1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 333 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 334 335 // We want to custom lower some of our intrinsics. 336 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 337 338 // To handle counter-based loop conditions. 339 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 340 341 // Comparisons that require checking two conditions. 342 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 352 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 353 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 354 355 if (Subtarget.has64BitSupport()) { 356 // They also have instructions for converting between i64 and fp. 357 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 358 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 359 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 360 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 361 // This is just the low 32 bits of a (signed) fp->i64 conversion. 362 // We cannot do this with Promote because i64 is not a legal type. 363 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 364 365 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 366 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 367 } else { 368 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 369 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 370 } 371 372 // With the instructions enabled under FPCVT, we can do everything. 373 if (Subtarget.hasFPCVT()) { 374 if (Subtarget.has64BitSupport()) { 375 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 376 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 377 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 378 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 379 } 380 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 385 } 386 387 if (Subtarget.use64BitRegs()) { 388 // 64-bit PowerPC implementations can support i64 types directly 389 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 390 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 391 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 392 // 64-bit PowerPC wants to expand i128 shifts itself. 393 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 394 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 395 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 396 } else { 397 // 32-bit PowerPC wants to expand i64 shifts itself. 398 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 399 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 400 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 401 } 402 403 if (Subtarget.hasAltivec()) { 404 // First set operation action for all vector types to expand. Then we 405 // will selectively turn on ones that can be effectively codegen'd. 406 for (MVT VT : MVT::vector_valuetypes()) { 407 // add/sub are legal for all supported vector VT's. 408 setOperationAction(ISD::ADD, VT, Legal); 409 setOperationAction(ISD::SUB, VT, Legal); 410 411 // Vector instructions introduced in P8 412 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 413 setOperationAction(ISD::CTPOP, VT, Legal); 414 setOperationAction(ISD::CTLZ, VT, Legal); 415 } 416 else { 417 setOperationAction(ISD::CTPOP, VT, Expand); 418 setOperationAction(ISD::CTLZ, VT, Expand); 419 } 420 421 // We promote all shuffles to v16i8. 422 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 423 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 424 425 // We promote all non-typed operations to v4i32. 426 setOperationAction(ISD::AND , VT, Promote); 427 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 428 setOperationAction(ISD::OR , VT, Promote); 429 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 430 setOperationAction(ISD::XOR , VT, Promote); 431 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 432 setOperationAction(ISD::LOAD , VT, Promote); 433 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 434 setOperationAction(ISD::SELECT, VT, Promote); 435 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 436 setOperationAction(ISD::SELECT_CC, VT, Promote); 437 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 438 setOperationAction(ISD::STORE, VT, Promote); 439 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 440 441 // No other operations are legal. 442 setOperationAction(ISD::MUL , VT, Expand); 443 setOperationAction(ISD::SDIV, VT, Expand); 444 setOperationAction(ISD::SREM, VT, Expand); 445 setOperationAction(ISD::UDIV, VT, Expand); 446 setOperationAction(ISD::UREM, VT, Expand); 447 setOperationAction(ISD::FDIV, VT, Expand); 448 setOperationAction(ISD::FREM, VT, Expand); 449 setOperationAction(ISD::FNEG, VT, Expand); 450 setOperationAction(ISD::FSQRT, VT, Expand); 451 setOperationAction(ISD::FLOG, VT, Expand); 452 setOperationAction(ISD::FLOG10, VT, Expand); 453 setOperationAction(ISD::FLOG2, VT, Expand); 454 setOperationAction(ISD::FEXP, VT, Expand); 455 setOperationAction(ISD::FEXP2, VT, Expand); 456 setOperationAction(ISD::FSIN, VT, Expand); 457 setOperationAction(ISD::FCOS, VT, Expand); 458 setOperationAction(ISD::FABS, VT, Expand); 459 setOperationAction(ISD::FPOWI, VT, Expand); 460 setOperationAction(ISD::FFLOOR, VT, Expand); 461 setOperationAction(ISD::FCEIL, VT, Expand); 462 setOperationAction(ISD::FTRUNC, VT, Expand); 463 setOperationAction(ISD::FRINT, VT, Expand); 464 setOperationAction(ISD::FNEARBYINT, VT, Expand); 465 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 466 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 467 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 468 setOperationAction(ISD::MULHU, VT, Expand); 469 setOperationAction(ISD::MULHS, VT, Expand); 470 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 471 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 472 setOperationAction(ISD::UDIVREM, VT, Expand); 473 setOperationAction(ISD::SDIVREM, VT, Expand); 474 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 475 setOperationAction(ISD::FPOW, VT, Expand); 476 setOperationAction(ISD::BSWAP, VT, Expand); 477 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 478 setOperationAction(ISD::CTTZ, VT, Expand); 479 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 480 setOperationAction(ISD::VSELECT, VT, Expand); 481 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 482 setOperationAction(ISD::ROTL, VT, Expand); 483 setOperationAction(ISD::ROTR, VT, Expand); 484 485 for (MVT InnerVT : MVT::vector_valuetypes()) { 486 setTruncStoreAction(VT, InnerVT, Expand); 487 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 488 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 489 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 490 } 491 } 492 493 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 494 // with merges, splats, etc. 495 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 496 497 setOperationAction(ISD::AND , MVT::v4i32, Legal); 498 setOperationAction(ISD::OR , MVT::v4i32, Legal); 499 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 500 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 501 setOperationAction(ISD::SELECT, MVT::v4i32, 502 Subtarget.useCRBits() ? Legal : Expand); 503 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 504 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 505 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 506 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 507 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 508 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 509 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 510 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 511 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 512 513 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 514 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 515 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 516 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 517 518 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 519 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 520 521 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 522 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 523 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 524 } 525 526 if (Subtarget.hasP8Altivec()) 527 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 528 else 529 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 530 531 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 532 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 533 534 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 535 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 536 537 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 538 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 539 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 540 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 541 542 // Altivec does not contain unordered floating-point compare instructions 543 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 544 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 545 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 546 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 547 548 if (Subtarget.hasVSX()) { 549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 550 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 551 if (Subtarget.hasP8Vector()) { 552 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 553 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 554 } 555 if (Subtarget.hasDirectMove()) { 556 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 557 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 558 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 560 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 562 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 563 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 564 } 565 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 566 567 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 568 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 569 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 570 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 571 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 572 573 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 574 575 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 576 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 579 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 580 581 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 582 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 583 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 584 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 585 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 586 587 // Share the Altivec comparison restrictions. 588 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 589 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 590 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 591 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 592 593 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 594 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 595 596 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 597 598 if (Subtarget.hasP8Vector()) 599 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 600 601 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 602 603 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 604 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 605 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 606 607 if (Subtarget.hasP8Altivec()) { 608 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 609 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 610 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 611 612 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 613 } 614 else { 615 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 616 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 617 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 618 619 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 620 621 // VSX v2i64 only supports non-arithmetic operations. 622 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 623 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 624 } 625 626 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 627 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 628 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 629 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 630 631 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 632 633 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 634 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 635 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 636 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 637 638 // Vector operation legalization checks the result type of 639 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 640 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 641 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 642 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 643 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 644 645 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 646 } 647 648 if (Subtarget.hasP8Altivec()) { 649 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 650 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 651 } 652 } 653 654 if (Subtarget.hasQPX()) { 655 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 656 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 657 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 658 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 659 660 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 661 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 662 663 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 664 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 665 666 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 667 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 668 669 if (!Subtarget.useCRBits()) 670 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 671 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 672 673 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 674 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 675 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 676 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 677 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 678 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 679 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 680 681 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 682 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 683 684 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 685 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 686 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 687 688 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 689 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 690 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 691 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 692 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 693 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 694 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 695 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 696 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 697 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 698 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 699 700 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 701 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 702 703 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 704 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 705 706 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 707 708 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 709 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 710 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 711 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 712 713 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 714 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 715 716 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 717 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 718 719 if (!Subtarget.useCRBits()) 720 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 721 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 722 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 724 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 725 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 726 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 727 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 728 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 729 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 730 731 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 732 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 733 734 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 735 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 736 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 737 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 738 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 739 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 740 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 741 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 742 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 743 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 744 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 745 746 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 747 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 748 749 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 750 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 751 752 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 753 754 setOperationAction(ISD::AND , MVT::v4i1, Legal); 755 setOperationAction(ISD::OR , MVT::v4i1, Legal); 756 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 757 758 if (!Subtarget.useCRBits()) 759 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 760 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 761 762 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 763 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 764 765 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 766 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 767 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 768 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 769 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 771 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 772 773 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 774 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 775 776 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 777 778 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 779 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 780 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 781 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 782 783 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 784 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 785 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 786 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 787 788 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 789 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 790 791 // These need to set FE_INEXACT, and so cannot be vectorized here. 792 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 793 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 794 795 if (TM.Options.UnsafeFPMath) { 796 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 797 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 798 799 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 800 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 801 } else { 802 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 803 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 804 805 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 806 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 807 } 808 } 809 810 if (Subtarget.has64BitSupport()) 811 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 812 813 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 814 815 if (!isPPC64) { 816 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 817 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 818 } 819 820 setBooleanContents(ZeroOrOneBooleanContent); 821 822 if (Subtarget.hasAltivec()) { 823 // Altivec instructions set fields to all zeros or all ones. 824 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 825 } 826 827 if (!isPPC64) { 828 // These libcalls are not available in 32-bit. 829 setLibcallName(RTLIB::SHL_I128, nullptr); 830 setLibcallName(RTLIB::SRL_I128, nullptr); 831 setLibcallName(RTLIB::SRA_I128, nullptr); 832 } 833 834 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 835 836 // We have target-specific dag combine patterns for the following nodes: 837 setTargetDAGCombine(ISD::SINT_TO_FP); 838 if (Subtarget.hasFPCVT()) 839 setTargetDAGCombine(ISD::UINT_TO_FP); 840 setTargetDAGCombine(ISD::LOAD); 841 setTargetDAGCombine(ISD::STORE); 842 setTargetDAGCombine(ISD::BR_CC); 843 if (Subtarget.useCRBits()) 844 setTargetDAGCombine(ISD::BRCOND); 845 setTargetDAGCombine(ISD::BSWAP); 846 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 847 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 848 setTargetDAGCombine(ISD::INTRINSIC_VOID); 849 850 setTargetDAGCombine(ISD::SIGN_EXTEND); 851 setTargetDAGCombine(ISD::ZERO_EXTEND); 852 setTargetDAGCombine(ISD::ANY_EXTEND); 853 854 if (Subtarget.useCRBits()) { 855 setTargetDAGCombine(ISD::TRUNCATE); 856 setTargetDAGCombine(ISD::SETCC); 857 setTargetDAGCombine(ISD::SELECT_CC); 858 } 859 860 // Use reciprocal estimates. 861 if (TM.Options.UnsafeFPMath) { 862 setTargetDAGCombine(ISD::FDIV); 863 setTargetDAGCombine(ISD::FSQRT); 864 } 865 866 // Darwin long double math library functions have $LDBL128 appended. 867 if (Subtarget.isDarwin()) { 868 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 869 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 870 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 871 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 872 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 873 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 874 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 875 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 876 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 877 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 878 } 879 880 // With 32 condition bits, we don't need to sink (and duplicate) compares 881 // aggressively in CodeGenPrep. 882 if (Subtarget.useCRBits()) { 883 setHasMultipleConditionRegisters(); 884 setJumpIsExpensive(); 885 } 886 887 setMinFunctionAlignment(2); 888 if (Subtarget.isDarwin()) 889 setPrefFunctionAlignment(4); 890 891 switch (Subtarget.getDarwinDirective()) { 892 default: break; 893 case PPC::DIR_970: 894 case PPC::DIR_A2: 895 case PPC::DIR_E500mc: 896 case PPC::DIR_E5500: 897 case PPC::DIR_PWR4: 898 case PPC::DIR_PWR5: 899 case PPC::DIR_PWR5X: 900 case PPC::DIR_PWR6: 901 case PPC::DIR_PWR6X: 902 case PPC::DIR_PWR7: 903 case PPC::DIR_PWR8: 904 setPrefFunctionAlignment(4); 905 setPrefLoopAlignment(4); 906 break; 907 } 908 909 setInsertFencesForAtomic(true); 910 911 if (Subtarget.enableMachineScheduler()) 912 setSchedulingPreference(Sched::Source); 913 else 914 setSchedulingPreference(Sched::Hybrid); 915 916 computeRegisterProperties(STI.getRegisterInfo()); 917 918 // The Freescale cores do better with aggressive inlining of memcpy and 919 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 920 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 921 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 922 MaxStoresPerMemset = 32; 923 MaxStoresPerMemsetOptSize = 16; 924 MaxStoresPerMemcpy = 32; 925 MaxStoresPerMemcpyOptSize = 8; 926 MaxStoresPerMemmove = 32; 927 MaxStoresPerMemmoveOptSize = 8; 928 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 929 // The A2 also benefits from (very) aggressive inlining of memcpy and 930 // friends. The overhead of a the function call, even when warm, can be 931 // over one hundred cycles. 932 MaxStoresPerMemset = 128; 933 MaxStoresPerMemcpy = 128; 934 MaxStoresPerMemmove = 128; 935 } 936 } 937 938 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 939 /// the desired ByVal argument alignment. 940 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 941 unsigned MaxMaxAlign) { 942 if (MaxAlign == MaxMaxAlign) 943 return; 944 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 945 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 946 MaxAlign = 32; 947 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 948 MaxAlign = 16; 949 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 950 unsigned EltAlign = 0; 951 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 952 if (EltAlign > MaxAlign) 953 MaxAlign = EltAlign; 954 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 955 for (auto *EltTy : STy->elements()) { 956 unsigned EltAlign = 0; 957 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 958 if (EltAlign > MaxAlign) 959 MaxAlign = EltAlign; 960 if (MaxAlign == MaxMaxAlign) 961 break; 962 } 963 } 964 } 965 966 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 967 /// function arguments in the caller parameter area. 968 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 969 const DataLayout &DL) const { 970 // Darwin passes everything on 4 byte boundary. 971 if (Subtarget.isDarwin()) 972 return 4; 973 974 // 16byte and wider vectors are passed on 16byte boundary. 975 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 976 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 977 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 978 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 979 return Align; 980 } 981 982 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 983 switch ((PPCISD::NodeType)Opcode) { 984 case PPCISD::FIRST_NUMBER: break; 985 case PPCISD::FSEL: return "PPCISD::FSEL"; 986 case PPCISD::FCFID: return "PPCISD::FCFID"; 987 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 988 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 989 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 990 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 991 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 992 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 993 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 994 case PPCISD::FRE: return "PPCISD::FRE"; 995 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 996 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 997 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 998 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 999 case PPCISD::VPERM: return "PPCISD::VPERM"; 1000 case PPCISD::CMPB: return "PPCISD::CMPB"; 1001 case PPCISD::Hi: return "PPCISD::Hi"; 1002 case PPCISD::Lo: return "PPCISD::Lo"; 1003 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1004 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1005 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1006 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1007 case PPCISD::SRL: return "PPCISD::SRL"; 1008 case PPCISD::SRA: return "PPCISD::SRA"; 1009 case PPCISD::SHL: return "PPCISD::SHL"; 1010 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1011 case PPCISD::CALL: return "PPCISD::CALL"; 1012 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1013 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1014 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1015 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1016 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1017 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1018 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1019 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1020 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1021 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1022 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1023 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1024 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1025 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1026 case PPCISD::VCMP: return "PPCISD::VCMP"; 1027 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1028 case PPCISD::LBRX: return "PPCISD::LBRX"; 1029 case PPCISD::STBRX: return "PPCISD::STBRX"; 1030 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1031 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1032 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1033 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1034 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1035 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1036 case PPCISD::BDZ: return "PPCISD::BDZ"; 1037 case PPCISD::MFFS: return "PPCISD::MFFS"; 1038 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1039 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1040 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1041 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1042 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1043 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1044 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1045 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1046 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1047 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1048 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1049 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1050 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1051 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1052 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1053 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1054 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1055 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1056 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1057 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1058 case PPCISD::SC: return "PPCISD::SC"; 1059 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1060 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1061 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1062 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1063 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1064 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1065 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1066 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1067 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1068 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1069 } 1070 return nullptr; 1071 } 1072 1073 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1074 EVT VT) const { 1075 if (!VT.isVector()) 1076 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1077 1078 if (Subtarget.hasQPX()) 1079 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1080 1081 return VT.changeVectorElementTypeToInteger(); 1082 } 1083 1084 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1085 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1086 return true; 1087 } 1088 1089 //===----------------------------------------------------------------------===// 1090 // Node matching predicates, for use by the tblgen matching code. 1091 //===----------------------------------------------------------------------===// 1092 1093 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1094 static bool isFloatingPointZero(SDValue Op) { 1095 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1096 return CFP->getValueAPF().isZero(); 1097 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1098 // Maybe this has already been legalized into the constant pool? 1099 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1100 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1101 return CFP->getValueAPF().isZero(); 1102 } 1103 return false; 1104 } 1105 1106 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1107 /// true if Op is undef or if it matches the specified value. 1108 static bool isConstantOrUndef(int Op, int Val) { 1109 return Op < 0 || Op == Val; 1110 } 1111 1112 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1113 /// VPKUHUM instruction. 1114 /// The ShuffleKind distinguishes between big-endian operations with 1115 /// two different inputs (0), either-endian operations with two identical 1116 /// inputs (1), and little-endian operations with two different inputs (2). 1117 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1118 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1119 SelectionDAG &DAG) { 1120 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1121 if (ShuffleKind == 0) { 1122 if (IsLE) 1123 return false; 1124 for (unsigned i = 0; i != 16; ++i) 1125 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1126 return false; 1127 } else if (ShuffleKind == 2) { 1128 if (!IsLE) 1129 return false; 1130 for (unsigned i = 0; i != 16; ++i) 1131 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1132 return false; 1133 } else if (ShuffleKind == 1) { 1134 unsigned j = IsLE ? 0 : 1; 1135 for (unsigned i = 0; i != 8; ++i) 1136 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1137 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1138 return false; 1139 } 1140 return true; 1141 } 1142 1143 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1144 /// VPKUWUM instruction. 1145 /// The ShuffleKind distinguishes between big-endian operations with 1146 /// two different inputs (0), either-endian operations with two identical 1147 /// inputs (1), and little-endian operations with two different inputs (2). 1148 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1149 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1150 SelectionDAG &DAG) { 1151 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1152 if (ShuffleKind == 0) { 1153 if (IsLE) 1154 return false; 1155 for (unsigned i = 0; i != 16; i += 2) 1156 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1157 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1158 return false; 1159 } else if (ShuffleKind == 2) { 1160 if (!IsLE) 1161 return false; 1162 for (unsigned i = 0; i != 16; i += 2) 1163 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1164 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1165 return false; 1166 } else if (ShuffleKind == 1) { 1167 unsigned j = IsLE ? 0 : 2; 1168 for (unsigned i = 0; i != 8; i += 2) 1169 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1170 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1171 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1172 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1173 return false; 1174 } 1175 return true; 1176 } 1177 1178 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1179 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1180 /// current subtarget. 1181 /// 1182 /// The ShuffleKind distinguishes between big-endian operations with 1183 /// two different inputs (0), either-endian operations with two identical 1184 /// inputs (1), and little-endian operations with two different inputs (2). 1185 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1186 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1187 SelectionDAG &DAG) { 1188 const PPCSubtarget& Subtarget = 1189 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1190 if (!Subtarget.hasP8Vector()) 1191 return false; 1192 1193 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1194 if (ShuffleKind == 0) { 1195 if (IsLE) 1196 return false; 1197 for (unsigned i = 0; i != 16; i += 4) 1198 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1199 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1200 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1201 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1202 return false; 1203 } else if (ShuffleKind == 2) { 1204 if (!IsLE) 1205 return false; 1206 for (unsigned i = 0; i != 16; i += 4) 1207 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1208 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1209 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1210 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1211 return false; 1212 } else if (ShuffleKind == 1) { 1213 unsigned j = IsLE ? 0 : 4; 1214 for (unsigned i = 0; i != 8; i += 4) 1215 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1216 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1217 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1218 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1219 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1220 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1221 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1222 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 /// isVMerge - Common function, used to match vmrg* shuffles. 1229 /// 1230 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1231 unsigned LHSStart, unsigned RHSStart) { 1232 if (N->getValueType(0) != MVT::v16i8) 1233 return false; 1234 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1235 "Unsupported merge size!"); 1236 1237 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1238 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1239 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1240 LHSStart+j+i*UnitSize) || 1241 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1242 RHSStart+j+i*UnitSize)) 1243 return false; 1244 } 1245 return true; 1246 } 1247 1248 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1249 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1250 /// The ShuffleKind distinguishes between big-endian merges with two 1251 /// different inputs (0), either-endian merges with two identical inputs (1), 1252 /// and little-endian merges with two different inputs (2). For the latter, 1253 /// the input operands are swapped (see PPCInstrAltivec.td). 1254 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1255 unsigned ShuffleKind, SelectionDAG &DAG) { 1256 if (DAG.getDataLayout().isLittleEndian()) { 1257 if (ShuffleKind == 1) // unary 1258 return isVMerge(N, UnitSize, 0, 0); 1259 else if (ShuffleKind == 2) // swapped 1260 return isVMerge(N, UnitSize, 0, 16); 1261 else 1262 return false; 1263 } else { 1264 if (ShuffleKind == 1) // unary 1265 return isVMerge(N, UnitSize, 8, 8); 1266 else if (ShuffleKind == 0) // normal 1267 return isVMerge(N, UnitSize, 8, 24); 1268 else 1269 return false; 1270 } 1271 } 1272 1273 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1274 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1275 /// The ShuffleKind distinguishes between big-endian merges with two 1276 /// different inputs (0), either-endian merges with two identical inputs (1), 1277 /// and little-endian merges with two different inputs (2). For the latter, 1278 /// the input operands are swapped (see PPCInstrAltivec.td). 1279 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1280 unsigned ShuffleKind, SelectionDAG &DAG) { 1281 if (DAG.getDataLayout().isLittleEndian()) { 1282 if (ShuffleKind == 1) // unary 1283 return isVMerge(N, UnitSize, 8, 8); 1284 else if (ShuffleKind == 2) // swapped 1285 return isVMerge(N, UnitSize, 8, 24); 1286 else 1287 return false; 1288 } else { 1289 if (ShuffleKind == 1) // unary 1290 return isVMerge(N, UnitSize, 0, 0); 1291 else if (ShuffleKind == 0) // normal 1292 return isVMerge(N, UnitSize, 0, 16); 1293 else 1294 return false; 1295 } 1296 } 1297 1298 /** 1299 * \brief Common function used to match vmrgew and vmrgow shuffles 1300 * 1301 * The indexOffset determines whether to look for even or odd words in 1302 * the shuffle mask. This is based on the of the endianness of the target 1303 * machine. 1304 * - Little Endian: 1305 * - Use offset of 0 to check for odd elements 1306 * - Use offset of 4 to check for even elements 1307 * - Big Endian: 1308 * - Use offset of 0 to check for even elements 1309 * - Use offset of 4 to check for odd elements 1310 * A detailed description of the vector element ordering for little endian and 1311 * big endian can be found at 1312 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1313 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1314 * compiler differences mean to you 1315 * 1316 * The mask to the shuffle vector instruction specifies the indices of the 1317 * elements from the two input vectors to place in the result. The elements are 1318 * numbered in array-access order, starting with the first vector. These vectors 1319 * are always of type v16i8, thus each vector will contain 16 elements of size 1320 * 8. More info on the shuffle vector can be found in the 1321 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1322 * Language Reference. 1323 * 1324 * The RHSStartValue indicates whether the same input vectors are used (unary) 1325 * or two different input vectors are used, based on the following: 1326 * - If the instruction uses the same vector for both inputs, the range of the 1327 * indices will be 0 to 15. In this case, the RHSStart value passed should 1328 * be 0. 1329 * - If the instruction has two different vectors then the range of the 1330 * indices will be 0 to 31. In this case, the RHSStart value passed should 1331 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1332 * to 31 specify elements in the second vector). 1333 * 1334 * \param[in] N The shuffle vector SD Node to analyze 1335 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1336 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1337 * vector to the shuffle_vector instruction 1338 * \return true iff this shuffle vector represents an even or odd word merge 1339 */ 1340 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1341 unsigned RHSStartValue) { 1342 if (N->getValueType(0) != MVT::v16i8) 1343 return false; 1344 1345 for (unsigned i = 0; i < 2; ++i) 1346 for (unsigned j = 0; j < 4; ++j) 1347 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1348 i*RHSStartValue+j+IndexOffset) || 1349 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1350 i*RHSStartValue+j+IndexOffset+8)) 1351 return false; 1352 return true; 1353 } 1354 1355 /** 1356 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1357 * vmrgow instructions. 1358 * 1359 * \param[in] N The shuffle vector SD Node to analyze 1360 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1361 * \param[in] ShuffleKind Identify the type of merge: 1362 * - 0 = big-endian merge with two different inputs; 1363 * - 1 = either-endian merge with two identical inputs; 1364 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1365 * little-endian merges). 1366 * \param[in] DAG The current SelectionDAG 1367 * \return true iff this shuffle mask 1368 */ 1369 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1370 unsigned ShuffleKind, SelectionDAG &DAG) { 1371 if (DAG.getDataLayout().isLittleEndian()) { 1372 unsigned indexOffset = CheckEven ? 4 : 0; 1373 if (ShuffleKind == 1) // Unary 1374 return isVMerge(N, indexOffset, 0); 1375 else if (ShuffleKind == 2) // swapped 1376 return isVMerge(N, indexOffset, 16); 1377 else 1378 return false; 1379 } 1380 else { 1381 unsigned indexOffset = CheckEven ? 0 : 4; 1382 if (ShuffleKind == 1) // Unary 1383 return isVMerge(N, indexOffset, 0); 1384 else if (ShuffleKind == 0) // Normal 1385 return isVMerge(N, indexOffset, 16); 1386 else 1387 return false; 1388 } 1389 return false; 1390 } 1391 1392 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1393 /// amount, otherwise return -1. 1394 /// The ShuffleKind distinguishes between big-endian operations with two 1395 /// different inputs (0), either-endian operations with two identical inputs 1396 /// (1), and little-endian operations with two different inputs (2). For the 1397 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1398 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1399 SelectionDAG &DAG) { 1400 if (N->getValueType(0) != MVT::v16i8) 1401 return -1; 1402 1403 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1404 1405 // Find the first non-undef value in the shuffle mask. 1406 unsigned i; 1407 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1408 /*search*/; 1409 1410 if (i == 16) return -1; // all undef. 1411 1412 // Otherwise, check to see if the rest of the elements are consecutively 1413 // numbered from this value. 1414 unsigned ShiftAmt = SVOp->getMaskElt(i); 1415 if (ShiftAmt < i) return -1; 1416 1417 ShiftAmt -= i; 1418 bool isLE = DAG.getDataLayout().isLittleEndian(); 1419 1420 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1421 // Check the rest of the elements to see if they are consecutive. 1422 for (++i; i != 16; ++i) 1423 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1424 return -1; 1425 } else if (ShuffleKind == 1) { 1426 // Check the rest of the elements to see if they are consecutive. 1427 for (++i; i != 16; ++i) 1428 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1429 return -1; 1430 } else 1431 return -1; 1432 1433 if (isLE) 1434 ShiftAmt = 16 - ShiftAmt; 1435 1436 return ShiftAmt; 1437 } 1438 1439 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1440 /// specifies a splat of a single element that is suitable for input to 1441 /// VSPLTB/VSPLTH/VSPLTW. 1442 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1443 assert(N->getValueType(0) == MVT::v16i8 && 1444 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1445 1446 // The consecutive indices need to specify an element, not part of two 1447 // different elements. So abandon ship early if this isn't the case. 1448 if (N->getMaskElt(0) % EltSize != 0) 1449 return false; 1450 1451 // This is a splat operation if each element of the permute is the same, and 1452 // if the value doesn't reference the second vector. 1453 unsigned ElementBase = N->getMaskElt(0); 1454 1455 // FIXME: Handle UNDEF elements too! 1456 if (ElementBase >= 16) 1457 return false; 1458 1459 // Check that the indices are consecutive, in the case of a multi-byte element 1460 // splatted with a v16i8 mask. 1461 for (unsigned i = 1; i != EltSize; ++i) 1462 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1463 return false; 1464 1465 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1466 if (N->getMaskElt(i) < 0) continue; 1467 for (unsigned j = 0; j != EltSize; ++j) 1468 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1469 return false; 1470 } 1471 return true; 1472 } 1473 1474 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1475 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1476 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1477 SelectionDAG &DAG) { 1478 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1479 assert(isSplatShuffleMask(SVOp, EltSize)); 1480 if (DAG.getDataLayout().isLittleEndian()) 1481 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1482 else 1483 return SVOp->getMaskElt(0) / EltSize; 1484 } 1485 1486 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1487 /// by using a vspltis[bhw] instruction of the specified element size, return 1488 /// the constant being splatted. The ByteSize field indicates the number of 1489 /// bytes of each element [124] -> [bhw]. 1490 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1491 SDValue OpVal(nullptr, 0); 1492 1493 // If ByteSize of the splat is bigger than the element size of the 1494 // build_vector, then we have a case where we are checking for a splat where 1495 // multiple elements of the buildvector are folded together into a single 1496 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1497 unsigned EltSize = 16/N->getNumOperands(); 1498 if (EltSize < ByteSize) { 1499 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1500 SDValue UniquedVals[4]; 1501 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1502 1503 // See if all of the elements in the buildvector agree across. 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1506 // If the element isn't a constant, bail fully out. 1507 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1508 1509 1510 if (!UniquedVals[i&(Multiple-1)].getNode()) 1511 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1512 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1513 return SDValue(); // no match. 1514 } 1515 1516 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1517 // either constant or undef values that are identical for each chunk. See 1518 // if these chunks can form into a larger vspltis*. 1519 1520 // Check to see if all of the leading entries are either 0 or -1. If 1521 // neither, then this won't fit into the immediate field. 1522 bool LeadingZero = true; 1523 bool LeadingOnes = true; 1524 for (unsigned i = 0; i != Multiple-1; ++i) { 1525 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1526 1527 LeadingZero &= isNullConstant(UniquedVals[i]); 1528 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1529 } 1530 // Finally, check the least significant entry. 1531 if (LeadingZero) { 1532 if (!UniquedVals[Multiple-1].getNode()) 1533 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1534 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1535 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1536 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1537 } 1538 if (LeadingOnes) { 1539 if (!UniquedVals[Multiple-1].getNode()) 1540 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1541 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1542 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1543 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1544 } 1545 1546 return SDValue(); 1547 } 1548 1549 // Check to see if this buildvec has a single non-undef value in its elements. 1550 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1551 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1552 if (!OpVal.getNode()) 1553 OpVal = N->getOperand(i); 1554 else if (OpVal != N->getOperand(i)) 1555 return SDValue(); 1556 } 1557 1558 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1559 1560 unsigned ValSizeInBytes = EltSize; 1561 uint64_t Value = 0; 1562 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1563 Value = CN->getZExtValue(); 1564 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1565 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1566 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1567 } 1568 1569 // If the splat value is larger than the element value, then we can never do 1570 // this splat. The only case that we could fit the replicated bits into our 1571 // immediate field for would be zero, and we prefer to use vxor for it. 1572 if (ValSizeInBytes < ByteSize) return SDValue(); 1573 1574 // If the element value is larger than the splat value, check if it consists 1575 // of a repeated bit pattern of size ByteSize. 1576 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1577 return SDValue(); 1578 1579 // Properly sign extend the value. 1580 int MaskVal = SignExtend32(Value, ByteSize * 8); 1581 1582 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1583 if (MaskVal == 0) return SDValue(); 1584 1585 // Finally, if this value fits in a 5 bit sext field, return it 1586 if (SignExtend32<5>(MaskVal) == MaskVal) 1587 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1588 return SDValue(); 1589 } 1590 1591 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1592 /// amount, otherwise return -1. 1593 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1594 EVT VT = N->getValueType(0); 1595 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1596 return -1; 1597 1598 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1599 1600 // Find the first non-undef value in the shuffle mask. 1601 unsigned i; 1602 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1603 /*search*/; 1604 1605 if (i == 4) return -1; // all undef. 1606 1607 // Otherwise, check to see if the rest of the elements are consecutively 1608 // numbered from this value. 1609 unsigned ShiftAmt = SVOp->getMaskElt(i); 1610 if (ShiftAmt < i) return -1; 1611 ShiftAmt -= i; 1612 1613 // Check the rest of the elements to see if they are consecutive. 1614 for (++i; i != 4; ++i) 1615 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1616 return -1; 1617 1618 return ShiftAmt; 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // Addressing Mode Selection 1623 //===----------------------------------------------------------------------===// 1624 1625 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1626 /// or 64-bit immediate, and if the value can be accurately represented as a 1627 /// sign extension from a 16-bit value. If so, this returns true and the 1628 /// immediate. 