1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/Constant.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/Intrinsics.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCExpr.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/AtomicOrdering.h"
74 #include "llvm/Support/BranchProbability.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CodeGen.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/Format.h"
82 #include "llvm/Support/KnownBits.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetInstrInfo.h"
86 #include "llvm/Target/TargetLowering.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Target/TargetRegisterInfo.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 STATISTIC(NumTailCalls, "Number of tail calls");
115 STATISTIC(NumSiblingCalls, "Number of sibling calls");
116 
117 // FIXME: Remove this once the bug has been fixed!
118 extern cl::opt<bool> ANDIGlueBug;
119 
120 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
121                                      const PPCSubtarget &STI)
122     : TargetLowering(TM), Subtarget(STI) {
123   // Use _setjmp/_longjmp instead of setjmp/longjmp.
124   setUseUnderscoreSetJmp(true);
125   setUseUnderscoreLongJmp(true);
126 
127   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
128   // arguments are at least 4/8 bytes aligned.
129   bool isPPC64 = Subtarget.isPPC64();
130   setMinStackArgumentAlignment(isPPC64 ? 8:4);
131 
132   // Set up the register classes.
133   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
134   if (!useSoftFloat()) {
135     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
136     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
137   }
138 
139   // Match BITREVERSE to customized fast code sequence in the td file.
140   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
141   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
142 
143   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
144   for (MVT VT : MVT::integer_valuetypes()) {
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
146     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
147   }
148 
149   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
150 
151   // PowerPC has pre-inc load and store's.
152   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
153   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
154   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
155   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
156   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
157   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
158   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
159   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
160   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
161   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
162   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
163   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
164   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
165   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
166 
167   if (Subtarget.useCRBits()) {
168     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
169 
170     if (isPPC64 || Subtarget.hasFPCVT()) {
171       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
172       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
173                          isPPC64 ? MVT::i64 : MVT::i32);
174       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
175       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
176                         isPPC64 ? MVT::i64 : MVT::i32);
177     } else {
178       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
179       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
180     }
181 
182     // PowerPC does not support direct load/store of condition registers.
183     setOperationAction(ISD::LOAD, MVT::i1, Custom);
184     setOperationAction(ISD::STORE, MVT::i1, Custom);
185 
186     // FIXME: Remove this once the ANDI glue bug is fixed:
187     if (ANDIGlueBug)
188       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
189 
190     for (MVT VT : MVT::integer_valuetypes()) {
191       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
192       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
193       setTruncStoreAction(VT, MVT::i1, Expand);
194     }
195 
196     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
197   }
198 
199   // This is used in the ppcf128->int sequence.  Note it has different semantics
200   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
201   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
202 
203   // We do not currently implement these libm ops for PowerPC.
204   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
205   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
206   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
207   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
208   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
209   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
210 
211   // PowerPC has no SREM/UREM instructions unless we are on P9
212   // On P9 we may use a hardware instruction to compute the remainder.
213   // The instructions are not legalized directly because in the cases where the
214   // result of both the remainder and the division is required it is more
215   // efficient to compute the remainder from the result of the division rather
216   // than use the remainder instruction.
217   if (Subtarget.isISA3_0()) {
218     setOperationAction(ISD::SREM, MVT::i32, Custom);
219     setOperationAction(ISD::UREM, MVT::i32, Custom);
220     setOperationAction(ISD::SREM, MVT::i64, Custom);
221     setOperationAction(ISD::UREM, MVT::i64, Custom);
222   } else {
223     setOperationAction(ISD::SREM, MVT::i32, Expand);
224     setOperationAction(ISD::UREM, MVT::i32, Expand);
225     setOperationAction(ISD::SREM, MVT::i64, Expand);
226     setOperationAction(ISD::UREM, MVT::i64, Expand);
227   }
228 
229   if (Subtarget.hasP9Vector()) {
230     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
231     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
232     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
233   }
234 
235   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
236   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
237   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
238   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
239   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
240   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
241   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
242   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
243   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
244 
245   // We don't support sin/cos/sqrt/fmod/pow
246   setOperationAction(ISD::FSIN , MVT::f64, Expand);
247   setOperationAction(ISD::FCOS , MVT::f64, Expand);
248   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
249   setOperationAction(ISD::FREM , MVT::f64, Expand);
250   setOperationAction(ISD::FPOW , MVT::f64, Expand);
251   setOperationAction(ISD::FMA  , MVT::f64, Legal);
252   setOperationAction(ISD::FSIN , MVT::f32, Expand);
253   setOperationAction(ISD::FCOS , MVT::f32, Expand);
254   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
255   setOperationAction(ISD::FREM , MVT::f32, Expand);
256   setOperationAction(ISD::FPOW , MVT::f32, Expand);
257   setOperationAction(ISD::FMA  , MVT::f32, Legal);
258 
259   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
260 
261   // If we're enabling GP optimizations, use hardware square root
262   if (!Subtarget.hasFSQRT() &&
263       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
264         Subtarget.hasFRE()))
265     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
266 
267   if (!Subtarget.hasFSQRT() &&
268       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
269         Subtarget.hasFRES()))
270     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
271 
272   if (Subtarget.hasFCPSGN()) {
273     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
274     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
275   } else {
276     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
277     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
278   }
279 
280   if (Subtarget.hasFPRND()) {
281     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
282     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
283     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
284     setOperationAction(ISD::FROUND, MVT::f64, Legal);
285 
286     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
287     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
288     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
289     setOperationAction(ISD::FROUND, MVT::f32, Legal);
290   }
291 
292   // PowerPC does not have BSWAP
293   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
294   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
295   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
296   if (Subtarget.isISA3_0()) {
297     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
298     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
299   } else {
300     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
301     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
302   }
303 
304   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
305     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
306     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
307   } else {
308     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
309     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
310   }
311 
312   // PowerPC does not have ROTR
313   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
314   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
315 
316   if (!Subtarget.useCRBits()) {
317     // PowerPC does not have Select
318     setOperationAction(ISD::SELECT, MVT::i32, Expand);
319     setOperationAction(ISD::SELECT, MVT::i64, Expand);
320     setOperationAction(ISD::SELECT, MVT::f32, Expand);
321     setOperationAction(ISD::SELECT, MVT::f64, Expand);
322   }
323 
324   // PowerPC wants to turn select_cc of FP into fsel when possible.
325   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
326   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
327 
328   // PowerPC wants to optimize integer setcc a bit
329   if (!Subtarget.useCRBits())
330     setOperationAction(ISD::SETCC, MVT::i32, Custom);
331 
332   // PowerPC does not have BRCOND which requires SetCC
333   if (!Subtarget.useCRBits())
334     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
335 
336   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
337 
338   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
339   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
340 
341   // PowerPC does not have [U|S]INT_TO_FP
342   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
343   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
344 
345   if (Subtarget.hasDirectMove() && isPPC64) {
346     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
347     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
348     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
349     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
350   } else {
351     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
352     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
353     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
354     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
355   }
356 
357   // We cannot sextinreg(i1).  Expand to shifts.
358   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
359 
360   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
361   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
362   // support continuation, user-level threading, and etc.. As a result, no
363   // other SjLj exception interfaces are implemented and please don't build
364   // your own exception handling based on them.
365   // LLVM/Clang supports zero-cost DWARF exception handling.
366   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
367   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
368 
369   // We want to legalize GlobalAddress and ConstantPool nodes into the
370   // appropriate instructions to materialize the address.
371   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
372   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
373   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
374   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
375   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
376   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
377   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
378   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
379   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
380   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
381 
382   // TRAP is legal.
383   setOperationAction(ISD::TRAP, MVT::Other, Legal);
384 
385   // TRAMPOLINE is custom lowered.
386   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
387   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
388 
389   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
390   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
391 
392   if (Subtarget.isSVR4ABI()) {
393     if (isPPC64) {
394       // VAARG always uses double-word chunks, so promote anything smaller.
395       setOperationAction(ISD::VAARG, MVT::i1, Promote);
396       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
397       setOperationAction(ISD::VAARG, MVT::i8, Promote);
398       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
399       setOperationAction(ISD::VAARG, MVT::i16, Promote);
400       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
401       setOperationAction(ISD::VAARG, MVT::i32, Promote);
402       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
403       setOperationAction(ISD::VAARG, MVT::Other, Expand);
404     } else {
405       // VAARG is custom lowered with the 32-bit SVR4 ABI.
406       setOperationAction(ISD::VAARG, MVT::Other, Custom);
407       setOperationAction(ISD::VAARG, MVT::i64, Custom);
408     }
409   } else
410     setOperationAction(ISD::VAARG, MVT::Other, Expand);
411 
412   if (Subtarget.isSVR4ABI() && !isPPC64)
413     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
414     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
415   else
416     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
417 
418   // Use the default implementation.
419   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
420   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
421   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
422   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
423   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
424   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
425   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
426   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
427   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
428 
429   // We want to custom lower some of our intrinsics.
430   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
431 
432   // To handle counter-based loop conditions.
433   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
434 
435   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
436   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
437   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
438   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
439 
440   // Comparisons that require checking two conditions.
441   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
442   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
443   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
444   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
445   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
446   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
447   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
448   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
449   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
450   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
451   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
452   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
453 
454   if (Subtarget.has64BitSupport()) {
455     // They also have instructions for converting between i64 and fp.
456     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
457     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
458     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
459     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
460     // This is just the low 32 bits of a (signed) fp->i64 conversion.
461     // We cannot do this with Promote because i64 is not a legal type.
462     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
463 
464     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
465       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
466   } else {
467     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
468     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
469   }
470 
471   // With the instructions enabled under FPCVT, we can do everything.
472   if (Subtarget.hasFPCVT()) {
473     if (Subtarget.has64BitSupport()) {
474       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
475       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
476       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
477       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
478     }
479 
480     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
481     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
482     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
483     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
484   }
485 
486   if (Subtarget.use64BitRegs()) {
487     // 64-bit PowerPC implementations can support i64 types directly
488     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
489     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
490     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
491     // 64-bit PowerPC wants to expand i128 shifts itself.
492     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
493     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
494     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
495   } else {
496     // 32-bit PowerPC wants to expand i64 shifts itself.
497     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
498     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
499     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
500   }
501 
502   if (Subtarget.hasAltivec()) {
503     // First set operation action for all vector types to expand. Then we
504     // will selectively turn on ones that can be effectively codegen'd.
505     for (MVT VT : MVT::vector_valuetypes()) {
506       // add/sub are legal for all supported vector VT's.
507       setOperationAction(ISD::ADD, VT, Legal);
508       setOperationAction(ISD::SUB, VT, Legal);
509 
510       // Vector instructions introduced in P8
511       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
512         setOperationAction(ISD::CTPOP, VT, Legal);
513         setOperationAction(ISD::CTLZ, VT, Legal);
514       }
515       else {
516         setOperationAction(ISD::CTPOP, VT, Expand);
517         setOperationAction(ISD::CTLZ, VT, Expand);
518       }
519 
520       // Vector instructions introduced in P9
521       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
522         setOperationAction(ISD::CTTZ, VT, Legal);
523       else
524         setOperationAction(ISD::CTTZ, VT, Expand);
525 
526       // We promote all shuffles to v16i8.
527       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
528       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
529 
530       // We promote all non-typed operations to v4i32.
531       setOperationAction(ISD::AND   , VT, Promote);
532       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
533       setOperationAction(ISD::OR    , VT, Promote);
534       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
535       setOperationAction(ISD::XOR   , VT, Promote);
536       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
537       setOperationAction(ISD::LOAD  , VT, Promote);
538       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
539       setOperationAction(ISD::SELECT, VT, Promote);
540       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
541       setOperationAction(ISD::SELECT_CC, VT, Promote);
542       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
543       setOperationAction(ISD::STORE, VT, Promote);
544       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
545 
546       // No other operations are legal.
547       setOperationAction(ISD::MUL , VT, Expand);
548       setOperationAction(ISD::SDIV, VT, Expand);
549       setOperationAction(ISD::SREM, VT, Expand);
550       setOperationAction(ISD::UDIV, VT, Expand);
551       setOperationAction(ISD::UREM, VT, Expand);
552       setOperationAction(ISD::FDIV, VT, Expand);
553       setOperationAction(ISD::FREM, VT, Expand);
554       setOperationAction(ISD::FNEG, VT, Expand);
555       setOperationAction(ISD::FSQRT, VT, Expand);
556       setOperationAction(ISD::FLOG, VT, Expand);
557       setOperationAction(ISD::FLOG10, VT, Expand);
558       setOperationAction(ISD::FLOG2, VT, Expand);
559       setOperationAction(ISD::FEXP, VT, Expand);
560       setOperationAction(ISD::FEXP2, VT, Expand);
561       setOperationAction(ISD::FSIN, VT, Expand);
562       setOperationAction(ISD::FCOS, VT, Expand);
563       setOperationAction(ISD::FABS, VT, Expand);
564       setOperationAction(ISD::FFLOOR, VT, Expand);
565       setOperationAction(ISD::FCEIL,  VT, Expand);
566       setOperationAction(ISD::FTRUNC, VT, Expand);
567       setOperationAction(ISD::FRINT,  VT, Expand);
568       setOperationAction(ISD::FNEARBYINT, VT, Expand);
569       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
570       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
571       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
572       setOperationAction(ISD::MULHU, VT, Expand);
573       setOperationAction(ISD::MULHS, VT, Expand);
574       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
575       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
576       setOperationAction(ISD::UDIVREM, VT, Expand);
577       setOperationAction(ISD::SDIVREM, VT, Expand);
578       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
579       setOperationAction(ISD::FPOW, VT, Expand);
580       setOperationAction(ISD::BSWAP, VT, Expand);
581       setOperationAction(ISD::VSELECT, VT, Expand);
582       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
583       setOperationAction(ISD::ROTL, VT, Expand);
584       setOperationAction(ISD::ROTR, VT, Expand);
585 
586       for (MVT InnerVT : MVT::vector_valuetypes()) {
587         setTruncStoreAction(VT, InnerVT, Expand);
588         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
589         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
590         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
591       }
592     }
593 
594     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
595     // with merges, splats, etc.
596     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
597 
598     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
599     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
600     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
601     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
602     setOperationAction(ISD::SELECT, MVT::v4i32,
603                        Subtarget.useCRBits() ? Legal : Expand);
604     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
605     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
606     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
607     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
608     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
609     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
610     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
611     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
612     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
613 
614     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
615     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
616     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
617     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
618 
619     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
620     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
621 
622     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
623       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
624       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
625     }
626 
627     if (Subtarget.hasP8Altivec())
628       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
629     else
630       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
631 
632     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
633     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
634 
635     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
636     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
637 
638     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
639     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
640     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
641     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
642 
643     // Altivec does not contain unordered floating-point compare instructions
644     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
645     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
646     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
647     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
648 
649     if (Subtarget.hasVSX()) {
650       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
651       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
652       if (Subtarget.hasP8Vector()) {
653         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
654         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
655       }
656       if (Subtarget.hasDirectMove() && isPPC64) {
657         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
658         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
659         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
660         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
661         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
662         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
663         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
664         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
665       }
666       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
667 
668       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
669       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
670       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
671       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
672       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
673 
674       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
675 
676       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
677       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
678 
679       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
680       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
681 
682       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
683       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
684       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
685       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
686       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
687 
688       // Share the Altivec comparison restrictions.
689       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
690       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
691       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
692       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
693 
694       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
695       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
696 
697       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
698 
699       if (Subtarget.hasP8Vector())
700         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
701 
702       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
703 
704       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
705       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
706       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
707 
708       if (Subtarget.hasP8Altivec()) {
709         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
710         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
711         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
712 
713         // 128 bit shifts can be accomplished via 3 instructions for SHL and
714         // SRL, but not for SRA because of the instructions available:
715         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
716         // doing
717         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
718         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
719         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
720 
721         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
722       }
723       else {
724         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
725         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
726         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
727 
728         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
729 
730         // VSX v2i64 only supports non-arithmetic operations.
731         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
732         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
733       }
734 
735       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
736       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
737       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
738       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
739 
740       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
741 
742       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
743       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
744       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
745       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
746 
747       // Vector operation legalization checks the result type of
748       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
749       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
750       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
751       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
752       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
753 
754       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
755       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
756       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
757       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
758 
759       if (Subtarget.hasDirectMove())
760         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
761       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
762 
763       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
764     }
765 
766     if (Subtarget.hasP8Altivec()) {
767       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
768       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
769     }
770 
771     if (Subtarget.hasP9Vector()) {
772       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
773       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
774 
775       // 128 bit shifts can be accomplished via 3 instructions for SHL and
776       // SRL, but not for SRA because of the instructions available:
777       // VS{RL} and VS{RL}O.
778       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
779       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
780       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
781     }
782   }
783 
784   if (Subtarget.hasQPX()) {
785     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
786     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
787     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
788     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
789 
790     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
791     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
792 
793     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
794     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
795 
796     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
797     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
798 
799     if (!Subtarget.useCRBits())
800       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
801     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
802 
803     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
804     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
805     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
806     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
807     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
808     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
809     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
810 
811     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
812     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
813 
814     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
815     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
816     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
817 
818     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
819     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
820     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
821     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
822     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
823     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
824     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
825     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
826     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
827     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
828 
829     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
830     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
831 
832     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
833     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
834 
835     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
836 
837     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
838     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
839     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
840     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
841 
842     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
843     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
844 
845     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
846     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
847 
848     if (!Subtarget.useCRBits())
849       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
850     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
851 
852     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
853     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
854     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
855     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
856     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
857     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
858     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
859 
860     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
861     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
862 
863     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
864     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
865     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
866     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
867     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
868     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
869     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
870     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
871     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
872     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
873 
874     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
875     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
876 
877     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
878     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
879 
880     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
881 
882     setOperationAction(ISD::AND , MVT::v4i1, Legal);
883     setOperationAction(ISD::OR , MVT::v4i1, Legal);
884     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
885 
886     if (!Subtarget.useCRBits())
887       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
888     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
889 
890     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
891     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
892 
893     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
894     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
895     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
896     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
897     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
898     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
899     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
900 
901     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
902     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
903 
904     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
905 
906     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
907     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
908     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
909     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
910 
911     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
912     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
913     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
914     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
915 
916     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
917     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
918 
919     // These need to set FE_INEXACT, and so cannot be vectorized here.
920     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
921     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
922 
923     if (TM.Options.UnsafeFPMath) {
924       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
925       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
926 
927       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
928       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
929     } else {
930       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
931       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
932 
933       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
934       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
935     }
936   }
937 
938   if (Subtarget.has64BitSupport())
939     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
940 
941   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
942 
943   if (!isPPC64) {
944     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
945     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
946   }
947 
948   setBooleanContents(ZeroOrOneBooleanContent);
949 
950   if (Subtarget.hasAltivec()) {
951     // Altivec instructions set fields to all zeros or all ones.
952     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
953   }
954 
955   if (!isPPC64) {
956     // These libcalls are not available in 32-bit.
957     setLibcallName(RTLIB::SHL_I128, nullptr);
958     setLibcallName(RTLIB::SRL_I128, nullptr);
959     setLibcallName(RTLIB::SRA_I128, nullptr);
960   }
961 
962   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
963 
964   // We have target-specific dag combine patterns for the following nodes:
965   setTargetDAGCombine(ISD::SHL);
966   setTargetDAGCombine(ISD::SRA);
967   setTargetDAGCombine(ISD::SRL);
968   setTargetDAGCombine(ISD::SINT_TO_FP);
969   setTargetDAGCombine(ISD::BUILD_VECTOR);
970   if (Subtarget.hasFPCVT())
971     setTargetDAGCombine(ISD::UINT_TO_FP);
972   setTargetDAGCombine(ISD::LOAD);
973   setTargetDAGCombine(ISD::STORE);
974   setTargetDAGCombine(ISD::BR_CC);
975   if (Subtarget.useCRBits())
976     setTargetDAGCombine(ISD::BRCOND);
977   setTargetDAGCombine(ISD::BSWAP);
978   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
979   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
980   setTargetDAGCombine(ISD::INTRINSIC_VOID);
981 
982   setTargetDAGCombine(ISD::SIGN_EXTEND);
983   setTargetDAGCombine(ISD::ZERO_EXTEND);
984   setTargetDAGCombine(ISD::ANY_EXTEND);
985 
986   if (Subtarget.useCRBits()) {
987     setTargetDAGCombine(ISD::TRUNCATE);
988     setTargetDAGCombine(ISD::SETCC);
989     setTargetDAGCombine(ISD::SELECT_CC);
990   }
991 
992   // Use reciprocal estimates.
993   if (TM.Options.UnsafeFPMath) {
994     setTargetDAGCombine(ISD::FDIV);
995     setTargetDAGCombine(ISD::FSQRT);
996   }
997 
998   // Darwin long double math library functions have $LDBL128 appended.
999   if (Subtarget.isDarwin()) {
1000     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1001     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1002     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1003     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1004     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1005     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1006     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1007     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1008     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1009     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1010   }
1011 
1012   // With 32 condition bits, we don't need to sink (and duplicate) compares
1013   // aggressively in CodeGenPrep.
1014   if (Subtarget.useCRBits()) {
1015     setHasMultipleConditionRegisters();
1016     setJumpIsExpensive();
1017   }
1018 
1019   setMinFunctionAlignment(2);
1020   if (Subtarget.isDarwin())
1021     setPrefFunctionAlignment(4);
1022 
1023   switch (Subtarget.getDarwinDirective()) {
1024   default: break;
1025   case PPC::DIR_970:
1026   case PPC::DIR_A2:
1027   case PPC::DIR_E500mc:
1028   case PPC::DIR_E5500:
1029   case PPC::DIR_PWR4:
1030   case PPC::DIR_PWR5:
1031   case PPC::DIR_PWR5X:
1032   case PPC::DIR_PWR6:
1033   case PPC::DIR_PWR6X:
1034   case PPC::DIR_PWR7:
1035   case PPC::DIR_PWR8:
1036   case PPC::DIR_PWR9:
1037     setPrefFunctionAlignment(4);
1038     setPrefLoopAlignment(4);
1039     break;
1040   }
1041 
1042   if (Subtarget.enableMachineScheduler())
1043     setSchedulingPreference(Sched::Source);
1044   else
1045     setSchedulingPreference(Sched::Hybrid);
1046 
1047   computeRegisterProperties(STI.getRegisterInfo());
1048 
1049   // The Freescale cores do better with aggressive inlining of memcpy and
1050   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1051   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1052       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1053     MaxStoresPerMemset = 32;
1054     MaxStoresPerMemsetOptSize = 16;
1055     MaxStoresPerMemcpy = 32;
1056     MaxStoresPerMemcpyOptSize = 8;
1057     MaxStoresPerMemmove = 32;
1058     MaxStoresPerMemmoveOptSize = 8;
1059   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1060     // The A2 also benefits from (very) aggressive inlining of memcpy and
1061     // friends. The overhead of a the function call, even when warm, can be
1062     // over one hundred cycles.
1063     MaxStoresPerMemset = 128;
1064     MaxStoresPerMemcpy = 128;
1065     MaxStoresPerMemmove = 128;
1066     MaxLoadsPerMemcmp = 128;
1067   } else {
1068     MaxLoadsPerMemcmp = 8;
1069     MaxLoadsPerMemcmpOptSize = 4;
1070   }
1071 }
1072 
1073 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1074 /// the desired ByVal argument alignment.
1075 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1076                              unsigned MaxMaxAlign) {
1077   if (MaxAlign == MaxMaxAlign)
1078     return;
1079   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1080     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1081       MaxAlign = 32;
1082     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1083       MaxAlign = 16;
1084   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1085     unsigned EltAlign = 0;
1086     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1087     if (EltAlign > MaxAlign)
1088       MaxAlign = EltAlign;
1089   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1090     for (auto *EltTy : STy->elements()) {
1091       unsigned EltAlign = 0;
1092       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1093       if (EltAlign > MaxAlign)
1094         MaxAlign = EltAlign;
1095       if (MaxAlign == MaxMaxAlign)
1096         break;
1097     }
1098   }
1099 }
1100 
1101 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1102 /// function arguments in the caller parameter area.
1103 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1104                                                   const DataLayout &DL) const {
1105   // Darwin passes everything on 4 byte boundary.
1106   if (Subtarget.isDarwin())
1107     return 4;
1108 
1109   // 16byte and wider vectors are passed on 16byte boundary.
1110   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1111   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1112   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1113     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1114   return Align;
1115 }
1116 
1117 bool PPCTargetLowering::useSoftFloat() const {
1118   return Subtarget.useSoftFloat();
1119 }
1120 
1121 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1122   switch ((PPCISD::NodeType)Opcode) {
1123   case PPCISD::FIRST_NUMBER:    break;
1124   case PPCISD::FSEL:            return "PPCISD::FSEL";
1125   case PPCISD::FCFID:           return "PPCISD::FCFID";
1126   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1127   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1128   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1129   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1130   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1131   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1132   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1133   case PPCISD::FRE:             return "PPCISD::FRE";
1134   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1135   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1136   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1137   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1138   case PPCISD::VPERM:           return "PPCISD::VPERM";
1139   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1140   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1141   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1142   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1143   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1144   case PPCISD::CMPB:            return "PPCISD::CMPB";
1145   case PPCISD::Hi:              return "PPCISD::Hi";
1146   case PPCISD::Lo:              return "PPCISD::Lo";
1147   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1148   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1149   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1150   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1151   case PPCISD::SRL:             return "PPCISD::SRL";
1152   case PPCISD::SRA:             return "PPCISD::SRA";
1153   case PPCISD::SHL:             return "PPCISD::SHL";
1154   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1155   case PPCISD::CALL:            return "PPCISD::CALL";
1156   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1157   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1158   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1159   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1160   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1161   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1162   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1163   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1164   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1165   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1166   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1167   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1168   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1169   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1170   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1171   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1172   case PPCISD::VCMP:            return "PPCISD::VCMP";
1173   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1174   case PPCISD::LBRX:            return "PPCISD::LBRX";
1175   case PPCISD::STBRX:           return "PPCISD::STBRX";
1176   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1177   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1178   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1179   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1180   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1181   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1182   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1183   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1184   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1185   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1186   case PPCISD::BDZ:             return "PPCISD::BDZ";
1187   case PPCISD::MFFS:            return "PPCISD::MFFS";
1188   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1189   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1190   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1191   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1192   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1193   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1194   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1195   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1196   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1197   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1198   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1199   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1200   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1201   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1202   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1203   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1204   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1205   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1206   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1207   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1208   case PPCISD::SC:              return "PPCISD::SC";
1209   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1210   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1211   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1212   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1213   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1214   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1215   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1216   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1217   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1218   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1219   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1220   }
1221   return nullptr;
1222 }
1223 
1224 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1225                                           EVT VT) const {
1226   if (!VT.isVector())
1227     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1228 
1229   if (Subtarget.hasQPX())
1230     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1231 
1232   return VT.changeVectorElementTypeToInteger();
1233 }
1234 
1235 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1236   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1237   return true;
1238 }
1239 
1240 //===----------------------------------------------------------------------===//
1241 // Node matching predicates, for use by the tblgen matching code.
1242 //===----------------------------------------------------------------------===//
1243 
1244 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1245 static bool isFloatingPointZero(SDValue Op) {
1246   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1247     return CFP->getValueAPF().isZero();
1248   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1249     // Maybe this has already been legalized into the constant pool?
1250     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1251       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1252         return CFP->getValueAPF().isZero();
1253   }
1254   return false;
1255 }
1256 
1257 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1258 /// true if Op is undef or if it matches the specified value.
1259 static bool isConstantOrUndef(int Op, int Val) {
1260   return Op < 0 || Op == Val;
1261 }
1262 
1263 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1264 /// VPKUHUM instruction.
1265 /// The ShuffleKind distinguishes between big-endian operations with
1266 /// two different inputs (0), either-endian operations with two identical
1267 /// inputs (1), and little-endian operations with two different inputs (2).
1268 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1269 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1270                                SelectionDAG &DAG) {
1271   bool IsLE = DAG.getDataLayout().isLittleEndian();
1272   if (ShuffleKind == 0) {
1273     if (IsLE)
1274       return false;
1275     for (unsigned i = 0; i != 16; ++i)
1276       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1277         return false;
1278   } else if (ShuffleKind == 2) {
1279     if (!IsLE)
1280       return false;
1281     for (unsigned i = 0; i != 16; ++i)
1282       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1283         return false;
1284   } else if (ShuffleKind == 1) {
1285     unsigned j = IsLE ? 0 : 1;
1286     for (unsigned i = 0; i != 8; ++i)
1287       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1288           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1289         return false;
1290   }
1291   return true;
1292 }
1293 
1294 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1295 /// VPKUWUM instruction.
1296 /// The ShuffleKind distinguishes between big-endian operations with
1297 /// two different inputs (0), either-endian operations with two identical
1298 /// inputs (1), and little-endian operations with two different inputs (2).
1299 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1300 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1301                                SelectionDAG &DAG) {
1302   bool IsLE = DAG.getDataLayout().isLittleEndian();
1303   if (ShuffleKind == 0) {
1304     if (IsLE)
1305       return false;
1306     for (unsigned i = 0; i != 16; i += 2)
1307       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1308           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1309         return false;
1310   } else if (ShuffleKind == 2) {
1311     if (!IsLE)
1312       return false;
1313     for (unsigned i = 0; i != 16; i += 2)
1314       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1315           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1316         return false;
1317   } else if (ShuffleKind == 1) {
1318     unsigned j = IsLE ? 0 : 2;
1319     for (unsigned i = 0; i != 8; i += 2)
1320       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1321           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1322           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1323           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1324         return false;
1325   }
1326   return true;
1327 }
1328 
1329 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1330 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1331 /// current subtarget.
1332 ///
1333 /// The ShuffleKind distinguishes between big-endian operations with
1334 /// two different inputs (0), either-endian operations with two identical
1335 /// inputs (1), and little-endian operations with two different inputs (2).
1336 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1337 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1338                                SelectionDAG &DAG) {
1339   const PPCSubtarget& Subtarget =
1340     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1341   if (!Subtarget.hasP8Vector())
1342     return false;
1343 
1344   bool IsLE = DAG.getDataLayout().isLittleEndian();
1345   if (ShuffleKind == 0) {
1346     if (IsLE)
1347       return false;
1348     for (unsigned i = 0; i != 16; i += 4)
1349       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1350           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1351           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1352           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1353         return false;
1354   } else if (ShuffleKind == 2) {
1355     if (!IsLE)
1356       return false;
1357     for (unsigned i = 0; i != 16; i += 4)
1358       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1359           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1360           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1361           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1362         return false;
1363   } else if (ShuffleKind == 1) {
1364     unsigned j = IsLE ? 0 : 4;
1365     for (unsigned i = 0; i != 8; i += 4)
1366       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1367           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1368           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1369           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1370           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1371           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1372           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1373           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1374         return false;
1375   }
1376   return true;
1377 }
1378 
1379 /// isVMerge - Common function, used to match vmrg* shuffles.
1380 ///
1381 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1382                      unsigned LHSStart, unsigned RHSStart) {
1383   if (N->getValueType(0) != MVT::v16i8)
1384     return false;
1385   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1386          "Unsupported merge size!");
1387 
1388   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1389     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1390       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1391                              LHSStart+j+i*UnitSize) ||
1392           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1393                              RHSStart+j+i*UnitSize))
1394         return false;
1395     }
1396   return true;
1397 }
1398 
1399 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1400 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1401 /// The ShuffleKind distinguishes between big-endian merges with two
1402 /// different inputs (0), either-endian merges with two identical inputs (1),
1403 /// and little-endian merges with two different inputs (2).  For the latter,
1404 /// the input operands are swapped (see PPCInstrAltivec.td).
1405 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1406                              unsigned ShuffleKind, SelectionDAG &DAG) {
1407   if (DAG.getDataLayout().isLittleEndian()) {
1408     if (ShuffleKind == 1) // unary
1409       return isVMerge(N, UnitSize, 0, 0);
1410     else if (ShuffleKind == 2) // swapped
1411       return isVMerge(N, UnitSize, 0, 16);
1412     else
1413       return false;
1414   } else {
1415     if (ShuffleKind == 1) // unary
1416       return isVMerge(N, UnitSize, 8, 8);
1417     else if (ShuffleKind == 0) // normal
1418       return isVMerge(N, UnitSize, 8, 24);
1419     else
1420       return false;
1421   }
1422 }
1423 
1424 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1425 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1426 /// The ShuffleKind distinguishes between big-endian merges with two
1427 /// different inputs (0), either-endian merges with two identical inputs (1),
1428 /// and little-endian merges with two different inputs (2).  For the latter,
1429 /// the input operands are swapped (see PPCInstrAltivec.td).
1430 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1431                              unsigned ShuffleKind, SelectionDAG &DAG) {
1432   if (DAG.getDataLayout().isLittleEndian()) {
1433     if (ShuffleKind == 1) // unary
1434       return isVMerge(N, UnitSize, 8, 8);
1435     else if (ShuffleKind == 2) // swapped
1436       return isVMerge(N, UnitSize, 8, 24);
1437     else
1438       return false;
1439   } else {
1440     if (ShuffleKind == 1) // unary
1441       return isVMerge(N, UnitSize, 0, 0);
1442     else if (ShuffleKind == 0) // normal
1443       return isVMerge(N, UnitSize, 0, 16);
1444     else
1445       return false;
1446   }
1447 }
1448 
1449 /**
1450  * \brief Common function used to match vmrgew and vmrgow shuffles
1451  *
1452  * The indexOffset determines whether to look for even or odd words in
1453  * the shuffle mask. This is based on the of the endianness of the target
1454  * machine.
1455  *   - Little Endian:
1456  *     - Use offset of 0 to check for odd elements
1457  *     - Use offset of 4 to check for even elements
1458  *   - Big Endian:
1459  *     - Use offset of 0 to check for even elements
1460  *     - Use offset of 4 to check for odd elements
1461  * A detailed description of the vector element ordering for little endian and
1462  * big endian can be found at
1463  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1464  * Targeting your applications - what little endian and big endian IBM XL C/C++
1465  * compiler differences mean to you
1466  *
1467  * The mask to the shuffle vector instruction specifies the indices of the
1468  * elements from the two input vectors to place in the result. The elements are
1469  * numbered in array-access order, starting with the first vector. These vectors
1470  * are always of type v16i8, thus each vector will contain 16 elements of size
1471  * 8. More info on the shuffle vector can be found in the
1472  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1473  * Language Reference.
1474  *
1475  * The RHSStartValue indicates whether the same input vectors are used (unary)
1476  * or two different input vectors are used, based on the following:
1477  *   - If the instruction uses the same vector for both inputs, the range of the
1478  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1479  *     be 0.
1480  *   - If the instruction has two different vectors then the range of the
1481  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1482  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1483  *     to 31 specify elements in the second vector).
1484  *
1485  * \param[in] N The shuffle vector SD Node to analyze
1486  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1487  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1488  * vector to the shuffle_vector instruction
1489  * \return true iff this shuffle vector represents an even or odd word merge
1490  */
1491 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1492                      unsigned RHSStartValue) {
1493   if (N->getValueType(0) != MVT::v16i8)
1494     return false;
1495 
1496   for (unsigned i = 0; i < 2; ++i)
1497     for (unsigned j = 0; j < 4; ++j)
1498       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1499                              i*RHSStartValue+j+IndexOffset) ||
1500           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1501                              i*RHSStartValue+j+IndexOffset+8))
1502         return false;
1503   return true;
1504 }
1505 
1506 /**
1507  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1508  * vmrgow instructions.
1509  *
1510  * \param[in] N The shuffle vector SD Node to analyze
1511  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1512  * \param[in] ShuffleKind Identify the type of merge:
1513  *   - 0 = big-endian merge with two different inputs;
1514  *   - 1 = either-endian merge with two identical inputs;
1515  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1516  *     little-endian merges).
1517  * \param[in] DAG The current SelectionDAG
1518  * \return true iff this shuffle mask
1519  */
1520 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1521                               unsigned ShuffleKind, SelectionDAG &DAG) {
1522   if (DAG.getDataLayout().isLittleEndian()) {
1523     unsigned indexOffset = CheckEven ? 4 : 0;
1524     if (ShuffleKind == 1) // Unary
1525       return isVMerge(N, indexOffset, 0);
1526     else if (ShuffleKind == 2) // swapped
1527       return isVMerge(N, indexOffset, 16);
1528     else
1529       return false;
1530   }
1531   else {
1532     unsigned indexOffset = CheckEven ? 0 : 4;
1533     if (ShuffleKind == 1) // Unary
1534       return isVMerge(N, indexOffset, 0);
1535     else if (ShuffleKind == 0) // Normal
1536       return isVMerge(N, indexOffset, 16);
1537     else
1538       return false;
1539   }
1540   return false;
1541 }
1542 
1543 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1544 /// amount, otherwise return -1.
1545 /// The ShuffleKind distinguishes between big-endian operations with two
1546 /// different inputs (0), either-endian operations with two identical inputs
1547 /// (1), and little-endian operations with two different inputs (2).  For the
1548 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1549 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1550                              SelectionDAG &DAG) {
1551   if (N->getValueType(0) != MVT::v16i8)
1552     return -1;
1553 
1554   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1555 
1556   // Find the first non-undef value in the shuffle mask.
1557   unsigned i;
1558   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1559     /*search*/;
1560 
1561   if (i == 16) return -1;  // all undef.
1562 
1563   // Otherwise, check to see if the rest of the elements are consecutively
1564   // numbered from this value.
1565   unsigned ShiftAmt = SVOp->getMaskElt(i);
1566   if (ShiftAmt < i) return -1;
1567 
1568   ShiftAmt -= i;
1569   bool isLE = DAG.getDataLayout().isLittleEndian();
1570 
1571   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1572     // Check the rest of the elements to see if they are consecutive.
1573     for (++i; i != 16; ++i)
1574       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1575         return -1;
1576   } else if (ShuffleKind == 1) {
1577     // Check the rest of the elements to see if they are consecutive.
1578     for (++i; i != 16; ++i)
1579       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1580         return -1;
1581   } else
1582     return -1;
1583 
1584   if (isLE)
1585     ShiftAmt = 16 - ShiftAmt;
1586 
1587   return ShiftAmt;
1588 }
1589 
1590 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1591 /// specifies a splat of a single element that is suitable for input to
1592 /// VSPLTB/VSPLTH/VSPLTW.
1593 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1594   assert(N->getValueType(0) == MVT::v16i8 &&
1595          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1596 
1597   // The consecutive indices need to specify an element, not part of two
1598   // different elements.  So abandon ship early if this isn't the case.
1599   if (N->getMaskElt(0) % EltSize != 0)
1600     return false;
1601 
1602   // This is a splat operation if each element of the permute is the same, and
1603   // if the value doesn't reference the second vector.
1604   unsigned ElementBase = N->getMaskElt(0);
1605 
1606   // FIXME: Handle UNDEF elements too!
1607   if (ElementBase >= 16)
1608     return false;
1609 
1610   // Check that the indices are consecutive, in the case of a multi-byte element
1611   // splatted with a v16i8 mask.
1612   for (unsigned i = 1; i != EltSize; ++i)
1613     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1614       return false;
1615 
1616   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1617     if (N->getMaskElt(i) < 0) continue;
1618     for (unsigned j = 0; j != EltSize; ++j)
1619       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1620         return false;
1621   }
1622   return true;
1623 }
1624 
1625 /// Check that the mask is shuffling N byte elements. Within each N byte
1626 /// element of the mask, the indices could be either in increasing or
1627 /// decreasing order as long as they are consecutive.
1628 /// \param[in] N the shuffle vector SD Node to analyze
1629 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1630 /// Word/DoubleWord/QuadWord).
1631 /// \param[in] StepLen the delta indices number among the N byte element, if
1632 /// the mask is in increasing/decreasing order then it is 1/-1.
1633 /// \return true iff the mask is shuffling N byte elements.
1634 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1635                                    int StepLen) {
1636   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1637          "Unexpected element width.");
1638   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1639 
1640   unsigned NumOfElem = 16 / Width;
1641   unsigned MaskVal[16]; //  Width is never greater than 16
1642   for (unsigned i = 0; i < NumOfElem; ++i) {
1643     MaskVal[0] = N->getMaskElt(i * Width);
1644     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1645       return false;
1646     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1647       return false;
1648     }
1649 
1650     for (unsigned int j = 1; j < Width; ++j) {
1651       MaskVal[j] = N->getMaskElt(i * Width + j);
1652       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1653         return false;
1654       }
1655     }
1656   }
1657 
1658   return true;
1659 }
1660 
1661 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1662                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1663   if (!isNByteElemShuffleMask(N, 4, 1))
1664     return false;
1665 
1666   // Now we look at mask elements 0,4,8,12
1667   unsigned M0 = N->getMaskElt(0) / 4;
1668   unsigned M1 = N->getMaskElt(4) / 4;
1669   unsigned M2 = N->getMaskElt(8) / 4;
1670   unsigned M3 = N->getMaskElt(12) / 4;
1671   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1672   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1673 
1674   // Below, let H and L be arbitrary elements of the shuffle mask
1675   // where H is in the range [4,7] and L is in the range [0,3].
1676   // H, 1, 2, 3 or L, 5, 6, 7
1677   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1678       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1679     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1680     InsertAtByte = IsLE ? 12 : 0;
1681     Swap = M0 < 4;
1682     return true;
1683   }
1684   // 0, H, 2, 3 or 4, L, 6, 7
1685   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1686       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1687     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1688     InsertAtByte = IsLE ? 8 : 4;
1689     Swap = M1 < 4;
1690     return true;
1691   }
1692   // 0, 1, H, 3 or 4, 5, L, 7
1693   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1694       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1695     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1696     InsertAtByte = IsLE ? 4 : 8;
1697     Swap = M2 < 4;
1698     return true;
1699   }
1700   // 0, 1, 2, H or 4, 5, 6, L
1701   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1702       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1703     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1704     InsertAtByte = IsLE ? 0 : 12;
1705     Swap = M3 < 4;
1706     return true;
1707   }
1708 
1709   // If both vector operands for the shuffle are the same vector, the mask will
1710   // contain only elements from the first one and the second one will be undef.
1711   if (N->getOperand(1).isUndef()) {
1712     ShiftElts = 0;
1713     Swap = true;
1714     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1715     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1716       InsertAtByte = IsLE ? 12 : 0;
1717       return true;
1718     }
1719     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1720       InsertAtByte = IsLE ? 8 : 4;
1721       return true;
1722     }
1723     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1724       InsertAtByte = IsLE ? 4 : 8;
1725       return true;
1726     }
1727     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1728       InsertAtByte = IsLE ? 0 : 12;
1729       return true;
1730     }
1731   }
1732 
1733   return false;
1734 }
1735 
1736 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1737                                bool &Swap, bool IsLE) {
1738   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1739   // Ensure each byte index of the word is consecutive.
1740   if (!isNByteElemShuffleMask(N, 4, 1))
1741     return false;
1742 
1743   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1744   unsigned M0 = N->getMaskElt(0) / 4;
1745   unsigned M1 = N->getMaskElt(4) / 4;
1746   unsigned M2 = N->getMaskElt(8) / 4;
1747   unsigned M3 = N->getMaskElt(12) / 4;
1748 
1749   // If both vector operands for the shuffle are the same vector, the mask will
1750   // contain only elements from the first one and the second one will be undef.
1751   if (N->getOperand(1).isUndef()) {
1752     assert(M0 < 4 && "Indexing into an undef vector?");
1753     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1754       return false;
1755 
1756     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1757     Swap = false;
1758     return true;
1759   }
1760 
1761   // Ensure each word index of the ShuffleVector Mask is consecutive.
1762   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1763     return false;
1764 
1765   if (IsLE) {
1766     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1767       // Input vectors don't need to be swapped if the leading element
1768       // of the result is one of the 3 left elements of the second vector
1769       // (or if there is no shift to be done at all).
1770       Swap = false;
1771       ShiftElts = (8 - M0) % 8;
1772     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1773       // Input vectors need to be swapped if the leading element
1774       // of the result is one of the 3 left elements of the first vector
1775       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1776       Swap = true;
1777       ShiftElts = (4 - M0) % 4;
1778     }
1779 
1780     return true;
1781   } else {                                          // BE
1782     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1783       // Input vectors don't need to be swapped if the leading element
1784       // of the result is one of the 4 elements of the first vector.
1785       Swap = false;
1786       ShiftElts = M0;
1787     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1788       // Input vectors need to be swapped if the leading element
1789       // of the result is one of the 4 elements of the right vector.
1790       Swap = true;
1791       ShiftElts = M0 - 4;
1792     }
1793 
1794     return true;
1795   }
1796 }
1797 
1798 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1799   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1800 
1801   if (!isNByteElemShuffleMask(N, Width, -1))
1802     return false;
1803 
1804   for (int i = 0; i < 16; i += Width)
1805     if (N->getMaskElt(i) != i + Width - 1)
1806       return false;
1807 
1808   return true;
1809 }
1810 
1811 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1812   return isXXBRShuffleMaskHelper(N, 2);
1813 }
1814 
1815 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1816   return isXXBRShuffleMaskHelper(N, 4);
1817 }
1818 
1819 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1820   return isXXBRShuffleMaskHelper(N, 8);
1821 }
1822 
1823 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1824   return isXXBRShuffleMaskHelper(N, 16);
1825 }
1826 
1827 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1828 /// if the inputs to the instruction should be swapped and set \p DM to the
1829 /// value for the immediate.
1830 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1831 /// AND element 0 of the result comes from the first input (LE) or second input
1832 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1833 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1834 /// mask.
1835 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1836                                bool &Swap, bool IsLE) {
1837   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1838 
1839   // Ensure each byte index of the double word is consecutive.
1840   if (!isNByteElemShuffleMask(N, 8, 1))
1841     return false;
1842 
1843   unsigned M0 = N->getMaskElt(0) / 8;
1844   unsigned M1 = N->getMaskElt(8) / 8;
1845   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1846 
1847   // If both vector operands for the shuffle are the same vector, the mask will
1848   // contain only elements from the first one and the second one will be undef.
1849   if (N->getOperand(1).isUndef()) {
1850     if ((M0 | M1) < 2) {
1851       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1852       Swap = false;
1853       return true;
1854     } else
1855       return false;
1856   }
1857 
1858   if (IsLE) {
1859     if (M0 > 1 && M1 < 2) {
1860       Swap = false;
1861     } else if (M0 < 2 && M1 > 1) {
1862       M0 = (M0 + 2) % 4;
1863       M1 = (M1 + 2) % 4;
1864       Swap = true;
1865     } else
1866       return false;
1867 
1868     // Note: if control flow comes here that means Swap is already set above
1869     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
1870     return true;
1871   } else { // BE
1872     if (M0 < 2 && M1 > 1) {
1873       Swap = false;
1874     } else if (M0 > 1 && M1 < 2) {
1875       M0 = (M0 + 2) % 4;
1876       M1 = (M1 + 2) % 4;
1877       Swap = true;
1878     } else
1879       return false;
1880 
1881     // Note: if control flow comes here that means Swap is already set above
1882     DM = (M0 << 1) + (M1 & 1);
1883     return true;
1884   }
1885 }
1886 
1887 
1888 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1889 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1890 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1891                                 SelectionDAG &DAG) {
1892   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1893   assert(isSplatShuffleMask(SVOp, EltSize));
1894   if (DAG.getDataLayout().isLittleEndian())
1895     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1896   else
1897     return SVOp->getMaskElt(0) / EltSize;
1898 }
1899 
1900 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1901 /// by using a vspltis[bhw] instruction of the specified element size, return
1902 /// the constant being splatted.  The ByteSize field indicates the number of
1903 /// bytes of each element [124] -> [bhw].
1904 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1905   SDValue OpVal(nullptr, 0);
1906 
1907   // If ByteSize of the splat is bigger than the element size of the
1908   // build_vector, then we have a case where we are checking for a splat where
1909   // multiple elements of the buildvector are folded together into a single
1910   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1911   unsigned EltSize = 16/N->getNumOperands();
1912   if (EltSize < ByteSize) {
1913     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1914     SDValue UniquedVals[4];
1915     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1916 
1917     // See if all of the elements in the buildvector agree across.
1918     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1919       if (N->getOperand(i).isUndef()) continue;
1920       // If the element isn't a constant, bail fully out.
1921       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1922 
1923       if (!UniquedVals[i&(Multiple-1)].getNode())
1924         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1925       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1926         return SDValue();  // no match.
1927     }
1928 
1929     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1930     // either constant or undef values that are identical for each chunk.  See
1931     // if these chunks can form into a larger vspltis*.
1932 
1933     // Check to see if all of the leading entries are either 0 or -1.  If
1934     // neither, then this won't fit into the immediate field.
1935     bool LeadingZero = true;
1936     bool LeadingOnes = true;
1937     for (unsigned i = 0; i != Multiple-1; ++i) {
1938       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1939 
1940       LeadingZero &= isNullConstant(UniquedVals[i]);
1941       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1942     }
1943     // Finally, check the least significant entry.
