N); 10714 SDValue N0 = N->getOperand(0); 10715 10716 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10717 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10718 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10719 10720 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10721 if (Created) 10722 Created->push_back(Op.getNode()); 10723 10724 if (IsNegPow2) { 10725 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10726 if (Created) 10727 Created->push_back(Op.getNode()); 10728 } 10729 10730 return Op; 10731 } 10732 10733 //===----------------------------------------------------------------------===// 10734 // Inline Assembly Support 10735 //===----------------------------------------------------------------------===// 10736 10737 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10738 APInt &KnownZero, 10739 APInt &KnownOne, 10740 const SelectionDAG &DAG, 10741 unsigned Depth) const { 10742 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10743 switch (Op.getOpcode()) { 10744 default: break; 10745 case PPCISD::LBRX: { 10746 // lhbrx is known to have the top bits cleared out. 10747 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10748 KnownZero = 0xFFFF0000; 10749 break; 10750 } 10751 case ISD::INTRINSIC_WO_CHAIN: { 10752 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10753 default: break; 10754 case Intrinsic::ppc_altivec_vcmpbfp_p: 10755 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10756 case Intrinsic::ppc_altivec_vcmpequb_p: 10757 case Intrinsic::ppc_altivec_vcmpequh_p: 10758 case Intrinsic::ppc_altivec_vcmpequw_p: 10759 case Intrinsic::ppc_altivec_vcmpequd_p: 10760 case Intrinsic::ppc_altivec_vcmpgefp_p: 10761 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10762 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10763 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10764 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10765 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10766 case Intrinsic::ppc_altivec_vcmpgtub_p: 10767 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10768 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10769 case Intrinsic::ppc_altivec_vcmpgtud_p: 10770 KnownZero = ~1U; // All bits but the low one are known to be zero. 10771 break; 10772 } 10773 } 10774 } 10775 } 10776 10777 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10778 switch (Subtarget.getDarwinDirective()) { 10779 default: break; 10780 case PPC::DIR_970: 10781 case PPC::DIR_PWR4: 10782 case PPC::DIR_PWR5: 10783 case PPC::DIR_PWR5X: 10784 case PPC::DIR_PWR6: 10785 case PPC::DIR_PWR6X: 10786 case PPC::DIR_PWR7: 10787 case PPC::DIR_PWR8: { 10788 if (!ML) 10789 break; 10790 10791 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10792 10793 // For small loops (between 5 and 8 instructions), align to a 32-byte 10794 // boundary so that the entire loop fits in one instruction-cache line. 10795 uint64_t LoopSize = 0; 10796 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10797 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10798 LoopSize += TII->GetInstSizeInBytes(J); 10799 10800 if (LoopSize > 16 && LoopSize <= 32) 10801 return 5; 10802 10803 break; 10804 } 10805 } 10806 10807 return TargetLowering::getPrefLoopAlignment(ML); 10808 } 10809 10810 /// getConstraintType - Given a constraint, return the type of 10811 /// constraint it is for this target. 10812 PPCTargetLowering::ConstraintType 10813 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10814 if (Constraint.size() == 1) { 10815 switch (Constraint[0]) { 10816 default: break; 10817 case 'b': 10818 case 'r': 10819 case 'f': 10820 case 'v': 10821 case 'y': 10822 return C_RegisterClass; 10823 case 'Z': 10824 // FIXME: While Z does indicate a memory constraint, it specifically 10825 // indicates an r+r address (used in conjunction with the 'y' modifier 10826 // in the replacement string). Currently, we're forcing the base 10827 // register to be r0 in the asm printer (which is interpreted as zero) 10828 // and forming the complete address in the second register. This is 10829 // suboptimal. 