1629 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1630 if (!isa<ConstantSDNode>(N)) 1631 return false; 1632 1633 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1634 if (N->getValueType(0) == MVT::i32) 1635 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1636 else 1637 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1638 } 1639 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1640 return isIntS16Immediate(Op.getNode(), Imm); 1641 } 1642 1643 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1644 /// can be represented as an indexed [r+r] operation. Returns false if it 1645 /// can be more efficiently represented with [r+imm]. 1646 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1647 SDValue &Index, 1648 SelectionDAG &DAG) const { 1649 short imm = 0; 1650 if (N.getOpcode() == ISD::ADD) { 1651 if (isIntS16Immediate(N.getOperand(1), imm)) 1652 return false; // r+i 1653 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1654 return false; // r+i 1655 1656 Base = N.getOperand(0); 1657 Index = N.getOperand(1); 1658 return true; 1659 } else if (N.getOpcode() == ISD::OR) { 1660 if (isIntS16Immediate(N.getOperand(1), imm)) 1661 return false; // r+i can fold it if we can. 1662 1663 // If this is an or of disjoint bitfields, we can codegen this as an add 1664 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1665 // disjoint. 1666 APInt LHSKnownZero, LHSKnownOne; 1667 APInt RHSKnownZero, RHSKnownOne; 1668 DAG.computeKnownBits(N.getOperand(0), 1669 LHSKnownZero, LHSKnownOne); 1670 1671 if (LHSKnownZero.getBoolValue()) { 1672 DAG.computeKnownBits(N.getOperand(1), 1673 RHSKnownZero, RHSKnownOne); 1674 // If all of the bits are known zero on the LHS or RHS, the add won't 1675 // carry. 1676 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1677 Base = N.getOperand(0); 1678 Index = N.getOperand(1); 1679 return true; 1680 } 1681 } 1682 } 1683 1684 return false; 1685 } 1686 1687 // If we happen to be doing an i64 load or store into a stack slot that has 1688 // less than a 4-byte alignment, then the frame-index elimination may need to 1689 // use an indexed load or store instruction (because the offset may not be a 1690 // multiple of 4). The extra register needed to hold the offset comes from the 1691 // register scavenger, and it is possible that the scavenger will need to use 1692 // an emergency spill slot. As a result, we need to make sure that a spill slot 1693 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1694 // stack slot. 1695 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1696 // FIXME: This does not handle the LWA case. 1697 if (VT != MVT::i64) 1698 return; 1699 1700 // NOTE: We'll exclude negative FIs here, which come from argument 1701 // lowering, because there are no known test cases triggering this problem 1702 // using packed structures (or similar). We can remove this exclusion if 1703 // we find such a test case. The reason why this is so test-case driven is 1704 // because this entire 'fixup' is only to prevent crashes (from the 1705 // register scavenger) on not-really-valid inputs. For example, if we have: 1706 // %a = alloca i1 1707 // %b = bitcast i1* %a to i64* 1708 // store i64* a, i64 b 1709 // then the store should really be marked as 'align 1', but is not. If it 1710 // were marked as 'align 1' then the indexed form would have been 1711 // instruction-selected initially, and the problem this 'fixup' is preventing 1712 // won't happen regardless. 1713 if (FrameIdx < 0) 1714 return; 1715 1716 MachineFunction &MF = DAG.getMachineFunction(); 1717 MachineFrameInfo *MFI = MF.getFrameInfo(); 1718 1719 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1720 if (Align >= 4) 1721 return; 1722 1723 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1724 FuncInfo->setHasNonRISpills(); 1725 } 1726 1727 /// Returns true if the address N can be represented by a base register plus 1728 /// a signed 16-bit displacement [r+imm], and if it is not better 1729 /// represented as reg+reg. If Aligned is true, only accept displacements 1730 /// suitable for STD and friends, i.e. multiples of 4. 1731 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1732 SDValue &Base, 1733 SelectionDAG &DAG, 1734 bool Aligned) const { 1735 // FIXME dl should come from parent load or store, not from address 1736 SDLoc dl(N); 1737 // If this can be more profitably realized as r+r, fail. 1738 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1739 return false; 1740 1741 if (N.getOpcode() == ISD::ADD) { 1742 short imm = 0; 1743 if (isIntS16Immediate(N.getOperand(1), imm) && 1744 (!Aligned || (imm & 3) == 0)) { 1745 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1746 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1747 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1748 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1749 } else { 1750 Base = N.getOperand(0); 1751 } 1752 return true; // [r+i] 1753 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1754 // Match LOAD (ADD (X, Lo(G))). 1755 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1756 && "Cannot handle constant offsets yet!"); 1757 Disp = N.getOperand(1).getOperand(0); // The global address. 1758 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1759 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1760 Disp.getOpcode() == ISD::TargetConstantPool || 1761 Disp.getOpcode() == ISD::TargetJumpTable); 1762 Base = N.getOperand(0); 1763 return true; // [&g+r] 1764 } 1765 } else if (N.getOpcode() == ISD::OR) { 1766 short imm = 0; 1767 if (isIntS16Immediate(N.getOperand(1), imm) && 1768 (!Aligned || (imm & 3) == 0)) { 1769 // If this is an or of disjoint bitfields, we can codegen this as an add 1770 // (for better address arithmetic) if the LHS and RHS of the OR are 1771 // provably disjoint. 1772 APInt LHSKnownZero, LHSKnownOne; 1773 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1774 1775 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1776 // If all of the bits are known zero on the LHS or RHS, the add won't 1777 // carry. 1778 if (FrameIndexSDNode *FI = 1779 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1780 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1781 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1782 } else { 1783 Base = N.getOperand(0); 1784 } 1785 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1786 return true; 1787 } 1788 } 1789 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1790 // Loading from a constant address. 1791 1792 // If this address fits entirely in a 16-bit sext immediate field, codegen 1793 // this as "d, 0" 1794 short Imm; 1795 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1796 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1797 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1798 CN->getValueType(0)); 1799 return true; 1800 } 1801 1802 // Handle 32-bit sext immediates with LIS + addr mode. 1803 if ((CN->getValueType(0) == MVT::i32 || 1804 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1805 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1806 int Addr = (int)CN->getZExtValue(); 1807 1808 // Otherwise, break this down into an LIS + disp. 1809 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1810 1811 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1812 MVT::i32); 1813 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1814 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1815 return true; 1816 } 1817 } 1818 1819 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1820 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1821 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1822 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1823 } else 1824 Base = N; 1825 return true; // [r+0] 1826 } 1827 1828 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1829 /// represented as an indexed [r+r] operation. 1830 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1831 SDValue &Index, 1832 SelectionDAG &DAG) const { 1833 // Check to see if we can easily represent this as an [r+r] address. This 1834 // will fail if it thinks that the address is more profitably represented as 1835 // reg+imm, e.g. where imm = 0. 1836 if (SelectAddressRegReg(N, Base, Index, DAG)) 1837 return true; 1838 1839 // If the operand is an addition, always emit this as [r+r], since this is 1840 // better (for code size, and execution, as the memop does the add for free) 1841 // than emitting an explicit add. 1842 if (N.getOpcode() == ISD::ADD) { 1843 Base = N.getOperand(0); 1844 Index = N.getOperand(1); 1845 return true; 1846 } 1847 1848 // Otherwise, do it the hard way, using R0 as the base register. 1849 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1850 N.getValueType()); 1851 Index = N; 1852 return true; 1853 } 1854 1855 /// getPreIndexedAddressParts - returns true by value, base pointer and 1856 /// offset pointer and addressing mode by reference if the node's address 1857 /// can be legally represented as pre-indexed load / store address. 1858 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1859 SDValue &Offset, 1860 ISD::MemIndexedMode &AM, 1861 SelectionDAG &DAG) const { 1862 if (DisablePPCPreinc) return false; 1863 1864 bool isLoad = true; 1865 SDValue Ptr; 1866 EVT VT; 1867 unsigned Alignment; 1868 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1869 Ptr = LD->getBasePtr(); 1870 VT = LD->getMemoryVT(); 1871 Alignment = LD->getAlignment(); 1872 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1873 Ptr = ST->getBasePtr(); 1874 VT = ST->getMemoryVT(); 1875 Alignment = ST->getAlignment(); 1876 isLoad = false; 1877 } else 1878 return false; 1879 1880 // PowerPC doesn't have preinc load/store instructions for vectors (except 1881 // for QPX, which does have preinc r+r forms). 1882 if (VT.isVector()) { 1883 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1884 return false; 1885 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1886 AM = ISD::PRE_INC; 1887 return true; 1888 } 1889 } 1890 1891 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1892 1893 // Common code will reject creating a pre-inc form if the base pointer 1894 // is a frame index, or if N is a store and the base pointer is either 1895 // the same as or a predecessor of the value being stored. Check for 1896 // those situations here, and try with swapped Base/Offset instead. 1897 bool Swap = false; 1898 1899 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1900 Swap = true; 1901 else if (!isLoad) { 1902 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1903 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1904 Swap = true; 1905 } 1906 1907 if (Swap) 1908 std::swap(Base, Offset); 1909 1910 AM = ISD::PRE_INC; 1911 return true; 1912 } 1913 1914 // LDU/STU can only handle immediates that are a multiple of 4. 1915 if (VT != MVT::i64) { 1916 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1917 return false; 1918 } else { 1919 // LDU/STU need an address with at least 4-byte alignment. 1920 if (Alignment < 4) 1921 return false; 1922 1923 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1924 return false; 1925 } 1926 1927 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1928 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1929 // sext i32 to i64 when addr mode is r+i. 1930 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1931 LD->getExtensionType() == ISD::SEXTLOAD && 1932 isa<ConstantSDNode>(Offset)) 1933 return false; 1934 } 1935 1936 AM = ISD::PRE_INC; 1937 return true; 1938 } 1939 1940 //===----------------------------------------------------------------------===// 1941 // LowerOperation implementation 1942 //===----------------------------------------------------------------------===// 1943 1944 /// GetLabelAccessInfo - Return true if we should reference labels using a 1945 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1946 static bool GetLabelAccessInfo(const TargetMachine &TM, 1947 const PPCSubtarget &Subtarget, 1948 unsigned &HiOpFlags, unsigned &LoOpFlags, 1949 const GlobalValue *GV = nullptr) { 1950 HiOpFlags = PPCII::MO_HA; 1951 LoOpFlags = PPCII::MO_LO; 1952 1953 // Don't use the pic base if not in PIC relocation model. 1954 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1955 1956 if (isPIC) { 1957 HiOpFlags |= PPCII::MO_PIC_FLAG; 1958 LoOpFlags |= PPCII::MO_PIC_FLAG; 1959 } 1960 1961 // If this is a reference to a global value that requires a non-lazy-ptr, make 1962 // sure that instruction lowering adds it. 1963 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1964 HiOpFlags |= PPCII::MO_NLP_FLAG; 1965 LoOpFlags |= PPCII::MO_NLP_FLAG; 1966 1967 if (GV->hasHiddenVisibility()) { 1968 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1969 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1970 } 1971 } 1972 1973 return isPIC; 1974 } 1975 1976 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1977 SelectionDAG &DAG) { 1978 SDLoc DL(HiPart); 1979 EVT PtrVT = HiPart.getValueType(); 1980 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1981 1982 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1983 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1984 1985 // With PIC, the first instruction is actually "GR+hi(&G)". 1986 if (isPIC) 1987 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1988 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1989 1990 // Generate non-pic code that has direct accesses to the constant pool. 1991 // The address of the global is just (hi(&g)+lo(&g)). 1992 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1993 } 1994 1995 static void setUsesTOCBasePtr(MachineFunction &MF) { 1996 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1997 FuncInfo->setUsesTOCBasePtr(); 1998 } 1999 2000 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2001 setUsesTOCBasePtr(DAG.getMachineFunction()); 2002 } 2003 2004 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2005 SDValue GA) { 2006 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2007 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2008 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2009 2010 SDValue Ops[] = { GA, Reg }; 2011 return DAG.getMemIntrinsicNode( 2012 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2013 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2014 false, 0); 2015 } 2016 2017 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2018 SelectionDAG &DAG) const { 2019 EVT PtrVT = Op.getValueType(); 2020 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2021 const Constant *C = CP->getConstVal(); 2022 2023 // 64-bit SVR4 ABI code is always position-independent. 2024 // The actual address of the GlobalValue is stored in the TOC. 2025 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2026 setUsesTOCBasePtr(DAG); 2027 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2028 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2029 } 2030 2031 unsigned MOHiFlag, MOLoFlag; 2032 bool isPIC = 2033 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2034 2035 if (isPIC && Subtarget.isSVR4ABI()) { 2036 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2037 PPCII::MO_PIC_FLAG); 2038 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2039 } 2040 2041 SDValue CPIHi = 2042 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2043 SDValue CPILo = 2044 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2045 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2046 } 2047 2048 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2049 EVT PtrVT = Op.getValueType(); 2050 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2051 2052 // 64-bit SVR4 ABI code is always position-independent. 2053 // The actual address of the GlobalValue is stored in the TOC. 2054 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2055 setUsesTOCBasePtr(DAG); 2056 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2057 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2058 } 2059 2060 unsigned MOHiFlag, MOLoFlag; 2061 bool isPIC = 2062 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2063 2064 if (isPIC && Subtarget.isSVR4ABI()) { 2065 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2066 PPCII::MO_PIC_FLAG); 2067 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2068 } 2069 2070 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2071 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2072 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2073 } 2074 2075 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2076 SelectionDAG &DAG) const { 2077 EVT PtrVT = Op.getValueType(); 2078 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2079 const BlockAddress *BA = BASDN->getBlockAddress(); 2080 2081 // 64-bit SVR4 ABI code is always position-independent. 2082 // The actual BlockAddress is stored in the TOC. 2083 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2084 setUsesTOCBasePtr(DAG); 2085 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2086 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2087 } 2088 2089 unsigned MOHiFlag, MOLoFlag; 2090 bool isPIC = 2091 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2092 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2093 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2094 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2095 } 2096 2097 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2098 SelectionDAG &DAG) const { 2099 2100 // FIXME: TLS addresses currently use medium model code sequences, 2101 // which is the most useful form. Eventually support for small and 2102 // large models could be added if users need it, at the cost of 2103 // additional complexity. 2104 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2105 if (DAG.getTarget().Options.EmulatedTLS) 2106 return LowerToTLSEmulatedModel(GA, DAG); 2107 2108 SDLoc dl(GA); 2109 const GlobalValue *GV = GA->getGlobal(); 2110 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2111 bool is64bit = Subtarget.isPPC64(); 2112 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2113 PICLevel::Level picLevel = M->getPICLevel(); 2114 2115 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2116 2117 if (Model == TLSModel::LocalExec) { 2118 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2119 PPCII::MO_TPREL_HA); 2120 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2121 PPCII::MO_TPREL_LO); 2122 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2123 is64bit ? MVT::i64 : MVT::i32); 2124 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2125 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2126 } 2127 2128 if (Model == TLSModel::InitialExec) { 2129 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2130 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2131 PPCII::MO_TLS); 2132 SDValue GOTPtr; 2133 if (is64bit) { 2134 setUsesTOCBasePtr(DAG); 2135 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2136 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2137 PtrVT, GOTReg, TGA); 2138 } else 2139 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2140 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2141 PtrVT, TGA, GOTPtr); 2142 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2143 } 2144 2145 if (Model == TLSModel::GeneralDynamic) { 2146 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2147 SDValue GOTPtr; 2148 if (is64bit) { 2149 setUsesTOCBasePtr(DAG); 2150 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2151 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2152 GOTReg, TGA); 2153 } else { 2154 if (picLevel == PICLevel::Small) 2155 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2156 else 2157 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2158 } 2159 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2160 GOTPtr, TGA, TGA); 2161 } 2162 2163 if (Model == TLSModel::LocalDynamic) { 2164 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2165 SDValue GOTPtr; 2166 if (is64bit) { 2167 setUsesTOCBasePtr(DAG); 2168 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2169 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2170 GOTReg, TGA); 2171 } else { 2172 if (picLevel == PICLevel::Small) 2173 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2174 else 2175 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2176 } 2177 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2178 PtrVT, GOTPtr, TGA, TGA); 2179 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2180 PtrVT, TLSAddr, TGA); 2181 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2182 } 2183 2184 llvm_unreachable("Unknown TLS model!"); 2185 } 2186 2187 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2188 SelectionDAG &DAG) const { 2189 EVT PtrVT = Op.getValueType(); 2190 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2191 SDLoc DL(GSDN); 2192 const GlobalValue *GV = GSDN->getGlobal(); 2193 2194 // 64-bit SVR4 ABI code is always position-independent. 2195 // The actual address of the GlobalValue is stored in the TOC. 2196 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2197 setUsesTOCBasePtr(DAG); 2198 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2199 return getTOCEntry(DAG, DL, true, GA); 2200 } 2201 2202 unsigned MOHiFlag, MOLoFlag; 2203 bool isPIC = 2204 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2205 2206 if (isPIC && Subtarget.isSVR4ABI()) { 2207 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2208 GSDN->getOffset(), 2209 PPCII::MO_PIC_FLAG); 2210 return getTOCEntry(DAG, DL, false, GA); 2211 } 2212 2213 SDValue GAHi = 2214 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2215 SDValue GALo = 2216 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2217 2218 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2219 2220 // If the global reference is actually to a non-lazy-pointer, we have to do an 2221 // extra load to get the address of the global. 2222 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2223 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2224 false, false, false, 0); 2225 return Ptr; 2226 } 2227 2228 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2229 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2230 SDLoc dl(Op); 2231 2232 if (Op.getValueType() == MVT::v2i64) { 2233 // When the operands themselves are v2i64 values, we need to do something 2234 // special because VSX has no underlying comparison operations for these. 2235 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2236 // Equality can be handled by casting to the legal type for Altivec 2237 // comparisons, everything else needs to be expanded. 2238 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2239 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2240 DAG.getSetCC(dl, MVT::v4i32, 2241 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2242 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2243 CC)); 2244 } 2245 2246 return SDValue(); 2247 } 2248 2249 // We handle most of these in the usual way. 2250 return Op; 2251 } 2252 2253 // If we're comparing for equality to zero, expose the fact that this is 2254 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2255 // fold the new nodes. 2256 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2257 if (C->isNullValue() && CC == ISD::SETEQ) { 2258 EVT VT = Op.getOperand(0).getValueType(); 2259 SDValue Zext = Op.getOperand(0); 2260 if (VT.bitsLT(MVT::i32)) { 2261 VT = MVT::i32; 2262 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2263 } 2264 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2265 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2266 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2267 DAG.getConstant(Log2b, dl, MVT::i32)); 2268 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2269 } 2270 // Leave comparisons against 0 and -1 alone for now, since they're usually 2271 // optimized. FIXME: revisit this when we can custom lower all setcc 2272 // optimizations. 2273 if (C->isAllOnesValue() || C->isNullValue()) 2274 return SDValue(); 2275 } 2276 2277 // If we have an integer seteq/setne, turn it into a compare against zero 2278 // by xor'ing the rhs with the lhs, which is faster than setting a 2279 // condition register, reading it back out, and masking the correct bit. The 2280 // normal approach here uses sub to do this instead of xor. Using xor exposes 2281 // the result to other bit-twiddling opportunities. 2282 EVT LHSVT = Op.getOperand(0).getValueType(); 2283 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2284 EVT VT = Op.getValueType(); 2285 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2286 Op.getOperand(1)); 2287 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2288 } 2289 return SDValue(); 2290 } 2291 2292 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2293 const PPCSubtarget &Subtarget) const { 2294 SDNode *Node = Op.getNode(); 2295 EVT VT = Node->getValueType(0); 2296 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2297 SDValue InChain = Node->getOperand(0); 2298 SDValue VAListPtr = Node->getOperand(1); 2299 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2300 SDLoc dl(Node); 2301 2302 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2303 2304 // gpr_index 2305 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2306 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2307 false, false, false, 0); 2308 InChain = GprIndex.getValue(1); 2309 2310 if (VT == MVT::i64) { 2311 // Check if GprIndex is even 2312 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2313 DAG.getConstant(1, dl, MVT::i32)); 2314 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2315 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2316 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2317 DAG.getConstant(1, dl, MVT::i32)); 2318 // Align GprIndex to be even if it isn't 2319 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2320 GprIndex); 2321 } 2322 2323 // fpr index is 1 byte after gpr 2324 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2325 DAG.getConstant(1, dl, MVT::i32)); 2326 2327 // fpr 2328 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2329 FprPtr, MachinePointerInfo(SV), MVT::i8, 2330 false, false, false, 0); 2331 InChain = FprIndex.getValue(1); 2332 2333 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2334 DAG.getConstant(8, dl, MVT::i32)); 2335 2336 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2337 DAG.getConstant(4, dl, MVT::i32)); 2338 2339 // areas 2340 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2341 MachinePointerInfo(), false, false, 2342 false, 0); 2343 InChain = OverflowArea.getValue(1); 2344 2345 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2346 MachinePointerInfo(), false, false, 2347 false, 0); 2348 InChain = RegSaveArea.getValue(1); 2349 2350 // select overflow_area if index > 8 2351 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2352 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2353 2354 // adjustment constant gpr_index * 4/8 2355 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2356 VT.isInteger() ? GprIndex : FprIndex, 2357 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2358 MVT::i32)); 2359 2360 // OurReg = RegSaveArea + RegConstant 2361 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2362 RegConstant); 2363 2364 // Floating types are 32 bytes into RegSaveArea 2365 if (VT.isFloatingPoint()) 2366 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2367 DAG.getConstant(32, dl, MVT::i32)); 2368 2369 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2370 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2371 VT.isInteger() ? GprIndex : FprIndex, 2372 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2373 MVT::i32)); 2374 2375 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2376 VT.isInteger() ? VAListPtr : FprPtr, 2377 MachinePointerInfo(SV), 2378 MVT::i8, false, false, 0); 2379 2380 // determine if we should load from reg_save_area or overflow_area 2381 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2382 2383 // increase overflow_area by 4/8 if gpr/fpr > 8 2384 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2385 DAG.getConstant(VT.isInteger() ? 4 : 8, 2386 dl, MVT::i32)); 2387 2388 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2389 OverflowAreaPlusN); 2390 2391 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2392 OverflowAreaPtr, 2393 MachinePointerInfo(), 2394 MVT::i32, false, false, 0); 2395 2396 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2397 false, false, false, 0); 2398 } 2399 2400 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2401 const PPCSubtarget &Subtarget) const { 2402 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2403 2404 // We have to copy the entire va_list struct: 2405 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2406 return DAG.getMemcpy(Op.getOperand(0), Op, 2407 Op.getOperand(1), Op.getOperand(2), 2408 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2409 false, MachinePointerInfo(), MachinePointerInfo()); 2410 } 2411 2412 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2413 SelectionDAG &DAG) const { 2414 return Op.getOperand(0); 2415 } 2416 2417 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2418 SelectionDAG &DAG) const { 2419 SDValue Chain = Op.getOperand(0); 2420 SDValue Trmp = Op.getOperand(1); // trampoline 2421 SDValue FPtr = Op.getOperand(2); // nested function 2422 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2423 SDLoc dl(Op); 2424 2425 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2426 bool isPPC64 = (PtrVT == MVT::i64); 2427 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2428 2429 TargetLowering::ArgListTy Args; 2430 TargetLowering::ArgListEntry Entry; 2431 2432 Entry.Ty = IntPtrTy; 2433 Entry.Node = Trmp; Args.push_back(Entry); 2434 2435 // TrampSize == (isPPC64 ? 48 : 40); 2436 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2437 isPPC64 ? MVT::i64 : MVT::i32); 2438 Args.push_back(Entry); 2439 2440 Entry.Node = FPtr; Args.push_back(Entry); 2441 Entry.Node = Nest; Args.push_back(Entry); 2442 2443 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2444 TargetLowering::CallLoweringInfo CLI(DAG); 2445 CLI.setDebugLoc(dl).setChain(Chain) 2446 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2447 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2448 std::move(Args), 0); 2449 2450 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2451 return CallResult.second; 2452 } 2453 2454 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2455 const PPCSubtarget &Subtarget) const { 2456 MachineFunction &MF = DAG.getMachineFunction(); 2457 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2458 2459 SDLoc dl(Op); 2460 2461 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2462 // vastart just stores the address of the VarArgsFrameIndex slot into the 2463 // memory location argument. 2464 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2465 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2466 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2467 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2468 MachinePointerInfo(SV), 2469 false, false, 0); 2470 } 2471 2472 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2473 // We suppose the given va_list is already allocated. 2474 // 2475 // typedef struct { 2476 // char gpr; /* index into the array of 8 GPRs 2477 // * stored in the register save area 2478 // * gpr=0 corresponds to r3, 2479 // * gpr=1 to r4, etc. 2480 // */ 2481 // char fpr; /* index into the array of 8 FPRs 2482 // * stored in the register save area 2483 // * fpr=0 corresponds to f1, 2484 // * fpr=1 to f2, etc. 2485 // */ 2486 // char *overflow_arg_area; 2487 // /* location on stack that holds 2488 // * the next overflow argument 2489 // */ 2490 // char *reg_save_area; 2491 // /* where r3:r10 and f1:f8 (if saved) 2492 // * are stored 2493 // */ 2494 // } va_list[1]; 2495 2496 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2497 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2498 2499 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2500 2501 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2502 PtrVT); 2503 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2504 PtrVT); 2505 2506 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2507 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2508 2509 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2510 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2511 2512 uint64_t FPROffset = 1; 2513 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2514 2515 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2516 2517 // Store first byte : number of int regs 2518 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2519 Op.getOperand(1), 2520 MachinePointerInfo(SV), 2521 MVT::i8, false, false, 0); 2522 uint64_t nextOffset = FPROffset; 2523 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2524 ConstFPROffset); 2525 2526 // Store second byte : number of float regs 2527 SDValue secondStore = 2528 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2529 MachinePointerInfo(SV, nextOffset), MVT::i8, 2530 false, false, 0); 2531 nextOffset += StackOffset; 2532 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2533 2534 // Store second word : arguments given on stack 2535 SDValue thirdStore = 2536 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2537 MachinePointerInfo(SV, nextOffset), 2538 false, false, 0); 2539 nextOffset += FrameOffset; 2540 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2541 2542 // Store third word : arguments given in registers 2543 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2544 MachinePointerInfo(SV, nextOffset), 2545 false, false, 0); 2546 2547 } 2548 2549 #include "PPCGenCallingConv.inc" 2550 2551 // Function whose sole purpose is to kill compiler warnings 2552 // stemming from unused functions included from PPCGenCallingConv.inc. 2553 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2554 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2555 } 2556 2557 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2558 CCValAssign::LocInfo &LocInfo, 2559 ISD::ArgFlagsTy &ArgFlags, 2560 CCState &State) { 2561 return true; 2562 } 2563 2564 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2565 MVT &LocVT, 2566 CCValAssign::LocInfo &LocInfo, 2567 ISD::ArgFlagsTy &ArgFlags, 2568 CCState &State) { 2569 static const MCPhysReg ArgRegs[] = { 2570 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2571 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2572 }; 2573 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2574 2575 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2576 2577 // Skip one register if the first unallocated register has an even register 2578 // number and there are still argument registers available which have not been 2579 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2580 // need to skip a register if RegNum is odd. 2581 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2582 State.AllocateReg(ArgRegs[RegNum]); 2583 } 2584 2585 // Always return false here, as this function only makes sure that the first 2586 // unallocated register has an odd register number and does not actually 2587 // allocate a register for the current argument. 2588 return false; 2589 } 2590 2591 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2592 MVT &LocVT, 2593 CCValAssign::LocInfo &LocInfo, 2594 ISD::ArgFlagsTy &ArgFlags, 2595 CCState &State) { 2596 static const MCPhysReg ArgRegs[] = { 2597 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2598 PPC::F8 2599 }; 2600 2601 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2602 2603 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2604 2605 // If there is only one Floating-point register left we need to put both f64 2606 // values of a split ppc_fp128 value on the stack. 2607 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2608 State.AllocateReg(ArgRegs[RegNum]); 2609 } 2610 2611 // Always return false here, as this function only makes sure that the two f64 2612 // values a ppc_fp128 value is split into are both passed in registers or both 2613 // passed on the stack and does not actually allocate a register for the 2614 // current argument. 2615 return false; 2616 } 2617 2618 /// FPR - The set of FP registers that should be allocated for arguments, 2619 /// on Darwin. 2620 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2621 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2622 PPC::F11, PPC::F12, PPC::F13}; 2623 2624 /// QFPR - The set of QPX registers that should be allocated for arguments. 2625 static const MCPhysReg QFPR[] = { 2626 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2627 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2628 2629 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2630 /// the stack. 2631 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2632 unsigned PtrByteSize) { 2633 unsigned ArgSize = ArgVT.getStoreSize(); 2634 if (Flags.isByVal()) 2635 ArgSize = Flags.getByValSize(); 2636 2637 // Round up to multiples of the pointer size, except for array members, 2638 // which are always packed. 2639 if (!Flags.isInConsecutiveRegs()) 2640 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2641 2642 return ArgSize; 2643 } 2644 2645 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2646 /// on the stack. 2647 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2648 ISD::ArgFlagsTy Flags, 2649 unsigned PtrByteSize) { 2650 unsigned Align = PtrByteSize; 2651 2652 // Altivec parameters are padded to a 16 byte boundary. 2653 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2654 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2655 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2656 ArgVT == MVT::v1i128) 2657 Align = 16; 2658 // QPX vector types stored in double-precision are padded to a 32 byte 2659 // boundary. 2660 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2661 Align = 32; 2662 2663 // ByVal parameters are aligned as requested. 2664 if (Flags.isByVal()) { 2665 unsigned BVAlign = Flags.getByValAlign(); 2666 if (BVAlign > PtrByteSize) { 2667 if (BVAlign % PtrByteSize != 0) 2668 llvm_unreachable( 2669 "ByVal alignment is not a multiple of the pointer size"); 2670 2671 Align = BVAlign; 2672 } 2673 } 2674 2675 // Array members are always packed to their original alignment. 2676 if (Flags.isInConsecutiveRegs()) { 2677 // If the array member was split into multiple registers, the first 2678 // needs to be aligned to the size of the full type. (Except for 2679 // ppcf128, which is only aligned as its f64 components.) 2680 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2681 Align = OrigVT.getStoreSize(); 2682 else 2683 Align = ArgVT.getStoreSize(); 2684 } 2685 2686 return Align; 2687 } 2688 2689 /// CalculateStackSlotUsed - Return whether this argument will use its 2690 /// stack slot (instead of being passed in registers). ArgOffset, 2691 /// AvailableFPRs, and AvailableVRs must hold the current argument 2692 /// position, and will be updated to account for this argument. 2693 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2694 ISD::ArgFlagsTy Flags, 2695 unsigned PtrByteSize, 2696 unsigned LinkageSize, 2697 unsigned ParamAreaSize, 2698 unsigned &ArgOffset, 2699 unsigned &AvailableFPRs, 2700 unsigned &AvailableVRs, bool HasQPX) { 2701 bool UseMemory = false; 2702 2703 // Respect alignment of argument on the stack. 2704 unsigned Align = 2705 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2706 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2707 // If there's no space left in the argument save area, we must 2708 // use memory (this check also catches zero-sized arguments). 2709 if (ArgOffset >= LinkageSize + ParamAreaSize) 2710 UseMemory = true; 2711 2712 // Allocate argument on the stack. 2713 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2714 if (Flags.isInConsecutiveRegsLast()) 2715 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2716 // If we overran the argument save area, we must use memory 2717 // (this check catches arguments passed partially in memory) 2718 if (ArgOffset > LinkageSize + ParamAreaSize) 2719 UseMemory = true; 2720 2721 // However, if the argument is actually passed in an FPR or a VR, 2722 // we don't use memory after all. 2723 if (!Flags.isByVal()) { 2724 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2725 // QPX registers overlap with the scalar FP registers. 2726 (HasQPX && (ArgVT == MVT::v4f32 || 2727 ArgVT == MVT::v4f64 || 2728 ArgVT == MVT::v4i1))) 2729 if (AvailableFPRs > 0) { 2730 --AvailableFPRs; 2731 return false; 2732 } 2733 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2734 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2735 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2736 ArgVT == MVT::v1i128) 2737 if (AvailableVRs > 0) { 2738 --AvailableVRs; 2739 return false; 2740 } 2741 } 2742 2743 return UseMemory; 2744 } 2745 2746 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2747 /// ensure minimum alignment required for target. 2748 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2749 unsigned NumBytes) { 2750 unsigned TargetAlign = Lowering->getStackAlignment(); 2751 unsigned AlignMask = TargetAlign - 1; 2752 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2753 return NumBytes; 2754 } 2755 2756 SDValue 2757 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2758 CallingConv::ID CallConv, bool isVarArg, 2759 const SmallVectorImpl<ISD::InputArg> 2760 &Ins, 2761 SDLoc dl, SelectionDAG &DAG, 2762 SmallVectorImpl<SDValue> &InVals) 2763 const { 2764 if (Subtarget.isSVR4ABI()) { 2765 if (Subtarget.isPPC64()) 2766 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2767 dl, DAG, InVals); 2768 else 2769 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2770 dl, DAG, InVals); 2771 } else { 2772 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2773 dl, DAG, InVals); 2774 } 2775 } 2776 2777 SDValue 2778 PPCTargetLowering::LowerFormalArguments_32SVR4( 2779 SDValue Chain, 2780 CallingConv::ID CallConv, bool isVarArg, 2781 const SmallVectorImpl<ISD::InputArg> 2782 &Ins, 2783 SDLoc dl, SelectionDAG &DAG, 2784 SmallVectorImpl<SDValue> &InVals) const { 2785 2786 // 32-bit SVR4 ABI Stack Frame Layout: 2787 // +-----------------------------------+ 2788 // +--> | Back chain | 2789 // | +-----------------------------------+ 2790 // | | Floating-point register save area | 2791 // | +-----------------------------------+ 2792 // | | General register save area | 2793 // | +-----------------------------------+ 2794 // | | CR save word | 2795 // | +-----------------------------------+ 2796 // | | VRSAVE save word | 2797 // | +-----------------------------------+ 2798 // | | Alignment padding | 2799 // | +-----------------------------------+ 2800 // | | Vector register save area | 2801 // | +-----------------------------------+ 2802 // | | Local variable space | 2803 // | +-----------------------------------+ 2804 // | | Parameter list area | 2805 // | +-----------------------------------+ 2806 // | | LR save word | 2807 // | +-----------------------------------+ 2808 // SP--> +--- | Back chain | 2809 // +-----------------------------------+ 2810 // 2811 // Specifications: 2812 // System V Application Binary Interface PowerPC Processor Supplement 2813 // AltiVec Technology Programming Interface Manual 2814 2815 MachineFunction &MF = DAG.getMachineFunction(); 2816 MachineFrameInfo *MFI = MF.getFrameInfo(); 2817 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2818 2819 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2820 // Potential tail calls could cause overwriting of argument stack slots. 2821 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2822 (CallConv == CallingConv::Fast)); 2823 unsigned PtrByteSize = 4; 2824 2825 // Assign locations to all of the incoming arguments. 2826 SmallVector<CCValAssign, 16> ArgLocs; 2827 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2828 *DAG.getContext()); 2829 2830 // Reserve space for the linkage area on the stack. 2831 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2832 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2833 2834 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2835 2836 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2837 CCValAssign &VA = ArgLocs[i]; 2838 2839 // Arguments stored in registers. 2840 if (VA.isRegLoc()) { 2841 const TargetRegisterClass *RC; 2842 EVT ValVT = VA.getValVT(); 2843 2844 switch (ValVT.getSimpleVT().SimpleTy) { 2845 default: 2846 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2847 case MVT::i1: 2848 case MVT::i32: 2849 RC = &PPC::GPRCRegClass; 2850 break; 2851 case MVT::f32: 2852 if (Subtarget.hasP8Vector()) 2853 RC = &PPC::VSSRCRegClass; 2854 else 2855 RC = &PPC::F4RCRegClass; 2856 break; 2857 case MVT::f64: 2858 if (Subtarget.hasVSX()) 2859 RC = &PPC::VSFRCRegClass; 2860 else 2861 RC = &PPC::F8RCRegClass; 2862 break; 2863 case MVT::v16i8: 2864 case MVT::v8i16: 2865 case MVT::v4i32: 2866 RC = &PPC::VRRCRegClass; 2867 break; 2868 case MVT::v4f32: 2869 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2870 break; 2871 case MVT::v2f64: 2872 case MVT::v2i64: 2873 RC = &PPC::VSHRCRegClass; 2874 break; 2875 case MVT::v4f64: 2876 RC = &PPC::QFRCRegClass; 2877 break; 2878 case MVT::v4i1: 2879 RC = &PPC::QBRCRegClass; 2880 break; 2881 } 2882 2883 // Transform the arguments stored in physical registers into virtual ones. 2884 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2885 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2886 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2887 2888 if (ValVT == MVT::i1) 2889 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2890 2891 InVals.push_back(ArgValue); 2892 } else { 2893 // Argument stored in memory. 2894 assert(VA.isMemLoc()); 2895 2896 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2897 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2898 isImmutable); 2899 2900 // Create load nodes to retrieve arguments from the stack. 2901 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2902 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2903 MachinePointerInfo(), 2904 false, false, false, 0)); 2905 } 2906 } 2907 2908 // Assign locations to all of the incoming aggregate by value arguments. 2909 // Aggregates passed by value are stored in the local variable space of the 2910 // caller's stack frame, right above the parameter list area. 2911 SmallVector<CCValAssign, 16> ByValArgLocs; 2912 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2913 ByValArgLocs, *DAG.getContext()); 2914 2915 // Reserve stack space for the allocations in CCInfo. 2916 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2917 2918 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2919 2920 // Area that is at least reserved in the caller of this function. 2921 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2922 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2923 2924 // Set the size that is at least reserved in caller of this function. Tail 2925 // call optimized function's reserved stack space needs to be aligned so that 2926 // taking the difference between two stack areas will result in an aligned 2927 // stack. 2928 MinReservedArea = 2929 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2930 FuncInfo->setMinReservedArea(MinReservedArea); 2931 2932 SmallVector<SDValue, 8> MemOps; 2933 2934 // If the function takes variable number of arguments, make a frame index for 2935 // the start of the first vararg value... for expansion of llvm.va_start. 2936 if (isVarArg) { 2937 static const MCPhysReg GPArgRegs[] = { 2938 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2939 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2940 }; 2941 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2942 2943 static const MCPhysReg FPArgRegs[] = { 2944 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2945 PPC::F8 2946 }; 2947 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2948 if (DisablePPCFloatInVariadic) 2949 NumFPArgRegs = 0; 2950 2951 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2952 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2953 2954 // Make room for NumGPArgRegs and NumFPArgRegs. 2955 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2956 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2957 2958 FuncInfo->setVarArgsStackOffset( 2959 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2960 CCInfo.getNextStackOffset(), true)); 2961 2962 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2963 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2964 2965 // The fixed integer arguments of a variadic function are stored to the 2966 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2967 // the result of va_next. 2968 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2969 // Get an existing live-in vreg, or add a new one. 2970 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2971 if (!VReg) 2972 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2973 2974 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2975 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2976 MachinePointerInfo(), false, false, 0); 2977 MemOps.push_back(Store); 2978 // Increment the address by four for the next argument to store 2979 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2980 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2981 } 2982 2983 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2984 // is set. 2985 // The double arguments are stored to the VarArgsFrameIndex 2986 // on the stack. 2987 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2988 // Get an existing live-in vreg, or add a new one. 2989 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2990 if (!VReg) 2991 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2992 2993 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2994 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2995 MachinePointerInfo(), false, false, 0); 2996 MemOps.push_back(Store); 2997 // Increment the address by eight for the next argument to store 2998 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2999 PtrVT); 3000 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3001 } 3002 } 3003 3004 if (!MemOps.empty()) 3005 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3006 3007 return Chain; 3008 } 3009 3010 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3011 // value to MVT::i64 and then truncate to the correct register size. 3012 SDValue 3013 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3014 SelectionDAG &DAG, SDValue ArgVal, 3015 SDLoc dl) const { 3016 if (Flags.isSExt()) 3017 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3018 DAG.getValueType(ObjectVT)); 3019 else if (Flags.isZExt()) 3020 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3021 DAG.getValueType(ObjectVT)); 3022 3023 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3024 } 3025 3026 SDValue 3027 PPCTargetLowering::LowerFormalArguments_64SVR4( 3028 SDValue Chain, 3029 CallingConv::ID CallConv, bool isVarArg, 3030 const SmallVectorImpl<ISD::InputArg> 3031 &Ins, 3032 SDLoc dl, SelectionDAG &DAG, 3033 SmallVectorImpl<SDValue> &InVals) const { 3034 // TODO: add description of PPC stack frame format, or at least some docs. 3035 // 3036 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3037 bool isLittleEndian = Subtarget.isLittleEndian(); 3038 MachineFunction &MF = DAG.getMachineFunction(); 3039 MachineFrameInfo *MFI = MF.getFrameInfo(); 3040 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3041 3042 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3043 "fastcc not supported on varargs functions"); 3044 3045 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3046 // Potential tail calls could cause overwriting of argument stack slots. 