1944     if (LeadingZero) {
1945       if (!UniquedVals[Multiple-1].getNode())
1946         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1947       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1948       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1949         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1950     }
1951     if (LeadingOnes) {
1952       if (!UniquedVals[Multiple-1].getNode())
1953         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1954       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1955       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1956         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1957     }
1958 
1959     return SDValue();
1960   }
1961 
1962   // Check to see if this buildvec has a single non-undef value in its elements.
1963   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1964     if (N->getOperand(i).isUndef()) continue;
1965     if (!OpVal.getNode())
1966       OpVal = N->getOperand(i);
1967     else if (OpVal != N->getOperand(i))
1968       return SDValue();
1969   }
1970 
1971   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1972 
1973   unsigned ValSizeInBytes = EltSize;
1974   uint64_t Value = 0;
1975   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1976     Value = CN->getZExtValue();
1977   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1978     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1979     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1980   }
1981 
1982   // If the splat value is larger than the element value, then we can never do
1983   // this splat.  The only case that we could fit the replicated bits into our
1984   // immediate field for would be zero, and we prefer to use vxor for it.
1985   if (ValSizeInBytes < ByteSize) return SDValue();
1986 
1987   // If the element value is larger than the splat value, check if it consists
1988   // of a repeated bit pattern of size ByteSize.
1989   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1990     return SDValue();
1991 
1992   // Properly sign extend the value.
1993   int MaskVal = SignExtend32(Value, ByteSize * 8);
1994 
1995   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1996   if (MaskVal == 0) return SDValue();
1997 
1998   // Finally, if this value fits in a 5 bit sext field, return it
1999   if (SignExtend32<5>(MaskVal) == MaskVal)
2000     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2001   return SDValue();
2002 }
2003 
2004 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2005 /// amount, otherwise return -1.
2006 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2007   EVT VT = N->getValueType(0);
2008   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2009     return -1;
2010 
2011   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2012 
2013   // Find the first non-undef value in the shuffle mask.
2014   unsigned i;
2015   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2016     /*search*/;
2017 
2018   if (i == 4) return -1;  // all undef.
2019 
2020   // Otherwise, check to see if the rest of the elements are consecutively
2021   // numbered from this value.
2022   unsigned ShiftAmt = SVOp->getMaskElt(i);
2023   if (ShiftAmt < i) return -1;
2024   ShiftAmt -= i;
2025 
2026   // Check the rest of the elements to see if they are consecutive.
2027   for (++i; i != 4; ++i)
2028     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2029       return -1;
2030 
2031   return ShiftAmt;
2032 }
2033 
2034 //===----------------------------------------------------------------------===//
2035 //  Addressing Mode Selection
2036 //===----------------------------------------------------------------------===//
2037 
2038 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2039 /// or 64-bit immediate, and if the value can be accurately represented as a
2040 /// sign extension from a 16-bit value.  If so, this returns true and the
2041 /// immediate.
2042 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2043   if (!isa<ConstantSDNode>(N))
2044     return false;
2045 
2046   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2047   if (N->getValueType(0) == MVT::i32)
2048     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2049   else
2050     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2051 }
2052 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2053   return isIntS16Immediate(Op.getNode(), Imm);
2054 }
2055 
2056 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2057 /// can be represented as an indexed [r+r] operation.  Returns false if it
2058 /// can be more efficiently represented with [r+imm].
2059 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2060                                             SDValue &Index,
2061                                             SelectionDAG &DAG) const {
2062   int16_t imm = 0;
2063   if (N.getOpcode() == ISD::ADD) {
2064     if (isIntS16Immediate(N.getOperand(1), imm))
2065       return false;    // r+i
2066     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2067       return false;    // r+i
2068 
2069     Base = N.getOperand(0);
2070     Index = N.getOperand(1);
2071     return true;
2072   } else if (N.getOpcode() == ISD::OR) {
2073     if (isIntS16Immediate(N.getOperand(1), imm))
2074       return false;    // r+i can fold it if we can.
2075 
2076     // If this is an or of disjoint bitfields, we can codegen this as an add
2077     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2078     // disjoint.
2079     KnownBits LHSKnown, RHSKnown;
2080     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2081 
2082     if (LHSKnown.Zero.getBoolValue()) {
2083       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2084       // If all of the bits are known zero on the LHS or RHS, the add won't
2085       // carry.
2086       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2087         Base = N.getOperand(0);
2088         Index = N.getOperand(1);
2089         return true;
2090       }
2091     }
2092   }
2093 
2094   return false;
2095 }
2096 
2097 // If we happen to be doing an i64 load or store into a stack slot that has
2098 // less than a 4-byte alignment, then the frame-index elimination may need to
2099 // use an indexed load or store instruction (because the offset may not be a
2100 // multiple of 4). The extra register needed to hold the offset comes from the
2101 // register scavenger, and it is possible that the scavenger will need to use
2102 // an emergency spill slot. As a result, we need to make sure that a spill slot
2103 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2104 // stack slot.
2105 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2106   // FIXME: This does not handle the LWA case.
2107   if (VT != MVT::i64)
2108     return;
2109 
2110   // NOTE: We'll exclude negative FIs here, which come from argument
2111   // lowering, because there are no known test cases triggering this problem
2112   // using packed structures (or similar). We can remove this exclusion if
2113   // we find such a test case. The reason why this is so test-case driven is
2114   // because this entire 'fixup' is only to prevent crashes (from the
2115   // register scavenger) on not-really-valid inputs. For example, if we have:
2116   //   %a = alloca i1
2117   //   %b = bitcast i1* %a to i64*
2118   //   store i64* a, i64 b
2119   // then the store should really be marked as 'align 1', but is not. If it
2120   // were marked as 'align 1' then the indexed form would have been
2121   // instruction-selected initially, and the problem this 'fixup' is preventing
2122   // won't happen regardless.
2123   if (FrameIdx < 0)
2124     return;
2125 
2126   MachineFunction &MF = DAG.getMachineFunction();
2127   MachineFrameInfo &MFI = MF.getFrameInfo();
2128 
2129   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2130   if (Align >= 4)
2131     return;
2132 
2133   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2134   FuncInfo->setHasNonRISpills();
2135 }
2136 
2137 /// Returns true if the address N can be represented by a base register plus
2138 /// a signed 16-bit displacement [r+imm], and if it is not better
2139 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2140 /// displacements that are multiples of that value.
2141 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2142                                             SDValue &Base,
2143                                             SelectionDAG &DAG,
2144                                             unsigned Alignment) const {
2145   // FIXME dl should come from parent load or store, not from address
2146   SDLoc dl(N);
2147   // If this can be more profitably realized as r+r, fail.
2148   if (SelectAddressRegReg(N, Disp, Base, DAG))
2149     return false;
2150 
2151   if (N.getOpcode() == ISD::ADD) {
2152     int16_t imm = 0;
2153     if (isIntS16Immediate(N.getOperand(1), imm) &&
2154         (!Alignment || (imm % Alignment) == 0)) {
2155       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2156       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2157         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2158         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2159       } else {
2160         Base = N.getOperand(0);
2161       }
2162       return true; // [r+i]
2163     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2164       // Match LOAD (ADD (X, Lo(G))).
2165       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2166              && "Cannot handle constant offsets yet!");
2167       Disp = N.getOperand(1).getOperand(0);  // The global address.
2168       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2169              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2170              Disp.getOpcode() == ISD::TargetConstantPool ||
2171              Disp.getOpcode() == ISD::TargetJumpTable);
2172       Base = N.getOperand(0);
2173       return true;  // [&g+r]
2174     }
2175   } else if (N.getOpcode() == ISD::OR) {
2176     int16_t imm = 0;
2177     if (isIntS16Immediate(N.getOperand(1), imm) &&
2178         (!Alignment || (imm % Alignment) == 0)) {
2179       // If this is an or of disjoint bitfields, we can codegen this as an add
2180       // (for better address arithmetic) if the LHS and RHS of the OR are
2181       // provably disjoint.
2182       KnownBits LHSKnown;
2183       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2184 
2185       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2186         // If all of the bits are known zero on the LHS or RHS, the add won't
2187         // carry.
2188         if (FrameIndexSDNode *FI =
2189               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2190           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2191           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2192         } else {
2193           Base = N.getOperand(0);
2194         }
2195         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2196         return true;
2197       }
2198     }
2199   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2200     // Loading from a constant address.
2201 
2202     // If this address fits entirely in a 16-bit sext immediate field, codegen
2203     // this as "d, 0"
2204     int16_t Imm;
2205     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2206       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2207       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2208                              CN->getValueType(0));
2209       return true;
2210     }
2211 
2212     // Handle 32-bit sext immediates with LIS + addr mode.
2213     if ((CN->getValueType(0) == MVT::i32 ||
2214          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2215         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2216       int Addr = (int)CN->getZExtValue();
2217 
2218       // Otherwise, break this down into an LIS + disp.
2219       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2220 
2221       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2222                                    MVT::i32);
2223       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2224       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2225       return true;
2226     }
2227   }
2228 
2229   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2230   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2231     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2232     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2233   } else
2234     Base = N;
2235   return true;      // [r+0]
2236 }
2237 
2238 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2239 /// represented as an indexed [r+r] operation.
2240 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2241                                                 SDValue &Index,
2242                                                 SelectionDAG &DAG) const {
2243   // Check to see if we can easily represent this as an [r+r] address.  This
2244   // will fail if it thinks that the address is more profitably represented as
2245   // reg+imm, e.g. where imm = 0.
2246   if (SelectAddressRegReg(N, Base, Index, DAG))
2247     return true;
2248 
2249   // If the address is the result of an add, we will utilize the fact that the
2250   // address calculation includes an implicit add.  However, we can reduce
2251   // register pressure if we do not materialize a constant just for use as the
2252   // index register.  We only get rid of the add if it is not an add of a
2253   // value and a 16-bit signed constant and both have a single use.
2254   int16_t imm = 0;
2255   if (N.getOpcode() == ISD::ADD &&
2256       (!isIntS16Immediate(N.getOperand(1), imm) ||
2257        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2258     Base = N.getOperand(0);
2259     Index = N.getOperand(1);
2260     return true;
2261   }
2262 
2263   // Otherwise, do it the hard way, using R0 as the base register.
2264   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2265                          N.getValueType());
2266   Index = N;
2267   return true;
2268 }
2269 
2270 /// getPreIndexedAddressParts - returns true by value, base pointer and
2271 /// offset pointer and addressing mode by reference if the node's address
2272 /// can be legally represented as pre-indexed load / store address.
2273 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2274                                                   SDValue &Offset,
2275                                                   ISD::MemIndexedMode &AM,
2276                                                   SelectionDAG &DAG) const {
2277   if (DisablePPCPreinc) return false;
2278 
2279   bool isLoad = true;
2280   SDValue Ptr;
2281   EVT VT;
2282   unsigned Alignment;
2283   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2284     Ptr = LD->getBasePtr();
2285     VT = LD->getMemoryVT();
2286     Alignment = LD->getAlignment();
2287   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2288     Ptr = ST->getBasePtr();
2289     VT  = ST->getMemoryVT();
2290     Alignment = ST->getAlignment();
2291     isLoad = false;
2292   } else
2293     return false;
2294 
2295   // PowerPC doesn't have preinc load/store instructions for vectors (except
2296   // for QPX, which does have preinc r+r forms).
2297   if (VT.isVector()) {
2298     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2299       return false;
2300     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2301       AM = ISD::PRE_INC;
2302       return true;
2303     }
2304   }
2305 
2306   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2307     // Common code will reject creating a pre-inc form if the base pointer
2308     // is a frame index, or if N is a store and the base pointer is either
2309     // the same as or a predecessor of the value being stored.  Check for
2310     // those situations here, and try with swapped Base/Offset instead.
2311     bool Swap = false;
2312 
2313     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2314       Swap = true;
2315     else if (!isLoad) {
2316       SDValue Val = cast<StoreSDNode>(N)->getValue();
2317       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2318         Swap = true;
2319     }
2320 
2321     if (Swap)
2322       std::swap(Base, Offset);
2323 
2324     AM = ISD::PRE_INC;
2325     return true;
2326   }
2327 
2328   // LDU/STU can only handle immediates that are a multiple of 4.
2329   if (VT != MVT::i64) {
2330     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2331       return false;
2332   } else {
2333     // LDU/STU need an address with at least 4-byte alignment.
2334     if (Alignment < 4)
2335       return false;
2336 
2337     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2338       return false;
2339   }
2340 
2341   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2342     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2343     // sext i32 to i64 when addr mode is r+i.
2344     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2345         LD->getExtensionType() == ISD::SEXTLOAD &&
2346         isa<ConstantSDNode>(Offset))
2347       return false;
2348   }
2349 
2350   AM = ISD::PRE_INC;
2351   return true;
2352 }
2353 
2354 //===----------------------------------------------------------------------===//
2355 //  LowerOperation implementation
2356 //===----------------------------------------------------------------------===//
2357 
2358 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2359 /// and LoOpFlags to the target MO flags.
2360 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2361                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2362                                const GlobalValue *GV = nullptr) {
2363   HiOpFlags = PPCII::MO_HA;
2364   LoOpFlags = PPCII::MO_LO;
2365 
2366   // Don't use the pic base if not in PIC relocation model.
2367   if (IsPIC) {
2368     HiOpFlags |= PPCII::MO_PIC_FLAG;
2369     LoOpFlags |= PPCII::MO_PIC_FLAG;
2370   }
2371 
2372   // If this is a reference to a global value that requires a non-lazy-ptr, make
2373   // sure that instruction lowering adds it.
2374   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2375     HiOpFlags |= PPCII::MO_NLP_FLAG;
2376     LoOpFlags |= PPCII::MO_NLP_FLAG;
2377 
2378     if (GV->hasHiddenVisibility()) {
2379       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2380       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2381     }
2382   }
2383 }
2384 
2385 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2386                              SelectionDAG &DAG) {
2387   SDLoc DL(HiPart);
2388   EVT PtrVT = HiPart.getValueType();
2389   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2390 
2391   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2392   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2393 
2394   // With PIC, the first instruction is actually "GR+hi(&G)".
2395   if (isPIC)
2396     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2397                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2398 
2399   // Generate non-pic code that has direct accesses to the constant pool.
2400   // The address of the global is just (hi(&g)+lo(&g)).
2401   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2402 }
2403 
2404 static void setUsesTOCBasePtr(MachineFunction &MF) {
2405   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2406   FuncInfo->setUsesTOCBasePtr();
2407 }
2408 
2409 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2410   setUsesTOCBasePtr(DAG.getMachineFunction());
2411 }
2412 
2413 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2414                            SDValue GA) {
2415   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2416   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2417                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2418 
2419   SDValue Ops[] = { GA, Reg };
2420   return DAG.getMemIntrinsicNode(
2421       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2422       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2423       false, 0);
2424 }
2425 
2426 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2427                                              SelectionDAG &DAG) const {
2428   EVT PtrVT = Op.getValueType();
2429   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2430   const Constant *C = CP->getConstVal();
2431 
2432   // 64-bit SVR4 ABI code is always position-independent.
2433   // The actual address of the GlobalValue is stored in the TOC.
2434   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2435     setUsesTOCBasePtr(DAG);
2436     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2437     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2438   }
2439 
2440   unsigned MOHiFlag, MOLoFlag;
2441   bool IsPIC = isPositionIndependent();
2442   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2443 
2444   if (IsPIC && Subtarget.isSVR4ABI()) {
2445     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2446                                            PPCII::MO_PIC_FLAG);
2447     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2448   }
2449 
2450   SDValue CPIHi =
2451     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2452   SDValue CPILo =
2453     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2454   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2455 }
2456 
2457 // For 64-bit PowerPC, prefer the more compact relative encodings.
2458 // This trades 32 bits per jump table entry for one or two instructions
2459 // on the jump site.
2460 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2461   if (isJumpTableRelative())
2462     return MachineJumpTableInfo::EK_LabelDifference32;
2463 
2464   return TargetLowering::getJumpTableEncoding();
2465 }
2466 
2467 bool PPCTargetLowering::isJumpTableRelative() const {
2468   if (Subtarget.isPPC64())
2469     return true;
2470   return TargetLowering::isJumpTableRelative();
2471 }
2472 
2473 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2474                                                     SelectionDAG &DAG) const {
2475   if (!Subtarget.isPPC64())
2476     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2477 
2478   switch (getTargetMachine().getCodeModel()) {
2479   case CodeModel::Small:
2480   case CodeModel::Medium:
2481     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2482   default:
2483     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2484                        getPointerTy(DAG.getDataLayout()));
2485   }
2486 }
2487 
2488 const MCExpr *
2489 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2490                                                 unsigned JTI,
2491                                                 MCContext &Ctx) const {
2492   if (!Subtarget.isPPC64())
2493     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2494 
2495   switch (getTargetMachine().getCodeModel()) {
2496   case CodeModel::Small:
2497   case CodeModel::Medium:
2498     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2499   default:
2500     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2501   }
2502 }
2503 
2504 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2505   EVT PtrVT = Op.getValueType();
2506   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2507 
2508   // 64-bit SVR4 ABI code is always position-independent.
2509   // The actual address of the GlobalValue is stored in the TOC.
2510   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2511     setUsesTOCBasePtr(DAG);
2512     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2513     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2514   }
2515 
2516   unsigned MOHiFlag, MOLoFlag;
2517   bool IsPIC = isPositionIndependent();
2518   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2519 
2520   if (IsPIC && Subtarget.isSVR4ABI()) {
2521     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2522                                         PPCII::MO_PIC_FLAG);
2523     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2524   }
2525 
2526   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2527   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2528   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2529 }
2530 
2531 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2532                                              SelectionDAG &DAG) const {
2533   EVT PtrVT = Op.getValueType();
2534   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2535   const BlockAddress *BA = BASDN->getBlockAddress();
2536 
2537   // 64-bit SVR4 ABI code is always position-independent.
2538   // The actual BlockAddress is stored in the TOC.
2539   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2540     setUsesTOCBasePtr(DAG);
2541     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2542     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2543   }
2544 
2545   unsigned MOHiFlag, MOLoFlag;
2546   bool IsPIC = isPositionIndependent();
2547   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2548   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2549   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2550   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2551 }
2552 
2553 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2554                                               SelectionDAG &DAG) const {
2555   // FIXME: TLS addresses currently use medium model code sequences,
2556   // which is the most useful form.  Eventually support for small and
2557   // large models could be added if users need it, at the cost of
2558   // additional complexity.
2559   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2560   if (DAG.getTarget().Options.EmulatedTLS)
2561     return LowerToTLSEmulatedModel(GA, DAG);
2562 
2563   SDLoc dl(GA);
2564   const GlobalValue *GV = GA->getGlobal();
2565   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2566   bool is64bit = Subtarget.isPPC64();
2567   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2568   PICLevel::Level picLevel = M->getPICLevel();
2569 
2570   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2571 
2572   if (Model == TLSModel::LocalExec) {
2573     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2574                                                PPCII::MO_TPREL_HA);
2575     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2576                                                PPCII::MO_TPREL_LO);
2577     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2578                              : DAG.getRegister(PPC::R2, MVT::i32);
2579 
2580     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2581     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2582   }
2583 
2584   if (Model == TLSModel::InitialExec) {
2585     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2586     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2587                                                 PPCII::MO_TLS);
2588     SDValue GOTPtr;
2589     if (is64bit) {
2590       setUsesTOCBasePtr(DAG);
2591       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2592       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2593                            PtrVT, GOTReg, TGA);
2594     } else
2595       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2596     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2597                                    PtrVT, TGA, GOTPtr);
2598     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2599   }
2600 
2601   if (Model == TLSModel::GeneralDynamic) {
2602     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2603     SDValue GOTPtr;
2604     if (is64bit) {
2605       setUsesTOCBasePtr(DAG);
2606       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2607       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2608                                    GOTReg, TGA);
2609     } else {
2610       if (picLevel == PICLevel::SmallPIC)
2611         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2612       else
2613         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2614     }
2615     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2616                        GOTPtr, TGA, TGA);
2617   }
2618 
2619   if (Model == TLSModel::LocalDynamic) {
2620     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2621     SDValue GOTPtr;
2622     if (is64bit) {
2623       setUsesTOCBasePtr(DAG);
2624       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2625       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2626                            GOTReg, TGA);
2627     } else {
2628       if (picLevel == PICLevel::SmallPIC)
2629         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2630       else
2631         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2632     }
2633     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2634                                   PtrVT, GOTPtr, TGA, TGA);
2635     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2636                                       PtrVT, TLSAddr, TGA);
2637     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2638   }
2639 
2640   llvm_unreachable("Unknown TLS model!");
2641 }
2642 
2643 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2644                                               SelectionDAG &DAG) const {
2645   EVT PtrVT = Op.getValueType();
2646   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2647   SDLoc DL(GSDN);
2648   const GlobalValue *GV = GSDN->getGlobal();
2649 
2650   // 64-bit SVR4 ABI code is always position-independent.
2651   // The actual address of the GlobalValue is stored in the TOC.
2652   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2653     setUsesTOCBasePtr(DAG);
2654     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2655     return getTOCEntry(DAG, DL, true, GA);
2656   }
2657 
2658   unsigned MOHiFlag, MOLoFlag;
2659   bool IsPIC = isPositionIndependent();
2660   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2661 
2662   if (IsPIC && Subtarget.isSVR4ABI()) {
2663     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2664                                             GSDN->getOffset(),
2665                                             PPCII::MO_PIC_FLAG);
2666     return getTOCEntry(DAG, DL, false, GA);
2667   }
2668 
2669   SDValue GAHi =
2670     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2671   SDValue GALo =
2672     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2673 
2674   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2675 
2676   // If the global reference is actually to a non-lazy-pointer, we have to do an
2677   // extra load to get the address of the global.
2678   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2679     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2680   return Ptr;
2681 }
2682 
2683 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2684   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2685   SDLoc dl(Op);
2686 
2687   if (Op.getValueType() == MVT::v2i64) {
2688     // When the operands themselves are v2i64 values, we need to do something
2689     // special because VSX has no underlying comparison operations for these.
2690     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2691       // Equality can be handled by casting to the legal type for Altivec
2692       // comparisons, everything else needs to be expanded.
2693       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2694         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2695                  DAG.getSetCC(dl, MVT::v4i32,
2696                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2697                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2698                    CC));
2699       }
2700 
2701       return SDValue();
2702     }
2703 
2704     // We handle most of these in the usual way.
2705     return Op;
2706   }
2707 
2708   // If we're comparing for equality to zero, expose the fact that this is
2709   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2710   // fold the new nodes.
2711   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2712     return V;
2713 
2714   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2715     // Leave comparisons against 0 and -1 alone for now, since they're usually
2716     // optimized.  FIXME: revisit this when we can custom lower all setcc
2717     // optimizations.
2718     if (C->isAllOnesValue() || C->isNullValue())
2719       return SDValue();
2720   }
2721 
2722   // If we have an integer seteq/setne, turn it into a compare against zero
2723   // by xor'ing the rhs with the lhs, which is faster than setting a
2724   // condition register, reading it back out, and masking the correct bit.  The
2725   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2726   // the result to other bit-twiddling opportunities.
2727   EVT LHSVT = Op.getOperand(0).getValueType();
2728   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2729     EVT VT = Op.getValueType();
2730     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2731                                 Op.getOperand(1));
2732     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2733   }
2734   return SDValue();
2735 }
2736 
2737 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2738   SDNode *Node = Op.getNode();
2739   EVT VT = Node->getValueType(0);
2740   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2741   SDValue InChain = Node->getOperand(0);
2742   SDValue VAListPtr = Node->getOperand(1);
2743   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2744   SDLoc dl(Node);
2745 
2746   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2747 
2748   // gpr_index
2749   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2750                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2751   InChain = GprIndex.getValue(1);
2752 
2753   if (VT == MVT::i64) {
2754     // Check if GprIndex is even
2755     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2756                                  DAG.getConstant(1, dl, MVT::i32));
2757     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2758                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2759     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2760                                           DAG.getConstant(1, dl, MVT::i32));
2761     // Align GprIndex to be even if it isn't
2762     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2763                            GprIndex);
2764   }
2765 
2766   // fpr index is 1 byte after gpr
2767   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2768                                DAG.getConstant(1, dl, MVT::i32));
2769 
2770   // fpr
2771   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2772                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2773   InChain = FprIndex.getValue(1);
2774 
2775   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2776                                        DAG.getConstant(8, dl, MVT::i32));
2777 
2778   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2779                                         DAG.getConstant(4, dl, MVT::i32));
2780 
2781   // areas
2782   SDValue OverflowArea =
2783       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2784   InChain = OverflowArea.getValue(1);
2785 
2786   SDValue RegSaveArea =
2787       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2788   InChain = RegSaveArea.getValue(1);
2789 
2790   // select overflow_area if index > 8
2791   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2792                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2793 
2794   // adjustment constant gpr_index * 4/8
2795   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2796                                     VT.isInteger() ? GprIndex : FprIndex,
2797                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2798                                                     MVT::i32));
2799 
2800   // OurReg = RegSaveArea + RegConstant
2801   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2802                                RegConstant);
2803 
2804   // Floating types are 32 bytes into RegSaveArea
2805   if (VT.isFloatingPoint())
2806     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2807                          DAG.getConstant(32, dl, MVT::i32));
2808 
2809   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2810   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2811                                    VT.isInteger() ? GprIndex : FprIndex,
2812                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2813                                                    MVT::i32));
2814 
2815   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2816                               VT.isInteger() ? VAListPtr : FprPtr,
2817                               MachinePointerInfo(SV), MVT::i8);
2818 
2819   // determine if we should load from reg_save_area or overflow_area
2820   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2821 
2822   // increase overflow_area by 4/8 if gpr/fpr > 8
2823   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2824                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2825                                           dl, MVT::i32));
2826 
2827   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2828                              OverflowAreaPlusN);
2829 
2830   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2831                               MachinePointerInfo(), MVT::i32);
2832 
2833   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2834 }
2835 
2836 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2837   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2838 
2839   // We have to copy the entire va_list struct:
2840   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2841   return DAG.getMemcpy(Op.getOperand(0), Op,
2842                        Op.getOperand(1), Op.getOperand(2),
2843                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2844                        false, MachinePointerInfo(), MachinePointerInfo());
2845 }
2846 
2847 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2848                                                   SelectionDAG &DAG) const {
2849   return Op.getOperand(0);
2850 }
2851 
2852 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2853                                                 SelectionDAG &DAG) const {
2854   SDValue Chain = Op.getOperand(0);
2855   SDValue Trmp = Op.getOperand(1); // trampoline
2856   SDValue FPtr = Op.getOperand(2); // nested function
2857   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2858   SDLoc dl(Op);
2859 
2860   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2861   bool isPPC64 = (PtrVT == MVT::i64);
2862   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2863 
2864   TargetLowering::ArgListTy Args;
2865   TargetLowering::ArgListEntry Entry;
2866 
2867   Entry.Ty = IntPtrTy;
2868   Entry.Node = Trmp; Args.push_back(Entry);
2869 
2870   // TrampSize == (isPPC64 ? 48 : 40);
2871   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2872                                isPPC64 ? MVT::i64 : MVT::i32);
2873   Args.push_back(Entry);
2874 
2875   Entry.Node = FPtr; Args.push_back(Entry);
2876   Entry.Node = Nest; Args.push_back(Entry);
2877 
2878   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2879   TargetLowering::CallLoweringInfo CLI(DAG);
2880   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2881       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2882       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
2883 
2884   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2885   return CallResult.second;
2886 }
2887 
2888 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2889   MachineFunction &MF = DAG.getMachineFunction();
2890   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2891   EVT PtrVT = getPointerTy(MF.getDataLayout());
2892 
2893   SDLoc dl(Op);
2894 
2895   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2896     // vastart just stores the address of the VarArgsFrameIndex slot into the
2897     // memory location argument.
2898     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2899     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2900     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2901                         MachinePointerInfo(SV));
2902   }
2903 
2904   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2905   // We suppose the given va_list is already allocated.
2906   //
2907   // typedef struct {
2908   //  char gpr;     /* index into the array of 8 GPRs
2909   //                 * stored in the register save area
2910   //                 * gpr=0 corresponds to r3,
2911   //                 * gpr=1 to r4, etc.
2912   //                 */
2913   //  char fpr;     /* index into the array of 8 FPRs
2914   //                 * stored in the register save area
2915   //                 * fpr=0 corresponds to f1,
2916   //                 * fpr=1 to f2, etc.
2917   //                 */
2918   //  char *overflow_arg_area;
2919   //                /* location on stack that holds
2920   //                 * the next overflow argument
2921   //                 */
2922   //  char *reg_save_area;
2923   //               /* where r3:r10 and f1:f8 (if saved)
2924   //                * are stored
2925   //                */
2926   // } va_list[1];
2927 
2928   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2929   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2930   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2931                                             PtrVT);
2932   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2933                                  PtrVT);
2934 
2935   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2936   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2937 
2938   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2939   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2940 
2941   uint64_t FPROffset = 1;
2942   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2943 
2944   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2945 
2946   // Store first byte : number of int regs
2947   SDValue firstStore =
2948       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2949                         MachinePointerInfo(SV), MVT::i8);
2950   uint64_t nextOffset = FPROffset;
2951   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2952                                   ConstFPROffset);
2953 
2954   // Store second byte : number of float regs
2955   SDValue secondStore =
2956       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2957                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2958   nextOffset += StackOffset;
2959   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2960 
2961   // Store second word : arguments given on stack
2962   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2963                                     MachinePointerInfo(SV, nextOffset));
2964   nextOffset += FrameOffset;
2965   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2966 
2967   // Store third word : arguments given in registers
2968   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2969                       MachinePointerInfo(SV, nextOffset));
2970 }
2971 
2972 #include "PPCGenCallingConv.inc"
2973 
2974 // Function whose sole purpose is to kill compiler warnings
2975 // stemming from unused functions included from PPCGenCallingConv.inc.
2976 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2977   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2978 }
2979 
2980 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2981                                       CCValAssign::LocInfo &LocInfo,
2982                                       ISD::ArgFlagsTy &ArgFlags,
2983                                       CCState &State) {
2984   return true;
2985 }
2986 
2987 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2988                                              MVT &LocVT,
2989                                              CCValAssign::LocInfo &LocInfo,
2990                                              ISD::ArgFlagsTy &ArgFlags,
2991                                              CCState &State) {
2992   static const MCPhysReg ArgRegs[] = {
2993     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2994     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2995   };
2996   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2997 
2998   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2999 
3000   // Skip one register if the first unallocated register has an even register
3001   // number and there are still argument registers available which have not been
3002   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3003   // need to skip a register if RegNum is odd.
3004   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3005     State.AllocateReg(ArgRegs[RegNum]);
3006   }
3007 
3008   // Always return false here, as this function only makes sure that the first
3009   // unallocated register has an odd register number and does not actually
3010   // allocate a register for the current argument.
3011   return false;
3012 }
3013 
3014 bool
3015 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3016                                                   MVT &LocVT,
3017                                                   CCValAssign::LocInfo &LocInfo,
3018                                                   ISD::ArgFlagsTy &ArgFlags,
3019                                                   CCState &State) {
3020   static const MCPhysReg ArgRegs[] = {
3021     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3022     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3023   };
3024   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3025 
3026   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3027   int RegsLeft = NumArgRegs - RegNum;
3028 
3029   // Skip if there is not enough registers left for long double type (4 gpr regs
3030   // in soft float mode) and put long double argument on the stack.
3031   if (RegNum != NumArgRegs && RegsLeft < 4) {
3032     for (int i = 0; i < RegsLeft; i++) {
3033       State.AllocateReg(ArgRegs[RegNum + i]);
3034     }
3035   }
3036 
3037   return false;
3038 }
3039 
3040 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3041                                                MVT &LocVT,
3042                                                CCValAssign::LocInfo &LocInfo,
3043                                                ISD::ArgFlagsTy &ArgFlags,
3044                                                CCState &State) {
3045   static const MCPhysReg ArgRegs[] = {
3046     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3047     PPC::F8
3048   };
3049 
3050   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3051 
3052   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3053 
3054   // If there is only one Floating-point register left we need to put both f64
3055   // values of a split ppc_fp128 value on the stack.
3056   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3057     State.AllocateReg(ArgRegs[RegNum]);
3058   }
3059 
3060   // Always return false here, as this function only makes sure that the two f64
3061   // values a ppc_fp128 value is split into are both passed in registers or both
3062   // passed on the stack and does not actually allocate a register for the
3063   // current argument.
3064   return false;
3065 }
3066 
3067 /// FPR - The set of FP registers that should be allocated for arguments,
3068 /// on Darwin.
3069 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3070                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3071                                 PPC::F11, PPC::F12, PPC::F13};
3072 
3073 /// QFPR - The set of QPX registers that should be allocated for arguments.
3074 static const MCPhysReg QFPR[] = {
3075     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3076     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3077 
3078 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3079 /// the stack.
3080 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3081                                        unsigned PtrByteSize) {
3082   unsigned ArgSize = ArgVT.getStoreSize();
3083   if (Flags.isByVal())
3084     ArgSize = Flags.getByValSize();
3085 
3086   // Round up to multiples of the pointer size, except for array members,
3087   // which are always packed.
3088   if (!Flags.isInConsecutiveRegs())
3089     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3090 
3091   return ArgSize;
3092 }
3093 
3094 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3095 /// on the stack.
3096 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3097                                             ISD::ArgFlagsTy Flags,
3098                                             unsigned PtrByteSize) {
3099   unsigned Align = PtrByteSize;
3100 
3101   // Altivec parameters are padded to a 16 byte boundary.
3102   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3103       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3104       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3105       ArgVT == MVT::v1i128)
3106     Align = 16;
3107   // QPX vector types stored in double-precision are padded to a 32 byte
3108   // boundary.
3109   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3110     Align = 32;
3111 
3112   // ByVal parameters are aligned as requested.
3113   if (Flags.isByVal()) {
3114     unsigned BVAlign = Flags.getByValAlign();
3115     if (BVAlign > PtrByteSize) {
3116       if (BVAlign % PtrByteSize != 0)
3117           llvm_unreachable(
3118             "ByVal alignment is not a multiple of the pointer size");
3119 
3120       Align = BVAlign;
3121     }
3122   }
3123 
3124   // Array members are always packed to their original alignment.
3125   if (Flags.isInConsecutiveRegs()) {
3126     // If the array member was split into multiple registers, the first
3127     // needs to be aligned to the size of the full type.  (Except for
3128     // ppcf128, which is only aligned as its f64 components.)
3129     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3130       Align = OrigVT.getStoreSize();
3131     else
3132       Align = ArgVT.getStoreSize();
3133   }
3134 
3135   return Align;
3136 }
3137 
3138 /// CalculateStackSlotUsed - Return whether this argument will use its
3139 /// stack slot (instead of being passed in registers).  ArgOffset,
3140 /// AvailableFPRs, and AvailableVRs must hold the current argument
3141 /// position, and will be updated to account for this argument.
3142 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3143                                    ISD::ArgFlagsTy Flags,
3144                                    unsigned PtrByteSize,
3145                                    unsigned LinkageSize,
3146                                    unsigned ParamAreaSize,
3147                                    unsigned &ArgOffset,
3148                                    unsigned &AvailableFPRs,
3149                                    unsigned &AvailableVRs, bool HasQPX) {
3150   bool UseMemory = false;
3151 
3152   // Respect alignment of argument on the stack.
3153   unsigned Align =
3154     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3155   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3156   // If there's no space left in the argument save area, we must
3157   // use memory (this check also catches zero-sized arguments).
3158   if (ArgOffset >= LinkageSize + ParamAreaSize)
3159     UseMemory = true;
3160 
3161   // Allocate argument on the stack.
3162   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3163   if (Flags.isInConsecutiveRegsLast())
3164     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3165   // If we overran the argument save area, we must use memory
3166   // (this check catches arguments passed partially in memory)
3167   if (ArgOffset > LinkageSize + ParamAreaSize)
3168     UseMemory = true;
3169 
3170   // However, if the argument is actually passed in an FPR or a VR,
3171   // we don't use memory after all.
3172   if (!Flags.isByVal()) {
3173     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3174         // QPX registers overlap with the scalar FP registers.
3175         (HasQPX && (ArgVT == MVT::v4f32 ||
3176                     ArgVT == MVT::v4f64 ||
3177                     ArgVT == MVT::v4i1)))
3178       if (AvailableFPRs > 0) {
3179         --AvailableFPRs;
3180         return false;
3181       }
3182     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3183         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3184         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3185         ArgVT == MVT::v1i128)
3186       if (AvailableVRs > 0) {
3187         --AvailableVRs;
3188         return false;
3189       }
3190   }
3191 
3192   return UseMemory;
3193 }
3194 
3195 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3196 /// ensure minimum alignment required for target.
3197 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3198                                      unsigned NumBytes) {
3199   unsigned TargetAlign = Lowering->getStackAlignment();
3200   unsigned AlignMask = TargetAlign - 1;
3201   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3202   return NumBytes;
3203 }
3204 
3205 SDValue PPCTargetLowering::LowerFormalArguments(
3206     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3207     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3208     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3209   if (Subtarget.isSVR4ABI()) {
3210     if (Subtarget.isPPC64())
3211       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3212                                          dl, DAG, InVals);
3213     else
3214       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3215                                          dl, DAG, InVals);
3216   } else {
3217     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3218                                        dl, DAG, InVals);
3219   }
3220 }
3221 
3222 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3223     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3224     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3225     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3226 
3227   // 32-bit SVR4 ABI Stack Frame Layout:
3228   //              +-----------------------------------+
3229   //        +-->  |            Back chain             |
3230   //        |     +-----------------------------------+
3231   //        |     | Floating-point register save area |
3232   //        |     +-----------------------------------+
3233   //        |     |    General register save area     |
3234   //        |     +-----------------------------------+
3235   //        |     |          CR save word             |
3236   //        |     +-----------------------------------+
3237   //        |     |         VRSAVE save word          |
3238   //        |     +-----------------------------------+
3239   //        |     |         Alignment padding         |
3240   //        |     +-----------------------------------+
3241   //        |     |     Vector register save area     |
3242   //        |     +-----------------------------------+
3243   //        |     |       Local variable space        |
3244   //        |     +-----------------------------------+
3245   //        |     |        Parameter list area        |
3246   //        |     +-----------------------------------+
3247   //        |     |           LR save word            |
3248   //        |     +-----------------------------------+
3249   // SP-->  +---  |            Back chain             |
3250   //              +-----------------------------------+
3251   //
3252   // Specifications:
3253   //   System V Application Binary Interface PowerPC Processor Supplement
3254   //   AltiVec Technology Programming Interface Manual
3255 
3256   MachineFunction &MF = DAG.getMachineFunction();
3257   MachineFrameInfo &MFI = MF.getFrameInfo();
3258   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3259 
3260   EVT PtrVT = getPointerTy(MF.getDataLayout());
3261   // Potential tail calls could cause overwriting of argument stack slots.
3262   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3263                        (CallConv == CallingConv::Fast));
3264   unsigned PtrByteSize = 4;
3265 
3266   // Assign locations to all of the incoming arguments.
3267   SmallVector<CCValAssign, 16> ArgLocs;
3268   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3269                  *DAG.getContext());
3270 
3271   // Reserve space for the linkage area on the stack.
3272   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3273   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3274   if (useSoftFloat())
3275     CCInfo.PreAnalyzeFormalArguments(Ins);
3276 
3277   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3278   CCInfo.clearWasPPCF128();
3279 
3280   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3281     CCValAssign &VA = ArgLocs[i];
3282 
3283     // Arguments stored in registers.
3284     if (VA.isRegLoc()) {
3285       const TargetRegisterClass *RC;
3286       EVT ValVT = VA.getValVT();
3287 
3288       switch (ValVT.getSimpleVT().SimpleTy) {
3289         default:
3290           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3291         case MVT::i1:
3292         case MVT::i32:
3293           RC = &PPC::GPRCRegClass;
3294           break;
3295         case MVT::f32:
3296           if (Subtarget.hasP8Vector())
3297             RC = &PPC::VSSRCRegClass;
3298           else
3299             RC = &PPC::F4RCRegClass;
3300           break;
3301         case MVT::f64:
3302           if (Subtarget.hasVSX())
3303             RC = &PPC::VSFRCRegClass;
3304           else
3305             RC = &PPC::F8RCRegClass;
3306           break;
3307         case MVT::v16i8:
3308         case MVT::v8i16:
3309         case MVT::v4i32:
3310           RC = &PPC::VRRCRegClass;
3311           break;
3312         case MVT::v4f32:
3313           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3314           break;
3315         case MVT::v2f64:
3316         case MVT::v2i64:
3317           RC = &PPC::VRRCRegClass;
3318           break;
3319         case MVT::v4f64:
3320           RC = &PPC::QFRCRegClass;
3321           break;
3322         case MVT::v4i1:
3323           RC = &PPC::QBRCRegClass;
3324           break;
3325       }
3326 
3327       // Transform the arguments stored in physical registers into virtual ones.
3328       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3329       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3330                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3331 
3332       if (ValVT == MVT::i1)
3333         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3334 
3335       InVals.push_back(ArgValue);
3336     } else {
3337       // Argument stored in memory.
3338       assert(VA.isMemLoc());
3339 
3340       unsigned ArgSize = VA.getLocVT().getStoreSize();
3341       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3342                                      isImmutable);
3343 
3344       // Create load nodes to retrieve arguments from the stack.
3345       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3346       InVals.push_back(
3347           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3348     }
3349   }
3350 
3351   // Assign locations to all of the incoming aggregate by value arguments.
3352   // Aggregates passed by value are stored in the local variable space of the
3353   // caller's stack frame, right above the parameter list area.
3354   SmallVector<CCValAssign, 16> ByValArgLocs;
3355   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3356                       ByValArgLocs, *DAG.getContext());
3357 
3358   // Reserve stack space for the allocations in CCInfo.
3359   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3360 
3361   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3362 
3363   // Area that is at least reserved in the caller of this function.
3364   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3365   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3366 
3367   // Set the size that is at least reserved in caller of this function.  Tail
3368   // call optimized function's reserved stack space needs to be aligned so that
3369   // taking the difference between two stack areas will result in an aligned
3370   // stack.
3371   MinReservedArea =
3372       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3373   FuncInfo->setMinReservedArea(MinReservedArea);
3374 
3375   SmallVector<SDValue, 8> MemOps;
3376 
3377   // If the function takes variable number of arguments, make a frame index for
3378   // the start of the first vararg value... for expansion of llvm.va_start.
3379   if (isVarArg) {
3380     static const MCPhysReg GPArgRegs[] = {
3381       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3382       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3383     };
3384     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3385 
3386     static const MCPhysReg FPArgRegs[] = {
3387       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3388       PPC::F8
3389     };
3390     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3391 
3392     if (useSoftFloat())
3393        NumFPArgRegs = 0;
3394 
3395     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3396     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3397 
3398     // Make room for NumGPArgRegs and NumFPArgRegs.
3399     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3400                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3401 
3402     FuncInfo->setVarArgsStackOffset(
3403       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3404                             CCInfo.getNextStackOffset(), true));
3405 
3406     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3407     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3408 
3409     // The fixed integer arguments of a variadic function are stored to the
3410     // VarArgsFrameIndex on the stack so that they may be loaded by
3411     // dereferencing the result of va_next.
3412     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3413       // Get an existing live-in vreg, or add a new one.
3414       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3415       if (!VReg)
3416         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3417 
3418       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3419       SDValue Store =
3420           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3421       MemOps.push_back(Store);
3422       // Increment the address by four for the next argument to store
3423       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3424       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3425     }
3426 
3427     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3428     // is set.
3429     // The double arguments are stored to the VarArgsFrameIndex
3430     // on the stack.
3431     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3432       // Get an existing live-in vreg, or add a new one.
3433       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3434       if (!VReg)
3435         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3436 
3437       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3438       SDValue Store =
3439           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3440       MemOps.push_back(Store);
3441       // Increment the address by eight for the next argument to store
3442       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3443                                          PtrVT);
3444       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3445     }
3446   }
3447 
3448   if (!MemOps.empty())
3449     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3450 
3451   return Chain;
3452 }
3453 
3454 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3455 // value to MVT::i64 and then truncate to the correct register size.
3456 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3457                                              EVT ObjectVT, SelectionDAG &DAG,
3458                                              SDValue ArgVal,
3459                                              const SDLoc &dl) const {
3460   if (Flags.isSExt())
3461     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3462                          DAG.getValueType(ObjectVT));
3463   else if (Flags.isZExt())
3464     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3465                          DAG.getValueType(ObjectVT));
3466 
3467   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3468 }
3469 
3470 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3471     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3472     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3473     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3474   // TODO: add description of PPC stack frame format, or at least some docs.
3475   //
3476   bool isELFv2ABI = Subtarget.isELFv2ABI();
3477   bool isLittleEndian = Subtarget.isLittleEndian();
3478   MachineFunction &MF = DAG.getMachineFunction();
3479   MachineFrameInfo &MFI = MF.getFrameInfo();
3480   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3481 
3482   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3483          "fastcc not supported on varargs functions");
3484 
3485   EVT PtrVT = getPointerTy(MF.getDataLayout());
3486   // Potential tail calls could cause overwriting of argument stack slots.
3487   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3488                        (CallConv == CallingConv::Fast));
3489   unsigned PtrByteSize = 8;
3490   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3491 
3492   static const MCPhysReg GPR[] = {
3493     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3494     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3495   };
3496   static const MCPhysReg VR[] = {
3497     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3498     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3499   };
3500 
3501   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3502   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3503   const unsigned Num_VR_Regs  = array_lengthof(VR);
3504   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3505 
3506   // Do a first pass over the arguments to determine whether the ABI
3507   // guarantees that our caller has allocated the parameter save area
3508   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3509   // in the ELFv2 ABI, it is true if this is a vararg function or if
3510   // any parameter is located in a stack slot.
3511 
3512   bool HasParameterArea = !isELFv2ABI || isVarArg;
3513   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3514   unsigned NumBytes = LinkageSize;
3515   unsigned AvailableFPRs = Num_FPR_Regs;
3516   unsigned AvailableVRs = Num_VR_Regs;
3517   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3518     if (Ins[i].Flags.isNest())
3519       continue;
3520 
3521     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3522                                PtrByteSize, LinkageSize, ParamAreaSize,
3523                                NumBytes, AvailableFPRs, AvailableVRs,
3524                                Subtarget.hasQPX()))
3525       HasParameterArea = true;
3526   }
3527 
3528   // Add DAG nodes to load the arguments or copy them out of registers.  On
3529   // entry to a function on PPC, the arguments start after the linkage area,
3530   // although the first ones are often in registers.
3531 
3532   unsigned ArgOffset = LinkageSize;
3533   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3534   unsigned &QFPR_idx = FPR_idx;
3535   SmallVector<SDValue, 8> MemOps;
3536   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3537   unsigned CurArgIdx = 0;
3538   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3539     SDValue ArgVal;
3540     bool needsLoad = false;
3541     EVT ObjectVT = Ins[ArgNo].VT;
3542     EVT OrigVT = Ins[ArgNo].ArgVT;
3543     unsigned ObjSize = ObjectVT.getStoreSize();
3544     unsigned ArgSize = ObjSize;
3545     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3546     if (Ins[ArgNo].isOrigArg()) {
3547       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3548       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3549     }
3550     // We re-align the argument offset for each argument, except when using the
3551     // fast calling convention, when we need to make sure we do that only when
3552     // we'll actually use a stack slot.
3553     unsigned CurArgOffset, Align;
3554     auto ComputeArgOffset = [&]() {
3555       /* Respect alignment of argument on the stack.  */
3556       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3557       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3558       CurArgOffset = ArgOffset;
3559     };
3560 
3561     if (CallConv != CallingConv::Fast) {
3562       ComputeArgOffset();
3563 
3564       /* Compute GPR index associated with argument offset.  */
3565       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3566       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3567     }
3568 
3569     // FIXME the codegen can be much improved in some cases.
3570     // We do not have to keep everything in memory.
3571     if (Flags.isByVal()) {
3572       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3573 
3574       if (CallConv == CallingConv::Fast)
3575         ComputeArgOffset();
3576 
3577       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3578       ObjSize = Flags.getByValSize();
3579       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3580       // Empty aggregate parameters do not take up registers.  Examples:
3581       //   struct { } a;
3582       //   union  { } b;
3583       //   int c[0];
3584       // etc.  However, we have to provide a place-holder in InVals, so
3585       // pretend we have an 8-byte item at the current address for that
3586       // purpose.
3587       if (!ObjSize) {
3588         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3589         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3590         InVals.push_back(FIN);
3591         continue;
3592       }
3593 
3594       // Create a stack object covering all stack doublewords occupied
3595       // by the argument.  If the argument is (fully or partially) on
3596       // the stack, or if the argument is fully in registers but the
3597       // caller has allocated the parameter save anyway, we can refer
3598       // directly to the caller's stack frame.  Otherwise, create a
3599       // local copy in our own frame.
3600       int FI;
3601       if (HasParameterArea ||
3602           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3603         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3604       else
3605         FI = MFI.CreateStackObject(ArgSize, Align, false);
3606       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3607 
3608       // Handle aggregates smaller than 8 bytes.