10830 return C_Memory; 10831 } 10832 } else if (Constraint == "wc") { // individual CR bits. 10833 return C_RegisterClass; 10834 } else if (Constraint == "wa" || Constraint == "wd" || 10835 Constraint == "wf" || Constraint == "ws") { 10836 return C_RegisterClass; // VSX registers. 10837 } 10838 return TargetLowering::getConstraintType(Constraint); 10839 } 10840 10841 /// Examine constraint type and operand type and determine a weight value. 10842 /// This object must already have been set up with the operand type 10843 /// and the current alternative constraint selected. 10844 TargetLowering::ConstraintWeight 10845 PPCTargetLowering::getSingleConstraintMatchWeight( 10846 AsmOperandInfo &info, const char *constraint) const { 10847 ConstraintWeight weight = CW_Invalid; 10848 Value *CallOperandVal = info.CallOperandVal; 10849 // If we don't have a value, we can't do a match, 10850 // but allow it at the lowest weight. 10851 if (!CallOperandVal) 10852 return CW_Default; 10853 Type *type = CallOperandVal->getType(); 10854 10855 // Look at the constraint type. 10856 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10857 return CW_Register; // an individual CR bit. 10858 else if ((StringRef(constraint) == "wa" || 10859 StringRef(constraint) == "wd" || 10860 StringRef(constraint) == "wf") && 10861 type->isVectorTy()) 10862 return CW_Register; 10863 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10864 return CW_Register; 10865 10866 switch (*constraint) { 10867 default: 10868 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10869 break; 10870 case 'b': 10871 if (type->isIntegerTy()) 10872 weight = CW_Register; 10873 break; 10874 case 'f': 10875 if (type->isFloatTy()) 10876 weight = CW_Register; 10877 break; 10878 case 'd': 10879 if (type->isDoubleTy()) 10880 weight = CW_Register; 10881 break; 10882 case 'v': 10883 if (type->isVectorTy()) 10884 weight = CW_Register; 10885 break; 10886 case 'y': 10887 weight = CW_Register; 10888 break; 10889 case 'Z': 10890 weight = CW_Memory; 10891 break; 10892 } 10893 return weight; 10894 } 10895 10896 std::pair<unsigned, const TargetRegisterClass *> 10897 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10898 StringRef Constraint, 10899 MVT VT) const { 10900 if (Constraint.size() == 1) { 10901 // GCC RS6000 Constraint Letters 10902 switch (Constraint[0]) { 10903 case 'b': // R1-R31 10904 if (VT == MVT::i64 && Subtarget.isPPC64()) 10905 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10906 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10907 case 'r': // R0-R31 10908 if (VT == MVT::i64 && Subtarget.isPPC64()) 10909 return std::make_pair(0U, &PPC::G8RCRegClass); 10910 return std::make_pair(0U, &PPC::GPRCRegClass); 10911 case 'f': 10912 if (VT == MVT::f32 || VT == MVT::i32) 10913 return std::make_pair(0U, &PPC::F4RCRegClass); 10914 if (VT == MVT::f64 || VT == MVT::i64) 10915 return std::make_pair(0U, &PPC::F8RCRegClass); 10916 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10917 return std::make_pair(0U, &PPC::QFRCRegClass); 10918 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10919 return std::make_pair(0U, &PPC::QSRCRegClass); 10920 break; 10921 case 'v': 10922 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10923 return std::make_pair(0U, &PPC::QFRCRegClass); 10924 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10925 return std::make_pair(0U, &PPC::QSRCRegClass); 10926 return std::make_pair(0U, &PPC::VRRCRegClass); 10927 case 'y': // crrc 10928 return std::make_pair(0U, &PPC::CRRCRegClass); 10929 } 10930 } else if (Constraint == "wc") { // an individual CR bit. 10931 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10932 } else if (Constraint == "wa" || Constraint == "wd" || 10933 Constraint == "wf") { 10934 return std::make_pair(0U, &PPC::VSRCRegClass); 10935 } else if (Constraint == "ws") { 10936 if (VT == MVT::f32) 10937 return std::make_pair(0U, &PPC::VSSRCRegClass); 10938 else 10939 return std::make_pair(0U, &PPC::VSFRCRegClass); 10940 } 10941 10942 std::pair<unsigned, const TargetRegisterClass *> R = 10943 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10944 10945 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10946 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10947 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10948 // register. 