3047 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3048 (CallConv == CallingConv::Fast)); 3049 unsigned PtrByteSize = 8; 3050 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3051 3052 static const MCPhysReg GPR[] = { 3053 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3054 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3055 }; 3056 static const MCPhysReg VR[] = { 3057 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3058 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3059 }; 3060 static const MCPhysReg VSRH[] = { 3061 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3062 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3063 }; 3064 3065 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3066 const unsigned Num_FPR_Regs = 13; 3067 const unsigned Num_VR_Regs = array_lengthof(VR); 3068 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3069 3070 // Do a first pass over the arguments to determine whether the ABI 3071 // guarantees that our caller has allocated the parameter save area 3072 // on its stack frame. In the ELFv1 ABI, this is always the case; 3073 // in the ELFv2 ABI, it is true if this is a vararg function or if 3074 // any parameter is located in a stack slot. 3075 3076 bool HasParameterArea = !isELFv2ABI || isVarArg; 3077 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3078 unsigned NumBytes = LinkageSize; 3079 unsigned AvailableFPRs = Num_FPR_Regs; 3080 unsigned AvailableVRs = Num_VR_Regs; 3081 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3082 if (Ins[i].Flags.isNest()) 3083 continue; 3084 3085 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3086 PtrByteSize, LinkageSize, ParamAreaSize, 3087 NumBytes, AvailableFPRs, AvailableVRs, 3088 Subtarget.hasQPX())) 3089 HasParameterArea = true; 3090 } 3091 3092 // Add DAG nodes to load the arguments or copy them out of registers. On 3093 // entry to a function on PPC, the arguments start after the linkage area, 3094 // although the first ones are often in registers. 3095 3096 unsigned ArgOffset = LinkageSize; 3097 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3098 unsigned &QFPR_idx = FPR_idx; 3099 SmallVector<SDValue, 8> MemOps; 3100 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3101 unsigned CurArgIdx = 0; 3102 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3103 SDValue ArgVal; 3104 bool needsLoad = false; 3105 EVT ObjectVT = Ins[ArgNo].VT; 3106 EVT OrigVT = Ins[ArgNo].ArgVT; 3107 unsigned ObjSize = ObjectVT.getStoreSize(); 3108 unsigned ArgSize = ObjSize; 3109 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3110 if (Ins[ArgNo].isOrigArg()) { 3111 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3112 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3113 } 3114 // We re-align the argument offset for each argument, except when using the 3115 // fast calling convention, when we need to make sure we do that only when 3116 // we'll actually use a stack slot. 3117 unsigned CurArgOffset, Align; 3118 auto ComputeArgOffset = [&]() { 3119 /* Respect alignment of argument on the stack. */ 3120 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3121 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3122 CurArgOffset = ArgOffset; 3123 }; 3124 3125 if (CallConv != CallingConv::Fast) { 3126 ComputeArgOffset(); 3127 3128 /* Compute GPR index associated with argument offset. */ 3129 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3130 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3131 } 3132 3133 // FIXME the codegen can be much improved in some cases. 3134 // We do not have to keep everything in memory. 3135 if (Flags.isByVal()) { 3136 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3137 3138 if (CallConv == CallingConv::Fast) 3139 ComputeArgOffset(); 3140 3141 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3142 ObjSize = Flags.getByValSize(); 3143 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3144 // Empty aggregate parameters do not take up registers. Examples: 3145 // struct { } a; 3146 // union { } b; 3147 // int c[0]; 3148 // etc. However, we have to provide a place-holder in InVals, so 3149 // pretend we have an 8-byte item at the current address for that 3150 // purpose. 3151 if (!ObjSize) { 3152 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3153 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3154 InVals.push_back(FIN); 3155 continue; 3156 } 3157 3158 // Create a stack object covering all stack doublewords occupied 3159 // by the argument. If the argument is (fully or partially) on 3160 // the stack, or if the argument is fully in registers but the 3161 // caller has allocated the parameter save anyway, we can refer 3162 // directly to the caller's stack frame. Otherwise, create a 3163 // local copy in our own frame. 3164 int FI; 3165 if (HasParameterArea || 3166 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3167 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3168 else 3169 FI = MFI->CreateStackObject(ArgSize, Align, false); 3170 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3171 3172 // Handle aggregates smaller than 8 bytes. 3173 if (ObjSize < PtrByteSize) { 3174 // The value of the object is its address, which differs from the 3175 // address of the enclosing doubleword on big-endian systems. 3176 SDValue Arg = FIN; 3177 if (!isLittleEndian) { 3178 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3179 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3180 } 3181 InVals.push_back(Arg); 3182 3183 if (GPR_idx != Num_GPR_Regs) { 3184 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3185 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3186 SDValue Store; 3187 3188 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3189 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3190 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3191 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3192 MachinePointerInfo(&*FuncArg), ObjType, 3193 false, false, 0); 3194 } else { 3195 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3196 // store the whole register as-is to the parameter save area 3197 // slot. 3198 Store = 3199 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3200 MachinePointerInfo(&*FuncArg), false, false, 0); 3201 } 3202 3203 MemOps.push_back(Store); 3204 } 3205 // Whether we copied from a register or not, advance the offset 3206 // into the parameter save area by a full doubleword. 3207 ArgOffset += PtrByteSize; 3208 continue; 3209 } 3210 3211 // The value of the object is its address, which is the address of 3212 // its first stack doubleword. 3213 InVals.push_back(FIN); 3214 3215 // Store whatever pieces of the object are in registers to memory. 3216 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3217 if (GPR_idx == Num_GPR_Regs) 3218 break; 3219 3220 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3221 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3222 SDValue Addr = FIN; 3223 if (j) { 3224 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3225 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3226 } 3227 SDValue Store = 3228 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3229 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3230 MemOps.push_back(Store); 3231 ++GPR_idx; 3232 } 3233 ArgOffset += ArgSize; 3234 continue; 3235 } 3236 3237 switch (ObjectVT.getSimpleVT().SimpleTy) { 3238 default: llvm_unreachable("Unhandled argument type!"); 3239 case MVT::i1: 3240 case MVT::i32: 3241 case MVT::i64: 3242 if (Flags.isNest()) { 3243 // The 'nest' parameter, if any, is passed in R11. 3244 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3245 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3246 3247 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3248 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3249 3250 break; 3251 } 3252 3253 // These can be scalar arguments or elements of an integer array type 3254 // passed directly. Clang may use those instead of "byval" aggregate 3255 // types to avoid forcing arguments to memory unnecessarily. 3256 if (GPR_idx != Num_GPR_Regs) { 3257 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3258 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3259 3260 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3261 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3262 // value to MVT::i64 and then truncate to the correct register size. 3263 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3264 } else { 3265 if (CallConv == CallingConv::Fast) 3266 ComputeArgOffset(); 3267 3268 needsLoad = true; 3269 ArgSize = PtrByteSize; 3270 } 3271 if (CallConv != CallingConv::Fast || needsLoad) 3272 ArgOffset += 8; 3273 break; 3274 3275 case MVT::f32: 3276 case MVT::f64: 3277 // These can be scalar arguments or elements of a float array type 3278 // passed directly. The latter are used to implement ELFv2 homogenous 3279 // float aggregates. 3280 if (FPR_idx != Num_FPR_Regs) { 3281 unsigned VReg; 3282 3283 if (ObjectVT == MVT::f32) 3284 VReg = MF.addLiveIn(FPR[FPR_idx], 3285 Subtarget.hasP8Vector() 3286 ? &PPC::VSSRCRegClass 3287 : &PPC::F4RCRegClass); 3288 else 3289 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3290 ? &PPC::VSFRCRegClass 3291 : &PPC::F8RCRegClass); 3292 3293 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3294 ++FPR_idx; 3295 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3296 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3297 // once we support fp <-> gpr moves. 3298 3299 // This can only ever happen in the presence of f32 array types, 3300 // since otherwise we never run out of FPRs before running out 3301 // of GPRs. 3302 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3303 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3304 3305 if (ObjectVT == MVT::f32) { 3306 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3307 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3308 DAG.getConstant(32, dl, MVT::i32)); 3309 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3310 } 3311 3312 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3313 } else { 3314 if (CallConv == CallingConv::Fast) 3315 ComputeArgOffset(); 3316 3317 needsLoad = true; 3318 } 3319 3320 // When passing an array of floats, the array occupies consecutive 3321 // space in the argument area; only round up to the next doubleword 3322 // at the end of the array. Otherwise, each float takes 8 bytes. 3323 if (CallConv != CallingConv::Fast || needsLoad) { 3324 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3325 ArgOffset += ArgSize; 3326 if (Flags.isInConsecutiveRegsLast()) 3327 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3328 } 3329 break; 3330 case MVT::v4f32: 3331 case MVT::v4i32: 3332 case MVT::v8i16: 3333 case MVT::v16i8: 3334 case MVT::v2f64: 3335 case MVT::v2i64: 3336 case MVT::v1i128: 3337 if (!Subtarget.hasQPX()) { 3338 // These can be scalar arguments or elements of a vector array type 3339 // passed directly. The latter are used to implement ELFv2 homogenous 3340 // vector aggregates. 3341 if (VR_idx != Num_VR_Regs) { 3342 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3343 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3344 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3345 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3346 ++VR_idx; 3347 } else { 3348 if (CallConv == CallingConv::Fast) 3349 ComputeArgOffset(); 3350 3351 needsLoad = true; 3352 } 3353 if (CallConv != CallingConv::Fast || needsLoad) 3354 ArgOffset += 16; 3355 break; 3356 } // not QPX 3357 3358 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3359 "Invalid QPX parameter type"); 3360 /* fall through */ 3361 3362 case MVT::v4f64: 3363 case MVT::v4i1: 3364 // QPX vectors are treated like their scalar floating-point subregisters 3365 // (except that they're larger). 3366 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3367 if (QFPR_idx != Num_QFPR_Regs) { 3368 const TargetRegisterClass *RC; 3369 switch (ObjectVT.getSimpleVT().SimpleTy) { 3370 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3371 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3372 default: RC = &PPC::QBRCRegClass; break; 3373 } 3374 3375 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3376 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3377 ++QFPR_idx; 3378 } else { 3379 if (CallConv == CallingConv::Fast) 3380 ComputeArgOffset(); 3381 needsLoad = true; 3382 } 3383 if (CallConv != CallingConv::Fast || needsLoad) 3384 ArgOffset += Sz; 3385 break; 3386 } 3387 3388 // We need to load the argument to a virtual register if we determined 3389 // above that we ran out of physical registers of the appropriate type. 3390 if (needsLoad) { 3391 if (ObjSize < ArgSize && !isLittleEndian) 3392 CurArgOffset += ArgSize - ObjSize; 3393 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3394 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3395 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3396 false, false, false, 0); 3397 } 3398 3399 InVals.push_back(ArgVal); 3400 } 3401 3402 // Area that is at least reserved in the caller of this function. 3403 unsigned MinReservedArea; 3404 if (HasParameterArea) 3405 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3406 else 3407 MinReservedArea = LinkageSize; 3408 3409 // Set the size that is at least reserved in caller of this function. Tail 3410 // call optimized functions' reserved stack space needs to be aligned so that 3411 // taking the difference between two stack areas will result in an aligned 3412 // stack. 3413 MinReservedArea = 3414 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3415 FuncInfo->setMinReservedArea(MinReservedArea); 3416 3417 // If the function takes variable number of arguments, make a frame index for 3418 // the start of the first vararg value... for expansion of llvm.va_start. 3419 if (isVarArg) { 3420 int Depth = ArgOffset; 3421 3422 FuncInfo->setVarArgsFrameIndex( 3423 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3424 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3425 3426 // If this function is vararg, store any remaining integer argument regs 3427 // to their spots on the stack so that they may be loaded by deferencing the 3428 // result of va_next. 3429 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3430 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3431 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3432 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3433 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3434 MachinePointerInfo(), false, false, 0); 3435 MemOps.push_back(Store); 3436 // Increment the address by four for the next argument to store 3437 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3438 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3439 } 3440 } 3441 3442 if (!MemOps.empty()) 3443 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3444 3445 return Chain; 3446 } 3447 3448 SDValue 3449 PPCTargetLowering::LowerFormalArguments_Darwin( 3450 SDValue Chain, 3451 CallingConv::ID CallConv, bool isVarArg, 3452 const SmallVectorImpl<ISD::InputArg> 3453 &Ins, 3454 SDLoc dl, SelectionDAG &DAG, 3455 SmallVectorImpl<SDValue> &InVals) const { 3456 // TODO: add description of PPC stack frame format, or at least some docs. 3457 // 3458 MachineFunction &MF = DAG.getMachineFunction(); 3459 MachineFrameInfo *MFI = MF.getFrameInfo(); 3460 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3461 3462 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3463 bool isPPC64 = PtrVT == MVT::i64; 3464 // Potential tail calls could cause overwriting of argument stack slots. 3465 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3466 (CallConv == CallingConv::Fast)); 3467 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3468 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3469 unsigned ArgOffset = LinkageSize; 3470 // Area that is at least reserved in caller of this function. 3471 unsigned MinReservedArea = ArgOffset; 3472 3473 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3474 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3475 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3476 }; 3477 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3478 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3479 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3480 }; 3481 static const MCPhysReg VR[] = { 3482 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3483 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3484 }; 3485 3486 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3487 const unsigned Num_FPR_Regs = 13; 3488 const unsigned Num_VR_Regs = array_lengthof( VR); 3489 3490 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3491 3492 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3493 3494 // In 32-bit non-varargs functions, the stack space for vectors is after the 3495 // stack space for non-vectors. We do not use this space unless we have 3496 // too many vectors to fit in registers, something that only occurs in 3497 // constructed examples:), but we have to walk the arglist to figure 3498 // that out...for the pathological case, compute VecArgOffset as the 3499 // start of the vector parameter area. Computing VecArgOffset is the 3500 // entire point of the following loop. 3501 unsigned VecArgOffset = ArgOffset; 3502 if (!isVarArg && !isPPC64) { 3503 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3504 ++ArgNo) { 3505 EVT ObjectVT = Ins[ArgNo].VT; 3506 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3507 3508 if (Flags.isByVal()) { 3509 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3510 unsigned ObjSize = Flags.getByValSize(); 3511 unsigned ArgSize = 3512 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3513 VecArgOffset += ArgSize; 3514 continue; 3515 } 3516 3517 switch(ObjectVT.getSimpleVT().SimpleTy) { 3518 default: llvm_unreachable("Unhandled argument type!"); 3519 case MVT::i1: 3520 case MVT::i32: 3521 case MVT::f32: 3522 VecArgOffset += 4; 3523 break; 3524 case MVT::i64: // PPC64 3525 case MVT::f64: 3526 // FIXME: We are guaranteed to be !isPPC64 at this point. 3527 // Does MVT::i64 apply? 3528 VecArgOffset += 8; 3529 break; 3530 case MVT::v4f32: 3531 case MVT::v4i32: 3532 case MVT::v8i16: 3533 case MVT::v16i8: 3534 // Nothing to do, we're only looking at Nonvector args here. 3535 break; 3536 } 3537 } 3538 } 3539 // We've found where the vector parameter area in memory is. Skip the 3540 // first 12 parameters; these don't use that memory. 3541 VecArgOffset = ((VecArgOffset+15)/16)*16; 3542 VecArgOffset += 12*16; 3543 3544 // Add DAG nodes to load the arguments or copy them out of registers. On 3545 // entry to a function on PPC, the arguments start after the linkage area, 3546 // although the first ones are often in registers. 3547 3548 SmallVector<SDValue, 8> MemOps; 3549 unsigned nAltivecParamsAtEnd = 0; 3550 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3551 unsigned CurArgIdx = 0; 3552 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3553 SDValue ArgVal; 3554 bool needsLoad = false; 3555 EVT ObjectVT = Ins[ArgNo].VT; 3556 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3557 unsigned ArgSize = ObjSize; 3558 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3559 if (Ins[ArgNo].isOrigArg()) { 3560 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3561 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3562 } 3563 unsigned CurArgOffset = ArgOffset; 3564 3565 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3566 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3567 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3568 if (isVarArg || isPPC64) { 3569 MinReservedArea = ((MinReservedArea+15)/16)*16; 3570 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3571 Flags, 3572 PtrByteSize); 3573 } else nAltivecParamsAtEnd++; 3574 } else 3575 // Calculate min reserved area. 3576 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3577 Flags, 3578 PtrByteSize); 3579 3580 // FIXME the codegen can be much improved in some cases. 3581 // We do not have to keep everything in memory. 3582 if (Flags.isByVal()) { 3583 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3584 3585 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3586 ObjSize = Flags.getByValSize(); 3587 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3588 // Objects of size 1 and 2 are right justified, everything else is 3589 // left justified. This means the memory address is adjusted forwards. 3590 if (ObjSize==1 || ObjSize==2) { 3591 CurArgOffset = CurArgOffset + (4 - ObjSize); 3592 } 3593 // The value of the object is its address. 3594 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3595 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3596 InVals.push_back(FIN); 3597 if (ObjSize==1 || ObjSize==2) { 3598 if (GPR_idx != Num_GPR_Regs) { 3599 unsigned VReg; 3600 if (isPPC64) 3601 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3602 else 3603 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3604 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3605 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3606 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3607 MachinePointerInfo(&*FuncArg), 3608 ObjType, false, false, 0); 3609 MemOps.push_back(Store); 3610 ++GPR_idx; 3611 } 3612 3613 ArgOffset += PtrByteSize; 3614 3615 continue; 3616 } 3617 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3618 // Store whatever pieces of the object are in registers 3619 // to memory. ArgOffset will be the address of the beginning 3620 // of the object. 3621 if (GPR_idx != Num_GPR_Regs) { 3622 unsigned VReg; 3623 if (isPPC64) 3624 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3625 else 3626 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3627 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3628 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3629 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3630 SDValue Store = 3631 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3632 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3633 MemOps.push_back(Store); 3634 ++GPR_idx; 3635 ArgOffset += PtrByteSize; 3636 } else { 3637 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3638 break; 3639 } 3640 } 3641 continue; 3642 } 3643 3644 switch (ObjectVT.getSimpleVT().SimpleTy) { 3645 default: llvm_unreachable("Unhandled argument type!"); 3646 case MVT::i1: 3647 case MVT::i32: 3648 if (!isPPC64) { 3649 if (GPR_idx != Num_GPR_Regs) { 3650 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3651 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3652 3653 if (ObjectVT == MVT::i1) 3654 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3655 3656 ++GPR_idx; 3657 } else { 3658 needsLoad = true; 3659 ArgSize = PtrByteSize; 3660 } 3661 // All int arguments reserve stack space in the Darwin ABI. 3662 ArgOffset += PtrByteSize; 3663 break; 3664 } 3665 // FALLTHROUGH 3666 case MVT::i64: // PPC64 3667 if (GPR_idx != Num_GPR_Regs) { 3668 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3669 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3670 3671 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3672 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3673 // value to MVT::i64 and then truncate to the correct register size. 3674 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3675 3676 ++GPR_idx; 3677 } else { 3678 needsLoad = true; 3679 ArgSize = PtrByteSize; 3680 } 3681 // All int arguments reserve stack space in the Darwin ABI. 3682 ArgOffset += 8; 3683 break; 3684 3685 case MVT::f32: 3686 case MVT::f64: 3687 // Every 4 bytes of argument space consumes one of the GPRs available for 3688 // argument passing. 3689 if (GPR_idx != Num_GPR_Regs) { 3690 ++GPR_idx; 3691 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3692 ++GPR_idx; 3693 } 3694 if (FPR_idx != Num_FPR_Regs) { 3695 unsigned VReg; 3696 3697 if (ObjectVT == MVT::f32) 3698 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3699 else 3700 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3701 3702 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3703 ++FPR_idx; 3704 } else { 3705 needsLoad = true; 3706 } 3707 3708 // All FP arguments reserve stack space in the Darwin ABI. 3709 ArgOffset += isPPC64 ? 8 : ObjSize; 3710 break; 3711 case MVT::v4f32: 3712 case MVT::v4i32: 3713 case MVT::v8i16: 3714 case MVT::v16i8: 3715 // Note that vector arguments in registers don't reserve stack space, 3716 // except in varargs functions. 3717 if (VR_idx != Num_VR_Regs) { 3718 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3719 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3720 if (isVarArg) { 3721 while ((ArgOffset % 16) != 0) { 3722 ArgOffset += PtrByteSize; 3723 if (GPR_idx != Num_GPR_Regs) 3724 GPR_idx++; 3725 } 3726 ArgOffset += 16; 3727 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3728 } 3729 ++VR_idx; 3730 } else { 3731 if (!isVarArg && !isPPC64) { 3732 // Vectors go after all the nonvectors. 3733 CurArgOffset = VecArgOffset; 3734 VecArgOffset += 16; 3735 } else { 3736 // Vectors are aligned. 3737 ArgOffset = ((ArgOffset+15)/16)*16; 3738 CurArgOffset = ArgOffset; 3739 ArgOffset += 16; 3740 } 3741 needsLoad = true; 3742 } 3743 break; 3744 } 3745 3746 // We need to load the argument to a virtual register if we determined above 3747 // that we ran out of physical registers of the appropriate type. 3748 if (needsLoad) { 3749 int FI = MFI->CreateFixedObject(ObjSize, 3750 CurArgOffset + (ArgSize - ObjSize), 3751 isImmutable); 3752 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3753 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3754 false, false, false, 0); 3755 } 3756 3757 InVals.push_back(ArgVal); 3758 } 3759 3760 // Allow for Altivec parameters at the end, if needed. 3761 if (nAltivecParamsAtEnd) { 3762 MinReservedArea = ((MinReservedArea+15)/16)*16; 3763 MinReservedArea += 16*nAltivecParamsAtEnd; 3764 } 3765 3766 // Area that is at least reserved in the caller of this function. 3767 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3768 3769 // Set the size that is at least reserved in caller of this function. Tail 3770 // call optimized functions' reserved stack space needs to be aligned so that 3771 // taking the difference between two stack areas will result in an aligned 3772 // stack. 3773 MinReservedArea = 3774 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3775 FuncInfo->setMinReservedArea(MinReservedArea); 3776 3777 // If the function takes variable number of arguments, make a frame index for 3778 // the start of the first vararg value... for expansion of llvm.va_start. 3779 if (isVarArg) { 3780 int Depth = ArgOffset; 3781 3782 FuncInfo->setVarArgsFrameIndex( 3783 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3784 Depth, true)); 3785 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3786 3787 // If this function is vararg, store any remaining integer argument regs 3788 // to their spots on the stack so that they may be loaded by deferencing the 3789 // result of va_next. 3790 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3791 unsigned VReg; 3792 3793 if (isPPC64) 3794 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3795 else 3796 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3797 3798 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3799 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3800 MachinePointerInfo(), false, false, 0); 3801 MemOps.push_back(Store); 3802 // Increment the address by four for the next argument to store 3803 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3804 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3805 } 3806 } 3807 3808 if (!MemOps.empty()) 3809 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3810 3811 return Chain; 3812 } 3813 3814 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3815 /// adjusted to accommodate the arguments for the tailcall. 3816 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3817 unsigned ParamSize) { 3818 3819 if (!isTailCall) return 0; 3820 3821 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3822 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3823 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3824 // Remember only if the new adjustement is bigger. 3825 if (SPDiff < FI->getTailCallSPDelta()) 3826 FI->setTailCallSPDelta(SPDiff); 3827 3828 return SPDiff; 3829 } 3830 3831 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3832 /// for tail call optimization. Targets which want to do tail call 3833 /// optimization should implement this function. 3834 bool 3835 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3836 CallingConv::ID CalleeCC, 3837 bool isVarArg, 3838 const SmallVectorImpl<ISD::InputArg> &Ins, 3839 SelectionDAG& DAG) const { 3840 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3841 return false; 3842 3843 // Variable argument functions are not supported. 3844 if (isVarArg) 3845 return false; 3846 3847 MachineFunction &MF = DAG.getMachineFunction(); 3848 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3849 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3850 // Functions containing by val parameters are not supported. 3851 for (unsigned i = 0; i != Ins.size(); i++) { 3852 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3853 if (Flags.isByVal()) return false; 3854 } 3855 3856 // Non-PIC/GOT tail calls are supported. 3857 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3858 return true; 3859 3860 // At the moment we can only do local tail calls (in same module, hidden 3861 // or protected) if we are generating PIC. 3862 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3863 return G->getGlobal()->hasHiddenVisibility() 3864 || G->getGlobal()->hasProtectedVisibility(); 3865 } 3866 3867 return false; 3868 } 3869 3870 /// isCallCompatibleAddress - Return the immediate to use if the specified 3871 /// 32-bit value is representable in the immediate field of a BxA instruction. 3872 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3873 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3874 if (!C) return nullptr; 3875 3876 int Addr = C->getZExtValue(); 3877 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3878 SignExtend32<26>(Addr) != Addr) 3879 return nullptr; // Top 6 bits have to be sext of immediate. 3880 3881 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3882 DAG.getTargetLoweringInfo().getPointerTy( 3883 DAG.getDataLayout())).getNode(); 3884 } 3885 3886 namespace { 3887 3888 struct TailCallArgumentInfo { 3889 SDValue Arg; 3890 SDValue FrameIdxOp; 3891 int FrameIdx; 3892 3893 TailCallArgumentInfo() : FrameIdx(0) {} 3894 }; 3895 } 3896 3897 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3898 static void 3899 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3900 SDValue Chain, 3901 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3902 SmallVectorImpl<SDValue> &MemOpChains, 3903 SDLoc dl) { 3904 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3905 SDValue Arg = TailCallArgs[i].Arg; 3906 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3907 int FI = TailCallArgs[i].FrameIdx; 3908 // Store relative to framepointer. 3909 MemOpChains.push_back(DAG.getStore( 3910 Chain, dl, Arg, FIN, 3911 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3912 false, 0)); 3913 } 3914 } 3915 3916 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3917 /// the appropriate stack slot for the tail call optimized function call. 3918 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3919 MachineFunction &MF, 3920 SDValue Chain, 3921 SDValue OldRetAddr, 3922 SDValue OldFP, 3923 int SPDiff, 3924 bool isPPC64, 3925 bool isDarwinABI, 3926 SDLoc dl) { 3927 if (SPDiff) { 3928 // Calculate the new stack slot for the return address. 3929 int SlotSize = isPPC64 ? 8 : 4; 3930 const PPCFrameLowering *FL = 3931 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3932 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3933 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3934 NewRetAddrLoc, true); 3935 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3936 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3937 Chain = DAG.getStore( 3938 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3939 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3940 false, false, 0); 3941 3942 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3943 // slot as the FP is never overwritten. 3944 if (isDarwinABI) { 3945 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3946 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3947 true); 3948 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3949 Chain = DAG.getStore( 3950 Chain, dl, OldFP, NewFramePtrIdx, 3951 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3952 false, false, 0); 3953 } 3954 } 3955 return Chain; 3956 } 3957 3958 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3959 /// the position of the argument. 3960 static void 3961 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3962 SDValue Arg, int SPDiff, unsigned ArgOffset, 3963 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3964 int Offset = ArgOffset + SPDiff; 3965 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3966 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3967 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3968 SDValue FIN = DAG.getFrameIndex(FI, VT); 3969 TailCallArgumentInfo Info; 3970 Info.Arg = Arg; 3971 Info.FrameIdxOp = FIN; 3972 Info.FrameIdx = FI; 3973 TailCallArguments.push_back(Info); 3974 } 3975 3976 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3977 /// stack slot. Returns the chain as result and the loaded frame pointers in 3978 /// LROpOut/FPOpout. Used when tail calling. 3979 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3980 int SPDiff, 3981 SDValue Chain, 3982 SDValue &LROpOut, 3983 SDValue &FPOpOut, 3984 bool isDarwinABI, 3985 SDLoc dl) const { 3986 if (SPDiff) { 3987 // Load the LR and FP stack slot for later adjusting. 3988 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3989 LROpOut = getReturnAddrFrameIndex(DAG); 3990 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3991 false, false, false, 0); 3992 Chain = SDValue(LROpOut.getNode(), 1); 3993 3994 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3995 // slot as the FP is never overwritten. 3996 if (isDarwinABI) { 3997 FPOpOut = getFramePointerFrameIndex(DAG); 3998 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3999 false, false, false, 0); 4000 Chain = SDValue(FPOpOut.getNode(), 1); 4001 } 4002 } 4003 return Chain; 4004 } 4005 4006 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4007 /// by "Src" to address "Dst" of size "Size". Alignment information is 4008 /// specified by the specific parameter attribute. The copy will be passed as 4009 /// a byval function parameter. 4010 /// Sometimes what we are copying is the end of a larger object, the part that 4011 /// does not fit in registers. 4012 static SDValue 4013 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4014 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4015 SDLoc dl) { 4016 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4017 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4018 false, false, false, MachinePointerInfo(), 4019 MachinePointerInfo()); 4020 } 4021 4022 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4023 /// tail calls. 4024 static void 4025 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4026 SDValue Arg, SDValue PtrOff, int SPDiff, 4027 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4028 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4029 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4030 SDLoc dl) { 4031 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4032 if (!isTailCall) { 4033 if (isVector) { 4034 SDValue StackPtr; 4035 if (isPPC64) 4036 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4037 else 4038 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4039 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4040 DAG.getConstant(ArgOffset, dl, PtrVT)); 4041 } 4042 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4043 MachinePointerInfo(), false, false, 0)); 4044 // Calculate and remember argument location. 4045 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4046 TailCallArguments); 4047 } 4048 4049 static 4050 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4051 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4052 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4053 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4054 MachineFunction &MF = DAG.getMachineFunction(); 4055 4056 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4057 // might overwrite each other in case of tail call optimization. 4058 SmallVector<SDValue, 8> MemOpChains2; 4059 // Do not flag preceding copytoreg stuff together with the following stuff. 4060 InFlag = SDValue(); 4061 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4062 MemOpChains2, dl); 4063 if (!MemOpChains2.empty()) 4064 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4065 4066 // Store the return address to the appropriate stack slot. 4067 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4068 isPPC64, isDarwinABI, dl); 4069 4070 // Emit callseq_end just before tailcall node. 4071 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4072 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4073 InFlag = Chain.getValue(1); 4074 } 4075 4076 // Is this global address that of a function that can be called by name? (as 4077 // opposed to something that must hold a descriptor for an indirect call). 4078 static bool isFunctionGlobalAddress(SDValue Callee) { 4079 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4080 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4081 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4082 return false; 4083 4084 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4085 } 4086 4087 return false; 4088 } 4089 4090 static 4091 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4092 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4093 bool isTailCall, bool IsPatchPoint, bool hasNest, 4094 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4095 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4096 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4097 4098 bool isPPC64 = Subtarget.isPPC64(); 4099 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4100 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4101 4102 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4103 NodeTys.push_back(MVT::Other); // Returns a chain 4104 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4105 4106 unsigned CallOpc = PPCISD::CALL; 4107 4108 bool needIndirectCall = true; 4109 if (!isSVR4ABI || !isPPC64) 4110 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4111 // If this is an absolute destination address, use the munged value. 4112 Callee = SDValue(Dest, 0); 4113 needIndirectCall = false; 4114 } 4115 4116 if (isFunctionGlobalAddress(Callee)) { 4117 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4118 // A call to a TLS address is actually an indirect call to a 4119 // thread-specific pointer. 4120 unsigned OpFlags = 0; 4121 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4122 (Subtarget.getTargetTriple().isMacOSX() && 4123 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4124 !G->getGlobal()->isStrongDefinitionForLinker()) || 4125 (Subtarget.isTargetELF() && !isPPC64 && 4126 !G->getGlobal()->hasLocalLinkage() && 4127 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4128 // PC-relative references to external symbols should go through $stub, 4129 // unless we're building with the leopard linker or later, which 4130 // automatically synthesizes these stubs. 4131 OpFlags = PPCII::MO_PLT_OR_STUB; 4132 } 4133 4134 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4135 // every direct call is) turn it into a TargetGlobalAddress / 4136 // TargetExternalSymbol node so that legalize doesn't hack it. 4137 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4138 Callee.getValueType(), 0, OpFlags); 4139 needIndirectCall = false; 4140 } 4141 4142 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4143 unsigned char OpFlags = 0; 4144 4145 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4146 (Subtarget.getTargetTriple().isMacOSX() && 4147 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4148 (Subtarget.isTargetELF() && !isPPC64 && 4149 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4150 // PC-relative references to external symbols should go through $stub, 4151 // unless we're building with the leopard linker or later, which 4152 // automatically synthesizes these stubs. 4153 OpFlags = PPCII::MO_PLT_OR_STUB; 4154 } 4155 4156 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4157 OpFlags); 4158 needIndirectCall = false; 4159 } 4160 4161 if (IsPatchPoint) { 4162 // We'll form an invalid direct call when lowering a patchpoint; the full 4163 // sequence for an indirect call is complicated, and many of the 4164 // instructions introduced might have side effects (and, thus, can't be 4165 // removed later). The call itself will be removed as soon as the 4166 // argument/return lowering is complete, so the fact that it has the wrong 4167 // kind of operands should not really matter. 4168 needIndirectCall = false; 4169 } 4170 4171 if (needIndirectCall) { 4172 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4173 // to do the call, we can't use PPCISD::CALL. 4174 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4175 4176 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4177 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4178 // entry point, but to the function descriptor (the function entry point 4179 // address is part of the function descriptor though). 4180 // The function descriptor is a three doubleword structure with the 4181 // following fields: function entry point, TOC base address and 4182 // environment pointer. 4183 // Thus for a call through a function pointer, the following actions need 4184 // to be performed: 4185 // 1. Save the TOC of the caller in the TOC save area of its stack 4186 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4187 // 2. Load the address of the function entry point from the function 4188 // descriptor. 4189 // 3. Load the TOC of the callee from the function descriptor into r2. 4190 // 4. Load the environment pointer from the function descriptor into 4191 // r11. 4192 // 5. Branch to the function entry point address. 4193 // 6. On return of the callee, the TOC of the caller needs to be 4194 // restored (this is done in FinishCall()). 4195 // 4196 // The loads are scheduled at the beginning of the call sequence, and the 4197 // register copies are flagged together to ensure that no other 4198 // operations can be scheduled in between. E.g. without flagging the 4199 // copies together, a TOC access in the caller could be scheduled between 4200 // the assignment of the callee TOC and the branch to the callee, which 4201 // results in the TOC access going through the TOC of the callee instead 4202 // of going through the TOC of the caller, which leads to incorrect code. 4203 4204 // Load the address of the function entry point from the function 4205 // descriptor. 4206 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4207 if (LDChain.getValueType() == MVT::Glue) 4208 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4209 4210 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4211 4212 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4213 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4214 false, false, LoadsInv, 8); 4215 4216 // Load environment pointer into r11. 4217 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4218 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4219 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4220 MPI.getWithOffset(16), false, false, 4221 LoadsInv, 8); 4222 4223 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4224 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4225 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4226 MPI.getWithOffset(8), false, false, 4227 LoadsInv, 8); 4228 4229 setUsesTOCBasePtr(DAG); 4230 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4231 InFlag); 4232 Chain = TOCVal.getValue(0); 4233 InFlag = TOCVal.getValue(1); 4234 4235 // If the function call has an explicit 'nest' parameter, it takes the 4236 // place of the environment pointer. 4237 if (!hasNest) { 4238 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4239 InFlag); 4240 4241 Chain = EnvVal.getValue(0); 4242 InFlag = EnvVal.getValue(1); 4243 } 4244 4245 MTCTROps[0] = Chain; 4246 MTCTROps[1] = LoadFuncPtr; 4247 MTCTROps[2] = InFlag; 4248 } 4249 4250 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4251 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4252 InFlag = Chain.getValue(1); 4253 4254 NodeTys.clear(); 4255 NodeTys.push_back(MVT::Other); 4256 NodeTys.push_back(MVT::Glue); 4257 Ops.push_back(Chain); 4258 CallOpc = PPCISD::BCTRL; 4259 Callee.setNode(nullptr); 4260 // Add use of X11 (holding environment pointer) 4261 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4262 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4263 // Add CTR register as callee so a bctr can be emitted later. 4264 if (isTailCall) 4265 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4266 } 4267 4268 // If this is a direct call, pass the chain and the callee. 4269 if (Callee.getNode()) { 4270 Ops.push_back(Chain); 4271 Ops.push_back(Callee); 4272 } 4273 // If this is a tail call add stack pointer delta. 4274 if (isTailCall) 4275 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4276 4277 // Add argument registers to the end of the list so that they are known live 4278 // into the call. 4279 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4280 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4281 RegsToPass[i].second.getValueType())); 4282 4283 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4284 // into the call. 4285 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4286 setUsesTOCBasePtr(DAG); 4287 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4288 } 4289 4290 return CallOpc; 4291 } 4292 4293 static 4294 bool isLocalCall(const SDValue &Callee) 4295 { 4296 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4297 return G->getGlobal()->isStrongDefinitionForLinker(); 4298 return false; 4299 } 4300 4301 SDValue 4302 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4303 CallingConv::ID CallConv, bool isVarArg, 4304 const SmallVectorImpl<ISD::InputArg> &Ins, 4305 SDLoc dl, SelectionDAG &DAG, 4306 SmallVectorImpl<SDValue> &InVals) const { 4307 4308 SmallVector<CCValAssign, 16> RVLocs; 4309 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4310 *DAG.getContext()); 4311 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4312 4313 // Copy all of the result registers out of their specified physreg. 4314 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4315 CCValAssign &VA = RVLocs[i]; 4316 assert(VA.isRegLoc() && "Can only return in registers!"); 4317 4318 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4319 VA.getLocReg(), VA.getLocVT(), InFlag); 4320 Chain = Val.getValue(1); 4321 InFlag = Val.getValue(2); 4322 4323 switch (VA.getLocInfo()) { 4324 default: llvm_unreachable("Unknown loc info!"); 4325 case CCValAssign::Full: break; 4326 case CCValAssign::AExt: 4327 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4328 break; 4329 case CCValAssign::ZExt: 4330 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4331 DAG.getValueType(VA.getValVT())); 4332 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4333 break; 4334 case CCValAssign::SExt: 4335 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4336 DAG.getValueType(VA.getValVT())); 4337 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4338 break; 4339 } 4340 4341 InVals.push_back(Val); 4342 } 4343 4344 return Chain; 4345 } 4346 4347 SDValue 4348 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4349 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4350 bool hasNest, SelectionDAG &DAG, 4351 SmallVector<std::pair<unsigned, SDValue>, 8> 4352 &RegsToPass, 4353 SDValue InFlag, SDValue Chain, 4354 SDValue CallSeqStart, SDValue &Callee, 4355 int SPDiff, unsigned NumBytes, 4356 const SmallVectorImpl<ISD::InputArg> &Ins, 4357 SmallVectorImpl<SDValue> &InVals, 4358 ImmutableCallSite *CS) const { 4359 4360 std::vector<EVT> NodeTys; 4361 SmallVector<SDValue, 8> Ops; 4362 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4363 SPDiff, isTailCall, IsPatchPoint, hasNest, 4364 RegsToPass, Ops, NodeTys, CS, Subtarget); 4365 4366 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4367 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4368 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4369 4370 // When performing tail call optimization the callee pops its arguments off 4371 // the stack. Account for this here so these bytes can be pushed back on in 4372 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4373 int BytesCalleePops = 4374 (CallConv == CallingConv::Fast && 4375 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4376 4377 // Add a register mask operand representing the call-preserved registers. 4378 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4379 const uint32_t *Mask = 4380 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4381 assert(Mask && "Missing call preserved mask for calling convention"); 4382 Ops.push_back(DAG.getRegisterMask(Mask)); 4383 4384 if (InFlag.getNode()) 4385 Ops.push_back(InFlag); 4386 4387 // Emit tail call. 4388 if (isTailCall) { 4389 assert(((Callee.getOpcode() == ISD::Register && 4390 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4391 Callee.getOpcode() == ISD::TargetExternalSymbol || 4392 Callee.getOpcode() == ISD::TargetGlobalAddress || 4393 isa<ConstantSDNode>(Callee)) && 4394 "Expecting an global address, external symbol, absolute value or register"); 4395 4396 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4397 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4398 } 4399 4400 // Add a NOP immediately after the branch instruction when using the 64-bit 4401 // SVR4 ABI. At link time, if caller and callee are in a different module and 4402 // thus have a different TOC, the call will be replaced with a call to a stub 4403 // function which saves the current TOC, loads the TOC of the callee and 4404 // branches to the callee. The NOP will be replaced with a load instruction 4405 // which restores the TOC of the caller from the TOC save slot of the current 4406 // stack frame. If caller and callee belong to the same module (and have the 4407 // same TOC), the NOP will remain unchanged. 4408 4409 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4410 !IsPatchPoint) { 4411 if (CallOpc == PPCISD::BCTRL) { 4412 // This is a call through a function pointer. 4413 // Restore the caller TOC from the save area into R2. 4414 // See PrepareCall() for more information about calls through function 4415 // pointers in the 64-bit SVR4 ABI. 4416 // We are using a target-specific load with r2 hard coded, because the 4417 // result of a target-independent load would never go directly into r2, 4418 // since r2 is a reserved register (which prevents the register allocator 4419 // from allocating it), resulting in an additional register being 4420 // allocated and an unnecessary move instruction being generated. 4421 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4422 4423 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4424 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4425 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4426 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4427 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4428 4429 // The address needs to go after the chain input but before the flag (or 4430 // any other variadic arguments). 4431 Ops.insert(std::next(Ops.begin()), AddTOC); 4432 } else if ((CallOpc == PPCISD::CALL) && 4433 (!isLocalCall(Callee) || 4434 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4435 // Otherwise insert NOP for non-local calls. 4436 CallOpc = PPCISD::CALL_NOP; 4437 } 4438 4439 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4440 InFlag = Chain.getValue(1); 4441 4442 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4443 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4444 InFlag, dl); 4445 if (!Ins.empty()) 4446 InFlag = Chain.getValue(1); 4447 4448 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4449 Ins, dl, DAG, InVals); 4450 } 4451 4452 SDValue 4453 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4454 SmallVectorImpl<SDValue> &InVals) const { 4455 SelectionDAG &DAG = CLI.DAG; 4456 SDLoc &dl = CLI.DL; 4457 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4458 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4459 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4460 SDValue Chain = CLI.Chain; 4461 SDValue Callee = CLI.Callee; 4462 bool &isTailCall = CLI.IsTailCall; 4463 CallingConv::ID CallConv = CLI.CallConv; 4464 bool isVarArg = CLI.IsVarArg; 4465 bool IsPatchPoint = CLI.IsPatchPoint; 4466 ImmutableCallSite *CS = CLI.CS; 4467 4468 if (isTailCall) 4469 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4470 Ins, DAG); 4471 4472 if (!isTailCall && CS && CS->isMustTailCall()) 4473 report_fatal_error("failed to perform tail call elimination on a call " 4474 "site marked musttail"); 4475 4476 if (Subtarget.isSVR4ABI()) { 4477 if (Subtarget.isPPC64()) 4478 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4479 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4480 dl, DAG, InVals, CS); 4481 else 4482 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4483 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4484 dl, DAG, InVals, CS); 4485 } 4486 4487 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4488 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4489 dl, DAG, InVals, CS); 4490 } 4491 4492 SDValue 4493 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4494 CallingConv::ID CallConv, bool isVarArg, 4495 bool isTailCall, bool IsPatchPoint, 4496 const SmallVectorImpl<ISD::OutputArg> &Outs, 4497 const SmallVectorImpl<SDValue> &OutVals, 4498 const SmallVectorImpl<ISD::InputArg> &Ins, 4499 SDLoc dl, SelectionDAG &DAG, 4500 SmallVectorImpl<SDValue> &InVals, 4501 ImmutableCallSite *CS) const { 4502 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4503 // of the 32-bit SVR4 ABI stack frame layout. 