3609       if (ObjSize < PtrByteSize) {
3610         // The value of the object is its address, which differs from the
3611         // address of the enclosing doubleword on big-endian systems.
3612         SDValue Arg = FIN;
3613         if (!isLittleEndian) {
3614           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3615           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3616         }
3617         InVals.push_back(Arg);
3618 
3619         if (GPR_idx != Num_GPR_Regs) {
3620           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3621           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3622           SDValue Store;
3623 
3624           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3625             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3626                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3627             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3628                                       MachinePointerInfo(&*FuncArg), ObjType);
3629           } else {
3630             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3631             // store the whole register as-is to the parameter save area
3632             // slot.
3633             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3634                                  MachinePointerInfo(&*FuncArg));
3635           }
3636 
3637           MemOps.push_back(Store);
3638         }
3639         // Whether we copied from a register or not, advance the offset
3640         // into the parameter save area by a full doubleword.
3641         ArgOffset += PtrByteSize;
3642         continue;
3643       }
3644 
3645       // The value of the object is its address, which is the address of
3646       // its first stack doubleword.
3647       InVals.push_back(FIN);
3648 
3649       // Store whatever pieces of the object are in registers to memory.
3650       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3651         if (GPR_idx == Num_GPR_Regs)
3652           break;
3653 
3654         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3655         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3656         SDValue Addr = FIN;
3657         if (j) {
3658           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3659           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3660         }
3661         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3662                                      MachinePointerInfo(&*FuncArg, j));
3663         MemOps.push_back(Store);
3664         ++GPR_idx;
3665       }
3666       ArgOffset += ArgSize;
3667       continue;
3668     }
3669 
3670     switch (ObjectVT.getSimpleVT().SimpleTy) {
3671     default: llvm_unreachable("Unhandled argument type!");
3672     case MVT::i1:
3673     case MVT::i32:
3674     case MVT::i64:
3675       if (Flags.isNest()) {
3676         // The 'nest' parameter, if any, is passed in R11.
3677         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3678         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3679 
3680         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3681           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3682 
3683         break;
3684       }
3685 
3686       // These can be scalar arguments or elements of an integer array type
3687       // passed directly.  Clang may use those instead of "byval" aggregate
3688       // types to avoid forcing arguments to memory unnecessarily.
3689       if (GPR_idx != Num_GPR_Regs) {
3690         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3691         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3692 
3693         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3694           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3695           // value to MVT::i64 and then truncate to the correct register size.
3696           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3697       } else {
3698         if (CallConv == CallingConv::Fast)
3699           ComputeArgOffset();
3700 
3701         needsLoad = true;
3702         ArgSize = PtrByteSize;
3703       }
3704       if (CallConv != CallingConv::Fast || needsLoad)
3705         ArgOffset += 8;
3706       break;
3707 
3708     case MVT::f32:
3709     case MVT::f64:
3710       // These can be scalar arguments or elements of a float array type
3711       // passed directly.  The latter are used to implement ELFv2 homogenous
3712       // float aggregates.
3713       if (FPR_idx != Num_FPR_Regs) {
3714         unsigned VReg;
3715 
3716         if (ObjectVT == MVT::f32)
3717           VReg = MF.addLiveIn(FPR[FPR_idx],
3718                               Subtarget.hasP8Vector()
3719                                   ? &PPC::VSSRCRegClass
3720                                   : &PPC::F4RCRegClass);
3721         else
3722           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3723                                                 ? &PPC::VSFRCRegClass
3724                                                 : &PPC::F8RCRegClass);
3725 
3726         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3727         ++FPR_idx;
3728       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3729         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3730         // once we support fp <-> gpr moves.
3731 
3732         // This can only ever happen in the presence of f32 array types,
3733         // since otherwise we never run out of FPRs before running out
3734         // of GPRs.
3735         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3736         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3737 
3738         if (ObjectVT == MVT::f32) {
3739           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3740             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3741                                  DAG.getConstant(32, dl, MVT::i32));
3742           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3743         }
3744 
3745         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3746       } else {
3747         if (CallConv == CallingConv::Fast)
3748           ComputeArgOffset();
3749 
3750         needsLoad = true;
3751       }
3752 
3753       // When passing an array of floats, the array occupies consecutive
3754       // space in the argument area; only round up to the next doubleword
3755       // at the end of the array.  Otherwise, each float takes 8 bytes.
3756       if (CallConv != CallingConv::Fast || needsLoad) {
3757         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3758         ArgOffset += ArgSize;
3759         if (Flags.isInConsecutiveRegsLast())
3760           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3761       }
3762       break;
3763     case MVT::v4f32:
3764     case MVT::v4i32:
3765     case MVT::v8i16:
3766     case MVT::v16i8:
3767     case MVT::v2f64:
3768     case MVT::v2i64:
3769     case MVT::v1i128:
3770       if (!Subtarget.hasQPX()) {
3771       // These can be scalar arguments or elements of a vector array type
3772       // passed directly.  The latter are used to implement ELFv2 homogenous
3773       // vector aggregates.
3774       if (VR_idx != Num_VR_Regs) {
3775         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3776         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3777         ++VR_idx;
3778       } else {
3779         if (CallConv == CallingConv::Fast)
3780           ComputeArgOffset();
3781 
3782         needsLoad = true;
3783       }
3784       if (CallConv != CallingConv::Fast || needsLoad)
3785         ArgOffset += 16;
3786       break;
3787       } // not QPX
3788 
3789       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3790              "Invalid QPX parameter type");
3791       /* fall through */
3792 
3793     case MVT::v4f64:
3794     case MVT::v4i1:
3795       // QPX vectors are treated like their scalar floating-point subregisters
3796       // (except that they're larger).
3797       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3798       if (QFPR_idx != Num_QFPR_Regs) {
3799         const TargetRegisterClass *RC;
3800         switch (ObjectVT.getSimpleVT().SimpleTy) {
3801         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3802         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3803         default:         RC = &PPC::QBRCRegClass; break;
3804         }
3805 
3806         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3807         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3808         ++QFPR_idx;
3809       } else {
3810         if (CallConv == CallingConv::Fast)
3811           ComputeArgOffset();
3812         needsLoad = true;
3813       }
3814       if (CallConv != CallingConv::Fast || needsLoad)
3815         ArgOffset += Sz;
3816       break;
3817     }
3818 
3819     // We need to load the argument to a virtual register if we determined
3820     // above that we ran out of physical registers of the appropriate type.
3821     if (needsLoad) {
3822       if (ObjSize < ArgSize && !isLittleEndian)
3823         CurArgOffset += ArgSize - ObjSize;
3824       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3825       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3826       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3827     }
3828 
3829     InVals.push_back(ArgVal);
3830   }
3831 
3832   // Area that is at least reserved in the caller of this function.
3833   unsigned MinReservedArea;
3834   if (HasParameterArea)
3835     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3836   else
3837     MinReservedArea = LinkageSize;
3838 
3839   // Set the size that is at least reserved in caller of this function.  Tail
3840   // call optimized functions' reserved stack space needs to be aligned so that
3841   // taking the difference between two stack areas will result in an aligned
3842   // stack.
3843   MinReservedArea =
3844       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3845   FuncInfo->setMinReservedArea(MinReservedArea);
3846 
3847   // If the function takes variable number of arguments, make a frame index for
3848   // the start of the first vararg value... for expansion of llvm.va_start.
3849   if (isVarArg) {
3850     int Depth = ArgOffset;
3851 
3852     FuncInfo->setVarArgsFrameIndex(
3853       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3854     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3855 
3856     // If this function is vararg, store any remaining integer argument regs
3857     // to their spots on the stack so that they may be loaded by dereferencing
3858     // the result of va_next.
3859     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3860          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3861       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3862       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3863       SDValue Store =
3864           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3865       MemOps.push_back(Store);
3866       // Increment the address by four for the next argument to store
3867       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3868       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3869     }
3870   }
3871 
3872   if (!MemOps.empty())
3873     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3874 
3875   return Chain;
3876 }
3877 
3878 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3879     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3880     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3881     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3882   // TODO: add description of PPC stack frame format, or at least some docs.
3883   //
3884   MachineFunction &MF = DAG.getMachineFunction();
3885   MachineFrameInfo &MFI = MF.getFrameInfo();
3886   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3887 
3888   EVT PtrVT = getPointerTy(MF.getDataLayout());
3889   bool isPPC64 = PtrVT == MVT::i64;
3890   // Potential tail calls could cause overwriting of argument stack slots.
3891   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3892                        (CallConv == CallingConv::Fast));
3893   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3894   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3895   unsigned ArgOffset = LinkageSize;
3896   // Area that is at least reserved in caller of this function.
3897   unsigned MinReservedArea = ArgOffset;
3898 
3899   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3900     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3901     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3902   };
3903   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3904     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3905     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3906   };
3907   static const MCPhysReg VR[] = {
3908     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3909     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3910   };
3911 
3912   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3913   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3914   const unsigned Num_VR_Regs  = array_lengthof( VR);
3915 
3916   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3917 
3918   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3919 
3920   // In 32-bit non-varargs functions, the stack space for vectors is after the
3921   // stack space for non-vectors.  We do not use this space unless we have
3922   // too many vectors to fit in registers, something that only occurs in
3923   // constructed examples:), but we have to walk the arglist to figure
3924   // that out...for the pathological case, compute VecArgOffset as the
3925   // start of the vector parameter area.  Computing VecArgOffset is the
3926   // entire point of the following loop.
3927   unsigned VecArgOffset = ArgOffset;
3928   if (!isVarArg && !isPPC64) {
3929     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3930          ++ArgNo) {
3931       EVT ObjectVT = Ins[ArgNo].VT;
3932       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3933 
3934       if (Flags.isByVal()) {
3935         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3936         unsigned ObjSize = Flags.getByValSize();
3937         unsigned ArgSize =
3938                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3939         VecArgOffset += ArgSize;
3940         continue;
3941       }
3942 
3943       switch(ObjectVT.getSimpleVT().SimpleTy) {
3944       default: llvm_unreachable("Unhandled argument type!");
3945       case MVT::i1:
3946       case MVT::i32:
3947       case MVT::f32:
3948         VecArgOffset += 4;
3949         break;
3950       case MVT::i64:  // PPC64
3951       case MVT::f64:
3952         // FIXME: We are guaranteed to be !isPPC64 at this point.
3953         // Does MVT::i64 apply?
3954         VecArgOffset += 8;
3955         break;
3956       case MVT::v4f32:
3957       case MVT::v4i32:
3958       case MVT::v8i16:
3959       case MVT::v16i8:
3960         // Nothing to do, we're only looking at Nonvector args here.
3961         break;
3962       }
3963     }
3964   }
3965   // We've found where the vector parameter area in memory is.  Skip the
3966   // first 12 parameters; these don't use that memory.
3967   VecArgOffset = ((VecArgOffset+15)/16)*16;
3968   VecArgOffset += 12*16;
3969 
3970   // Add DAG nodes to load the arguments or copy them out of registers.  On
3971   // entry to a function on PPC, the arguments start after the linkage area,
3972   // although the first ones are often in registers.
3973 
3974   SmallVector<SDValue, 8> MemOps;
3975   unsigned nAltivecParamsAtEnd = 0;
3976   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3977   unsigned CurArgIdx = 0;
3978   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3979     SDValue ArgVal;
3980     bool needsLoad = false;
3981     EVT ObjectVT = Ins[ArgNo].VT;
3982     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3983     unsigned ArgSize = ObjSize;
3984     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3985     if (Ins[ArgNo].isOrigArg()) {
3986       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3987       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3988     }
3989     unsigned CurArgOffset = ArgOffset;
3990 
3991     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3992     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3993         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3994       if (isVarArg || isPPC64) {
3995         MinReservedArea = ((MinReservedArea+15)/16)*16;
3996         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3997                                                   Flags,
3998                                                   PtrByteSize);
3999       } else  nAltivecParamsAtEnd++;
4000     } else
4001       // Calculate min reserved area.
4002       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4003                                                 Flags,
4004                                                 PtrByteSize);
4005 
4006     // FIXME the codegen can be much improved in some cases.
4007     // We do not have to keep everything in memory.
4008     if (Flags.isByVal()) {
4009       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4010 
4011       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4012       ObjSize = Flags.getByValSize();
4013       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4014       // Objects of size 1 and 2 are right justified, everything else is
4015       // left justified.  This means the memory address is adjusted forwards.
4016       if (ObjSize==1 || ObjSize==2) {
4017         CurArgOffset = CurArgOffset + (4 - ObjSize);
4018       }
4019       // The value of the object is its address.
4020       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4021       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4022       InVals.push_back(FIN);
4023       if (ObjSize==1 || ObjSize==2) {
4024         if (GPR_idx != Num_GPR_Regs) {
4025           unsigned VReg;
4026           if (isPPC64)
4027             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4028           else
4029             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4030           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4031           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4032           SDValue Store =
4033               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4034                                 MachinePointerInfo(&*FuncArg), ObjType);
4035           MemOps.push_back(Store);
4036           ++GPR_idx;
4037         }
4038 
4039         ArgOffset += PtrByteSize;
4040 
4041         continue;
4042       }
4043       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4044         // Store whatever pieces of the object are in registers
4045         // to memory.  ArgOffset will be the address of the beginning
4046         // of the object.
4047         if (GPR_idx != Num_GPR_Regs) {
4048           unsigned VReg;
4049           if (isPPC64)
4050             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4051           else
4052             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4053           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4054           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4055           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4056           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4057                                        MachinePointerInfo(&*FuncArg, j));
4058           MemOps.push_back(Store);
4059           ++GPR_idx;
4060           ArgOffset += PtrByteSize;
4061         } else {
4062           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4063           break;
4064         }
4065       }
4066       continue;
4067     }
4068 
4069     switch (ObjectVT.getSimpleVT().SimpleTy) {
4070     default: llvm_unreachable("Unhandled argument type!");
4071     case MVT::i1:
4072     case MVT::i32:
4073       if (!isPPC64) {
4074         if (GPR_idx != Num_GPR_Regs) {
4075           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4076           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4077 
4078           if (ObjectVT == MVT::i1)
4079             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4080 
4081           ++GPR_idx;
4082         } else {
4083           needsLoad = true;
4084           ArgSize = PtrByteSize;
4085         }
4086         // All int arguments reserve stack space in the Darwin ABI.
4087         ArgOffset += PtrByteSize;
4088         break;
4089       }
4090       LLVM_FALLTHROUGH;
4091     case MVT::i64:  // PPC64
4092       if (GPR_idx != Num_GPR_Regs) {
4093         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4094         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4095 
4096         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4097           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4098           // value to MVT::i64 and then truncate to the correct register size.
4099           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4100 
4101         ++GPR_idx;
4102       } else {
4103         needsLoad = true;
4104         ArgSize = PtrByteSize;
4105       }
4106       // All int arguments reserve stack space in the Darwin ABI.
4107       ArgOffset += 8;
4108       break;
4109 
4110     case MVT::f32:
4111     case MVT::f64:
4112       // Every 4 bytes of argument space consumes one of the GPRs available for
4113       // argument passing.
4114       if (GPR_idx != Num_GPR_Regs) {
4115         ++GPR_idx;
4116         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4117           ++GPR_idx;
4118       }
4119       if (FPR_idx != Num_FPR_Regs) {
4120         unsigned VReg;
4121 
4122         if (ObjectVT == MVT::f32)
4123           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4124         else
4125           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4126 
4127         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4128         ++FPR_idx;
4129       } else {
4130         needsLoad = true;
4131       }
4132 
4133       // All FP arguments reserve stack space in the Darwin ABI.
4134       ArgOffset += isPPC64 ? 8 : ObjSize;
4135       break;
4136     case MVT::v4f32:
4137     case MVT::v4i32:
4138     case MVT::v8i16:
4139     case MVT::v16i8:
4140       // Note that vector arguments in registers don't reserve stack space,
4141       // except in varargs functions.
4142       if (VR_idx != Num_VR_Regs) {
4143         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4144         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4145         if (isVarArg) {
4146           while ((ArgOffset % 16) != 0) {
4147             ArgOffset += PtrByteSize;
4148             if (GPR_idx != Num_GPR_Regs)
4149               GPR_idx++;
4150           }
4151           ArgOffset += 16;
4152           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4153         }
4154         ++VR_idx;
4155       } else {
4156         if (!isVarArg && !isPPC64) {
4157           // Vectors go after all the nonvectors.
4158           CurArgOffset = VecArgOffset;
4159           VecArgOffset += 16;
4160         } else {
4161           // Vectors are aligned.
4162           ArgOffset = ((ArgOffset+15)/16)*16;
4163           CurArgOffset = ArgOffset;
4164           ArgOffset += 16;
4165         }
4166         needsLoad = true;
4167       }
4168       break;
4169     }
4170 
4171     // We need to load the argument to a virtual register if we determined above
4172     // that we ran out of physical registers of the appropriate type.
4173     if (needsLoad) {
4174       int FI = MFI.CreateFixedObject(ObjSize,
4175                                      CurArgOffset + (ArgSize - ObjSize),
4176                                      isImmutable);
4177       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4178       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4179     }
4180 
4181     InVals.push_back(ArgVal);
4182   }
4183 
4184   // Allow for Altivec parameters at the end, if needed.
4185   if (nAltivecParamsAtEnd) {
4186     MinReservedArea = ((MinReservedArea+15)/16)*16;
4187     MinReservedArea += 16*nAltivecParamsAtEnd;
4188   }
4189 
4190   // Area that is at least reserved in the caller of this function.
4191   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4192 
4193   // Set the size that is at least reserved in caller of this function.  Tail
4194   // call optimized functions' reserved stack space needs to be aligned so that
4195   // taking the difference between two stack areas will result in an aligned
4196   // stack.
4197   MinReservedArea =
4198       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4199   FuncInfo->setMinReservedArea(MinReservedArea);
4200 
4201   // If the function takes variable number of arguments, make a frame index for
4202   // the start of the first vararg value... for expansion of llvm.va_start.
4203   if (isVarArg) {
4204     int Depth = ArgOffset;
4205 
4206     FuncInfo->setVarArgsFrameIndex(
4207       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4208                             Depth, true));
4209     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4210 
4211     // If this function is vararg, store any remaining integer argument regs
4212     // to their spots on the stack so that they may be loaded by dereferencing
4213     // the result of va_next.
4214     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4215       unsigned VReg;
4216 
4217       if (isPPC64)
4218         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4219       else
4220         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4221 
4222       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4223       SDValue Store =
4224           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4225       MemOps.push_back(Store);
4226       // Increment the address by four for the next argument to store
4227       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4228       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4229     }
4230   }
4231 
4232   if (!MemOps.empty())
4233     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4234 
4235   return Chain;
4236 }
4237 
4238 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4239 /// adjusted to accommodate the arguments for the tailcall.
4240 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4241                                    unsigned ParamSize) {
4242 
4243   if (!isTailCall) return 0;
4244 
4245   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4246   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4247   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4248   // Remember only if the new adjustement is bigger.
4249   if (SPDiff < FI->getTailCallSPDelta())
4250     FI->setTailCallSPDelta(SPDiff);
4251 
4252   return SPDiff;
4253 }
4254 
4255 static bool isFunctionGlobalAddress(SDValue Callee);
4256 
4257 static bool
4258 callsShareTOCBase(const Function *Caller, SDValue Callee,
4259                     const TargetMachine &TM) {
4260   // If !G, Callee can be an external symbol.
4261   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4262   if (!G)
4263     return false;
4264 
4265   // The medium and large code models are expected to provide a sufficiently
4266   // large TOC to provide all data addressing needs of a module with a
4267   // single TOC. Since each module will be addressed with a single TOC then we
4268   // only need to check that caller and callee don't cross dso boundaries.
4269   if (CodeModel::Medium == TM.getCodeModel() ||
4270       CodeModel::Large == TM.getCodeModel())
4271     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4272 
4273   // Otherwise we need to ensure callee and caller are in the same section,
4274   // since the linker may allocate multiple TOCs, and we don't know which
4275   // sections will belong to the same TOC base.
4276 
4277   const GlobalValue *GV = G->getGlobal();
4278   if (!GV->isStrongDefinitionForLinker())
4279     return false;
4280 
4281   // Any explicitly-specified sections and section prefixes must also match.
4282   // Also, if we're using -ffunction-sections, then each function is always in
4283   // a different section (the same is true for COMDAT functions).
4284   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4285       GV->getSection() != Caller->getSection())
4286     return false;
4287   if (const auto *F = dyn_cast<Function>(GV)) {
4288     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4289       return false;
4290   }
4291 
4292   // If the callee might be interposed, then we can't assume the ultimate call
4293   // target will be in the same section. Even in cases where we can assume that
4294   // interposition won't happen, in any case where the linker might insert a
4295   // stub to allow for interposition, we must generate code as though
4296   // interposition might occur. To understand why this matters, consider a
4297   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4298   // in the same section, but a is in a different module (i.e. has a different
4299   // TOC base pointer). If the linker allows for interposition between b and c,
4300   // then it will generate a stub for the call edge between b and c which will
4301   // save the TOC pointer into the designated stack slot allocated by b. If we
4302   // return true here, and therefore allow a tail call between b and c, that
4303   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4304   // pointer into the stack slot allocated by a (where the a -> b stub saved
4305   // a's TOC base pointer). If we're not considering a tail call, but rather,
4306   // whether a nop is needed after the call instruction in b, because the linker
4307   // will insert a stub, it might complain about a missing nop if we omit it
4308   // (although many don't complain in this case).
4309   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4310     return false;
4311 
4312   return true;
4313 }
4314 
4315 static bool
4316 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4317                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4318   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4319 
4320   const unsigned PtrByteSize = 8;
4321   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4322 
4323   static const MCPhysReg GPR[] = {
4324     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4325     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4326   };
4327   static const MCPhysReg VR[] = {
4328     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4329     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4330   };
4331 
4332   const unsigned NumGPRs = array_lengthof(GPR);
4333   const unsigned NumFPRs = 13;
4334   const unsigned NumVRs = array_lengthof(VR);
4335   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4336 
4337   unsigned NumBytes = LinkageSize;
4338   unsigned AvailableFPRs = NumFPRs;
4339   unsigned AvailableVRs = NumVRs;
4340 
4341   for (const ISD::OutputArg& Param : Outs) {
4342     if (Param.Flags.isNest()) continue;
4343 
4344     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4345                                PtrByteSize, LinkageSize, ParamAreaSize,
4346                                NumBytes, AvailableFPRs, AvailableVRs,
4347                                Subtarget.hasQPX()))
4348       return true;
4349   }
4350   return false;
4351 }
4352 
4353 static bool
4354 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4355   if (CS.arg_size() != CallerFn->arg_size())
4356     return false;
4357 
4358   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4359   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4360   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4361 
4362   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4363     const Value* CalleeArg = *CalleeArgIter;
4364     const Value* CallerArg = &(*CallerArgIter);
4365     if (CalleeArg == CallerArg)
4366       continue;
4367 
4368     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4369     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4370     //      }
4371     // 1st argument of callee is undef and has the same type as caller.
4372     if (CalleeArg->getType() == CallerArg->getType() &&
4373         isa<UndefValue>(CalleeArg))
4374       continue;
4375 
4376     return false;
4377   }
4378 
4379   return true;
4380 }
4381 
4382 bool
4383 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4384                                     SDValue Callee,
4385                                     CallingConv::ID CalleeCC,
4386                                     ImmutableCallSite CS,
4387                                     bool isVarArg,
4388                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4389                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4390                                     SelectionDAG& DAG) const {
4391   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4392 
4393   if (DisableSCO && !TailCallOpt) return false;
4394 
4395   // Variadic argument functions are not supported.
4396   if (isVarArg) return false;
4397 
4398   MachineFunction &MF = DAG.getMachineFunction();
4399   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4400 
4401   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4402   // the same calling convention
4403   if (CallerCC != CalleeCC) return false;
4404 
4405   // SCO support C calling convention
4406   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4407     return false;
4408 
4409   // Caller contains any byval parameter is not supported.
4410   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4411     return false;
4412 
4413   // Callee contains any byval parameter is not supported, too.
4414   // Note: This is a quick work around, because in some cases, e.g.
4415   // caller's stack size > callee's stack size, we are still able to apply
4416   // sibling call optimization. See: https://reviews.llvm.org/D23441#513574
4417   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4418     return false;
4419 
4420   // No TCO/SCO on indirect call because Caller have to restore its TOC
4421   if (!isFunctionGlobalAddress(Callee) &&
4422       !isa<ExternalSymbolSDNode>(Callee))
4423     return false;
4424 
4425   // If the caller and callee potentially have different TOC bases then we
4426   // cannot tail call since we need to restore the TOC pointer after the call.
4427   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4428   if (!callsShareTOCBase(MF.getFunction(), Callee, getTargetMachine()))
4429     return false;
4430 
4431   // TCO allows altering callee ABI, so we don't have to check further.
4432   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4433     return true;
4434 
4435   if (DisableSCO) return false;
4436 
4437   // If callee use the same argument list that caller is using, then we can
4438   // apply SCO on this case. If it is not, then we need to check if callee needs
4439   // stack for passing arguments.
4440   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4441       needStackSlotPassParameters(Subtarget, Outs)) {
4442     return false;
4443   }
4444 
4445   return true;
4446 }
4447 
4448 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4449 /// for tail call optimization. Targets which want to do tail call
4450 /// optimization should implement this function.
4451 bool
4452 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4453                                                      CallingConv::ID CalleeCC,
4454                                                      bool isVarArg,
4455                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4456                                                      SelectionDAG& DAG) const {
4457   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4458     return false;
4459 
4460   // Variable argument functions are not supported.
4461   if (isVarArg)
4462     return false;
4463 
4464   MachineFunction &MF = DAG.getMachineFunction();
4465   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4466   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4467     // Functions containing by val parameters are not supported.
4468     for (unsigned i = 0; i != Ins.size(); i++) {
4469        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4470        if (Flags.isByVal()) return false;
4471     }
4472 
4473     // Non-PIC/GOT tail calls are supported.
4474     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4475       return true;
4476 
4477     // At the moment we can only do local tail calls (in same module, hidden
4478     // or protected) if we are generating PIC.
4479     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4480       return G->getGlobal()->hasHiddenVisibility()
4481           || G->getGlobal()->hasProtectedVisibility();
4482   }
4483 
4484   return false;
4485 }
4486 
4487 /// isCallCompatibleAddress - Return the immediate to use if the specified
4488 /// 32-bit value is representable in the immediate field of a BxA instruction.
4489 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4490   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4491   if (!C) return nullptr;
4492 
4493   int Addr = C->getZExtValue();
4494   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4495       SignExtend32<26>(Addr) != Addr)
4496     return nullptr;  // Top 6 bits have to be sext of immediate.
4497 
4498   return DAG
4499       .getConstant(
4500           (int)C->getZExtValue() >> 2, SDLoc(Op),
4501           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4502       .getNode();
4503 }
4504 
4505 namespace {
4506 
4507 struct TailCallArgumentInfo {
4508   SDValue Arg;
4509   SDValue FrameIdxOp;
4510   int FrameIdx = 0;
4511 
4512   TailCallArgumentInfo() = default;
4513 };
4514 
4515 } // end anonymous namespace
4516 
4517 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4518 static void StoreTailCallArgumentsToStackSlot(
4519     SelectionDAG &DAG, SDValue Chain,
4520     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4521     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4522   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4523     SDValue Arg = TailCallArgs[i].Arg;
4524     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4525     int FI = TailCallArgs[i].FrameIdx;
4526     // Store relative to framepointer.
4527     MemOpChains.push_back(DAG.getStore(
4528         Chain, dl, Arg, FIN,
4529         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4530   }
4531 }
4532 
4533 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4534 /// the appropriate stack slot for the tail call optimized function call.
4535 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4536                                              SDValue OldRetAddr, SDValue OldFP,
4537                                              int SPDiff, const SDLoc &dl) {
4538   if (SPDiff) {
4539     // Calculate the new stack slot for the return address.
4540     MachineFunction &MF = DAG.getMachineFunction();
4541     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4542     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4543     bool isPPC64 = Subtarget.isPPC64();
4544     int SlotSize = isPPC64 ? 8 : 4;
4545     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4546     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4547                                                          NewRetAddrLoc, true);
4548     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4549     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4550     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4551                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4552 
4553     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4554     // slot as the FP is never overwritten.
4555     if (Subtarget.isDarwinABI()) {
4556       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4557       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4558                                                          true);
4559       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4560       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4561                            MachinePointerInfo::getFixedStack(
4562                                DAG.getMachineFunction(), NewFPIdx));
4563     }
4564   }
4565   return Chain;
4566 }
4567 
4568 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4569 /// the position of the argument.
4570 static void
4571 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4572                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4573                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4574   int Offset = ArgOffset + SPDiff;
4575   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4576   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4577   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4578   SDValue FIN = DAG.getFrameIndex(FI, VT);
4579   TailCallArgumentInfo Info;
4580   Info.Arg = Arg;
4581   Info.FrameIdxOp = FIN;
4582   Info.FrameIdx = FI;
4583   TailCallArguments.push_back(Info);
4584 }
4585 
4586 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4587 /// stack slot. Returns the chain as result and the loaded frame pointers in
4588 /// LROpOut/FPOpout. Used when tail calling.
4589 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4590     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4591     SDValue &FPOpOut, const SDLoc &dl) const {
4592   if (SPDiff) {
4593     // Load the LR and FP stack slot for later adjusting.
4594     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4595     LROpOut = getReturnAddrFrameIndex(DAG);
4596     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4597     Chain = SDValue(LROpOut.getNode(), 1);
4598 
4599     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4600     // slot as the FP is never overwritten.
4601     if (Subtarget.isDarwinABI()) {
4602       FPOpOut = getFramePointerFrameIndex(DAG);
4603       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4604       Chain = SDValue(FPOpOut.getNode(), 1);
4605     }
4606   }
4607   return Chain;
4608 }
4609 
4610 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4611 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4612 /// specified by the specific parameter attribute. The copy will be passed as
4613 /// a byval function parameter.
4614 /// Sometimes what we are copying is the end of a larger object, the part that
4615 /// does not fit in registers.
4616 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4617                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4618                                          SelectionDAG &DAG, const SDLoc &dl) {
4619   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4620   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4621                        false, false, false, MachinePointerInfo(),
4622                        MachinePointerInfo());
4623 }
4624 
4625 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4626 /// tail calls.
4627 static void LowerMemOpCallTo(
4628     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4629     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4630     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4631     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4632   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4633   if (!isTailCall) {
4634     if (isVector) {
4635       SDValue StackPtr;
4636       if (isPPC64)
4637         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4638       else
4639         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4640       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4641                            DAG.getConstant(ArgOffset, dl, PtrVT));
4642     }
4643     MemOpChains.push_back(
4644         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4645     // Calculate and remember argument location.
4646   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4647                                   TailCallArguments);
4648 }
4649 
4650 static void
4651 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4652                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4653                 SDValue FPOp,
4654                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4655   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4656   // might overwrite each other in case of tail call optimization.
4657   SmallVector<SDValue, 8> MemOpChains2;
4658   // Do not flag preceding copytoreg stuff together with the following stuff.
4659   InFlag = SDValue();
4660   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4661                                     MemOpChains2, dl);
4662   if (!MemOpChains2.empty())
4663     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4664 
4665   // Store the return address to the appropriate stack slot.
4666   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4667 
4668   // Emit callseq_end just before tailcall node.
4669   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4670                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4671   InFlag = Chain.getValue(1);
4672 }
4673 
4674 // Is this global address that of a function that can be called by name? (as
4675 // opposed to something that must hold a descriptor for an indirect call).
4676 static bool isFunctionGlobalAddress(SDValue Callee) {
4677   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4678     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4679         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4680       return false;
4681 
4682     return G->getGlobal()->getValueType()->isFunctionTy();
4683   }
4684 
4685   return false;
4686 }
4687 
4688 static unsigned
4689 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4690             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4691             bool isPatchPoint, bool hasNest,
4692             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4693             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4694             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4695   bool isPPC64 = Subtarget.isPPC64();
4696   bool isSVR4ABI = Subtarget.isSVR4ABI();
4697   bool isELFv2ABI = Subtarget.isELFv2ABI();
4698 
4699   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4700   NodeTys.push_back(MVT::Other);   // Returns a chain
4701   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4702 
4703   unsigned CallOpc = PPCISD::CALL;
4704 
4705   bool needIndirectCall = true;
4706   if (!isSVR4ABI || !isPPC64)
4707     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4708       // If this is an absolute destination address, use the munged value.
4709       Callee = SDValue(Dest, 0);
4710       needIndirectCall = false;
4711     }
4712 
4713   // PC-relative references to external symbols should go through $stub, unless
4714   // we're building with the leopard linker or later, which automatically
4715   // synthesizes these stubs.
4716   const TargetMachine &TM = DAG.getTarget();
4717   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4718   const GlobalValue *GV = nullptr;
4719   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4720     GV = G->getGlobal();
4721   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4722   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4723 
4724   if (isFunctionGlobalAddress(Callee)) {
4725     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4726     // A call to a TLS address is actually an indirect call to a
4727     // thread-specific pointer.
4728     unsigned OpFlags = 0;
4729     if (UsePlt)
4730       OpFlags = PPCII::MO_PLT;
4731 
4732     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4733     // every direct call is) turn it into a TargetGlobalAddress /
4734     // TargetExternalSymbol node so that legalize doesn't hack it.
4735     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4736                                         Callee.getValueType(), 0, OpFlags);
4737     needIndirectCall = false;
4738   }
4739 
4740   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4741     unsigned char OpFlags = 0;
4742 
4743     if (UsePlt)
4744       OpFlags = PPCII::MO_PLT;
4745 
4746     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4747                                          OpFlags);
4748     needIndirectCall = false;
4749   }
4750 
4751   if (isPatchPoint) {
4752     // We'll form an invalid direct call when lowering a patchpoint; the full
4753     // sequence for an indirect call is complicated, and many of the
4754     // instructions introduced might have side effects (and, thus, can't be
4755     // removed later). The call itself will be removed as soon as the
4756     // argument/return lowering is complete, so the fact that it has the wrong
4757     // kind of operands should not really matter.
4758     needIndirectCall = false;
4759   }
4760 
4761   if (needIndirectCall) {
4762     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4763     // to do the call, we can't use PPCISD::CALL.
4764     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4765 
4766     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4767       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4768       // entry point, but to the function descriptor (the function entry point
4769       // address is part of the function descriptor though).
4770       // The function descriptor is a three doubleword structure with the
4771       // following fields: function entry point, TOC base address and
4772       // environment pointer.
4773       // Thus for a call through a function pointer, the following actions need
4774       // to be performed:
4775       //   1. Save the TOC of the caller in the TOC save area of its stack
4776       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4777       //   2. Load the address of the function entry point from the function
4778       //      descriptor.
4779       //   3. Load the TOC of the callee from the function descriptor into r2.
4780       //   4. Load the environment pointer from the function descriptor into
4781       //      r11.
4782       //   5. Branch to the function entry point address.
4783       //   6. On return of the callee, the TOC of the caller needs to be
4784       //      restored (this is done in FinishCall()).
4785       //
4786       // The loads are scheduled at the beginning of the call sequence, and the
4787       // register copies are flagged together to ensure that no other
4788       // operations can be scheduled in between. E.g. without flagging the
4789       // copies together, a TOC access in the caller could be scheduled between
4790       // the assignment of the callee TOC and the branch to the callee, which
4791       // results in the TOC access going through the TOC of the callee instead
4792       // of going through the TOC of the caller, which leads to incorrect code.
4793 
4794       // Load the address of the function entry point from the function
4795       // descriptor.
4796       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4797       if (LDChain.getValueType() == MVT::Glue)
4798         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4799 
4800       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4801                           ? (MachineMemOperand::MODereferenceable |
4802                              MachineMemOperand::MOInvariant)
4803                           : MachineMemOperand::MONone;
4804 
4805       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4806       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4807                                         /* Alignment = */ 8, MMOFlags);
4808 
4809       // Load environment pointer into r11.
4810       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4811       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4812       SDValue LoadEnvPtr =
4813           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4814                       /* Alignment = */ 8, MMOFlags);
4815 
4816       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4817       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4818       SDValue TOCPtr =
4819           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4820                       /* Alignment = */ 8, MMOFlags);
4821 
4822       setUsesTOCBasePtr(DAG);
4823       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4824                                         InFlag);
4825       Chain = TOCVal.getValue(0);
4826       InFlag = TOCVal.getValue(1);
4827 
4828       // If the function call has an explicit 'nest' parameter, it takes the
4829       // place of the environment pointer.
4830       if (!hasNest) {
4831         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4832                                           InFlag);
4833 
4834         Chain = EnvVal.getValue(0);
4835         InFlag = EnvVal.getValue(1);
4836       }
4837 
4838       MTCTROps[0] = Chain;
4839       MTCTROps[1] = LoadFuncPtr;
4840       MTCTROps[2] = InFlag;
4841     }
4842 
4843     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4844                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4845     InFlag = Chain.getValue(1);
4846 
4847     NodeTys.clear();
4848     NodeTys.push_back(MVT::Other);
4849     NodeTys.push_back(MVT::Glue);
4850     Ops.push_back(Chain);
4851     CallOpc = PPCISD::BCTRL;
4852     Callee.setNode(nullptr);
4853     // Add use of X11 (holding environment pointer)
4854     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4855       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4856     // Add CTR register as callee so a bctr can be emitted later.
4857     if (isTailCall)
4858       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4859   }
4860 
4861   // If this is a direct call, pass the chain and the callee.
4862   if (Callee.getNode()) {
4863     Ops.push_back(Chain);
4864     Ops.push_back(Callee);
4865   }
4866   // If this is a tail call add stack pointer delta.
4867   if (isTailCall)
4868     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4869 
4870   // Add argument registers to the end of the list so that they are known live
4871   // into the call.
4872   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4873     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4874                                   RegsToPass[i].second.getValueType()));
4875 
4876   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4877   // into the call.
4878   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4879     setUsesTOCBasePtr(DAG);
4880     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4881   }
4882 
4883   return CallOpc;
4884 }
4885 
4886 SDValue PPCTargetLowering::LowerCallResult(
4887     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4888     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4889     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4890   SmallVector<CCValAssign, 16> RVLocs;
4891   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4892                     *DAG.getContext());
4893   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4894 
4895   // Copy all of the result registers out of their specified physreg.
4896   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4897     CCValAssign &VA = RVLocs[i];
4898     assert(VA.isRegLoc() && "Can only return in registers!");
4899 
4900     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4901                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4902     Chain = Val.getValue(1);
4903     InFlag = Val.getValue(2);
4904 
4905     switch (VA.getLocInfo()) {
4906     default: llvm_unreachable("Unknown loc info!");
4907     case CCValAssign::Full: break;
4908     case CCValAssign::AExt:
4909       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4910       break;
4911     case CCValAssign::ZExt:
4912       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4913                         DAG.getValueType(VA.getValVT()));
4914       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4915       break;
4916     case CCValAssign::SExt:
4917       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4918                         DAG.getValueType(VA.getValVT()));
4919       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4920       break;
4921     }
4922 
4923     InVals.push_back(Val);
4924   }
4925 
4926   return Chain;
4927 }
4928 
4929 SDValue PPCTargetLowering::FinishCall(
4930     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4931     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4932     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4933     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4934     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4935     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
4936   std::vector<EVT> NodeTys;
4937   SmallVector<SDValue, 8> Ops;
4938   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4939                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4940                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4941 
4942   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4943   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4944     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4945 
4946   // When performing tail call optimization the callee pops its arguments off
4947   // the stack. Account for this here so these bytes can be pushed back on in
4948   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4949   int BytesCalleePops =
4950     (CallConv == CallingConv::Fast &&
4951      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4952 
4953   // Add a register mask operand representing the call-preserved registers.
4954   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4955   const uint32_t *Mask =
4956       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4957   assert(Mask && "Missing call preserved mask for calling convention");
4958   Ops.push_back(DAG.getRegisterMask(Mask));
4959 
4960   if (InFlag.getNode())
4961     Ops.push_back(InFlag);
4962 
4963   // Emit tail call.
4964   if (isTailCall) {
4965     assert(((Callee.getOpcode() == ISD::Register &&
4966              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4967             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4968             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4969             isa<ConstantSDNode>(Callee)) &&
4970     "Expecting an global address, external symbol, absolute value or register");
4971 
4972     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
4973     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4974   }
4975 
4976   // Add a NOP immediately after the branch instruction when using the 64-bit
4977   // SVR4 ABI. At link time, if caller and callee are in a different module and
4978   // thus have a different TOC, the call will be replaced with a call to a stub
4979   // function which saves the current TOC, loads the TOC of the callee and
4980   // branches to the callee. The NOP will be replaced with a load instruction
4981   // which restores the TOC of the caller from the TOC save slot of the current
4982   // stack frame. If caller and callee belong to the same module (and have the
4983   // same TOC), the NOP will remain unchanged.
4984 
4985   MachineFunction &MF = DAG.getMachineFunction();
4986   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4987       !isPatchPoint) {
4988     if (CallOpc == PPCISD::BCTRL) {
4989       // This is a call through a function pointer.
4990       // Restore the caller TOC from the save area into R2.
4991       // See PrepareCall() for more information about calls through function
4992       // pointers in the 64-bit SVR4 ABI.
4993       // We are using a target-specific load with r2 hard coded, because the
4994       // result of a target-independent load would never go directly into r2,
4995       // since r2 is a reserved register (which prevents the register allocator
4996       // from allocating it), resulting in an additional register being
4997       // allocated and an unnecessary move instruction being generated.
4998       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4999 
5000       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5001       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5002       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5003       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5004       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5005 
5006       // The address needs to go after the chain input but before the flag (or
5007       // any other variadic arguments).
5008       Ops.insert(std::next(Ops.begin()), AddTOC);
5009     } else if (CallOpc == PPCISD::CALL &&
5010       !callsShareTOCBase(MF.getFunction(), Callee, DAG.getTarget())) {
5011       // Otherwise insert NOP for non-local calls.
5012       CallOpc = PPCISD::CALL_NOP;
5013     }
5014   }
5015 
5016   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5017   InFlag = Chain.getValue(1);
5018 
5019   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5020                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5021                              InFlag, dl);
5022   if (!Ins.empty())
5023     InFlag = Chain.getValue(1);
5024 
5025   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5026                          Ins, dl, DAG, InVals);
5027 }
5028 
5029 SDValue
5030 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5031                              SmallVectorImpl<SDValue> &InVals) const {
5032   SelectionDAG &DAG                     = CLI.DAG;
5033   SDLoc &dl                             = CLI.DL;
5034   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5035   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5036   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5037   SDValue Chain                         = CLI.Chain;
5038   SDValue Callee                        = CLI.Callee;
5039   bool &isTailCall                      = CLI.IsTailCall;
5040   CallingConv::ID CallConv              = CLI.CallConv;
5041   bool isVarArg                         = CLI.IsVarArg;
5042   bool isPatchPoint                     = CLI.IsPatchPoint;
5043   ImmutableCallSite CS                  = CLI.CS;
5044 
5045   if (isTailCall) {
5046     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5047       isTailCall = false;
5048     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5049       isTailCall =
5050         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5051                                                  isVarArg, Outs, Ins, DAG);
5052     else
5053       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5054                                                      Ins, DAG);
5055     if (isTailCall) {
5056       ++NumTailCalls;
5057       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5058         ++NumSiblingCalls;
5059 
5060       assert(isa<GlobalAddressSDNode>(Callee) &&
5061              "Callee should be an llvm::Function object.");
5062       DEBUG(
5063         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5064         const unsigned Width = 80 - strlen("TCO caller: ")
5065                                   - strlen(", callee linkage: 0, 0");
5066         dbgs() << "TCO caller: "
5067                << left_justify(DAG.getMachineFunction().getName(), Width)
5068                << ", callee linkage: "
5069                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
5070       );
5071     }
5072   }
5073 
5074   if (!isTailCall && CS && CS.isMustTailCall())
5075     report_fatal_error("failed to perform tail call elimination on a call "
5076                        "site marked musttail");
5077 
5078   // When long calls (i.e. indirect calls) are always used, calls are always
5079   // made via function pointer. If we have a function name, first translate it
5080   // into a pointer.
5081   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5082       !isTailCall)
5083     Callee = LowerGlobalAddress(Callee, DAG);
5084 
5085   if (Subtarget.isSVR4ABI()) {
5086     if (Subtarget.isPPC64())
5087       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5088                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5089                               dl, DAG, InVals, CS);
5090     else
5091       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5092                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5093                               dl, DAG, InVals, CS);
5094   }
5095 
5096   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5097                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5098                           dl, DAG, InVals, CS);
5099 }
5100 
5101 SDValue PPCTargetLowering::LowerCall_32SVR4(
5102     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5103     bool isTailCall, bool isPatchPoint,
5104     const SmallVectorImpl<ISD::OutputArg> &Outs,
5105     const SmallVectorImpl<SDValue> &OutVals,
5106     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5107     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5108     ImmutableCallSite CS) const {
5109   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5110   // of the 32-bit SVR4 ABI stack frame layout.
5111 
5112   assert((CallConv == CallingConv::C ||
5113           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5114 
5115   unsigned PtrByteSize = 4;
5116 
5117   MachineFunction &MF = DAG.getMachineFunction();
5118 
5119   // Mark this function as potentially containing a function that contains a
5120   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5121   // and restoring the callers stack pointer in this functions epilog. This is
5122   // done because by tail calling the called function might overwrite the value
5123   // in this function's (MF) stack pointer stack slot 0(SP).
5124   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5125       CallConv == CallingConv::Fast)
5126     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5127 
5128   // Count how many bytes are to be pushed on the stack, including the linkage
5129   // area, parameter list area and the part of the local variable space which
5130   // contains copies of aggregates which are passed by value.
5131 
5132   // Assign locations to all of the outgoing arguments.
5133   SmallVector<CCValAssign, 16> ArgLocs;
5134   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5135 
5136   // Reserve space for the linkage area on the stack.
5137   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5138                        PtrByteSize);
5139   if (useSoftFloat())
5140     CCInfo.PreAnalyzeCallOperands(Outs);
5141 
5142   if (isVarArg) {
5143     // Handle fixed and variable vector arguments differently.
5144     // Fixed vector arguments go into registers as long as registers are
5145     // available. Variable vector arguments always go into memory.
5146     unsigned NumArgs = Outs.size();
5147 
5148     for (unsigned i = 0; i != NumArgs; ++i) {
5149       MVT ArgVT = Outs[i].VT;
5150       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5151       bool Result;
5152 
5153       if (Outs[i].IsFixed) {
5154         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5155                                CCInfo);
5156       } else {
5157         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5158                                       ArgFlags, CCInfo);
5159       }
5160 
5161       if (Result) {
5162 #ifndef NDEBUG
5163         errs() << "Call operand #" << i << " has unhandled type "
5164              << EVT(ArgVT).getEVTString() << "\n";
5165 #endif
5166         llvm_unreachable(nullptr);
5167       }
5168     }
5169   } else {
5170     // All arguments are treated the same.
5171     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5172   }
5173   CCInfo.clearWasPPCF128();
5174 
5175   // Assign locations to all of the outgoing aggregate by value arguments.
5176   SmallVector<CCValAssign, 16> ByValArgLocs;
5177   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5178 
5179   // Reserve stack space for the allocations in CCInfo.
5180   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5181 
5182   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5183 
5184   // Size of the linkage area, parameter list area and the part of the local
5185   // space variable where copies of aggregates which are passed by value are
5186   // stored.
5187   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5188 
5189   // Calculate by how many bytes the stack has to be adjusted in case of tail
5190   // call optimization.
5191   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5192 
5193   // Adjust the stack pointer for the new arguments...
5194   // These operations are automatically eliminated by the prolog/epilog pass
5195   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5196   SDValue CallSeqStart = Chain;
5197 
5198   // Load the return address and frame pointer so it can be moved somewhere else
5199   // later.
5200   SDValue LROp, FPOp;
5201   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5202 
5203   // Set up a copy of the stack pointer for use loading and storing any
5204   // arguments that may not fit in the registers available for argument
5205   // passing.
5206   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5207 
5208   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5209   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5210   SmallVector<SDValue, 8> MemOpChains;
5211 
5212   bool seenFloatArg = false;
5213   // Walk the register/memloc assignments, inserting copies/loads.
5214   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5215        i != e;
5216        ++i) {
5217     CCValAssign &VA = ArgLocs[i];
5218     SDValue Arg = OutVals[i];
5219     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5220 
5221     if (Flags.isByVal()) {
5222       // Argument is an aggregate which is passed by value, thus we need to
5223       // create a copy of it in the local variable space of the current stack
5224       // frame (which is the stack frame of the caller) and pass the address of
5225       // this copy to the callee.
5226       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5227       CCValAssign &ByValVA = ByValArgLocs[j++];
5228       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5229 
5230       // Memory reserved in the local variable space of the callers stack frame.
5231       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5232 
5233       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5234       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5235                            StackPtr, PtrOff);
5236 
5237       // Create a copy of the argument in the local area of the current
5238       // stack frame.