10949 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10950 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10951 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10952 PPC::GPRCRegClass.contains(R.first)) 10953 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10954 PPC::sub_32, &PPC::G8RCRegClass), 10955 &PPC::G8RCRegClass); 10956 10957 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10958 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10959 R.first = PPC::CR0; 10960 R.second = &PPC::CRRCRegClass; 10961 } 10962 10963 return R; 10964 } 10965 10966 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10967 /// vector. If it is invalid, don't add anything to Ops. 10968 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10969 std::string &Constraint, 10970 std::vector<SDValue>&Ops, 10971 SelectionDAG &DAG) const { 10972 SDValue Result; 10973 10974 // Only support length 1 constraints. 10975 if (Constraint.length() > 1) return; 10976 10977 char Letter = Constraint[0]; 10978 switch (Letter) { 10979 default: break; 10980 case 'I': 10981 case 'J': 10982 case 'K': 10983 case 'L': 10984 case 'M': 10985 case 'N': 10986 case 'O': 10987 case 'P': { 10988 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10989 if (!CST) return; // Must be an immediate to match. 10990 SDLoc dl(Op); 10991 int64_t Value = CST->getSExtValue(); 10992 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10993 // numbers are printed as such. 10994 switch (Letter) { 10995 default: llvm_unreachable("Unknown constraint letter!"); 10996 case 'I': // "I" is a signed 16-bit constant. 10997 if (isInt<16>(Value)) 10998 Result = DAG.getTargetConstant(Value, dl, TCVT); 10999 break; 11000 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11001 if (isShiftedUInt<16, 16>(Value)) 11002 Result = DAG.getTargetConstant(Value, dl, TCVT); 11003 break; 11004 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11005 if (isShiftedInt<16, 16>(Value)) 11006 Result = DAG.getTargetConstant(Value, dl, TCVT); 11007 break; 11008 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11009 if (isUInt<16>(Value)) 11010 Result = DAG.getTargetConstant(Value, dl, TCVT); 11011 break; 11012 case 'M': // "M" is a constant that is greater than 31. 11013 if (Value > 31) 11014 Result = DAG.getTargetConstant(Value, dl, TCVT); 11015 break; 11016 case 'N': // "N" is a positive constant that is an exact power of two. 11017 if (Value > 0 && isPowerOf2_64(Value)) 11018 Result = DAG.getTargetConstant(Value, dl, TCVT); 11019 break; 11020 case 'O': // "O" is the constant zero. 11021 if (Value == 0) 11022 Result = DAG.getTargetConstant(Value, dl, TCVT); 11023 break; 11024 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11025 if (isInt<16>(-Value)) 11026 Result = DAG.getTargetConstant(Value, dl, TCVT); 11027 break; 11028 } 11029 break; 11030 } 11031 } 11032 11033 if (Result.getNode()) { 11034 Ops.push_back(Result); 11035 return; 11036 } 11037 11038 // Handle standard constraint letters. 11039 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11040 } 11041 11042 // isLegalAddressingMode - Return true if the addressing mode represented 11043 // by AM is legal for this target, for a load/store of the specified type. 11044 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11045 const AddrMode &AM, Type *Ty, 11046 unsigned AS) const { 11047 // PPC does not allow r+i addressing modes for vectors! 11048 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11049 return false; 11050 11051 // PPC allows a sign-extended 16-bit immediate field. 