4504 4505 assert((CallConv == CallingConv::C || 4506 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4507 4508 unsigned PtrByteSize = 4; 4509 4510 MachineFunction &MF = DAG.getMachineFunction(); 4511 4512 // Mark this function as potentially containing a function that contains a 4513 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4514 // and restoring the callers stack pointer in this functions epilog. This is 4515 // done because by tail calling the called function might overwrite the value 4516 // in this function's (MF) stack pointer stack slot 0(SP). 4517 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4518 CallConv == CallingConv::Fast) 4519 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4520 4521 // Count how many bytes are to be pushed on the stack, including the linkage 4522 // area, parameter list area and the part of the local variable space which 4523 // contains copies of aggregates which are passed by value. 4524 4525 // Assign locations to all of the outgoing arguments. 4526 SmallVector<CCValAssign, 16> ArgLocs; 4527 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4528 *DAG.getContext()); 4529 4530 // Reserve space for the linkage area on the stack. 4531 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4532 PtrByteSize); 4533 4534 if (isVarArg) { 4535 // Handle fixed and variable vector arguments differently. 4536 // Fixed vector arguments go into registers as long as registers are 4537 // available. Variable vector arguments always go into memory. 4538 unsigned NumArgs = Outs.size(); 4539 4540 for (unsigned i = 0; i != NumArgs; ++i) { 4541 MVT ArgVT = Outs[i].VT; 4542 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4543 bool Result; 4544 4545 if (Outs[i].IsFixed) { 4546 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4547 CCInfo); 4548 } else { 4549 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4550 ArgFlags, CCInfo); 4551 } 4552 4553 if (Result) { 4554 #ifndef NDEBUG 4555 errs() << "Call operand #" << i << " has unhandled type " 4556 << EVT(ArgVT).getEVTString() << "\n"; 4557 #endif 4558 llvm_unreachable(nullptr); 4559 } 4560 } 4561 } else { 4562 // All arguments are treated the same. 4563 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4564 } 4565 4566 // Assign locations to all of the outgoing aggregate by value arguments. 4567 SmallVector<CCValAssign, 16> ByValArgLocs; 4568 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4569 ByValArgLocs, *DAG.getContext()); 4570 4571 // Reserve stack space for the allocations in CCInfo. 4572 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4573 4574 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4575 4576 // Size of the linkage area, parameter list area and the part of the local 4577 // space variable where copies of aggregates which are passed by value are 4578 // stored. 4579 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4580 4581 // Calculate by how many bytes the stack has to be adjusted in case of tail 4582 // call optimization. 4583 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4584 4585 // Adjust the stack pointer for the new arguments... 4586 // These operations are automatically eliminated by the prolog/epilog pass 4587 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4588 dl); 4589 SDValue CallSeqStart = Chain; 4590 4591 // Load the return address and frame pointer so it can be moved somewhere else 4592 // later. 4593 SDValue LROp, FPOp; 4594 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4595 dl); 4596 4597 // Set up a copy of the stack pointer for use loading and storing any 4598 // arguments that may not fit in the registers available for argument 4599 // passing. 4600 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4601 4602 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4603 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4604 SmallVector<SDValue, 8> MemOpChains; 4605 4606 bool seenFloatArg = false; 4607 // Walk the register/memloc assignments, inserting copies/loads. 4608 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4609 i != e; 4610 ++i) { 4611 CCValAssign &VA = ArgLocs[i]; 4612 SDValue Arg = OutVals[i]; 4613 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4614 4615 if (Flags.isByVal()) { 4616 // Argument is an aggregate which is passed by value, thus we need to 4617 // create a copy of it in the local variable space of the current stack 4618 // frame (which is the stack frame of the caller) and pass the address of 4619 // this copy to the callee. 4620 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4621 CCValAssign &ByValVA = ByValArgLocs[j++]; 4622 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4623 4624 // Memory reserved in the local variable space of the callers stack frame. 4625 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4626 4627 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4628 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4629 StackPtr, PtrOff); 4630 4631 // Create a copy of the argument in the local area of the current 4632 // stack frame. 4633 SDValue MemcpyCall = 4634 CreateCopyOfByValArgument(Arg, PtrOff, 4635 CallSeqStart.getNode()->getOperand(0), 4636 Flags, DAG, dl); 4637 4638 // This must go outside the CALLSEQ_START..END. 4639 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4640 CallSeqStart.getNode()->getOperand(1), 4641 SDLoc(MemcpyCall)); 4642 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4643 NewCallSeqStart.getNode()); 4644 Chain = CallSeqStart = NewCallSeqStart; 4645 4646 // Pass the address of the aggregate copy on the stack either in a 4647 // physical register or in the parameter list area of the current stack 4648 // frame to the callee. 4649 Arg = PtrOff; 4650 } 4651 4652 if (VA.isRegLoc()) { 4653 if (Arg.getValueType() == MVT::i1) 4654 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4655 4656 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4657 // Put argument in a physical register. 4658 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4659 } else { 4660 // Put argument in the parameter list area of the current stack frame. 4661 assert(VA.isMemLoc()); 4662 unsigned LocMemOffset = VA.getLocMemOffset(); 4663 4664 if (!isTailCall) { 4665 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4666 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4667 StackPtr, PtrOff); 4668 4669 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4670 MachinePointerInfo(), 4671 false, false, 0)); 4672 } else { 4673 // Calculate and remember argument location. 4674 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4675 TailCallArguments); 4676 } 4677 } 4678 } 4679 4680 if (!MemOpChains.empty()) 4681 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4682 4683 // Build a sequence of copy-to-reg nodes chained together with token chain 4684 // and flag operands which copy the outgoing args into the appropriate regs. 4685 SDValue InFlag; 4686 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4687 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4688 RegsToPass[i].second, InFlag); 4689 InFlag = Chain.getValue(1); 4690 } 4691 4692 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4693 // registers. 4694 if (isVarArg) { 4695 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4696 SDValue Ops[] = { Chain, InFlag }; 4697 4698 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4699 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4700 4701 InFlag = Chain.getValue(1); 4702 } 4703 4704 if (isTailCall) 4705 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4706 false, TailCallArguments); 4707 4708 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4709 /* unused except on PPC64 ELFv1 */ false, DAG, 4710 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4711 NumBytes, Ins, InVals, CS); 4712 } 4713 4714 // Copy an argument into memory, being careful to do this outside the 4715 // call sequence for the call to which the argument belongs. 4716 SDValue 4717 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4718 SDValue CallSeqStart, 4719 ISD::ArgFlagsTy Flags, 4720 SelectionDAG &DAG, 4721 SDLoc dl) const { 4722 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4723 CallSeqStart.getNode()->getOperand(0), 4724 Flags, DAG, dl); 4725 // The MEMCPY must go outside the CALLSEQ_START..END. 4726 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4727 CallSeqStart.getNode()->getOperand(1), 4728 SDLoc(MemcpyCall)); 4729 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4730 NewCallSeqStart.getNode()); 4731 return NewCallSeqStart; 4732 } 4733 4734 SDValue 4735 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4736 CallingConv::ID CallConv, bool isVarArg, 4737 bool isTailCall, bool IsPatchPoint, 4738 const SmallVectorImpl<ISD::OutputArg> &Outs, 4739 const SmallVectorImpl<SDValue> &OutVals, 4740 const SmallVectorImpl<ISD::InputArg> &Ins, 4741 SDLoc dl, SelectionDAG &DAG, 4742 SmallVectorImpl<SDValue> &InVals, 4743 ImmutableCallSite *CS) const { 4744 4745 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4746 bool isLittleEndian = Subtarget.isLittleEndian(); 4747 unsigned NumOps = Outs.size(); 4748 bool hasNest = false; 4749 4750 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4751 unsigned PtrByteSize = 8; 4752 4753 MachineFunction &MF = DAG.getMachineFunction(); 4754 4755 // Mark this function as potentially containing a function that contains a 4756 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4757 // and restoring the callers stack pointer in this functions epilog. This is 4758 // done because by tail calling the called function might overwrite the value 4759 // in this function's (MF) stack pointer stack slot 0(SP). 4760 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4761 CallConv == CallingConv::Fast) 4762 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4763 4764 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4765 "fastcc not supported on varargs functions"); 4766 4767 // Count how many bytes are to be pushed on the stack, including the linkage 4768 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4769 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4770 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4771 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4772 unsigned NumBytes = LinkageSize; 4773 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4774 unsigned &QFPR_idx = FPR_idx; 4775 4776 static const MCPhysReg GPR[] = { 4777 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4778 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4779 }; 4780 static const MCPhysReg VR[] = { 4781 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4782 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4783 }; 4784 static const MCPhysReg VSRH[] = { 4785 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4786 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4787 }; 4788 4789 const unsigned NumGPRs = array_lengthof(GPR); 4790 const unsigned NumFPRs = 13; 4791 const unsigned NumVRs = array_lengthof(VR); 4792 const unsigned NumQFPRs = NumFPRs; 4793 4794 // When using the fast calling convention, we don't provide backing for 4795 // arguments that will be in registers. 4796 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4797 4798 // Add up all the space actually used. 4799 for (unsigned i = 0; i != NumOps; ++i) { 4800 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4801 EVT ArgVT = Outs[i].VT; 4802 EVT OrigVT = Outs[i].ArgVT; 4803 4804 if (Flags.isNest()) 4805 continue; 4806 4807 if (CallConv == CallingConv::Fast) { 4808 if (Flags.isByVal()) 4809 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4810 else 4811 switch (ArgVT.getSimpleVT().SimpleTy) { 4812 default: llvm_unreachable("Unexpected ValueType for argument!"); 4813 case MVT::i1: 4814 case MVT::i32: 4815 case MVT::i64: 4816 if (++NumGPRsUsed <= NumGPRs) 4817 continue; 4818 break; 4819 case MVT::v4i32: 4820 case MVT::v8i16: 4821 case MVT::v16i8: 4822 case MVT::v2f64: 4823 case MVT::v2i64: 4824 case MVT::v1i128: 4825 if (++NumVRsUsed <= NumVRs) 4826 continue; 4827 break; 4828 case MVT::v4f32: 4829 // When using QPX, this is handled like a FP register, otherwise, it 4830 // is an Altivec register. 4831 if (Subtarget.hasQPX()) { 4832 if (++NumFPRsUsed <= NumFPRs) 4833 continue; 4834 } else { 4835 if (++NumVRsUsed <= NumVRs) 4836 continue; 4837 } 4838 break; 4839 case MVT::f32: 4840 case MVT::f64: 4841 case MVT::v4f64: // QPX 4842 case MVT::v4i1: // QPX 4843 if (++NumFPRsUsed <= NumFPRs) 4844 continue; 4845 break; 4846 } 4847 } 4848 4849 /* Respect alignment of argument on the stack. */ 4850 unsigned Align = 4851 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4852 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4853 4854 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4855 if (Flags.isInConsecutiveRegsLast()) 4856 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4857 } 4858 4859 unsigned NumBytesActuallyUsed = NumBytes; 4860 4861 // The prolog code of the callee may store up to 8 GPR argument registers to 4862 // the stack, allowing va_start to index over them in memory if its varargs. 4863 // Because we cannot tell if this is needed on the caller side, we have to 4864 // conservatively assume that it is needed. As such, make sure we have at 4865 // least enough stack space for the caller to store the 8 GPRs. 4866 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4867 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4868 4869 // Tail call needs the stack to be aligned. 4870 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4871 CallConv == CallingConv::Fast) 4872 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4873 4874 // Calculate by how many bytes the stack has to be adjusted in case of tail 4875 // call optimization. 4876 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4877 4878 // To protect arguments on the stack from being clobbered in a tail call, 4879 // force all the loads to happen before doing any other lowering. 4880 if (isTailCall) 4881 Chain = DAG.getStackArgumentTokenFactor(Chain); 4882 4883 // Adjust the stack pointer for the new arguments... 4884 // These operations are automatically eliminated by the prolog/epilog pass 4885 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4886 dl); 4887 SDValue CallSeqStart = Chain; 4888 4889 // Load the return address and frame pointer so it can be move somewhere else 4890 // later. 4891 SDValue LROp, FPOp; 4892 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4893 dl); 4894 4895 // Set up a copy of the stack pointer for use loading and storing any 4896 // arguments that may not fit in the registers available for argument 4897 // passing. 4898 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4899 4900 // Figure out which arguments are going to go in registers, and which in 4901 // memory. Also, if this is a vararg function, floating point operations 4902 // must be stored to our stack, and loaded into integer regs as well, if 4903 // any integer regs are available for argument passing. 4904 unsigned ArgOffset = LinkageSize; 4905 4906 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4907 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4908 4909 SmallVector<SDValue, 8> MemOpChains; 4910 for (unsigned i = 0; i != NumOps; ++i) { 4911 SDValue Arg = OutVals[i]; 4912 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4913 EVT ArgVT = Outs[i].VT; 4914 EVT OrigVT = Outs[i].ArgVT; 4915 4916 // PtrOff will be used to store the current argument to the stack if a 4917 // register cannot be found for it. 4918 SDValue PtrOff; 4919 4920 // We re-align the argument offset for each argument, except when using the 4921 // fast calling convention, when we need to make sure we do that only when 4922 // we'll actually use a stack slot. 4923 auto ComputePtrOff = [&]() { 4924 /* Respect alignment of argument on the stack. */ 4925 unsigned Align = 4926 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4927 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4928 4929 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4930 4931 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4932 }; 4933 4934 if (CallConv != CallingConv::Fast) { 4935 ComputePtrOff(); 4936 4937 /* Compute GPR index associated with argument offset. */ 4938 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4939 GPR_idx = std::min(GPR_idx, NumGPRs); 4940 } 4941 4942 // Promote integers to 64-bit values. 4943 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4944 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4945 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4946 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4947 } 4948 4949 // FIXME memcpy is used way more than necessary. Correctness first. 4950 // Note: "by value" is code for passing a structure by value, not 4951 // basic types. 4952 if (Flags.isByVal()) { 4953 // Note: Size includes alignment padding, so 4954 // struct x { short a; char b; } 4955 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4956 // These are the proper values we need for right-justifying the 4957 // aggregate in a parameter register. 4958 unsigned Size = Flags.getByValSize(); 4959 4960 // An empty aggregate parameter takes up no storage and no 4961 // registers. 4962 if (Size == 0) 4963 continue; 4964 4965 if (CallConv == CallingConv::Fast) 4966 ComputePtrOff(); 4967 4968 // All aggregates smaller than 8 bytes must be passed right-justified. 4969 if (Size==1 || Size==2 || Size==4) { 4970 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4971 if (GPR_idx != NumGPRs) { 4972 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4973 MachinePointerInfo(), VT, 4974 false, false, false, 0); 4975 MemOpChains.push_back(Load.getValue(1)); 4976 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4977 4978 ArgOffset += PtrByteSize; 4979 continue; 4980 } 4981 } 4982 4983 if (GPR_idx == NumGPRs && Size < 8) { 4984 SDValue AddPtr = PtrOff; 4985 if (!isLittleEndian) { 4986 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4987 PtrOff.getValueType()); 4988 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4989 } 4990 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4991 CallSeqStart, 4992 Flags, DAG, dl); 4993 ArgOffset += PtrByteSize; 4994 continue; 4995 } 4996 // Copy entire object into memory. There are cases where gcc-generated 4997 // code assumes it is there, even if it could be put entirely into 4998 // registers. (This is not what the doc says.) 4999 5000 // FIXME: The above statement is likely due to a misunderstanding of the 5001 // documents. All arguments must be copied into the parameter area BY 5002 // THE CALLEE in the event that the callee takes the address of any 5003 // formal argument. That has not yet been implemented. However, it is 5004 // reasonable to use the stack area as a staging area for the register 5005 // load. 5006 5007 // Skip this for small aggregates, as we will use the same slot for a 5008 // right-justified copy, below. 5009 if (Size >= 8) 5010 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5011 CallSeqStart, 5012 Flags, DAG, dl); 5013 5014 // When a register is available, pass a small aggregate right-justified. 5015 if (Size < 8 && GPR_idx != NumGPRs) { 5016 // The easiest way to get this right-justified in a register 5017 // is to copy the structure into the rightmost portion of a 5018 // local variable slot, then load the whole slot into the 5019 // register. 5020 // FIXME: The memcpy seems to produce pretty awful code for 5021 // small aggregates, particularly for packed ones. 5022 // FIXME: It would be preferable to use the slot in the 5023 // parameter save area instead of a new local variable. 5024 SDValue AddPtr = PtrOff; 5025 if (!isLittleEndian) { 5026 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5027 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5028 } 5029 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5030 CallSeqStart, 5031 Flags, DAG, dl); 5032 5033 // Load the slot into the register. 5034 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5035 MachinePointerInfo(), 5036 false, false, false, 0); 5037 MemOpChains.push_back(Load.getValue(1)); 5038 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5039 5040 // Done with this argument. 5041 ArgOffset += PtrByteSize; 5042 continue; 5043 } 5044 5045 // For aggregates larger than PtrByteSize, copy the pieces of the 5046 // object that fit into registers from the parameter save area. 5047 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5048 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5049 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5050 if (GPR_idx != NumGPRs) { 5051 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5052 MachinePointerInfo(), 5053 false, false, false, 0); 5054 MemOpChains.push_back(Load.getValue(1)); 5055 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5056 ArgOffset += PtrByteSize; 5057 } else { 5058 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5059 break; 5060 } 5061 } 5062 continue; 5063 } 5064 5065 switch (Arg.getSimpleValueType().SimpleTy) { 5066 default: llvm_unreachable("Unexpected ValueType for argument!"); 5067 case MVT::i1: 5068 case MVT::i32: 5069 case MVT::i64: 5070 if (Flags.isNest()) { 5071 // The 'nest' parameter, if any, is passed in R11. 5072 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5073 hasNest = true; 5074 break; 5075 } 5076 5077 // These can be scalar arguments or elements of an integer array type 5078 // passed directly. Clang may use those instead of "byval" aggregate 5079 // types to avoid forcing arguments to memory unnecessarily. 5080 if (GPR_idx != NumGPRs) { 5081 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5082 } else { 5083 if (CallConv == CallingConv::Fast) 5084 ComputePtrOff(); 5085 5086 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5087 true, isTailCall, false, MemOpChains, 5088 TailCallArguments, dl); 5089 if (CallConv == CallingConv::Fast) 5090 ArgOffset += PtrByteSize; 5091 } 5092 if (CallConv != CallingConv::Fast) 5093 ArgOffset += PtrByteSize; 5094 break; 5095 case MVT::f32: 5096 case MVT::f64: { 5097 // These can be scalar arguments or elements of a float array type 5098 // passed directly. The latter are used to implement ELFv2 homogenous 5099 // float aggregates. 5100 5101 // Named arguments go into FPRs first, and once they overflow, the 5102 // remaining arguments go into GPRs and then the parameter save area. 5103 // Unnamed arguments for vararg functions always go to GPRs and 5104 // then the parameter save area. For now, put all arguments to vararg 5105 // routines always in both locations (FPR *and* GPR or stack slot). 5106 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5107 bool NeededLoad = false; 5108 5109 // First load the argument into the next available FPR. 5110 if (FPR_idx != NumFPRs) 5111 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5112 5113 // Next, load the argument into GPR or stack slot if needed. 5114 if (!NeedGPROrStack) 5115 ; 5116 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5117 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5118 // once we support fp <-> gpr moves. 5119 5120 // In the non-vararg case, this can only ever happen in the 5121 // presence of f32 array types, since otherwise we never run 5122 // out of FPRs before running out of GPRs. 5123 SDValue ArgVal; 5124 5125 // Double values are always passed in a single GPR. 5126 if (Arg.getValueType() != MVT::f32) { 5127 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5128 5129 // Non-array float values are extended and passed in a GPR. 5130 } else if (!Flags.isInConsecutiveRegs()) { 5131 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5132 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5133 5134 // If we have an array of floats, we collect every odd element 5135 // together with its predecessor into one GPR. 5136 } else if (ArgOffset % PtrByteSize != 0) { 5137 SDValue Lo, Hi; 5138 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5139 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5140 if (!isLittleEndian) 5141 std::swap(Lo, Hi); 5142 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5143 5144 // The final element, if even, goes into the first half of a GPR. 5145 } else if (Flags.isInConsecutiveRegsLast()) { 5146 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5147 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5148 if (!isLittleEndian) 5149 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5150 DAG.getConstant(32, dl, MVT::i32)); 5151 5152 // Non-final even elements are skipped; they will be handled 5153 // together the with subsequent argument on the next go-around. 5154 } else 5155 ArgVal = SDValue(); 5156 5157 if (ArgVal.getNode()) 5158 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5159 } else { 5160 if (CallConv == CallingConv::Fast) 5161 ComputePtrOff(); 5162 5163 // Single-precision floating-point values are mapped to the 5164 // second (rightmost) word of the stack doubleword. 5165 if (Arg.getValueType() == MVT::f32 && 5166 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5167 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5168 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5169 } 5170 5171 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5172 true, isTailCall, false, MemOpChains, 5173 TailCallArguments, dl); 5174 5175 NeededLoad = true; 5176 } 5177 // When passing an array of floats, the array occupies consecutive 5178 // space in the argument area; only round up to the next doubleword 5179 // at the end of the array. Otherwise, each float takes 8 bytes. 5180 if (CallConv != CallingConv::Fast || NeededLoad) { 5181 ArgOffset += (Arg.getValueType() == MVT::f32 && 5182 Flags.isInConsecutiveRegs()) ? 4 : 8; 5183 if (Flags.isInConsecutiveRegsLast()) 5184 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5185 } 5186 break; 5187 } 5188 case MVT::v4f32: 5189 case MVT::v4i32: 5190 case MVT::v8i16: 5191 case MVT::v16i8: 5192 case MVT::v2f64: 5193 case MVT::v2i64: 5194 case MVT::v1i128: 5195 if (!Subtarget.hasQPX()) { 5196 // These can be scalar arguments or elements of a vector array type 5197 // passed directly. The latter are used to implement ELFv2 homogenous 5198 // vector aggregates. 5199 5200 // For a varargs call, named arguments go into VRs or on the stack as 5201 // usual; unnamed arguments always go to the stack or the corresponding 5202 // GPRs when within range. For now, we always put the value in both 5203 // locations (or even all three). 5204 if (isVarArg) { 5205 // We could elide this store in the case where the object fits 5206 // entirely in R registers. Maybe later. 5207 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5208 MachinePointerInfo(), false, false, 0); 5209 MemOpChains.push_back(Store); 5210 if (VR_idx != NumVRs) { 5211 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5212 MachinePointerInfo(), 5213 false, false, false, 0); 5214 MemOpChains.push_back(Load.getValue(1)); 5215 5216 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5217 Arg.getSimpleValueType() == MVT::v2i64) ? 5218 VSRH[VR_idx] : VR[VR_idx]; 5219 ++VR_idx; 5220 5221 RegsToPass.push_back(std::make_pair(VReg, Load)); 5222 } 5223 ArgOffset += 16; 5224 for (unsigned i=0; i<16; i+=PtrByteSize) { 5225 if (GPR_idx == NumGPRs) 5226 break; 5227 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5228 DAG.getConstant(i, dl, PtrVT)); 5229 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5230 false, false, false, 0); 5231 MemOpChains.push_back(Load.getValue(1)); 5232 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5233 } 5234 break; 5235 } 5236 5237 // Non-varargs Altivec params go into VRs or on the stack. 5238 if (VR_idx != NumVRs) { 5239 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5240 Arg.getSimpleValueType() == MVT::v2i64) ? 5241 VSRH[VR_idx] : VR[VR_idx]; 5242 ++VR_idx; 5243 5244 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5245 } else { 5246 if (CallConv == CallingConv::Fast) 5247 ComputePtrOff(); 5248 5249 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5250 true, isTailCall, true, MemOpChains, 5251 TailCallArguments, dl); 5252 if (CallConv == CallingConv::Fast) 5253 ArgOffset += 16; 5254 } 5255 5256 if (CallConv != CallingConv::Fast) 5257 ArgOffset += 16; 5258 break; 5259 } // not QPX 5260 5261 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5262 "Invalid QPX parameter type"); 5263 5264 /* fall through */ 5265 case MVT::v4f64: 5266 case MVT::v4i1: { 5267 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5268 if (isVarArg) { 5269 // We could elide this store in the case where the object fits 5270 // entirely in R registers. Maybe later. 5271 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5272 MachinePointerInfo(), false, false, 0); 5273 MemOpChains.push_back(Store); 5274 if (QFPR_idx != NumQFPRs) { 5275 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5276 Store, PtrOff, MachinePointerInfo(), 5277 false, false, false, 0); 5278 MemOpChains.push_back(Load.getValue(1)); 5279 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5280 } 5281 ArgOffset += (IsF32 ? 16 : 32); 5282 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5283 if (GPR_idx == NumGPRs) 5284 break; 5285 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5286 DAG.getConstant(i, dl, PtrVT)); 5287 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5288 false, false, false, 0); 5289 MemOpChains.push_back(Load.getValue(1)); 5290 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5291 } 5292 break; 5293 } 5294 5295 // Non-varargs QPX params go into registers or on the stack. 5296 if (QFPR_idx != NumQFPRs) { 5297 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5298 } else { 5299 if (CallConv == CallingConv::Fast) 5300 ComputePtrOff(); 5301 5302 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5303 true, isTailCall, true, MemOpChains, 5304 TailCallArguments, dl); 5305 if (CallConv == CallingConv::Fast) 5306 ArgOffset += (IsF32 ? 16 : 32); 5307 } 5308 5309 if (CallConv != CallingConv::Fast) 5310 ArgOffset += (IsF32 ? 16 : 32); 5311 break; 5312 } 5313 } 5314 } 5315 5316 assert(NumBytesActuallyUsed == ArgOffset); 5317 (void)NumBytesActuallyUsed; 5318 5319 if (!MemOpChains.empty()) 5320 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5321 5322 // Check if this is an indirect call (MTCTR/BCTRL). 5323 // See PrepareCall() for more information about calls through function 5324 // pointers in the 64-bit SVR4 ABI. 5325 if (!isTailCall && !IsPatchPoint && 5326 !isFunctionGlobalAddress(Callee) && 5327 !isa<ExternalSymbolSDNode>(Callee)) { 5328 // Load r2 into a virtual register and store it to the TOC save area. 5329 setUsesTOCBasePtr(DAG); 5330 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5331 // TOC save area offset. 5332 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5333 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5334 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5335 Chain = DAG.getStore( 5336 Val.getValue(1), dl, Val, AddPtr, 5337 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5338 false, false, 0); 5339 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5340 // This does not mean the MTCTR instruction must use R12; it's easier 5341 // to model this as an extra parameter, so do that. 5342 if (isELFv2ABI && !IsPatchPoint) 5343 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5344 } 5345 5346 // Build a sequence of copy-to-reg nodes chained together with token chain 5347 // and flag operands which copy the outgoing args into the appropriate regs. 5348 SDValue InFlag; 5349 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5350 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5351 RegsToPass[i].second, InFlag); 5352 InFlag = Chain.getValue(1); 5353 } 5354 5355 if (isTailCall) 5356 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5357 FPOp, true, TailCallArguments); 5358 5359 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5360 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5361 SPDiff, NumBytes, Ins, InVals, CS); 5362 } 5363 5364 SDValue 5365 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5366 CallingConv::ID CallConv, bool isVarArg, 5367 bool isTailCall, bool IsPatchPoint, 5368 const SmallVectorImpl<ISD::OutputArg> &Outs, 5369 const SmallVectorImpl<SDValue> &OutVals, 5370 const SmallVectorImpl<ISD::InputArg> &Ins, 5371 SDLoc dl, SelectionDAG &DAG, 5372 SmallVectorImpl<SDValue> &InVals, 5373 ImmutableCallSite *CS) const { 5374 5375 unsigned NumOps = Outs.size(); 5376 5377 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5378 bool isPPC64 = PtrVT == MVT::i64; 5379 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5380 5381 MachineFunction &MF = DAG.getMachineFunction(); 5382 5383 // Mark this function as potentially containing a function that contains a 5384 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5385 // and restoring the callers stack pointer in this functions epilog. This is 5386 // done because by tail calling the called function might overwrite the value 5387 // in this function's (MF) stack pointer stack slot 0(SP). 5388 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5389 CallConv == CallingConv::Fast) 5390 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5391 5392 // Count how many bytes are to be pushed on the stack, including the linkage 5393 // area, and parameter passing area. We start with 24/48 bytes, which is 5394 // prereserved space for [SP][CR][LR][3 x unused]. 5395 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5396 unsigned NumBytes = LinkageSize; 5397 5398 // Add up all the space actually used. 5399 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5400 // they all go in registers, but we must reserve stack space for them for 5401 // possible use by the caller. In varargs or 64-bit calls, parameters are 5402 // assigned stack space in order, with padding so Altivec parameters are 5403 // 16-byte aligned. 5404 unsigned nAltivecParamsAtEnd = 0; 5405 for (unsigned i = 0; i != NumOps; ++i) { 5406 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5407 EVT ArgVT = Outs[i].VT; 5408 // Varargs Altivec parameters are padded to a 16 byte boundary. 5409 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5410 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5411 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5412 if (!isVarArg && !isPPC64) { 5413 // Non-varargs Altivec parameters go after all the non-Altivec 5414 // parameters; handle those later so we know how much padding we need. 5415 nAltivecParamsAtEnd++; 5416 continue; 5417 } 5418 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5419 NumBytes = ((NumBytes+15)/16)*16; 5420 } 5421 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5422 } 5423 5424 // Allow for Altivec parameters at the end, if needed. 5425 if (nAltivecParamsAtEnd) { 5426 NumBytes = ((NumBytes+15)/16)*16; 5427 NumBytes += 16*nAltivecParamsAtEnd; 5428 } 5429 5430 // The prolog code of the callee may store up to 8 GPR argument registers to 5431 // the stack, allowing va_start to index over them in memory if its varargs. 5432 // Because we cannot tell if this is needed on the caller side, we have to 5433 // conservatively assume that it is needed. As such, make sure we have at 5434 // least enough stack space for the caller to store the 8 GPRs. 5435 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5436 5437 // Tail call needs the stack to be aligned. 5438 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5439 CallConv == CallingConv::Fast) 5440 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5441 5442 // Calculate by how many bytes the stack has to be adjusted in case of tail 5443 // call optimization. 5444 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5445 5446 // To protect arguments on the stack from being clobbered in a tail call, 5447 // force all the loads to happen before doing any other lowering. 5448 if (isTailCall) 5449 Chain = DAG.getStackArgumentTokenFactor(Chain); 5450 5451 // Adjust the stack pointer for the new arguments... 5452 // These operations are automatically eliminated by the prolog/epilog pass 5453 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5454 dl); 5455 SDValue CallSeqStart = Chain; 5456 5457 // Load the return address and frame pointer so it can be move somewhere else 5458 // later. 5459 SDValue LROp, FPOp; 5460 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5461 dl); 5462 5463 // Set up a copy of the stack pointer for use loading and storing any 5464 // arguments that may not fit in the registers available for argument 5465 // passing. 5466 SDValue StackPtr; 5467 if (isPPC64) 5468 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5469 else 5470 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5471 5472 // Figure out which arguments are going to go in registers, and which in 5473 // memory. Also, if this is a vararg function, floating point operations 5474 // must be stored to our stack, and loaded into integer regs as well, if 5475 // any integer regs are available for argument passing. 5476 unsigned ArgOffset = LinkageSize; 5477 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5478 5479 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5480 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5481 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5482 }; 5483 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5484 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5485 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5486 }; 5487 static const MCPhysReg VR[] = { 5488 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5489 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5490 }; 5491 const unsigned NumGPRs = array_lengthof(GPR_32); 5492 const unsigned NumFPRs = 13; 5493 const unsigned NumVRs = array_lengthof(VR); 5494 5495 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5496 5497 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5498 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5499 5500 SmallVector<SDValue, 8> MemOpChains; 5501 for (unsigned i = 0; i != NumOps; ++i) { 5502 SDValue Arg = OutVals[i]; 5503 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5504 5505 // PtrOff will be used to store the current argument to the stack if a 5506 // register cannot be found for it. 5507 SDValue PtrOff; 5508 5509 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5510 5511 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5512 5513 // On PPC64, promote integers to 64-bit values. 5514 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5515 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5516 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5517 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5518 } 5519 5520 // FIXME memcpy is used way more than necessary. Correctness first. 5521 // Note: "by value" is code for passing a structure by value, not 5522 // basic types. 5523 if (Flags.isByVal()) { 5524 unsigned Size = Flags.getByValSize(); 5525 // Very small objects are passed right-justified. Everything else is 5526 // passed left-justified. 5527 if (Size==1 || Size==2) { 5528 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5529 if (GPR_idx != NumGPRs) { 5530 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5531 MachinePointerInfo(), VT, 5532 false, false, false, 0); 5533 MemOpChains.push_back(Load.getValue(1)); 5534 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5535 5536 ArgOffset += PtrByteSize; 5537 } else { 5538 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5539 PtrOff.getValueType()); 5540 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5541 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5542 CallSeqStart, 5543 Flags, DAG, dl); 5544 ArgOffset += PtrByteSize; 5545 } 5546 continue; 5547 } 5548 // Copy entire object into memory. There are cases where gcc-generated 5549 // code assumes it is there, even if it could be put entirely into 5550 // registers. (This is not what the doc says.) 5551 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5552 CallSeqStart, 5553 Flags, DAG, dl); 5554 5555 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5556 // copy the pieces of the object that fit into registers from the 5557 // parameter save area. 5558 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5559 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5560 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5561 if (GPR_idx != NumGPRs) { 5562 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5563 MachinePointerInfo(), 5564 false, false, false, 0); 5565 MemOpChains.push_back(Load.getValue(1)); 5566 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5567 ArgOffset += PtrByteSize; 5568 } else { 5569 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5570 break; 5571 } 5572 } 5573 continue; 5574 } 5575 5576 switch (Arg.getSimpleValueType().SimpleTy) { 5577 default: llvm_unreachable("Unexpected ValueType for argument!"); 5578 case MVT::i1: 5579 case MVT::i32: 5580 case MVT::i64: 5581 if (GPR_idx != NumGPRs) { 5582 if (Arg.getValueType() == MVT::i1) 5583 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5584 5585 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5586 } else { 5587 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5588 isPPC64, isTailCall, false, MemOpChains, 5589 TailCallArguments, dl); 5590 } 5591 ArgOffset += PtrByteSize; 5592 break; 5593 case MVT::f32: 5594 case MVT::f64: 5595 if (FPR_idx != NumFPRs) { 5596 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5597 5598 if (isVarArg) { 5599 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5600 MachinePointerInfo(), false, false, 0); 5601 MemOpChains.push_back(Store); 5602 5603 // Float varargs are always shadowed in available integer registers 5604 if (GPR_idx != NumGPRs) { 5605 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5606 MachinePointerInfo(), false, false, 5607 false, 0); 5608 MemOpChains.push_back(Load.getValue(1)); 5609 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5610 } 5611 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5612 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5613 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5614 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5615 MachinePointerInfo(), 5616 false, false, false, 0); 5617 MemOpChains.push_back(Load.getValue(1)); 5618 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5619 } 5620 } else { 5621 // If we have any FPRs remaining, we may also have GPRs remaining. 5622 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5623 // GPRs. 5624 if (GPR_idx != NumGPRs) 5625 ++GPR_idx; 5626 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5627 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5628 ++GPR_idx; 5629 } 5630 } else 5631 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5632 isPPC64, isTailCall, false, MemOpChains, 5633 TailCallArguments, dl); 5634 if (isPPC64) 5635 ArgOffset += 8; 5636 else 5637 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5638 break; 5639 case MVT::v4f32: 5640 case MVT::v4i32: 5641 case MVT::v8i16: 5642 case MVT::v16i8: 5643 if (isVarArg) { 5644 // These go aligned on the stack, or in the corresponding R registers 5645 // when within range. The Darwin PPC ABI doc claims they also go in 5646 // V registers; in fact gcc does this only for arguments that are 5647 // prototyped, not for those that match the ... We do it for all 5648 // arguments, seems to work. 5649 while (ArgOffset % 16 !=0) { 5650 ArgOffset += PtrByteSize; 5651 if (GPR_idx != NumGPRs) 5652 GPR_idx++; 5653 } 5654 // We could elide this store in the case where the object fits 5655 // entirely in R registers. Maybe later. 5656 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5657 DAG.getConstant(ArgOffset, dl, PtrVT)); 5658 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5659 MachinePointerInfo(), false, false, 0); 5660 MemOpChains.push_back(Store); 5661 if (VR_idx != NumVRs) { 5662 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5663 MachinePointerInfo(), 5664 false, false, false, 0); 5665 MemOpChains.push_back(Load.getValue(1)); 5666 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5667 } 5668 ArgOffset += 16; 5669 for (unsigned i=0; i<16; i+=PtrByteSize) { 5670 if (GPR_idx == NumGPRs) 5671 break; 5672 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5673 DAG.getConstant(i, dl, PtrVT)); 5674 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5675 false, false, false, 0); 5676 MemOpChains.push_back(Load.getValue(1)); 5677 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5678 } 5679 break; 5680 } 5681 5682 // Non-varargs Altivec params generally go in registers, but have 5683 // stack space allocated at the end. 5684 if (VR_idx != NumVRs) { 5685 // Doesn't have GPR space allocated. 5686 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5687 } else if (nAltivecParamsAtEnd==0) { 5688 // We are emitting Altivec params in order. 5689 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5690 isPPC64, isTailCall, true, MemOpChains, 5691 TailCallArguments, dl); 5692 ArgOffset += 16; 5693 } 5694 break; 5695 } 5696 } 5697 // If all Altivec parameters fit in registers, as they usually do, 5698 // they get stack space following the non-Altivec parameters. We 5699 // don't track this here because nobody below needs it. 5700 // If there are more Altivec parameters than fit in registers emit 5701 // the stores here. 5702 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5703 unsigned j = 0; 5704 // Offset is aligned; skip 1st 12 params which go in V registers. 5705 ArgOffset = ((ArgOffset+15)/16)*16; 5706 ArgOffset += 12*16; 5707 for (unsigned i = 0; i != NumOps; ++i) { 5708 SDValue Arg = OutVals[i]; 5709 EVT ArgType = Outs[i].VT; 5710 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5711 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5712 if (++j > NumVRs) { 5713 SDValue PtrOff; 5714 // We are emitting Altivec params in order. 5715 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5716 isPPC64, isTailCall, true, MemOpChains, 5717 TailCallArguments, dl); 5718 ArgOffset += 16; 5719 } 5720 } 5721 } 5722 } 5723 5724 if (!MemOpChains.empty()) 5725 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5726 5727 // On Darwin, R12 must contain the address of an indirect callee. This does 5728 // not mean the MTCTR instruction must use R12; it's easier to model this as 5729 // an extra parameter, so do that. 5730 if (!isTailCall && 5731 !isFunctionGlobalAddress(Callee) && 5732 !isa<ExternalSymbolSDNode>(Callee) && 5733 !isBLACompatibleAddress(Callee, DAG)) 5734 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5735 PPC::R12), Callee)); 5736 5737 // Build a sequence of copy-to-reg nodes chained together with token chain 5738 // and flag operands which copy the outgoing args into the appropriate regs. 5739 SDValue InFlag; 5740 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5741 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5742 RegsToPass[i].second, InFlag); 5743 InFlag = Chain.getValue(1); 5744 } 5745 5746 if (isTailCall) 5747 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5748 FPOp, true, TailCallArguments); 5749 5750 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5751 /* unused except on PPC64 ELFv1 */ false, DAG, 5752 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5753 NumBytes, Ins, InVals, CS); 5754 } 5755 5756 bool 5757 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5758 MachineFunction &MF, bool isVarArg, 5759 const SmallVectorImpl<ISD::OutputArg> &Outs, 5760 LLVMContext &Context) const { 5761 SmallVector<CCValAssign, 16> RVLocs; 5762 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5763 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5764 } 5765 5766 SDValue 5767 PPCTargetLowering::LowerReturn(SDValue Chain, 5768 CallingConv::ID CallConv, bool isVarArg, 5769 const SmallVectorImpl<ISD::OutputArg> &Outs, 5770 const SmallVectorImpl<SDValue> &OutVals, 5771 SDLoc dl, SelectionDAG &DAG) const { 5772 5773 SmallVector<CCValAssign, 16> RVLocs; 5774 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5775 *DAG.getContext()); 5776 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5777 5778 SDValue Flag; 5779 SmallVector<SDValue, 4> RetOps(1, Chain); 5780 5781 // Copy the result values into the output registers. 5782 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5783 CCValAssign &VA = RVLocs[i]; 5784 assert(VA.isRegLoc() && "Can only return in registers!"); 5785 5786 SDValue Arg = OutVals[i]; 5787 5788 switch (VA.getLocInfo()) { 5789 default: llvm_unreachable("Unknown loc info!"); 5790 case CCValAssign::Full: break; 5791 case CCValAssign::AExt: 5792 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5793 break; 5794 case CCValAssign::ZExt: 5795 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5796 break; 5797 case CCValAssign::SExt: 5798 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5799 break; 5800 } 5801 5802 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5803 Flag = Chain.getValue(1); 5804 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5805 } 5806 5807 RetOps[0] = Chain; // Update chain. 5808 5809 // Add the flag if we have it. 5810 if (Flag.getNode()) 5811 RetOps.push_back(Flag); 5812 5813 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5814 } 5815 5816 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET( 5817 SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { 5818 SDLoc dl(Op); 5819 5820 // Get the corect type for integers. 5821 EVT IntVT = Op.getValueType(); 5822 5823 // Get the inputs. 5824 SDValue Chain = Op.getOperand(0); 5825 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5826 // Build a DYNAREAOFFSET node. 5827 SDValue Ops[2] = {Chain, FPSIdx}; 5828 SDVTList VTs = DAG.getVTList(IntVT); 5829 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 5830 } 5831 5832 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5833 const PPCSubtarget &Subtarget) const { 5834 // When we pop the dynamic allocation we need to restore the SP link. 5835 SDLoc dl(Op); 5836 5837 // Get the corect type for pointers. 5838 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5839 5840 // Construct the stack pointer operand. 5841 bool isPPC64 = Subtarget.isPPC64(); 5842 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5843 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5844 5845 // Get the operands for the STACKRESTORE. 5846 SDValue Chain = Op.getOperand(0); 5847 SDValue SaveSP = Op.getOperand(1); 5848 5849 // Load the old link SP. 5850 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5851 MachinePointerInfo(), 5852 false, false, false, 0); 5853 5854 // Restore the stack pointer. 5855 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5856 5857 // Store the old link SP. 5858 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5859 false, false, 0); 5860 } 5861 5862 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5863 MachineFunction &MF = DAG.getMachineFunction(); 5864 bool isPPC64 = Subtarget.isPPC64(); 5865 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5866 5867 // Get current frame pointer save index. The users of this index will be 5868 // primarily DYNALLOC instructions. 5869 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5870 int RASI = FI->getReturnAddrSaveIndex(); 5871 5872 // If the frame pointer save index hasn't been defined yet. 5873 if (!RASI) { 5874 // Find out what the fix offset of the frame pointer save area. 5875 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5876 // Allocate the frame index for frame pointer save area. 5877 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5878 // Save the result. 