5239       SDValue MemcpyCall =
5240         CreateCopyOfByValArgument(Arg, PtrOff,
5241                                   CallSeqStart.getNode()->getOperand(0),
5242                                   Flags, DAG, dl);
5243 
5244       // This must go outside the CALLSEQ_START..END.
5245       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5246                                                      SDLoc(MemcpyCall));
5247       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5248                              NewCallSeqStart.getNode());
5249       Chain = CallSeqStart = NewCallSeqStart;
5250 
5251       // Pass the address of the aggregate copy on the stack either in a
5252       // physical register or in the parameter list area of the current stack
5253       // frame to the callee.
5254       Arg = PtrOff;
5255     }
5256 
5257     if (VA.isRegLoc()) {
5258       if (Arg.getValueType() == MVT::i1)
5259         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5260 
5261       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5262       // Put argument in a physical register.
5263       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5264     } else {
5265       // Put argument in the parameter list area of the current stack frame.
5266       assert(VA.isMemLoc());
5267       unsigned LocMemOffset = VA.getLocMemOffset();
5268 
5269       if (!isTailCall) {
5270         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5271         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5272                              StackPtr, PtrOff);
5273 
5274         MemOpChains.push_back(
5275             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5276       } else {
5277         // Calculate and remember argument location.
5278         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5279                                  TailCallArguments);
5280       }
5281     }
5282   }
5283 
5284   if (!MemOpChains.empty())
5285     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5286 
5287   // Build a sequence of copy-to-reg nodes chained together with token chain
5288   // and flag operands which copy the outgoing args into the appropriate regs.
5289   SDValue InFlag;
5290   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5291     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5292                              RegsToPass[i].second, InFlag);
5293     InFlag = Chain.getValue(1);
5294   }
5295 
5296   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5297   // registers.
5298   if (isVarArg) {
5299     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5300     SDValue Ops[] = { Chain, InFlag };
5301 
5302     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5303                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5304 
5305     InFlag = Chain.getValue(1);
5306   }
5307 
5308   if (isTailCall)
5309     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5310                     TailCallArguments);
5311 
5312   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5313                     /* unused except on PPC64 ELFv1 */ false, DAG,
5314                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5315                     NumBytes, Ins, InVals, CS);
5316 }
5317 
5318 // Copy an argument into memory, being careful to do this outside the
5319 // call sequence for the call to which the argument belongs.
5320 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5321     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5322     SelectionDAG &DAG, const SDLoc &dl) const {
5323   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5324                         CallSeqStart.getNode()->getOperand(0),
5325                         Flags, DAG, dl);
5326   // The MEMCPY must go outside the CALLSEQ_START..END.
5327   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5328   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5329                                                  SDLoc(MemcpyCall));
5330   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5331                          NewCallSeqStart.getNode());
5332   return NewCallSeqStart;
5333 }
5334 
5335 SDValue PPCTargetLowering::LowerCall_64SVR4(
5336     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5337     bool isTailCall, bool isPatchPoint,
5338     const SmallVectorImpl<ISD::OutputArg> &Outs,
5339     const SmallVectorImpl<SDValue> &OutVals,
5340     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5341     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5342     ImmutableCallSite CS) const {
5343   bool isELFv2ABI = Subtarget.isELFv2ABI();
5344   bool isLittleEndian = Subtarget.isLittleEndian();
5345   unsigned NumOps = Outs.size();
5346   bool hasNest = false;
5347   bool IsSibCall = false;
5348 
5349   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5350   unsigned PtrByteSize = 8;
5351 
5352   MachineFunction &MF = DAG.getMachineFunction();
5353 
5354   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5355     IsSibCall = true;
5356 
5357   // Mark this function as potentially containing a function that contains a
5358   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5359   // and restoring the callers stack pointer in this functions epilog. This is
5360   // done because by tail calling the called function might overwrite the value
5361   // in this function's (MF) stack pointer stack slot 0(SP).
5362   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5363       CallConv == CallingConv::Fast)
5364     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5365 
5366   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5367          "fastcc not supported on varargs functions");
5368 
5369   // Count how many bytes are to be pushed on the stack, including the linkage
5370   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5371   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5372   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5373   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5374   unsigned NumBytes = LinkageSize;
5375   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5376   unsigned &QFPR_idx = FPR_idx;
5377 
5378   static const MCPhysReg GPR[] = {
5379     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5380     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5381   };
5382   static const MCPhysReg VR[] = {
5383     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5384     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5385   };
5386 
5387   const unsigned NumGPRs = array_lengthof(GPR);
5388   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5389   const unsigned NumVRs  = array_lengthof(VR);
5390   const unsigned NumQFPRs = NumFPRs;
5391 
5392   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5393   // can be passed to the callee in registers.
5394   // For the fast calling convention, there is another check below.
5395   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5396   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5397   if (!HasParameterArea) {
5398     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5399     unsigned AvailableFPRs = NumFPRs;
5400     unsigned AvailableVRs = NumVRs;
5401     unsigned NumBytesTmp = NumBytes;
5402     for (unsigned i = 0; i != NumOps; ++i) {
5403       if (Outs[i].Flags.isNest()) continue;
5404       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5405                                 PtrByteSize, LinkageSize, ParamAreaSize,
5406                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5407                                 Subtarget.hasQPX()))
5408         HasParameterArea = true;
5409     }
5410   }
5411 
5412   // When using the fast calling convention, we don't provide backing for
5413   // arguments that will be in registers.
5414   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5415 
5416   // Add up all the space actually used.
5417   for (unsigned i = 0; i != NumOps; ++i) {
5418     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5419     EVT ArgVT = Outs[i].VT;
5420     EVT OrigVT = Outs[i].ArgVT;
5421 
5422     if (Flags.isNest())
5423       continue;
5424 
5425     if (CallConv == CallingConv::Fast) {
5426       if (Flags.isByVal())
5427         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5428       else
5429         switch (ArgVT.getSimpleVT().SimpleTy) {
5430         default: llvm_unreachable("Unexpected ValueType for argument!");
5431         case MVT::i1:
5432         case MVT::i32:
5433         case MVT::i64:
5434           if (++NumGPRsUsed <= NumGPRs)
5435             continue;
5436           break;
5437         case MVT::v4i32:
5438         case MVT::v8i16:
5439         case MVT::v16i8:
5440         case MVT::v2f64:
5441         case MVT::v2i64:
5442         case MVT::v1i128:
5443           if (++NumVRsUsed <= NumVRs)
5444             continue;
5445           break;
5446         case MVT::v4f32:
5447           // When using QPX, this is handled like a FP register, otherwise, it
5448           // is an Altivec register.
5449           if (Subtarget.hasQPX()) {
5450             if (++NumFPRsUsed <= NumFPRs)
5451               continue;
5452           } else {
5453             if (++NumVRsUsed <= NumVRs)
5454               continue;
5455           }
5456           break;
5457         case MVT::f32:
5458         case MVT::f64:
5459         case MVT::v4f64: // QPX
5460         case MVT::v4i1:  // QPX
5461           if (++NumFPRsUsed <= NumFPRs)
5462             continue;
5463           break;
5464         }
5465     }
5466 
5467     /* Respect alignment of argument on the stack.  */
5468     unsigned Align =
5469       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5470     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5471 
5472     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5473     if (Flags.isInConsecutiveRegsLast())
5474       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5475   }
5476 
5477   unsigned NumBytesActuallyUsed = NumBytes;
5478 
5479   // In the old ELFv1 ABI,
5480   // the prolog code of the callee may store up to 8 GPR argument registers to
5481   // the stack, allowing va_start to index over them in memory if its varargs.
5482   // Because we cannot tell if this is needed on the caller side, we have to
5483   // conservatively assume that it is needed.  As such, make sure we have at
5484   // least enough stack space for the caller to store the 8 GPRs.
5485   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5486   // really requires memory operands, e.g. a vararg function.
5487   if (HasParameterArea)
5488     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5489   else
5490     NumBytes = LinkageSize;
5491 
5492   // Tail call needs the stack to be aligned.
5493   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5494       CallConv == CallingConv::Fast)
5495     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5496 
5497   int SPDiff = 0;
5498 
5499   // Calculate by how many bytes the stack has to be adjusted in case of tail
5500   // call optimization.
5501   if (!IsSibCall)
5502     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5503 
5504   // To protect arguments on the stack from being clobbered in a tail call,
5505   // force all the loads to happen before doing any other lowering.
5506   if (isTailCall)
5507     Chain = DAG.getStackArgumentTokenFactor(Chain);
5508 
5509   // Adjust the stack pointer for the new arguments...
5510   // These operations are automatically eliminated by the prolog/epilog pass
5511   if (!IsSibCall)
5512     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5513   SDValue CallSeqStart = Chain;
5514 
5515   // Load the return address and frame pointer so it can be move somewhere else
5516   // later.
5517   SDValue LROp, FPOp;
5518   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5519 
5520   // Set up a copy of the stack pointer for use loading and storing any
5521   // arguments that may not fit in the registers available for argument
5522   // passing.
5523   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5524 
5525   // Figure out which arguments are going to go in registers, and which in
5526   // memory.  Also, if this is a vararg function, floating point operations
5527   // must be stored to our stack, and loaded into integer regs as well, if
5528   // any integer regs are available for argument passing.
5529   unsigned ArgOffset = LinkageSize;
5530 
5531   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5532   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5533 
5534   SmallVector<SDValue, 8> MemOpChains;
5535   for (unsigned i = 0; i != NumOps; ++i) {
5536     SDValue Arg = OutVals[i];
5537     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5538     EVT ArgVT = Outs[i].VT;
5539     EVT OrigVT = Outs[i].ArgVT;
5540 
5541     // PtrOff will be used to store the current argument to the stack if a
5542     // register cannot be found for it.
5543     SDValue PtrOff;
5544 
5545     // We re-align the argument offset for each argument, except when using the
5546     // fast calling convention, when we need to make sure we do that only when
5547     // we'll actually use a stack slot.
5548     auto ComputePtrOff = [&]() {
5549       /* Respect alignment of argument on the stack.  */
5550       unsigned Align =
5551         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5552       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5553 
5554       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5555 
5556       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5557     };
5558 
5559     if (CallConv != CallingConv::Fast) {
5560       ComputePtrOff();
5561 
5562       /* Compute GPR index associated with argument offset.  */
5563       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5564       GPR_idx = std::min(GPR_idx, NumGPRs);
5565     }
5566 
5567     // Promote integers to 64-bit values.
5568     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5569       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5570       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5571       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5572     }
5573 
5574     // FIXME memcpy is used way more than necessary.  Correctness first.
5575     // Note: "by value" is code for passing a structure by value, not
5576     // basic types.
5577     if (Flags.isByVal()) {
5578       // Note: Size includes alignment padding, so
5579       //   struct x { short a; char b; }
5580       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5581       // These are the proper values we need for right-justifying the
5582       // aggregate in a parameter register.
5583       unsigned Size = Flags.getByValSize();
5584 
5585       // An empty aggregate parameter takes up no storage and no
5586       // registers.
5587       if (Size == 0)
5588         continue;
5589 
5590       if (CallConv == CallingConv::Fast)
5591         ComputePtrOff();
5592 
5593       // All aggregates smaller than 8 bytes must be passed right-justified.
5594       if (Size==1 || Size==2 || Size==4) {
5595         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5596         if (GPR_idx != NumGPRs) {
5597           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5598                                         MachinePointerInfo(), VT);
5599           MemOpChains.push_back(Load.getValue(1));
5600           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5601 
5602           ArgOffset += PtrByteSize;
5603           continue;
5604         }
5605       }
5606 
5607       if (GPR_idx == NumGPRs && Size < 8) {
5608         SDValue AddPtr = PtrOff;
5609         if (!isLittleEndian) {
5610           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5611                                           PtrOff.getValueType());
5612           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5613         }
5614         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5615                                                           CallSeqStart,
5616                                                           Flags, DAG, dl);
5617         ArgOffset += PtrByteSize;
5618         continue;
5619       }
5620       // Copy entire object into memory.  There are cases where gcc-generated
5621       // code assumes it is there, even if it could be put entirely into
5622       // registers.  (This is not what the doc says.)
5623 
5624       // FIXME: The above statement is likely due to a misunderstanding of the
5625       // documents.  All arguments must be copied into the parameter area BY
5626       // THE CALLEE in the event that the callee takes the address of any
5627       // formal argument.  That has not yet been implemented.  However, it is
5628       // reasonable to use the stack area as a staging area for the register
5629       // load.
5630 
5631       // Skip this for small aggregates, as we will use the same slot for a
5632       // right-justified copy, below.
5633       if (Size >= 8)
5634         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5635                                                           CallSeqStart,
5636                                                           Flags, DAG, dl);
5637 
5638       // When a register is available, pass a small aggregate right-justified.
5639       if (Size < 8 && GPR_idx != NumGPRs) {
5640         // The easiest way to get this right-justified in a register
5641         // is to copy the structure into the rightmost portion of a
5642         // local variable slot, then load the whole slot into the
5643         // register.
5644         // FIXME: The memcpy seems to produce pretty awful code for
5645         // small aggregates, particularly for packed ones.
5646         // FIXME: It would be preferable to use the slot in the
5647         // parameter save area instead of a new local variable.
5648         SDValue AddPtr = PtrOff;
5649         if (!isLittleEndian) {
5650           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5651           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5652         }
5653         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5654                                                           CallSeqStart,
5655                                                           Flags, DAG, dl);
5656 
5657         // Load the slot into the register.
5658         SDValue Load =
5659             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5660         MemOpChains.push_back(Load.getValue(1));
5661         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5662 
5663         // Done with this argument.
5664         ArgOffset += PtrByteSize;
5665         continue;
5666       }
5667 
5668       // For aggregates larger than PtrByteSize, copy the pieces of the
5669       // object that fit into registers from the parameter save area.
5670       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5671         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5672         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5673         if (GPR_idx != NumGPRs) {
5674           SDValue Load =
5675               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5676           MemOpChains.push_back(Load.getValue(1));
5677           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5678           ArgOffset += PtrByteSize;
5679         } else {
5680           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5681           break;
5682         }
5683       }
5684       continue;
5685     }
5686 
5687     switch (Arg.getSimpleValueType().SimpleTy) {
5688     default: llvm_unreachable("Unexpected ValueType for argument!");
5689     case MVT::i1:
5690     case MVT::i32:
5691     case MVT::i64:
5692       if (Flags.isNest()) {
5693         // The 'nest' parameter, if any, is passed in R11.
5694         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5695         hasNest = true;
5696         break;
5697       }
5698 
5699       // These can be scalar arguments or elements of an integer array type
5700       // passed directly.  Clang may use those instead of "byval" aggregate
5701       // types to avoid forcing arguments to memory unnecessarily.
5702       if (GPR_idx != NumGPRs) {
5703         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5704       } else {
5705         if (CallConv == CallingConv::Fast)
5706           ComputePtrOff();
5707 
5708         assert(HasParameterArea &&
5709                "Parameter area must exist to pass an argument in memory.");
5710         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5711                          true, isTailCall, false, MemOpChains,
5712                          TailCallArguments, dl);
5713         if (CallConv == CallingConv::Fast)
5714           ArgOffset += PtrByteSize;
5715       }
5716       if (CallConv != CallingConv::Fast)
5717         ArgOffset += PtrByteSize;
5718       break;
5719     case MVT::f32:
5720     case MVT::f64: {
5721       // These can be scalar arguments or elements of a float array type
5722       // passed directly.  The latter are used to implement ELFv2 homogenous
5723       // float aggregates.
5724 
5725       // Named arguments go into FPRs first, and once they overflow, the
5726       // remaining arguments go into GPRs and then the parameter save area.
5727       // Unnamed arguments for vararg functions always go to GPRs and
5728       // then the parameter save area.  For now, put all arguments to vararg
5729       // routines always in both locations (FPR *and* GPR or stack slot).
5730       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5731       bool NeededLoad = false;
5732 
5733       // First load the argument into the next available FPR.
5734       if (FPR_idx != NumFPRs)
5735         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5736 
5737       // Next, load the argument into GPR or stack slot if needed.
5738       if (!NeedGPROrStack)
5739         ;
5740       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5741         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5742         // once we support fp <-> gpr moves.
5743 
5744         // In the non-vararg case, this can only ever happen in the
5745         // presence of f32 array types, since otherwise we never run
5746         // out of FPRs before running out of GPRs.
5747         SDValue ArgVal;
5748 
5749         // Double values are always passed in a single GPR.
5750         if (Arg.getValueType() != MVT::f32) {
5751           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5752 
5753         // Non-array float values are extended and passed in a GPR.
5754         } else if (!Flags.isInConsecutiveRegs()) {
5755           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5756           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5757 
5758         // If we have an array of floats, we collect every odd element
5759         // together with its predecessor into one GPR.
5760         } else if (ArgOffset % PtrByteSize != 0) {
5761           SDValue Lo, Hi;
5762           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5763           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5764           if (!isLittleEndian)
5765             std::swap(Lo, Hi);
5766           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5767 
5768         // The final element, if even, goes into the first half of a GPR.
5769         } else if (Flags.isInConsecutiveRegsLast()) {
5770           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5771           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5772           if (!isLittleEndian)
5773             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5774                                  DAG.getConstant(32, dl, MVT::i32));
5775 
5776         // Non-final even elements are skipped; they will be handled
5777         // together the with subsequent argument on the next go-around.
5778         } else
5779           ArgVal = SDValue();
5780 
5781         if (ArgVal.getNode())
5782           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5783       } else {
5784         if (CallConv == CallingConv::Fast)
5785           ComputePtrOff();
5786 
5787         // Single-precision floating-point values are mapped to the
5788         // second (rightmost) word of the stack doubleword.
5789         if (Arg.getValueType() == MVT::f32 &&
5790             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5791           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5792           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5793         }
5794 
5795         assert(HasParameterArea &&
5796                "Parameter area must exist to pass an argument in memory.");
5797         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5798                          true, isTailCall, false, MemOpChains,
5799                          TailCallArguments, dl);
5800 
5801         NeededLoad = true;
5802       }
5803       // When passing an array of floats, the array occupies consecutive
5804       // space in the argument area; only round up to the next doubleword
5805       // at the end of the array.  Otherwise, each float takes 8 bytes.
5806       if (CallConv != CallingConv::Fast || NeededLoad) {
5807         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5808                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5809         if (Flags.isInConsecutiveRegsLast())
5810           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5811       }
5812       break;
5813     }
5814     case MVT::v4f32:
5815     case MVT::v4i32:
5816     case MVT::v8i16:
5817     case MVT::v16i8:
5818     case MVT::v2f64:
5819     case MVT::v2i64:
5820     case MVT::v1i128:
5821       if (!Subtarget.hasQPX()) {
5822       // These can be scalar arguments or elements of a vector array type
5823       // passed directly.  The latter are used to implement ELFv2 homogenous
5824       // vector aggregates.
5825 
5826       // For a varargs call, named arguments go into VRs or on the stack as
5827       // usual; unnamed arguments always go to the stack or the corresponding
5828       // GPRs when within range.  For now, we always put the value in both
5829       // locations (or even all three).
5830       if (isVarArg) {
5831         assert(HasParameterArea &&
5832                "Parameter area must exist if we have a varargs call.");
5833         // We could elide this store in the case where the object fits
5834         // entirely in R registers.  Maybe later.
5835         SDValue Store =
5836             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5837         MemOpChains.push_back(Store);
5838         if (VR_idx != NumVRs) {
5839           SDValue Load =
5840               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5841           MemOpChains.push_back(Load.getValue(1));
5842           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5843         }
5844         ArgOffset += 16;
5845         for (unsigned i=0; i<16; i+=PtrByteSize) {
5846           if (GPR_idx == NumGPRs)
5847             break;
5848           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5849                                    DAG.getConstant(i, dl, PtrVT));
5850           SDValue Load =
5851               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5852           MemOpChains.push_back(Load.getValue(1));
5853           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5854         }
5855         break;
5856       }
5857 
5858       // Non-varargs Altivec params go into VRs or on the stack.
5859       if (VR_idx != NumVRs) {
5860         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5861       } else {
5862         if (CallConv == CallingConv::Fast)
5863           ComputePtrOff();
5864 
5865         assert(HasParameterArea &&
5866                "Parameter area must exist to pass an argument in memory.");
5867         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5868                          true, isTailCall, true, MemOpChains,
5869                          TailCallArguments, dl);
5870         if (CallConv == CallingConv::Fast)
5871           ArgOffset += 16;
5872       }
5873 
5874       if (CallConv != CallingConv::Fast)
5875         ArgOffset += 16;
5876       break;
5877       } // not QPX
5878 
5879       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5880              "Invalid QPX parameter type");
5881 
5882       /* fall through */
5883     case MVT::v4f64:
5884     case MVT::v4i1: {
5885       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5886       if (isVarArg) {
5887         assert(HasParameterArea &&
5888                "Parameter area must exist if we have a varargs call.");
5889         // We could elide this store in the case where the object fits
5890         // entirely in R registers.  Maybe later.
5891         SDValue Store =
5892             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5893         MemOpChains.push_back(Store);
5894         if (QFPR_idx != NumQFPRs) {
5895           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5896                                      PtrOff, MachinePointerInfo());
5897           MemOpChains.push_back(Load.getValue(1));
5898           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5899         }
5900         ArgOffset += (IsF32 ? 16 : 32);
5901         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5902           if (GPR_idx == NumGPRs)
5903             break;
5904           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5905                                    DAG.getConstant(i, dl, PtrVT));
5906           SDValue Load =
5907               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5908           MemOpChains.push_back(Load.getValue(1));
5909           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5910         }
5911         break;
5912       }
5913 
5914       // Non-varargs QPX params go into registers or on the stack.
5915       if (QFPR_idx != NumQFPRs) {
5916         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5917       } else {
5918         if (CallConv == CallingConv::Fast)
5919           ComputePtrOff();
5920 
5921         assert(HasParameterArea &&
5922                "Parameter area must exist to pass an argument in memory.");
5923         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5924                          true, isTailCall, true, MemOpChains,
5925                          TailCallArguments, dl);
5926         if (CallConv == CallingConv::Fast)
5927           ArgOffset += (IsF32 ? 16 : 32);
5928       }
5929 
5930       if (CallConv != CallingConv::Fast)
5931         ArgOffset += (IsF32 ? 16 : 32);
5932       break;
5933       }
5934     }
5935   }
5936 
5937   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
5938          "mismatch in size of parameter area");
5939   (void)NumBytesActuallyUsed;
5940 
5941   if (!MemOpChains.empty())
5942     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5943 
5944   // Check if this is an indirect call (MTCTR/BCTRL).
5945   // See PrepareCall() for more information about calls through function
5946   // pointers in the 64-bit SVR4 ABI.
5947   if (!isTailCall && !isPatchPoint &&
5948       !isFunctionGlobalAddress(Callee) &&
5949       !isa<ExternalSymbolSDNode>(Callee)) {
5950     // Load r2 into a virtual register and store it to the TOC save area.
5951     setUsesTOCBasePtr(DAG);
5952     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5953     // TOC save area offset.
5954     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5955     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5956     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5957     Chain = DAG.getStore(
5958         Val.getValue(1), dl, Val, AddPtr,
5959         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
5960     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5961     // This does not mean the MTCTR instruction must use R12; it's easier
5962     // to model this as an extra parameter, so do that.
5963     if (isELFv2ABI && !isPatchPoint)
5964       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5965   }
5966 
5967   // Build a sequence of copy-to-reg nodes chained together with token chain
5968   // and flag operands which copy the outgoing args into the appropriate regs.
5969   SDValue InFlag;
5970   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5971     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5972                              RegsToPass[i].second, InFlag);
5973     InFlag = Chain.getValue(1);
5974   }
5975 
5976   if (isTailCall && !IsSibCall)
5977     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5978                     TailCallArguments);
5979 
5980   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5981                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5982                     SPDiff, NumBytes, Ins, InVals, CS);
5983 }
5984 
5985 SDValue PPCTargetLowering::LowerCall_Darwin(
5986     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5987     bool isTailCall, bool isPatchPoint,
5988     const SmallVectorImpl<ISD::OutputArg> &Outs,
5989     const SmallVectorImpl<SDValue> &OutVals,
5990     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5991     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5992     ImmutableCallSite CS) const {
5993   unsigned NumOps = Outs.size();
5994 
5995   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5996   bool isPPC64 = PtrVT == MVT::i64;
5997   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5998 
5999   MachineFunction &MF = DAG.getMachineFunction();
6000 
6001   // Mark this function as potentially containing a function that contains a
6002   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6003   // and restoring the callers stack pointer in this functions epilog. This is
6004   // done because by tail calling the called function might overwrite the value
6005   // in this function's (MF) stack pointer stack slot 0(SP).
6006   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6007       CallConv == CallingConv::Fast)
6008     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6009 
6010   // Count how many bytes are to be pushed on the stack, including the linkage
6011   // area, and parameter passing area.  We start with 24/48 bytes, which is
6012   // prereserved space for [SP][CR][LR][3 x unused].
6013   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6014   unsigned NumBytes = LinkageSize;
6015 
6016   // Add up all the space actually used.
6017   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6018   // they all go in registers, but we must reserve stack space for them for
6019   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6020   // assigned stack space in order, with padding so Altivec parameters are
6021   // 16-byte aligned.
6022   unsigned nAltivecParamsAtEnd = 0;
6023   for (unsigned i = 0; i != NumOps; ++i) {
6024     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6025     EVT ArgVT = Outs[i].VT;
6026     // Varargs Altivec parameters are padded to a 16 byte boundary.
6027     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6028         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6029         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6030       if (!isVarArg && !isPPC64) {
6031         // Non-varargs Altivec parameters go after all the non-Altivec
6032         // parameters; handle those later so we know how much padding we need.
6033         nAltivecParamsAtEnd++;
6034         continue;
6035       }
6036       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6037       NumBytes = ((NumBytes+15)/16)*16;
6038     }
6039     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6040   }
6041 
6042   // Allow for Altivec parameters at the end, if needed.
6043   if (nAltivecParamsAtEnd) {
6044     NumBytes = ((NumBytes+15)/16)*16;
6045     NumBytes += 16*nAltivecParamsAtEnd;
6046   }
6047 
6048   // The prolog code of the callee may store up to 8 GPR argument registers to
6049   // the stack, allowing va_start to index over them in memory if its varargs.
6050   // Because we cannot tell if this is needed on the caller side, we have to
6051   // conservatively assume that it is needed.  As such, make sure we have at
6052   // least enough stack space for the caller to store the 8 GPRs.
6053   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6054 
6055   // Tail call needs the stack to be aligned.
6056   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6057       CallConv == CallingConv::Fast)
6058     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6059 
6060   // Calculate by how many bytes the stack has to be adjusted in case of tail
6061   // call optimization.
6062   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6063 
6064   // To protect arguments on the stack from being clobbered in a tail call,
6065   // force all the loads to happen before doing any other lowering.
6066   if (isTailCall)
6067     Chain = DAG.getStackArgumentTokenFactor(Chain);
6068 
6069   // Adjust the stack pointer for the new arguments...
6070   // These operations are automatically eliminated by the prolog/epilog pass
6071   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6072   SDValue CallSeqStart = Chain;
6073 
6074   // Load the return address and frame pointer so it can be move somewhere else
6075   // later.
6076   SDValue LROp, FPOp;
6077   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6078 
6079   // Set up a copy of the stack pointer for use loading and storing any
6080   // arguments that may not fit in the registers available for argument
6081   // passing.
6082   SDValue StackPtr;
6083   if (isPPC64)
6084     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6085   else
6086     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6087 
6088   // Figure out which arguments are going to go in registers, and which in
6089   // memory.  Also, if this is a vararg function, floating point operations
6090   // must be stored to our stack, and loaded into integer regs as well, if
6091   // any integer regs are available for argument passing.
6092   unsigned ArgOffset = LinkageSize;
6093   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6094 
6095   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6096     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6097     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6098   };
6099   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6100     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6101     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6102   };
6103   static const MCPhysReg VR[] = {
6104     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6105     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6106   };
6107   const unsigned NumGPRs = array_lengthof(GPR_32);
6108   const unsigned NumFPRs = 13;
6109   const unsigned NumVRs  = array_lengthof(VR);
6110 
6111   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6112 
6113   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6114   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6115 
6116   SmallVector<SDValue, 8> MemOpChains;
6117   for (unsigned i = 0; i != NumOps; ++i) {
6118     SDValue Arg = OutVals[i];
6119     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6120 
6121     // PtrOff will be used to store the current argument to the stack if a
6122     // register cannot be found for it.
6123     SDValue PtrOff;
6124 
6125     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6126 
6127     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6128 
6129     // On PPC64, promote integers to 64-bit values.
6130     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6131       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6132       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6133       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6134     }
6135 
6136     // FIXME memcpy is used way more than necessary.  Correctness first.
6137     // Note: "by value" is code for passing a structure by value, not
6138     // basic types.
6139     if (Flags.isByVal()) {
6140       unsigned Size = Flags.getByValSize();
6141       // Very small objects are passed right-justified.  Everything else is
6142       // passed left-justified.
6143       if (Size==1 || Size==2) {
6144         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6145         if (GPR_idx != NumGPRs) {
6146           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6147                                         MachinePointerInfo(), VT);
6148           MemOpChains.push_back(Load.getValue(1));
6149           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6150 
6151           ArgOffset += PtrByteSize;
6152         } else {
6153           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6154                                           PtrOff.getValueType());
6155           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6156           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6157                                                             CallSeqStart,
6158                                                             Flags, DAG, dl);
6159           ArgOffset += PtrByteSize;
6160         }
6161         continue;
6162       }
6163       // Copy entire object into memory.  There are cases where gcc-generated
6164       // code assumes it is there, even if it could be put entirely into
6165       // registers.  (This is not what the doc says.)
6166       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6167                                                         CallSeqStart,
6168                                                         Flags, DAG, dl);
6169 
6170       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6171       // copy the pieces of the object that fit into registers from the
6172       // parameter save area.
6173       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6174         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6175         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6176         if (GPR_idx != NumGPRs) {
6177           SDValue Load =
6178               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6179           MemOpChains.push_back(Load.getValue(1));
6180           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6181           ArgOffset += PtrByteSize;
6182         } else {
6183           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6184           break;
6185         }
6186       }
6187       continue;
6188     }
6189 
6190     switch (Arg.getSimpleValueType().SimpleTy) {
6191     default: llvm_unreachable("Unexpected ValueType for argument!");
6192     case MVT::i1:
6193     case MVT::i32:
6194     case MVT::i64:
6195       if (GPR_idx != NumGPRs) {
6196         if (Arg.getValueType() == MVT::i1)
6197           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6198 
6199         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6200       } else {
6201         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6202                          isPPC64, isTailCall, false, MemOpChains,
6203                          TailCallArguments, dl);
6204       }
6205       ArgOffset += PtrByteSize;
6206       break;
6207     case MVT::f32:
6208     case MVT::f64:
6209       if (FPR_idx != NumFPRs) {
6210         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6211 
6212         if (isVarArg) {
6213           SDValue Store =
6214               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6215           MemOpChains.push_back(Store);
6216 
6217           // Float varargs are always shadowed in available integer registers
6218           if (GPR_idx != NumGPRs) {
6219             SDValue Load =
6220                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6221             MemOpChains.push_back(Load.getValue(1));
6222             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6223           }
6224           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6225             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6226             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6227             SDValue Load =
6228                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6229             MemOpChains.push_back(Load.getValue(1));
6230             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6231           }
6232         } else {
6233           // If we have any FPRs remaining, we may also have GPRs remaining.
6234           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6235           // GPRs.
6236           if (GPR_idx != NumGPRs)
6237             ++GPR_idx;
6238           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6239               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6240             ++GPR_idx;
6241         }
6242       } else
6243         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6244                          isPPC64, isTailCall, false, MemOpChains,
6245                          TailCallArguments, dl);
6246       if (isPPC64)
6247         ArgOffset += 8;
6248       else
6249         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6250       break;
6251     case MVT::v4f32:
6252     case MVT::v4i32:
6253     case MVT::v8i16:
6254     case MVT::v16i8:
6255       if (isVarArg) {
6256         // These go aligned on the stack, or in the corresponding R registers
6257         // when within range.  The Darwin PPC ABI doc claims they also go in
6258         // V registers; in fact gcc does this only for arguments that are
6259         // prototyped, not for those that match the ...  We do it for all
6260         // arguments, seems to work.
6261         while (ArgOffset % 16 !=0) {
6262           ArgOffset += PtrByteSize;
6263           if (GPR_idx != NumGPRs)
6264             GPR_idx++;
6265         }
6266         // We could elide this store in the case where the object fits
6267         // entirely in R registers.  Maybe later.
6268         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6269                              DAG.getConstant(ArgOffset, dl, PtrVT));
6270         SDValue Store =
6271             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6272         MemOpChains.push_back(Store);
6273         if (VR_idx != NumVRs) {
6274           SDValue Load =
6275               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6276           MemOpChains.push_back(Load.getValue(1));
6277           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6278         }
6279         ArgOffset += 16;
6280         for (unsigned i=0; i<16; i+=PtrByteSize) {
6281           if (GPR_idx == NumGPRs)
6282             break;
6283           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6284                                    DAG.getConstant(i, dl, PtrVT));
6285           SDValue Load =
6286               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6287           MemOpChains.push_back(Load.getValue(1));
6288           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6289         }
6290         break;
6291       }
6292 
6293       // Non-varargs Altivec params generally go in registers, but have
6294       // stack space allocated at the end.
6295       if (VR_idx != NumVRs) {
6296         // Doesn't have GPR space allocated.
6297         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6298       } else if (nAltivecParamsAtEnd==0) {
6299         // We are emitting Altivec params in order.
6300         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6301                          isPPC64, isTailCall, true, MemOpChains,
6302                          TailCallArguments, dl);
6303         ArgOffset += 16;
6304       }
6305       break;
6306     }
6307   }
6308   // If all Altivec parameters fit in registers, as they usually do,
6309   // they get stack space following the non-Altivec parameters.  We
6310   // don't track this here because nobody below needs it.
6311   // If there are more Altivec parameters than fit in registers emit
6312   // the stores here.
6313   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6314     unsigned j = 0;
6315     // Offset is aligned; skip 1st 12 params which go in V registers.
6316     ArgOffset = ((ArgOffset+15)/16)*16;
6317     ArgOffset += 12*16;
6318     for (unsigned i = 0; i != NumOps; ++i) {
6319       SDValue Arg = OutVals[i];
6320       EVT ArgType = Outs[i].VT;
6321       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6322           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6323         if (++j > NumVRs) {
6324           SDValue PtrOff;
6325           // We are emitting Altivec params in order.
6326           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6327                            isPPC64, isTailCall, true, MemOpChains,
6328                            TailCallArguments, dl);
6329           ArgOffset += 16;
6330         }
6331       }
6332     }
6333   }
6334 
6335   if (!MemOpChains.empty())
6336     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6337 
6338   // On Darwin, R12 must contain the address of an indirect callee.  This does
6339   // not mean the MTCTR instruction must use R12; it's easier to model this as
6340   // an extra parameter, so do that.
6341   if (!isTailCall &&
6342       !isFunctionGlobalAddress(Callee) &&
6343       !isa<ExternalSymbolSDNode>(Callee) &&
6344       !isBLACompatibleAddress(Callee, DAG))
6345     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6346                                                    PPC::R12), Callee));
6347 
6348   // Build a sequence of copy-to-reg nodes chained together with token chain
6349   // and flag operands which copy the outgoing args into the appropriate regs.
6350   SDValue InFlag;
6351   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6352     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6353                              RegsToPass[i].second, InFlag);
6354     InFlag = Chain.getValue(1);
6355   }
6356 
6357   if (isTailCall)
6358     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6359                     TailCallArguments);
6360 
6361   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6362                     /* unused except on PPC64 ELFv1 */ false, DAG,
6363                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6364                     NumBytes, Ins, InVals, CS);
6365 }
6366 
6367 bool
6368 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6369                                   MachineFunction &MF, bool isVarArg,
6370                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6371                                   LLVMContext &Context) const {
6372   SmallVector<CCValAssign, 16> RVLocs;
6373   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6374   return CCInfo.CheckReturn(Outs, RetCC_PPC);
6375 }
6376 
6377 SDValue
6378 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6379                                bool isVarArg,
6380                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6381                                const SmallVectorImpl<SDValue> &OutVals,
6382                                const SDLoc &dl, SelectionDAG &DAG) const {
6383   SmallVector<CCValAssign, 16> RVLocs;
6384   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6385                  *DAG.getContext());
6386   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6387 
6388   SDValue Flag;
6389   SmallVector<SDValue, 4> RetOps(1, Chain);
6390 
6391   // Copy the result values into the output registers.
6392   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6393     CCValAssign &VA = RVLocs[i];
6394     assert(VA.isRegLoc() && "Can only return in registers!");
6395 
6396     SDValue Arg = OutVals[i];
6397 
6398     switch (VA.getLocInfo()) {
6399     default: llvm_unreachable("Unknown loc info!");
6400     case CCValAssign::Full: break;
6401     case CCValAssign::AExt:
6402       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6403       break;
6404     case CCValAssign::ZExt:
6405       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6406       break;
6407     case CCValAssign::SExt:
6408       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6409       break;
6410     }
6411 
6412     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6413     Flag = Chain.getValue(1);
6414     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6415   }
6416 
6417   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6418   const MCPhysReg *I =
6419     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6420   if (I) {
6421     for (; *I; ++I) {
6422 
6423       if (PPC::G8RCRegClass.contains(*I))
6424         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6425       else if (PPC::F8RCRegClass.contains(*I))
6426         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6427       else if (PPC::CRRCRegClass.contains(*I))
6428         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6429       else if (PPC::VRRCRegClass.contains(*I))
6430         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6431       else
6432         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6433     }
6434   }
6435 
6436   RetOps[0] = Chain;  // Update chain.
6437 
6438   // Add the flag if we have it.
6439   if (Flag.getNode())
6440     RetOps.push_back(Flag);
6441 
6442   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6443 }
6444 
6445 SDValue
6446 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6447                                                 SelectionDAG &DAG) const {
6448   SDLoc dl(Op);
6449 
6450   // Get the correct type for integers.
6451   EVT IntVT = Op.getValueType();
6452 
6453   // Get the inputs.
6454   SDValue Chain = Op.getOperand(0);
6455   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6456   // Build a DYNAREAOFFSET node.
6457   SDValue Ops[2] = {Chain, FPSIdx};
6458   SDVTList VTs = DAG.getVTList(IntVT);
6459   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6460 }
6461 
6462 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6463                                              SelectionDAG &DAG) const {
6464   // When we pop the dynamic allocation we need to restore the SP link.
6465   SDLoc dl(Op);
6466 
6467   // Get the correct type for pointers.
6468   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6469 
6470   // Construct the stack pointer operand.
6471   bool isPPC64 = Subtarget.isPPC64();
6472   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6473   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6474 
6475   // Get the operands for the STACKRESTORE.
6476   SDValue Chain = Op.getOperand(0);
6477   SDValue SaveSP = Op.getOperand(1);
6478 
6479   // Load the old link SP.
6480   SDValue LoadLinkSP =
6481       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6482 
6483   // Restore the stack pointer.
6484   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6485 
6486   // Store the old link SP.
6487   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6488 }
6489 
6490 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6491   MachineFunction &MF = DAG.getMachineFunction();
6492   bool isPPC64 = Subtarget.isPPC64();
6493   EVT PtrVT = getPointerTy(MF.getDataLayout());
6494 
6495   // Get current frame pointer save index.  The users of this index will be
6496   // primarily DYNALLOC instructions.
6497   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6498   int RASI = FI->getReturnAddrSaveIndex();
6499 
6500   // If the frame pointer save index hasn't been defined yet.
6501   if (!RASI) {
6502     // Find out what the fix offset of the frame pointer save area.
6503     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6504     // Allocate the frame index for frame pointer save area.
6505     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6506     // Save the result.
6507     FI->setReturnAddrSaveIndex(RASI);
6508   }
6509   return DAG.getFrameIndex(RASI, PtrVT);
6510 }
6511 
6512 SDValue
6513 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6514   MachineFunction &MF = DAG.getMachineFunction();
6515   bool isPPC64 = Subtarget.isPPC64();
6516   EVT PtrVT = getPointerTy(MF.getDataLayout());
6517 
6518   // Get current frame pointer save index.  The users of this index will be
6519   // primarily DYNALLOC instructions.
6520   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6521   int FPSI = FI->getFramePointerSaveIndex();
6522 
6523   // If the frame pointer save index hasn't been defined yet.
6524   if (!FPSI) {
6525     // Find out what the fix offset of the frame pointer save area.
6526     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6527     // Allocate the frame index for frame pointer save area.
6528     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6529     // Save the result.
6530     FI->setFramePointerSaveIndex(FPSI);
6531   }
6532   return DAG.getFrameIndex(FPSI, PtrVT);
6533 }
6534 
6535 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6536                                                    SelectionDAG &DAG) const {
6537   // Get the inputs.
6538   SDValue Chain = Op.getOperand(0);
6539   SDValue Size  = Op.getOperand(1);
6540   SDLoc dl(Op);
6541 
6542   // Get the correct type for pointers.
6543   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6544   // Negate the size.
6545   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6546                                 DAG.getConstant(0, dl, PtrVT), Size);
6547   // Construct a node for the frame pointer save index.
6548   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6549   // Build a DYNALLOC node.
6550   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6551   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6552   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6553 }
6554 
6555 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6556                                                      SelectionDAG &DAG) const {
6557   MachineFunction &MF = DAG.getMachineFunction();
6558 
6559   bool isPPC64 = Subtarget.isPPC64();
6560   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6561 
6562   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6563   return DAG.getFrameIndex(FI, PtrVT);
6564 }
6565 
6566 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6567                                                SelectionDAG &DAG) const {
6568   SDLoc DL(Op);
6569   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6570                      DAG.getVTList(MVT::i32, MVT::Other),
6571                      Op.getOperand(0), Op.getOperand(1));
6572 }
6573 
6574 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6575                                                 SelectionDAG &DAG) const {
6576   SDLoc DL(Op);
6577   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6578                      Op.getOperand(0), Op.getOperand(1));
6579 }
6580 
6581 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6582   if (Op.getValueType().isVector())
6583     return LowerVectorLoad(Op, DAG);
6584 
6585   assert(Op.getValueType() == MVT::i1 &&
6586          "Custom lowering only for i1 loads");
6587 
6588   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6589 
6590   SDLoc dl(Op);
6591   LoadSDNode *LD = cast<LoadSDNode>(Op);
6592 
6593   SDValue Chain = LD->getChain();
6594   SDValue BasePtr = LD->getBasePtr();
6595   MachineMemOperand *MMO = LD->getMemOperand();
6596 
6597   SDValue NewLD =
6598       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6599                      BasePtr, MVT::i8, MMO);
6600   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6601 
6602   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6603   return DAG.getMergeValues(Ops, dl);
6604 }
6605 
6606 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6607   if (Op.getOperand(1).getValueType().isVector())
6608     return LowerVectorStore(Op, DAG);
6609 
6610   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6611          "Custom lowering only for i1 stores");
6612 
6613   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6614 
6615   SDLoc dl(Op);
6616   StoreSDNode *ST = cast<StoreSDNode>(Op);
6617 
6618   SDValue Chain = ST->getChain();
6619   SDValue BasePtr = ST->getBasePtr();
6620   SDValue Value = ST->getValue();
6621   MachineMemOperand *MMO = ST->getMemOperand();
6622 
6623   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6624                       Value);
6625   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6626 }
6627 
6628 // FIXME: Remove this once the ANDI glue bug is fixed:
6629 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6630   assert(Op.getValueType() == MVT::i1 &&
6631          "Custom lowering only for i1 results");
6632 
6633   SDLoc DL(Op);
6634   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6635                      Op.getOperand(0));
6636 }
6637 
6638 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6639 /// possible.
6640 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6641   // Not FP? Not a fsel.
6642   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6643       !Op.getOperand(2).getValueType().isFloatingPoint())
6644     return Op;
6645 
6646   // We might be able to do better than this under some circumstances, but in
6647   // general, fsel-based lowering of select is a finite-math-only optimization.
6648   // For more information, see section F.3 of the 2.06 ISA specification.
6649   if (!DAG.getTarget().Options.NoInfsFPMath ||
6650       !DAG.getTarget().Options.NoNaNsFPMath)
6651     return Op;
6652   // TODO: Propagate flags from the select rather than global settings.
6653   SDNodeFlags Flags;
6654   Flags.setNoInfs(true);
6655   Flags.setNoNaNs(true);
6656 
6657   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6658 
6659   EVT ResVT = Op.getValueType();
6660   EVT CmpVT = Op.getOperand(0).getValueType();
6661   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6662   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6663   SDLoc dl(Op);
6664 
6665   // If the RHS of the comparison is a 0.0, we don't need to do the
6666   // subtraction at all.
6667   SDValue Sel1;
6668   if (isFloatingPointZero(RHS))
6669     switch (CC) {
6670     default: break;       // SETUO etc aren't handled by fsel.
6671     case ISD::SETNE:
6672       std::swap(TV, FV);
6673       LLVM_FALLTHROUGH;
6674     case ISD::SETEQ:
6675       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6676         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6677       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6678       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6679         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6680       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6681                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6682     case ISD::SETULT:
6683     case ISD::SETLT:
6684       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6685       LLVM_FALLTHROUGH;
6686     case ISD::SETOGE:
6687     case ISD::SETGE:
6688       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6689         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6690       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6691     case ISD::SETUGT:
6692     case ISD::SETGT:
6693       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6694       LLVM_FALLTHROUGH;
6695     case ISD::SETOLE:
6696     case ISD::SETLE:
6697       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6698         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6699       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6700                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6701     }
6702 
6703   SDValue Cmp;
6704   switch (CC) {
6705   default: break;       // SETUO etc aren't handled by fsel.
6706   case ISD::SETNE:
6707     std::swap(TV, FV);
6708     LLVM_FALLTHROUGH;
6709   case ISD::SETEQ:
6710     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6711     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6712       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6713     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6714     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6715       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6716     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6717                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6718   case ISD::SETULT:
6719   case ISD::SETLT:
6720     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6721     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6722       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6723     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6724   case ISD::SETOGE:
6725   case ISD::SETGE:
6726     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6727     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6728       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6729     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6730   case ISD::SETUGT:
6731   case ISD::SETGT:
6732     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6733     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6734       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6735     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6736   case ISD::SETOLE:
6737   case ISD::SETLE:
6738     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6739     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6740       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6741     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6742   }
6743   return Op;
6744 }
6745 
6746 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6747                                                SelectionDAG &DAG,
6748                                                const SDLoc &dl) const {
6749   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6750   SDValue Src = Op.getOperand(0);
6751   if (Src.getValueType() == MVT::f32)
6752     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6753 
6754   SDValue Tmp;
6755   switch (Op.getSimpleValueType().SimpleTy) {
6756   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6757   case MVT::i32:
6758     Tmp = DAG.getNode(
6759         Op.getOpcode() == ISD::FP_TO_SINT
6760             ? PPCISD::FCTIWZ
6761             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6762         dl, MVT::f64, Src);
6763     break;
6764   case MVT::i64:
6765     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6766            "i64 FP_TO_UINT is supported only with FPCVT");
6767     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6768                                                         PPCISD::FCTIDUZ,
6769                       dl, MVT::f64, Src);
6770     break;
6771   }
6772 
6773   // Convert the FP value to an int value through memory.
6774   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6775     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6776   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6777   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6778   MachinePointerInfo MPI =
6779       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6780 
6781   // Emit a store to the stack slot.
6782   SDValue Chain;
6783   if (i32Stack) {
6784     MachineFunction &MF = DAG.getMachineFunction();
6785     MachineMemOperand *MMO =
6786       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6787     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6788     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6789               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6790   } else
6791     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6792 
6793   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6794   // add in a bias on big endian.
6795   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6796     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6797                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6798     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6799   }
6800 
6801   RLI.Chain = Chain;
6802   RLI.Ptr = FIPtr;
6803   RLI.MPI = MPI;
6804 }
6805 
6806 /// \brief Custom lowers floating point to integer conversions to use
6807 /// the direct move instructions available in ISA 2.07 to avoid the
6808 /// need for load/store combinations.
6809 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6810                                                     SelectionDAG &DAG,
6811                                                     const SDLoc &dl) const {
6812   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6813   SDValue Src = Op.getOperand(0);
6814 
6815   if (Src.getValueType() == MVT::f32)
6816     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6817 
6818   SDValue Tmp;
6819   switch (Op.getSimpleValueType().SimpleTy) {
6820   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6821   case MVT::i32:
6822     Tmp = DAG.getNode(
6823         Op.getOpcode() == ISD::FP_TO_SINT
6824             ? PPCISD::FCTIWZ
6825             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6826         dl, MVT::f64, Src);
6827     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6828     break;
6829   case MVT::i64:
6830     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6831            "i64 FP_TO_UINT is supported only with FPCVT");
6832     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6833                                                         PPCISD::FCTIDUZ,
6834                       dl, MVT::f64, Src);
6835     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6836     break;
6837   }
6838   return Tmp;
6839 }
6840 
6841 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6842                                           const SDLoc &dl) const {
6843   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6844     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6845 
6846   ReuseLoadInfo RLI;
6847   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6848 
6849   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6850                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6851 }
6852 
6853 // We're trying to insert a regular store, S, and then a load, L. If the
6854 // incoming value, O, is a load, we might just be able to have our load use the
6855 // address used by O. However, we don't know if anything else will store to
6856 // that address before we can load from it. To prevent this situation, we need
6857 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6858 // the same chain operand as O, we create a token factor from the chain results
6859 // of O and L, and we replace all uses of O's chain result with that token
6860 // factor (see spliceIntoChain below for this last part).