11052 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11053 return false; 11054 11055 // No global is ever allowed as a base. 11056 if (AM.BaseGV) 11057 return false; 11058 11059 // PPC only support r+r, 11060 switch (AM.Scale) { 11061 case 0: // "r+i" or just "i", depending on HasBaseReg. 11062 break; 11063 case 1: 11064 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11065 return false; 11066 // Otherwise we have r+r or r+i. 11067 break; 11068 case 2: 11069 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11070 return false; 11071 // Allow 2*r as r+r. 11072 break; 11073 default: 11074 // No other scales are supported. 11075 return false; 11076 } 11077 11078 return true; 11079 } 11080 11081 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11082 SelectionDAG &DAG) const { 11083 MachineFunction &MF = DAG.getMachineFunction(); 11084 MachineFrameInfo *MFI = MF.getFrameInfo(); 11085 MFI->setReturnAddressIsTaken(true); 11086 11087 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11088 return SDValue(); 11089 11090 SDLoc dl(Op); 11091 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11092 11093 // Make sure the function does not optimize away the store of the RA to 11094 // the stack. 11095 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11096 FuncInfo->setLRStoreRequired(); 11097 bool isPPC64 = Subtarget.isPPC64(); 11098 auto PtrVT = getPointerTy(MF.getDataLayout()); 11099 11100 if (Depth > 0) { 11101 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11102 SDValue Offset = 11103 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11104 isPPC64 ? MVT::i64 : MVT::i32); 11105 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11106 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11107 MachinePointerInfo(), false, false, false, 0); 11108 } 11109 11110 // Just load the return address off the stack. 11111 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11112 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11113 MachinePointerInfo(), false, false, false, 0); 11114 } 11115 11116 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11117 SelectionDAG &DAG) const { 11118 SDLoc dl(Op); 11119 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11120 11121 MachineFunction &MF = DAG.getMachineFunction(); 11122 MachineFrameInfo *MFI = MF.getFrameInfo(); 11123 MFI->setFrameAddressIsTaken(true); 11124 11125 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11126 bool isPPC64 = PtrVT == MVT::i64; 11127 11128 // Naked functions never have a frame pointer, and so we use r1. For all 11129 // other functions, this decision must be delayed until during PEI. 11130 unsigned FrameReg; 11131 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11132 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11133 else 11134 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11135 11136 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11137 PtrVT); 11138 while (Depth--) 11139 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11140 FrameAddr, MachinePointerInfo(), false, false, 11141 false, 0); 11142 return FrameAddr; 11143 } 11144 11145 // FIXME? Maybe this could be a TableGen attribute on some registers and 11146 // this table could be generated automatically from RegInfo. 11147 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11148 SelectionDAG &DAG) const { 11149 bool isPPC64 = Subtarget.isPPC64(); 11150 bool isDarwinABI = Subtarget.isDarwinABI(); 11151 11152 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11153 (!isPPC64 && VT != MVT::i32)) 11154 report_fatal_error("Invalid register global variable type"); 11155 11156 bool is64Bit = isPPC64 && VT == MVT::i64; 11157 unsigned Reg = StringSwitch<unsigned>(RegName) 11158 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11159 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11160 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11161 (is64Bit ? PPC::X13 : PPC::R13)) 11162 .Default(0); 11163 11164 if (Reg) 11165 return Reg; 11166 report_fatal_error("Invalid register name global variable"); 11167 } 11168 11169 bool 11170 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11171 // The PowerPC target isn't yet aware of offsets. 