5879 FI->setReturnAddrSaveIndex(RASI); 5880 } 5881 return DAG.getFrameIndex(RASI, PtrVT); 5882 } 5883 5884 SDValue 5885 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5886 MachineFunction &MF = DAG.getMachineFunction(); 5887 bool isPPC64 = Subtarget.isPPC64(); 5888 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5889 5890 // Get current frame pointer save index. The users of this index will be 5891 // primarily DYNALLOC instructions. 5892 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5893 int FPSI = FI->getFramePointerSaveIndex(); 5894 5895 // If the frame pointer save index hasn't been defined yet. 5896 if (!FPSI) { 5897 // Find out what the fix offset of the frame pointer save area. 5898 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5899 // Allocate the frame index for frame pointer save area. 5900 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5901 // Save the result. 5902 FI->setFramePointerSaveIndex(FPSI); 5903 } 5904 return DAG.getFrameIndex(FPSI, PtrVT); 5905 } 5906 5907 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5908 SelectionDAG &DAG, 5909 const PPCSubtarget &Subtarget) const { 5910 // Get the inputs. 5911 SDValue Chain = Op.getOperand(0); 5912 SDValue Size = Op.getOperand(1); 5913 SDLoc dl(Op); 5914 5915 // Get the corect type for pointers. 5916 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5917 // Negate the size. 5918 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5919 DAG.getConstant(0, dl, PtrVT), Size); 5920 // Construct a node for the frame pointer save index. 5921 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5922 // Build a DYNALLOC node. 5923 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5924 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5925 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5926 } 5927 5928 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5929 SelectionDAG &DAG) const { 5930 SDLoc DL(Op); 5931 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5932 DAG.getVTList(MVT::i32, MVT::Other), 5933 Op.getOperand(0), Op.getOperand(1)); 5934 } 5935 5936 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5937 SelectionDAG &DAG) const { 5938 SDLoc DL(Op); 5939 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5940 Op.getOperand(0), Op.getOperand(1)); 5941 } 5942 5943 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5944 if (Op.getValueType().isVector()) 5945 return LowerVectorLoad(Op, DAG); 5946 5947 assert(Op.getValueType() == MVT::i1 && 5948 "Custom lowering only for i1 loads"); 5949 5950 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5951 5952 SDLoc dl(Op); 5953 LoadSDNode *LD = cast<LoadSDNode>(Op); 5954 5955 SDValue Chain = LD->getChain(); 5956 SDValue BasePtr = LD->getBasePtr(); 5957 MachineMemOperand *MMO = LD->getMemOperand(); 5958 5959 SDValue NewLD = 5960 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5961 BasePtr, MVT::i8, MMO); 5962 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5963 5964 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5965 return DAG.getMergeValues(Ops, dl); 5966 } 5967 5968 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5969 if (Op.getOperand(1).getValueType().isVector()) 5970 return LowerVectorStore(Op, DAG); 5971 5972 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5973 "Custom lowering only for i1 stores"); 5974 5975 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5976 5977 SDLoc dl(Op); 5978 StoreSDNode *ST = cast<StoreSDNode>(Op); 5979 5980 SDValue Chain = ST->getChain(); 5981 SDValue BasePtr = ST->getBasePtr(); 5982 SDValue Value = ST->getValue(); 5983 MachineMemOperand *MMO = ST->getMemOperand(); 5984 5985 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5986 Value); 5987 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5988 } 5989 5990 // FIXME: Remove this once the ANDI glue bug is fixed: 5991 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5992 assert(Op.getValueType() == MVT::i1 && 5993 "Custom lowering only for i1 results"); 5994 5995 SDLoc DL(Op); 5996 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5997 Op.getOperand(0)); 5998 } 5999 6000 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6001 /// possible. 6002 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6003 // Not FP? Not a fsel. 6004 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6005 !Op.getOperand(2).getValueType().isFloatingPoint()) 6006 return Op; 6007 6008 // We might be able to do better than this under some circumstances, but in 6009 // general, fsel-based lowering of select is a finite-math-only optimization. 6010 // For more information, see section F.3 of the 2.06 ISA specification. 6011 if (!DAG.getTarget().Options.NoInfsFPMath || 6012 !DAG.getTarget().Options.NoNaNsFPMath) 6013 return Op; 6014 // TODO: Propagate flags from the select rather than global settings. 6015 SDNodeFlags Flags; 6016 Flags.setNoInfs(true); 6017 Flags.setNoNaNs(true); 6018 6019 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6020 6021 EVT ResVT = Op.getValueType(); 6022 EVT CmpVT = Op.getOperand(0).getValueType(); 6023 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6024 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6025 SDLoc dl(Op); 6026 6027 // If the RHS of the comparison is a 0.0, we don't need to do the 6028 // subtraction at all. 6029 SDValue Sel1; 6030 if (isFloatingPointZero(RHS)) 6031 switch (CC) { 6032 default: break; // SETUO etc aren't handled by fsel. 6033 case ISD::SETNE: 6034 std::swap(TV, FV); 6035 case ISD::SETEQ: 6036 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6037 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6038 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6039 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6040 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6041 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6042 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6043 case ISD::SETULT: 6044 case ISD::SETLT: 6045 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6046 case ISD::SETOGE: 6047 case ISD::SETGE: 6048 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6049 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6050 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6051 case ISD::SETUGT: 6052 case ISD::SETGT: 6053 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6054 case ISD::SETOLE: 6055 case ISD::SETLE: 6056 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6057 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6058 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6059 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6060 } 6061 6062 SDValue Cmp; 6063 switch (CC) { 6064 default: break; // SETUO etc aren't handled by fsel. 6065 case ISD::SETNE: 6066 std::swap(TV, FV); 6067 case ISD::SETEQ: 6068 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6069 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6070 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6071 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6072 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6073 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6074 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6075 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6076 case ISD::SETULT: 6077 case ISD::SETLT: 6078 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6079 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6080 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6081 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6082 case ISD::SETOGE: 6083 case ISD::SETGE: 6084 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6085 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6086 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6087 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6088 case ISD::SETUGT: 6089 case ISD::SETGT: 6090 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6091 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6092 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6093 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6094 case ISD::SETOLE: 6095 case ISD::SETLE: 6096 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6097 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6098 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6099 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6100 } 6101 return Op; 6102 } 6103 6104 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6105 SelectionDAG &DAG, 6106 SDLoc dl) const { 6107 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6108 SDValue Src = Op.getOperand(0); 6109 if (Src.getValueType() == MVT::f32) 6110 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6111 6112 SDValue Tmp; 6113 switch (Op.getSimpleValueType().SimpleTy) { 6114 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6115 case MVT::i32: 6116 Tmp = DAG.getNode( 6117 Op.getOpcode() == ISD::FP_TO_SINT 6118 ? PPCISD::FCTIWZ 6119 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6120 dl, MVT::f64, Src); 6121 break; 6122 case MVT::i64: 6123 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6124 "i64 FP_TO_UINT is supported only with FPCVT"); 6125 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6126 PPCISD::FCTIDUZ, 6127 dl, MVT::f64, Src); 6128 break; 6129 } 6130 6131 // Convert the FP value to an int value through memory. 6132 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6133 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6134 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6135 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6136 MachinePointerInfo MPI = 6137 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6138 6139 // Emit a store to the stack slot. 6140 SDValue Chain; 6141 if (i32Stack) { 6142 MachineFunction &MF = DAG.getMachineFunction(); 6143 MachineMemOperand *MMO = 6144 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6145 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6146 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6147 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6148 } else 6149 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6150 MPI, false, false, 0); 6151 6152 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6153 // add in a bias. 6154 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6155 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6156 DAG.getConstant(4, dl, FIPtr.getValueType())); 6157 MPI = MPI.getWithOffset(4); 6158 } 6159 6160 RLI.Chain = Chain; 6161 RLI.Ptr = FIPtr; 6162 RLI.MPI = MPI; 6163 } 6164 6165 /// \brief Custom lowers floating point to integer conversions to use 6166 /// the direct move instructions available in ISA 2.07 to avoid the 6167 /// need for load/store combinations. 6168 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6169 SelectionDAG &DAG, 6170 SDLoc dl) const { 6171 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6172 SDValue Src = Op.getOperand(0); 6173 6174 if (Src.getValueType() == MVT::f32) 6175 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6176 6177 SDValue Tmp; 6178 switch (Op.getSimpleValueType().SimpleTy) { 6179 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6180 case MVT::i32: 6181 Tmp = DAG.getNode( 6182 Op.getOpcode() == ISD::FP_TO_SINT 6183 ? PPCISD::FCTIWZ 6184 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6185 dl, MVT::f64, Src); 6186 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6187 break; 6188 case MVT::i64: 6189 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6190 "i64 FP_TO_UINT is supported only with FPCVT"); 6191 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6192 PPCISD::FCTIDUZ, 6193 dl, MVT::f64, Src); 6194 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6195 break; 6196 } 6197 return Tmp; 6198 } 6199 6200 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6201 SDLoc dl) const { 6202 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6203 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6204 6205 ReuseLoadInfo RLI; 6206 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6207 6208 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6209 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6210 RLI.Ranges); 6211 } 6212 6213 // We're trying to insert a regular store, S, and then a load, L. If the 6214 // incoming value, O, is a load, we might just be able to have our load use the 6215 // address used by O. However, we don't know if anything else will store to 6216 // that address before we can load from it. To prevent this situation, we need 6217 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6218 // the same chain operand as O, we create a token factor from the chain results 6219 // of O and L, and we replace all uses of O's chain result with that token 6220 // factor (see spliceIntoChain below for this last part). 6221 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6222 ReuseLoadInfo &RLI, 6223 SelectionDAG &DAG, 6224 ISD::LoadExtType ET) const { 6225 SDLoc dl(Op); 6226 if (ET == ISD::NON_EXTLOAD && 6227 (Op.getOpcode() == ISD::FP_TO_UINT || 6228 Op.getOpcode() == ISD::FP_TO_SINT) && 6229 isOperationLegalOrCustom(Op.getOpcode(), 6230 Op.getOperand(0).getValueType())) { 6231 6232 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6233 return true; 6234 } 6235 6236 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6237 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6238 LD->isNonTemporal()) 6239 return false; 6240 if (LD->getMemoryVT() != MemVT) 6241 return false; 6242 6243 RLI.Ptr = LD->getBasePtr(); 6244 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6245 assert(LD->getAddressingMode() == ISD::PRE_INC && 6246 "Non-pre-inc AM on PPC?"); 6247 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6248 LD->getOffset()); 6249 } 6250 6251 RLI.Chain = LD->getChain(); 6252 RLI.MPI = LD->getPointerInfo(); 6253 RLI.IsInvariant = LD->isInvariant(); 6254 RLI.Alignment = LD->getAlignment(); 6255 RLI.AAInfo = LD->getAAInfo(); 6256 RLI.Ranges = LD->getRanges(); 6257 6258 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6259 return true; 6260 } 6261 6262 // Given the head of the old chain, ResChain, insert a token factor containing 6263 // it and NewResChain, and make users of ResChain now be users of that token 6264 // factor. 6265 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6266 SDValue NewResChain, 6267 SelectionDAG &DAG) const { 6268 if (!ResChain) 6269 return; 6270 6271 SDLoc dl(NewResChain); 6272 6273 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6274 NewResChain, DAG.getUNDEF(MVT::Other)); 6275 assert(TF.getNode() != NewResChain.getNode() && 6276 "A new TF really is required here"); 6277 6278 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6279 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6280 } 6281 6282 /// \brief Custom lowers integer to floating point conversions to use 6283 /// the direct move instructions available in ISA 2.07 to avoid the 6284 /// need for load/store combinations. 6285 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6286 SelectionDAG &DAG, 6287 SDLoc dl) const { 6288 assert((Op.getValueType() == MVT::f32 || 6289 Op.getValueType() == MVT::f64) && 6290 "Invalid floating point type as target of conversion"); 6291 assert(Subtarget.hasFPCVT() && 6292 "Int to FP conversions with direct moves require FPCVT"); 6293 SDValue FP; 6294 SDValue Src = Op.getOperand(0); 6295 bool SinglePrec = Op.getValueType() == MVT::f32; 6296 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6297 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6298 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6299 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6300 6301 if (WordInt) { 6302 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6303 dl, MVT::f64, Src); 6304 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6305 } 6306 else { 6307 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6308 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6309 } 6310 6311 return FP; 6312 } 6313 6314 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6315 SelectionDAG &DAG) const { 6316 SDLoc dl(Op); 6317 6318 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6319 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6320 return SDValue(); 6321 6322 SDValue Value = Op.getOperand(0); 6323 // The values are now known to be -1 (false) or 1 (true). To convert this 6324 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6325 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6326 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6327 6328 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6329 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs, 6330 FPHalfs, FPHalfs); 6331 6332 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6333 6334 if (Op.getValueType() != MVT::v4f64) 6335 Value = DAG.getNode(ISD::FP_ROUND, dl, 6336 Op.getValueType(), Value, 6337 DAG.getIntPtrConstant(1, dl)); 6338 return Value; 6339 } 6340 6341 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6342 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6343 return SDValue(); 6344 6345 if (Op.getOperand(0).getValueType() == MVT::i1) 6346 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6347 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6348 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6349 6350 // If we have direct moves, we can do all the conversion, skip the store/load 6351 // however, without FPCVT we can't do most conversions. 6352 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6353 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6354 6355 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6356 "UINT_TO_FP is supported only with FPCVT"); 6357 6358 // If we have FCFIDS, then use it when converting to single-precision. 6359 // Otherwise, convert to double-precision and then round. 6360 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6361 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6362 : PPCISD::FCFIDS) 6363 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6364 : PPCISD::FCFID); 6365 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6366 ? MVT::f32 6367 : MVT::f64; 6368 6369 if (Op.getOperand(0).getValueType() == MVT::i64) { 6370 SDValue SINT = Op.getOperand(0); 6371 // When converting to single-precision, we actually need to convert 6372 // to double-precision first and then round to single-precision. 6373 // To avoid double-rounding effects during that operation, we have 6374 // to prepare the input operand. Bits that might be truncated when 6375 // converting to double-precision are replaced by a bit that won't 6376 // be lost at this stage, but is below the single-precision rounding 6377 // position. 6378 // 6379 // However, if -enable-unsafe-fp-math is in effect, accept double 6380 // rounding to avoid the extra overhead. 6381 if (Op.getValueType() == MVT::f32 && 6382 !Subtarget.hasFPCVT() && 6383 !DAG.getTarget().Options.UnsafeFPMath) { 6384 6385 // Twiddle input to make sure the low 11 bits are zero. (If this 6386 // is the case, we are guaranteed the value will fit into the 53 bit 6387 // mantissa of an IEEE double-precision value without rounding.) 6388 // If any of those low 11 bits were not zero originally, make sure 6389 // bit 12 (value 2048) is set instead, so that the final rounding 6390 // to single-precision gets the correct result. 6391 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6392 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6393 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6394 Round, DAG.getConstant(2047, dl, MVT::i64)); 6395 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6396 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6397 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6398 6399 // However, we cannot use that value unconditionally: if the magnitude 6400 // of the input value is small, the bit-twiddling we did above might 6401 // end up visibly changing the output. Fortunately, in that case, we 6402 // don't need to twiddle bits since the original input will convert 6403 // exactly to double-precision floating-point already. Therefore, 6404 // construct a conditional to use the original value if the top 11 6405 // bits are all sign-bit copies, and use the rounded value computed 6406 // above otherwise. 6407 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6408 SINT, DAG.getConstant(53, dl, MVT::i32)); 6409 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6410 Cond, DAG.getConstant(1, dl, MVT::i64)); 6411 Cond = DAG.getSetCC(dl, MVT::i32, 6412 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6413 6414 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6415 } 6416 6417 ReuseLoadInfo RLI; 6418 SDValue Bits; 6419 6420 MachineFunction &MF = DAG.getMachineFunction(); 6421 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6422 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6423 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6424 RLI.Ranges); 6425 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6426 } else if (Subtarget.hasLFIWAX() && 6427 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6428 MachineMemOperand *MMO = 6429 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6430 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6431 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6432 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6433 DAG.getVTList(MVT::f64, MVT::Other), 6434 Ops, MVT::i32, MMO); 6435 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6436 } else if (Subtarget.hasFPCVT() && 6437 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6438 MachineMemOperand *MMO = 6439 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6440 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6441 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6442 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6443 DAG.getVTList(MVT::f64, MVT::Other), 6444 Ops, MVT::i32, MMO); 6445 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6446 } else if (((Subtarget.hasLFIWAX() && 6447 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6448 (Subtarget.hasFPCVT() && 6449 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6450 SINT.getOperand(0).getValueType() == MVT::i32) { 6451 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6452 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6453 6454 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6455 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6456 6457 SDValue Store = DAG.getStore( 6458 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6459 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6460 false, false, 0); 6461 6462 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6463 "Expected an i32 store"); 6464 6465 RLI.Ptr = FIdx; 6466 RLI.Chain = Store; 6467 RLI.MPI = 6468 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6469 RLI.Alignment = 4; 6470 6471 MachineMemOperand *MMO = 6472 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6473 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6474 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6475 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6476 PPCISD::LFIWZX : PPCISD::LFIWAX, 6477 dl, DAG.getVTList(MVT::f64, MVT::Other), 6478 Ops, MVT::i32, MMO); 6479 } else 6480 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6481 6482 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6483 6484 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6485 FP = DAG.getNode(ISD::FP_ROUND, dl, 6486 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6487 return FP; 6488 } 6489 6490 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6491 "Unhandled INT_TO_FP type in custom expander!"); 6492 // Since we only generate this in 64-bit mode, we can take advantage of 6493 // 64-bit registers. In particular, sign extend the input value into the 6494 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6495 // then lfd it and fcfid it. 6496 MachineFunction &MF = DAG.getMachineFunction(); 6497 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6498 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6499 6500 SDValue Ld; 6501 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6502 ReuseLoadInfo RLI; 6503 bool ReusingLoad; 6504 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6505 DAG))) { 6506 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6507 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6508 6509 SDValue Store = DAG.getStore( 6510 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6511 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6512 false, false, 0); 6513 6514 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6515 "Expected an i32 store"); 6516 6517 RLI.Ptr = FIdx; 6518 RLI.Chain = Store; 6519 RLI.MPI = 6520 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6521 RLI.Alignment = 4; 6522 } 6523 6524 MachineMemOperand *MMO = 6525 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6526 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6527 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6528 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6529 PPCISD::LFIWZX : PPCISD::LFIWAX, 6530 dl, DAG.getVTList(MVT::f64, MVT::Other), 6531 Ops, MVT::i32, MMO); 6532 if (ReusingLoad) 6533 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6534 } else { 6535 assert(Subtarget.isPPC64() && 6536 "i32->FP without LFIWAX supported only on PPC64"); 6537 6538 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6539 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6540 6541 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6542 Op.getOperand(0)); 6543 6544 // STD the extended value into the stack slot. 6545 SDValue Store = DAG.getStore( 6546 DAG.getEntryNode(), dl, Ext64, FIdx, 6547 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6548 false, false, 0); 6549 6550 // Load the value as a double. 6551 Ld = DAG.getLoad( 6552 MVT::f64, dl, Store, FIdx, 6553 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6554 false, false, false, 0); 6555 } 6556 6557 // FCFID it and return it. 6558 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6559 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6560 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6561 DAG.getIntPtrConstant(0, dl)); 6562 return FP; 6563 } 6564 6565 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6566 SelectionDAG &DAG) const { 6567 SDLoc dl(Op); 6568 /* 6569 The rounding mode is in bits 30:31 of FPSR, and has the following 6570 settings: 6571 00 Round to nearest 6572 01 Round to 0 6573 10 Round to +inf 6574 11 Round to -inf 6575 6576 FLT_ROUNDS, on the other hand, expects the following: 6577 -1 Undefined 6578 0 Round to 0 6579 1 Round to nearest 6580 2 Round to +inf 6581 3 Round to -inf 6582 6583 To perform the conversion, we do: 6584 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6585 */ 6586 6587 MachineFunction &MF = DAG.getMachineFunction(); 6588 EVT VT = Op.getValueType(); 6589 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6590 6591 // Save FP Control Word to register 6592 EVT NodeTys[] = { 6593 MVT::f64, // return register 6594 MVT::Glue // unused in this context 6595 }; 6596 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6597 6598 // Save FP register to stack slot 6599 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6600 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6601 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6602 StackSlot, MachinePointerInfo(), false, false,0); 6603 6604 // Load FP Control Word from low 32 bits of stack slot. 6605 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6606 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6607 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6608 false, false, false, 0); 6609 6610 // Transform as necessary 6611 SDValue CWD1 = 6612 DAG.getNode(ISD::AND, dl, MVT::i32, 6613 CWD, DAG.getConstant(3, dl, MVT::i32)); 6614 SDValue CWD2 = 6615 DAG.getNode(ISD::SRL, dl, MVT::i32, 6616 DAG.getNode(ISD::AND, dl, MVT::i32, 6617 DAG.getNode(ISD::XOR, dl, MVT::i32, 6618 CWD, DAG.getConstant(3, dl, MVT::i32)), 6619 DAG.getConstant(3, dl, MVT::i32)), 6620 DAG.getConstant(1, dl, MVT::i32)); 6621 6622 SDValue RetVal = 6623 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6624 6625 return DAG.getNode((VT.getSizeInBits() < 16 ? 6626 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6627 } 6628 6629 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6630 EVT VT = Op.getValueType(); 6631 unsigned BitWidth = VT.getSizeInBits(); 6632 SDLoc dl(Op); 6633 assert(Op.getNumOperands() == 3 && 6634 VT == Op.getOperand(1).getValueType() && 6635 "Unexpected SHL!"); 6636 6637 // Expand into a bunch of logical ops. Note that these ops 6638 // depend on the PPC behavior for oversized shift amounts. 6639 SDValue Lo = Op.getOperand(0); 6640 SDValue Hi = Op.getOperand(1); 6641 SDValue Amt = Op.getOperand(2); 6642 EVT AmtVT = Amt.getValueType(); 6643 6644 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6645 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6646 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6647 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6648 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6649 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6650 DAG.getConstant(-BitWidth, dl, AmtVT)); 6651 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6652 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6653 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6654 SDValue OutOps[] = { OutLo, OutHi }; 6655 return DAG.getMergeValues(OutOps, dl); 6656 } 6657 6658 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6659 EVT VT = Op.getValueType(); 6660 SDLoc dl(Op); 6661 unsigned BitWidth = VT.getSizeInBits(); 6662 assert(Op.getNumOperands() == 3 && 6663 VT == Op.getOperand(1).getValueType() && 6664 "Unexpected SRL!"); 6665 6666 // Expand into a bunch of logical ops. Note that these ops 6667 // depend on the PPC behavior for oversized shift amounts. 6668 SDValue Lo = Op.getOperand(0); 6669 SDValue Hi = Op.getOperand(1); 6670 SDValue Amt = Op.getOperand(2); 6671 EVT AmtVT = Amt.getValueType(); 6672 6673 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6674 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6675 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6676 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6677 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6678 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6679 DAG.getConstant(-BitWidth, dl, AmtVT)); 6680 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6681 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6682 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6683 SDValue OutOps[] = { OutLo, OutHi }; 6684 return DAG.getMergeValues(OutOps, dl); 6685 } 6686 6687 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6688 SDLoc dl(Op); 6689 EVT VT = Op.getValueType(); 6690 unsigned BitWidth = VT.getSizeInBits(); 6691 assert(Op.getNumOperands() == 3 && 6692 VT == Op.getOperand(1).getValueType() && 6693 "Unexpected SRA!"); 6694 6695 // Expand into a bunch of logical ops, followed by a select_cc. 6696 SDValue Lo = Op.getOperand(0); 6697 SDValue Hi = Op.getOperand(1); 6698 SDValue Amt = Op.getOperand(2); 6699 EVT AmtVT = Amt.getValueType(); 6700 6701 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6702 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6703 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6704 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6705 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6706 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6707 DAG.getConstant(-BitWidth, dl, AmtVT)); 6708 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6709 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6710 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6711 Tmp4, Tmp6, ISD::SETLE); 6712 SDValue OutOps[] = { OutLo, OutHi }; 6713 return DAG.getMergeValues(OutOps, dl); 6714 } 6715 6716 //===----------------------------------------------------------------------===// 6717 // Vector related lowering. 6718 // 6719 6720 /// BuildSplatI - Build a canonical splati of Val with an element size of 6721 /// SplatSize. Cast the result to VT. 6722 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6723 SelectionDAG &DAG, SDLoc dl) { 6724 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6725 6726 static const MVT VTys[] = { // canonical VT to use for each size. 6727 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6728 }; 6729 6730 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6731 6732 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6733 if (Val == -1) 6734 SplatSize = 1; 6735 6736 EVT CanonicalVT = VTys[SplatSize-1]; 6737 6738 // Build a canonical splat for this value. 6739 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6740 SmallVector<SDValue, 8> Ops; 6741 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6742 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6743 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6744 } 6745 6746 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6747 /// specified intrinsic ID. 6748 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6749 SelectionDAG &DAG, SDLoc dl, 6750 EVT DestVT = MVT::Other) { 6751 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6752 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6753 DAG.getConstant(IID, dl, MVT::i32), Op); 6754 } 6755 6756 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6757 /// specified intrinsic ID. 6758 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6759 SelectionDAG &DAG, SDLoc dl, 6760 EVT DestVT = MVT::Other) { 6761 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6762 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6763 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6764 } 6765 6766 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6767 /// specified intrinsic ID. 6768 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6769 SDValue Op2, SelectionDAG &DAG, 6770 SDLoc dl, EVT DestVT = MVT::Other) { 6771 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6772 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6773 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6774 } 6775 6776 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6777 /// amount. The result has the specified value type. 6778 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6779 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6780 // Force LHS/RHS to be the right type. 6781 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6782 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6783 6784 int Ops[16]; 6785 for (unsigned i = 0; i != 16; ++i) 6786 Ops[i] = i + Amt; 6787 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6788 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6789 } 6790 6791 // If this is a case we can't handle, return null and let the default 6792 // expansion code take care of it. If we CAN select this case, and if it 6793 // selects to a single instruction, return Op. Otherwise, if we can codegen 6794 // this case more efficiently than a constant pool load, lower it to the 6795 // sequence of ops that should be used. 6796 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6797 SelectionDAG &DAG) const { 6798 SDLoc dl(Op); 6799 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6800 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6801 6802 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6803 // We first build an i32 vector, load it into a QPX register, 6804 // then convert it to a floating-point vector and compare it 6805 // to a zero vector to get the boolean result. 6806 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6807 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6808 MachinePointerInfo PtrInfo = 6809 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6810 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6811 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6812 6813 assert(BVN->getNumOperands() == 4 && 6814 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6815 6816 bool IsConst = true; 6817 for (unsigned i = 0; i < 4; ++i) { 6818 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6819 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6820 IsConst = false; 6821 break; 6822 } 6823 } 6824 6825 if (IsConst) { 6826 Constant *One = 6827 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6828 Constant *NegOne = 6829 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6830 6831 SmallVector<Constant*, 4> CV(4, NegOne); 6832 for (unsigned i = 0; i < 4; ++i) { 6833 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6834 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6835 else if (isNullConstant(BVN->getOperand(i))) 6836 continue; 6837 else 6838 CV[i] = One; 6839 } 6840 6841 Constant *CP = ConstantVector::get(CV); 6842 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6843 16 /* alignment */); 6844 6845 SmallVector<SDValue, 2> Ops; 6846 Ops.push_back(DAG.getEntryNode()); 6847 Ops.push_back(CPIdx); 6848 6849 SmallVector<EVT, 2> ValueVTs; 6850 ValueVTs.push_back(MVT::v4i1); 6851 ValueVTs.push_back(MVT::Other); // chain 6852 SDVTList VTs = DAG.getVTList(ValueVTs); 6853 6854 return DAG.getMemIntrinsicNode( 6855 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6856 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6857 } 6858 6859 SmallVector<SDValue, 4> Stores; 6860 for (unsigned i = 0; i < 4; ++i) { 6861 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6862 6863 unsigned Offset = 4*i; 6864 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6865 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6866 6867 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6868 if (StoreSize > 4) { 6869 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6870 BVN->getOperand(i), Idx, 6871 PtrInfo.getWithOffset(Offset), 6872 MVT::i32, false, false, 0)); 6873 } else { 6874 SDValue StoreValue = BVN->getOperand(i); 6875 if (StoreSize < 4) 6876 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6877 6878 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6879 StoreValue, Idx, 6880 PtrInfo.getWithOffset(Offset), 6881 false, false, 0)); 6882 } 6883 } 6884 6885 SDValue StoreChain; 6886 if (!Stores.empty()) 6887 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6888 else 6889 StoreChain = DAG.getEntryNode(); 6890 6891 // Now load from v4i32 into the QPX register; this will extend it to 6892 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6893 // is typed as v4f64 because the QPX register integer states are not 6894 // explicitly represented. 6895 6896 SmallVector<SDValue, 2> Ops; 6897 Ops.push_back(StoreChain); 6898 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6899 Ops.push_back(FIdx); 6900 6901 SmallVector<EVT, 2> ValueVTs; 6902 ValueVTs.push_back(MVT::v4f64); 6903 ValueVTs.push_back(MVT::Other); // chain 6904 SDVTList VTs = DAG.getVTList(ValueVTs); 6905 6906 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6907 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6908 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6909 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6910 LoadedVect); 6911 6912 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6913 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6914 FPZeros, FPZeros, FPZeros, FPZeros); 6915 6916 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6917 } 6918 6919 // All other QPX vectors are handled by generic code. 6920 if (Subtarget.hasQPX()) 6921 return SDValue(); 6922 6923 // Check if this is a splat of a constant value. 6924 APInt APSplatBits, APSplatUndef; 6925 unsigned SplatBitSize; 6926 bool HasAnyUndefs; 6927 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6928 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6929 SplatBitSize > 32) 6930 return SDValue(); 6931 6932 unsigned SplatBits = APSplatBits.getZExtValue(); 6933 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6934 unsigned SplatSize = SplatBitSize / 8; 6935 6936 // First, handle single instruction cases. 6937 6938 // All zeros? 6939 if (SplatBits == 0) { 6940 // Canonicalize all zero vectors to be v4i32. 6941 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6942 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6943 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6944 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6945 } 6946 return Op; 6947 } 6948 6949 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6950 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6951 (32-SplatBitSize)); 6952 if (SextVal >= -16 && SextVal <= 15) 6953 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6954 6955 // Two instruction sequences. 6956 6957 // If this value is in the range [-32,30] and is even, use: 6958 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6959 // If this value is in the range [17,31] and is odd, use: 6960 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6961 // If this value is in the range [-31,-17] and is odd, use: 6962 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6963 // Note the last two are three-instruction sequences. 6964 if (SextVal >= -32 && SextVal <= 31) { 6965 // To avoid having these optimizations undone by constant folding, 6966 // we convert to a pseudo that will be expanded later into one of 6967 // the above forms. 6968 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6969 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6970 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6971 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6972 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6973 if (VT == Op.getValueType()) 6974 return RetVal; 6975 else 6976 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6977 } 6978 6979 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6980 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6981 // for fneg/fabs. 6982 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6983 // Make -1 and vspltisw -1: 6984 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6985 6986 // Make the VSLW intrinsic, computing 0x8000_0000. 6987 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6988 OnesV, DAG, dl); 6989 6990 // xor by OnesV to invert it. 6991 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6992 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6993 } 6994 6995 // Check to see if this is a wide variety of vsplti*, binop self cases. 6996 static const signed char SplatCsts[] = { 6997 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6998 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6999 }; 7000 7001 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7002 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7003 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7004 int i = SplatCsts[idx]; 7005 7006 // Figure out what shift amount will be used by altivec if shifted by i in 7007 // this splat size. 7008 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7009 7010 // vsplti + shl self. 7011 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7012 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7013 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7014 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7015 Intrinsic::ppc_altivec_vslw 7016 }; 7017 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7018 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7019 } 7020 7021 // vsplti + srl self. 7022 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7023 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7024 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7025 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7026 Intrinsic::ppc_altivec_vsrw 7027 }; 7028 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7029 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7030 } 7031 7032 // vsplti + sra self. 7033 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7034 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7035 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7036 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7037 Intrinsic::ppc_altivec_vsraw 7038 }; 7039 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7040 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7041 } 7042 7043 // vsplti + rol self. 7044 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7045 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7046 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7047 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7048 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7049 Intrinsic::ppc_altivec_vrlw 7050 }; 7051 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7052 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7053 } 7054 7055 // t = vsplti c, result = vsldoi t, t, 1 7056 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7057 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7058 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7059 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7060 } 7061 // t = vsplti c, result = vsldoi t, t, 2 7062 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7063 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7064 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7065 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7066 } 7067 // t = vsplti c, result = vsldoi t, t, 3 7068 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7069 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7070 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7071 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7072 } 7073 } 7074 7075 return SDValue(); 7076 } 7077 7078 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7079 /// the specified operations to build the shuffle. 7080 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7081 SDValue RHS, SelectionDAG &DAG, 7082 SDLoc dl) { 7083 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7084 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7085 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7086 7087 enum { 7088 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7089 OP_VMRGHW, 7090 OP_VMRGLW, 7091 OP_VSPLTISW0, 7092 OP_VSPLTISW1, 7093 OP_VSPLTISW2, 7094 OP_VSPLTISW3, 7095 OP_VSLDOI4, 7096 OP_VSLDOI8, 7097 OP_VSLDOI12 7098 }; 7099 7100 if (OpNum == OP_COPY) { 7101 if (LHSID == (1*9+2)*9+3) return LHS; 7102 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7103 return RHS; 7104 } 7105 7106 SDValue OpLHS, OpRHS; 7107 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7108 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7109 7110 int ShufIdxs[16]; 7111 switch (OpNum) { 7112 default: llvm_unreachable("Unknown i32 permute!"); 7113 case OP_VMRGHW: 7114 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7115 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7116 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7117 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7118 break; 7119 case OP_VMRGLW: 7120 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7121 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7122 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7123 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7124 break; 7125 case OP_VSPLTISW0: 7126 for (unsigned i = 0; i != 16; ++i) 7127 ShufIdxs[i] = (i&3)+0; 7128 break; 7129 case OP_VSPLTISW1: 7130 for (unsigned i = 0; i != 16; ++i) 7131 ShufIdxs[i] = (i&3)+4; 7132 break; 7133 case OP_VSPLTISW2: 7134 for (unsigned i = 0; i != 16; ++i) 7135 ShufIdxs[i] = (i&3)+8; 7136 break; 7137 case OP_VSPLTISW3: 7138 for (unsigned i = 0; i != 16; ++i) 7139 ShufIdxs[i] = (i&3)+12; 7140 break; 7141 case OP_VSLDOI4: 7142 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7143 case OP_VSLDOI8: 7144 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7145 case OP_VSLDOI12: 7146 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7147 } 7148 EVT VT = OpLHS.getValueType(); 7149 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7150 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7151 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7152 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7153 } 7154 7155 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7156 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7157 /// return the code it can be lowered into. Worst case, it can always be 7158 /// lowered into a vperm. 7159 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7160 SelectionDAG &DAG) const { 7161 SDLoc dl(Op); 7162 SDValue V1 = Op.getOperand(0); 7163 SDValue V2 = Op.getOperand(1); 7164 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7165 EVT VT = Op.getValueType(); 7166 bool isLittleEndian = Subtarget.isLittleEndian(); 7167 7168 if (Subtarget.hasQPX()) { 7169 if (VT.getVectorNumElements() != 4) 7170 return SDValue(); 7171 7172 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7173 7174 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7175 if (AlignIdx != -1) { 7176 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7177 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7178 } else if (SVOp->isSplat()) { 7179 int SplatIdx = SVOp->getSplatIndex(); 7180 if (SplatIdx >= 4) { 7181 std::swap(V1, V2); 7182 SplatIdx -= 4; 7183 } 7184 7185 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7186 // nothing to do. 7187 7188 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7189 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7190 } 7191 7192 // Lower this into a qvgpci/qvfperm pair. 7193 7194 // Compute the qvgpci literal 7195 unsigned idx = 0; 7196 for (unsigned i = 0; i < 4; ++i) { 7197 int m = SVOp->getMaskElt(i); 7198 unsigned mm = m >= 0 ? (unsigned) m : i; 7199 idx |= mm << (3-i)*3; 7200 } 7201 7202 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7203 DAG.getConstant(idx, dl, MVT::i32)); 7204 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7205 } 7206 7207 // Cases that are handled by instructions that take permute immediates 7208 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7209 // selected by the instruction selector. 7210 if (V2.getOpcode() == ISD::UNDEF) { 7211 if (PPC::isSplatShuffleMask(SVOp, 1) || 7212 PPC::isSplatShuffleMask(SVOp, 2) || 7213 PPC::isSplatShuffleMask(SVOp, 4) || 7214 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7215 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7216 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7217 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7218 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7219 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7220 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7221 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7222 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7223 (Subtarget.hasP8Altivec() && ( 7224 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7225 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7226 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7227 return Op; 7228 } 7229 } 7230 7231 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7232 // and produce a fixed permutation. If any of these match, do not lower to 7233 // VPERM. 7234 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7235 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7236 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7237 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7238 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7239 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7240 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7241 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7242 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7243 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7244 (Subtarget.hasP8Altivec() && ( 7245 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7246 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7247 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7248 return Op; 7249 7250 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7251 // perfect shuffle table to emit an optimal matching sequence. 7252 ArrayRef<int> PermMask = SVOp->getMask(); 7253 7254 unsigned PFIndexes[4]; 7255 bool isFourElementShuffle = true; 7256 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7257 unsigned EltNo = 8; // Start out undef. 7258 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7259 if (PermMask[i*4+j] < 0) 7260 continue; // Undef, ignore it. 7261 7262 unsigned ByteSource = PermMask[i*4+j]; 7263 if ((ByteSource & 3) != j) { 7264 isFourElementShuffle = false; 7265 break; 7266 } 7267 7268 if (EltNo == 8) { 7269 EltNo = ByteSource/4; 7270 } else if (EltNo != ByteSource/4) { 7271 isFourElementShuffle = false; 7272 break; 7273 } 7274 } 7275 PFIndexes[i] = EltNo; 7276 } 7277 7278 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7279 // perfect shuffle vector to determine if it is cost effective to do this as 7280 // discrete instructions, or whether we should use a vperm. 