6861 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6862                                             ReuseLoadInfo &RLI,
6863                                             SelectionDAG &DAG,
6864                                             ISD::LoadExtType ET) const {
6865   SDLoc dl(Op);
6866   if (ET == ISD::NON_EXTLOAD &&
6867       (Op.getOpcode() == ISD::FP_TO_UINT ||
6868        Op.getOpcode() == ISD::FP_TO_SINT) &&
6869       isOperationLegalOrCustom(Op.getOpcode(),
6870                                Op.getOperand(0).getValueType())) {
6871 
6872     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6873     return true;
6874   }
6875 
6876   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6877   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6878       LD->isNonTemporal())
6879     return false;
6880   if (LD->getMemoryVT() != MemVT)
6881     return false;
6882 
6883   RLI.Ptr = LD->getBasePtr();
6884   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6885     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6886            "Non-pre-inc AM on PPC?");
6887     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6888                           LD->getOffset());
6889   }
6890 
6891   RLI.Chain = LD->getChain();
6892   RLI.MPI = LD->getPointerInfo();
6893   RLI.IsDereferenceable = LD->isDereferenceable();
6894   RLI.IsInvariant = LD->isInvariant();
6895   RLI.Alignment = LD->getAlignment();
6896   RLI.AAInfo = LD->getAAInfo();
6897   RLI.Ranges = LD->getRanges();
6898 
6899   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6900   return true;
6901 }
6902 
6903 // Given the head of the old chain, ResChain, insert a token factor containing
6904 // it and NewResChain, and make users of ResChain now be users of that token
6905 // factor.
6906 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
6907 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6908                                         SDValue NewResChain,
6909                                         SelectionDAG &DAG) const {
6910   if (!ResChain)
6911     return;
6912 
6913   SDLoc dl(NewResChain);
6914 
6915   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6916                            NewResChain, DAG.getUNDEF(MVT::Other));
6917   assert(TF.getNode() != NewResChain.getNode() &&
6918          "A new TF really is required here");
6919 
6920   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6921   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6922 }
6923 
6924 /// \brief Analyze profitability of direct move
6925 /// prefer float load to int load plus direct move
6926 /// when there is no integer use of int load
6927 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
6928   SDNode *Origin = Op.getOperand(0).getNode();
6929   if (Origin->getOpcode() != ISD::LOAD)
6930     return true;
6931 
6932   // If there is no LXSIBZX/LXSIHZX, like Power8,
6933   // prefer direct move if the memory size is 1 or 2 bytes.
6934   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
6935   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
6936     return true;
6937 
6938   for (SDNode::use_iterator UI = Origin->use_begin(),
6939                             UE = Origin->use_end();
6940        UI != UE; ++UI) {
6941 
6942     // Only look at the users of the loaded value.
6943     if (UI.getUse().get().getResNo() != 0)
6944       continue;
6945 
6946     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6947         UI->getOpcode() != ISD::UINT_TO_FP)
6948       return true;
6949   }
6950 
6951   return false;
6952 }
6953 
6954 /// \brief Custom lowers integer to floating point conversions to use
6955 /// the direct move instructions available in ISA 2.07 to avoid the
6956 /// need for load/store combinations.
6957 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6958                                                     SelectionDAG &DAG,
6959                                                     const SDLoc &dl) const {
6960   assert((Op.getValueType() == MVT::f32 ||
6961           Op.getValueType() == MVT::f64) &&
6962          "Invalid floating point type as target of conversion");
6963   assert(Subtarget.hasFPCVT() &&
6964          "Int to FP conversions with direct moves require FPCVT");
6965   SDValue FP;
6966   SDValue Src = Op.getOperand(0);
6967   bool SinglePrec = Op.getValueType() == MVT::f32;
6968   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6969   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6970   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6971                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6972 
6973   if (WordInt) {
6974     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6975                      dl, MVT::f64, Src);
6976     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6977   }
6978   else {
6979     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6980     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6981   }
6982 
6983   return FP;
6984 }
6985 
6986 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6987                                           SelectionDAG &DAG) const {
6988   SDLoc dl(Op);
6989 
6990   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6991     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6992       return SDValue();
6993 
6994     SDValue Value = Op.getOperand(0);
6995     // The values are now known to be -1 (false) or 1 (true). To convert this
6996     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6997     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6998     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6999 
7000     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7001 
7002     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7003 
7004     if (Op.getValueType() != MVT::v4f64)
7005       Value = DAG.getNode(ISD::FP_ROUND, dl,
7006                           Op.getValueType(), Value,
7007                           DAG.getIntPtrConstant(1, dl));
7008     return Value;
7009   }
7010 
7011   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7012   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7013     return SDValue();
7014 
7015   if (Op.getOperand(0).getValueType() == MVT::i1)
7016     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7017                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7018                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7019 
7020   // If we have direct moves, we can do all the conversion, skip the store/load
7021   // however, without FPCVT we can't do most conversions.
7022   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7023       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7024     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7025 
7026   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7027          "UINT_TO_FP is supported only with FPCVT");
7028 
7029   // If we have FCFIDS, then use it when converting to single-precision.
7030   // Otherwise, convert to double-precision and then round.
7031   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7032                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7033                                                             : PPCISD::FCFIDS)
7034                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7035                                                             : PPCISD::FCFID);
7036   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7037                   ? MVT::f32
7038                   : MVT::f64;
7039 
7040   if (Op.getOperand(0).getValueType() == MVT::i64) {
7041     SDValue SINT = Op.getOperand(0);
7042     // When converting to single-precision, we actually need to convert
7043     // to double-precision first and then round to single-precision.
7044     // To avoid double-rounding effects during that operation, we have
7045     // to prepare the input operand.  Bits that might be truncated when
7046     // converting to double-precision are replaced by a bit that won't
7047     // be lost at this stage, but is below the single-precision rounding
7048     // position.
7049     //
7050     // However, if -enable-unsafe-fp-math is in effect, accept double
7051     // rounding to avoid the extra overhead.
7052     if (Op.getValueType() == MVT::f32 &&
7053         !Subtarget.hasFPCVT() &&
7054         !DAG.getTarget().Options.UnsafeFPMath) {
7055 
7056       // Twiddle input to make sure the low 11 bits are zero.  (If this
7057       // is the case, we are guaranteed the value will fit into the 53 bit
7058       // mantissa of an IEEE double-precision value without rounding.)
7059       // If any of those low 11 bits were not zero originally, make sure
7060       // bit 12 (value 2048) is set instead, so that the final rounding
7061       // to single-precision gets the correct result.
7062       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7063                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7064       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7065                           Round, DAG.getConstant(2047, dl, MVT::i64));
7066       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7067       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7068                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7069 
7070       // However, we cannot use that value unconditionally: if the magnitude
7071       // of the input value is small, the bit-twiddling we did above might
7072       // end up visibly changing the output.  Fortunately, in that case, we
7073       // don't need to twiddle bits since the original input will convert
7074       // exactly to double-precision floating-point already.  Therefore,
7075       // construct a conditional to use the original value if the top 11
7076       // bits are all sign-bit copies, and use the rounded value computed
7077       // above otherwise.
7078       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7079                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7080       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7081                          Cond, DAG.getConstant(1, dl, MVT::i64));
7082       Cond = DAG.getSetCC(dl, MVT::i32,
7083                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7084 
7085       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7086     }
7087 
7088     ReuseLoadInfo RLI;
7089     SDValue Bits;
7090 
7091     MachineFunction &MF = DAG.getMachineFunction();
7092     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7093       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7094                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7095       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7096     } else if (Subtarget.hasLFIWAX() &&
7097                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7098       MachineMemOperand *MMO =
7099         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7100                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7101       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7102       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7103                                      DAG.getVTList(MVT::f64, MVT::Other),
7104                                      Ops, MVT::i32, MMO);
7105       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7106     } else if (Subtarget.hasFPCVT() &&
7107                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7108       MachineMemOperand *MMO =
7109         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7110                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7111       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7112       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7113                                      DAG.getVTList(MVT::f64, MVT::Other),
7114                                      Ops, MVT::i32, MMO);
7115       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7116     } else if (((Subtarget.hasLFIWAX() &&
7117                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7118                 (Subtarget.hasFPCVT() &&
7119                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7120                SINT.getOperand(0).getValueType() == MVT::i32) {
7121       MachineFrameInfo &MFI = MF.getFrameInfo();
7122       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7123 
7124       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7125       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7126 
7127       SDValue Store =
7128           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7129                        MachinePointerInfo::getFixedStack(
7130                            DAG.getMachineFunction(), FrameIdx));
7131 
7132       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7133              "Expected an i32 store");
7134 
7135       RLI.Ptr = FIdx;
7136       RLI.Chain = Store;
7137       RLI.MPI =
7138           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7139       RLI.Alignment = 4;
7140 
7141       MachineMemOperand *MMO =
7142         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7143                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7144       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7145       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7146                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7147                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7148                                      Ops, MVT::i32, MMO);
7149     } else
7150       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7151 
7152     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7153 
7154     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7155       FP = DAG.getNode(ISD::FP_ROUND, dl,
7156                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7157     return FP;
7158   }
7159 
7160   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7161          "Unhandled INT_TO_FP type in custom expander!");
7162   // Since we only generate this in 64-bit mode, we can take advantage of
7163   // 64-bit registers.  In particular, sign extend the input value into the
7164   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7165   // then lfd it and fcfid it.
7166   MachineFunction &MF = DAG.getMachineFunction();
7167   MachineFrameInfo &MFI = MF.getFrameInfo();
7168   EVT PtrVT = getPointerTy(MF.getDataLayout());
7169 
7170   SDValue Ld;
7171   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7172     ReuseLoadInfo RLI;
7173     bool ReusingLoad;
7174     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7175                                             DAG))) {
7176       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7177       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7178 
7179       SDValue Store =
7180           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7181                        MachinePointerInfo::getFixedStack(
7182                            DAG.getMachineFunction(), FrameIdx));
7183 
7184       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7185              "Expected an i32 store");
7186 
7187       RLI.Ptr = FIdx;
7188       RLI.Chain = Store;
7189       RLI.MPI =
7190           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7191       RLI.Alignment = 4;
7192     }
7193 
7194     MachineMemOperand *MMO =
7195       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7196                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7197     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7198     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7199                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7200                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7201                                  Ops, MVT::i32, MMO);
7202     if (ReusingLoad)
7203       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7204   } else {
7205     assert(Subtarget.isPPC64() &&
7206            "i32->FP without LFIWAX supported only on PPC64");
7207 
7208     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7209     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7210 
7211     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7212                                 Op.getOperand(0));
7213 
7214     // STD the extended value into the stack slot.
7215     SDValue Store = DAG.getStore(
7216         DAG.getEntryNode(), dl, Ext64, FIdx,
7217         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7218 
7219     // Load the value as a double.
7220     Ld = DAG.getLoad(
7221         MVT::f64, dl, Store, FIdx,
7222         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7223   }
7224 
7225   // FCFID it and return it.
7226   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7227   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7228     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7229                      DAG.getIntPtrConstant(0, dl));
7230   return FP;
7231 }
7232 
7233 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7234                                             SelectionDAG &DAG) const {
7235   SDLoc dl(Op);
7236   /*
7237    The rounding mode is in bits 30:31 of FPSR, and has the following
7238    settings:
7239      00 Round to nearest
7240      01 Round to 0
7241      10 Round to +inf
7242      11 Round to -inf
7243 
7244   FLT_ROUNDS, on the other hand, expects the following:
7245     -1 Undefined
7246      0 Round to 0
7247      1 Round to nearest
7248      2 Round to +inf
7249      3 Round to -inf
7250 
7251   To perform the conversion, we do:
7252     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7253   */
7254 
7255   MachineFunction &MF = DAG.getMachineFunction();
7256   EVT VT = Op.getValueType();
7257   EVT PtrVT = getPointerTy(MF.getDataLayout());
7258 
7259   // Save FP Control Word to register
7260   EVT NodeTys[] = {
7261     MVT::f64,    // return register
7262     MVT::Glue    // unused in this context
7263   };
7264   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7265 
7266   // Save FP register to stack slot
7267   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7268   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7269   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7270                                MachinePointerInfo());
7271 
7272   // Load FP Control Word from low 32 bits of stack slot.
7273   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7274   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7275   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7276 
7277   // Transform as necessary
7278   SDValue CWD1 =
7279     DAG.getNode(ISD::AND, dl, MVT::i32,
7280                 CWD, DAG.getConstant(3, dl, MVT::i32));
7281   SDValue CWD2 =
7282     DAG.getNode(ISD::SRL, dl, MVT::i32,
7283                 DAG.getNode(ISD::AND, dl, MVT::i32,
7284                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7285                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7286                             DAG.getConstant(3, dl, MVT::i32)),
7287                 DAG.getConstant(1, dl, MVT::i32));
7288 
7289   SDValue RetVal =
7290     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7291 
7292   return DAG.getNode((VT.getSizeInBits() < 16 ?
7293                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7294 }
7295 
7296 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7297   EVT VT = Op.getValueType();
7298   unsigned BitWidth = VT.getSizeInBits();
7299   SDLoc dl(Op);
7300   assert(Op.getNumOperands() == 3 &&
7301          VT == Op.getOperand(1).getValueType() &&
7302          "Unexpected SHL!");
7303 
7304   // Expand into a bunch of logical ops.  Note that these ops
7305   // depend on the PPC behavior for oversized shift amounts.
7306   SDValue Lo = Op.getOperand(0);
7307   SDValue Hi = Op.getOperand(1);
7308   SDValue Amt = Op.getOperand(2);
7309   EVT AmtVT = Amt.getValueType();
7310 
7311   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7312                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7313   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7314   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7315   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7316   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7317                              DAG.getConstant(-BitWidth, dl, AmtVT));
7318   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7319   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7320   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7321   SDValue OutOps[] = { OutLo, OutHi };
7322   return DAG.getMergeValues(OutOps, dl);
7323 }
7324 
7325 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7326   EVT VT = Op.getValueType();
7327   SDLoc dl(Op);
7328   unsigned BitWidth = VT.getSizeInBits();
7329   assert(Op.getNumOperands() == 3 &&
7330          VT == Op.getOperand(1).getValueType() &&
7331          "Unexpected SRL!");
7332 
7333   // Expand into a bunch of logical ops.  Note that these ops
7334   // depend on the PPC behavior for oversized shift amounts.
7335   SDValue Lo = Op.getOperand(0);
7336   SDValue Hi = Op.getOperand(1);
7337   SDValue Amt = Op.getOperand(2);
7338   EVT AmtVT = Amt.getValueType();
7339 
7340   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7341                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7342   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7343   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7344   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7345   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7346                              DAG.getConstant(-BitWidth, dl, AmtVT));
7347   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7348   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7349   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7350   SDValue OutOps[] = { OutLo, OutHi };
7351   return DAG.getMergeValues(OutOps, dl);
7352 }
7353 
7354 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7355   SDLoc dl(Op);
7356   EVT VT = Op.getValueType();
7357   unsigned BitWidth = VT.getSizeInBits();
7358   assert(Op.getNumOperands() == 3 &&
7359          VT == Op.getOperand(1).getValueType() &&
7360          "Unexpected SRA!");
7361 
7362   // Expand into a bunch of logical ops, followed by a select_cc.
7363   SDValue Lo = Op.getOperand(0);
7364   SDValue Hi = Op.getOperand(1);
7365   SDValue Amt = Op.getOperand(2);
7366   EVT AmtVT = Amt.getValueType();
7367 
7368   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7369                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7370   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7371   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7372   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7373   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7374                              DAG.getConstant(-BitWidth, dl, AmtVT));
7375   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7376   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7377   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7378                                   Tmp4, Tmp6, ISD::SETLE);
7379   SDValue OutOps[] = { OutLo, OutHi };
7380   return DAG.getMergeValues(OutOps, dl);
7381 }
7382 
7383 //===----------------------------------------------------------------------===//
7384 // Vector related lowering.
7385 //
7386 
7387 /// BuildSplatI - Build a canonical splati of Val with an element size of
7388 /// SplatSize.  Cast the result to VT.
7389 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7390                            SelectionDAG &DAG, const SDLoc &dl) {
7391   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7392 
7393   static const MVT VTys[] = { // canonical VT to use for each size.
7394     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7395   };
7396 
7397   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7398 
7399   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7400   if (Val == -1)
7401     SplatSize = 1;
7402 
7403   EVT CanonicalVT = VTys[SplatSize-1];
7404 
7405   // Build a canonical splat for this value.
7406   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7407 }
7408 
7409 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7410 /// specified intrinsic ID.
7411 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7412                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7413   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7414   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7415                      DAG.getConstant(IID, dl, MVT::i32), Op);
7416 }
7417 
7418 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7419 /// specified intrinsic ID.
7420 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7421                                 SelectionDAG &DAG, const SDLoc &dl,
7422                                 EVT DestVT = MVT::Other) {
7423   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7424   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7425                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7426 }
7427 
7428 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7429 /// specified intrinsic ID.
7430 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7431                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7432                                 EVT DestVT = MVT::Other) {
7433   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7434   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7435                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7436 }
7437 
7438 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7439 /// amount.  The result has the specified value type.
7440 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7441                            SelectionDAG &DAG, const SDLoc &dl) {
7442   // Force LHS/RHS to be the right type.
7443   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7444   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7445 
7446   int Ops[16];
7447   for (unsigned i = 0; i != 16; ++i)
7448     Ops[i] = i + Amt;
7449   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7450   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7451 }
7452 
7453 /// Do we have an efficient pattern in a .td file for this node?
7454 ///
7455 /// \param V - pointer to the BuildVectorSDNode being matched
7456 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7457 ///
7458 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7459 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7460 /// the opposite is true (expansion is beneficial) are:
7461 /// - The node builds a vector out of integers that are not 32 or 64-bits
7462 /// - The node builds a vector out of constants
7463 /// - The node is a "load-and-splat"
7464 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7465 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7466                                             bool HasDirectMove,
7467                                             bool HasP8Vector) {
7468   EVT VecVT = V->getValueType(0);
7469   bool RightType = VecVT == MVT::v2f64 ||
7470     (HasP8Vector && VecVT == MVT::v4f32) ||
7471     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7472   if (!RightType)
7473     return false;
7474 
7475   bool IsSplat = true;
7476   bool IsLoad = false;
7477   SDValue Op0 = V->getOperand(0);
7478 
7479   // This function is called in a block that confirms the node is not a constant
7480   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7481   // different constants.
7482   if (V->isConstant())
7483     return false;
7484   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7485     if (V->getOperand(i).isUndef())
7486       return false;
7487     // We want to expand nodes that represent load-and-splat even if the
7488     // loaded value is a floating point truncation or conversion to int.
7489     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7490         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7491          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7492         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7493          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7494         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7495          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7496       IsLoad = true;
7497     // If the operands are different or the input is not a load and has more
7498     // uses than just this BV node, then it isn't a splat.
7499     if (V->getOperand(i) != Op0 ||
7500         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7501       IsSplat = false;
7502   }
7503   return !(IsSplat && IsLoad);
7504 }
7505 
7506 // If this is a case we can't handle, return null and let the default
7507 // expansion code take care of it.  If we CAN select this case, and if it
7508 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7509 // this case more efficiently than a constant pool load, lower it to the
7510 // sequence of ops that should be used.
7511 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7512                                              SelectionDAG &DAG) const {
7513   SDLoc dl(Op);
7514   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7515   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7516 
7517   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7518     // We first build an i32 vector, load it into a QPX register,
7519     // then convert it to a floating-point vector and compare it
7520     // to a zero vector to get the boolean result.
7521     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7522     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7523     MachinePointerInfo PtrInfo =
7524         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7525     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7526     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7527 
7528     assert(BVN->getNumOperands() == 4 &&
7529       "BUILD_VECTOR for v4i1 does not have 4 operands");
7530 
7531     bool IsConst = true;
7532     for (unsigned i = 0; i < 4; ++i) {
7533       if (BVN->getOperand(i).isUndef()) continue;
7534       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7535         IsConst = false;
7536         break;
7537       }
7538     }
7539 
7540     if (IsConst) {
7541       Constant *One =
7542         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7543       Constant *NegOne =
7544         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7545 
7546       Constant *CV[4];
7547       for (unsigned i = 0; i < 4; ++i) {
7548         if (BVN->getOperand(i).isUndef())
7549           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7550         else if (isNullConstant(BVN->getOperand(i)))
7551           CV[i] = NegOne;
7552         else
7553           CV[i] = One;
7554       }
7555 
7556       Constant *CP = ConstantVector::get(CV);
7557       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7558                                           16 /* alignment */);
7559 
7560       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7561       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7562       return DAG.getMemIntrinsicNode(
7563           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7564           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7565     }
7566 
7567     SmallVector<SDValue, 4> Stores;
7568     for (unsigned i = 0; i < 4; ++i) {
7569       if (BVN->getOperand(i).isUndef()) continue;
7570 
7571       unsigned Offset = 4*i;
7572       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7573       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7574 
7575       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7576       if (StoreSize > 4) {
7577         Stores.push_back(
7578             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7579                               PtrInfo.getWithOffset(Offset), MVT::i32));
7580       } else {
7581         SDValue StoreValue = BVN->getOperand(i);
7582         if (StoreSize < 4)
7583           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7584 
7585         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7586                                       PtrInfo.getWithOffset(Offset)));
7587       }
7588     }
7589 
7590     SDValue StoreChain;
7591     if (!Stores.empty())
7592       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7593     else
7594       StoreChain = DAG.getEntryNode();
7595 
7596     // Now load from v4i32 into the QPX register; this will extend it to
7597     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7598     // is typed as v4f64 because the QPX register integer states are not
7599     // explicitly represented.
7600 
7601     SDValue Ops[] = {StoreChain,
7602                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7603                      FIdx};
7604     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7605 
7606     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7607       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7608     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7609       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7610       LoadedVect);
7611 
7612     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7613 
7614     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7615   }
7616 
7617   // All other QPX vectors are handled by generic code.
7618   if (Subtarget.hasQPX())
7619     return SDValue();
7620 
7621   // Check if this is a splat of a constant value.
7622   APInt APSplatBits, APSplatUndef;
7623   unsigned SplatBitSize;
7624   bool HasAnyUndefs;
7625   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7626                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7627       SplatBitSize > 32) {
7628     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7629     // lowered to VSX instructions under certain conditions.
7630     // Without VSX, there is no pattern more efficient than expanding the node.
7631     if (Subtarget.hasVSX() &&
7632         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7633                                         Subtarget.hasP8Vector()))
7634       return Op;
7635     return SDValue();
7636   }
7637 
7638   unsigned SplatBits = APSplatBits.getZExtValue();
7639   unsigned SplatUndef = APSplatUndef.getZExtValue();
7640   unsigned SplatSize = SplatBitSize / 8;
7641 
7642   // First, handle single instruction cases.
7643 
7644   // All zeros?
7645   if (SplatBits == 0) {
7646     // Canonicalize all zero vectors to be v4i32.
7647     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7648       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7649       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7650     }
7651     return Op;
7652   }
7653 
7654   // We have XXSPLTIB for constant splats one byte wide
7655   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7656     // This is a splat of 1-byte elements with some elements potentially undef.
7657     // Rather than trying to match undef in the SDAG patterns, ensure that all
7658     // elements are the same constant.
7659     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7660       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7661                                                        dl, MVT::i32));
7662       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7663       if (Op.getValueType() != MVT::v16i8)
7664         return DAG.getBitcast(Op.getValueType(), NewBV);
7665       return NewBV;
7666     }
7667 
7668     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7669     // detect that constant splats like v8i16: 0xABAB are really just splats
7670     // of a 1-byte constant. In this case, we need to convert the node to a
7671     // splat of v16i8 and a bitcast.
7672     if (Op.getValueType() != MVT::v16i8)
7673       return DAG.getBitcast(Op.getValueType(),
7674                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7675 
7676     return Op;
7677   }
7678 
7679   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7680   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7681                     (32-SplatBitSize));
7682   if (SextVal >= -16 && SextVal <= 15)
7683     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7684 
7685   // Two instruction sequences.
7686 
7687   // If this value is in the range [-32,30] and is even, use:
7688   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7689   // If this value is in the range [17,31] and is odd, use:
7690   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7691   // If this value is in the range [-31,-17] and is odd, use:
7692   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7693   // Note the last two are three-instruction sequences.
7694   if (SextVal >= -32 && SextVal <= 31) {
7695     // To avoid having these optimizations undone by constant folding,
7696     // we convert to a pseudo that will be expanded later into one of
7697     // the above forms.
7698     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7699     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7700               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7701     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7702     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7703     if (VT == Op.getValueType())
7704       return RetVal;
7705     else
7706       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7707   }
7708 
7709   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7710   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7711   // for fneg/fabs.
7712   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7713     // Make -1 and vspltisw -1:
7714     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7715 
7716     // Make the VSLW intrinsic, computing 0x8000_0000.
7717     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7718                                    OnesV, DAG, dl);
7719 
7720     // xor by OnesV to invert it.
7721     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7722     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7723   }
7724 
7725   // Check to see if this is a wide variety of vsplti*, binop self cases.
7726   static const signed char SplatCsts[] = {
7727     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7728     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7729   };
7730 
7731   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7732     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7733     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7734     int i = SplatCsts[idx];
7735 
7736     // Figure out what shift amount will be used by altivec if shifted by i in
7737     // this splat size.
7738     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7739 
7740     // vsplti + shl self.
7741     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7742       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7743       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7744         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7745         Intrinsic::ppc_altivec_vslw
7746       };
7747       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7748       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7749     }
7750 
7751     // vsplti + srl self.
7752     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7753       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7754       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7755         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7756         Intrinsic::ppc_altivec_vsrw
7757       };
7758       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7759       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7760     }
7761 
7762     // vsplti + sra self.
7763     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7764       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7765       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7766         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7767         Intrinsic::ppc_altivec_vsraw
7768       };
7769       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7770       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7771     }
7772 
7773     // vsplti + rol self.
7774     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7775                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7776       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7777       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7778         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7779         Intrinsic::ppc_altivec_vrlw
7780       };
7781       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7782       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7783     }
7784 
7785     // t = vsplti c, result = vsldoi t, t, 1
7786     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7787       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7788       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7789       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7790     }
7791     // t = vsplti c, result = vsldoi t, t, 2
7792     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7793       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7794       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7795       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7796     }
7797     // t = vsplti c, result = vsldoi t, t, 3
7798     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7799       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7800       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7801       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7802     }
7803   }
7804 
7805   return SDValue();
7806 }
7807 
7808 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7809 /// the specified operations to build the shuffle.
7810 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7811                                       SDValue RHS, SelectionDAG &DAG,
7812                                       const SDLoc &dl) {
7813   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7814   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7815   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7816 
7817   enum {
7818     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7819     OP_VMRGHW,
7820     OP_VMRGLW,
7821     OP_VSPLTISW0,
7822     OP_VSPLTISW1,
7823     OP_VSPLTISW2,
7824     OP_VSPLTISW3,
7825     OP_VSLDOI4,
7826     OP_VSLDOI8,
7827     OP_VSLDOI12
7828   };
7829 
7830   if (OpNum == OP_COPY) {
7831     if (LHSID == (1*9+2)*9+3) return LHS;
7832     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7833     return RHS;
7834   }
7835 
7836   SDValue OpLHS, OpRHS;
7837   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7838   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7839 
7840   int ShufIdxs[16];
7841   switch (OpNum) {
7842   default: llvm_unreachable("Unknown i32 permute!");
7843   case OP_VMRGHW:
7844     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7845     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7846     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7847     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7848     break;
7849   case OP_VMRGLW:
7850     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7851     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7852     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7853     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7854     break;
7855   case OP_VSPLTISW0:
7856     for (unsigned i = 0; i != 16; ++i)
7857       ShufIdxs[i] = (i&3)+0;
7858     break;
7859   case OP_VSPLTISW1:
7860     for (unsigned i = 0; i != 16; ++i)
7861       ShufIdxs[i] = (i&3)+4;
7862     break;
7863   case OP_VSPLTISW2:
7864     for (unsigned i = 0; i != 16; ++i)
7865       ShufIdxs[i] = (i&3)+8;
7866     break;
7867   case OP_VSPLTISW3:
7868     for (unsigned i = 0; i != 16; ++i)
7869       ShufIdxs[i] = (i&3)+12;
7870     break;
7871   case OP_VSLDOI4:
7872     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7873   case OP_VSLDOI8:
7874     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7875   case OP_VSLDOI12:
7876     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7877   }
7878   EVT VT = OpLHS.getValueType();
7879   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7880   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7881   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7882   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7883 }
7884 
7885 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7886 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7887 /// return the code it can be lowered into.  Worst case, it can always be
7888 /// lowered into a vperm.
7889 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7890                                                SelectionDAG &DAG) const {
7891   SDLoc dl(Op);
7892   SDValue V1 = Op.getOperand(0);
7893   SDValue V2 = Op.getOperand(1);
7894   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7895   EVT VT = Op.getValueType();
7896   bool isLittleEndian = Subtarget.isLittleEndian();
7897 
7898   unsigned ShiftElts, InsertAtByte;
7899   bool Swap = false;
7900   if (Subtarget.hasP9Vector() &&
7901       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
7902                            isLittleEndian)) {
7903     if (Swap)
7904       std::swap(V1, V2);
7905     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7906     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
7907     if (ShiftElts) {
7908       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
7909                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
7910       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
7911                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7912       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7913     }
7914     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
7915                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
7916     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7917   }
7918 
7919 
7920   if (Subtarget.hasVSX() &&
7921       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
7922     if (Swap)
7923       std::swap(V1, V2);
7924     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7925     SDValue Conv2 =
7926         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
7927 
7928     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
7929                               DAG.getConstant(ShiftElts, dl, MVT::i32));
7930     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
7931   }
7932 
7933   if (Subtarget.hasVSX() &&
7934     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
7935     if (Swap)
7936       std::swap(V1, V2);
7937     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
7938     SDValue Conv2 =
7939         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
7940 
7941     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
7942                               DAG.getConstant(ShiftElts, dl, MVT::i32));
7943     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
7944   }
7945 
7946   if (Subtarget.hasP9Vector()) {
7947      if (PPC::isXXBRHShuffleMask(SVOp)) {
7948       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
7949       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
7950       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
7951     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
7952       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7953       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
7954       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
7955     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
7956       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
7957       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
7958       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
7959     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
7960       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
7961       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
7962       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
7963     }
7964   }
7965 
7966   if (Subtarget.hasVSX()) {
7967     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7968       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7969 
7970       // If the source for the shuffle is a scalar_to_vector that came from a
7971       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
7972       if (Subtarget.hasP9Vector() &&
7973           ((isLittleEndian && SplatIdx == 3) ||
7974            (!isLittleEndian && SplatIdx == 0))) {
7975         SDValue Src = V1.getOperand(0);
7976         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7977             Src.getOperand(0).getOpcode() == ISD::LOAD &&
7978             Src.getOperand(0).hasOneUse())
7979           return V1;
7980       }
7981       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7982       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7983                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
7984       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7985     }
7986 
7987     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
7988     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
7989       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7990       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
7991       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
7992     }
7993   }
7994 
7995   if (Subtarget.hasQPX()) {
7996     if (VT.getVectorNumElements() != 4)
7997       return SDValue();
7998 
7999     if (V2.isUndef()) V2 = V1;
8000 
8001     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8002     if (AlignIdx != -1) {
8003       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8004                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8005     } else if (SVOp->isSplat()) {
8006       int SplatIdx = SVOp->getSplatIndex();
8007       if (SplatIdx >= 4) {
8008         std::swap(V1, V2);
8009         SplatIdx -= 4;
8010       }
8011 
8012       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8013                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8014     }
8015 
8016     // Lower this into a qvgpci/qvfperm pair.
8017 
8018     // Compute the qvgpci literal
8019     unsigned idx = 0;
8020     for (unsigned i = 0; i < 4; ++i) {
8021       int m = SVOp->getMaskElt(i);
8022       unsigned mm = m >= 0 ? (unsigned) m : i;
8023       idx |= mm << (3-i)*3;
8024     }
8025 
8026     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8027                              DAG.getConstant(idx, dl, MVT::i32));
8028     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8029   }
8030 
8031   // Cases that are handled by instructions that take permute immediates
8032   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8033   // selected by the instruction selector.
8034   if (V2.isUndef()) {
8035     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8036         PPC::isSplatShuffleMask(SVOp, 2) ||
8037         PPC::isSplatShuffleMask(SVOp, 4) ||
8038         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8039         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8040         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8041         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8042         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8043         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8044         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8045         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8046         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8047         (Subtarget.hasP8Altivec() && (
8048          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8049          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8050          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8051       return Op;
8052     }
8053   }
8054 
8055   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8056   // and produce a fixed permutation.  If any of these match, do not lower to
8057   // VPERM.
8058   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8059   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8060       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8061       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8062       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8063       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8064       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8065       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8066       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8067       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8068       (Subtarget.hasP8Altivec() && (
8069        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8070        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8071        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8072     return Op;
8073 
8074   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8075   // perfect shuffle table to emit an optimal matching sequence.
8076   ArrayRef<int> PermMask = SVOp->getMask();
8077 
8078   unsigned PFIndexes[4];
8079   bool isFourElementShuffle = true;
8080   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8081     unsigned EltNo = 8;   // Start out undef.
8082     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8083       if (PermMask[i*4+j] < 0)
8084         continue;   // Undef, ignore it.
8085 
8086       unsigned ByteSource = PermMask[i*4+j];
8087       if ((ByteSource & 3) != j) {
8088         isFourElementShuffle = false;
8089         break;
8090       }
8091 
8092       if (EltNo == 8) {
8093         EltNo = ByteSource/4;
8094       } else if (EltNo != ByteSource/4) {
8095         isFourElementShuffle = false;
8096         break;
8097       }
8098     }
8099     PFIndexes[i] = EltNo;
8100   }
8101 
8102   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8103   // perfect shuffle vector to determine if it is cost effective to do this as
8104   // discrete instructions, or whether we should use a vperm.
8105   // For now, we skip this for little endian until such time as we have a
8106   // little-endian perfect shuffle table.
8107   if (isFourElementShuffle && !isLittleEndian) {
8108     // Compute the index in the perfect shuffle table.
8109     unsigned PFTableIndex =
8110       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8111 
8112     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8113     unsigned Cost  = (PFEntry >> 30);
8114 
8115     // Determining when to avoid vperm is tricky.  Many things affect the cost
8116     // of vperm, particularly how many times the perm mask needs to be computed.
8117     // For example, if the perm mask can be hoisted out of a loop or is already
8118     // used (perhaps because there are multiple permutes with the same shuffle
8119     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8120     // the loop requires an extra register.
8121     //
8122     // As a compromise, we only emit discrete instructions if the shuffle can be
8123     // generated in 3 or fewer operations.  When we have loop information
8124     // available, if this block is within a loop, we should avoid using vperm
8125     // for 3-operation perms and use a constant pool load instead.
8126     if (Cost < 3)
8127       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8128   }
8129 
8130   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8131   // vector that will get spilled to the constant pool.
8132   if (V2.isUndef()) V2 = V1;
8133 
8134   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8135   // that it is in input element units, not in bytes.  Convert now.
8136 
8137   // For little endian, the order of the input vectors is reversed, and
8138   // the permutation mask is complemented with respect to 31.  This is
8139   // necessary to produce proper semantics with the big-endian-biased vperm
8140   // instruction.
8141   EVT EltVT = V1.getValueType().getVectorElementType();
8142   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8143 
8144   SmallVector<SDValue, 16> ResultMask;
8145   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8146     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8147 
8148     for (unsigned j = 0; j != BytesPerElement; ++j)
8149       if (isLittleEndian)
8150         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8151                                              dl, MVT::i32));
8152       else
8153         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8154                                              MVT::i32));
8155   }
8156 
8157   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8158   if (isLittleEndian)
8159     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8160                        V2, V1, VPermMask);
8161   else
8162     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8163                        V1, V2, VPermMask);
8164 }
8165 
8166 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8167 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8168 /// information about the intrinsic.
8169 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8170                                  bool &isDot, const PPCSubtarget &Subtarget) {
8171   unsigned IntrinsicID =
8172       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8173   CompareOpc = -1;
8174   isDot = false;
8175   switch (IntrinsicID) {
8176   default:
8177     return false;
8178   // Comparison predicates.
8179   case Intrinsic::ppc_altivec_vcmpbfp_p:
8180     CompareOpc = 966;
8181     isDot = true;
8182     break;
8183   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8184     CompareOpc = 198;
8185     isDot = true;
8186     break;
8187   case Intrinsic::ppc_altivec_vcmpequb_p:
8188     CompareOpc = 6;
8189     isDot = true;
8190     break;
8191   case Intrinsic::ppc_altivec_vcmpequh_p:
8192     CompareOpc = 70;
8193     isDot = true;
8194     break;
8195   case Intrinsic::ppc_altivec_vcmpequw_p:
8196     CompareOpc = 134;
8197     isDot = true;
8198     break;
8199   case Intrinsic::ppc_altivec_vcmpequd_p:
8200     if (Subtarget.hasP8Altivec()) {
8201       CompareOpc = 199;
8202       isDot = true;
8203     } else
8204       return false;
8205     break;
8206   case Intrinsic::ppc_altivec_vcmpneb_p:
8207   case Intrinsic::ppc_altivec_vcmpneh_p:
8208   case Intrinsic::ppc_altivec_vcmpnew_p:
8209   case Intrinsic::ppc_altivec_vcmpnezb_p:
8210   case Intrinsic::ppc_altivec_vcmpnezh_p:
8211   case Intrinsic::ppc_altivec_vcmpnezw_p:
8212     if (Subtarget.hasP9Altivec()) {
8213       switch (IntrinsicID) {
8214       default:
8215         llvm_unreachable("Unknown comparison intrinsic.");
8216       case Intrinsic::ppc_altivec_vcmpneb_p:
8217         CompareOpc = 7;
8218         break;
8219       case Intrinsic::ppc_altivec_vcmpneh_p:
8220         CompareOpc = 71;
8221         break;
8222       case Intrinsic::ppc_altivec_vcmpnew_p:
8223         CompareOpc = 135;
8224         break;
8225       case Intrinsic::ppc_altivec_vcmpnezb_p:
8226         CompareOpc = 263;
8227         break;
8228       case Intrinsic::ppc_altivec_vcmpnezh_p:
8229         CompareOpc = 327;
8230         break;
8231       case Intrinsic::ppc_altivec_vcmpnezw_p:
8232         CompareOpc = 391;
8233         break;
8234       }
8235       isDot = true;
8236     } else
8237       return false;
8238     break;
8239   case Intrinsic::ppc_altivec_vcmpgefp_p:
8240     CompareOpc = 454;
8241     isDot = true;
8242     break;
8243   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8244     CompareOpc = 710;
8245     isDot = true;
8246     break;
8247   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8248     CompareOpc = 774;
8249     isDot = true;
8250     break;
8251   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8252     CompareOpc = 838;
8253     isDot = true;
8254     break;
8255   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8256     CompareOpc = 902;
8257     isDot = true;
8258     break;
8259   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8260     if (Subtarget.hasP8Altivec()) {
8261       CompareOpc = 967;
8262       isDot = true;
8263     } else
8264       return false;
8265     break;
8266   case Intrinsic::ppc_altivec_vcmpgtub_p:
8267     CompareOpc = 518;
8268     isDot = true;
8269     break;
8270   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8271     CompareOpc = 582;
8272     isDot = true;
8273     break;
8274   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8275     CompareOpc = 646;
8276     isDot = true;
8277     break;
8278   case Intrinsic::ppc_altivec_vcmpgtud_p:
8279     if (Subtarget.hasP8Altivec()) {
8280       CompareOpc = 711;
8281       isDot = true;
8282     } else
8283       return false;
8284     break;
8285 
8286   // VSX predicate comparisons use the same infrastructure
8287   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8288   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8289   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8290   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8291   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8292   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8293     if (Subtarget.hasVSX()) {
8294       switch (IntrinsicID) {
8295       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8296         CompareOpc = 99;
8297         break;
8298       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8299         CompareOpc = 115;
8300         break;
8301       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8302         CompareOpc = 107;
8303         break;
8304       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8305         CompareOpc = 67;
8306         break;
8307       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8308         CompareOpc = 83;
8309         break;
8310       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8311         CompareOpc = 75;
8312         break;
8313       }
8314       isDot = true;
8315     } else
8316       return false;
8317     break;
8318 
8319   // Normal Comparisons.
8320   case Intrinsic::ppc_altivec_vcmpbfp:
8321     CompareOpc = 966;
8322     break;
8323   case Intrinsic::ppc_altivec_vcmpeqfp:
8324     CompareOpc = 198;
8325     break;
8326   case Intrinsic::ppc_altivec_vcmpequb:
8327     CompareOpc = 6;
8328     break;
8329   case Intrinsic::ppc_altivec_vcmpequh:
8330     CompareOpc = 70;
8331     break;
8332   case Intrinsic::ppc_altivec_vcmpequw:
8333     CompareOpc = 134;
8334     break;
8335   case Intrinsic::ppc_altivec_vcmpequd:
8336     if (Subtarget.hasP8Altivec())
8337       CompareOpc = 199;
8338     else
8339       return false;
8340     break;
8341   case Intrinsic::ppc_altivec_vcmpneb:
8342   case Intrinsic::ppc_altivec_vcmpneh:
8343   case Intrinsic::ppc_altivec_vcmpnew:
8344   case Intrinsic::ppc_altivec_vcmpnezb:
8345   case Intrinsic::ppc_altivec_vcmpnezh:
8346   case Intrinsic::ppc_altivec_vcmpnezw:
8347     if (Subtarget.hasP9Altivec())
8348       switch (IntrinsicID) {
8349       default:
8350         llvm_unreachable("Unknown comparison intrinsic.");
8351       case Intrinsic::ppc_altivec_vcmpneb:
8352         CompareOpc = 7;
8353         break;
8354       case Intrinsic::ppc_altivec_vcmpneh:
8355         CompareOpc = 71;
8356         break;
8357       case Intrinsic::ppc_altivec_vcmpnew:
8358         CompareOpc = 135;
8359         break;
8360       case Intrinsic::ppc_altivec_vcmpnezb:
8361         CompareOpc = 263;
8362         break;
8363       case Intrinsic::ppc_altivec_vcmpnezh:
8364         CompareOpc = 327;
8365         break;
8366       case Intrinsic::ppc_altivec_vcmpnezw:
8367         CompareOpc = 391;
8368         break;
8369       }
8370     else
8371       return false;
8372     break;
8373   case Intrinsic::ppc_altivec_vcmpgefp:
8374     CompareOpc = 454;
8375     break;
8376   case Intrinsic::ppc_altivec_vcmpgtfp:
8377     CompareOpc = 710;
8378     break;
8379   case Intrinsic::ppc_altivec_vcmpgtsb:
8380     CompareOpc = 774;
8381     break;
8382   case Intrinsic::ppc_altivec_vcmpgtsh:
8383     CompareOpc = 838;
8384     break;
8385   case Intrinsic::ppc_altivec_vcmpgtsw:
8386     CompareOpc = 902;
8387     break;
8388   case Intrinsic::ppc_altivec_vcmpgtsd:
8389     if (Subtarget.hasP8Altivec())
8390       CompareOpc = 967;
8391     else
8392       return false;
8393     break;
8394   case Intrinsic::ppc_altivec_vcmpgtub:
8395     CompareOpc = 518;
8396     break;
8397   case Intrinsic::ppc_altivec_vcmpgtuh:
8398     CompareOpc = 582;
8399     break;
8400   case Intrinsic::ppc_altivec_vcmpgtuw:
8401     CompareOpc = 646;
8402     break;
8403   case Intrinsic::ppc_altivec_vcmpgtud:
8404     if (Subtarget.hasP8Altivec())
8405       CompareOpc = 711;
8406     else
8407       return false;
8408     break;
8409   }
8410   return true;
8411 }
8412 
8413 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8414 /// lower, do it, otherwise return null.
8415 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8416                                                    SelectionDAG &DAG) const {
8417   unsigned IntrinsicID =
8418     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8419 
8420   SDLoc dl(Op);
8421 
8422   if (IntrinsicID == Intrinsic::thread_pointer) {
8423     // Reads the thread pointer register, used for __builtin_thread_pointer.
8424     if (Subtarget.isPPC64())
8425       return DAG.getRegister(PPC::X13, MVT::i64);
8426     return DAG.getRegister(PPC::R2, MVT::i32);
8427   }
8428 
8429   // We are looking for absolute values here.
8430   // The idea is to try to fit one of two patterns:
8431   //  max (a, (0-a))  OR  max ((0-a), a)
8432   if (Subtarget.hasP9Vector() &&
8433       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8434        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8435        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8436     SDValue V1 = Op.getOperand(1);
8437     SDValue V2 = Op.getOperand(2);
8438     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8439         (V1.getSimpleValueType() == MVT::v4i32 ||
8440          V1.getSimpleValueType() == MVT::v8i16 ||
8441          V1.getSimpleValueType() == MVT::v16i8)) {
8442       if ( V1.getOpcode() == ISD::SUB &&
8443            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8444            V1.getOperand(1) == V2 ) {
8445         // Generate the abs instruction with the operands
8446         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8447       }
8448 
8449       if ( V2.getOpcode() == ISD::SUB &&
8450            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8451            V2.getOperand(1) == V1 ) {
8452         // Generate the abs instruction with the operands
8453         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8454       }
8455     }
8456   }
8457 
8458   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8459   // opcode number of the comparison.
8460   int CompareOpc;
8461   bool isDot;
8462   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8463     return SDValue();    // Don't custom lower most intrinsics.
8464 
8465   // If this is a non-dot comparison, make the VCMP node and we are done.
8466   if (!isDot) {
8467     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8468                               Op.getOperand(1), Op.getOperand(2),
8469                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8470     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8471   }
8472 
8473   // Create the PPCISD altivec 'dot' comparison node.
8474   SDValue Ops[] = {
8475     Op.getOperand(2),  // LHS
8476     Op.getOperand(3),  // RHS
8477     DAG.getConstant(CompareOpc, dl, MVT::i32)
8478   };
8479   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8480   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8481 
8482   // Now that we have the comparison, emit a copy from the CR to a GPR.
8483   // This is flagged to the above dot comparison.
8484   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8485                                 DAG.getRegister(PPC::CR6, MVT::i32),
8486                                 CompNode.getValue(1));
8487 
8488   // Unpack the result based on how the target uses it.
8489   unsigned BitNo;   // Bit # of CR6.
8490   bool InvertBit;   // Invert result?
8491   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8492   default:  // Can't happen, don't crash on invalid number though.
8493   case 0:   // Return the value of the EQ bit of CR6.
8494     BitNo = 0; InvertBit = false;
8495     break;
8496   case 1:   // Return the inverted value of the EQ bit of CR6.
8497     BitNo = 0; InvertBit = true;
8498     break;
8499   case 2:   // Return the value of the LT bit of CR6.
8500     BitNo = 2; InvertBit = false;
8501     break;
8502   case 3:   // Return the inverted value of the LT bit of CR6.
8503     BitNo = 2; InvertBit = true;
8504     break;
8505   }
8506 
8507   // Shift the bit into the low position.
8508   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8509                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8510   // Isolate the bit.
8511   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8512                       DAG.getConstant(1, dl, MVT::i32));
8513 
8514   // If we are supposed to, toggle the bit.
8515   if (InvertBit)
8516     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8517                         DAG.getConstant(1, dl, MVT::i32));
8518   return Flags;
8519 }
8520 
8521 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8522                                                SelectionDAG &DAG) const {
8523   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
8524   // the beginning of the argument list.
8525   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
8526   SDLoc DL(Op);
8527   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
8528   case Intrinsic::ppc_cfence: {
8529     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
8530     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
8531     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
8532                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
8533                                                   Op.getOperand(ArgStart + 1)),
8534                                       Op.getOperand(0)),
8535                    0);
8536   }
8537   default:
8538     break;
8539   }
8540   return SDValue();
8541 }
8542 
8543 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
8544   // Check for a DIV with the same operands as this REM.
8545   for (auto UI : Op.getOperand(1)->uses()) {
8546     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
8547         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
8548       if (UI->getOperand(0) == Op.getOperand(0) &&
8549           UI->getOperand(1) == Op.getOperand(1))
8550         return SDValue();
8551   }
8552   return Op;
8553 }
8554 
8555 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8556                                                   SelectionDAG &DAG) const {
8557   SDLoc dl(Op);
8558   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8559   // instructions), but for smaller types, we need to first extend up to v2i32
8560   // before doing going farther.