11172 return false; 11173 } 11174 11175 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11176 const CallInst &I, 11177 unsigned Intrinsic) const { 11178 11179 switch (Intrinsic) { 11180 case Intrinsic::ppc_qpx_qvlfd: 11181 case Intrinsic::ppc_qpx_qvlfs: 11182 case Intrinsic::ppc_qpx_qvlfcd: 11183 case Intrinsic::ppc_qpx_qvlfcs: 11184 case Intrinsic::ppc_qpx_qvlfiwa: 11185 case Intrinsic::ppc_qpx_qvlfiwz: 11186 case Intrinsic::ppc_altivec_lvx: 11187 case Intrinsic::ppc_altivec_lvxl: 11188 case Intrinsic::ppc_altivec_lvebx: 11189 case Intrinsic::ppc_altivec_lvehx: 11190 case Intrinsic::ppc_altivec_lvewx: 11191 case Intrinsic::ppc_vsx_lxvd2x: 11192 case Intrinsic::ppc_vsx_lxvw4x: { 11193 EVT VT; 11194 switch (Intrinsic) { 11195 case Intrinsic::ppc_altivec_lvebx: 11196 VT = MVT::i8; 11197 break; 11198 case Intrinsic::ppc_altivec_lvehx: 11199 VT = MVT::i16; 11200 break; 11201 case Intrinsic::ppc_altivec_lvewx: 11202 VT = MVT::i32; 11203 break; 11204 case Intrinsic::ppc_vsx_lxvd2x: 11205 VT = MVT::v2f64; 11206 break; 11207 case Intrinsic::ppc_qpx_qvlfd: 11208 VT = MVT::v4f64; 11209 break; 11210 case Intrinsic::ppc_qpx_qvlfs: 11211 VT = MVT::v4f32; 11212 break; 11213 case Intrinsic::ppc_qpx_qvlfcd: 11214 VT = MVT::v2f64; 11215 break; 11216 case Intrinsic::ppc_qpx_qvlfcs: 11217 VT = MVT::v2f32; 11218 break; 11219 default: 11220 VT = MVT::v4i32; 11221 break; 11222 } 11223 11224 Info.opc = ISD::INTRINSIC_W_CHAIN; 11225 Info.memVT = VT; 11226 Info.ptrVal = I.getArgOperand(0); 11227 Info.offset = -VT.getStoreSize()+1; 11228 Info.size = 2*VT.getStoreSize()-1; 11229 Info.align = 1; 11230 Info.vol = false; 11231 Info.readMem = true; 11232 Info.writeMem = false; 11233 return true; 11234 } 11235 case Intrinsic::ppc_qpx_qvlfda: 11236 case Intrinsic::ppc_qpx_qvlfsa: 11237 case Intrinsic::ppc_qpx_qvlfcda: 11238 case Intrinsic::ppc_qpx_qvlfcsa: 11239 case Intrinsic::ppc_qpx_qvlfiwaa: 11240 case Intrinsic::ppc_qpx_qvlfiwza: { 11241 EVT VT; 11242 switch (Intrinsic) { 11243 case Intrinsic::ppc_qpx_qvlfda: 11244 VT = MVT::v4f64; 11245 break; 11246 case Intrinsic::ppc_qpx_qvlfsa: 11247 VT = MVT::v4f32; 11248 break; 11249 case Intrinsic::ppc_qpx_qvlfcda: 11250 VT = MVT::v2f64; 11251 break; 11252 case Intrinsic::ppc_qpx_qvlfcsa: 11253 VT = MVT::v2f32; 11254 break; 11255 default: 11256 VT = MVT::v4i32; 11257 break; 11258 } 11259 11260 Info.opc = ISD::INTRINSIC_W_CHAIN; 11261 Info.memVT = VT; 11262 Info.ptrVal = I.getArgOperand(0); 11263 Info.offset = 0; 11264 Info.size = VT.getStoreSize(); 11265 Info.align = 1; 11266 Info.vol = false; 11267 Info.readMem = true; 11268 Info.writeMem = false; 11269 return true; 11270 } 11271 case Intrinsic::ppc_qpx_qvstfd: 11272 case Intrinsic::ppc_qpx_qvstfs: 11273 case Intrinsic::ppc_qpx_qvstfcd: 11274 case Intrinsic::ppc_qpx_qvstfcs: 11275 case Intrinsic::ppc_qpx_qvstfiw: 11276 case Intrinsic::ppc_altivec_stvx: 11277 case Intrinsic::ppc_altivec_stvxl: 11278 case Intrinsic::ppc_altivec_stvebx: 11279 case Intrinsic::ppc_altivec_stvehx: 11280 case Intrinsic::ppc_altivec_stvewx: 11281 case Intrinsic::ppc_vsx_stxvd2x: 11282 case Intrinsic::ppc_vsx_stxvw4x: { 11283 EVT VT; 11284 switch (Intrinsic) { 11285 case Intrinsic::ppc_altivec_stvebx: 11286 VT = MVT::i8; 11287 break; 11288 case Intrinsic::ppc_altivec_stvehx: 11289 VT = MVT::i16; 11290 break; 11291 case Intrinsic::ppc_altivec_stvewx: 11292 VT = MVT::i32; 11293 break; 11294 case Intrinsic::ppc_vsx_stxvd2x: 11295 VT = MVT::v2f64; 11296 break; 11297 case Intrinsic::ppc_qpx_qvstfd: 11298 VT = MVT::v4f64; 11299 break; 11300 case Intrinsic::ppc_qpx_qvstfs: 11301 VT = MVT::v4f32; 11302 break; 11303 case Intrinsic::ppc_qpx_qvstfcd: 11304 VT = MVT::v2f64; 11305 break; 11306 case Intrinsic::ppc_qpx_qvstfcs: 11307 VT = MVT::v2f32; 11308 break; 11309 default: 11310 VT = MVT::v4i32; 