7281 // For now, we skip this for little endian until such time as we have a 7282 // little-endian perfect shuffle table. 7283 if (isFourElementShuffle && !isLittleEndian) { 7284 // Compute the index in the perfect shuffle table. 7285 unsigned PFTableIndex = 7286 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7287 7288 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7289 unsigned Cost = (PFEntry >> 30); 7290 7291 // Determining when to avoid vperm is tricky. Many things affect the cost 7292 // of vperm, particularly how many times the perm mask needs to be computed. 7293 // For example, if the perm mask can be hoisted out of a loop or is already 7294 // used (perhaps because there are multiple permutes with the same shuffle 7295 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7296 // the loop requires an extra register. 7297 // 7298 // As a compromise, we only emit discrete instructions if the shuffle can be 7299 // generated in 3 or fewer operations. When we have loop information 7300 // available, if this block is within a loop, we should avoid using vperm 7301 // for 3-operation perms and use a constant pool load instead. 7302 if (Cost < 3) 7303 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7304 } 7305 7306 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7307 // vector that will get spilled to the constant pool. 7308 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7309 7310 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7311 // that it is in input element units, not in bytes. Convert now. 7312 7313 // For little endian, the order of the input vectors is reversed, and 7314 // the permutation mask is complemented with respect to 31. This is 7315 // necessary to produce proper semantics with the big-endian-biased vperm 7316 // instruction. 7317 EVT EltVT = V1.getValueType().getVectorElementType(); 7318 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7319 7320 SmallVector<SDValue, 16> ResultMask; 7321 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7322 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7323 7324 for (unsigned j = 0; j != BytesPerElement; ++j) 7325 if (isLittleEndian) 7326 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7327 dl, MVT::i32)); 7328 else 7329 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7330 MVT::i32)); 7331 } 7332 7333 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7334 ResultMask); 7335 if (isLittleEndian) 7336 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7337 V2, V1, VPermMask); 7338 else 7339 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7340 V1, V2, VPermMask); 7341 } 7342 7343 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7344 /// vector comparison. If it is, return true and fill in Opc/isDot with 7345 /// information about the intrinsic. 7346 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7347 bool &isDot, const PPCSubtarget &Subtarget) { 7348 unsigned IntrinsicID = 7349 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7350 CompareOpc = -1; 7351 isDot = false; 7352 switch (IntrinsicID) { 7353 default: return false; 7354 // Comparison predicates. 7355 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7356 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7357 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7358 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7359 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7360 case Intrinsic::ppc_altivec_vcmpequd_p: 7361 if (Subtarget.hasP8Altivec()) { 7362 CompareOpc = 199; 7363 isDot = 1; 7364 } else 7365 return false; 7366 7367 break; 7368 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7369 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7370 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7371 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7372 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7373 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7374 if (Subtarget.hasP8Altivec()) { 7375 CompareOpc = 967; 7376 isDot = 1; 7377 } else 7378 return false; 7379 7380 break; 7381 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7382 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7383 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7384 case Intrinsic::ppc_altivec_vcmpgtud_p: 7385 if (Subtarget.hasP8Altivec()) { 7386 CompareOpc = 711; 7387 isDot = 1; 7388 } else 7389 return false; 7390 7391 break; 7392 // VSX predicate comparisons use the same infrastructure 7393 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7394 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7395 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7396 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7397 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7398 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7399 if (Subtarget.hasVSX()) { 7400 switch (IntrinsicID) { 7401 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7402 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7403 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7404 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7405 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7406 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7407 } 7408 isDot = 1; 7409 } 7410 else 7411 return false; 7412 7413 break; 7414 7415 // Normal Comparisons. 7416 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7417 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7418 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7419 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7420 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7421 case Intrinsic::ppc_altivec_vcmpequd: 7422 if (Subtarget.hasP8Altivec()) { 7423 CompareOpc = 199; 7424 isDot = 0; 7425 } else 7426 return false; 7427 7428 break; 7429 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7430 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7431 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7432 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7433 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7434 case Intrinsic::ppc_altivec_vcmpgtsd: 7435 if (Subtarget.hasP8Altivec()) { 7436 CompareOpc = 967; 7437 isDot = 0; 7438 } else 7439 return false; 7440 7441 break; 7442 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7443 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7444 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7445 case Intrinsic::ppc_altivec_vcmpgtud: 7446 if (Subtarget.hasP8Altivec()) { 7447 CompareOpc = 711; 7448 isDot = 0; 7449 } else 7450 return false; 7451 7452 break; 7453 } 7454 return true; 7455 } 7456 7457 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7458 /// lower, do it, otherwise return null. 7459 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7460 SelectionDAG &DAG) const { 7461 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7462 // opcode number of the comparison. 7463 SDLoc dl(Op); 7464 int CompareOpc; 7465 bool isDot; 7466 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7467 return SDValue(); // Don't custom lower most intrinsics. 7468 7469 // If this is a non-dot comparison, make the VCMP node and we are done. 7470 if (!isDot) { 7471 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7472 Op.getOperand(1), Op.getOperand(2), 7473 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7474 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7475 } 7476 7477 // Create the PPCISD altivec 'dot' comparison node. 7478 SDValue Ops[] = { 7479 Op.getOperand(2), // LHS 7480 Op.getOperand(3), // RHS 7481 DAG.getConstant(CompareOpc, dl, MVT::i32) 7482 }; 7483 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7484 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7485 7486 // Now that we have the comparison, emit a copy from the CR to a GPR. 7487 // This is flagged to the above dot comparison. 7488 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7489 DAG.getRegister(PPC::CR6, MVT::i32), 7490 CompNode.getValue(1)); 7491 7492 // Unpack the result based on how the target uses it. 7493 unsigned BitNo; // Bit # of CR6. 7494 bool InvertBit; // Invert result? 7495 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7496 default: // Can't happen, don't crash on invalid number though. 7497 case 0: // Return the value of the EQ bit of CR6. 7498 BitNo = 0; InvertBit = false; 7499 break; 7500 case 1: // Return the inverted value of the EQ bit of CR6. 7501 BitNo = 0; InvertBit = true; 7502 break; 7503 case 2: // Return the value of the LT bit of CR6. 7504 BitNo = 2; InvertBit = false; 7505 break; 7506 case 3: // Return the inverted value of the LT bit of CR6. 7507 BitNo = 2; InvertBit = true; 7508 break; 7509 } 7510 7511 // Shift the bit into the low position. 7512 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7513 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7514 // Isolate the bit. 7515 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7516 DAG.getConstant(1, dl, MVT::i32)); 7517 7518 // If we are supposed to, toggle the bit. 7519 if (InvertBit) 7520 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7521 DAG.getConstant(1, dl, MVT::i32)); 7522 return Flags; 7523 } 7524 7525 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7526 SelectionDAG &DAG) const { 7527 SDLoc dl(Op); 7528 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7529 // instructions), but for smaller types, we need to first extend up to v2i32 7530 // before doing going farther. 7531 if (Op.getValueType() == MVT::v2i64) { 7532 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7533 if (ExtVT != MVT::v2i32) { 7534 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7535 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7536 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7537 ExtVT.getVectorElementType(), 4))); 7538 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7539 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7540 DAG.getValueType(MVT::v2i32)); 7541 } 7542 7543 return Op; 7544 } 7545 7546 return SDValue(); 7547 } 7548 7549 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7550 SelectionDAG &DAG) const { 7551 SDLoc dl(Op); 7552 // Create a stack slot that is 16-byte aligned. 7553 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7554 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7555 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7556 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7557 7558 // Store the input value into Value#0 of the stack slot. 7559 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7560 Op.getOperand(0), FIdx, MachinePointerInfo(), 7561 false, false, 0); 7562 // Load it out. 7563 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7564 false, false, false, 0); 7565 } 7566 7567 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7568 SelectionDAG &DAG) const { 7569 SDLoc dl(Op); 7570 SDNode *N = Op.getNode(); 7571 7572 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7573 "Unknown extract_vector_elt type"); 7574 7575 SDValue Value = N->getOperand(0); 7576 7577 // The first part of this is like the store lowering except that we don't 7578 // need to track the chain. 7579 7580 // The values are now known to be -1 (false) or 1 (true). To convert this 7581 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7582 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7583 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7584 7585 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7586 // understand how to form the extending load. 7587 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7588 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7589 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7590 7591 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7592 7593 // Now convert to an integer and store. 7594 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7595 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7596 Value); 7597 7598 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7599 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7600 MachinePointerInfo PtrInfo = 7601 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7602 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7603 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7604 7605 SDValue StoreChain = DAG.getEntryNode(); 7606 SmallVector<SDValue, 2> Ops; 7607 Ops.push_back(StoreChain); 7608 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7609 Ops.push_back(Value); 7610 Ops.push_back(FIdx); 7611 7612 SmallVector<EVT, 2> ValueVTs; 7613 ValueVTs.push_back(MVT::Other); // chain 7614 SDVTList VTs = DAG.getVTList(ValueVTs); 7615 7616 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7617 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7618 7619 // Extract the value requested. 7620 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7621 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7622 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7623 7624 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7625 PtrInfo.getWithOffset(Offset), 7626 false, false, false, 0); 7627 7628 if (!Subtarget.useCRBits()) 7629 return IntVal; 7630 7631 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7632 } 7633 7634 /// Lowering for QPX v4i1 loads 7635 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7636 SelectionDAG &DAG) const { 7637 SDLoc dl(Op); 7638 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7639 SDValue LoadChain = LN->getChain(); 7640 SDValue BasePtr = LN->getBasePtr(); 7641 7642 if (Op.getValueType() == MVT::v4f64 || 7643 Op.getValueType() == MVT::v4f32) { 7644 EVT MemVT = LN->getMemoryVT(); 7645 unsigned Alignment = LN->getAlignment(); 7646 7647 // If this load is properly aligned, then it is legal. 7648 if (Alignment >= MemVT.getStoreSize()) 7649 return Op; 7650 7651 EVT ScalarVT = Op.getValueType().getScalarType(), 7652 ScalarMemVT = MemVT.getScalarType(); 7653 unsigned Stride = ScalarMemVT.getStoreSize(); 7654 7655 SmallVector<SDValue, 8> Vals, LoadChains; 7656 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7657 SDValue Load; 7658 if (ScalarVT != ScalarMemVT) 7659 Load = 7660 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7661 BasePtr, 7662 LN->getPointerInfo().getWithOffset(Idx*Stride), 7663 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7664 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7665 LN->getAAInfo()); 7666 else 7667 Load = 7668 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7669 LN->getPointerInfo().getWithOffset(Idx*Stride), 7670 LN->isVolatile(), LN->isNonTemporal(), 7671 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7672 LN->getAAInfo()); 7673 7674 if (Idx == 0 && LN->isIndexed()) { 7675 assert(LN->getAddressingMode() == ISD::PRE_INC && 7676 "Unknown addressing mode on vector load"); 7677 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7678 LN->getAddressingMode()); 7679 } 7680 7681 Vals.push_back(Load); 7682 LoadChains.push_back(Load.getValue(1)); 7683 7684 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7685 DAG.getConstant(Stride, dl, 7686 BasePtr.getValueType())); 7687 } 7688 7689 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7690 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7691 Op.getValueType(), Vals); 7692 7693 if (LN->isIndexed()) { 7694 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7695 return DAG.getMergeValues(RetOps, dl); 7696 } 7697 7698 SDValue RetOps[] = { Value, TF }; 7699 return DAG.getMergeValues(RetOps, dl); 7700 } 7701 7702 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7703 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7704 7705 // To lower v4i1 from a byte array, we load the byte elements of the 7706 // vector and then reuse the BUILD_VECTOR logic. 7707 7708 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7709 for (unsigned i = 0; i < 4; ++i) { 7710 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7711 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7712 7713 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7714 dl, MVT::i32, LoadChain, Idx, 7715 LN->getPointerInfo().getWithOffset(i), 7716 MVT::i8 /* memory type */, 7717 LN->isVolatile(), LN->isNonTemporal(), 7718 LN->isInvariant(), 7719 1 /* alignment */, LN->getAAInfo())); 7720 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7721 } 7722 7723 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7724 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7725 7726 SDValue RVals[] = { Value, LoadChain }; 7727 return DAG.getMergeValues(RVals, dl); 7728 } 7729 7730 /// Lowering for QPX v4i1 stores 7731 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7732 SelectionDAG &DAG) const { 7733 SDLoc dl(Op); 7734 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7735 SDValue StoreChain = SN->getChain(); 7736 SDValue BasePtr = SN->getBasePtr(); 7737 SDValue Value = SN->getValue(); 7738 7739 if (Value.getValueType() == MVT::v4f64 || 7740 Value.getValueType() == MVT::v4f32) { 7741 EVT MemVT = SN->getMemoryVT(); 7742 unsigned Alignment = SN->getAlignment(); 7743 7744 // If this store is properly aligned, then it is legal. 7745 if (Alignment >= MemVT.getStoreSize()) 7746 return Op; 7747 7748 EVT ScalarVT = Value.getValueType().getScalarType(), 7749 ScalarMemVT = MemVT.getScalarType(); 7750 unsigned Stride = ScalarMemVT.getStoreSize(); 7751 7752 SmallVector<SDValue, 8> Stores; 7753 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7754 SDValue Ex = DAG.getNode( 7755 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7756 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7757 SDValue Store; 7758 if (ScalarVT != ScalarMemVT) 7759 Store = 7760 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7761 SN->getPointerInfo().getWithOffset(Idx*Stride), 7762 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7763 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7764 else 7765 Store = 7766 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7767 SN->getPointerInfo().getWithOffset(Idx*Stride), 7768 SN->isVolatile(), SN->isNonTemporal(), 7769 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7770 7771 if (Idx == 0 && SN->isIndexed()) { 7772 assert(SN->getAddressingMode() == ISD::PRE_INC && 7773 "Unknown addressing mode on vector store"); 7774 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7775 SN->getAddressingMode()); 7776 } 7777 7778 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7779 DAG.getConstant(Stride, dl, 7780 BasePtr.getValueType())); 7781 Stores.push_back(Store); 7782 } 7783 7784 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7785 7786 if (SN->isIndexed()) { 7787 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7788 return DAG.getMergeValues(RetOps, dl); 7789 } 7790 7791 return TF; 7792 } 7793 7794 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7795 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7796 7797 // The values are now known to be -1 (false) or 1 (true). To convert this 7798 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7799 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7800 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7801 7802 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7803 // understand how to form the extending load. 7804 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7805 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7806 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7807 7808 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7809 7810 // Now convert to an integer and store. 7811 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7812 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7813 Value); 7814 7815 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7816 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7817 MachinePointerInfo PtrInfo = 7818 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7819 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7820 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7821 7822 SmallVector<SDValue, 2> Ops; 7823 Ops.push_back(StoreChain); 7824 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7825 Ops.push_back(Value); 7826 Ops.push_back(FIdx); 7827 7828 SmallVector<EVT, 2> ValueVTs; 7829 ValueVTs.push_back(MVT::Other); // chain 7830 SDVTList VTs = DAG.getVTList(ValueVTs); 7831 7832 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7833 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7834 7835 // Move data into the byte array. 7836 SmallVector<SDValue, 4> Loads, LoadChains; 7837 for (unsigned i = 0; i < 4; ++i) { 7838 unsigned Offset = 4*i; 7839 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7840 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7841 7842 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7843 PtrInfo.getWithOffset(Offset), 7844 false, false, false, 0)); 7845 LoadChains.push_back(Loads[i].getValue(1)); 7846 } 7847 7848 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7849 7850 SmallVector<SDValue, 4> Stores; 7851 for (unsigned i = 0; i < 4; ++i) { 7852 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7853 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7854 7855 Stores.push_back(DAG.getTruncStore( 7856 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7857 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7858 1 /* alignment */, SN->getAAInfo())); 7859 } 7860 7861 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7862 7863 return StoreChain; 7864 } 7865 7866 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7867 SDLoc dl(Op); 7868 if (Op.getValueType() == MVT::v4i32) { 7869 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7870 7871 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7872 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7873 7874 SDValue RHSSwap = // = vrlw RHS, 16 7875 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7876 7877 // Shrinkify inputs to v8i16. 7878 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7879 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7880 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7881 7882 // Low parts multiplied together, generating 32-bit results (we ignore the 7883 // top parts). 7884 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7885 LHS, RHS, DAG, dl, MVT::v4i32); 7886 7887 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7888 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7889 // Shift the high parts up 16 bits. 7890 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7891 Neg16, DAG, dl); 7892 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7893 } else if (Op.getValueType() == MVT::v8i16) { 7894 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7895 7896 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7897 7898 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7899 LHS, RHS, Zero, DAG, dl); 7900 } else if (Op.getValueType() == MVT::v16i8) { 7901 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7902 bool isLittleEndian = Subtarget.isLittleEndian(); 7903 7904 // Multiply the even 8-bit parts, producing 16-bit sums. 7905 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7906 LHS, RHS, DAG, dl, MVT::v8i16); 7907 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7908 7909 // Multiply the odd 8-bit parts, producing 16-bit sums. 7910 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7911 LHS, RHS, DAG, dl, MVT::v8i16); 7912 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7913 7914 // Merge the results together. Because vmuleub and vmuloub are 7915 // instructions with a big-endian bias, we must reverse the 7916 // element numbering and reverse the meaning of "odd" and "even" 7917 // when generating little endian code. 7918 int Ops[16]; 7919 for (unsigned i = 0; i != 8; ++i) { 7920 if (isLittleEndian) { 7921 Ops[i*2 ] = 2*i; 7922 Ops[i*2+1] = 2*i+16; 7923 } else { 7924 Ops[i*2 ] = 2*i+1; 7925 Ops[i*2+1] = 2*i+1+16; 7926 } 7927 } 7928 if (isLittleEndian) 7929 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7930 else 7931 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7932 } else { 7933 llvm_unreachable("Unknown mul to lower!"); 7934 } 7935 } 7936 7937 /// LowerOperation - Provide custom lowering hooks for some operations. 7938 /// 7939 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7940 switch (Op.getOpcode()) { 7941 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7942 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7943 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7944 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7945 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7946 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7947 case ISD::SETCC: return LowerSETCC(Op, DAG); 7948 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7949 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7950 case ISD::VASTART: 7951 return LowerVASTART(Op, DAG, Subtarget); 7952 7953 case ISD::VAARG: 7954 return LowerVAARG(Op, DAG, Subtarget); 7955 7956 case ISD::VACOPY: 7957 return LowerVACOPY(Op, DAG, Subtarget); 7958 7959 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7960 case ISD::DYNAMIC_STACKALLOC: 7961 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7962 case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget); 7963 7964 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7965 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7966 7967 case ISD::LOAD: return LowerLOAD(Op, DAG); 7968 case ISD::STORE: return LowerSTORE(Op, DAG); 7969 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7970 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7971 case ISD::FP_TO_UINT: 7972 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7973 SDLoc(Op)); 7974 case ISD::UINT_TO_FP: 7975 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7976 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7977 7978 // Lower 64-bit shifts. 7979 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7980 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7981 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7982 7983 // Vector-related lowering. 7984 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7985 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7986 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7987 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7988 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7989 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7990 case ISD::MUL: return LowerMUL(Op, DAG); 7991 7992 // For counter-based loop handling. 7993 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7994 7995 // Frame & Return address. 7996 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7997 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7998 } 7999 } 8000 8001 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8002 SmallVectorImpl<SDValue>&Results, 8003 SelectionDAG &DAG) const { 8004 SDLoc dl(N); 8005 switch (N->getOpcode()) { 8006 default: 8007 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8008 case ISD::READCYCLECOUNTER: { 8009 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8010 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8011 8012 Results.push_back(RTB); 8013 Results.push_back(RTB.getValue(1)); 8014 Results.push_back(RTB.getValue(2)); 8015 break; 8016 } 8017 case ISD::INTRINSIC_W_CHAIN: { 8018 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8019 Intrinsic::ppc_is_decremented_ctr_nonzero) 8020 break; 8021 8022 assert(N->getValueType(0) == MVT::i1 && 8023 "Unexpected result type for CTR decrement intrinsic"); 8024 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8025 N->getValueType(0)); 8026 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8027 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8028 N->getOperand(1)); 8029 8030 Results.push_back(NewInt); 8031 Results.push_back(NewInt.getValue(1)); 8032 break; 8033 } 8034 case ISD::VAARG: { 8035 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8036 return; 8037 8038 EVT VT = N->getValueType(0); 8039 8040 if (VT == MVT::i64) { 8041 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8042 8043 Results.push_back(NewNode); 8044 Results.push_back(NewNode.getValue(1)); 8045 } 8046 return; 8047 } 8048 case ISD::FP_ROUND_INREG: { 8049 assert(N->getValueType(0) == MVT::ppcf128); 8050 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8051 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8052 MVT::f64, N->getOperand(0), 8053 DAG.getIntPtrConstant(0, dl)); 8054 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8055 MVT::f64, N->getOperand(0), 8056 DAG.getIntPtrConstant(1, dl)); 8057 8058 // Add the two halves of the long double in round-to-zero mode. 8059 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8060 8061 // We know the low half is about to be thrown away, so just use something 8062 // convenient. 8063 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8064 FPreg, FPreg)); 8065 return; 8066 } 8067 case ISD::FP_TO_SINT: 8068 case ISD::FP_TO_UINT: 8069 // LowerFP_TO_INT() can only handle f32 and f64. 8070 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8071 return; 8072 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8073 return; 8074 } 8075 } 8076 8077 //===----------------------------------------------------------------------===// 8078 // Other Lowering Code 8079 //===----------------------------------------------------------------------===// 8080 8081 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8082 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8083 Function *Func = Intrinsic::getDeclaration(M, Id); 8084 return Builder.CreateCall(Func, {}); 8085 } 8086 8087 // The mappings for emitLeading/TrailingFence is taken from 8088 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8089 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8090 AtomicOrdering Ord, bool IsStore, 8091 bool IsLoad) const { 8092 if (Ord == SequentiallyConsistent) 8093 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8094 if (isAtLeastRelease(Ord)) 8095 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8096 return nullptr; 8097 } 8098 8099 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8100 AtomicOrdering Ord, bool IsStore, 8101 bool IsLoad) const { 8102 if (IsLoad && isAtLeastAcquire(Ord)) 8103 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8104 // FIXME: this is too conservative, a dependent branch + isync is enough. 8105 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8106 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8107 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8108 return nullptr; 8109 } 8110 8111 MachineBasicBlock * 8112 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8113 unsigned AtomicSize, 8114 unsigned BinOpcode) const { 8115 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8116 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8117 8118 auto LoadMnemonic = PPC::LDARX; 8119 auto StoreMnemonic = PPC::STDCX; 8120 switch (AtomicSize) { 8121 default: 8122 llvm_unreachable("Unexpected size of atomic entity"); 8123 case 1: 8124 LoadMnemonic = PPC::LBARX; 8125 StoreMnemonic = PPC::STBCX; 8126 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8127 break; 8128 case 2: 8129 LoadMnemonic = PPC::LHARX; 8130 StoreMnemonic = PPC::STHCX; 8131 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8132 break; 8133 case 4: 8134 LoadMnemonic = PPC::LWARX; 8135 StoreMnemonic = PPC::STWCX; 8136 break; 8137 case 8: 8138 LoadMnemonic = PPC::LDARX; 8139 StoreMnemonic = PPC::STDCX; 8140 break; 8141 } 8142 8143 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8144 MachineFunction *F = BB->getParent(); 8145 MachineFunction::iterator It = ++BB->getIterator(); 8146 8147 unsigned dest = MI->getOperand(0).getReg(); 8148 unsigned ptrA = MI->getOperand(1).getReg(); 8149 unsigned ptrB = MI->getOperand(2).getReg(); 8150 unsigned incr = MI->getOperand(3).getReg(); 8151 DebugLoc dl = MI->getDebugLoc(); 8152 8153 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8154 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8155 F->insert(It, loopMBB); 8156 F->insert(It, exitMBB); 8157 exitMBB->splice(exitMBB->begin(), BB, 8158 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8159 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8160 8161 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8162 unsigned TmpReg = (!BinOpcode) ? incr : 8163 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8164 : &PPC::GPRCRegClass); 8165 8166 // thisMBB: 8167 // ... 8168 // fallthrough --> loopMBB 8169 BB->addSuccessor(loopMBB); 8170 8171 // loopMBB: 8172 // l[wd]arx dest, ptr 8173 // add r0, dest, incr 8174 // st[wd]cx. r0, ptr 8175 // bne- loopMBB 8176 // fallthrough --> exitMBB 8177 BB = loopMBB; 8178 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8179 .addReg(ptrA).addReg(ptrB); 8180 if (BinOpcode) 8181 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8182 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8183 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8184 BuildMI(BB, dl, TII->get(PPC::BCC)) 8185 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8186 BB->addSuccessor(loopMBB); 8187 BB->addSuccessor(exitMBB); 8188 8189 // exitMBB: 8190 // ... 8191 BB = exitMBB; 8192 return BB; 8193 } 8194 8195 MachineBasicBlock * 8196 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8197 MachineBasicBlock *BB, 8198 bool is8bit, // operation 8199 unsigned BinOpcode) const { 8200 // If we support part-word atomic mnemonics, just use them 8201 if (Subtarget.hasPartwordAtomics()) 8202 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8203 8204 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8205 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8206 // In 64 bit mode we have to use 64 bits for addresses, even though the 8207 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8208 // registers without caring whether they're 32 or 64, but here we're 8209 // doing actual arithmetic on the addresses. 8210 bool is64bit = Subtarget.isPPC64(); 8211 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8212 8213 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8214 MachineFunction *F = BB->getParent(); 8215 MachineFunction::iterator It = ++BB->getIterator(); 8216 8217 unsigned dest = MI->getOperand(0).getReg(); 8218 unsigned ptrA = MI->getOperand(1).getReg(); 8219 unsigned ptrB = MI->getOperand(2).getReg(); 8220 unsigned incr = MI->getOperand(3).getReg(); 8221 DebugLoc dl = MI->getDebugLoc(); 8222 8223 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8224 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8225 F->insert(It, loopMBB); 8226 F->insert(It, exitMBB); 8227 exitMBB->splice(exitMBB->begin(), BB, 8228 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8229 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8230 8231 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8232 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8233 : &PPC::GPRCRegClass; 8234 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8235 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8236 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8237 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8238 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8239 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8240 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8241 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8242 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8243 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8244 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8245 unsigned Ptr1Reg; 8246 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8247 8248 // thisMBB: 8249 // ... 8250 // fallthrough --> loopMBB 8251 BB->addSuccessor(loopMBB); 8252 8253 // The 4-byte load must be aligned, while a char or short may be 8254 // anywhere in the word. Hence all this nasty bookkeeping code. 8255 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8256 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8257 // xori shift, shift1, 24 [16] 8258 // rlwinm ptr, ptr1, 0, 0, 29 8259 // slw incr2, incr, shift 8260 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8261 // slw mask, mask2, shift 8262 // loopMBB: 8263 // lwarx tmpDest, ptr 8264 // add tmp, tmpDest, incr2 8265 // andc tmp2, tmpDest, mask 8266 // and tmp3, tmp, mask 8267 // or tmp4, tmp3, tmp2 8268 // stwcx. tmp4, ptr 8269 // bne- loopMBB 8270 // fallthrough --> exitMBB 8271 // srw dest, tmpDest, shift 8272 if (ptrA != ZeroReg) { 8273 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8274 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8275 .addReg(ptrA).addReg(ptrB); 8276 } else { 8277 Ptr1Reg = ptrB; 8278 } 8279 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8280 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8281 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8282 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8283 if (is64bit) 8284 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8285 .addReg(Ptr1Reg).addImm(0).addImm(61); 8286 else 8287 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8288 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8289 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8290 .addReg(incr).addReg(ShiftReg); 8291 if (is8bit) 8292 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8293 else { 8294 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8295 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8296 } 8297 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8298 .addReg(Mask2Reg).addReg(ShiftReg); 8299 8300 BB = loopMBB; 8301 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8302 .addReg(ZeroReg).addReg(PtrReg); 8303 if (BinOpcode) 8304 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8305 .addReg(Incr2Reg).addReg(TmpDestReg); 8306 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8307 .addReg(TmpDestReg).addReg(MaskReg); 8308 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8309 .addReg(TmpReg).addReg(MaskReg); 8310 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8311 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8312 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8313 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8314 BuildMI(BB, dl, TII->get(PPC::BCC)) 8315 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8316 BB->addSuccessor(loopMBB); 8317 BB->addSuccessor(exitMBB); 8318 8319 // exitMBB: 8320 // ... 8321 BB = exitMBB; 8322 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8323 .addReg(ShiftReg); 8324 return BB; 8325 } 8326 8327 llvm::MachineBasicBlock* 8328 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8329 MachineBasicBlock *MBB) const { 8330 DebugLoc DL = MI->getDebugLoc(); 8331 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8332 8333 MachineFunction *MF = MBB->getParent(); 8334 MachineRegisterInfo &MRI = MF->getRegInfo(); 8335 8336 const BasicBlock *BB = MBB->getBasicBlock(); 8337 MachineFunction::iterator I = ++MBB->getIterator(); 8338 8339 // Memory Reference 8340 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8341 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8342 8343 unsigned DstReg = MI->getOperand(0).getReg(); 8344 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8345 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8346 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8347 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8348 8349 MVT PVT = getPointerTy(MF->getDataLayout()); 8350 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8351 "Invalid Pointer Size!"); 8352 // For v = setjmp(buf), we generate 8353 // 8354 // thisMBB: 8355 // SjLjSetup mainMBB 8356 // bl mainMBB 8357 // v_restore = 1 8358 // b sinkMBB 8359 // 8360 // mainMBB: 8361 // buf[LabelOffset] = LR 8362 // v_main = 0 8363 // 8364 // sinkMBB: 8365 // v = phi(main, restore) 8366 // 8367 8368 MachineBasicBlock *thisMBB = MBB; 8369 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8370 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8371 MF->insert(I, mainMBB); 8372 MF->insert(I, sinkMBB); 8373 8374 MachineInstrBuilder MIB; 8375 8376 // Transfer the remainder of BB and its successor edges to sinkMBB. 8377 sinkMBB->splice(sinkMBB->begin(), MBB, 8378 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8379 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8380 8381 // Note that the structure of the jmp_buf used here is not compatible 8382 // with that used by libc, and is not designed to be. Specifically, it 8383 // stores only those 'reserved' registers that LLVM does not otherwise 8384 // understand how to spill. Also, by convention, by the time this 8385 // intrinsic is called, Clang has already stored the frame address in the 8386 // first slot of the buffer and stack address in the third. Following the 8387 // X86 target code, we'll store the jump address in the second slot. We also 8388 // need to save the TOC pointer (R2) to handle jumps between shared 8389 // libraries, and that will be stored in the fourth slot. The thread 8390 // identifier (R13) is not affected. 8391 8392 // thisMBB: 8393 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8394 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8395 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8396 8397 // Prepare IP either in reg. 8398 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8399 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8400 unsigned BufReg = MI->getOperand(1).getReg(); 8401 8402 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8403 setUsesTOCBasePtr(*MBB->getParent()); 8404 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8405 .addReg(PPC::X2) 8406 .addImm(TOCOffset) 8407 .addReg(BufReg); 8408 MIB.setMemRefs(MMOBegin, MMOEnd); 8409 } 8410 8411 // Naked functions never have a base pointer, and so we use r1. For all 8412 // other functions, this decision must be delayed until during PEI. 8413 unsigned BaseReg; 8414 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8415 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8416 else 8417 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8418 8419 MIB = BuildMI(*thisMBB, MI, DL, 8420 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8421 .addReg(BaseReg) 8422 .addImm(BPOffset) 8423 .addReg(BufReg); 8424 MIB.setMemRefs(MMOBegin, MMOEnd); 8425 8426 // Setup 8427 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8428 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8429 MIB.addRegMask(TRI->getNoPreservedMask()); 8430 8431 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8432 8433 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8434 .addMBB(mainMBB); 8435 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8436 8437 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8438 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8439 8440 // mainMBB: 8441 // mainDstReg = 0 8442 MIB = 8443 BuildMI(mainMBB, DL, 8444 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8445 8446 // Store IP 8447 if (Subtarget.isPPC64()) { 8448 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8449 .addReg(LabelReg) 8450 .addImm(LabelOffset) 8451 .addReg(BufReg); 8452 } else { 8453 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8454 .addReg(LabelReg) 8455 .addImm(LabelOffset) 8456 .addReg(BufReg); 8457 } 8458 8459 MIB.setMemRefs(MMOBegin, MMOEnd); 8460 8461 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8462 mainMBB->addSuccessor(sinkMBB); 8463 8464 // sinkMBB: 8465 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8466 TII->get(PPC::PHI), DstReg) 8467 .addReg(mainDstReg).addMBB(mainMBB) 8468 .addReg(restoreDstReg).addMBB(thisMBB); 8469 8470 MI->eraseFromParent(); 8471 return sinkMBB; 8472 } 8473 8474 MachineBasicBlock * 8475 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8476 MachineBasicBlock *MBB) const { 8477 DebugLoc DL = MI->getDebugLoc(); 8478 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8479 8480 MachineFunction *MF = MBB->getParent(); 8481 MachineRegisterInfo &MRI = MF->getRegInfo(); 8482 8483 // Memory Reference 8484 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8485 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8486 8487 MVT PVT = getPointerTy(MF->getDataLayout()); 8488 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8489 "Invalid Pointer Size!"); 8490 8491 const TargetRegisterClass *RC = 8492 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8493 unsigned Tmp = MRI.createVirtualRegister(RC); 8494 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8495 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8496 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8497 unsigned BP = 8498 (PVT == MVT::i64) 8499 ? PPC::X30 8500 : (Subtarget.isSVR4ABI() && 8501 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8502 ? PPC::R29 8503 : PPC::R30); 8504 8505 MachineInstrBuilder MIB; 8506 8507 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8508 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8509 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8510 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8511 8512 unsigned BufReg = MI->getOperand(0).getReg(); 8513 8514 // Reload FP (the jumped-to function may not have had a 8515 // frame pointer, and if so, then its r31 will be restored 8516 // as necessary). 8517 if (PVT == MVT::i64) { 8518 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8519 .addImm(0) 8520 .addReg(BufReg); 8521 } else { 8522 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8523 .addImm(0) 8524 .addReg(BufReg); 8525 } 8526 MIB.setMemRefs(MMOBegin, MMOEnd); 8527 8528 // Reload IP 8529 if (PVT == MVT::i64) { 8530 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8531 .addImm(LabelOffset) 8532 .addReg(BufReg); 8533 } else { 8534 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8535 .addImm(LabelOffset) 8536 .addReg(BufReg); 8537 } 8538 MIB.setMemRefs(MMOBegin, MMOEnd); 8539 8540 // Reload SP 8541 if (PVT == MVT::i64) { 8542 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8543 .addImm(SPOffset) 8544 .addReg(BufReg); 8545 } else { 8546 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8547 .addImm(SPOffset) 8548 .addReg(BufReg); 8549 } 8550 MIB.setMemRefs(MMOBegin, MMOEnd); 8551 8552 // Reload BP 8553 if (PVT == MVT::i64) { 8554 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8555 .addImm(BPOffset) 8556 .addReg(BufReg); 8557 } else { 8558 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8559 .addImm(BPOffset) 8560 .addReg(BufReg); 8561 } 8562 MIB.setMemRefs(MMOBegin, MMOEnd); 8563 8564 // Reload TOC 8565 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8566 setUsesTOCBasePtr(*MBB->getParent()); 8567 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8568 .addImm(TOCOffset) 8569 .addReg(BufReg); 8570 8571 MIB.setMemRefs(MMOBegin, MMOEnd); 8572 } 8573 8574 // Jump 8575 BuildMI(*MBB, MI, DL, 8576 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8577 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8578 8579 MI->eraseFromParent(); 8580 return MBB; 8581 } 8582 8583 MachineBasicBlock * 8584 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8585 MachineBasicBlock *BB) const { 8586 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8587 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8588 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8589 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8590 // Call lowering should have added an r2 operand to indicate a dependence 8591 // on the TOC base pointer value. It can't however, because there is no 8592 // way to mark the dependence as implicit there, and so the stackmap code 8593 // will confuse it with a regular operand. Instead, add the dependence 8594 // here. 8595 setUsesTOCBasePtr(*BB->getParent()); 8596 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8597 } 8598 8599 return emitPatchPoint(MI, BB); 8600 } 8601 8602 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8603 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8604 return emitEHSjLjSetJmp(MI, BB); 8605 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8606 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8607 return emitEHSjLjLongJmp(MI, BB); 8608 } 8609 8610 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8611 8612 // To "insert" these instructions we actually have to insert their 8613 // control-flow patterns. 8614 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8615 MachineFunction::iterator It = ++BB->getIterator(); 8616 8617 MachineFunction *F = BB->getParent(); 8618 8619 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8620 MI->getOpcode() == PPC::SELECT_CC_I8 || 8621 MI->getOpcode() == PPC::SELECT_I4 || 8622 MI->getOpcode() == PPC::SELECT_I8)) { 8623 SmallVector<MachineOperand, 2> Cond; 8624 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8625 MI->getOpcode() == PPC::SELECT_CC_I8) 8626 Cond.push_back(MI->getOperand(4)); 8627 else 8628 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8629 Cond.push_back(MI->getOperand(1)); 8630 8631 DebugLoc dl = MI->getDebugLoc(); 8632 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8633 Cond, MI->getOperand(2).getReg(), 8634 MI->getOperand(3).getReg()); 8635 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8636 MI->getOpcode() == PPC::SELECT_CC_I8 || 8637 MI->getOpcode() == PPC::SELECT_CC_F4 || 8638 MI->getOpcode() == PPC::SELECT_CC_F8 || 8639 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8640 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8641 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8642 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8643 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8644 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8645 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8646 MI->getOpcode() == PPC::SELECT_I4 || 8647 MI->getOpcode() == PPC::SELECT_I8 || 8648 MI->getOpcode() == PPC::SELECT_F4 || 8649 MI->getOpcode() == PPC::SELECT_F8 || 8650 MI->getOpcode() == PPC::SELECT_QFRC || 8651 MI->getOpcode() == PPC::SELECT_QSRC || 8652 MI->getOpcode() == PPC::SELECT_QBRC || 8653 MI->getOpcode() == PPC::SELECT_VRRC || 8654 MI->getOpcode() == PPC::SELECT_VSFRC || 8655 MI->getOpcode() == PPC::SELECT_VSSRC || 8656 MI->getOpcode() == PPC::SELECT_VSRC) { 8657 // The incoming instruction knows the destination vreg to set, the 8658 // condition code register to branch on, the true/false values to 8659 // select between, and a branch opcode to use. 8660 8661 // thisMBB: 8662 // ... 8663 // TrueVal = ... 8664 // cmpTY ccX, r1, r2 8665 // bCC copy1MBB 8666 // fallthrough --> copy0MBB 8667 MachineBasicBlock *thisMBB = BB; 8668 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8669 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8670 DebugLoc dl = MI->getDebugLoc(); 8671 F->insert(It, copy0MBB); 8672 F->insert(It, sinkMBB); 8673 8674 // Transfer the remainder of BB and its successor edges to sinkMBB. 8675 sinkMBB->splice(sinkMBB->begin(), BB, 8676 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8677 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8678 8679 // Next, add the true and fallthrough blocks as its successors. 8680 BB->addSuccessor(copy0MBB); 8681 BB->addSuccessor(sinkMBB); 8682 8683 if (MI->getOpcode() == PPC::SELECT_I4 || 8684 MI->getOpcode() == PPC::SELECT_I8 || 8685 MI->getOpcode() == PPC::SELECT_F4 || 8686 MI->getOpcode() == PPC::SELECT_F8 || 8687 MI->getOpcode() == PPC::SELECT_QFRC || 8688 MI->getOpcode() == PPC::SELECT_QSRC || 8689 MI->getOpcode() == PPC::SELECT_QBRC || 8690 MI->getOpcode() == PPC::SELECT_VRRC || 8691 MI->getOpcode() == PPC::SELECT_VSFRC || 8692 MI->getOpcode() == PPC::SELECT_VSSRC || 8693 MI->getOpcode() == PPC::SELECT_VSRC) { 8694 BuildMI(BB, dl, TII->get(PPC::BC)) 8695 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8696 } else { 8697 unsigned SelectPred = MI->getOperand(4).getImm(); 8698 BuildMI(BB, dl, TII->get(PPC::BCC)) 8699 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8700 } 8701 8702 // copy0MBB: 8703 // %FalseValue = ... 8704 // # fallthrough to sinkMBB 8705 BB = copy0MBB; 8706 8707 // Update machine-CFG edges 8708 BB->addSuccessor(sinkMBB); 8709 8710 // sinkMBB: 8711 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8712 // ... 