8561   if (Op.getValueType() == MVT::v2i64) {
8562     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8563     if (ExtVT != MVT::v2i32) {
8564       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8565       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8566                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8567                                         ExtVT.getVectorElementType(), 4)));
8568       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8569       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8570                        DAG.getValueType(MVT::v2i32));
8571     }
8572 
8573     return Op;
8574   }
8575 
8576   return SDValue();
8577 }
8578 
8579 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8580                                                  SelectionDAG &DAG) const {
8581   SDLoc dl(Op);
8582   // Create a stack slot that is 16-byte aligned.
8583   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8584   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8585   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8586   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8587 
8588   // Store the input value into Value#0 of the stack slot.
8589   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8590                                MachinePointerInfo());
8591   // Load it out.
8592   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8593 }
8594 
8595 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8596                                                   SelectionDAG &DAG) const {
8597   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8598          "Should only be called for ISD::INSERT_VECTOR_ELT");
8599   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8600   // We have legal lowering for constant indices but not for variable ones.
8601   if (C)
8602     return Op;
8603   return SDValue();
8604 }
8605 
8606 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8607                                                    SelectionDAG &DAG) const {
8608   SDLoc dl(Op);
8609   SDNode *N = Op.getNode();
8610 
8611   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
8612          "Unknown extract_vector_elt type");
8613 
8614   SDValue Value = N->getOperand(0);
8615 
8616   // The first part of this is like the store lowering except that we don't
8617   // need to track the chain.
8618 
8619   // The values are now known to be -1 (false) or 1 (true). To convert this
8620   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8621   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8622   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8623 
8624   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8625   // understand how to form the extending load.
8626   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8627 
8628   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8629 
8630   // Now convert to an integer and store.
8631   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8632     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8633     Value);
8634 
8635   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8636   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8637   MachinePointerInfo PtrInfo =
8638       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8639   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8640   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8641 
8642   SDValue StoreChain = DAG.getEntryNode();
8643   SDValue Ops[] = {StoreChain,
8644                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8645                    Value, FIdx};
8646   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8647 
8648   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8649     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8650 
8651   // Extract the value requested.
8652   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8653   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8654   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8655 
8656   SDValue IntVal =
8657       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
8658 
8659   if (!Subtarget.useCRBits())
8660     return IntVal;
8661 
8662   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
8663 }
8664 
8665 /// Lowering for QPX v4i1 loads
8666 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
8667                                            SelectionDAG &DAG) const {
8668   SDLoc dl(Op);
8669   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
8670   SDValue LoadChain = LN->getChain();
8671   SDValue BasePtr = LN->getBasePtr();
8672 
8673   if (Op.getValueType() == MVT::v4f64 ||
8674       Op.getValueType() == MVT::v4f32) {
8675     EVT MemVT = LN->getMemoryVT();
8676     unsigned Alignment = LN->getAlignment();
8677 
8678     // If this load is properly aligned, then it is legal.
8679     if (Alignment >= MemVT.getStoreSize())
8680       return Op;
8681 
8682     EVT ScalarVT = Op.getValueType().getScalarType(),
8683         ScalarMemVT = MemVT.getScalarType();
8684     unsigned Stride = ScalarMemVT.getStoreSize();
8685 
8686     SDValue Vals[4], LoadChains[4];
8687     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8688       SDValue Load;
8689       if (ScalarVT != ScalarMemVT)
8690         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
8691                               BasePtr,
8692                               LN->getPointerInfo().getWithOffset(Idx * Stride),
8693                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8694                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
8695       else
8696         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
8697                            LN->getPointerInfo().getWithOffset(Idx * Stride),
8698                            MinAlign(Alignment, Idx * Stride),
8699                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
8700 
8701       if (Idx == 0 && LN->isIndexed()) {
8702         assert(LN->getAddressingMode() == ISD::PRE_INC &&
8703                "Unknown addressing mode on vector load");
8704         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
8705                                   LN->getAddressingMode());
8706       }
8707 
8708       Vals[Idx] = Load;
8709       LoadChains[Idx] = Load.getValue(1);
8710 
8711       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8712                             DAG.getConstant(Stride, dl,
8713                                             BasePtr.getValueType()));
8714     }
8715 
8716     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8717     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8718 
8719     if (LN->isIndexed()) {
8720       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8721       return DAG.getMergeValues(RetOps, dl);
8722     }
8723 
8724     SDValue RetOps[] = { Value, TF };
8725     return DAG.getMergeValues(RetOps, dl);
8726   }
8727 
8728   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8729   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8730 
8731   // To lower v4i1 from a byte array, we load the byte elements of the
8732   // vector and then reuse the BUILD_VECTOR logic.
8733 
8734   SDValue VectElmts[4], VectElmtChains[4];
8735   for (unsigned i = 0; i < 4; ++i) {
8736     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8737     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8738 
8739     VectElmts[i] = DAG.getExtLoad(
8740         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
8741         LN->getPointerInfo().getWithOffset(i), MVT::i8,
8742         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
8743     VectElmtChains[i] = VectElmts[i].getValue(1);
8744   }
8745 
8746   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
8747   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
8748 
8749   SDValue RVals[] = { Value, LoadChain };
8750   return DAG.getMergeValues(RVals, dl);
8751 }
8752 
8753 /// Lowering for QPX v4i1 stores
8754 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
8755                                             SelectionDAG &DAG) const {
8756   SDLoc dl(Op);
8757   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
8758   SDValue StoreChain = SN->getChain();
8759   SDValue BasePtr = SN->getBasePtr();
8760   SDValue Value = SN->getValue();
8761 
8762   if (Value.getValueType() == MVT::v4f64 ||
8763       Value.getValueType() == MVT::v4f32) {
8764     EVT MemVT = SN->getMemoryVT();
8765     unsigned Alignment = SN->getAlignment();
8766 
8767     // If this store is properly aligned, then it is legal.
8768     if (Alignment >= MemVT.getStoreSize())
8769       return Op;
8770 
8771     EVT ScalarVT = Value.getValueType().getScalarType(),
8772         ScalarMemVT = MemVT.getScalarType();
8773     unsigned Stride = ScalarMemVT.getStoreSize();
8774 
8775     SDValue Stores[4];
8776     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8777       SDValue Ex = DAG.getNode(
8778           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8779           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8780       SDValue Store;
8781       if (ScalarVT != ScalarMemVT)
8782         Store =
8783             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8784                               SN->getPointerInfo().getWithOffset(Idx * Stride),
8785                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8786                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
8787       else
8788         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
8789                              SN->getPointerInfo().getWithOffset(Idx * Stride),
8790                              MinAlign(Alignment, Idx * Stride),
8791                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
8792 
8793       if (Idx == 0 && SN->isIndexed()) {
8794         assert(SN->getAddressingMode() == ISD::PRE_INC &&
8795                "Unknown addressing mode on vector store");
8796         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8797                                     SN->getAddressingMode());
8798       }
8799 
8800       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8801                             DAG.getConstant(Stride, dl,
8802                                             BasePtr.getValueType()));
8803       Stores[Idx] = Store;
8804     }
8805 
8806     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8807 
8808     if (SN->isIndexed()) {
8809       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8810       return DAG.getMergeValues(RetOps, dl);
8811     }
8812 
8813     return TF;
8814   }
8815 
8816   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8817   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8818 
8819   // The values are now known to be -1 (false) or 1 (true). To convert this
8820   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8821   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8822   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8823 
8824   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8825   // understand how to form the extending load.
8826   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8827 
8828   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8829 
8830   // Now convert to an integer and store.
8831   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8832     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8833     Value);
8834 
8835   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8836   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8837   MachinePointerInfo PtrInfo =
8838       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8839   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8840   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8841 
8842   SDValue Ops[] = {StoreChain,
8843                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8844                    Value, FIdx};
8845   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8846 
8847   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8848     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8849 
8850   // Move data into the byte array.
8851   SDValue Loads[4], LoadChains[4];
8852   for (unsigned i = 0; i < 4; ++i) {
8853     unsigned Offset = 4*i;
8854     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8855     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8856 
8857     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8858                            PtrInfo.getWithOffset(Offset));
8859     LoadChains[i] = Loads[i].getValue(1);
8860   }
8861 
8862   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8863 
8864   SDValue Stores[4];
8865   for (unsigned i = 0; i < 4; ++i) {
8866     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8867     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8868 
8869     Stores[i] = DAG.getTruncStore(
8870         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8871         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
8872         SN->getAAInfo());
8873   }
8874 
8875   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8876 
8877   return StoreChain;
8878 }
8879 
8880 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8881   SDLoc dl(Op);
8882   if (Op.getValueType() == MVT::v4i32) {
8883     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8884 
8885     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8886     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8887 
8888     SDValue RHSSwap =   // = vrlw RHS, 16
8889       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8890 
8891     // Shrinkify inputs to v8i16.
8892     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8893     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8894     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8895 
8896     // Low parts multiplied together, generating 32-bit results (we ignore the
8897     // top parts).
8898     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8899                                         LHS, RHS, DAG, dl, MVT::v4i32);
8900 
8901     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8902                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8903     // Shift the high parts up 16 bits.
8904     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8905                               Neg16, DAG, dl);
8906     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8907   } else if (Op.getValueType() == MVT::v8i16) {
8908     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8909 
8910     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8911 
8912     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8913                             LHS, RHS, Zero, DAG, dl);
8914   } else if (Op.getValueType() == MVT::v16i8) {
8915     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8916     bool isLittleEndian = Subtarget.isLittleEndian();
8917 
8918     // Multiply the even 8-bit parts, producing 16-bit sums.
8919     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8920                                            LHS, RHS, DAG, dl, MVT::v8i16);
8921     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8922 
8923     // Multiply the odd 8-bit parts, producing 16-bit sums.
8924     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8925                                           LHS, RHS, DAG, dl, MVT::v8i16);
8926     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8927 
8928     // Merge the results together.  Because vmuleub and vmuloub are
8929     // instructions with a big-endian bias, we must reverse the
8930     // element numbering and reverse the meaning of "odd" and "even"
8931     // when generating little endian code.
8932     int Ops[16];
8933     for (unsigned i = 0; i != 8; ++i) {
8934       if (isLittleEndian) {
8935         Ops[i*2  ] = 2*i;
8936         Ops[i*2+1] = 2*i+16;
8937       } else {
8938         Ops[i*2  ] = 2*i+1;
8939         Ops[i*2+1] = 2*i+1+16;
8940       }
8941     }
8942     if (isLittleEndian)
8943       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8944     else
8945       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8946   } else {
8947     llvm_unreachable("Unknown mul to lower!");
8948   }
8949 }
8950 
8951 /// LowerOperation - Provide custom lowering hooks for some operations.
8952 ///
8953 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8954   switch (Op.getOpcode()) {
8955   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8956   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8957   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8958   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8959   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8960   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8961   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8962   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8963   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8964   case ISD::VASTART:
8965     return LowerVASTART(Op, DAG);
8966 
8967   case ISD::VAARG:
8968     return LowerVAARG(Op, DAG);
8969 
8970   case ISD::VACOPY:
8971     return LowerVACOPY(Op, DAG);
8972 
8973   case ISD::STACKRESTORE:
8974     return LowerSTACKRESTORE(Op, DAG);
8975 
8976   case ISD::DYNAMIC_STACKALLOC:
8977     return LowerDYNAMIC_STACKALLOC(Op, DAG);
8978 
8979   case ISD::GET_DYNAMIC_AREA_OFFSET:
8980     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
8981 
8982   case ISD::EH_DWARF_CFA:
8983     return LowerEH_DWARF_CFA(Op, DAG);
8984 
8985   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8986   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8987 
8988   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8989   case ISD::STORE:              return LowerSTORE(Op, DAG);
8990   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8991   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8992   case ISD::FP_TO_UINT:
8993   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8994                                                       SDLoc(Op));
8995   case ISD::UINT_TO_FP:
8996   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8997   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8998 
8999   // Lower 64-bit shifts.
9000   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9001   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9002   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9003 
9004   // Vector-related lowering.
9005   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9006   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9007   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9008   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9009   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9010   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9011   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9012   case ISD::MUL:                return LowerMUL(Op, DAG);
9013 
9014   // For counter-based loop handling.
9015   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9016 
9017   // Frame & Return address.
9018   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9019   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9020 
9021   case ISD::INTRINSIC_VOID:
9022     return LowerINTRINSIC_VOID(Op, DAG);
9023   case ISD::SREM:
9024   case ISD::UREM:
9025     return LowerREM(Op, DAG);
9026   }
9027 }
9028 
9029 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9030                                            SmallVectorImpl<SDValue>&Results,
9031                                            SelectionDAG &DAG) const {
9032   SDLoc dl(N);
9033   switch (N->getOpcode()) {
9034   default:
9035     llvm_unreachable("Do not know how to custom type legalize this operation!");
9036   case ISD::READCYCLECOUNTER: {
9037     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9038     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9039 
9040     Results.push_back(RTB);
9041     Results.push_back(RTB.getValue(1));
9042     Results.push_back(RTB.getValue(2));
9043     break;
9044   }
9045   case ISD::INTRINSIC_W_CHAIN: {
9046     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9047         Intrinsic::ppc_is_decremented_ctr_nonzero)
9048       break;
9049 
9050     assert(N->getValueType(0) == MVT::i1 &&
9051            "Unexpected result type for CTR decrement intrinsic");
9052     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9053                                  N->getValueType(0));
9054     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9055     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9056                                  N->getOperand(1));
9057 
9058     Results.push_back(NewInt);
9059     Results.push_back(NewInt.getValue(1));
9060     break;
9061   }
9062   case ISD::VAARG: {
9063     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9064       return;
9065 
9066     EVT VT = N->getValueType(0);
9067 
9068     if (VT == MVT::i64) {
9069       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9070 
9071       Results.push_back(NewNode);
9072       Results.push_back(NewNode.getValue(1));
9073     }
9074     return;
9075   }
9076   case ISD::FP_ROUND_INREG: {
9077     assert(N->getValueType(0) == MVT::ppcf128);
9078     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
9079     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9080                              MVT::f64, N->getOperand(0),
9081                              DAG.getIntPtrConstant(0, dl));
9082     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9083                              MVT::f64, N->getOperand(0),
9084                              DAG.getIntPtrConstant(1, dl));
9085 
9086     // Add the two halves of the long double in round-to-zero mode.
9087     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
9088 
9089     // We know the low half is about to be thrown away, so just use something
9090     // convenient.
9091     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
9092                                 FPreg, FPreg));
9093     return;
9094   }
9095   case ISD::FP_TO_SINT:
9096   case ISD::FP_TO_UINT:
9097     // LowerFP_TO_INT() can only handle f32 and f64.
9098     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9099       return;
9100     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9101     return;
9102   }
9103 }
9104 
9105 //===----------------------------------------------------------------------===//
9106 //  Other Lowering Code
9107 //===----------------------------------------------------------------------===//
9108 
9109 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9110   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9111   Function *Func = Intrinsic::getDeclaration(M, Id);
9112   return Builder.CreateCall(Func, {});
9113 }
9114 
9115 // The mappings for emitLeading/TrailingFence is taken from
9116 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9117 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9118                                                  Instruction *Inst,
9119                                                  AtomicOrdering Ord) const {
9120   if (Ord == AtomicOrdering::SequentiallyConsistent)
9121     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9122   if (isReleaseOrStronger(Ord))
9123     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9124   return nullptr;
9125 }
9126 
9127 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9128                                                   Instruction *Inst,
9129                                                   AtomicOrdering Ord) const {
9130   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9131     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9132     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9133     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9134     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9135       return Builder.CreateCall(
9136           Intrinsic::getDeclaration(
9137               Builder.GetInsertBlock()->getParent()->getParent(),
9138               Intrinsic::ppc_cfence, {Inst->getType()}),
9139           {Inst});
9140     // FIXME: Can use isync for rmw operation.
9141     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9142   }
9143   return nullptr;
9144 }
9145 
9146 MachineBasicBlock *
9147 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9148                                     unsigned AtomicSize,
9149                                     unsigned BinOpcode,
9150                                     unsigned CmpOpcode,
9151                                     unsigned CmpPred) const {
9152   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9153   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9154 
9155   auto LoadMnemonic = PPC::LDARX;
9156   auto StoreMnemonic = PPC::STDCX;
9157   switch (AtomicSize) {
9158   default:
9159     llvm_unreachable("Unexpected size of atomic entity");
9160   case 1:
9161     LoadMnemonic = PPC::LBARX;
9162     StoreMnemonic = PPC::STBCX;
9163     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9164     break;
9165   case 2:
9166     LoadMnemonic = PPC::LHARX;
9167     StoreMnemonic = PPC::STHCX;
9168     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9169     break;
9170   case 4:
9171     LoadMnemonic = PPC::LWARX;
9172     StoreMnemonic = PPC::STWCX;
9173     break;
9174   case 8:
9175     LoadMnemonic = PPC::LDARX;
9176     StoreMnemonic = PPC::STDCX;
9177     break;
9178   }
9179 
9180   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9181   MachineFunction *F = BB->getParent();
9182   MachineFunction::iterator It = ++BB->getIterator();
9183 
9184   unsigned dest = MI.getOperand(0).getReg();
9185   unsigned ptrA = MI.getOperand(1).getReg();
9186   unsigned ptrB = MI.getOperand(2).getReg();
9187   unsigned incr = MI.getOperand(3).getReg();
9188   DebugLoc dl = MI.getDebugLoc();
9189 
9190   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9191   MachineBasicBlock *loop2MBB =
9192     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9193   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9194   F->insert(It, loopMBB);
9195   if (CmpOpcode)
9196     F->insert(It, loop2MBB);
9197   F->insert(It, exitMBB);
9198   exitMBB->splice(exitMBB->begin(), BB,
9199                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9200   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9201 
9202   MachineRegisterInfo &RegInfo = F->getRegInfo();
9203   unsigned TmpReg = (!BinOpcode) ? incr :
9204     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9205                                            : &PPC::GPRCRegClass);
9206 
9207   //  thisMBB:
9208   //   ...
9209   //   fallthrough --> loopMBB
9210   BB->addSuccessor(loopMBB);
9211 
9212   //  loopMBB:
9213   //   l[wd]arx dest, ptr
9214   //   add r0, dest, incr
9215   //   st[wd]cx. r0, ptr
9216   //   bne- loopMBB
9217   //   fallthrough --> exitMBB
9218 
9219   // For max/min...
9220   //  loopMBB:
9221   //   l[wd]arx dest, ptr
9222   //   cmpl?[wd] incr, dest
9223   //   bgt exitMBB
9224   //  loop2MBB:
9225   //   st[wd]cx. dest, ptr
9226   //   bne- loopMBB
9227   //   fallthrough --> exitMBB
9228 
9229   BB = loopMBB;
9230   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9231     .addReg(ptrA).addReg(ptrB);
9232   if (BinOpcode)
9233     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9234   if (CmpOpcode) {
9235     // Signed comparisons of byte or halfword values must be sign-extended.
9236     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9237       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9238       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9239               ExtReg).addReg(dest);
9240       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9241         .addReg(incr).addReg(ExtReg);
9242     } else
9243       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9244         .addReg(incr).addReg(dest);
9245 
9246     BuildMI(BB, dl, TII->get(PPC::BCC))
9247       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9248     BB->addSuccessor(loop2MBB);
9249     BB->addSuccessor(exitMBB);
9250     BB = loop2MBB;
9251   }
9252   BuildMI(BB, dl, TII->get(StoreMnemonic))
9253     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9254   BuildMI(BB, dl, TII->get(PPC::BCC))
9255     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9256   BB->addSuccessor(loopMBB);
9257   BB->addSuccessor(exitMBB);
9258 
9259   //  exitMBB:
9260   //   ...
9261   BB = exitMBB;
9262   return BB;
9263 }
9264 
9265 MachineBasicBlock *
9266 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9267                                             MachineBasicBlock *BB,
9268                                             bool is8bit, // operation
9269                                             unsigned BinOpcode,
9270                                             unsigned CmpOpcode,
9271                                             unsigned CmpPred) const {
9272   // If we support part-word atomic mnemonics, just use them
9273   if (Subtarget.hasPartwordAtomics())
9274     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9275                             CmpOpcode, CmpPred);
9276 
9277   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9278   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9279   // In 64 bit mode we have to use 64 bits for addresses, even though the
9280   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9281   // registers without caring whether they're 32 or 64, but here we're
9282   // doing actual arithmetic on the addresses.
9283   bool is64bit = Subtarget.isPPC64();
9284   bool isLittleEndian = Subtarget.isLittleEndian();
9285   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9286 
9287   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9288   MachineFunction *F = BB->getParent();
9289   MachineFunction::iterator It = ++BB->getIterator();
9290 
9291   unsigned dest = MI.getOperand(0).getReg();
9292   unsigned ptrA = MI.getOperand(1).getReg();
9293   unsigned ptrB = MI.getOperand(2).getReg();
9294   unsigned incr = MI.getOperand(3).getReg();
9295   DebugLoc dl = MI.getDebugLoc();
9296 
9297   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9298   MachineBasicBlock *loop2MBB =
9299     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9300   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9301   F->insert(It, loopMBB);
9302   if (CmpOpcode)
9303     F->insert(It, loop2MBB);
9304   F->insert(It, exitMBB);
9305   exitMBB->splice(exitMBB->begin(), BB,
9306                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9307   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9308 
9309   MachineRegisterInfo &RegInfo = F->getRegInfo();
9310   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9311                                           : &PPC::GPRCRegClass;
9312   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9313   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9314   unsigned ShiftReg =
9315     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9316   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9317   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9318   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9319   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9320   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9321   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9322   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9323   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9324   unsigned Ptr1Reg;
9325   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9326 
9327   //  thisMBB:
9328   //   ...
9329   //   fallthrough --> loopMBB
9330   BB->addSuccessor(loopMBB);
9331 
9332   // The 4-byte load must be aligned, while a char or short may be
9333   // anywhere in the word.  Hence all this nasty bookkeeping code.
9334   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9335   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9336   //   xori shift, shift1, 24 [16]
9337   //   rlwinm ptr, ptr1, 0, 0, 29
9338   //   slw incr2, incr, shift
9339   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9340   //   slw mask, mask2, shift
9341   //  loopMBB:
9342   //   lwarx tmpDest, ptr
9343   //   add tmp, tmpDest, incr2
9344   //   andc tmp2, tmpDest, mask
9345   //   and tmp3, tmp, mask
9346   //   or tmp4, tmp3, tmp2
9347   //   stwcx. tmp4, ptr
9348   //   bne- loopMBB
9349   //   fallthrough --> exitMBB
9350   //   srw dest, tmpDest, shift
9351   if (ptrA != ZeroReg) {
9352     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9353     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9354       .addReg(ptrA).addReg(ptrB);
9355   } else {
9356     Ptr1Reg = ptrB;
9357   }
9358   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9359       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9360   if (!isLittleEndian)
9361     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9362         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9363   if (is64bit)
9364     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9365       .addReg(Ptr1Reg).addImm(0).addImm(61);
9366   else
9367     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9368       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9369   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9370       .addReg(incr).addReg(ShiftReg);
9371   if (is8bit)
9372     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9373   else {
9374     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9375     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9376   }
9377   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9378       .addReg(Mask2Reg).addReg(ShiftReg);
9379 
9380   BB = loopMBB;
9381   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9382     .addReg(ZeroReg).addReg(PtrReg);
9383   if (BinOpcode)
9384     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9385       .addReg(Incr2Reg).addReg(TmpDestReg);
9386   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9387     .addReg(TmpDestReg).addReg(MaskReg);
9388   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9389     .addReg(TmpReg).addReg(MaskReg);
9390   if (CmpOpcode) {
9391     // For unsigned comparisons, we can directly compare the shifted values.
9392     // For signed comparisons we shift and sign extend.
9393     unsigned SReg = RegInfo.createVirtualRegister(RC);
9394     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9395       .addReg(TmpDestReg).addReg(MaskReg);
9396     unsigned ValueReg = SReg;
9397     unsigned CmpReg = Incr2Reg;
9398     if (CmpOpcode == PPC::CMPW) {
9399       ValueReg = RegInfo.createVirtualRegister(RC);
9400       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9401         .addReg(SReg).addReg(ShiftReg);
9402       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9403       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9404         .addReg(ValueReg);
9405       ValueReg = ValueSReg;
9406       CmpReg = incr;
9407     }
9408     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9409       .addReg(CmpReg).addReg(ValueReg);
9410     BuildMI(BB, dl, TII->get(PPC::BCC))
9411       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9412     BB->addSuccessor(loop2MBB);
9413     BB->addSuccessor(exitMBB);
9414     BB = loop2MBB;
9415   }
9416   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9417     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9418   BuildMI(BB, dl, TII->get(PPC::STWCX))
9419     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9420   BuildMI(BB, dl, TII->get(PPC::BCC))
9421     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9422   BB->addSuccessor(loopMBB);
9423   BB->addSuccessor(exitMBB);
9424 
9425   //  exitMBB:
9426   //   ...
9427   BB = exitMBB;
9428   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9429     .addReg(ShiftReg);
9430   return BB;
9431 }
9432 
9433 llvm::MachineBasicBlock *
9434 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9435                                     MachineBasicBlock *MBB) const {
9436   DebugLoc DL = MI.getDebugLoc();
9437   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9438   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9439 
9440   MachineFunction *MF = MBB->getParent();
9441   MachineRegisterInfo &MRI = MF->getRegInfo();
9442 
9443   const BasicBlock *BB = MBB->getBasicBlock();
9444   MachineFunction::iterator I = ++MBB->getIterator();
9445 
9446   // Memory Reference
9447   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9448   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9449 
9450   unsigned DstReg = MI.getOperand(0).getReg();
9451   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9452   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9453   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9454   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9455 
9456   MVT PVT = getPointerTy(MF->getDataLayout());
9457   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9458          "Invalid Pointer Size!");
9459   // For v = setjmp(buf), we generate
9460   //
9461   // thisMBB:
9462   //  SjLjSetup mainMBB
9463   //  bl mainMBB
9464   //  v_restore = 1
9465   //  b sinkMBB
9466   //
9467   // mainMBB:
9468   //  buf[LabelOffset] = LR
9469   //  v_main = 0
9470   //
9471   // sinkMBB:
9472   //  v = phi(main, restore)
9473   //
9474 
9475   MachineBasicBlock *thisMBB = MBB;
9476   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9477   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9478   MF->insert(I, mainMBB);
9479   MF->insert(I, sinkMBB);
9480 
9481   MachineInstrBuilder MIB;
9482 
9483   // Transfer the remainder of BB and its successor edges to sinkMBB.
9484   sinkMBB->splice(sinkMBB->begin(), MBB,
9485                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9486   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9487 
9488   // Note that the structure of the jmp_buf used here is not compatible
9489   // with that used by libc, and is not designed to be. Specifically, it
9490   // stores only those 'reserved' registers that LLVM does not otherwise
9491   // understand how to spill. Also, by convention, by the time this
9492   // intrinsic is called, Clang has already stored the frame address in the
9493   // first slot of the buffer and stack address in the third. Following the
9494   // X86 target code, we'll store the jump address in the second slot. We also
9495   // need to save the TOC pointer (R2) to handle jumps between shared
9496   // libraries, and that will be stored in the fourth slot. The thread
9497   // identifier (R13) is not affected.
9498 
9499   // thisMBB:
9500   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9501   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9502   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9503 
9504   // Prepare IP either in reg.
9505   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9506   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9507   unsigned BufReg = MI.getOperand(1).getReg();
9508 
9509   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9510     setUsesTOCBasePtr(*MBB->getParent());
9511     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9512             .addReg(PPC::X2)
9513             .addImm(TOCOffset)
9514             .addReg(BufReg);
9515     MIB.setMemRefs(MMOBegin, MMOEnd);
9516   }
9517 
9518   // Naked functions never have a base pointer, and so we use r1. For all
9519   // other functions, this decision must be delayed until during PEI.
9520   unsigned BaseReg;
9521   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
9522     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9523   else
9524     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9525 
9526   MIB = BuildMI(*thisMBB, MI, DL,
9527                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9528             .addReg(BaseReg)
9529             .addImm(BPOffset)
9530             .addReg(BufReg);
9531   MIB.setMemRefs(MMOBegin, MMOEnd);
9532 
9533   // Setup
9534   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9535   MIB.addRegMask(TRI->getNoPreservedMask());
9536 
9537   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9538 
9539   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9540           .addMBB(mainMBB);
9541   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9542 
9543   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9544   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9545 
9546   // mainMBB:
9547   //  mainDstReg = 0
9548   MIB =
9549       BuildMI(mainMBB, DL,
9550               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9551 
9552   // Store IP
9553   if (Subtarget.isPPC64()) {
9554     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9555             .addReg(LabelReg)
9556             .addImm(LabelOffset)
9557             .addReg(BufReg);
9558   } else {
9559     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9560             .addReg(LabelReg)
9561             .addImm(LabelOffset)
9562             .addReg(BufReg);
9563   }
9564 
9565   MIB.setMemRefs(MMOBegin, MMOEnd);
9566 
9567   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9568   mainMBB->addSuccessor(sinkMBB);
9569 
9570   // sinkMBB:
9571   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9572           TII->get(PPC::PHI), DstReg)
9573     .addReg(mainDstReg).addMBB(mainMBB)
9574     .addReg(restoreDstReg).addMBB(thisMBB);
9575 
9576   MI.eraseFromParent();
9577   return sinkMBB;
9578 }
9579 
9580 MachineBasicBlock *
9581 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9582                                      MachineBasicBlock *MBB) const {
9583   DebugLoc DL = MI.getDebugLoc();
9584   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9585 
9586   MachineFunction *MF = MBB->getParent();
9587   MachineRegisterInfo &MRI = MF->getRegInfo();
9588 
9589   // Memory Reference
9590   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9591   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9592 
9593   MVT PVT = getPointerTy(MF->getDataLayout());
9594   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9595          "Invalid Pointer Size!");
9596 
9597   const TargetRegisterClass *RC =
9598     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9599   unsigned Tmp = MRI.createVirtualRegister(RC);
9600   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9601   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9602   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9603   unsigned BP =
9604       (PVT == MVT::i64)
9605           ? PPC::X30
9606           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
9607                                                               : PPC::R30);
9608 
9609   MachineInstrBuilder MIB;
9610 
9611   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9612   const int64_t SPOffset    = 2 * PVT.getStoreSize();
9613   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9614   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9615 
9616   unsigned BufReg = MI.getOperand(0).getReg();
9617 
9618   // Reload FP (the jumped-to function may not have had a
9619   // frame pointer, and if so, then its r31 will be restored
9620   // as necessary).
9621   if (PVT == MVT::i64) {
9622     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
9623             .addImm(0)
9624             .addReg(BufReg);
9625   } else {
9626     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
9627             .addImm(0)
9628             .addReg(BufReg);
9629   }
9630   MIB.setMemRefs(MMOBegin, MMOEnd);
9631 
9632   // Reload IP
9633   if (PVT == MVT::i64) {
9634     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
9635             .addImm(LabelOffset)
9636             .addReg(BufReg);
9637   } else {
9638     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
9639             .addImm(LabelOffset)
9640             .addReg(BufReg);
9641   }
9642   MIB.setMemRefs(MMOBegin, MMOEnd);
9643 
9644   // Reload SP
9645   if (PVT == MVT::i64) {
9646     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
9647             .addImm(SPOffset)
9648             .addReg(BufReg);
9649   } else {
9650     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
9651             .addImm(SPOffset)
9652             .addReg(BufReg);
9653   }
9654   MIB.setMemRefs(MMOBegin, MMOEnd);
9655 
9656   // Reload BP
9657   if (PVT == MVT::i64) {
9658     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
9659             .addImm(BPOffset)
9660             .addReg(BufReg);
9661   } else {
9662     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
9663             .addImm(BPOffset)
9664             .addReg(BufReg);
9665   }
9666   MIB.setMemRefs(MMOBegin, MMOEnd);
9667 
9668   // Reload TOC
9669   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
9670     setUsesTOCBasePtr(*MBB->getParent());
9671     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
9672             .addImm(TOCOffset)
9673             .addReg(BufReg);
9674 
9675     MIB.setMemRefs(MMOBegin, MMOEnd);
9676   }
9677 
9678   // Jump
9679   BuildMI(*MBB, MI, DL,
9680           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
9681   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
9682 
9683   MI.eraseFromParent();
9684   return MBB;
9685 }
9686 
9687 MachineBasicBlock *
9688 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9689                                                MachineBasicBlock *BB) const {
9690   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
9691       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9692     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
9693         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9694       // Call lowering should have added an r2 operand to indicate a dependence
9695       // on the TOC base pointer value. It can't however, because there is no
9696       // way to mark the dependence as implicit there, and so the stackmap code
9697       // will confuse it with a regular operand. Instead, add the dependence
9698       // here.
9699       setUsesTOCBasePtr(*BB->getParent());
9700       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
9701     }
9702 
9703     return emitPatchPoint(MI, BB);
9704   }
9705 
9706   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
9707       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
9708     return emitEHSjLjSetJmp(MI, BB);
9709   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
9710              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
9711     return emitEHSjLjLongJmp(MI, BB);
9712   }
9713 
9714   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9715 
9716   // To "insert" these instructions we actually have to insert their
9717   // control-flow patterns.
9718   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9719   MachineFunction::iterator It = ++BB->getIterator();
9720 
9721   MachineFunction *F = BB->getParent();
9722 
9723   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9724        MI.getOpcode() == PPC::SELECT_CC_I8 ||
9725        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
9726     SmallVector<MachineOperand, 2> Cond;
9727     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9728         MI.getOpcode() == PPC::SELECT_CC_I8)
9729       Cond.push_back(MI.getOperand(4));
9730     else
9731       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
9732     Cond.push_back(MI.getOperand(1));
9733 
9734     DebugLoc dl = MI.getDebugLoc();
9735     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
9736                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
9737   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9738              MI.getOpcode() == PPC::SELECT_CC_I8 ||
9739              MI.getOpcode() == PPC::SELECT_CC_F4 ||
9740              MI.getOpcode() == PPC::SELECT_CC_F8 ||
9741              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
9742              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
9743              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
9744              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
9745              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
9746              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
9747              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
9748              MI.getOpcode() == PPC::SELECT_I4 ||
9749              MI.getOpcode() == PPC::SELECT_I8 ||
9750              MI.getOpcode() == PPC::SELECT_F4 ||
9751              MI.getOpcode() == PPC::SELECT_F8 ||
9752              MI.getOpcode() == PPC::SELECT_QFRC ||
9753              MI.getOpcode() == PPC::SELECT_QSRC ||
9754              MI.getOpcode() == PPC::SELECT_QBRC ||
9755              MI.getOpcode() == PPC::SELECT_VRRC ||
9756              MI.getOpcode() == PPC::SELECT_VSFRC ||
9757              MI.getOpcode() == PPC::SELECT_VSSRC ||
9758              MI.getOpcode() == PPC::SELECT_VSRC) {
9759     // The incoming instruction knows the destination vreg to set, the
9760     // condition code register to branch on, the true/false values to
9761     // select between, and a branch opcode to use.
9762 
9763     //  thisMBB:
9764     //  ...
9765     //   TrueVal = ...
9766     //   cmpTY ccX, r1, r2
9767     //   bCC copy1MBB
9768     //   fallthrough --> copy0MBB
9769     MachineBasicBlock *thisMBB = BB;
9770     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9771     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9772     DebugLoc dl = MI.getDebugLoc();
9773     F->insert(It, copy0MBB);
9774     F->insert(It, sinkMBB);
9775 
9776     // Transfer the remainder of BB and its successor edges to sinkMBB.
9777     sinkMBB->splice(sinkMBB->begin(), BB,
9778                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9779     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9780 
9781     // Next, add the true and fallthrough blocks as its successors.
9782     BB->addSuccessor(copy0MBB);
9783     BB->addSuccessor(sinkMBB);
9784 
9785     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
9786         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
9787         MI.getOpcode() == PPC::SELECT_QFRC ||
9788         MI.getOpcode() == PPC::SELECT_QSRC ||
9789         MI.getOpcode() == PPC::SELECT_QBRC ||
9790         MI.getOpcode() == PPC::SELECT_VRRC ||
9791         MI.getOpcode() == PPC::SELECT_VSFRC ||
9792         MI.getOpcode() == PPC::SELECT_VSSRC ||
9793         MI.getOpcode() == PPC::SELECT_VSRC) {
9794       BuildMI(BB, dl, TII->get(PPC::BC))
9795           .addReg(MI.getOperand(1).getReg())
9796           .addMBB(sinkMBB);
9797     } else {
9798       unsigned SelectPred = MI.getOperand(4).getImm();
9799       BuildMI(BB, dl, TII->get(PPC::BCC))
9800           .addImm(SelectPred)
9801           .addReg(MI.getOperand(1).getReg())
9802           .addMBB(sinkMBB);
9803     }
9804 
9805     //  copy0MBB:
9806     //   %FalseValue = ...
9807     //   # fallthrough to sinkMBB
9808     BB = copy0MBB;
9809 
9810     // Update machine-CFG edges
9811     BB->addSuccessor(sinkMBB);
9812 
9813     //  sinkMBB:
9814     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9815     //  ...
9816     BB = sinkMBB;
9817     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
9818         .addReg(MI.getOperand(3).getReg())
9819         .addMBB(copy0MBB)
9820         .addReg(MI.getOperand(2).getReg())
9821         .addMBB(thisMBB);
9822   } else if (MI.getOpcode() == PPC::ReadTB) {
9823     // To read the 64-bit time-base register on a 32-bit target, we read the
9824     // two halves. Should the counter have wrapped while it was being read, we
9825     // need to try again.
9826     // ...
9827     // readLoop:
9828     // mfspr Rx,TBU # load from TBU
9829     // mfspr Ry,TB  # load from TB
9830     // mfspr Rz,TBU # load from TBU
9831     // cmpw crX,Rx,Rz # check if 'old'='new'
9832     // bne readLoop   # branch if they're not equal
9833     // ...
9834 
9835     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
9836     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9837     DebugLoc dl = MI.getDebugLoc();
9838     F->insert(It, readMBB);
9839     F->insert(It, sinkMBB);
9840 
9841     // Transfer the remainder of BB and its successor edges to sinkMBB.
9842     sinkMBB->splice(sinkMBB->begin(), BB,
9843                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9844     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9845 
9846     BB->addSuccessor(readMBB);
9847     BB = readMBB;
9848 
9849     MachineRegisterInfo &RegInfo = F->getRegInfo();
9850     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9851     unsigned LoReg = MI.getOperand(0).getReg();
9852     unsigned HiReg = MI.getOperand(1).getReg();
9853 
9854     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9855     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9856     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9857 
9858     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9859 
9860     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9861       .addReg(HiReg).addReg(ReadAgainReg);
9862     BuildMI(BB, dl, TII->get(PPC::BCC))
9863       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9864 
9865     BB->addSuccessor(readMBB);
9866     BB->addSuccessor(sinkMBB);
9867   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9868     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9869   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9870     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9871   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9872     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9873   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9874     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9875 
9876   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9877     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9878   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9879     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9880   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9881     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9882   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9883     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9884 
9885   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9886     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9887   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9888     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9889   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9890     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9891   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9892     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9893 
9894   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9895     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9896   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9897     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9898   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9899     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9900   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9901     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9902 
9903   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9904     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9905   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9906     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9907   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9908     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9909   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9910     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9911 
9912   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9913     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9914   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9915     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9917     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9918   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9919     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9920 
9921   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
9922     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
9923   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
9924     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
9925   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
9926     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
9927   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
9928     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
9929 
9930   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
9931     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
9932   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
9933     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
9934   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
9935     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
9936   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
9937     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
9938 
9939   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
9940     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
9941   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
9942     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
9943   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
9944     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
9945   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
9946     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
9947 
9948   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
9949     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
9950   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
9951     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
9952   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
9953     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
9954   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
9955     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
9956 
9957   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
9958     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9959   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
9960     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9961   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
9962     BB = EmitAtomicBinary(MI, BB, 4, 0);
9963   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
9964     BB = EmitAtomicBinary(MI, BB, 8, 0);
9965   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9966            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9967            (Subtarget.hasPartwordAtomics() &&
9968             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9969            (Subtarget.hasPartwordAtomics() &&
9970             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9971     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9972 
9973     auto LoadMnemonic = PPC::LDARX;
9974     auto StoreMnemonic = PPC::STDCX;
9975     switch (MI.getOpcode()) {
9976     default:
9977       llvm_unreachable("Compare and swap of unknown size");
9978     case PPC::ATOMIC_CMP_SWAP_I8:
9979       LoadMnemonic = PPC::LBARX;
9980       StoreMnemonic = PPC::STBCX;
9981       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9982       break;
9983     case PPC::ATOMIC_CMP_SWAP_I16:
9984       LoadMnemonic = PPC::LHARX;
9985       StoreMnemonic = PPC::STHCX;
9986       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9987       break;
9988     case PPC::ATOMIC_CMP_SWAP_I32:
9989       LoadMnemonic = PPC::LWARX;
9990       StoreMnemonic = PPC::STWCX;
9991       break;
9992     case PPC::ATOMIC_CMP_SWAP_I64:
9993       LoadMnemonic = PPC::LDARX;
9994       StoreMnemonic = PPC::STDCX;
9995       break;
9996     }
9997     unsigned dest = MI.getOperand(0).getReg();
9998     unsigned ptrA = MI.getOperand(1).getReg();
9999     unsigned ptrB = MI.getOperand(2).getReg();
10000     unsigned oldval = MI.getOperand(3).getReg();
10001     unsigned newval = MI.getOperand(4).getReg();
10002     DebugLoc dl = MI.getDebugLoc();
10003 
10004     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10005     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10006     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10007     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10008     F->insert(It, loop1MBB);
10009     F->insert(It, loop2MBB);
10010     F->insert(It, midMBB);
10011     F->insert(It, exitMBB);
10012     exitMBB->splice(exitMBB->begin(), BB,
10013                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10014     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10015 
10016     //  thisMBB:
10017     //   ...
10018     //   fallthrough --> loopMBB
10019     BB->addSuccessor(loop1MBB);
10020 
10021     // loop1MBB:
10022     //   l[bhwd]arx dest, ptr
10023     //   cmp[wd] dest, oldval
10024     //   bne- midMBB
10025     // loop2MBB:
10026     //   st[bhwd]cx. newval, ptr
10027     //   bne- loopMBB
10028     //   b exitBB
10029     // midMBB:
10030     //   st[bhwd]cx. dest, ptr
10031     // exitBB:
10032     BB = loop1MBB;
10033     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10034       .addReg(ptrA).addReg(ptrB);
10035     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10036       .addReg(oldval).addReg(dest);
10037     BuildMI(BB, dl, TII->get(PPC::BCC))
10038       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10039     BB->addSuccessor(loop2MBB);
10040     BB->addSuccessor(midMBB);
10041 
10042     BB = loop2MBB;
10043     BuildMI(BB, dl, TII->get(StoreMnemonic))
10044       .addReg(newval).addReg(ptrA).addReg(ptrB);
10045     BuildMI(BB, dl, TII->get(PPC::BCC))
10046       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10047     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10048     BB->addSuccessor(loop1MBB);
10049     BB->addSuccessor(exitMBB);
10050 
10051     BB = midMBB;
10052     BuildMI(BB, dl, TII->get(StoreMnemonic))
10053       .addReg(dest).addReg(ptrA).addReg(ptrB);
10054     BB->addSuccessor(exitMBB);
10055 
10056     //  exitMBB:
10057     //   ...
10058     BB = exitMBB;
10059   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10060              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10061     // We must use 64-bit registers for addresses when targeting 64-bit,
10062     // since we're actually doing arithmetic on them.  Other registers
10063     // can be 32-bit.
10064     bool is64bit = Subtarget.isPPC64();
10065     bool isLittleEndian = Subtarget.isLittleEndian();
10066     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10067 
10068     unsigned dest = MI.getOperand(0).getReg();
10069     unsigned ptrA = MI.getOperand(1).getReg();
10070     unsigned ptrB = MI.getOperand(2).getReg();
10071     unsigned oldval = MI.getOperand(3).getReg();
10072     unsigned newval = MI.getOperand(4).getReg();
10073     DebugLoc dl = MI.getDebugLoc();
10074 
10075     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10076     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10077     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10078     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10079     F->insert(It, loop1MBB);
10080     F->insert(It, loop2MBB);
10081     F->insert(It, midMBB);
10082     F->insert(It, exitMBB);
10083     exitMBB->splice(exitMBB->begin(), BB,
10084                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10085     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10086 
10087     MachineRegisterInfo &RegInfo = F->getRegInfo();
10088     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10089                                             : &PPC::GPRCRegClass;
10090     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10091     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10092     unsigned ShiftReg =
10093       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10094     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10095     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10096     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10097     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10098     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10099     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10100     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10101     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10102     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10103     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10104     unsigned Ptr1Reg;
10105     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10106     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10107     //  thisMBB:
10108     //   ...
10109     //   fallthrough --> loopMBB
10110     BB->addSuccessor(loop1MBB);
10111 
10112     // The 4-byte load must be aligned, while a char or short may be
10113     // anywhere in the word.  Hence all this nasty bookkeeping code.
10114     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10115     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10116     //   xori shift, shift1, 24 [16]
10117     //   rlwinm ptr, ptr1, 0, 0, 29
10118     //   slw newval2, newval, shift
10119     //   slw oldval2, oldval,shift
10120     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10121     //   slw mask, mask2, shift
10122     //   and newval3, newval2, mask
10123     //   and oldval3, oldval2, mask
10124     // loop1MBB:
10125     //   lwarx tmpDest, ptr
10126     //   and tmp, tmpDest, mask
10127     //   cmpw tmp, oldval3
10128     //   bne- midMBB
10129     // loop2MBB:
10130     //   andc tmp2, tmpDest, mask
10131     //   or tmp4, tmp2, newval3
10132     //   stwcx. tmp4, ptr
10133     //   bne- loop1MBB
10134     //   b exitBB
10135     // midMBB:
10136     //   stwcx. tmpDest, ptr
10137     // exitBB:
10138     //   srw dest, tmpDest, shift
10139     if (ptrA != ZeroReg) {
10140       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10141       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10142         .addReg(ptrA).addReg(ptrB);
10143     } else {
10144       Ptr1Reg = ptrB;
10145     }
10146     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10147         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10148     if (!isLittleEndian)
10149       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10150           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10151     if (is64bit)
10152       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10153         .addReg(Ptr1Reg).addImm(0).addImm(61);
10154     else
10155       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10156         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10157     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10158         .addReg(newval).addReg(ShiftReg);
10159     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10160         .addReg(oldval).addReg(ShiftReg);
10161     if (is8bit)
10162       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10163     else {
10164       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10165       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10166         .addReg(Mask3Reg).addImm(65535);
10167     }
10168     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10169         .addReg(Mask2Reg).addReg(ShiftReg);
10170     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10171         .addReg(NewVal2Reg).addReg(MaskReg);
10172     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10173         .addReg(OldVal2Reg).addReg(MaskReg);
10174 
10175     BB = loop1MBB;
10176     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10177         .addReg(ZeroReg).addReg(PtrReg);
10178     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10179         .addReg(TmpDestReg).addReg(MaskReg);
10180     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10181         .addReg(TmpReg).addReg(OldVal3Reg);
10182     BuildMI(BB, dl, TII->get(PPC::BCC))
10183         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10184     BB->addSuccessor(loop2MBB);
10185     BB->addSuccessor(midMBB);
10186 
10187     BB = loop2MBB;
10188     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10189         .addReg(TmpDestReg).addReg(MaskReg);
10190     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10191         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10192     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10193         .addReg(ZeroReg).addReg(PtrReg);
10194     BuildMI(BB, dl, TII->get(PPC::BCC))
10195       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10196     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10197     BB->addSuccessor(loop1MBB);
10198     BB->addSuccessor(exitMBB);
10199 
10200     BB = midMBB;
10201     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10202       .addReg(ZeroReg).addReg(PtrReg);
10203     BB->addSuccessor(exitMBB);
10204 
10205     //  exitMBB:
10206     //   ...
10207     BB = exitMBB;
10208     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10209       .addReg(ShiftReg);
10210   } else if (MI.getOpcode() == PPC::FADDrtz) {
10211     // This pseudo performs an FADD with rounding mode temporarily forced
10212     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10213     // is not modeled at the SelectionDAG level.
10214     unsigned Dest = MI.getOperand(0).getReg();
10215     unsigned Src1 = MI.getOperand(1).getReg();
10216     unsigned Src2 = MI.getOperand(2).getReg();
10217     DebugLoc dl = MI.getDebugLoc();
10218 
10219     MachineRegisterInfo &RegInfo = F->getRegInfo();
10220     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10221 
10222     // Save FPSCR value.
10223     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10224 
10225     // Set rounding mode to round-to-zero.
10226     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10227     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10228 
10229     // Perform addition.
10230     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10231 
10232     // Restore FPSCR value.