11311 break; 11312 } 11313 11314 Info.opc = ISD::INTRINSIC_VOID; 11315 Info.memVT = VT; 11316 Info.ptrVal = I.getArgOperand(1); 11317 Info.offset = -VT.getStoreSize()+1; 11318 Info.size = 2*VT.getStoreSize()-1; 11319 Info.align = 1; 11320 Info.vol = false; 11321 Info.readMem = false; 11322 Info.writeMem = true; 11323 return true; 11324 } 11325 case Intrinsic::ppc_qpx_qvstfda: 11326 case Intrinsic::ppc_qpx_qvstfsa: 11327 case Intrinsic::ppc_qpx_qvstfcda: 11328 case Intrinsic::ppc_qpx_qvstfcsa: 11329 case Intrinsic::ppc_qpx_qvstfiwa: { 11330 EVT VT; 11331 switch (Intrinsic) { 11332 case Intrinsic::ppc_qpx_qvstfda: 11333 VT = MVT::v4f64; 11334 break; 11335 case Intrinsic::ppc_qpx_qvstfsa: 11336 VT = MVT::v4f32; 11337 break; 11338 case Intrinsic::ppc_qpx_qvstfcda: 11339 VT = MVT::v2f64; 11340 break; 11341 case Intrinsic::ppc_qpx_qvstfcsa: 11342 VT = MVT::v2f32; 11343 break; 11344 default: 11345 VT = MVT::v4i32; 11346 break; 11347 } 11348 11349 Info.opc = ISD::INTRINSIC_VOID; 11350 Info.memVT = VT; 11351 Info.ptrVal = I.getArgOperand(1); 11352 Info.offset = 0; 11353 Info.size = VT.getStoreSize(); 11354 Info.align = 1; 11355 Info.vol = false; 11356 Info.readMem = false; 11357 Info.writeMem = true; 11358 return true; 11359 } 11360 default: 11361 break; 11362 } 11363 11364 return false; 11365 } 11366 11367 /// getOptimalMemOpType - Returns the target specific optimal type for load 11368 /// and store operations as a result of memset, memcpy, and memmove 11369 /// lowering. If DstAlign is zero that means it's safe to destination 11370 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11371 /// means there isn't a need to check it against alignment requirement, 11372 /// probably because the source does not need to be loaded. If 'IsMemset' is 11373 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11374 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11375 /// source is constant so it does not need to be loaded. 11376 /// It returns EVT::Other if the type should be determined using generic 11377 /// target-independent logic. 11378 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11379 unsigned DstAlign, unsigned SrcAlign, 11380 bool IsMemset, bool ZeroMemset, 11381 bool MemcpyStrSrc, 11382 MachineFunction &MF) const { 11383 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11384 const Function *F = MF.getFunction(); 11385 // When expanding a memset, require at least two QPX instructions to cover 11386 // the cost of loading the value to be stored from the constant pool. 11387 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11388 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11389 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11390 return MVT::v4f64; 11391 } 11392 11393 // We should use Altivec/VSX loads and stores when available. For unaligned 11394 // addresses, unaligned VSX loads are only fast starting with the P8. 11395 if (Subtarget.hasAltivec() && Size >= 16 && 11396 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11397 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11398 return MVT::v4i32; 11399 } 11400 11401 if (Subtarget.isPPC64()) { 11402 return MVT::i64; 11403 } 11404 11405 return MVT::i32; 11406 } 11407 11408 /// \brief Returns true if it is beneficial to convert a load of a constant 11409 /// to just the constant itself. 11410 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11411 Type *Ty) const { 11412 assert(Ty->isIntegerTy()); 11413 11414 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11415 if (BitSize == 0 || BitSize > 64) 11416 return false; 11417 return true; 11418 } 11419 11420 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11421 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11422 return false; 11423 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11424 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11425 return NumBits1 == 64 && NumBits2 == 32; 11426 } 11427 11428 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11429 if (!VT1.isInteger() || !VT2.isInteger()) 11430 return false; 11431 unsigned NumBits1 = VT1.getSizeInBits(); 11432 unsigned NumBits2 = VT2.getSizeInBits(); 11433 return NumBits1 == 64 && NumBits2 == 32; 11434 } 11435 11436 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11437 // Generally speaking, zexts are not free, but they are free when they can be 11438 // folded with other operations. 