8713 BB = sinkMBB; 8714 BuildMI(*BB, BB->begin(), dl, 8715 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8716 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8717 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8718 } else if (MI->getOpcode() == PPC::ReadTB) { 8719 // To read the 64-bit time-base register on a 32-bit target, we read the 8720 // two halves. Should the counter have wrapped while it was being read, we 8721 // need to try again. 8722 // ... 8723 // readLoop: 8724 // mfspr Rx,TBU # load from TBU 8725 // mfspr Ry,TB # load from TB 8726 // mfspr Rz,TBU # load from TBU 8727 // cmpw crX,Rx,Rz # check if 'old'='new' 8728 // bne readLoop # branch if they're not equal 8729 // ... 8730 8731 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8732 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8733 DebugLoc dl = MI->getDebugLoc(); 8734 F->insert(It, readMBB); 8735 F->insert(It, sinkMBB); 8736 8737 // Transfer the remainder of BB and its successor edges to sinkMBB. 8738 sinkMBB->splice(sinkMBB->begin(), BB, 8739 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8740 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8741 8742 BB->addSuccessor(readMBB); 8743 BB = readMBB; 8744 8745 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8746 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8747 unsigned LoReg = MI->getOperand(0).getReg(); 8748 unsigned HiReg = MI->getOperand(1).getReg(); 8749 8750 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8751 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8752 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8753 8754 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8755 8756 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8757 .addReg(HiReg).addReg(ReadAgainReg); 8758 BuildMI(BB, dl, TII->get(PPC::BCC)) 8759 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8760 8761 BB->addSuccessor(readMBB); 8762 BB->addSuccessor(sinkMBB); 8763 } 8764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8765 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8766 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8767 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8768 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8769 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8770 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8771 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8772 8773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8774 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8776 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8777 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8778 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8779 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8780 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8781 8782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8783 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8785 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8786 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8787 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8788 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8789 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8790 8791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8792 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8794 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8795 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8796 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8797 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8798 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8799 8800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8801 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8803 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8804 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8805 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8806 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8807 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8808 8809 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8810 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8811 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8812 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8813 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8814 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8815 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8816 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8817 8818 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8819 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8820 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8821 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8822 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8823 BB = EmitAtomicBinary(MI, BB, 4, 0); 8824 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8825 BB = EmitAtomicBinary(MI, BB, 8, 0); 8826 8827 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8828 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8829 (Subtarget.hasPartwordAtomics() && 8830 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8831 (Subtarget.hasPartwordAtomics() && 8832 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8833 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8834 8835 auto LoadMnemonic = PPC::LDARX; 8836 auto StoreMnemonic = PPC::STDCX; 8837 switch(MI->getOpcode()) { 8838 default: 8839 llvm_unreachable("Compare and swap of unknown size"); 8840 case PPC::ATOMIC_CMP_SWAP_I8: 8841 LoadMnemonic = PPC::LBARX; 8842 StoreMnemonic = PPC::STBCX; 8843 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8844 break; 8845 case PPC::ATOMIC_CMP_SWAP_I16: 8846 LoadMnemonic = PPC::LHARX; 8847 StoreMnemonic = PPC::STHCX; 8848 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8849 break; 8850 case PPC::ATOMIC_CMP_SWAP_I32: 8851 LoadMnemonic = PPC::LWARX; 8852 StoreMnemonic = PPC::STWCX; 8853 break; 8854 case PPC::ATOMIC_CMP_SWAP_I64: 8855 LoadMnemonic = PPC::LDARX; 8856 StoreMnemonic = PPC::STDCX; 8857 break; 8858 } 8859 unsigned dest = MI->getOperand(0).getReg(); 8860 unsigned ptrA = MI->getOperand(1).getReg(); 8861 unsigned ptrB = MI->getOperand(2).getReg(); 8862 unsigned oldval = MI->getOperand(3).getReg(); 8863 unsigned newval = MI->getOperand(4).getReg(); 8864 DebugLoc dl = MI->getDebugLoc(); 8865 8866 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8867 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8868 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8869 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8870 F->insert(It, loop1MBB); 8871 F->insert(It, loop2MBB); 8872 F->insert(It, midMBB); 8873 F->insert(It, exitMBB); 8874 exitMBB->splice(exitMBB->begin(), BB, 8875 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8876 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8877 8878 // thisMBB: 8879 // ... 8880 // fallthrough --> loopMBB 8881 BB->addSuccessor(loop1MBB); 8882 8883 // loop1MBB: 8884 // l[bhwd]arx dest, ptr 8885 // cmp[wd] dest, oldval 8886 // bne- midMBB 8887 // loop2MBB: 8888 // st[bhwd]cx. newval, ptr 8889 // bne- loopMBB 8890 // b exitBB 8891 // midMBB: 8892 // st[bhwd]cx. dest, ptr 8893 // exitBB: 8894 BB = loop1MBB; 8895 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8896 .addReg(ptrA).addReg(ptrB); 8897 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8898 .addReg(oldval).addReg(dest); 8899 BuildMI(BB, dl, TII->get(PPC::BCC)) 8900 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8901 BB->addSuccessor(loop2MBB); 8902 BB->addSuccessor(midMBB); 8903 8904 BB = loop2MBB; 8905 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8906 .addReg(newval).addReg(ptrA).addReg(ptrB); 8907 BuildMI(BB, dl, TII->get(PPC::BCC)) 8908 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8909 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8910 BB->addSuccessor(loop1MBB); 8911 BB->addSuccessor(exitMBB); 8912 8913 BB = midMBB; 8914 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8915 .addReg(dest).addReg(ptrA).addReg(ptrB); 8916 BB->addSuccessor(exitMBB); 8917 8918 // exitMBB: 8919 // ... 8920 BB = exitMBB; 8921 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8922 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8923 // We must use 64-bit registers for addresses when targeting 64-bit, 8924 // since we're actually doing arithmetic on them. Other registers 8925 // can be 32-bit. 8926 bool is64bit = Subtarget.isPPC64(); 8927 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8928 8929 unsigned dest = MI->getOperand(0).getReg(); 8930 unsigned ptrA = MI->getOperand(1).getReg(); 8931 unsigned ptrB = MI->getOperand(2).getReg(); 8932 unsigned oldval = MI->getOperand(3).getReg(); 8933 unsigned newval = MI->getOperand(4).getReg(); 8934 DebugLoc dl = MI->getDebugLoc(); 8935 8936 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8937 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8938 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8939 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8940 F->insert(It, loop1MBB); 8941 F->insert(It, loop2MBB); 8942 F->insert(It, midMBB); 8943 F->insert(It, exitMBB); 8944 exitMBB->splice(exitMBB->begin(), BB, 8945 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8946 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8947 8948 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8949 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8950 : &PPC::GPRCRegClass; 8951 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8952 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8953 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8954 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8955 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8956 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8957 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8958 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8959 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8960 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8961 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8962 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8963 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8964 unsigned Ptr1Reg; 8965 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8966 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8967 // thisMBB: 8968 // ... 8969 // fallthrough --> loopMBB 8970 BB->addSuccessor(loop1MBB); 8971 8972 // The 4-byte load must be aligned, while a char or short may be 8973 // anywhere in the word. Hence all this nasty bookkeeping code. 8974 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8975 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8976 // xori shift, shift1, 24 [16] 8977 // rlwinm ptr, ptr1, 0, 0, 29 8978 // slw newval2, newval, shift 8979 // slw oldval2, oldval,shift 8980 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8981 // slw mask, mask2, shift 8982 // and newval3, newval2, mask 8983 // and oldval3, oldval2, mask 8984 // loop1MBB: 8985 // lwarx tmpDest, ptr 8986 // and tmp, tmpDest, mask 8987 // cmpw tmp, oldval3 8988 // bne- midMBB 8989 // loop2MBB: 8990 // andc tmp2, tmpDest, mask 8991 // or tmp4, tmp2, newval3 8992 // stwcx. tmp4, ptr 8993 // bne- loop1MBB 8994 // b exitBB 8995 // midMBB: 8996 // stwcx. tmpDest, ptr 8997 // exitBB: 8998 // srw dest, tmpDest, shift 8999 if (ptrA != ZeroReg) { 9000 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9001 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9002 .addReg(ptrA).addReg(ptrB); 9003 } else { 9004 Ptr1Reg = ptrB; 9005 } 9006 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9007 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9008 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9009 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9010 if (is64bit) 9011 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9012 .addReg(Ptr1Reg).addImm(0).addImm(61); 9013 else 9014 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9015 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9016 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9017 .addReg(newval).addReg(ShiftReg); 9018 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9019 .addReg(oldval).addReg(ShiftReg); 9020 if (is8bit) 9021 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9022 else { 9023 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9024 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9025 .addReg(Mask3Reg).addImm(65535); 9026 } 9027 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9028 .addReg(Mask2Reg).addReg(ShiftReg); 9029 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9030 .addReg(NewVal2Reg).addReg(MaskReg); 9031 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9032 .addReg(OldVal2Reg).addReg(MaskReg); 9033 9034 BB = loop1MBB; 9035 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9036 .addReg(ZeroReg).addReg(PtrReg); 9037 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9038 .addReg(TmpDestReg).addReg(MaskReg); 9039 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9040 .addReg(TmpReg).addReg(OldVal3Reg); 9041 BuildMI(BB, dl, TII->get(PPC::BCC)) 9042 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9043 BB->addSuccessor(loop2MBB); 9044 BB->addSuccessor(midMBB); 9045 9046 BB = loop2MBB; 9047 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9048 .addReg(TmpDestReg).addReg(MaskReg); 9049 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9050 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9051 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9052 .addReg(ZeroReg).addReg(PtrReg); 9053 BuildMI(BB, dl, TII->get(PPC::BCC)) 9054 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9055 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9056 BB->addSuccessor(loop1MBB); 9057 BB->addSuccessor(exitMBB); 9058 9059 BB = midMBB; 9060 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9061 .addReg(ZeroReg).addReg(PtrReg); 9062 BB->addSuccessor(exitMBB); 9063 9064 // exitMBB: 9065 // ... 9066 BB = exitMBB; 9067 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9068 .addReg(ShiftReg); 9069 } else if (MI->getOpcode() == PPC::FADDrtz) { 9070 // This pseudo performs an FADD with rounding mode temporarily forced 9071 // to round-to-zero. We emit this via custom inserter since the FPSCR 9072 // is not modeled at the SelectionDAG level. 9073 unsigned Dest = MI->getOperand(0).getReg(); 9074 unsigned Src1 = MI->getOperand(1).getReg(); 9075 unsigned Src2 = MI->getOperand(2).getReg(); 9076 DebugLoc dl = MI->getDebugLoc(); 9077 9078 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9079 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9080 9081 // Save FPSCR value. 9082 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9083 9084 // Set rounding mode to round-to-zero. 9085 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9086 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9087 9088 // Perform addition. 9089 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9090 9091 // Restore FPSCR value. 9092 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9093 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9094 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9095 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9096 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9097 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9098 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9099 PPC::ANDIo8 : PPC::ANDIo; 9100 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9101 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9102 9103 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9104 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9105 &PPC::GPRCRegClass : 9106 &PPC::G8RCRegClass); 9107 9108 DebugLoc dl = MI->getDebugLoc(); 9109 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9110 .addReg(MI->getOperand(1).getReg()).addImm(1); 9111 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9112 MI->getOperand(0).getReg()) 9113 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9114 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9115 DebugLoc Dl = MI->getDebugLoc(); 9116 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9117 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9118 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9119 return BB; 9120 } else { 9121 llvm_unreachable("Unexpected instr type to insert"); 9122 } 9123 9124 MI->eraseFromParent(); // The pseudo instruction is gone now. 9125 return BB; 9126 } 9127 9128 //===----------------------------------------------------------------------===// 9129 // Target Optimization Hooks 9130 //===----------------------------------------------------------------------===// 9131 9132 static std::string getRecipOp(const char *Base, EVT VT) { 9133 std::string RecipOp(Base); 9134 if (VT.getScalarType() == MVT::f64) 9135 RecipOp += "d"; 9136 else 9137 RecipOp += "f"; 9138 9139 if (VT.isVector()) 9140 RecipOp = "vec-" + RecipOp; 9141 9142 return RecipOp; 9143 } 9144 9145 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9146 DAGCombinerInfo &DCI, 9147 unsigned &RefinementSteps, 9148 bool &UseOneConstNR) const { 9149 EVT VT = Operand.getValueType(); 9150 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9151 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9152 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9153 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9154 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9155 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9156 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9157 std::string RecipOp = getRecipOp("sqrt", VT); 9158 if (!Recips.isEnabled(RecipOp)) 9159 return SDValue(); 9160 9161 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9162 UseOneConstNR = true; 9163 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9164 } 9165 return SDValue(); 9166 } 9167 9168 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9169 DAGCombinerInfo &DCI, 9170 unsigned &RefinementSteps) const { 9171 EVT VT = Operand.getValueType(); 9172 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9173 (VT == MVT::f64 && Subtarget.hasFRE()) || 9174 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9175 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9176 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9177 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9178 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9179 std::string RecipOp = getRecipOp("div", VT); 9180 if (!Recips.isEnabled(RecipOp)) 9181 return SDValue(); 9182 9183 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9184 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9185 } 9186 return SDValue(); 9187 } 9188 9189 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9190 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9191 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9192 // enabled for division), this functionality is redundant with the default 9193 // combiner logic (once the division -> reciprocal/multiply transformation 9194 // has taken place). As a result, this matters more for older cores than for 9195 // newer ones. 9196 9197 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9198 // reciprocal if there are two or more FDIVs (for embedded cores with only 9199 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9200 switch (Subtarget.getDarwinDirective()) { 9201 default: 9202 return 3; 9203 case PPC::DIR_440: 9204 case PPC::DIR_A2: 9205 case PPC::DIR_E500mc: 9206 case PPC::DIR_E5500: 9207 return 2; 9208 } 9209 } 9210 9211 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9212 // collapsed, and so we need to look through chains of them. 9213 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9214 int64_t& Offset, SelectionDAG &DAG) { 9215 if (DAG.isBaseWithConstantOffset(Loc)) { 9216 Base = Loc.getOperand(0); 9217 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9218 9219 // The base might itself be a base plus an offset, and if so, accumulate 9220 // that as well. 9221 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9222 } 9223 } 9224 9225 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9226 unsigned Bytes, int Dist, 9227 SelectionDAG &DAG) { 9228 if (VT.getSizeInBits() / 8 != Bytes) 9229 return false; 9230 9231 SDValue BaseLoc = Base->getBasePtr(); 9232 if (Loc.getOpcode() == ISD::FrameIndex) { 9233 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9234 return false; 9235 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9236 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9237 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9238 int FS = MFI->getObjectSize(FI); 9239 int BFS = MFI->getObjectSize(BFI); 9240 if (FS != BFS || FS != (int)Bytes) return false; 9241 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9242 } 9243 9244 SDValue Base1 = Loc, Base2 = BaseLoc; 9245 int64_t Offset1 = 0, Offset2 = 0; 9246 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9247 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9248 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9249 return true; 9250 9251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9252 const GlobalValue *GV1 = nullptr; 9253 const GlobalValue *GV2 = nullptr; 9254 Offset1 = 0; 9255 Offset2 = 0; 9256 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9257 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9258 if (isGA1 && isGA2 && GV1 == GV2) 9259 return Offset1 == (Offset2 + Dist*Bytes); 9260 return false; 9261 } 9262 9263 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9264 // not enforce equality of the chain operands. 9265 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9266 unsigned Bytes, int Dist, 9267 SelectionDAG &DAG) { 9268 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9269 EVT VT = LS->getMemoryVT(); 9270 SDValue Loc = LS->getBasePtr(); 9271 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9272 } 9273 9274 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9275 EVT VT; 9276 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9277 default: return false; 9278 case Intrinsic::ppc_qpx_qvlfd: 9279 case Intrinsic::ppc_qpx_qvlfda: 9280 VT = MVT::v4f64; 9281 break; 9282 case Intrinsic::ppc_qpx_qvlfs: 9283 case Intrinsic::ppc_qpx_qvlfsa: 9284 VT = MVT::v4f32; 9285 break; 9286 case Intrinsic::ppc_qpx_qvlfcd: 9287 case Intrinsic::ppc_qpx_qvlfcda: 9288 VT = MVT::v2f64; 9289 break; 9290 case Intrinsic::ppc_qpx_qvlfcs: 9291 case Intrinsic::ppc_qpx_qvlfcsa: 9292 VT = MVT::v2f32; 9293 break; 9294 case Intrinsic::ppc_qpx_qvlfiwa: 9295 case Intrinsic::ppc_qpx_qvlfiwz: 9296 case Intrinsic::ppc_altivec_lvx: 9297 case Intrinsic::ppc_altivec_lvxl: 9298 case Intrinsic::ppc_vsx_lxvw4x: 9299 VT = MVT::v4i32; 9300 break; 9301 case Intrinsic::ppc_vsx_lxvd2x: 9302 VT = MVT::v2f64; 9303 break; 9304 case Intrinsic::ppc_altivec_lvebx: 9305 VT = MVT::i8; 9306 break; 9307 case Intrinsic::ppc_altivec_lvehx: 9308 VT = MVT::i16; 9309 break; 9310 case Intrinsic::ppc_altivec_lvewx: 9311 VT = MVT::i32; 9312 break; 9313 } 9314 9315 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9316 } 9317 9318 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9319 EVT VT; 9320 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9321 default: return false; 9322 case Intrinsic::ppc_qpx_qvstfd: 9323 case Intrinsic::ppc_qpx_qvstfda: 9324 VT = MVT::v4f64; 9325 break; 9326 case Intrinsic::ppc_qpx_qvstfs: 9327 case Intrinsic::ppc_qpx_qvstfsa: 9328 VT = MVT::v4f32; 9329 break; 9330 case Intrinsic::ppc_qpx_qvstfcd: 9331 case Intrinsic::ppc_qpx_qvstfcda: 9332 VT = MVT::v2f64; 9333 break; 9334 case Intrinsic::ppc_qpx_qvstfcs: 9335 case Intrinsic::ppc_qpx_qvstfcsa: 9336 VT = MVT::v2f32; 9337 break; 9338 case Intrinsic::ppc_qpx_qvstfiw: 9339 case Intrinsic::ppc_qpx_qvstfiwa: 9340 case Intrinsic::ppc_altivec_stvx: 9341 case Intrinsic::ppc_altivec_stvxl: 9342 case Intrinsic::ppc_vsx_stxvw4x: 9343 VT = MVT::v4i32; 9344 break; 9345 case Intrinsic::ppc_vsx_stxvd2x: 9346 VT = MVT::v2f64; 9347 break; 9348 case Intrinsic::ppc_altivec_stvebx: 9349 VT = MVT::i8; 9350 break; 9351 case Intrinsic::ppc_altivec_stvehx: 9352 VT = MVT::i16; 9353 break; 9354 case Intrinsic::ppc_altivec_stvewx: 9355 VT = MVT::i32; 9356 break; 9357 } 9358 9359 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9360 } 9361 9362 return false; 9363 } 9364 9365 // Return true is there is a nearyby consecutive load to the one provided 9366 // (regardless of alignment). We search up and down the chain, looking though 9367 // token factors and other loads (but nothing else). As a result, a true result 9368 // indicates that it is safe to create a new consecutive load adjacent to the 9369 // load provided. 9370 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9371 SDValue Chain = LD->getChain(); 9372 EVT VT = LD->getMemoryVT(); 9373 9374 SmallSet<SDNode *, 16> LoadRoots; 9375 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9376 SmallSet<SDNode *, 16> Visited; 9377 9378 // First, search up the chain, branching to follow all token-factor operands. 9379 // If we find a consecutive load, then we're done, otherwise, record all 9380 // nodes just above the top-level loads and token factors. 9381 while (!Queue.empty()) { 9382 SDNode *ChainNext = Queue.pop_back_val(); 9383 if (!Visited.insert(ChainNext).second) 9384 continue; 9385 9386 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9387 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9388 return true; 9389 9390 if (!Visited.count(ChainLD->getChain().getNode())) 9391 Queue.push_back(ChainLD->getChain().getNode()); 9392 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9393 for (const SDUse &O : ChainNext->ops()) 9394 if (!Visited.count(O.getNode())) 9395 Queue.push_back(O.getNode()); 9396 } else 9397 LoadRoots.insert(ChainNext); 9398 } 9399 9400 // Second, search down the chain, starting from the top-level nodes recorded 9401 // in the first phase. These top-level nodes are the nodes just above all 9402 // loads and token factors. Starting with their uses, recursively look though 9403 // all loads (just the chain uses) and token factors to find a consecutive 9404 // load. 9405 Visited.clear(); 9406 Queue.clear(); 9407 9408 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9409 IE = LoadRoots.end(); I != IE; ++I) { 9410 Queue.push_back(*I); 9411 9412 while (!Queue.empty()) { 9413 SDNode *LoadRoot = Queue.pop_back_val(); 9414 if (!Visited.insert(LoadRoot).second) 9415 continue; 9416 9417 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9418 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9419 return true; 9420 9421 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9422 UE = LoadRoot->use_end(); UI != UE; ++UI) 9423 if (((isa<MemSDNode>(*UI) && 9424 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9425 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9426 Queue.push_back(*UI); 9427 } 9428 } 9429 9430 return false; 9431 } 9432 9433 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9434 DAGCombinerInfo &DCI) const { 9435 SelectionDAG &DAG = DCI.DAG; 9436 SDLoc dl(N); 9437 9438 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9439 // If we're tracking CR bits, we need to be careful that we don't have: 9440 // trunc(binary-ops(zext(x), zext(y))) 9441 // or 9442 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9443 // such that we're unnecessarily moving things into GPRs when it would be 9444 // better to keep them in CR bits. 9445 9446 // Note that trunc here can be an actual i1 trunc, or can be the effective 9447 // truncation that comes from a setcc or select_cc. 9448 if (N->getOpcode() == ISD::TRUNCATE && 9449 N->getValueType(0) != MVT::i1) 9450 return SDValue(); 9451 9452 if (N->getOperand(0).getValueType() != MVT::i32 && 9453 N->getOperand(0).getValueType() != MVT::i64) 9454 return SDValue(); 9455 9456 if (N->getOpcode() == ISD::SETCC || 9457 N->getOpcode() == ISD::SELECT_CC) { 9458 // If we're looking at a comparison, then we need to make sure that the 9459 // high bits (all except for the first) don't matter the result. 9460 ISD::CondCode CC = 9461 cast<CondCodeSDNode>(N->getOperand( 9462 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9463 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9464 9465 if (ISD::isSignedIntSetCC(CC)) { 9466 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9467 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9468 return SDValue(); 9469 } else if (ISD::isUnsignedIntSetCC(CC)) { 9470 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9471 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9472 !DAG.MaskedValueIsZero(N->getOperand(1), 9473 APInt::getHighBitsSet(OpBits, OpBits-1))) 9474 return SDValue(); 9475 } else { 9476 // This is neither a signed nor an unsigned comparison, just make sure 9477 // that the high bits are equal. 9478 APInt Op1Zero, Op1One; 9479 APInt Op2Zero, Op2One; 9480 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9481 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9482 9483 // We don't really care about what is known about the first bit (if 9484 // anything), so clear it in all masks prior to comparing them. 9485 Op1Zero.clearBit(0); Op1One.clearBit(0); 9486 Op2Zero.clearBit(0); Op2One.clearBit(0); 9487 9488 if (Op1Zero != Op2Zero || Op1One != Op2One) 9489 return SDValue(); 9490 } 9491 } 9492 9493 // We now know that the higher-order bits are irrelevant, we just need to 9494 // make sure that all of the intermediate operations are bit operations, and 9495 // all inputs are extensions. 9496 if (N->getOperand(0).getOpcode() != ISD::AND && 9497 N->getOperand(0).getOpcode() != ISD::OR && 9498 N->getOperand(0).getOpcode() != ISD::XOR && 9499 N->getOperand(0).getOpcode() != ISD::SELECT && 9500 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9501 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9502 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9503 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9504 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9505 return SDValue(); 9506 9507 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9508 N->getOperand(1).getOpcode() != ISD::AND && 9509 N->getOperand(1).getOpcode() != ISD::OR && 9510 N->getOperand(1).getOpcode() != ISD::XOR && 9511 N->getOperand(1).getOpcode() != ISD::SELECT && 9512 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9513 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9514 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9515 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9516 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9517 return SDValue(); 9518 9519 SmallVector<SDValue, 4> Inputs; 9520 SmallVector<SDValue, 8> BinOps, PromOps; 9521 SmallPtrSet<SDNode *, 16> Visited; 9522 9523 for (unsigned i = 0; i < 2; ++i) { 9524 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9525 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9526 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9527 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9528 isa<ConstantSDNode>(N->getOperand(i))) 9529 Inputs.push_back(N->getOperand(i)); 9530 else 9531 BinOps.push_back(N->getOperand(i)); 9532 9533 if (N->getOpcode() == ISD::TRUNCATE) 9534 break; 9535 } 9536 9537 // Visit all inputs, collect all binary operations (and, or, xor and 9538 // select) that are all fed by extensions. 9539 while (!BinOps.empty()) { 9540 SDValue BinOp = BinOps.back(); 9541 BinOps.pop_back(); 9542 9543 if (!Visited.insert(BinOp.getNode()).second) 9544 continue; 9545 9546 PromOps.push_back(BinOp); 9547 9548 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9549 // The condition of the select is not promoted. 9550 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9551 continue; 9552 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9553 continue; 9554 9555 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9556 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9557 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9558 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9559 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9560 Inputs.push_back(BinOp.getOperand(i)); 9561 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9562 BinOp.getOperand(i).getOpcode() == ISD::OR || 9563 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9564 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9565 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9566 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9567 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9568 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9569 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9570 BinOps.push_back(BinOp.getOperand(i)); 9571 } else { 9572 // We have an input that is not an extension or another binary 9573 // operation; we'll abort this transformation. 9574 return SDValue(); 9575 } 9576 } 9577 } 9578 9579 // Make sure that this is a self-contained cluster of operations (which 9580 // is not quite the same thing as saying that everything has only one 9581 // use). 9582 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9583 if (isa<ConstantSDNode>(Inputs[i])) 9584 continue; 9585 9586 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9587 UE = Inputs[i].getNode()->use_end(); 9588 UI != UE; ++UI) { 9589 SDNode *User = *UI; 9590 if (User != N && !Visited.count(User)) 9591 return SDValue(); 9592 9593 // Make sure that we're not going to promote the non-output-value 9594 // operand(s) or SELECT or SELECT_CC. 9595 // FIXME: Although we could sometimes handle this, and it does occur in 9596 // practice that one of the condition inputs to the select is also one of 9597 // the outputs, we currently can't deal with this. 9598 if (User->getOpcode() == ISD::SELECT) { 9599 if (User->getOperand(0) == Inputs[i]) 9600 return SDValue(); 9601 } else if (User->getOpcode() == ISD::SELECT_CC) { 9602 if (User->getOperand(0) == Inputs[i] || 9603 User->getOperand(1) == Inputs[i]) 9604 return SDValue(); 9605 } 9606 } 9607 } 9608 9609 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9610 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9611 UE = PromOps[i].getNode()->use_end(); 9612 UI != UE; ++UI) { 9613 SDNode *User = *UI; 9614 if (User != N && !Visited.count(User)) 9615 return SDValue(); 9616 9617 // Make sure that we're not going to promote the non-output-value 9618 // operand(s) or SELECT or SELECT_CC. 9619 // FIXME: Although we could sometimes handle this, and it does occur in 9620 // practice that one of the condition inputs to the select is also one of 9621 // the outputs, we currently can't deal with this. 9622 if (User->getOpcode() == ISD::SELECT) { 9623 if (User->getOperand(0) == PromOps[i]) 9624 return SDValue(); 9625 } else if (User->getOpcode() == ISD::SELECT_CC) { 9626 if (User->getOperand(0) == PromOps[i] || 9627 User->getOperand(1) == PromOps[i]) 9628 return SDValue(); 9629 } 9630 } 9631 } 9632 9633 // Replace all inputs with the extension operand. 9634 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9635 // Constants may have users outside the cluster of to-be-promoted nodes, 9636 // and so we need to replace those as we do the promotions. 9637 if (isa<ConstantSDNode>(Inputs[i])) 9638 continue; 9639 else 9640 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9641 } 9642 9643 // Replace all operations (these are all the same, but have a different 9644 // (i1) return type). DAG.getNode will validate that the types of 9645 // a binary operator match, so go through the list in reverse so that 9646 // we've likely promoted both operands first. Any intermediate truncations or 9647 // extensions disappear. 9648 while (!PromOps.empty()) { 9649 SDValue PromOp = PromOps.back(); 9650 PromOps.pop_back(); 9651 9652 if (PromOp.getOpcode() == ISD::TRUNCATE || 9653 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9654 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9655 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9656 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9657 PromOp.getOperand(0).getValueType() != MVT::i1) { 9658 // The operand is not yet ready (see comment below). 9659 PromOps.insert(PromOps.begin(), PromOp); 9660 continue; 9661 } 9662 9663 SDValue RepValue = PromOp.getOperand(0); 9664 if (isa<ConstantSDNode>(RepValue)) 9665 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9666 9667 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9668 continue; 9669 } 9670 9671 unsigned C; 9672 switch (PromOp.getOpcode()) { 9673 default: C = 0; break; 9674 case ISD::SELECT: C = 1; break; 9675 case ISD::SELECT_CC: C = 2; break; 9676 } 9677 9678 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9679 PromOp.getOperand(C).getValueType() != MVT::i1) || 9680 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9681 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9682 // The to-be-promoted operands of this node have not yet been 9683 // promoted (this should be rare because we're going through the 9684 // list backward, but if one of the operands has several users in 9685 // this cluster of to-be-promoted nodes, it is possible). 9686 PromOps.insert(PromOps.begin(), PromOp); 9687 continue; 9688 } 9689 9690 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9691 PromOp.getNode()->op_end()); 9692 9693 // If there are any constant inputs, make sure they're replaced now. 9694 for (unsigned i = 0; i < 2; ++i) 9695 if (isa<ConstantSDNode>(Ops[C+i])) 9696 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9697 9698 DAG.ReplaceAllUsesOfValueWith(PromOp, 9699 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9700 } 9701 9702 // Now we're left with the initial truncation itself. 9703 if (N->getOpcode() == ISD::TRUNCATE) 9704 return N->getOperand(0); 9705 9706 // Otherwise, this is a comparison. The operands to be compared have just 9707 // changed type (to i1), but everything else is the same. 9708 return SDValue(N, 0); 9709 } 9710 9711 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9712 DAGCombinerInfo &DCI) const { 9713 SelectionDAG &DAG = DCI.DAG; 9714 SDLoc dl(N); 9715 9716 // If we're tracking CR bits, we need to be careful that we don't have: 9717 // zext(binary-ops(trunc(x), trunc(y))) 9718 // or 9719 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9720 // such that we're unnecessarily moving things into CR bits that can more 9721 // efficiently stay in GPRs. Note that if we're not certain that the high 9722 // bits are set as required by the final extension, we still may need to do 9723 // some masking to get the proper behavior. 9724 9725 // This same functionality is important on PPC64 when dealing with 9726 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9727 // the return values of functions. Because it is so similar, it is handled 9728 // here as well. 9729 9730 if (N->getValueType(0) != MVT::i32 && 9731 N->getValueType(0) != MVT::i64) 9732 return SDValue(); 9733 9734 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9735 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9736 return SDValue(); 9737 9738 if (N->getOperand(0).getOpcode() != ISD::AND && 9739 N->getOperand(0).getOpcode() != ISD::OR && 9740 N->getOperand(0).getOpcode() != ISD::XOR && 9741 N->getOperand(0).getOpcode() != ISD::SELECT && 9742 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9743 return SDValue(); 9744 9745 SmallVector<SDValue, 4> Inputs; 9746 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9747 SmallPtrSet<SDNode *, 16> Visited; 9748 9749 // Visit all inputs, collect all binary operations (and, or, xor and 9750 // select) that are all fed by truncations. 9751 while (!BinOps.empty()) { 9752 SDValue BinOp = BinOps.back(); 9753 BinOps.pop_back(); 9754 9755 if (!Visited.insert(BinOp.getNode()).second) 9756 continue; 9757 9758 PromOps.push_back(BinOp); 9759 9760 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9761 // The condition of the select is not promoted. 9762 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9763 continue; 9764 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9765 continue; 9766 9767 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9768 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9769 Inputs.push_back(BinOp.getOperand(i)); 9770 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9771 BinOp.getOperand(i).getOpcode() == ISD::OR || 9772 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9773 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9774 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9775 BinOps.push_back(BinOp.getOperand(i)); 9776 } else { 9777 // We have an input that is not a truncation or another binary 9778 // operation; we'll abort this transformation. 9779 return SDValue(); 9780 } 9781 } 9782 } 9783 9784 // The operands of a select that must be truncated when the select is 9785 // promoted because the operand is actually part of the to-be-promoted set. 9786 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9787 9788 // Make sure that this is a self-contained cluster of operations (which 9789 // is not quite the same thing as saying that everything has only one 9790 // use). 9791 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9792 if (isa<ConstantSDNode>(Inputs[i])) 9793 continue; 9794 9795 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9796 UE = Inputs[i].getNode()->use_end(); 9797 UI != UE; ++UI) { 9798 SDNode *User = *UI; 9799 if (User != N && !Visited.count(User)) 9800 return SDValue(); 9801 9802 // If we're going to promote the non-output-value operand(s) or SELECT or 9803 // SELECT_CC, record them for truncation. 9804 if (User->getOpcode() == ISD::SELECT) { 9805 if (User->getOperand(0) == Inputs[i]) 9806 SelectTruncOp[0].insert(std::make_pair(User, 9807 User->getOperand(0).getValueType())); 9808 } else if (User->getOpcode() == ISD::SELECT_CC) { 9809 if (User->getOperand(0) == Inputs[i]) 9810 SelectTruncOp[0].insert(std::make_pair(User, 9811 User->getOperand(0).getValueType())); 9812 if (User->getOperand(1) == Inputs[i]) 9813 SelectTruncOp[1].insert(std::make_pair(User, 9814 User->getOperand(1).getValueType())); 9815 } 9816 } 9817 } 9818 9819 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9820 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9821 UE = PromOps[i].getNode()->use_end(); 9822 UI != UE; ++UI) { 9823 SDNode *User = *UI; 9824 if (User != N && !Visited.count(User)) 9825 return SDValue(); 9826 9827 // If we're going to promote the non-output-value operand(s) or SELECT or 9828 // SELECT_CC, record them for truncation. 9829 if (User->getOpcode() == ISD::SELECT) { 9830 if (User->getOperand(0) == PromOps[i]) 9831 SelectTruncOp[0].insert(std::make_pair(User, 9832 User->getOperand(0).getValueType())); 9833 } else if (User->getOpcode() == ISD::SELECT_CC) { 9834 if (User->getOperand(0) == PromOps[i]) 9835 SelectTruncOp[0].insert(std::make_pair(User, 9836 User->getOperand(0).getValueType())); 9837 if (User->getOperand(1) == PromOps[i]) 9838 SelectTruncOp[1].insert(std::make_pair(User, 9839 User->getOperand(1).getValueType())); 9840 } 9841 } 9842 } 9843 9844 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9845 bool ReallyNeedsExt = false; 9846 if (N->getOpcode() != ISD::ANY_EXTEND) { 9847 // If all of the inputs are not already sign/zero extended, then 9848 // we'll still need to do that at the end. 9849 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9850 if (isa<ConstantSDNode>(Inputs[i])) 9851 continue; 9852 9853 unsigned OpBits = 9854 Inputs[i].getOperand(0).getValueSizeInBits(); 9855 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9856 9857 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9858 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9859 APInt::getHighBitsSet(OpBits, 9860 OpBits-PromBits))) || 9861 (N->getOpcode() == ISD::SIGN_EXTEND && 9862 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9863 (OpBits-(PromBits-1)))) { 9864 ReallyNeedsExt = true; 9865 break; 9866 } 9867 } 9868 } 9869 9870 // Replace all inputs, either with the truncation operand, or a 9871 // truncation or extension to the final output type. 9872 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9873 // Constant inputs need to be replaced with the to-be-promoted nodes that 9874 // use them because they might have users outside of the cluster of 9875 // promoted nodes. 9876 if (isa<ConstantSDNode>(Inputs[i])) 9877 continue; 9878 9879 SDValue InSrc = Inputs[i].getOperand(0); 9880 if (Inputs[i].getValueType() == N->getValueType(0)) 9881 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9882 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9883 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9884 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9885 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9886 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9887 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9888 else 9889 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9890 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9891 } 9892 9893 // Replace all operations (these are all the same, but have a different 9894 // (promoted) return type). DAG.getNode will validate that the types of 9895 // a binary operator match, so go through the list in reverse so that 9896 // we've likely promoted both operands first. 9897 while (!PromOps.empty()) { 9898 SDValue PromOp = PromOps.back(); 9899 PromOps.pop_back(); 9900 9901 unsigned C; 9902 switch (PromOp.getOpcode()) { 9903 default: C = 0; break; 9904 case ISD::SELECT: C = 1; break; 9905 case ISD::SELECT_CC: C = 2; break; 9906 } 9907 9908 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9909 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9910 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9911 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9912 // The to-be-promoted operands of this node have not yet been 9913 // promoted (this should be rare because we're going through the 9914 // list backward, but if one of the operands has several users in 9915 // this cluster of to-be-promoted nodes, it is possible). 9916 PromOps.insert(PromOps.begin(), PromOp); 9917 continue; 9918 } 9919 9920 // For SELECT and SELECT_CC nodes, we do a similar check for any 9921 // to-be-promoted comparison inputs. 9922 if (PromOp.getOpcode() == ISD::SELECT || 9923 PromOp.getOpcode() == ISD::SELECT_CC) { 9924 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9925 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9926 (SelectTruncOp[1].count(PromOp.getNode()) && 9927 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9928 PromOps.insert(PromOps.begin(), PromOp); 9929 continue; 9930 } 9931 } 9932 9933 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9934 PromOp.getNode()->op_end()); 9935 9936 // If this node has constant inputs, then they'll need to be promoted here. 9937 for (unsigned i = 0; i < 2; ++i) { 9938 if (!isa<ConstantSDNode>(Ops[C+i])) 9939 continue; 9940 if (Ops[C+i].getValueType() == N->getValueType(0)) 9941 continue; 9942 9943 if (N->getOpcode() == ISD::SIGN_EXTEND) 9944 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9945 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9946 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9947 else 9948 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9949 } 9950 9951 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9952 // truncate them again to the original value type. 9953 if (PromOp.getOpcode() == ISD::SELECT || 9954 PromOp.getOpcode() == ISD::SELECT_CC) { 9955 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9956 if (SI0 != SelectTruncOp[0].end()) 9957 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9958 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9959 if (SI1 != SelectTruncOp[1].end()) 9960 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9961 } 9962 9963 DAG.ReplaceAllUsesOfValueWith(PromOp, 9964 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9965 } 9966 9967 // Now we're left with the initial extension itself. 9968 if (!ReallyNeedsExt) 9969 return N->getOperand(0); 9970 9971 // To zero extend, just mask off everything except for the first bit (in the 9972 // i1 case). 9973 if (N->getOpcode() == ISD::ZERO_EXTEND) 9974 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9975 DAG.getConstant(APInt::getLowBitsSet( 9976 N->getValueSizeInBits(0), PromBits), 9977 dl, N->getValueType(0))); 9978 9979 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9980 "Invalid extension type"); 9981 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9982 SDValue ShiftCst = 9983 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9984 return DAG.getNode( 9985 ISD::SRA, dl, N->getValueType(0), 9986 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9987 ShiftCst); 9988 } 9989 9990 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9991 DAGCombinerInfo &DCI) const { 9992 assert((N->getOpcode() == ISD::SINT_TO_FP || 9993 N->getOpcode() == ISD::UINT_TO_FP) && 9994 "Need an int -> FP conversion node here"); 9995 9996 if (!Subtarget.has64BitSupport()) 9997 return SDValue(); 9998 9999 SelectionDAG &DAG = DCI.DAG; 10000 SDLoc dl(N); 10001 SDValue Op(N, 0); 10002 10003 // Don't handle ppc_fp128 here or i1 conversions. 10004 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10005 return SDValue(); 10006 if (Op.getOperand(0).getValueType() == MVT::i1) 10007 return SDValue(); 10008 10009 // For i32 intermediate values, unfortunately, the conversion functions 10010 // leave the upper 32 bits of the value are undefined. Within the set of 10011 // scalar instructions, we have no method for zero- or sign-extending the 10012 // value. Thus, we cannot handle i32 intermediate values here. 10013 if (Op.getOperand(0).getValueType() == MVT::i32) 10014 return SDValue(); 10015 10016 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10017 "UINT_TO_FP is supported only with FPCVT"); 10018 10019 // If we have FCFIDS, then use it when converting to single-precision. 10020 // Otherwise, convert to double-precision and then round. 10021 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10022 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10023 : PPCISD::FCFIDS) 10024 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10025 : PPCISD::FCFID); 10026 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10027 ? MVT::f32 10028 : MVT::f64; 10029 10030 // If we're converting from a float, to an int, and back to a float again, 10031 // then we don't need the store/load pair at all. 10032 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10033 Subtarget.hasFPCVT()) || 10034 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10035 SDValue Src = Op.getOperand(0).getOperand(0); 10036 if (Src.getValueType() == MVT::f32) { 10037 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10038 DCI.AddToWorklist(Src.getNode()); 10039 } else if (Src.getValueType() != MVT::f64) { 10040 // Make sure that we don't pick up a ppc_fp128 source value. 10041 return SDValue(); 10042 } 10043 10044 unsigned FCTOp = 10045 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10046 PPCISD::FCTIDUZ; 10047 10048 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10049 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10050 10051 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10052 FP = DAG.getNode(ISD::FP_ROUND, dl, 10053 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10054 DCI.AddToWorklist(FP.getNode()); 10055 } 10056 10057 return FP; 10058 } 10059 10060 return SDValue(); 10061 } 10062 10063 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10064 // builtins) into loads with swaps. 10065 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10066 DAGCombinerInfo &DCI) const { 10067 SelectionDAG &DAG = DCI.DAG; 10068 SDLoc dl(N); 10069 SDValue Chain; 10070 SDValue Base; 10071 MachineMemOperand *MMO; 10072 10073 switch (N->getOpcode()) { 10074 default: 10075 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10076 case ISD::LOAD: { 10077 LoadSDNode *LD = cast<LoadSDNode>(N); 10078 Chain = LD->getChain(); 10079 Base = LD->getBasePtr(); 10080 MMO = LD->getMemOperand(); 10081 // If the MMO suggests this isn't a load of a full vector, leave 10082 // things alone. For a built-in, we have to make the change for 10083 // correctness, so if there is a size problem that will be a bug. 10084 if (MMO->getSize() < 16) 10085 return SDValue(); 10086 break; 10087 } 10088 case ISD::INTRINSIC_W_CHAIN: { 10089 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10090 Chain = Intrin->getChain(); 10091 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10092 // us what we want. Get operand 2 instead. 