10233     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10234   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10235              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10236              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10237              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10238     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10239                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10240                           ? PPC::ANDIo8
10241                           : PPC::ANDIo;
10242     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10243                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10244 
10245     MachineRegisterInfo &RegInfo = F->getRegInfo();
10246     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10247                                                   &PPC::GPRCRegClass :
10248                                                   &PPC::G8RCRegClass);
10249 
10250     DebugLoc dl = MI.getDebugLoc();
10251     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10252         .addReg(MI.getOperand(1).getReg())
10253         .addImm(1);
10254     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10255             MI.getOperand(0).getReg())
10256         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10257   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10258     DebugLoc Dl = MI.getDebugLoc();
10259     MachineRegisterInfo &RegInfo = F->getRegInfo();
10260     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10261     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10262     return BB;
10263   } else {
10264     llvm_unreachable("Unexpected instr type to insert");
10265   }
10266 
10267   MI.eraseFromParent(); // The pseudo instruction is gone now.
10268   return BB;
10269 }
10270 
10271 //===----------------------------------------------------------------------===//
10272 // Target Optimization Hooks
10273 //===----------------------------------------------------------------------===//
10274 
10275 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10276   // For the estimates, convergence is quadratic, so we essentially double the
10277   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10278   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10279   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10280   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10281   if (VT.getScalarType() == MVT::f64)
10282     RefinementSteps++;
10283   return RefinementSteps;
10284 }
10285 
10286 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10287                                            int Enabled, int &RefinementSteps,
10288                                            bool &UseOneConstNR,
10289                                            bool Reciprocal) const {
10290   EVT VT = Operand.getValueType();
10291   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10292       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10293       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10294       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10295       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10296       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10297     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10298       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10299 
10300     UseOneConstNR = true;
10301     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10302   }
10303   return SDValue();
10304 }
10305 
10306 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10307                                             int Enabled,
10308                                             int &RefinementSteps) const {
10309   EVT VT = Operand.getValueType();
10310   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10311       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10312       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10313       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10314       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10315       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10316     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10317       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10318     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10319   }
10320   return SDValue();
10321 }
10322 
10323 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10324   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10325   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10326   // enabled for division), this functionality is redundant with the default
10327   // combiner logic (once the division -> reciprocal/multiply transformation
10328   // has taken place). As a result, this matters more for older cores than for
10329   // newer ones.
10330 
10331   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10332   // reciprocal if there are two or more FDIVs (for embedded cores with only
10333   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10334   switch (Subtarget.getDarwinDirective()) {
10335   default:
10336     return 3;
10337   case PPC::DIR_440:
10338   case PPC::DIR_A2:
10339   case PPC::DIR_E500mc:
10340   case PPC::DIR_E5500:
10341     return 2;
10342   }
10343 }
10344 
10345 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10346 // collapsed, and so we need to look through chains of them.
10347 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10348                                      int64_t& Offset, SelectionDAG &DAG) {
10349   if (DAG.isBaseWithConstantOffset(Loc)) {
10350     Base = Loc.getOperand(0);
10351     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10352 
10353     // The base might itself be a base plus an offset, and if so, accumulate
10354     // that as well.
10355     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10356   }
10357 }
10358 
10359 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10360                             unsigned Bytes, int Dist,
10361                             SelectionDAG &DAG) {
10362   if (VT.getSizeInBits() / 8 != Bytes)
10363     return false;
10364 
10365   SDValue BaseLoc = Base->getBasePtr();
10366   if (Loc.getOpcode() == ISD::FrameIndex) {
10367     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10368       return false;
10369     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10370     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10371     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10372     int FS  = MFI.getObjectSize(FI);
10373     int BFS = MFI.getObjectSize(BFI);
10374     if (FS != BFS || FS != (int)Bytes) return false;
10375     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10376   }
10377 
10378   SDValue Base1 = Loc, Base2 = BaseLoc;
10379   int64_t Offset1 = 0, Offset2 = 0;
10380   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10381   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10382   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10383     return true;
10384 
10385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10386   const GlobalValue *GV1 = nullptr;
10387   const GlobalValue *GV2 = nullptr;
10388   Offset1 = 0;
10389   Offset2 = 0;
10390   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10391   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10392   if (isGA1 && isGA2 && GV1 == GV2)
10393     return Offset1 == (Offset2 + Dist*Bytes);
10394   return false;
10395 }
10396 
10397 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10398 // not enforce equality of the chain operands.
10399 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10400                             unsigned Bytes, int Dist,
10401                             SelectionDAG &DAG) {
10402   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10403     EVT VT = LS->getMemoryVT();
10404     SDValue Loc = LS->getBasePtr();
10405     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10406   }
10407 
10408   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10409     EVT VT;
10410     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10411     default: return false;
10412     case Intrinsic::ppc_qpx_qvlfd:
10413     case Intrinsic::ppc_qpx_qvlfda:
10414       VT = MVT::v4f64;
10415       break;
10416     case Intrinsic::ppc_qpx_qvlfs:
10417     case Intrinsic::ppc_qpx_qvlfsa:
10418       VT = MVT::v4f32;
10419       break;
10420     case Intrinsic::ppc_qpx_qvlfcd:
10421     case Intrinsic::ppc_qpx_qvlfcda:
10422       VT = MVT::v2f64;
10423       break;
10424     case Intrinsic::ppc_qpx_qvlfcs:
10425     case Intrinsic::ppc_qpx_qvlfcsa:
10426       VT = MVT::v2f32;
10427       break;
10428     case Intrinsic::ppc_qpx_qvlfiwa:
10429     case Intrinsic::ppc_qpx_qvlfiwz:
10430     case Intrinsic::ppc_altivec_lvx:
10431     case Intrinsic::ppc_altivec_lvxl:
10432     case Intrinsic::ppc_vsx_lxvw4x:
10433     case Intrinsic::ppc_vsx_lxvw4x_be:
10434       VT = MVT::v4i32;
10435       break;
10436     case Intrinsic::ppc_vsx_lxvd2x:
10437     case Intrinsic::ppc_vsx_lxvd2x_be:
10438       VT = MVT::v2f64;
10439       break;
10440     case Intrinsic::ppc_altivec_lvebx:
10441       VT = MVT::i8;
10442       break;
10443     case Intrinsic::ppc_altivec_lvehx:
10444       VT = MVT::i16;
10445       break;
10446     case Intrinsic::ppc_altivec_lvewx:
10447       VT = MVT::i32;
10448       break;
10449     }
10450 
10451     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10452   }
10453 
10454   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10455     EVT VT;
10456     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10457     default: return false;
10458     case Intrinsic::ppc_qpx_qvstfd:
10459     case Intrinsic::ppc_qpx_qvstfda:
10460       VT = MVT::v4f64;
10461       break;
10462     case Intrinsic::ppc_qpx_qvstfs:
10463     case Intrinsic::ppc_qpx_qvstfsa:
10464       VT = MVT::v4f32;
10465       break;
10466     case Intrinsic::ppc_qpx_qvstfcd:
10467     case Intrinsic::ppc_qpx_qvstfcda:
10468       VT = MVT::v2f64;
10469       break;
10470     case Intrinsic::ppc_qpx_qvstfcs:
10471     case Intrinsic::ppc_qpx_qvstfcsa:
10472       VT = MVT::v2f32;
10473       break;
10474     case Intrinsic::ppc_qpx_qvstfiw:
10475     case Intrinsic::ppc_qpx_qvstfiwa:
10476     case Intrinsic::ppc_altivec_stvx:
10477     case Intrinsic::ppc_altivec_stvxl:
10478     case Intrinsic::ppc_vsx_stxvw4x:
10479       VT = MVT::v4i32;
10480       break;
10481     case Intrinsic::ppc_vsx_stxvd2x:
10482       VT = MVT::v2f64;
10483       break;
10484     case Intrinsic::ppc_vsx_stxvw4x_be:
10485       VT = MVT::v4i32;
10486       break;
10487     case Intrinsic::ppc_vsx_stxvd2x_be:
10488       VT = MVT::v2f64;
10489       break;
10490     case Intrinsic::ppc_altivec_stvebx:
10491       VT = MVT::i8;
10492       break;
10493     case Intrinsic::ppc_altivec_stvehx:
10494       VT = MVT::i16;
10495       break;
10496     case Intrinsic::ppc_altivec_stvewx:
10497       VT = MVT::i32;
10498       break;
10499     }
10500 
10501     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10502   }
10503 
10504   return false;
10505 }
10506 
10507 // Return true is there is a nearyby consecutive load to the one provided
10508 // (regardless of alignment). We search up and down the chain, looking though
10509 // token factors and other loads (but nothing else). As a result, a true result
10510 // indicates that it is safe to create a new consecutive load adjacent to the
10511 // load provided.
10512 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10513   SDValue Chain = LD->getChain();
10514   EVT VT = LD->getMemoryVT();
10515 
10516   SmallSet<SDNode *, 16> LoadRoots;
10517   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10518   SmallSet<SDNode *, 16> Visited;
10519 
10520   // First, search up the chain, branching to follow all token-factor operands.
10521   // If we find a consecutive load, then we're done, otherwise, record all
10522   // nodes just above the top-level loads and token factors.
10523   while (!Queue.empty()) {
10524     SDNode *ChainNext = Queue.pop_back_val();
10525     if (!Visited.insert(ChainNext).second)
10526       continue;
10527 
10528     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10529       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10530         return true;
10531 
10532       if (!Visited.count(ChainLD->getChain().getNode()))
10533         Queue.push_back(ChainLD->getChain().getNode());
10534     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10535       for (const SDUse &O : ChainNext->ops())
10536         if (!Visited.count(O.getNode()))
10537           Queue.push_back(O.getNode());
10538     } else
10539       LoadRoots.insert(ChainNext);
10540   }
10541 
10542   // Second, search down the chain, starting from the top-level nodes recorded
10543   // in the first phase. These top-level nodes are the nodes just above all
10544   // loads and token factors. Starting with their uses, recursively look though
10545   // all loads (just the chain uses) and token factors to find a consecutive
10546   // load.
10547   Visited.clear();
10548   Queue.clear();
10549 
10550   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10551        IE = LoadRoots.end(); I != IE; ++I) {
10552     Queue.push_back(*I);
10553 
10554     while (!Queue.empty()) {
10555       SDNode *LoadRoot = Queue.pop_back_val();
10556       if (!Visited.insert(LoadRoot).second)
10557         continue;
10558 
10559       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10560         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10561           return true;
10562 
10563       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10564            UE = LoadRoot->use_end(); UI != UE; ++UI)
10565         if (((isa<MemSDNode>(*UI) &&
10566             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10567             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10568           Queue.push_back(*UI);
10569     }
10570   }
10571 
10572   return false;
10573 }
10574 
10575 /// This function is called when we have proved that a SETCC node can be replaced
10576 /// by subtraction (and other supporting instructions) so that the result of
10577 /// comparison is kept in a GPR instead of CR. This function is purely for
10578 /// codegen purposes and has some flags to guide the codegen process.
10579 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10580                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10581   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10582 
10583   // Zero extend the operands to the largest legal integer. Originally, they
10584   // must be of a strictly smaller size.
10585   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10586                          DAG.getConstant(Size, DL, MVT::i32));
10587   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10588                          DAG.getConstant(Size, DL, MVT::i32));
10589 
10590   // Swap if needed. Depends on the condition code.
10591   if (Swap)
10592     std::swap(Op0, Op1);
10593 
10594   // Subtract extended integers.
10595   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10596 
10597   // Move the sign bit to the least significant position and zero out the rest.
10598   // Now the least significant bit carries the result of original comparison.
10599   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10600                              DAG.getConstant(Size - 1, DL, MVT::i32));
10601   auto Final = Shifted;
10602 
10603   // Complement the result if needed. Based on the condition code.
10604   if (Complement)
10605     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10606                         DAG.getConstant(1, DL, MVT::i64));
10607 
10608   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
10609 }
10610 
10611 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
10612                                                   DAGCombinerInfo &DCI) const {
10613   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10614 
10615   SelectionDAG &DAG = DCI.DAG;
10616   SDLoc DL(N);
10617 
10618   // Size of integers being compared has a critical role in the following
10619   // analysis, so we prefer to do this when all types are legal.
10620   if (!DCI.isAfterLegalizeVectorOps())
10621     return SDValue();
10622 
10623   // If all users of SETCC extend its value to a legal integer type
10624   // then we replace SETCC with a subtraction
10625   for (SDNode::use_iterator UI = N->use_begin(),
10626        UE = N->use_end(); UI != UE; ++UI) {
10627     if (UI->getOpcode() != ISD::ZERO_EXTEND)
10628       return SDValue();
10629   }
10630 
10631   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10632   auto OpSize = N->getOperand(0).getValueSizeInBits();
10633 
10634   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
10635 
10636   if (OpSize < Size) {
10637     switch (CC) {
10638     default: break;
10639     case ISD::SETULT:
10640       return generateEquivalentSub(N, Size, false, false, DL, DAG);
10641     case ISD::SETULE:
10642       return generateEquivalentSub(N, Size, true, true, DL, DAG);
10643     case ISD::SETUGT:
10644       return generateEquivalentSub(N, Size, false, true, DL, DAG);
10645     case ISD::SETUGE:
10646       return generateEquivalentSub(N, Size, true, false, DL, DAG);
10647     }
10648   }
10649 
10650   return SDValue();
10651 }
10652 
10653 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
10654                                                   DAGCombinerInfo &DCI) const {
10655   SelectionDAG &DAG = DCI.DAG;
10656   SDLoc dl(N);
10657 
10658   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
10659   // If we're tracking CR bits, we need to be careful that we don't have:
10660   //   trunc(binary-ops(zext(x), zext(y)))
10661   // or
10662   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
10663   // such that we're unnecessarily moving things into GPRs when it would be
10664   // better to keep them in CR bits.
10665 
10666   // Note that trunc here can be an actual i1 trunc, or can be the effective
10667   // truncation that comes from a setcc or select_cc.
10668   if (N->getOpcode() == ISD::TRUNCATE &&
10669       N->getValueType(0) != MVT::i1)
10670     return SDValue();
10671 
10672   if (N->getOperand(0).getValueType() != MVT::i32 &&
10673       N->getOperand(0).getValueType() != MVT::i64)
10674     return SDValue();
10675 
10676   if (N->getOpcode() == ISD::SETCC ||
10677       N->getOpcode() == ISD::SELECT_CC) {
10678     // If we're looking at a comparison, then we need to make sure that the
10679     // high bits (all except for the first) don't matter the result.
10680     ISD::CondCode CC =
10681       cast<CondCodeSDNode>(N->getOperand(
10682         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
10683     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
10684 
10685     if (ISD::isSignedIntSetCC(CC)) {
10686       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
10687           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
10688         return SDValue();
10689     } else if (ISD::isUnsignedIntSetCC(CC)) {
10690       if (!DAG.MaskedValueIsZero(N->getOperand(0),
10691                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
10692           !DAG.MaskedValueIsZero(N->getOperand(1),
10693                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
10694         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
10695                                              : SDValue());
10696     } else {
10697       // This is neither a signed nor an unsigned comparison, just make sure
10698       // that the high bits are equal.
10699       KnownBits Op1Known, Op2Known;
10700       DAG.computeKnownBits(N->getOperand(0), Op1Known);
10701       DAG.computeKnownBits(N->getOperand(1), Op2Known);
10702 
10703       // We don't really care about what is known about the first bit (if
10704       // anything), so clear it in all masks prior to comparing them.
10705       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
10706       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
10707 
10708       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
10709         return SDValue();
10710     }
10711   }
10712 
10713   // We now know that the higher-order bits are irrelevant, we just need to
10714   // make sure that all of the intermediate operations are bit operations, and
10715   // all inputs are extensions.
10716   if (N->getOperand(0).getOpcode() != ISD::AND &&
10717       N->getOperand(0).getOpcode() != ISD::OR  &&
10718       N->getOperand(0).getOpcode() != ISD::XOR &&
10719       N->getOperand(0).getOpcode() != ISD::SELECT &&
10720       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
10721       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
10722       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
10723       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
10724       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
10725     return SDValue();
10726 
10727   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
10728       N->getOperand(1).getOpcode() != ISD::AND &&
10729       N->getOperand(1).getOpcode() != ISD::OR  &&
10730       N->getOperand(1).getOpcode() != ISD::XOR &&
10731       N->getOperand(1).getOpcode() != ISD::SELECT &&
10732       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
10733       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
10734       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
10735       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
10736       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
10737     return SDValue();
10738 
10739   SmallVector<SDValue, 4> Inputs;
10740   SmallVector<SDValue, 8> BinOps, PromOps;
10741   SmallPtrSet<SDNode *, 16> Visited;
10742 
10743   for (unsigned i = 0; i < 2; ++i) {
10744     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10745           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10746           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10747           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10748         isa<ConstantSDNode>(N->getOperand(i)))
10749       Inputs.push_back(N->getOperand(i));
10750     else
10751       BinOps.push_back(N->getOperand(i));
10752 
10753     if (N->getOpcode() == ISD::TRUNCATE)
10754       break;
10755   }
10756 
10757   // Visit all inputs, collect all binary operations (and, or, xor and
10758   // select) that are all fed by extensions.
10759   while (!BinOps.empty()) {
10760     SDValue BinOp = BinOps.back();
10761     BinOps.pop_back();
10762 
10763     if (!Visited.insert(BinOp.getNode()).second)
10764       continue;
10765 
10766     PromOps.push_back(BinOp);
10767 
10768     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10769       // The condition of the select is not promoted.
10770       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10771         continue;
10772       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10773         continue;
10774 
10775       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10776             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10777             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10778            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10779           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10780         Inputs.push_back(BinOp.getOperand(i));
10781       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10782                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10783                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10784                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10785                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
10786                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10787                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10788                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10789                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
10790         BinOps.push_back(BinOp.getOperand(i));
10791       } else {
10792         // We have an input that is not an extension or another binary
10793         // operation; we'll abort this transformation.
10794         return SDValue();
10795       }
10796     }
10797   }
10798 
10799   // Make sure that this is a self-contained cluster of operations (which
10800   // is not quite the same thing as saying that everything has only one
10801   // use).
10802   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10803     if (isa<ConstantSDNode>(Inputs[i]))
10804       continue;
10805 
10806     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10807                               UE = Inputs[i].getNode()->use_end();
10808          UI != UE; ++UI) {
10809       SDNode *User = *UI;
10810       if (User != N && !Visited.count(User))
10811         return SDValue();
10812 
10813       // Make sure that we're not going to promote the non-output-value
10814       // operand(s) or SELECT or SELECT_CC.
10815       // FIXME: Although we could sometimes handle this, and it does occur in
10816       // practice that one of the condition inputs to the select is also one of
10817       // the outputs, we currently can't deal with this.
10818       if (User->getOpcode() == ISD::SELECT) {
10819         if (User->getOperand(0) == Inputs[i])
10820           return SDValue();
10821       } else if (User->getOpcode() == ISD::SELECT_CC) {
10822         if (User->getOperand(0) == Inputs[i] ||
10823             User->getOperand(1) == Inputs[i])
10824           return SDValue();
10825       }
10826     }
10827   }
10828 
10829   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10830     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10831                               UE = PromOps[i].getNode()->use_end();
10832          UI != UE; ++UI) {
10833       SDNode *User = *UI;
10834       if (User != N && !Visited.count(User))
10835         return SDValue();
10836 
10837       // Make sure that we're not going to promote the non-output-value
10838       // operand(s) or SELECT or SELECT_CC.
10839       // FIXME: Although we could sometimes handle this, and it does occur in
10840       // practice that one of the condition inputs to the select is also one of
10841       // the outputs, we currently can't deal with this.
10842       if (User->getOpcode() == ISD::SELECT) {
10843         if (User->getOperand(0) == PromOps[i])
10844           return SDValue();
10845       } else if (User->getOpcode() == ISD::SELECT_CC) {
10846         if (User->getOperand(0) == PromOps[i] ||
10847             User->getOperand(1) == PromOps[i])
10848           return SDValue();
10849       }
10850     }
10851   }
10852 
10853   // Replace all inputs with the extension operand.
10854   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10855     // Constants may have users outside the cluster of to-be-promoted nodes,
10856     // and so we need to replace those as we do the promotions.
10857     if (isa<ConstantSDNode>(Inputs[i]))
10858       continue;
10859     else
10860       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
10861   }
10862 
10863   std::list<HandleSDNode> PromOpHandles;
10864   for (auto &PromOp : PromOps)
10865     PromOpHandles.emplace_back(PromOp);
10866 
10867   // Replace all operations (these are all the same, but have a different
10868   // (i1) return type). DAG.getNode will validate that the types of
10869   // a binary operator match, so go through the list in reverse so that
10870   // we've likely promoted both operands first. Any intermediate truncations or
10871   // extensions disappear.
10872   while (!PromOpHandles.empty()) {
10873     SDValue PromOp = PromOpHandles.back().getValue();
10874     PromOpHandles.pop_back();
10875 
10876     if (PromOp.getOpcode() == ISD::TRUNCATE ||
10877         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
10878         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
10879         PromOp.getOpcode() == ISD::ANY_EXTEND) {
10880       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
10881           PromOp.getOperand(0).getValueType() != MVT::i1) {
10882         // The operand is not yet ready (see comment below).
10883         PromOpHandles.emplace_front(PromOp);
10884         continue;
10885       }
10886 
10887       SDValue RepValue = PromOp.getOperand(0);
10888       if (isa<ConstantSDNode>(RepValue))
10889         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
10890 
10891       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
10892       continue;
10893     }
10894 
10895     unsigned C;
10896     switch (PromOp.getOpcode()) {
10897     default:             C = 0; break;
10898     case ISD::SELECT:    C = 1; break;
10899     case ISD::SELECT_CC: C = 2; break;
10900     }
10901 
10902     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10903          PromOp.getOperand(C).getValueType() != MVT::i1) ||
10904         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10905          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
10906       // The to-be-promoted operands of this node have not yet been
10907       // promoted (this should be rare because we're going through the
10908       // list backward, but if one of the operands has several users in
10909       // this cluster of to-be-promoted nodes, it is possible).
10910       PromOpHandles.emplace_front(PromOp);
10911       continue;
10912     }
10913 
10914     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10915                                 PromOp.getNode()->op_end());
10916 
10917     // If there are any constant inputs, make sure they're replaced now.
10918     for (unsigned i = 0; i < 2; ++i)
10919       if (isa<ConstantSDNode>(Ops[C+i]))
10920         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
10921 
10922     DAG.ReplaceAllUsesOfValueWith(PromOp,
10923       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
10924   }
10925 
10926   // Now we're left with the initial truncation itself.
10927   if (N->getOpcode() == ISD::TRUNCATE)
10928     return N->getOperand(0);
10929 
10930   // Otherwise, this is a comparison. The operands to be compared have just
10931   // changed type (to i1), but everything else is the same.
10932   return SDValue(N, 0);
10933 }
10934 
10935 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
10936                                                   DAGCombinerInfo &DCI) const {
10937   SelectionDAG &DAG = DCI.DAG;
10938   SDLoc dl(N);
10939 
10940   // If we're tracking CR bits, we need to be careful that we don't have:
10941   //   zext(binary-ops(trunc(x), trunc(y)))
10942   // or
10943   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
10944   // such that we're unnecessarily moving things into CR bits that can more
10945   // efficiently stay in GPRs. Note that if we're not certain that the high
10946   // bits are set as required by the final extension, we still may need to do
10947   // some masking to get the proper behavior.
10948 
10949   // This same functionality is important on PPC64 when dealing with
10950   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
10951   // the return values of functions. Because it is so similar, it is handled
10952   // here as well.
10953 
10954   if (N->getValueType(0) != MVT::i32 &&
10955       N->getValueType(0) != MVT::i64)
10956     return SDValue();
10957 
10958   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
10959         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
10960     return SDValue();
10961 
10962   if (N->getOperand(0).getOpcode() != ISD::AND &&
10963       N->getOperand(0).getOpcode() != ISD::OR  &&
10964       N->getOperand(0).getOpcode() != ISD::XOR &&
10965       N->getOperand(0).getOpcode() != ISD::SELECT &&
10966       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
10967     return SDValue();
10968 
10969   SmallVector<SDValue, 4> Inputs;
10970   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10971   SmallPtrSet<SDNode *, 16> Visited;
10972 
10973   // Visit all inputs, collect all binary operations (and, or, xor and
10974   // select) that are all fed by truncations.
10975   while (!BinOps.empty()) {
10976     SDValue BinOp = BinOps.back();
10977     BinOps.pop_back();
10978 
10979     if (!Visited.insert(BinOp.getNode()).second)
10980       continue;
10981 
10982     PromOps.push_back(BinOp);
10983 
10984     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10985       // The condition of the select is not promoted.
10986       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10987         continue;
10988       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10989         continue;
10990 
10991       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10992           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10993         Inputs.push_back(BinOp.getOperand(i));
10994       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10995                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10996                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10997                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10998                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10999         BinOps.push_back(BinOp.getOperand(i));
11000       } else {
11001         // We have an input that is not a truncation or another binary
11002         // operation; we'll abort this transformation.
11003         return SDValue();
11004       }
11005     }
11006   }
11007 
11008   // The operands of a select that must be truncated when the select is
11009   // promoted because the operand is actually part of the to-be-promoted set.
11010   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11011 
11012   // Make sure that this is a self-contained cluster of operations (which
11013   // is not quite the same thing as saying that everything has only one
11014   // use).
11015   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11016     if (isa<ConstantSDNode>(Inputs[i]))
11017       continue;
11018 
11019     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11020                               UE = Inputs[i].getNode()->use_end();
11021          UI != UE; ++UI) {
11022       SDNode *User = *UI;
11023       if (User != N && !Visited.count(User))
11024         return SDValue();
11025 
11026       // If we're going to promote the non-output-value operand(s) or SELECT or
11027       // SELECT_CC, record them for truncation.
11028       if (User->getOpcode() == ISD::SELECT) {
11029         if (User->getOperand(0) == Inputs[i])
11030           SelectTruncOp[0].insert(std::make_pair(User,
11031                                     User->getOperand(0).getValueType()));
11032       } else if (User->getOpcode() == ISD::SELECT_CC) {
11033         if (User->getOperand(0) == Inputs[i])
11034           SelectTruncOp[0].insert(std::make_pair(User,
11035                                     User->getOperand(0).getValueType()));
11036         if (User->getOperand(1) == Inputs[i])
11037           SelectTruncOp[1].insert(std::make_pair(User,
11038                                     User->getOperand(1).getValueType()));
11039       }
11040     }
11041   }
11042 
11043   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11044     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11045                               UE = PromOps[i].getNode()->use_end();
11046          UI != UE; ++UI) {
11047       SDNode *User = *UI;
11048       if (User != N && !Visited.count(User))
11049         return SDValue();
11050 
11051       // If we're going to promote the non-output-value operand(s) or SELECT or
11052       // SELECT_CC, record them for truncation.
11053       if (User->getOpcode() == ISD::SELECT) {
11054         if (User->getOperand(0) == PromOps[i])
11055           SelectTruncOp[0].insert(std::make_pair(User,
11056                                     User->getOperand(0).getValueType()));
11057       } else if (User->getOpcode() == ISD::SELECT_CC) {
11058         if (User->getOperand(0) == PromOps[i])
11059           SelectTruncOp[0].insert(std::make_pair(User,
11060                                     User->getOperand(0).getValueType()));
11061         if (User->getOperand(1) == PromOps[i])
11062           SelectTruncOp[1].insert(std::make_pair(User,
11063                                     User->getOperand(1).getValueType()));
11064       }
11065     }
11066   }
11067 
11068   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11069   bool ReallyNeedsExt = false;
11070   if (N->getOpcode() != ISD::ANY_EXTEND) {
11071     // If all of the inputs are not already sign/zero extended, then
11072     // we'll still need to do that at the end.
11073     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11074       if (isa<ConstantSDNode>(Inputs[i]))
11075         continue;
11076 
11077       unsigned OpBits =
11078         Inputs[i].getOperand(0).getValueSizeInBits();
11079       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11080 
11081       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11082            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11083                                   APInt::getHighBitsSet(OpBits,
11084                                                         OpBits-PromBits))) ||
11085           (N->getOpcode() == ISD::SIGN_EXTEND &&
11086            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11087              (OpBits-(PromBits-1)))) {
11088         ReallyNeedsExt = true;
11089         break;
11090       }
11091     }
11092   }
11093 
11094   // Replace all inputs, either with the truncation operand, or a
11095   // truncation or extension to the final output type.
11096   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11097     // Constant inputs need to be replaced with the to-be-promoted nodes that
11098     // use them because they might have users outside of the cluster of
11099     // promoted nodes.
11100     if (isa<ConstantSDNode>(Inputs[i]))
11101       continue;
11102 
11103     SDValue InSrc = Inputs[i].getOperand(0);
11104     if (Inputs[i].getValueType() == N->getValueType(0))
11105       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11106     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11107       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11108         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11109     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11110       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11111         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11112     else
11113       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11114         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11115   }
11116 
11117   std::list<HandleSDNode> PromOpHandles;
11118   for (auto &PromOp : PromOps)
11119     PromOpHandles.emplace_back(PromOp);
11120 
11121   // Replace all operations (these are all the same, but have a different
11122   // (promoted) return type). DAG.getNode will validate that the types of
11123   // a binary operator match, so go through the list in reverse so that
11124   // we've likely promoted both operands first.
11125   while (!PromOpHandles.empty()) {
11126     SDValue PromOp = PromOpHandles.back().getValue();
11127     PromOpHandles.pop_back();
11128 
11129     unsigned C;
11130     switch (PromOp.getOpcode()) {
11131     default:             C = 0; break;
11132     case ISD::SELECT:    C = 1; break;
11133     case ISD::SELECT_CC: C = 2; break;
11134     }
11135 
11136     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11137          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11138         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11139          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11140       // The to-be-promoted operands of this node have not yet been
11141       // promoted (this should be rare because we're going through the
11142       // list backward, but if one of the operands has several users in
11143       // this cluster of to-be-promoted nodes, it is possible).
11144       PromOpHandles.emplace_front(PromOp);
11145       continue;
11146     }
11147 
11148     // For SELECT and SELECT_CC nodes, we do a similar check for any
11149     // to-be-promoted comparison inputs.
11150     if (PromOp.getOpcode() == ISD::SELECT ||
11151         PromOp.getOpcode() == ISD::SELECT_CC) {
11152       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11153            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11154           (SelectTruncOp[1].count(PromOp.getNode()) &&
11155            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11156         PromOpHandles.emplace_front(PromOp);
11157         continue;
11158       }
11159     }
11160 
11161     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11162                                 PromOp.getNode()->op_end());
11163 
11164     // If this node has constant inputs, then they'll need to be promoted here.
11165     for (unsigned i = 0; i < 2; ++i) {
11166       if (!isa<ConstantSDNode>(Ops[C+i]))
11167         continue;
11168       if (Ops[C+i].getValueType() == N->getValueType(0))
11169         continue;
11170 
11171       if (N->getOpcode() == ISD::SIGN_EXTEND)
11172         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11173       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11174         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11175       else
11176         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11177     }
11178 
11179     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11180     // truncate them again to the original value type.
11181     if (PromOp.getOpcode() == ISD::SELECT ||
11182         PromOp.getOpcode() == ISD::SELECT_CC) {
11183       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11184       if (SI0 != SelectTruncOp[0].end())
11185         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11186       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11187       if (SI1 != SelectTruncOp[1].end())
11188         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11189     }
11190 
11191     DAG.ReplaceAllUsesOfValueWith(PromOp,
11192       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11193   }
11194 
11195   // Now we're left with the initial extension itself.
11196   if (!ReallyNeedsExt)
11197     return N->getOperand(0);
11198 
11199   // To zero extend, just mask off everything except for the first bit (in the
11200   // i1 case).
11201   if (N->getOpcode() == ISD::ZERO_EXTEND)
11202     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11203                        DAG.getConstant(APInt::getLowBitsSet(
11204                                          N->getValueSizeInBits(0), PromBits),
11205                                        dl, N->getValueType(0)));
11206 
11207   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11208          "Invalid extension type");
11209   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11210   SDValue ShiftCst =
11211       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11212   return DAG.getNode(
11213       ISD::SRA, dl, N->getValueType(0),
11214       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11215       ShiftCst);
11216 }
11217 
11218 /// \brief Reduces the number of fp-to-int conversion when building a vector.
11219 ///
11220 /// If this vector is built out of floating to integer conversions,
11221 /// transform it to a vector built out of floating point values followed by a
11222 /// single floating to integer conversion of the vector.
11223 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11224 /// becomes (fptosi (build_vector ($A, $B, ...)))
11225 SDValue PPCTargetLowering::
11226 combineElementTruncationToVectorTruncation(SDNode *N,
11227                                            DAGCombinerInfo &DCI) const {
11228   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11229          "Should be called with a BUILD_VECTOR node");
11230 
11231   SelectionDAG &DAG = DCI.DAG;
11232   SDLoc dl(N);
11233 
11234   SDValue FirstInput = N->getOperand(0);
11235   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11236          "The input operand must be an fp-to-int conversion.");
11237 
11238   // This combine happens after legalization so the fp_to_[su]i nodes are
11239   // already converted to PPCSISD nodes.
11240   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11241   if (FirstConversion == PPCISD::FCTIDZ ||
11242       FirstConversion == PPCISD::FCTIDUZ ||
11243       FirstConversion == PPCISD::FCTIWZ ||
11244       FirstConversion == PPCISD::FCTIWUZ) {
11245     bool IsSplat = true;
11246     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11247       FirstConversion == PPCISD::FCTIWUZ;
11248     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11249     SmallVector<SDValue, 4> Ops;
11250     EVT TargetVT = N->getValueType(0);
11251     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11252       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
11253         return SDValue();
11254       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
11255       if (NextConversion != FirstConversion)
11256         return SDValue();
11257       if (N->getOperand(i) != FirstInput)
11258         IsSplat = false;
11259     }
11260 
11261     // If this is a splat, we leave it as-is since there will be only a single
11262     // fp-to-int conversion followed by a splat of the integer. This is better
11263     // for 32-bit and smaller ints and neutral for 64-bit ints.
11264     if (IsSplat)
11265       return SDValue();
11266 
11267     // Now that we know we have the right type of node, get its operands
11268     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11269       SDValue In = N->getOperand(i).getOperand(0);
11270       // For 32-bit values, we need to add an FP_ROUND node.
11271       if (Is32Bit) {
11272         if (In.isUndef())
11273           Ops.push_back(DAG.getUNDEF(SrcVT));
11274         else {
11275           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11276                                       MVT::f32, In.getOperand(0),
11277                                       DAG.getIntPtrConstant(1, dl));
11278           Ops.push_back(Trunc);
11279         }
11280       } else
11281         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11282     }
11283 
11284     unsigned Opcode;
11285     if (FirstConversion == PPCISD::FCTIDZ ||
11286         FirstConversion == PPCISD::FCTIWZ)
11287       Opcode = ISD::FP_TO_SINT;
11288     else
11289       Opcode = ISD::FP_TO_UINT;
11290 
11291     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11292     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11293     return DAG.getNode(Opcode, dl, TargetVT, BV);
11294   }
11295   return SDValue();
11296 }
11297 
11298 /// \brief Reduce the number of loads when building a vector.
11299 ///
11300 /// Building a vector out of multiple loads can be converted to a load
11301 /// of the vector type if the loads are consecutive. If the loads are
11302 /// consecutive but in descending order, a shuffle is added at the end
11303 /// to reorder the vector.
11304 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11305   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11306          "Should be called with a BUILD_VECTOR node");
11307 
11308   SDLoc dl(N);
11309   bool InputsAreConsecutiveLoads = true;
11310   bool InputsAreReverseConsecutive = true;
11311   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11312   SDValue FirstInput = N->getOperand(0);
11313   bool IsRoundOfExtLoad = false;
11314 
11315   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11316       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11317     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11318     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11319   }
11320   // Not a build vector of (possibly fp_rounded) loads.
11321   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11322     return SDValue();
11323 
11324   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11325     // If any inputs are fp_round(extload), they all must be.
11326     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11327       return SDValue();
11328 
11329     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11330       N->getOperand(i);
11331     if (NextInput.getOpcode() != ISD::LOAD)
11332       return SDValue();
11333 
11334     SDValue PreviousInput =
11335       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11336     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11337     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11338 
11339     // If any inputs are fp_round(extload), they all must be.
11340     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11341       return SDValue();
11342 
11343     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11344       InputsAreConsecutiveLoads = false;
11345     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11346       InputsAreReverseConsecutive = false;
11347 
11348     // Exit early if the loads are neither consecutive nor reverse consecutive.
11349     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11350       return SDValue();
11351   }
11352 
11353   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11354          "The loads cannot be both consecutive and reverse consecutive.");
11355 
11356   SDValue FirstLoadOp =
11357     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11358   SDValue LastLoadOp =
11359     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11360                        N->getOperand(N->getNumOperands()-1);
11361 
11362   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11363   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11364   if (InputsAreConsecutiveLoads) {
11365     assert(LD1 && "Input needs to be a LoadSDNode.");
11366     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11367                        LD1->getBasePtr(), LD1->getPointerInfo(),
11368                        LD1->getAlignment());
11369   }
11370   if (InputsAreReverseConsecutive) {
11371     assert(LDL && "Input needs to be a LoadSDNode.");
11372     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11373                                LDL->getBasePtr(), LDL->getPointerInfo(),
11374                                LDL->getAlignment());
11375     SmallVector<int, 16> Ops;
11376     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11377       Ops.push_back(i);
11378 
11379     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11380                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11381   }
11382   return SDValue();
11383 }
11384 
11385 // This function adds the required vector_shuffle needed to get
11386 // the elements of the vector extract in the correct position
11387 // as specified by the CorrectElems encoding.
11388 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11389                                       SDValue Input, uint64_t Elems,
11390                                       uint64_t CorrectElems) {
11391   SDLoc dl(N);
11392 
11393   unsigned NumElems = Input.getValueType().getVectorNumElements();
11394   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11395 
11396   // Knowing the element indices being extracted from the original
11397   // vector and the order in which they're being inserted, just put
11398   // them at element indices required for the instruction.
11399   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11400     if (DAG.getDataLayout().isLittleEndian())
11401       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11402     else
11403       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11404     CorrectElems = CorrectElems >> 8;
11405     Elems = Elems >> 8;
11406   }
11407 
11408   SDValue Shuffle =
11409       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11410                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11411 
11412   EVT Ty = N->getValueType(0);
11413   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11414   return BV;
11415 }
11416 
11417 // Look for build vector patterns where input operands come from sign
11418 // extended vector_extract elements of specific indices. If the correct indices
11419 // aren't used, add a vector shuffle to fix up the indices and create a new
11420 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11421 // during instruction selection.
11422 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11423   // This array encodes the indices that the vector sign extend instructions
11424   // extract from when extending from one type to another for both BE and LE.
11425   // The right nibble of each byte corresponds to the LE incides.
11426   // and the left nibble of each byte corresponds to the BE incides.
11427   // For example: 0x3074B8FC  byte->word
11428   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11429   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11430   // For example: 0x000070F8  byte->double word
11431   // For LE: the allowed indices are: 0x0,0x8
11432   // For BE: the allowed indices are: 0x7,0xF
11433   uint64_t TargetElems[] = {
11434       0x3074B8FC, // b->w
11435       0x000070F8, // b->d
11436       0x10325476, // h->w
11437       0x00003074, // h->d
11438       0x00001032, // w->d
11439   };
11440 
11441   uint64_t Elems = 0;
11442   int Index;
11443   SDValue Input;
11444 
11445   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11446     if (!Op)
11447       return false;
11448     if (Op.getOpcode() != ISD::SIGN_EXTEND)
11449       return false;
11450 
11451     SDValue Extract = Op.getOperand(0);
11452     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11453       return false;
11454 
11455     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
11456     if (!ExtOp)
11457       return false;
11458 
11459     Index = ExtOp->getZExtValue();
11460     if (Input && Input != Extract.getOperand(0))
11461       return false;
11462 
11463     if (!Input)
11464       Input = Extract.getOperand(0);
11465 
11466     Elems = Elems << 8;
11467     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
11468     Elems |= Index;
11469 
11470     return true;
11471   };
11472 
11473   // If the build vector operands aren't sign extended vector extracts,
11474   // of the same input vector, then return.
11475   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11476     if (!isSExtOfVecExtract(N->getOperand(i))) {
11477       return SDValue();
11478     }
11479   }
11480 
11481   // If the vector extract indicies are not correct, add the appropriate
11482   // vector_shuffle.
11483   int TgtElemArrayIdx;
11484   int InputSize = Input.getValueType().getScalarSizeInBits();
11485   int OutputSize = N->getValueType(0).getScalarSizeInBits();
11486   if (InputSize + OutputSize == 40)
11487     TgtElemArrayIdx = 0;
11488   else if (InputSize + OutputSize == 72)
11489     TgtElemArrayIdx = 1;
11490   else if (InputSize + OutputSize == 48)
11491     TgtElemArrayIdx = 2;
11492   else if (InputSize + OutputSize == 80)
11493     TgtElemArrayIdx = 3;
11494   else if (InputSize + OutputSize == 96)
11495     TgtElemArrayIdx = 4;
11496   else
11497     return SDValue();
11498 
11499   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
11500   CorrectElems = DAG.getDataLayout().isLittleEndian()
11501                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
11502                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
11503   if (Elems != CorrectElems) {
11504     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
11505   }
11506 
11507   // Regular lowering will catch cases where a shuffle is not needed.
11508   return SDValue();
11509 }
11510 
11511 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
11512                                                  DAGCombinerInfo &DCI) const {
11513   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11514          "Should be called with a BUILD_VECTOR node");
11515 
11516   SelectionDAG &DAG = DCI.DAG;
11517   SDLoc dl(N);
11518 
11519   if (!Subtarget.hasVSX())
11520     return SDValue();
11521 
11522   // The target independent DAG combiner will leave a build_vector of
11523   // float-to-int conversions intact. We can generate MUCH better code for
11524   // a float-to-int conversion of a vector of floats.
11525   SDValue FirstInput = N->getOperand(0);
11526   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
11527     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
11528     if (Reduced)
11529       return Reduced;
11530   }
11531 
11532   // If we're building a vector out of consecutive loads, just load that
11533   // vector type.
11534   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
11535   if (Reduced)
11536     return Reduced;
11537 
11538   // If we're building a vector out of extended elements from another vector
11539   // we have P9 vector integer extend instructions.
11540   if (Subtarget.hasP9Altivec()) {
11541     Reduced = combineBVOfVecSExt(N, DAG);
11542     if (Reduced)
11543       return Reduced;
11544   }
11545 
11546 
11547   if (N->getValueType(0) != MVT::v2f64)
11548     return SDValue();
11549 
11550   // Looking for:
11551   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11552   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11553       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11554     return SDValue();
11555   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11556       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11557     return SDValue();
11558   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11559     return SDValue();
11560 
11561   SDValue Ext1 = FirstInput.getOperand(0);
11562   SDValue Ext2 = N->getOperand(1).getOperand(0);
11563   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11564      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11565     return SDValue();
11566 
11567   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11568   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11569   if (!Ext1Op || !Ext2Op)
11570     return SDValue();
11571   if (Ext1.getValueType() != MVT::i32 ||
11572       Ext2.getValueType() != MVT::i32)
11573   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11574     return SDValue();
11575 
11576   int FirstElem = Ext1Op->getZExtValue();
11577   int SecondElem = Ext2Op->getZExtValue();
11578   int SubvecIdx;
11579   if (FirstElem == 0 && SecondElem == 1)
11580     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11581   else if (FirstElem == 2 && SecondElem == 3)
11582     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11583   else
11584     return SDValue();
11585 
11586   SDValue SrcVec = Ext1.getOperand(0);
11587   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11588     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11589   return DAG.getNode(NodeType, dl, MVT::v2f64,
11590                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11591 }
11592 
11593 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11594                                               DAGCombinerInfo &DCI) const {
11595   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11596           N->getOpcode() == ISD::UINT_TO_FP) &&
11597          "Need an int -> FP conversion node here");
11598 
11599   if (useSoftFloat() || !Subtarget.has64BitSupport())
11600     return SDValue();
11601 
11602   SelectionDAG &DAG = DCI.DAG;
11603   SDLoc dl(N);
11604   SDValue Op(N, 0);
11605 
11606   SDValue FirstOperand(Op.getOperand(0));
11607   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
11608     (FirstOperand.getValueType() == MVT::i8 ||
11609      FirstOperand.getValueType() == MVT::i16);
11610   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
11611     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
11612     bool DstDouble = Op.getValueType() == MVT::f64;
11613     unsigned ConvOp = Signed ?
11614       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
11615       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
11616     SDValue WidthConst =
11617       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
11618                             dl, false);
11619     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
11620     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
11621     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
11622                                          DAG.getVTList(MVT::f64, MVT::Other),
11623                                          Ops, MVT::i8, LDN->getMemOperand());
11624 
11625     // For signed conversion, we need to sign-extend the value in the VSR
11626     if (Signed) {
11627       SDValue ExtOps[] = { Ld, WidthConst };
11628       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
11629       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
11630     } else
11631       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
11632   }
11633 
11634   // Don't handle ppc_fp128 here or i1 conversions.
11635   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
11636     return SDValue();
11637   if (Op.getOperand(0).getValueType() == MVT::i1)
11638     return SDValue();
11639 
11640   // For i32 intermediate values, unfortunately, the conversion functions
11641   // leave the upper 32 bits of the value are undefined. Within the set of
11642   // scalar instructions, we have no method for zero- or sign-extending the
11643   // value. Thus, we cannot handle i32 intermediate values here.
11644   if (Op.getOperand(0).getValueType() == MVT::i32)
11645     return SDValue();
11646 
11647   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
11648          "UINT_TO_FP is supported only with FPCVT");
11649 
11650   // If we have FCFIDS, then use it when converting to single-precision.
11651   // Otherwise, convert to double-precision and then round.
11652   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11653                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
11654                                                             : PPCISD::FCFIDS)
11655                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
11656                                                             : PPCISD::FCFID);
11657   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11658                   ? MVT::f32
11659                   : MVT::f64;
11660 
11661   // If we're converting from a float, to an int, and back to a float again,
11662   // then we don't need the store/load pair at all.
11663   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
11664        Subtarget.hasFPCVT()) ||
11665       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
11666     SDValue Src = Op.getOperand(0).getOperand(0);
11667     if (Src.getValueType() == MVT::f32) {
11668       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
11669       DCI.AddToWorklist(Src.getNode());
11670     } else if (Src.getValueType() != MVT::f64) {
11671       // Make sure that we don't pick up a ppc_fp128 source value.
11672       return SDValue();
11673     }
11674 
11675     unsigned FCTOp =
11676       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
11677                                                         PPCISD::FCTIDUZ;
11678 
11679     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
11680     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
11681 
11682     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
11683       FP = DAG.getNode(ISD::FP_ROUND, dl,
11684                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
11685       DCI.AddToWorklist(FP.getNode());
11686     }
11687 
11688     return FP;
11689   }
11690 
11691   return SDValue();
11692 }
11693 
11694 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
11695 // builtins) into loads with swaps.
11696 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
11697                                               DAGCombinerInfo &DCI) const {
11698   SelectionDAG &DAG = DCI.DAG;
11699   SDLoc dl(N);
11700   SDValue Chain;
11701   SDValue Base;
11702   MachineMemOperand *MMO;
11703 
11704   switch (N->getOpcode()) {
11705   default:
11706     llvm_unreachable("Unexpected opcode for little endian VSX load");
11707   case ISD::LOAD: {
11708     LoadSDNode *LD = cast<LoadSDNode>(N);
11709     Chain = LD->getChain();
11710     Base = LD->getBasePtr();
11711     MMO = LD->getMemOperand();
11712     // If the MMO suggests this isn't a load of a full vector, leave
11713     // things alone.  For a built-in, we have to make the change for
11714     // correctness, so if there is a size problem that will be a bug.
11715     if (MMO->getSize() < 16)
11716       return SDValue();
11717     break;
11718   }
11719   case ISD::INTRINSIC_W_CHAIN: {
11720     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11721     Chain = Intrin->getChain();
11722     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
11723     // us what we want. Get operand 2 instead.
11724     Base = Intrin->getOperand(2);
11725     MMO = Intrin->getMemOperand();
11726     break;
11727   }
11728   }
11729 
11730   MVT VecTy = N->getValueType(0).getSimpleVT();
11731 
11732   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
11733   // aligned and the type is a vector with elements up to 4 bytes
11734   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
11735       && VecTy.getScalarSizeInBits() <= 32 ) {
11736     return SDValue();
11737   }
11738 
11739   SDValue LoadOps[] = { Chain, Base };
11740   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
11741                                          DAG.getVTList(MVT::v2f64, MVT::Other),
11742                                          LoadOps, MVT::v2f64, MMO);
11743 
11744   DCI.AddToWorklist(Load.getNode());
11745   Chain = Load.getValue(1);
11746   SDValue Swap = DAG.getNode(
11747       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
11748   DCI.AddToWorklist(Swap.getNode());
11749 
11750   // Add a bitcast if the resulting load type doesn't match v2f64.