11439 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11440 EVT MemVT = LD->getMemoryVT(); 11441 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11442 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11443 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11444 LD->getExtensionType() == ISD::ZEXTLOAD)) 11445 return true; 11446 } 11447 11448 // FIXME: Add other cases... 11449 // - 32-bit shifts with a zext to i64 11450 // - zext after ctlz, bswap, etc. 11451 // - zext after and by a constant mask 11452 11453 return TargetLowering::isZExtFree(Val, VT2); 11454 } 11455 11456 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11457 assert(VT.isFloatingPoint()); 11458 return true; 11459 } 11460 11461 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11462 return isInt<16>(Imm) || isUInt<16>(Imm); 11463 } 11464 11465 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11466 return isInt<16>(Imm) || isUInt<16>(Imm); 11467 } 11468 11469 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11470 unsigned, 11471 unsigned, 11472 bool *Fast) const { 11473 if (DisablePPCUnaligned) 11474 return false; 11475 11476 // PowerPC supports unaligned memory access for simple non-vector types. 11477 // Although accessing unaligned addresses is not as efficient as accessing 11478 // aligned addresses, it is generally more efficient than manual expansion, 11479 // and generally only traps for software emulation when crossing page 11480 // boundaries. 11481 11482 if (!VT.isSimple()) 11483 return false; 11484 11485 if (VT.getSimpleVT().isVector()) { 11486 if (Subtarget.hasVSX()) { 11487 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11488 VT != MVT::v4f32 && VT != MVT::v4i32) 11489 return false; 11490 } else { 11491 return false; 11492 } 11493 } 11494 11495 if (VT == MVT::ppcf128) 11496 return false; 11497 11498 if (Fast) 11499 *Fast = true; 11500 11501 return true; 11502 } 11503 11504 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11505 VT = VT.getScalarType(); 11506 11507 if (!VT.isSimple()) 11508 return false; 11509 11510 switch (VT.getSimpleVT().SimpleTy) { 11511 case MVT::f32: 11512 case MVT::f64: 11513 return true; 11514 default: 11515 break; 11516 } 11517 11518 return false; 11519 } 11520 11521 const MCPhysReg * 11522 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11523 // LR is a callee-save register, but we must treat it as clobbered by any call 11524 // site. Hence we include LR in the scratch registers, which are in turn added 11525 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11526 // to CTR, which is used by any indirect call. 11527 static const MCPhysReg ScratchRegs[] = { 11528 PPC::X12, PPC::LR8, PPC::CTR8, 0 11529 }; 11530 11531 return ScratchRegs; 11532 } 11533 11534 bool 11535 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11536 EVT VT , unsigned DefinedValues) const { 11537 if (VT == MVT::v2i64) 11538 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11539 11540 if (Subtarget.hasQPX()) { 11541 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11542 return true; 11543 } 11544 11545 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11546 } 11547 11548 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11549 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11550 return TargetLowering::getSchedulingPreference(N); 11551 11552 return Sched::ILP; 11553 } 11554 11555 // Create a fast isel object. 11556 FastISel * 11557 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11558 const TargetLibraryInfo *LibInfo) const { 11559 return PPC::createFastISel(FuncInfo, LibInfo); 11560 } 11561