10093 Base = Intrin->getOperand(2); 10094 MMO = Intrin->getMemOperand(); 10095 break; 10096 } 10097 } 10098 10099 MVT VecTy = N->getValueType(0).getSimpleVT(); 10100 SDValue LoadOps[] = { Chain, Base }; 10101 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10102 DAG.getVTList(VecTy, MVT::Other), 10103 LoadOps, VecTy, MMO); 10104 DCI.AddToWorklist(Load.getNode()); 10105 Chain = Load.getValue(1); 10106 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10107 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10108 DCI.AddToWorklist(Swap.getNode()); 10109 return Swap; 10110 } 10111 10112 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10113 // builtins) into stores with swaps. 10114 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10115 DAGCombinerInfo &DCI) const { 10116 SelectionDAG &DAG = DCI.DAG; 10117 SDLoc dl(N); 10118 SDValue Chain; 10119 SDValue Base; 10120 unsigned SrcOpnd; 10121 MachineMemOperand *MMO; 10122 10123 switch (N->getOpcode()) { 10124 default: 10125 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10126 case ISD::STORE: { 10127 StoreSDNode *ST = cast<StoreSDNode>(N); 10128 Chain = ST->getChain(); 10129 Base = ST->getBasePtr(); 10130 MMO = ST->getMemOperand(); 10131 SrcOpnd = 1; 10132 // If the MMO suggests this isn't a store of a full vector, leave 10133 // things alone. For a built-in, we have to make the change for 10134 // correctness, so if there is a size problem that will be a bug. 10135 if (MMO->getSize() < 16) 10136 return SDValue(); 10137 break; 10138 } 10139 case ISD::INTRINSIC_VOID: { 10140 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10141 Chain = Intrin->getChain(); 10142 // Intrin->getBasePtr() oddly does not get what we want. 10143 Base = Intrin->getOperand(3); 10144 MMO = Intrin->getMemOperand(); 10145 SrcOpnd = 2; 10146 break; 10147 } 10148 } 10149 10150 SDValue Src = N->getOperand(SrcOpnd); 10151 MVT VecTy = Src.getValueType().getSimpleVT(); 10152 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10153 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10154 DCI.AddToWorklist(Swap.getNode()); 10155 Chain = Swap.getValue(1); 10156 SDValue StoreOps[] = { Chain, Swap, Base }; 10157 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10158 DAG.getVTList(MVT::Other), 10159 StoreOps, VecTy, MMO); 10160 DCI.AddToWorklist(Store.getNode()); 10161 return Store; 10162 } 10163 10164 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10165 DAGCombinerInfo &DCI) const { 10166 SelectionDAG &DAG = DCI.DAG; 10167 SDLoc dl(N); 10168 switch (N->getOpcode()) { 10169 default: break; 10170 case PPCISD::SHL: 10171 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10172 return N->getOperand(0); 10173 break; 10174 case PPCISD::SRL: 10175 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10176 return N->getOperand(0); 10177 break; 10178 case PPCISD::SRA: 10179 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10180 if (C->isNullValue() || // 0 >>s V -> 0. 10181 C->isAllOnesValue()) // -1 >>s V -> -1. 10182 return N->getOperand(0); 10183 } 10184 break; 10185 case ISD::SIGN_EXTEND: 10186 case ISD::ZERO_EXTEND: 10187 case ISD::ANY_EXTEND: 10188 return DAGCombineExtBoolTrunc(N, DCI); 10189 case ISD::TRUNCATE: 10190 case ISD::SETCC: 10191 case ISD::SELECT_CC: 10192 return DAGCombineTruncBoolExt(N, DCI); 10193 case ISD::SINT_TO_FP: 10194 case ISD::UINT_TO_FP: 10195 return combineFPToIntToFP(N, DCI); 10196 case ISD::STORE: { 10197 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10198 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10199 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10200 N->getOperand(1).getValueType() == MVT::i32 && 10201 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10202 SDValue Val = N->getOperand(1).getOperand(0); 10203 if (Val.getValueType() == MVT::f32) { 10204 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10205 DCI.AddToWorklist(Val.getNode()); 10206 } 10207 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10208 DCI.AddToWorklist(Val.getNode()); 10209 10210 SDValue Ops[] = { 10211 N->getOperand(0), Val, N->getOperand(2), 10212 DAG.getValueType(N->getOperand(1).getValueType()) 10213 }; 10214 10215 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10216 DAG.getVTList(MVT::Other), Ops, 10217 cast<StoreSDNode>(N)->getMemoryVT(), 10218 cast<StoreSDNode>(N)->getMemOperand()); 10219 DCI.AddToWorklist(Val.getNode()); 10220 return Val; 10221 } 10222 10223 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10224 if (cast<StoreSDNode>(N)->isUnindexed() && 10225 N->getOperand(1).getOpcode() == ISD::BSWAP && 10226 N->getOperand(1).getNode()->hasOneUse() && 10227 (N->getOperand(1).getValueType() == MVT::i32 || 10228 N->getOperand(1).getValueType() == MVT::i16 || 10229 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10230 N->getOperand(1).getValueType() == MVT::i64))) { 10231 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10232 // Do an any-extend to 32-bits if this is a half-word input. 10233 if (BSwapOp.getValueType() == MVT::i16) 10234 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10235 10236 SDValue Ops[] = { 10237 N->getOperand(0), BSwapOp, N->getOperand(2), 10238 DAG.getValueType(N->getOperand(1).getValueType()) 10239 }; 10240 return 10241 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10242 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10243 cast<StoreSDNode>(N)->getMemOperand()); 10244 } 10245 10246 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10247 EVT VT = N->getOperand(1).getValueType(); 10248 if (VT.isSimple()) { 10249 MVT StoreVT = VT.getSimpleVT(); 10250 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10251 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10252 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10253 return expandVSXStoreForLE(N, DCI); 10254 } 10255 break; 10256 } 10257 case ISD::LOAD: { 10258 LoadSDNode *LD = cast<LoadSDNode>(N); 10259 EVT VT = LD->getValueType(0); 10260 10261 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10262 if (VT.isSimple()) { 10263 MVT LoadVT = VT.getSimpleVT(); 10264 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10265 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10266 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10267 return expandVSXLoadForLE(N, DCI); 10268 } 10269 10270 EVT MemVT = LD->getMemoryVT(); 10271 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10272 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10273 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10274 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10275 if (LD->isUnindexed() && VT.isVector() && 10276 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10277 // P8 and later hardware should just use LOAD. 10278 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10279 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10280 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10281 LD->getAlignment() >= ScalarABIAlignment)) && 10282 LD->getAlignment() < ABIAlignment) { 10283 // This is a type-legal unaligned Altivec or QPX load. 10284 SDValue Chain = LD->getChain(); 10285 SDValue Ptr = LD->getBasePtr(); 10286 bool isLittleEndian = Subtarget.isLittleEndian(); 10287 10288 // This implements the loading of unaligned vectors as described in 10289 // the venerable Apple Velocity Engine overview. Specifically: 10290 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10291 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10292 // 10293 // The general idea is to expand a sequence of one or more unaligned 10294 // loads into an alignment-based permutation-control instruction (lvsl 10295 // or lvsr), a series of regular vector loads (which always truncate 10296 // their input address to an aligned address), and a series of 10297 // permutations. The results of these permutations are the requested 10298 // loaded values. The trick is that the last "extra" load is not taken 10299 // from the address you might suspect (sizeof(vector) bytes after the 10300 // last requested load), but rather sizeof(vector) - 1 bytes after the 10301 // last requested vector. The point of this is to avoid a page fault if 10302 // the base address happened to be aligned. This works because if the 10303 // base address is aligned, then adding less than a full vector length 10304 // will cause the last vector in the sequence to be (re)loaded. 10305 // Otherwise, the next vector will be fetched as you might suspect was 10306 // necessary. 10307 10308 // We might be able to reuse the permutation generation from 10309 // a different base address offset from this one by an aligned amount. 10310 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10311 // optimization later. 10312 Intrinsic::ID Intr, IntrLD, IntrPerm; 10313 MVT PermCntlTy, PermTy, LDTy; 10314 if (Subtarget.hasAltivec()) { 10315 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10316 Intrinsic::ppc_altivec_lvsl; 10317 IntrLD = Intrinsic::ppc_altivec_lvx; 10318 IntrPerm = Intrinsic::ppc_altivec_vperm; 10319 PermCntlTy = MVT::v16i8; 10320 PermTy = MVT::v4i32; 10321 LDTy = MVT::v4i32; 10322 } else { 10323 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10324 Intrinsic::ppc_qpx_qvlpcls; 10325 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10326 Intrinsic::ppc_qpx_qvlfs; 10327 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10328 PermCntlTy = MVT::v4f64; 10329 PermTy = MVT::v4f64; 10330 LDTy = MemVT.getSimpleVT(); 10331 } 10332 10333 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10334 10335 // Create the new MMO for the new base load. It is like the original MMO, 10336 // but represents an area in memory almost twice the vector size centered 10337 // on the original address. If the address is unaligned, we might start 10338 // reading up to (sizeof(vector)-1) bytes below the address of the 10339 // original unaligned load. 10340 MachineFunction &MF = DAG.getMachineFunction(); 10341 MachineMemOperand *BaseMMO = 10342 MF.getMachineMemOperand(LD->getMemOperand(), 10343 -(long)MemVT.getStoreSize()+1, 10344 2*MemVT.getStoreSize()-1); 10345 10346 // Create the new base load. 10347 SDValue LDXIntID = 10348 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10349 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10350 SDValue BaseLoad = 10351 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10352 DAG.getVTList(PermTy, MVT::Other), 10353 BaseLoadOps, LDTy, BaseMMO); 10354 10355 // Note that the value of IncOffset (which is provided to the next 10356 // load's pointer info offset value, and thus used to calculate the 10357 // alignment), and the value of IncValue (which is actually used to 10358 // increment the pointer value) are different! This is because we 10359 // require the next load to appear to be aligned, even though it 10360 // is actually offset from the base pointer by a lesser amount. 10361 int IncOffset = VT.getSizeInBits() / 8; 10362 int IncValue = IncOffset; 10363 10364 // Walk (both up and down) the chain looking for another load at the real 10365 // (aligned) offset (the alignment of the other load does not matter in 10366 // this case). If found, then do not use the offset reduction trick, as 10367 // that will prevent the loads from being later combined (as they would 10368 // otherwise be duplicates). 10369 if (!findConsecutiveLoad(LD, DAG)) 10370 --IncValue; 10371 10372 SDValue Increment = 10373 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10374 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10375 10376 MachineMemOperand *ExtraMMO = 10377 MF.getMachineMemOperand(LD->getMemOperand(), 10378 1, 2*MemVT.getStoreSize()-1); 10379 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10380 SDValue ExtraLoad = 10381 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10382 DAG.getVTList(PermTy, MVT::Other), 10383 ExtraLoadOps, LDTy, ExtraMMO); 10384 10385 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10386 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10387 10388 // Because vperm has a big-endian bias, we must reverse the order 10389 // of the input vectors and complement the permute control vector 10390 // when generating little endian code. We have already handled the 10391 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10392 // and ExtraLoad here. 10393 SDValue Perm; 10394 if (isLittleEndian) 10395 Perm = BuildIntrinsicOp(IntrPerm, 10396 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10397 else 10398 Perm = BuildIntrinsicOp(IntrPerm, 10399 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10400 10401 if (VT != PermTy) 10402 Perm = Subtarget.hasAltivec() ? 10403 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10404 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10405 DAG.getTargetConstant(1, dl, MVT::i64)); 10406 // second argument is 1 because this rounding 10407 // is always exact. 10408 10409 // The output of the permutation is our loaded result, the TokenFactor is 10410 // our new chain. 10411 DCI.CombineTo(N, Perm, TF); 10412 return SDValue(N, 0); 10413 } 10414 } 10415 break; 10416 case ISD::INTRINSIC_WO_CHAIN: { 10417 bool isLittleEndian = Subtarget.isLittleEndian(); 10418 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10419 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10420 : Intrinsic::ppc_altivec_lvsl); 10421 if ((IID == Intr || 10422 IID == Intrinsic::ppc_qpx_qvlpcld || 10423 IID == Intrinsic::ppc_qpx_qvlpcls) && 10424 N->getOperand(1)->getOpcode() == ISD::ADD) { 10425 SDValue Add = N->getOperand(1); 10426 10427 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10428 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10429 10430 if (DAG.MaskedValueIsZero( 10431 Add->getOperand(1), 10432 APInt::getAllOnesValue(Bits /* alignment */) 10433 .zext( 10434 Add.getValueType().getScalarType().getSizeInBits()))) { 10435 SDNode *BasePtr = Add->getOperand(0).getNode(); 10436 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10437 UE = BasePtr->use_end(); 10438 UI != UE; ++UI) { 10439 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10440 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10441 // We've found another LVSL/LVSR, and this address is an aligned 10442 // multiple of that one. The results will be the same, so use the 10443 // one we've just found instead. 10444 10445 return SDValue(*UI, 0); 10446 } 10447 } 10448 } 10449 10450 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10451 SDNode *BasePtr = Add->getOperand(0).getNode(); 10452 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10453 UE = BasePtr->use_end(); UI != UE; ++UI) { 10454 if (UI->getOpcode() == ISD::ADD && 10455 isa<ConstantSDNode>(UI->getOperand(1)) && 10456 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10457 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10458 (1ULL << Bits) == 0) { 10459 SDNode *OtherAdd = *UI; 10460 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10461 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10462 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10463 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10464 return SDValue(*VI, 0); 10465 } 10466 } 10467 } 10468 } 10469 } 10470 } 10471 } 10472 10473 break; 10474 case ISD::INTRINSIC_W_CHAIN: { 10475 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10476 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10477 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10478 default: 10479 break; 10480 case Intrinsic::ppc_vsx_lxvw4x: 10481 case Intrinsic::ppc_vsx_lxvd2x: 10482 return expandVSXLoadForLE(N, DCI); 10483 } 10484 } 10485 break; 10486 } 10487 case ISD::INTRINSIC_VOID: { 10488 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10489 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10490 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10491 default: 10492 break; 10493 case Intrinsic::ppc_vsx_stxvw4x: 10494 case Intrinsic::ppc_vsx_stxvd2x: 10495 return expandVSXStoreForLE(N, DCI); 10496 } 10497 } 10498 break; 10499 } 10500 case ISD::BSWAP: 10501 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10502 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10503 N->getOperand(0).hasOneUse() && 10504 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10505 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10506 N->getValueType(0) == MVT::i64))) { 10507 SDValue Load = N->getOperand(0); 10508 LoadSDNode *LD = cast<LoadSDNode>(Load); 10509 // Create the byte-swapping load. 10510 SDValue Ops[] = { 10511 LD->getChain(), // Chain 10512 LD->getBasePtr(), // Ptr 10513 DAG.getValueType(N->getValueType(0)) // VT 10514 }; 10515 SDValue BSLoad = 10516 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10517 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10518 MVT::i64 : MVT::i32, MVT::Other), 10519 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10520 10521 // If this is an i16 load, insert the truncate. 10522 SDValue ResVal = BSLoad; 10523 if (N->getValueType(0) == MVT::i16) 10524 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10525 10526 // First, combine the bswap away. This makes the value produced by the 10527 // load dead. 10528 DCI.CombineTo(N, ResVal); 10529 10530 // Next, combine the load away, we give it a bogus result value but a real 10531 // chain result. The result value is dead because the bswap is dead. 10532 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10533 10534 // Return N so it doesn't get rechecked! 10535 return SDValue(N, 0); 10536 } 10537 10538 break; 10539 case PPCISD::VCMP: { 10540 // If a VCMPo node already exists with exactly the same operands as this 10541 // node, use its result instead of this node (VCMPo computes both a CR6 and 10542 // a normal output). 10543 // 10544 if (!N->getOperand(0).hasOneUse() && 10545 !N->getOperand(1).hasOneUse() && 10546 !N->getOperand(2).hasOneUse()) { 10547 10548 // Scan all of the users of the LHS, looking for VCMPo's that match. 10549 SDNode *VCMPoNode = nullptr; 10550 10551 SDNode *LHSN = N->getOperand(0).getNode(); 10552 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10553 UI != E; ++UI) 10554 if (UI->getOpcode() == PPCISD::VCMPo && 10555 UI->getOperand(1) == N->getOperand(1) && 10556 UI->getOperand(2) == N->getOperand(2) && 10557 UI->getOperand(0) == N->getOperand(0)) { 10558 VCMPoNode = *UI; 10559 break; 10560 } 10561 10562 // If there is no VCMPo node, or if the flag value has a single use, don't 10563 // transform this. 10564 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10565 break; 10566 10567 // Look at the (necessarily single) use of the flag value. If it has a 10568 // chain, this transformation is more complex. Note that multiple things 10569 // could use the value result, which we should ignore. 10570 SDNode *FlagUser = nullptr; 10571 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10572 FlagUser == nullptr; ++UI) { 10573 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10574 SDNode *User = *UI; 10575 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10576 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10577 FlagUser = User; 10578 break; 10579 } 10580 } 10581 } 10582 10583 // If the user is a MFOCRF instruction, we know this is safe. 10584 // Otherwise we give up for right now. 10585 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10586 return SDValue(VCMPoNode, 0); 10587 } 10588 break; 10589 } 10590 case ISD::BRCOND: { 10591 SDValue Cond = N->getOperand(1); 10592 SDValue Target = N->getOperand(2); 10593 10594 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10595 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10596 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10597 10598 // We now need to make the intrinsic dead (it cannot be instruction 10599 // selected). 10600 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10601 assert(Cond.getNode()->hasOneUse() && 10602 "Counter decrement has more than one use"); 10603 10604 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10605 N->getOperand(0), Target); 10606 } 10607 } 10608 break; 10609 case ISD::BR_CC: { 10610 // If this is a branch on an altivec predicate comparison, lower this so 10611 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10612 // lowering is done pre-legalize, because the legalizer lowers the predicate 10613 // compare down to code that is difficult to reassemble. 10614 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10615 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10616 10617 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10618 // value. If so, pass-through the AND to get to the intrinsic. 10619 if (LHS.getOpcode() == ISD::AND && 10620 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10621 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10622 Intrinsic::ppc_is_decremented_ctr_nonzero && 10623 isa<ConstantSDNode>(LHS.getOperand(1)) && 10624 !isNullConstant(LHS.getOperand(1))) 10625 LHS = LHS.getOperand(0); 10626 10627 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10628 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10629 Intrinsic::ppc_is_decremented_ctr_nonzero && 10630 isa<ConstantSDNode>(RHS)) { 10631 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10632 "Counter decrement comparison is not EQ or NE"); 10633 10634 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10635 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10636 (CC == ISD::SETNE && !Val); 10637 10638 // We now need to make the intrinsic dead (it cannot be instruction 10639 // selected). 10640 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10641 assert(LHS.getNode()->hasOneUse() && 10642 "Counter decrement has more than one use"); 10643 10644 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10645 N->getOperand(0), N->getOperand(4)); 10646 } 10647 10648 int CompareOpc; 10649 bool isDot; 10650 10651 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10652 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10653 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10654 assert(isDot && "Can't compare against a vector result!"); 10655 10656 // If this is a comparison against something other than 0/1, then we know 10657 // that the condition is never/always true. 10658 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10659 if (Val != 0 && Val != 1) { 10660 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10661 return N->getOperand(0); 10662 // Always !=, turn it into an unconditional branch. 10663 return DAG.getNode(ISD::BR, dl, MVT::Other, 10664 N->getOperand(0), N->getOperand(4)); 10665 } 10666 10667 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10668 10669 // Create the PPCISD altivec 'dot' comparison node. 10670 SDValue Ops[] = { 10671 LHS.getOperand(2), // LHS of compare 10672 LHS.getOperand(3), // RHS of compare 10673 DAG.getConstant(CompareOpc, dl, MVT::i32) 10674 }; 10675 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10676 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10677 10678 // Unpack the result based on how the target uses it. 10679 PPC::Predicate CompOpc; 10680 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10681 default: // Can't happen, don't crash on invalid number though. 10682 case 0: // Branch on the value of the EQ bit of CR6. 10683 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10684 break; 10685 case 1: // Branch on the inverted value of the EQ bit of CR6. 10686 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10687 break; 10688 case 2: // Branch on the value of the LT bit of CR6. 10689 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10690 break; 10691 case 3: // Branch on the inverted value of the LT bit of CR6. 10692 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10693 break; 10694 } 10695 10696 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10697 DAG.getConstant(CompOpc, dl, MVT::i32), 10698 DAG.getRegister(PPC::CR6, MVT::i32), 10699 N->getOperand(4), CompNode.getValue(1)); 10700 } 10701 break; 10702 } 10703 } 10704 10705 return SDValue(); 10706 } 10707 10708 SDValue 10709 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10710 SelectionDAG &DAG, 10711 std::vector<SDNode *> *Created) const { 10712 // fold (sdiv X, pow2) 10713 EVT VT = N->getValueType(0); 10714 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10715 return SDValue(); 10716 if ((VT != MVT::i32 && VT != MVT::i64) || 10717 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10718 return SDValue(); 10719 10720 SDLoc DL(N); 10721 SDValue N0 = N->getOperand(0); 10722 10723 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10724 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10725 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10726 10727 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10728 if (Created) 10729 Created->push_back(Op.getNode()); 10730 10731 if (IsNegPow2) { 10732 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10733 if (Created) 10734 Created->push_back(Op.getNode()); 10735 } 10736 10737 return Op; 10738 } 10739 10740 //===----------------------------------------------------------------------===// 10741 // Inline Assembly Support 10742 //===----------------------------------------------------------------------===// 10743 10744 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10745 APInt &KnownZero, 10746 APInt &KnownOne, 10747 const SelectionDAG &DAG, 10748 unsigned Depth) const { 10749 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10750 switch (Op.getOpcode()) { 10751 default: break; 10752 case PPCISD::LBRX: { 10753 // lhbrx is known to have the top bits cleared out. 10754 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10755 KnownZero = 0xFFFF0000; 10756 break; 10757 } 10758 case ISD::INTRINSIC_WO_CHAIN: { 10759 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10760 default: break; 10761 case Intrinsic::ppc_altivec_vcmpbfp_p: 10762 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10763 case Intrinsic::ppc_altivec_vcmpequb_p: 10764 case Intrinsic::ppc_altivec_vcmpequh_p: 10765 case Intrinsic::ppc_altivec_vcmpequw_p: 10766 case Intrinsic::ppc_altivec_vcmpequd_p: 10767 case Intrinsic::ppc_altivec_vcmpgefp_p: 10768 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10769 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10770 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10771 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10772 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10773 case Intrinsic::ppc_altivec_vcmpgtub_p: 10774 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10775 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10776 case Intrinsic::ppc_altivec_vcmpgtud_p: 10777 KnownZero = ~1U; // All bits but the low one are known to be zero. 10778 break; 10779 } 10780 } 10781 } 10782 } 10783 10784 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10785 switch (Subtarget.getDarwinDirective()) { 10786 default: break; 10787 case PPC::DIR_970: 10788 case PPC::DIR_PWR4: 10789 case PPC::DIR_PWR5: 10790 case PPC::DIR_PWR5X: 10791 case PPC::DIR_PWR6: 10792 case PPC::DIR_PWR6X: 10793 case PPC::DIR_PWR7: 10794 case PPC::DIR_PWR8: { 10795 if (!ML) 10796 break; 10797 10798 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10799 10800 // For small loops (between 5 and 8 instructions), align to a 32-byte 10801 // boundary so that the entire loop fits in one instruction-cache line. 10802 uint64_t LoopSize = 0; 10803 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10804 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10805 LoopSize += TII->GetInstSizeInBytes(J); 10806 10807 if (LoopSize > 16 && LoopSize <= 32) 10808 return 5; 10809 10810 break; 10811 } 10812 } 10813 10814 return TargetLowering::getPrefLoopAlignment(ML); 10815 } 10816 10817 /// getConstraintType - Given a constraint, return the type of 10818 /// constraint it is for this target. 10819 PPCTargetLowering::ConstraintType 10820 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10821 if (Constraint.size() == 1) { 10822 switch (Constraint[0]) { 10823 default: break; 10824 case 'b': 10825 case 'r': 10826 case 'f': 10827 case 'v': 10828 case 'y': 10829 return C_RegisterClass; 10830 case 'Z': 10831 // FIXME: While Z does indicate a memory constraint, it specifically 10832 // indicates an r+r address (used in conjunction with the 'y' modifier 10833 // in the replacement string). Currently, we're forcing the base 10834 // register to be r0 in the asm printer (which is interpreted as zero) 10835 // and forming the complete address in the second register. This is 10836 // suboptimal. 10837 return C_Memory; 10838 } 10839 } else if (Constraint == "wc") { // individual CR bits. 10840 return C_RegisterClass; 10841 } else if (Constraint == "wa" || Constraint == "wd" || 10842 Constraint == "wf" || Constraint == "ws") { 10843 return C_RegisterClass; // VSX registers. 10844 } 10845 return TargetLowering::getConstraintType(Constraint); 10846 } 10847 10848 /// Examine constraint type and operand type and determine a weight value. 10849 /// This object must already have been set up with the operand type 10850 /// and the current alternative constraint selected. 10851 TargetLowering::ConstraintWeight 10852 PPCTargetLowering::getSingleConstraintMatchWeight( 10853 AsmOperandInfo &info, const char *constraint) const { 10854 ConstraintWeight weight = CW_Invalid; 10855 Value *CallOperandVal = info.CallOperandVal; 10856 // If we don't have a value, we can't do a match, 10857 // but allow it at the lowest weight. 10858 if (!CallOperandVal) 10859 return CW_Default; 10860 Type *type = CallOperandVal->getType(); 10861 10862 // Look at the constraint type. 10863 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10864 return CW_Register; // an individual CR bit. 10865 else if ((StringRef(constraint) == "wa" || 10866 StringRef(constraint) == "wd" || 10867 StringRef(constraint) == "wf") && 10868 type->isVectorTy()) 10869 return CW_Register; 10870 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10871 return CW_Register; 10872 10873 switch (*constraint) { 10874 default: 10875 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10876 break; 10877 case 'b': 10878 if (type->isIntegerTy()) 10879 weight = CW_Register; 10880 break; 10881 case 'f': 10882 if (type->isFloatTy()) 10883 weight = CW_Register; 10884 break; 10885 case 'd': 10886 if (type->isDoubleTy()) 10887 weight = CW_Register; 10888 break; 10889 case 'v': 10890 if (type->isVectorTy()) 10891 weight = CW_Register; 10892 break; 10893 case 'y': 10894 weight = CW_Register; 10895 break; 10896 case 'Z': 10897 weight = CW_Memory; 10898 break; 10899 } 10900 return weight; 10901 } 10902 10903 std::pair<unsigned, const TargetRegisterClass *> 10904 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10905 StringRef Constraint, 10906 MVT VT) const { 10907 if (Constraint.size() == 1) { 10908 // GCC RS6000 Constraint Letters 10909 switch (Constraint[0]) { 10910 case 'b': // R1-R31 10911 if (VT == MVT::i64 && Subtarget.isPPC64()) 10912 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10913 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10914 case 'r': // R0-R31 10915 if (VT == MVT::i64 && Subtarget.isPPC64()) 10916 return std::make_pair(0U, &PPC::G8RCRegClass); 10917 return std::make_pair(0U, &PPC::GPRCRegClass); 10918 case 'f': 10919 if (VT == MVT::f32 || VT == MVT::i32) 10920 return std::make_pair(0U, &PPC::F4RCRegClass); 10921 if (VT == MVT::f64 || VT == MVT::i64) 10922 return std::make_pair(0U, &PPC::F8RCRegClass); 10923 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10924 return std::make_pair(0U, &PPC::QFRCRegClass); 10925 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10926 return std::make_pair(0U, &PPC::QSRCRegClass); 10927 break; 10928 case 'v': 10929 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10930 return std::make_pair(0U, &PPC::QFRCRegClass); 10931 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10932 return std::make_pair(0U, &PPC::QSRCRegClass); 10933 if (Subtarget.hasAltivec()) 10934 return std::make_pair(0U, &PPC::VRRCRegClass); 10935 case 'y': // crrc 10936 return std::make_pair(0U, &PPC::CRRCRegClass); 10937 } 10938 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 10939 // An individual CR bit. 10940 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10941 } else if ((Constraint == "wa" || Constraint == "wd" || 10942 Constraint == "wf") && Subtarget.hasVSX()) { 10943 return std::make_pair(0U, &PPC::VSRCRegClass); 10944 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 10945 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 10946 return std::make_pair(0U, &PPC::VSSRCRegClass); 10947 else 10948 return std::make_pair(0U, &PPC::VSFRCRegClass); 10949 } 10950 10951 std::pair<unsigned, const TargetRegisterClass *> R = 10952 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10953 10954 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10955 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10956 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10957 // register. 10958 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10959 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10960 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10961 PPC::GPRCRegClass.contains(R.first)) 10962 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10963 PPC::sub_32, &PPC::G8RCRegClass), 10964 &PPC::G8RCRegClass); 10965 10966 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10967 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10968 R.first = PPC::CR0; 10969 R.second = &PPC::CRRCRegClass; 10970 } 10971 10972 return R; 10973 } 10974 10975 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10976 /// vector. If it is invalid, don't add anything to Ops. 10977 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10978 std::string &Constraint, 10979 std::vector<SDValue>&Ops, 10980 SelectionDAG &DAG) const { 10981 SDValue Result; 10982 10983 // Only support length 1 constraints. 10984 if (Constraint.length() > 1) return; 10985 10986 char Letter = Constraint[0]; 10987 switch (Letter) { 10988 default: break; 10989 case 'I': 10990 case 'J': 10991 case 'K': 10992 case 'L': 10993 case 'M': 10994 case 'N': 10995 case 'O': 10996 case 'P': { 10997 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10998 if (!CST) return; // Must be an immediate to match. 10999 SDLoc dl(Op); 11000 int64_t Value = CST->getSExtValue(); 11001 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11002 // numbers are printed as such. 11003 switch (Letter) { 11004 default: llvm_unreachable("Unknown constraint letter!"); 11005 case 'I': // "I" is a signed 16-bit constant. 11006 if (isInt<16>(Value)) 11007 Result = DAG.getTargetConstant(Value, dl, TCVT); 11008 break; 11009 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11010 if (isShiftedUInt<16, 16>(Value)) 11011 Result = DAG.getTargetConstant(Value, dl, TCVT); 11012 break; 11013 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11014 if (isShiftedInt<16, 16>(Value)) 11015 Result = DAG.getTargetConstant(Value, dl, TCVT); 11016 break; 11017 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11018 if (isUInt<16>(Value)) 11019 Result = DAG.getTargetConstant(Value, dl, TCVT); 11020 break; 11021 case 'M': // "M" is a constant that is greater than 31. 11022 if (Value > 31) 11023 Result = DAG.getTargetConstant(Value, dl, TCVT); 11024 break; 11025 case 'N': // "N" is a positive constant that is an exact power of two. 11026 if (Value > 0 && isPowerOf2_64(Value)) 11027 Result = DAG.getTargetConstant(Value, dl, TCVT); 11028 break; 11029 case 'O': // "O" is the constant zero. 11030 if (Value == 0) 11031 Result = DAG.getTargetConstant(Value, dl, TCVT); 11032 break; 11033 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11034 if (isInt<16>(-Value)) 11035 Result = DAG.getTargetConstant(Value, dl, TCVT); 11036 break; 11037 } 11038 break; 11039 } 11040 } 11041 11042 if (Result.getNode()) { 11043 Ops.push_back(Result); 11044 return; 11045 } 11046 11047 // Handle standard constraint letters. 11048 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11049 } 11050 11051 // isLegalAddressingMode - Return true if the addressing mode represented 11052 // by AM is legal for this target, for a load/store of the specified type. 11053 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11054 const AddrMode &AM, Type *Ty, 11055 unsigned AS) const { 11056 // PPC does not allow r+i addressing modes for vectors! 11057 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11058 return false; 11059 11060 // PPC allows a sign-extended 16-bit immediate field. 11061 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11062 return false; 11063 11064 // No global is ever allowed as a base. 11065 if (AM.BaseGV) 11066 return false; 11067 11068 // PPC only support r+r, 11069 switch (AM.Scale) { 11070 case 0: // "r+i" or just "i", depending on HasBaseReg. 11071 break; 11072 case 1: 11073 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11074 return false; 11075 // Otherwise we have r+r or r+i. 11076 break; 11077 case 2: 11078 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11079 return false; 11080 // Allow 2*r as r+r. 11081 break; 11082 default: 11083 // No other scales are supported. 11084 return false; 11085 } 11086 11087 return true; 11088 } 11089 11090 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11091 SelectionDAG &DAG) const { 11092 MachineFunction &MF = DAG.getMachineFunction(); 11093 MachineFrameInfo *MFI = MF.getFrameInfo(); 11094 MFI->setReturnAddressIsTaken(true); 11095 11096 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11097 return SDValue(); 11098 11099 SDLoc dl(Op); 11100 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11101 11102 // Make sure the function does not optimize away the store of the RA to 11103 // the stack. 11104 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11105 FuncInfo->setLRStoreRequired(); 11106 bool isPPC64 = Subtarget.isPPC64(); 11107 auto PtrVT = getPointerTy(MF.getDataLayout()); 11108 11109 if (Depth > 0) { 11110 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11111 SDValue Offset = 11112 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11113 isPPC64 ? MVT::i64 : MVT::i32); 11114 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11115 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11116 MachinePointerInfo(), false, false, false, 0); 11117 } 11118 11119 // Just load the return address off the stack. 11120 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11121 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11122 MachinePointerInfo(), false, false, false, 0); 11123 } 11124 11125 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11126 SelectionDAG &DAG) const { 11127 SDLoc dl(Op); 11128 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11129 11130 MachineFunction &MF = DAG.getMachineFunction(); 11131 MachineFrameInfo *MFI = MF.getFrameInfo(); 11132 MFI->setFrameAddressIsTaken(true); 11133 11134 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11135 bool isPPC64 = PtrVT == MVT::i64; 11136 11137 // Naked functions never have a frame pointer, and so we use r1. For all 11138 // other functions, this decision must be delayed until during PEI. 11139 unsigned FrameReg; 11140 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11141 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11142 else 11143 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11144 11145 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11146 PtrVT); 11147 while (Depth--) 11148 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11149 FrameAddr, MachinePointerInfo(), false, false, 11150 false, 0); 11151 return FrameAddr; 11152 } 11153 11154 // FIXME? Maybe this could be a TableGen attribute on some registers and 11155 // this table could be generated automatically from RegInfo. 11156 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11157 SelectionDAG &DAG) const { 11158 bool isPPC64 = Subtarget.isPPC64(); 11159 bool isDarwinABI = Subtarget.isDarwinABI(); 11160 11161 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11162 (!isPPC64 && VT != MVT::i32)) 11163 report_fatal_error("Invalid register global variable type"); 11164 11165 bool is64Bit = isPPC64 && VT == MVT::i64; 11166 unsigned Reg = StringSwitch<unsigned>(RegName) 11167 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11168 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11169 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11170 (is64Bit ? PPC::X13 : PPC::R13)) 11171 .Default(0); 11172 11173 if (Reg) 11174 return Reg; 11175 report_fatal_error("Invalid register name global variable"); 11176 } 11177 11178 bool 11179 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11180 // The PowerPC target isn't yet aware of offsets. 11181 return false; 11182 } 11183 11184 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11185 const CallInst &I, 11186 unsigned Intrinsic) const { 11187 11188 switch (Intrinsic) { 11189 case Intrinsic::ppc_qpx_qvlfd: 11190 case Intrinsic::ppc_qpx_qvlfs: 11191 case Intrinsic::ppc_qpx_qvlfcd: 11192 case Intrinsic::ppc_qpx_qvlfcs: 11193 case Intrinsic::ppc_qpx_qvlfiwa: 11194 case Intrinsic::ppc_qpx_qvlfiwz: 11195 case Intrinsic::ppc_altivec_lvx: 11196 case Intrinsic::ppc_altivec_lvxl: 11197 case Intrinsic::ppc_altivec_lvebx: 11198 case Intrinsic::ppc_altivec_lvehx: 11199 case Intrinsic::ppc_altivec_lvewx: 11200 case Intrinsic::ppc_vsx_lxvd2x: 11201 case Intrinsic::ppc_vsx_lxvw4x: { 11202 EVT VT; 11203 switch (Intrinsic) { 11204 case Intrinsic::ppc_altivec_lvebx: 11205 VT = MVT::i8; 11206 break; 11207 case Intrinsic::ppc_altivec_lvehx: 11208 VT = MVT::i16; 11209 break; 11210 case Intrinsic::ppc_altivec_lvewx: 11211 VT = MVT::i32; 11212 break; 11213 case Intrinsic::ppc_vsx_lxvd2x: 11214 VT = MVT::v2f64; 11215 break; 11216 case Intrinsic::ppc_qpx_qvlfd: 11217 VT = MVT::v4f64; 11218 break; 11219 case Intrinsic::ppc_qpx_qvlfs: 11220 VT = MVT::v4f32; 11221 break; 11222 case Intrinsic::ppc_qpx_qvlfcd: 11223 VT = MVT::v2f64; 11224 break; 11225 case Intrinsic::ppc_qpx_qvlfcs: 11226 VT = MVT::v2f32; 11227 break; 11228 default: 11229 VT = MVT::v4i32; 11230 break; 11231 } 11232 11233 Info.opc = ISD::INTRINSIC_W_CHAIN; 11234 Info.memVT = VT; 11235 Info.ptrVal = I.getArgOperand(0); 11236 Info.offset = -VT.getStoreSize()+1; 11237 Info.size = 2*VT.getStoreSize()-1; 11238 Info.align = 1; 11239 Info.vol = false; 11240 Info.readMem = true; 11241 Info.writeMem = false; 11242 return true; 11243 } 11244 case Intrinsic::ppc_qpx_qvlfda: 11245 case Intrinsic::ppc_qpx_qvlfsa: 11246 case Intrinsic::ppc_qpx_qvlfcda: 11247 case Intrinsic::ppc_qpx_qvlfcsa: 11248 case Intrinsic::ppc_qpx_qvlfiwaa: 11249 case Intrinsic::ppc_qpx_qvlfiwza: { 11250 EVT VT; 11251 switch (Intrinsic) { 11252 case Intrinsic::ppc_qpx_qvlfda: 11253 VT = MVT::v4f64; 11254 break; 11255 case Intrinsic::ppc_qpx_qvlfsa: 11256 VT = MVT::v4f32; 11257 break; 11258 case Intrinsic::ppc_qpx_qvlfcda: 11259 VT = MVT::v2f64; 11260 break; 11261 case Intrinsic::ppc_qpx_qvlfcsa: 11262 VT = MVT::v2f32; 11263 break; 11264 default: 11265 VT = MVT::v4i32; 11266 break; 11267 } 11268 11269 Info.opc = ISD::INTRINSIC_W_CHAIN; 11270 Info.memVT = VT; 11271 Info.ptrVal = I.getArgOperand(0); 11272 Info.offset = 0; 11273 Info.size = VT.getStoreSize(); 11274 Info.align = 1; 11275 Info.vol = false; 11276 Info.readMem = true; 11277 Info.writeMem = false; 11278 return true; 11279 } 11280 case Intrinsic::ppc_qpx_qvstfd: 11281 case Intrinsic::ppc_qpx_qvstfs: 11282 case Intrinsic::ppc_qpx_qvstfcd: 11283 case Intrinsic::ppc_qpx_qvstfcs: 11284 case Intrinsic::ppc_qpx_qvstfiw: 11285 case Intrinsic::ppc_altivec_stvx: 11286 case Intrinsic::ppc_altivec_stvxl: 11287 case Intrinsic::ppc_altivec_stvebx: 11288 case Intrinsic::ppc_altivec_stvehx: 11289 case Intrinsic::ppc_altivec_stvewx: 11290 case Intrinsic::ppc_vsx_stxvd2x: 11291 case Intrinsic::ppc_vsx_stxvw4x: { 11292 EVT VT; 11293 switch (Intrinsic) { 11294 case Intrinsic::ppc_altivec_stvebx: 11295 VT = MVT::i8; 11296 break; 11297 case Intrinsic::ppc_altivec_stvehx: 11298 VT = MVT::i16; 11299 break; 11300 case Intrinsic::ppc_altivec_stvewx: 11301 VT = MVT::i32; 11302 break; 11303 case Intrinsic::ppc_vsx_stxvd2x: 11304 VT = MVT::v2f64; 11305 break; 11306 case Intrinsic::ppc_qpx_qvstfd: 11307 VT = MVT::v4f64; 11308 break; 11309 case Intrinsic::ppc_qpx_qvstfs: 11310 VT = MVT::v4f32; 11311 break; 11312 case Intrinsic::ppc_qpx_qvstfcd: 11313 VT = MVT::v2f64; 11314 break; 11315 case Intrinsic::ppc_qpx_qvstfcs: 11316 VT = MVT::v2f32; 11317 break; 11318 default: 11319 VT = MVT::v4i32; 11320 break; 11321 } 11322 11323 Info.opc = ISD::INTRINSIC_VOID; 11324 Info.memVT = VT; 11325 Info.ptrVal = I.getArgOperand(1); 11326 Info.offset = -VT.getStoreSize()+1; 11327 Info.size = 2*VT.getStoreSize()-1; 11328 Info.align = 1; 11329 Info.vol = false; 11330 Info.readMem = false; 11331 Info.writeMem = true; 11332 return true; 11333 } 11334 case Intrinsic::ppc_qpx_qvstfda: 11335 case Intrinsic::ppc_qpx_qvstfsa: 11336 case Intrinsic::ppc_qpx_qvstfcda: 11337 case Intrinsic::ppc_qpx_qvstfcsa: 11338 case Intrinsic::ppc_qpx_qvstfiwa: { 11339 EVT VT; 11340 switch (Intrinsic) { 11341 case Intrinsic::ppc_qpx_qvstfda: 11342 VT = MVT::v4f64; 11343 break; 11344 case Intrinsic::ppc_qpx_qvstfsa: 11345 VT = MVT::v4f32; 11346 break; 11347 case Intrinsic::ppc_qpx_qvstfcda: 11348 VT = MVT::v2f64; 11349 break; 11350 case Intrinsic::ppc_qpx_qvstfcsa: 11351 VT = MVT::v2f32; 11352 break; 11353 default: 11354 VT = MVT::v4i32; 11355 break; 11356 } 11357 11358 Info.opc = ISD::INTRINSIC_VOID; 11359 Info.memVT = VT; 11360 Info.ptrVal = I.getArgOperand(1); 11361 Info.offset = 0; 11362 Info.size = VT.getStoreSize(); 11363 Info.align = 1; 11364 Info.vol = false; 11365 Info.readMem = false; 11366 Info.writeMem = true; 11367 return true; 11368 } 11369 default: 11370 break; 11371 } 11372 11373 return false; 11374 } 11375 11376 /// getOptimalMemOpType - Returns the target specific optimal type for load 11377 /// and store operations as a result of memset, memcpy, and memmove 11378 /// lowering. If DstAlign is zero that means it's safe to destination 11379 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11380 /// means there isn't a need to check it against alignment requirement, 11381 /// probably because the source does not need to be loaded. If 'IsMemset' is 11382 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11383 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11384 /// source is constant so it does not need to be loaded. 11385 /// It returns EVT::Other if the type should be determined using generic 11386 /// target-independent logic. 11387 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11388 unsigned DstAlign, unsigned SrcAlign, 11389 bool IsMemset, bool ZeroMemset, 11390 bool MemcpyStrSrc, 11391 MachineFunction &MF) const { 11392 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11393 const Function *F = MF.getFunction(); 11394 // When expanding a memset, require at least two QPX instructions to cover 11395 // the cost of loading the value to be stored from the constant pool. 11396 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11397 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11398 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11399 return MVT::v4f64; 11400 } 11401 11402 // We should use Altivec/VSX loads and stores when available. For unaligned 11403 // addresses, unaligned VSX loads are only fast starting with the P8. 11404 if (Subtarget.hasAltivec() && Size >= 16 && 11405 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11406 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11407 return MVT::v4i32; 11408 } 11409 11410 if (Subtarget.isPPC64()) { 11411 return MVT::i64; 11412 } 11413 11414 return MVT::i32; 11415 } 11416 11417 /// \brief Returns true if it is beneficial to convert a load of a constant 11418 /// to just the constant itself. 11419 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11420 Type *Ty) const { 11421 assert(Ty->isIntegerTy()); 11422 11423 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11424 if (BitSize == 0 || BitSize > 64) 11425 return false; 11426 return true; 11427 } 11428 11429 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11430 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11431 return false; 11432 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11433 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11434 return NumBits1 == 64 && NumBits2 == 32; 11435 } 11436 11437 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11438 if (!VT1.isInteger() || !VT2.isInteger()) 11439 return false; 11440 unsigned NumBits1 = VT1.getSizeInBits(); 11441 unsigned NumBits2 = VT2.getSizeInBits(); 11442 return NumBits1 == 64 && NumBits2 == 32; 11443 } 11444 11445 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11446 // Generally speaking, zexts are not free, but they are free when they can be 11447 // folded with other operations. 11448 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11449 EVT MemVT = LD->getMemoryVT(); 11450 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11451 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11452 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11453 LD->getExtensionType() == ISD::ZEXTLOAD)) 11454 return true; 11455 } 11456 11457 // FIXME: Add other cases... 11458 // - 32-bit shifts with a zext to i64 11459 // - zext after ctlz, bswap, etc. 11460 // - zext after and by a constant mask 11461 11462 return TargetLowering::isZExtFree(Val, VT2); 11463 } 11464 11465 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11466 assert(VT.isFloatingPoint()); 11467 return true; 11468 } 11469 11470 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11471 return isInt<16>(Imm) || isUInt<16>(Imm); 11472 } 11473 11474 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11475 return isInt<16>(Imm) || isUInt<16>(Imm); 11476 } 11477 11478 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11479 unsigned, 11480 unsigned, 11481 bool *Fast) const { 11482 if (DisablePPCUnaligned) 11483 return false; 11484 11485 // PowerPC supports unaligned memory access for simple non-vector types. 11486 // Although accessing unaligned addresses is not as efficient as accessing 11487 // aligned addresses, it is generally more efficient than manual expansion, 11488 // and generally only traps for software emulation when crossing page 11489 // boundaries. 11490 11491 if (!VT.isSimple()) 11492 return false; 11493 11494 if (VT.getSimpleVT().isVector()) { 11495 if (Subtarget.hasVSX()) { 11496 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11497 VT != MVT::v4f32 && VT != MVT::v4i32) 11498 return false; 11499 } else { 11500 return false; 11501 } 11502 } 11503 11504 if (VT == MVT::ppcf128) 11505 return false; 11506 11507 if (Fast) 11508 *Fast = true; 11509 11510 return true; 11511 } 11512 11513 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11514 VT = VT.getScalarType(); 11515 11516 if (!VT.isSimple()) 11517 return false; 11518 11519 switch (VT.getSimpleVT().SimpleTy) { 11520 case MVT::f32: 11521 case MVT::f64: 11522 return true; 11523 default: 11524 break; 11525 } 11526 11527 return false; 11528 } 11529 11530 const MCPhysReg * 11531 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11532 // LR is a callee-save register, but we must treat it as clobbered by any call 11533 // site. Hence we include LR in the scratch registers, which are in turn added 11534 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11535 // to CTR, which is used by any indirect call. 11536 static const MCPhysReg ScratchRegs[] = { 11537 PPC::X12, PPC::LR8, PPC::CTR8, 0 11538 }; 11539 11540 return ScratchRegs; 11541 } 11542 11543 unsigned PPCTargetLowering::getExceptionPointerRegister( 11544 const Constant *PersonalityFn) const { 11545 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11546 } 11547 11548 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11549 const Constant *PersonalityFn) const { 11550 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11551 } 11552 11553 bool 11554 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11555 EVT VT , unsigned DefinedValues) const { 11556 if (VT == MVT::v2i64) 11557 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11558 11559 if (Subtarget.hasQPX()) { 11560 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11561 return true; 11562 } 11563 11564 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11565 } 11566 11567 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11568 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11569 return TargetLowering::getSchedulingPreference(N); 11570 11571 return Sched::ILP; 11572 } 11573 11574 // Create a fast isel object. 11575 FastISel * 11576 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11577 const TargetLibraryInfo *LibInfo) const { 11578 return PPC::createFastISel(FuncInfo, LibInfo); 11579 } 11580