11751   if (VecTy != MVT::v2f64) {
11752     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
11753     DCI.AddToWorklist(N.getNode());
11754     // Package {bitcast value, swap's chain} to match Load's shape.
11755     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
11756                        N, Swap.getValue(1));
11757   }
11758 
11759   return Swap;
11760 }
11761 
11762 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
11763 // builtins) into stores with swaps.
11764 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
11765                                                DAGCombinerInfo &DCI) const {
11766   SelectionDAG &DAG = DCI.DAG;
11767   SDLoc dl(N);
11768   SDValue Chain;
11769   SDValue Base;
11770   unsigned SrcOpnd;
11771   MachineMemOperand *MMO;
11772 
11773   switch (N->getOpcode()) {
11774   default:
11775     llvm_unreachable("Unexpected opcode for little endian VSX store");
11776   case ISD::STORE: {
11777     StoreSDNode *ST = cast<StoreSDNode>(N);
11778     Chain = ST->getChain();
11779     Base = ST->getBasePtr();
11780     MMO = ST->getMemOperand();
11781     SrcOpnd = 1;
11782     // If the MMO suggests this isn't a store of a full vector, leave
11783     // things alone.  For a built-in, we have to make the change for
11784     // correctness, so if there is a size problem that will be a bug.
11785     if (MMO->getSize() < 16)
11786       return SDValue();
11787     break;
11788   }
11789   case ISD::INTRINSIC_VOID: {
11790     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11791     Chain = Intrin->getChain();
11792     // Intrin->getBasePtr() oddly does not get what we want.
11793     Base = Intrin->getOperand(3);
11794     MMO = Intrin->getMemOperand();
11795     SrcOpnd = 2;
11796     break;
11797   }
11798   }
11799 
11800   SDValue Src = N->getOperand(SrcOpnd);
11801   MVT VecTy = Src.getValueType().getSimpleVT();
11802 
11803   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
11804   // aligned and the type is a vector with elements up to 4 bytes
11805   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
11806       && VecTy.getScalarSizeInBits() <= 32 ) {
11807     return SDValue();
11808   }
11809 
11810   // All stores are done as v2f64 and possible bit cast.
11811   if (VecTy != MVT::v2f64) {
11812     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
11813     DCI.AddToWorklist(Src.getNode());
11814   }
11815 
11816   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
11817                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
11818   DCI.AddToWorklist(Swap.getNode());
11819   Chain = Swap.getValue(1);
11820   SDValue StoreOps[] = { Chain, Swap, Base };
11821   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
11822                                           DAG.getVTList(MVT::Other),
11823                                           StoreOps, VecTy, MMO);
11824   DCI.AddToWorklist(Store.getNode());
11825   return Store;
11826 }
11827 
11828 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
11829                                              DAGCombinerInfo &DCI) const {
11830   SelectionDAG &DAG = DCI.DAG;
11831   SDLoc dl(N);
11832   switch (N->getOpcode()) {
11833   default: break;
11834   case ISD::SHL:
11835     return combineSHL(N, DCI);
11836   case ISD::SRA:
11837     return combineSRA(N, DCI);
11838   case ISD::SRL:
11839     return combineSRL(N, DCI);
11840   case PPCISD::SHL:
11841     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
11842         return N->getOperand(0);
11843     break;
11844   case PPCISD::SRL:
11845     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
11846         return N->getOperand(0);
11847     break;
11848   case PPCISD::SRA:
11849     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11850       if (C->isNullValue() ||   //  0 >>s V -> 0.
11851           C->isAllOnesValue())    // -1 >>s V -> -1.
11852         return N->getOperand(0);
11853     }
11854     break;
11855   case ISD::SIGN_EXTEND:
11856   case ISD::ZERO_EXTEND:
11857   case ISD::ANY_EXTEND:
11858     return DAGCombineExtBoolTrunc(N, DCI);
11859   case ISD::TRUNCATE:
11860   case ISD::SETCC:
11861   case ISD::SELECT_CC:
11862     return DAGCombineTruncBoolExt(N, DCI);
11863   case ISD::SINT_TO_FP:
11864   case ISD::UINT_TO_FP:
11865     return combineFPToIntToFP(N, DCI);
11866   case ISD::STORE: {
11867     EVT Op1VT = N->getOperand(1).getValueType();
11868     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
11869       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
11870 
11871     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
11872     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
11873         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
11874         ValidTypeForStoreFltAsInt &&
11875         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
11876       SDValue Val = N->getOperand(1).getOperand(0);
11877       if (Val.getValueType() == MVT::f32) {
11878         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
11879         DCI.AddToWorklist(Val.getNode());
11880       }
11881       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
11882       DCI.AddToWorklist(Val.getNode());
11883 
11884       if (Op1VT == MVT::i32) {
11885         SDValue Ops[] = {
11886           N->getOperand(0), Val, N->getOperand(2),
11887           DAG.getValueType(N->getOperand(1).getValueType())
11888         };
11889 
11890         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
11891                 DAG.getVTList(MVT::Other), Ops,
11892                 cast<StoreSDNode>(N)->getMemoryVT(),
11893                 cast<StoreSDNode>(N)->getMemOperand());
11894       } else {
11895         unsigned WidthInBytes =
11896           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
11897         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
11898 
11899         SDValue Ops[] = {
11900           N->getOperand(0), Val, N->getOperand(2), WidthConst,
11901           DAG.getValueType(N->getOperand(1).getValueType())
11902         };
11903         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
11904                                       DAG.getVTList(MVT::Other), Ops,
11905                                       cast<StoreSDNode>(N)->getMemoryVT(),
11906                                       cast<StoreSDNode>(N)->getMemOperand());
11907       }
11908 
11909       DCI.AddToWorklist(Val.getNode());
11910       return Val;
11911     }
11912 
11913     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
11914     if (cast<StoreSDNode>(N)->isUnindexed() &&
11915         N->getOperand(1).getOpcode() == ISD::BSWAP &&
11916         N->getOperand(1).getNode()->hasOneUse() &&
11917         (N->getOperand(1).getValueType() == MVT::i32 ||
11918          N->getOperand(1).getValueType() == MVT::i16 ||
11919          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
11920           N->getOperand(1).getValueType() == MVT::i64))) {
11921       SDValue BSwapOp = N->getOperand(1).getOperand(0);
11922       // Do an any-extend to 32-bits if this is a half-word input.
11923       if (BSwapOp.getValueType() == MVT::i16)
11924         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
11925 
11926       // If the type of BSWAP operand is wider than stored memory width
11927       // it need to be shifted to the right side before STBRX.
11928       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
11929       if (Op1VT.bitsGT(mVT)) {
11930         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
11931         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
11932                               DAG.getConstant(Shift, dl, MVT::i32));
11933         // Need to truncate if this is a bswap of i64 stored as i32/i16.
11934         if (Op1VT == MVT::i64)
11935           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
11936       }
11937 
11938       SDValue Ops[] = {
11939         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
11940       };
11941       return
11942         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
11943                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
11944                                 cast<StoreSDNode>(N)->getMemOperand());
11945     }
11946 
11947     // For little endian, VSX stores require generating xxswapd/lxvd2x.
11948     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
11949     EVT VT = N->getOperand(1).getValueType();
11950     if (VT.isSimple()) {
11951       MVT StoreVT = VT.getSimpleVT();
11952       if (Subtarget.needsSwapsForVSXMemOps() &&
11953           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
11954            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
11955         return expandVSXStoreForLE(N, DCI);
11956     }
11957     break;
11958   }
11959   case ISD::LOAD: {
11960     LoadSDNode *LD = cast<LoadSDNode>(N);
11961     EVT VT = LD->getValueType(0);
11962 
11963     // For little endian, VSX loads require generating lxvd2x/xxswapd.
11964     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
11965     if (VT.isSimple()) {
11966       MVT LoadVT = VT.getSimpleVT();
11967       if (Subtarget.needsSwapsForVSXMemOps() &&
11968           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
11969            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
11970         return expandVSXLoadForLE(N, DCI);
11971     }
11972 
11973     // We sometimes end up with a 64-bit integer load, from which we extract
11974     // two single-precision floating-point numbers. This happens with
11975     // std::complex<float>, and other similar structures, because of the way we
11976     // canonicalize structure copies. However, if we lack direct moves,
11977     // then the final bitcasts from the extracted integer values to the
11978     // floating-point numbers turn into store/load pairs. Even with direct moves,
11979     // just loading the two floating-point numbers is likely better.
11980     auto ReplaceTwoFloatLoad = [&]() {
11981       if (VT != MVT::i64)
11982         return false;
11983 
11984       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
11985           LD->isVolatile())
11986         return false;
11987 
11988       //  We're looking for a sequence like this:
11989       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
11990       //      t16: i64 = srl t13, Constant:i32<32>
11991       //    t17: i32 = truncate t16
11992       //  t18: f32 = bitcast t17
11993       //    t19: i32 = truncate t13
11994       //  t20: f32 = bitcast t19
11995 
11996       if (!LD->hasNUsesOfValue(2, 0))
11997         return false;
11998 
11999       auto UI = LD->use_begin();
12000       while (UI.getUse().getResNo() != 0) ++UI;
12001       SDNode *Trunc = *UI++;
12002       while (UI.getUse().getResNo() != 0) ++UI;
12003       SDNode *RightShift = *UI;
12004       if (Trunc->getOpcode() != ISD::TRUNCATE)
12005         std::swap(Trunc, RightShift);
12006 
12007       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12008           Trunc->getValueType(0) != MVT::i32 ||
12009           !Trunc->hasOneUse())
12010         return false;
12011       if (RightShift->getOpcode() != ISD::SRL ||
12012           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12013           RightShift->getConstantOperandVal(1) != 32 ||
12014           !RightShift->hasOneUse())
12015         return false;
12016 
12017       SDNode *Trunc2 = *RightShift->use_begin();
12018       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12019           Trunc2->getValueType(0) != MVT::i32 ||
12020           !Trunc2->hasOneUse())
12021         return false;
12022 
12023       SDNode *Bitcast = *Trunc->use_begin();
12024       SDNode *Bitcast2 = *Trunc2->use_begin();
12025 
12026       if (Bitcast->getOpcode() != ISD::BITCAST ||
12027           Bitcast->getValueType(0) != MVT::f32)
12028         return false;
12029       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12030           Bitcast2->getValueType(0) != MVT::f32)
12031         return false;
12032 
12033       if (Subtarget.isLittleEndian())
12034         std::swap(Bitcast, Bitcast2);
12035 
12036       // Bitcast has the second float (in memory-layout order) and Bitcast2
12037       // has the first one.
12038 
12039       SDValue BasePtr = LD->getBasePtr();
12040       if (LD->isIndexed()) {
12041         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12042                "Non-pre-inc AM on PPC?");
12043         BasePtr =
12044           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12045                       LD->getOffset());
12046       }
12047 
12048       auto MMOFlags =
12049           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12050       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12051                                       LD->getPointerInfo(), LD->getAlignment(),
12052                                       MMOFlags, LD->getAAInfo());
12053       SDValue AddPtr =
12054         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12055                     BasePtr, DAG.getIntPtrConstant(4, dl));
12056       SDValue FloatLoad2 = DAG.getLoad(
12057           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12058           LD->getPointerInfo().getWithOffset(4),
12059           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12060 
12061       if (LD->isIndexed()) {
12062         // Note that DAGCombine should re-form any pre-increment load(s) from
12063         // what is produced here if that makes sense.
12064         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12065       }
12066 
12067       DCI.CombineTo(Bitcast2, FloatLoad);
12068       DCI.CombineTo(Bitcast, FloatLoad2);
12069 
12070       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12071                                     SDValue(FloatLoad2.getNode(), 1));
12072       return true;
12073     };
12074 
12075     if (ReplaceTwoFloatLoad())
12076       return SDValue(N, 0);
12077 
12078     EVT MemVT = LD->getMemoryVT();
12079     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12080     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12081     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12082     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12083     if (LD->isUnindexed() && VT.isVector() &&
12084         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12085           // P8 and later hardware should just use LOAD.
12086           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12087                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12088          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12089           LD->getAlignment() >= ScalarABIAlignment)) &&
12090         LD->getAlignment() < ABIAlignment) {
12091       // This is a type-legal unaligned Altivec or QPX load.
12092       SDValue Chain = LD->getChain();
12093       SDValue Ptr = LD->getBasePtr();
12094       bool isLittleEndian = Subtarget.isLittleEndian();
12095 
12096       // This implements the loading of unaligned vectors as described in
12097       // the venerable Apple Velocity Engine overview. Specifically:
12098       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12099       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12100       //
12101       // The general idea is to expand a sequence of one or more unaligned
12102       // loads into an alignment-based permutation-control instruction (lvsl
12103       // or lvsr), a series of regular vector loads (which always truncate
12104       // their input address to an aligned address), and a series of
12105       // permutations.  The results of these permutations are the requested
12106       // loaded values.  The trick is that the last "extra" load is not taken
12107       // from the address you might suspect (sizeof(vector) bytes after the
12108       // last requested load), but rather sizeof(vector) - 1 bytes after the
12109       // last requested vector. The point of this is to avoid a page fault if
12110       // the base address happened to be aligned. This works because if the
12111       // base address is aligned, then adding less than a full vector length
12112       // will cause the last vector in the sequence to be (re)loaded.
12113       // Otherwise, the next vector will be fetched as you might suspect was
12114       // necessary.
12115 
12116       // We might be able to reuse the permutation generation from
12117       // a different base address offset from this one by an aligned amount.
12118       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12119       // optimization later.
12120       Intrinsic::ID Intr, IntrLD, IntrPerm;
12121       MVT PermCntlTy, PermTy, LDTy;
12122       if (Subtarget.hasAltivec()) {
12123         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12124                                  Intrinsic::ppc_altivec_lvsl;
12125         IntrLD = Intrinsic::ppc_altivec_lvx;
12126         IntrPerm = Intrinsic::ppc_altivec_vperm;
12127         PermCntlTy = MVT::v16i8;
12128         PermTy = MVT::v4i32;
12129         LDTy = MVT::v4i32;
12130       } else {
12131         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12132                                        Intrinsic::ppc_qpx_qvlpcls;
12133         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12134                                        Intrinsic::ppc_qpx_qvlfs;
12135         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12136         PermCntlTy = MVT::v4f64;
12137         PermTy = MVT::v4f64;
12138         LDTy = MemVT.getSimpleVT();
12139       }
12140 
12141       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12142 
12143       // Create the new MMO for the new base load. It is like the original MMO,
12144       // but represents an area in memory almost twice the vector size centered
12145       // on the original address. If the address is unaligned, we might start
12146       // reading up to (sizeof(vector)-1) bytes below the address of the
12147       // original unaligned load.
12148       MachineFunction &MF = DAG.getMachineFunction();
12149       MachineMemOperand *BaseMMO =
12150         MF.getMachineMemOperand(LD->getMemOperand(),
12151                                 -(long)MemVT.getStoreSize()+1,
12152                                 2*MemVT.getStoreSize()-1);
12153 
12154       // Create the new base load.
12155       SDValue LDXIntID =
12156           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12157       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12158       SDValue BaseLoad =
12159         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12160                                 DAG.getVTList(PermTy, MVT::Other),
12161                                 BaseLoadOps, LDTy, BaseMMO);
12162 
12163       // Note that the value of IncOffset (which is provided to the next
12164       // load's pointer info offset value, and thus used to calculate the
12165       // alignment), and the value of IncValue (which is actually used to
12166       // increment the pointer value) are different! This is because we
12167       // require the next load to appear to be aligned, even though it
12168       // is actually offset from the base pointer by a lesser amount.
12169       int IncOffset = VT.getSizeInBits() / 8;
12170       int IncValue = IncOffset;
12171 
12172       // Walk (both up and down) the chain looking for another load at the real
12173       // (aligned) offset (the alignment of the other load does not matter in
12174       // this case). If found, then do not use the offset reduction trick, as
12175       // that will prevent the loads from being later combined (as they would
12176       // otherwise be duplicates).
12177       if (!findConsecutiveLoad(LD, DAG))
12178         --IncValue;
12179 
12180       SDValue Increment =
12181           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12182       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12183 
12184       MachineMemOperand *ExtraMMO =
12185         MF.getMachineMemOperand(LD->getMemOperand(),
12186                                 1, 2*MemVT.getStoreSize()-1);
12187       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12188       SDValue ExtraLoad =
12189         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12190                                 DAG.getVTList(PermTy, MVT::Other),
12191                                 ExtraLoadOps, LDTy, ExtraMMO);
12192 
12193       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12194         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12195 
12196       // Because vperm has a big-endian bias, we must reverse the order
12197       // of the input vectors and complement the permute control vector
12198       // when generating little endian code.  We have already handled the
12199       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12200       // and ExtraLoad here.
12201       SDValue Perm;
12202       if (isLittleEndian)
12203         Perm = BuildIntrinsicOp(IntrPerm,
12204                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12205       else
12206         Perm = BuildIntrinsicOp(IntrPerm,
12207                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12208 
12209       if (VT != PermTy)
12210         Perm = Subtarget.hasAltivec() ?
12211                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12212                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12213                                DAG.getTargetConstant(1, dl, MVT::i64));
12214                                // second argument is 1 because this rounding
12215                                // is always exact.
12216 
12217       // The output of the permutation is our loaded result, the TokenFactor is
12218       // our new chain.
12219       DCI.CombineTo(N, Perm, TF);
12220       return SDValue(N, 0);
12221     }
12222     }
12223     break;
12224     case ISD::INTRINSIC_WO_CHAIN: {
12225       bool isLittleEndian = Subtarget.isLittleEndian();
12226       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12227       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12228                                            : Intrinsic::ppc_altivec_lvsl);
12229       if ((IID == Intr ||
12230            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12231            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12232         N->getOperand(1)->getOpcode() == ISD::ADD) {
12233         SDValue Add = N->getOperand(1);
12234 
12235         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12236                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12237 
12238         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12239                                   APInt::getAllOnesValue(Bits /* alignment */)
12240                                       .zext(Add.getScalarValueSizeInBits()))) {
12241           SDNode *BasePtr = Add->getOperand(0).getNode();
12242           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12243                                     UE = BasePtr->use_end();
12244                UI != UE; ++UI) {
12245             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12246                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12247               // We've found another LVSL/LVSR, and this address is an aligned
12248               // multiple of that one. The results will be the same, so use the
12249               // one we've just found instead.
12250 
12251               return SDValue(*UI, 0);
12252             }
12253           }
12254         }
12255 
12256         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12257           SDNode *BasePtr = Add->getOperand(0).getNode();
12258           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12259                UE = BasePtr->use_end(); UI != UE; ++UI) {
12260             if (UI->getOpcode() == ISD::ADD &&
12261                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12262                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12263                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12264                 (1ULL << Bits) == 0) {
12265               SDNode *OtherAdd = *UI;
12266               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12267                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12268                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12269                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12270                   return SDValue(*VI, 0);
12271                 }
12272               }
12273             }
12274           }
12275         }
12276       }
12277     }
12278 
12279     break;
12280   case ISD::INTRINSIC_W_CHAIN:
12281     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12282     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12283     if (Subtarget.needsSwapsForVSXMemOps()) {
12284       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12285       default:
12286         break;
12287       case Intrinsic::ppc_vsx_lxvw4x:
12288       case Intrinsic::ppc_vsx_lxvd2x:
12289         return expandVSXLoadForLE(N, DCI);
12290       }
12291     }
12292     break;
12293   case ISD::INTRINSIC_VOID:
12294     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12295     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12296     if (Subtarget.needsSwapsForVSXMemOps()) {
12297       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12298       default:
12299         break;
12300       case Intrinsic::ppc_vsx_stxvw4x:
12301       case Intrinsic::ppc_vsx_stxvd2x:
12302         return expandVSXStoreForLE(N, DCI);
12303       }
12304     }
12305     break;
12306   case ISD::BSWAP:
12307     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12308     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12309         N->getOperand(0).hasOneUse() &&
12310         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12311          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12312           N->getValueType(0) == MVT::i64))) {
12313       SDValue Load = N->getOperand(0);
12314       LoadSDNode *LD = cast<LoadSDNode>(Load);
12315       // Create the byte-swapping load.
12316       SDValue Ops[] = {
12317         LD->getChain(),    // Chain
12318         LD->getBasePtr(),  // Ptr
12319         DAG.getValueType(N->getValueType(0)) // VT
12320       };
12321       SDValue BSLoad =
12322         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12323                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12324                                               MVT::i64 : MVT::i32, MVT::Other),
12325                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12326 
12327       // If this is an i16 load, insert the truncate.
12328       SDValue ResVal = BSLoad;
12329       if (N->getValueType(0) == MVT::i16)
12330         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12331 
12332       // First, combine the bswap away.  This makes the value produced by the
12333       // load dead.
12334       DCI.CombineTo(N, ResVal);
12335 
12336       // Next, combine the load away, we give it a bogus result value but a real
12337       // chain result.  The result value is dead because the bswap is dead.
12338       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12339 
12340       // Return N so it doesn't get rechecked!
12341       return SDValue(N, 0);
12342     }
12343     break;
12344   case PPCISD::VCMP:
12345     // If a VCMPo node already exists with exactly the same operands as this
12346     // node, use its result instead of this node (VCMPo computes both a CR6 and
12347     // a normal output).
12348     //
12349     if (!N->getOperand(0).hasOneUse() &&
12350         !N->getOperand(1).hasOneUse() &&
12351         !N->getOperand(2).hasOneUse()) {
12352 
12353       // Scan all of the users of the LHS, looking for VCMPo's that match.
12354       SDNode *VCMPoNode = nullptr;
12355 
12356       SDNode *LHSN = N->getOperand(0).getNode();
12357       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12358            UI != E; ++UI)
12359         if (UI->getOpcode() == PPCISD::VCMPo &&
12360             UI->getOperand(1) == N->getOperand(1) &&
12361             UI->getOperand(2) == N->getOperand(2) &&
12362             UI->getOperand(0) == N->getOperand(0)) {
12363           VCMPoNode = *UI;
12364           break;
12365         }
12366 
12367       // If there is no VCMPo node, or if the flag value has a single use, don't
12368       // transform this.
12369       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12370         break;
12371 
12372       // Look at the (necessarily single) use of the flag value.  If it has a
12373       // chain, this transformation is more complex.  Note that multiple things
12374       // could use the value result, which we should ignore.
12375       SDNode *FlagUser = nullptr;
12376       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12377            FlagUser == nullptr; ++UI) {
12378         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12379         SDNode *User = *UI;
12380         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12381           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12382             FlagUser = User;
12383             break;
12384           }
12385         }
12386       }
12387 
12388       // If the user is a MFOCRF instruction, we know this is safe.
12389       // Otherwise we give up for right now.
12390       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12391         return SDValue(VCMPoNode, 0);
12392     }
12393     break;
12394   case ISD::BRCOND: {
12395     SDValue Cond = N->getOperand(1);
12396     SDValue Target = N->getOperand(2);
12397 
12398     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12399         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
12400           Intrinsic::ppc_is_decremented_ctr_nonzero) {
12401 
12402       // We now need to make the intrinsic dead (it cannot be instruction
12403       // selected).
12404       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
12405       assert(Cond.getNode()->hasOneUse() &&
12406              "Counter decrement has more than one use");
12407 
12408       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
12409                          N->getOperand(0), Target);
12410     }
12411   }
12412   break;
12413   case ISD::BR_CC: {
12414     // If this is a branch on an altivec predicate comparison, lower this so
12415     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
12416     // lowering is done pre-legalize, because the legalizer lowers the predicate
12417     // compare down to code that is difficult to reassemble.
12418     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
12419     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
12420 
12421     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
12422     // value. If so, pass-through the AND to get to the intrinsic.
12423     if (LHS.getOpcode() == ISD::AND &&
12424         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12425         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
12426           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12427         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12428         !isNullConstant(LHS.getOperand(1)))
12429       LHS = LHS.getOperand(0);
12430 
12431     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12432         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
12433           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12434         isa<ConstantSDNode>(RHS)) {
12435       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12436              "Counter decrement comparison is not EQ or NE");
12437 
12438       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12439       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
12440                     (CC == ISD::SETNE && !Val);
12441 
12442       // We now need to make the intrinsic dead (it cannot be instruction
12443       // selected).
12444       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
12445       assert(LHS.getNode()->hasOneUse() &&
12446              "Counter decrement has more than one use");
12447 
12448       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
12449                          N->getOperand(0), N->getOperand(4));
12450     }
12451 
12452     int CompareOpc;
12453     bool isDot;
12454 
12455     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12456         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
12457         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
12458       assert(isDot && "Can't compare against a vector result!");
12459 
12460       // If this is a comparison against something other than 0/1, then we know
12461       // that the condition is never/always true.
12462       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12463       if (Val != 0 && Val != 1) {
12464         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
12465           return N->getOperand(0);
12466         // Always !=, turn it into an unconditional branch.
12467         return DAG.getNode(ISD::BR, dl, MVT::Other,
12468                            N->getOperand(0), N->getOperand(4));
12469       }
12470 
12471       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
12472 
12473       // Create the PPCISD altivec 'dot' comparison node.
12474       SDValue Ops[] = {
12475         LHS.getOperand(2),  // LHS of compare
12476         LHS.getOperand(3),  // RHS of compare
12477         DAG.getConstant(CompareOpc, dl, MVT::i32)
12478       };
12479       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
12480       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
12481 
12482       // Unpack the result based on how the target uses it.
12483       PPC::Predicate CompOpc;
12484       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
12485       default:  // Can't happen, don't crash on invalid number though.
12486       case 0:   // Branch on the value of the EQ bit of CR6.
12487         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
12488         break;
12489       case 1:   // Branch on the inverted value of the EQ bit of CR6.
12490         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
12491         break;
12492       case 2:   // Branch on the value of the LT bit of CR6.
12493         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
12494         break;
12495       case 3:   // Branch on the inverted value of the LT bit of CR6.
12496         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
12497         break;
12498       }
12499 
12500       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
12501                          DAG.getConstant(CompOpc, dl, MVT::i32),
12502                          DAG.getRegister(PPC::CR6, MVT::i32),
12503                          N->getOperand(4), CompNode.getValue(1));
12504     }
12505     break;
12506   }
12507   case ISD::BUILD_VECTOR:
12508     return DAGCombineBuildVector(N, DCI);
12509   }
12510 
12511   return SDValue();
12512 }
12513 
12514 SDValue
12515 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12516                                   SelectionDAG &DAG,
12517                                   std::vector<SDNode *> *Created) const {
12518   // fold (sdiv X, pow2)
12519   EVT VT = N->getValueType(0);
12520   if (VT == MVT::i64 && !Subtarget.isPPC64())
12521     return SDValue();
12522   if ((VT != MVT::i32 && VT != MVT::i64) ||
12523       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12524     return SDValue();
12525 
12526   SDLoc DL(N);
12527   SDValue N0 = N->getOperand(0);
12528 
12529   bool IsNegPow2 = (-Divisor).isPowerOf2();
12530   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
12531   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
12532 
12533   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
12534   if (Created)
12535     Created->push_back(Op.getNode());
12536 
12537   if (IsNegPow2) {
12538     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
12539     if (Created)
12540       Created->push_back(Op.getNode());
12541   }
12542 
12543   return Op;
12544 }
12545 
12546 //===----------------------------------------------------------------------===//
12547 // Inline Assembly Support
12548 //===----------------------------------------------------------------------===//
12549 
12550 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12551                                                       KnownBits &Known,
12552                                                       const APInt &DemandedElts,
12553                                                       const SelectionDAG &DAG,
12554                                                       unsigned Depth) const {
12555   Known.resetAll();
12556   switch (Op.getOpcode()) {
12557   default: break;
12558   case PPCISD::LBRX: {
12559     // lhbrx is known to have the top bits cleared out.
12560     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
12561       Known.Zero = 0xFFFF0000;
12562     break;
12563   }
12564   case ISD::INTRINSIC_WO_CHAIN: {
12565     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
12566     default: break;
12567     case Intrinsic::ppc_altivec_vcmpbfp_p:
12568     case Intrinsic::ppc_altivec_vcmpeqfp_p:
12569     case Intrinsic::ppc_altivec_vcmpequb_p:
12570     case Intrinsic::ppc_altivec_vcmpequh_p:
12571     case Intrinsic::ppc_altivec_vcmpequw_p:
12572     case Intrinsic::ppc_altivec_vcmpequd_p:
12573     case Intrinsic::ppc_altivec_vcmpgefp_p:
12574     case Intrinsic::ppc_altivec_vcmpgtfp_p:
12575     case Intrinsic::ppc_altivec_vcmpgtsb_p:
12576     case Intrinsic::ppc_altivec_vcmpgtsh_p:
12577     case Intrinsic::ppc_altivec_vcmpgtsw_p:
12578     case Intrinsic::ppc_altivec_vcmpgtsd_p:
12579     case Intrinsic::ppc_altivec_vcmpgtub_p:
12580     case Intrinsic::ppc_altivec_vcmpgtuh_p:
12581     case Intrinsic::ppc_altivec_vcmpgtuw_p:
12582     case Intrinsic::ppc_altivec_vcmpgtud_p:
12583       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
12584       break;
12585     }
12586   }
12587   }
12588 }
12589 
12590 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12591   switch (Subtarget.getDarwinDirective()) {
12592   default: break;
12593   case PPC::DIR_970:
12594   case PPC::DIR_PWR4:
12595   case PPC::DIR_PWR5:
12596   case PPC::DIR_PWR5X:
12597   case PPC::DIR_PWR6:
12598   case PPC::DIR_PWR6X:
12599   case PPC::DIR_PWR7:
12600   case PPC::DIR_PWR8:
12601   case PPC::DIR_PWR9: {
12602     if (!ML)
12603       break;
12604 
12605     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
12606 
12607     // For small loops (between 5 and 8 instructions), align to a 32-byte
12608     // boundary so that the entire loop fits in one instruction-cache line.
12609     uint64_t LoopSize = 0;
12610     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
12611       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
12612         LoopSize += TII->getInstSizeInBytes(*J);
12613         if (LoopSize > 32)
12614           break;
12615       }
12616 
12617     if (LoopSize > 16 && LoopSize <= 32)
12618       return 5;
12619 
12620     break;
12621   }
12622   }
12623 
12624   return TargetLowering::getPrefLoopAlignment(ML);
12625 }
12626 
12627 /// getConstraintType - Given a constraint, return the type of
12628 /// constraint it is for this target.
12629 PPCTargetLowering::ConstraintType
12630 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
12631   if (Constraint.size() == 1) {
12632     switch (Constraint[0]) {
12633     default: break;
12634     case 'b':
12635     case 'r':
12636     case 'f':
12637     case 'd':
12638     case 'v':
12639     case 'y':
12640       return C_RegisterClass;
12641     case 'Z':
12642       // FIXME: While Z does indicate a memory constraint, it specifically
12643       // indicates an r+r address (used in conjunction with the 'y' modifier
12644       // in the replacement string). Currently, we're forcing the base
12645       // register to be r0 in the asm printer (which is interpreted as zero)
12646       // and forming the complete address in the second register. This is
12647       // suboptimal.
12648       return C_Memory;
12649     }
12650   } else if (Constraint == "wc") { // individual CR bits.
12651     return C_RegisterClass;
12652   } else if (Constraint == "wa" || Constraint == "wd" ||
12653              Constraint == "wf" || Constraint == "ws") {
12654     return C_RegisterClass; // VSX registers.
12655   }
12656   return TargetLowering::getConstraintType(Constraint);
12657 }
12658 
12659 /// Examine constraint type and operand type and determine a weight value.
12660 /// This object must already have been set up with the operand type
12661 /// and the current alternative constraint selected.
12662 TargetLowering::ConstraintWeight
12663 PPCTargetLowering::getSingleConstraintMatchWeight(
12664     AsmOperandInfo &info, const char *constraint) const {
12665   ConstraintWeight weight = CW_Invalid;
12666   Value *CallOperandVal = info.CallOperandVal;
12667     // If we don't have a value, we can't do a match,
12668     // but allow it at the lowest weight.
12669   if (!CallOperandVal)
12670     return CW_Default;
12671   Type *type = CallOperandVal->getType();
12672 
12673   // Look at the constraint type.
12674   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
12675     return CW_Register; // an individual CR bit.
12676   else if ((StringRef(constraint) == "wa" ||
12677             StringRef(constraint) == "wd" ||
12678             StringRef(constraint) == "wf") &&
12679            type->isVectorTy())
12680     return CW_Register;
12681   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
12682     return CW_Register;
12683 
12684   switch (*constraint) {
12685   default:
12686     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12687     break;
12688   case 'b':
12689     if (type->isIntegerTy())
12690       weight = CW_Register;
12691     break;
12692   case 'f':
12693     if (type->isFloatTy())
12694       weight = CW_Register;
12695     break;
12696   case 'd':
12697     if (type->isDoubleTy())
12698       weight = CW_Register;
12699     break;
12700   case 'v':
12701     if (type->isVectorTy())
12702       weight = CW_Register;
12703     break;
12704   case 'y':
12705     weight = CW_Register;
12706     break;
12707   case 'Z':
12708     weight = CW_Memory;
12709     break;
12710   }
12711   return weight;
12712 }
12713 
12714 std::pair<unsigned, const TargetRegisterClass *>
12715 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
12716                                                 StringRef Constraint,
12717                                                 MVT VT) const {
12718   if (Constraint.size() == 1) {
12719     // GCC RS6000 Constraint Letters
12720     switch (Constraint[0]) {
12721     case 'b':   // R1-R31
12722       if (VT == MVT::i64 && Subtarget.isPPC64())
12723         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
12724       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
12725     case 'r':   // R0-R31
12726       if (VT == MVT::i64 && Subtarget.isPPC64())
12727         return std::make_pair(0U, &PPC::G8RCRegClass);
12728       return std::make_pair(0U, &PPC::GPRCRegClass);
12729     // 'd' and 'f' constraints are both defined to be "the floating point
12730     // registers", where one is for 32-bit and the other for 64-bit. We don't
12731     // really care overly much here so just give them all the same reg classes.
12732     case 'd':
12733     case 'f':
12734       if (VT == MVT::f32 || VT == MVT::i32)
12735         return std::make_pair(0U, &PPC::F4RCRegClass);
12736       if (VT == MVT::f64 || VT == MVT::i64)
12737         return std::make_pair(0U, &PPC::F8RCRegClass);
12738       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12739         return std::make_pair(0U, &PPC::QFRCRegClass);
12740       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12741         return std::make_pair(0U, &PPC::QSRCRegClass);
12742       break;
12743     case 'v':
12744       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12745         return std::make_pair(0U, &PPC::QFRCRegClass);
12746       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12747         return std::make_pair(0U, &PPC::QSRCRegClass);
12748       if (Subtarget.hasAltivec())
12749         return std::make_pair(0U, &PPC::VRRCRegClass);
12750     case 'y':   // crrc
12751       return std::make_pair(0U, &PPC::CRRCRegClass);
12752     }
12753   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
12754     // An individual CR bit.
12755     return std::make_pair(0U, &PPC::CRBITRCRegClass);
12756   } else if ((Constraint == "wa" || Constraint == "wd" ||
12757              Constraint == "wf") && Subtarget.hasVSX()) {
12758     return std::make_pair(0U, &PPC::VSRCRegClass);
12759   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
12760     if (VT == MVT::f32 && Subtarget.hasP8Vector())
12761       return std::make_pair(0U, &PPC::VSSRCRegClass);
12762     else
12763       return std::make_pair(0U, &PPC::VSFRCRegClass);
12764   }
12765 
12766   std::pair<unsigned, const TargetRegisterClass *> R =
12767       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12768 
12769   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
12770   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
12771   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
12772   // register.
12773   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
12774   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
12775   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
12776       PPC::GPRCRegClass.contains(R.first))
12777     return std::make_pair(TRI->getMatchingSuperReg(R.first,
12778                             PPC::sub_32, &PPC::G8RCRegClass),
12779                           &PPC::G8RCRegClass);
12780 
12781   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
12782   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
12783     R.first = PPC::CR0;
12784     R.second = &PPC::CRRCRegClass;
12785   }
12786 
12787   return R;
12788 }
12789 
12790 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12791 /// vector.  If it is invalid, don't add anything to Ops.
12792 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12793                                                      std::string &Constraint,
12794                                                      std::vector<SDValue>&Ops,
12795                                                      SelectionDAG &DAG) const {
12796   SDValue Result;
12797 
12798   // Only support length 1 constraints.
12799   if (Constraint.length() > 1) return;
12800 
12801   char Letter = Constraint[0];
12802   switch (Letter) {
12803   default: break;
12804   case 'I':
12805   case 'J':
12806   case 'K':
12807   case 'L':
12808   case 'M':
12809   case 'N':
12810   case 'O':
12811   case 'P': {
12812     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
12813     if (!CST) return; // Must be an immediate to match.
12814     SDLoc dl(Op);
12815     int64_t Value = CST->getSExtValue();
12816     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
12817                          // numbers are printed as such.
12818     switch (Letter) {
12819     default: llvm_unreachable("Unknown constraint letter!");
12820     case 'I':  // "I" is a signed 16-bit constant.
12821       if (isInt<16>(Value))
12822         Result = DAG.getTargetConstant(Value, dl, TCVT);
12823       break;
12824     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
12825       if (isShiftedUInt<16, 16>(Value))
12826         Result = DAG.getTargetConstant(Value, dl, TCVT);
12827       break;
12828     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
12829       if (isShiftedInt<16, 16>(Value))
12830         Result = DAG.getTargetConstant(Value, dl, TCVT);
12831       break;
12832     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
12833       if (isUInt<16>(Value))
12834         Result = DAG.getTargetConstant(Value, dl, TCVT);
12835       break;
12836     case 'M':  // "M" is a constant that is greater than 31.
12837       if (Value > 31)
12838         Result = DAG.getTargetConstant(Value, dl, TCVT);
12839       break;
12840     case 'N':  // "N" is a positive constant that is an exact power of two.
12841       if (Value > 0 && isPowerOf2_64(Value))
12842         Result = DAG.getTargetConstant(Value, dl, TCVT);
12843       break;
12844     case 'O':  // "O" is the constant zero.
12845       if (Value == 0)
12846         Result = DAG.getTargetConstant(Value, dl, TCVT);
12847       break;
12848     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
12849       if (isInt<16>(-Value))
12850         Result = DAG.getTargetConstant(Value, dl, TCVT);
12851       break;
12852     }
12853     break;
12854   }
12855   }
12856 
12857   if (Result.getNode()) {
12858     Ops.push_back(Result);
12859     return;
12860   }
12861 
12862   // Handle standard constraint letters.
12863   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12864 }
12865 
12866 // isLegalAddressingMode - Return true if the addressing mode represented
12867 // by AM is legal for this target, for a load/store of the specified type.
12868 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
12869                                               const AddrMode &AM, Type *Ty,
12870                                               unsigned AS, Instruction *I) const {
12871   // PPC does not allow r+i addressing modes for vectors!
12872   if (Ty->isVectorTy() && AM.BaseOffs != 0)
12873     return false;
12874 
12875   // PPC allows a sign-extended 16-bit immediate field.
12876   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
12877     return false;
12878 
12879   // No global is ever allowed as a base.
12880   if (AM.BaseGV)
12881     return false;
12882 
12883   // PPC only support r+r,
12884   switch (AM.Scale) {
12885   case 0:  // "r+i" or just "i", depending on HasBaseReg.
12886     break;
12887   case 1:
12888     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
12889       return false;
12890     // Otherwise we have r+r or r+i.
12891     break;
12892   case 2:
12893     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
12894       return false;
12895     // Allow 2*r as r+r.
12896     break;
12897   default:
12898     // No other scales are supported.
12899     return false;
12900   }
12901 
12902   return true;
12903 }
12904 
12905 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
12906                                            SelectionDAG &DAG) const {
12907   MachineFunction &MF = DAG.getMachineFunction();
12908   MachineFrameInfo &MFI = MF.getFrameInfo();
12909   MFI.setReturnAddressIsTaken(true);
12910 
12911   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
12912     return SDValue();
12913 
12914   SDLoc dl(Op);
12915   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12916 
12917   // Make sure the function does not optimize away the store of the RA to
12918   // the stack.
12919   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
12920   FuncInfo->setLRStoreRequired();
12921   bool isPPC64 = Subtarget.isPPC64();
12922   auto PtrVT = getPointerTy(MF.getDataLayout());
12923 
12924   if (Depth > 0) {
12925     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12926     SDValue Offset =
12927         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
12928                         isPPC64 ? MVT::i64 : MVT::i32);
12929     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12930                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
12931                        MachinePointerInfo());
12932   }
12933 
12934   // Just load the return address off the stack.
12935   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
12936   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
12937                      MachinePointerInfo());
12938 }
12939 
12940 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
12941                                           SelectionDAG &DAG) const {
12942   SDLoc dl(Op);
12943   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12944 
12945   MachineFunction &MF = DAG.getMachineFunction();
12946   MachineFrameInfo &MFI = MF.getFrameInfo();
12947   MFI.setFrameAddressIsTaken(true);
12948 
12949   EVT PtrVT = getPointerTy(MF.getDataLayout());
12950   bool isPPC64 = PtrVT == MVT::i64;
12951 
12952   // Naked functions never have a frame pointer, and so we use r1. For all
12953   // other functions, this decision must be delayed until during PEI.
12954   unsigned FrameReg;
12955   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
12956     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
12957   else
12958     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
12959 
12960   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
12961                                          PtrVT);
12962   while (Depth--)
12963     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
12964                             FrameAddr, MachinePointerInfo());
12965   return FrameAddr;
12966 }
12967 
12968 // FIXME? Maybe this could be a TableGen attribute on some registers and
12969 // this table could be generated automatically from RegInfo.
12970 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
12971                                               SelectionDAG &DAG) const {
12972   bool isPPC64 = Subtarget.isPPC64();
12973   bool isDarwinABI = Subtarget.isDarwinABI();
12974 
12975   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
12976       (!isPPC64 && VT != MVT::i32))
12977     report_fatal_error("Invalid register global variable type");
12978 
12979   bool is64Bit = isPPC64 && VT == MVT::i64;
12980   unsigned Reg = StringSwitch<unsigned>(RegName)
12981                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
12982                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
12983                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
12984                                   (is64Bit ? PPC::X13 : PPC::R13))
12985                    .Default(0);
12986 
12987   if (Reg)
12988     return Reg;
12989   report_fatal_error("Invalid register name global variable");
12990 }
12991 
12992 bool
12993 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12994   // The PowerPC target isn't yet aware of offsets.
12995   return false;
12996 }
12997 
12998 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12999                                            const CallInst &I,
13000                                            unsigned Intrinsic) const {
13001   switch (Intrinsic) {
13002   case Intrinsic::ppc_qpx_qvlfd:
13003   case Intrinsic::ppc_qpx_qvlfs:
13004   case Intrinsic::ppc_qpx_qvlfcd:
13005   case Intrinsic::ppc_qpx_qvlfcs:
13006   case Intrinsic::ppc_qpx_qvlfiwa:
13007   case Intrinsic::ppc_qpx_qvlfiwz:
13008   case Intrinsic::ppc_altivec_lvx:
13009   case Intrinsic::ppc_altivec_lvxl:
13010   case Intrinsic::ppc_altivec_lvebx:
13011   case Intrinsic::ppc_altivec_lvehx:
13012   case Intrinsic::ppc_altivec_lvewx:
13013   case Intrinsic::ppc_vsx_lxvd2x:
13014   case Intrinsic::ppc_vsx_lxvw4x: {
13015     EVT VT;
13016     switch (Intrinsic) {
13017     case Intrinsic::ppc_altivec_lvebx:
13018       VT = MVT::i8;
13019       break;
13020     case Intrinsic::ppc_altivec_lvehx:
13021       VT = MVT::i16;
13022       break;
13023     case Intrinsic::ppc_altivec_lvewx:
13024       VT = MVT::i32;
13025       break;
13026     case Intrinsic::ppc_vsx_lxvd2x:
13027       VT = MVT::v2f64;
13028       break;
13029     case Intrinsic::ppc_qpx_qvlfd:
13030       VT = MVT::v4f64;
13031       break;
13032     case Intrinsic::ppc_qpx_qvlfs:
13033       VT = MVT::v4f32;
13034       break;
13035     case Intrinsic::ppc_qpx_qvlfcd:
13036       VT = MVT::v2f64;
13037       break;
13038     case Intrinsic::ppc_qpx_qvlfcs:
13039       VT = MVT::v2f32;
13040       break;
13041     default:
13042       VT = MVT::v4i32;
13043       break;
13044     }
13045 
13046     Info.opc = ISD::INTRINSIC_W_CHAIN;
13047     Info.memVT = VT;
13048     Info.ptrVal = I.getArgOperand(0);
13049     Info.offset = -VT.getStoreSize()+1;
13050     Info.size = 2*VT.getStoreSize()-1;
13051     Info.align = 1;
13052     Info.vol = false;
13053     Info.readMem = true;
13054     Info.writeMem = false;
13055     return true;
13056   }
13057   case Intrinsic::ppc_qpx_qvlfda:
13058   case Intrinsic::ppc_qpx_qvlfsa:
13059   case Intrinsic::ppc_qpx_qvlfcda:
13060   case Intrinsic::ppc_qpx_qvlfcsa:
13061   case Intrinsic::ppc_qpx_qvlfiwaa:
13062   case Intrinsic::ppc_qpx_qvlfiwza: {
13063     EVT VT;
13064     switch (Intrinsic) {
13065     case Intrinsic::ppc_qpx_qvlfda:
13066       VT = MVT::v4f64;
13067       break;
13068     case Intrinsic::ppc_qpx_qvlfsa:
13069       VT = MVT::v4f32;
13070       break;
13071     case Intrinsic::ppc_qpx_qvlfcda:
13072       VT = MVT::v2f64;
13073       break;
13074     case Intrinsic::ppc_qpx_qvlfcsa:
13075       VT = MVT::v2f32;
13076       break;
13077     default:
13078       VT = MVT::v4i32;
13079       break;
13080     }
13081 
13082     Info.opc = ISD::INTRINSIC_W_CHAIN;
13083     Info.memVT = VT;
13084     Info.ptrVal = I.getArgOperand(0);
13085     Info.offset = 0;
13086     Info.size = VT.getStoreSize();
13087     Info.align = 1;
13088     Info.vol = false;
13089     Info.readMem = true;
13090     Info.writeMem = false;
13091     return true;
13092   }
13093   case Intrinsic::ppc_qpx_qvstfd:
13094   case Intrinsic::ppc_qpx_qvstfs:
13095   case Intrinsic::ppc_qpx_qvstfcd:
13096   case Intrinsic::ppc_qpx_qvstfcs:
13097   case Intrinsic::ppc_qpx_qvstfiw:
13098   case Intrinsic::ppc_altivec_stvx:
13099   case Intrinsic::ppc_altivec_stvxl:
13100   case Intrinsic::ppc_altivec_stvebx:
13101   case Intrinsic::ppc_altivec_stvehx:
13102   case Intrinsic::ppc_altivec_stvewx:
13103   case Intrinsic::ppc_vsx_stxvd2x:
13104   case Intrinsic::ppc_vsx_stxvw4x: {
13105     EVT VT;
13106     switch (Intrinsic) {
13107     case Intrinsic::ppc_altivec_stvebx:
13108       VT = MVT::i8;
13109       break;
13110     case Intrinsic::ppc_altivec_stvehx:
13111       VT = MVT::i16;
13112       break;
13113     case Intrinsic::ppc_altivec_stvewx:
13114       VT = MVT::i32;
13115       break;
13116     case Intrinsic::ppc_vsx_stxvd2x:
13117       VT = MVT::v2f64;
13118       break;
13119     case Intrinsic::ppc_qpx_qvstfd:
13120       VT = MVT::v4f64;
13121       break;
13122     case Intrinsic::ppc_qpx_qvstfs:
13123       VT = MVT::v4f32;
13124       break;
13125     case Intrinsic::ppc_qpx_qvstfcd:
13126       VT = MVT::v2f64;
13127       break;
13128     case Intrinsic::ppc_qpx_qvstfcs:
13129       VT = MVT::v2f32;
13130       break;
13131     default:
13132       VT = MVT::v4i32;
13133       break;
13134     }
13135 
13136     Info.opc = ISD::INTRINSIC_VOID;
13137     Info.memVT = VT;
13138     Info.ptrVal = I.getArgOperand(1);
13139     Info.offset = -VT.getStoreSize()+1;
13140     Info.size = 2*VT.getStoreSize()-1;
13141     Info.align = 1;
13142     Info.vol = false;
13143     Info.readMem = false;
13144     Info.writeMem = true;
13145     return true;
13146   }
13147   case Intrinsic::ppc_qpx_qvstfda:
13148   case Intrinsic::ppc_qpx_qvstfsa:
13149   case Intrinsic::ppc_qpx_qvstfcda:
13150   case Intrinsic::ppc_qpx_qvstfcsa:
13151   case Intrinsic::ppc_qpx_qvstfiwa: {
13152     EVT VT;
13153     switch (Intrinsic) {
13154     case Intrinsic::ppc_qpx_qvstfda:
13155       VT = MVT::v4f64;
13156       break;
13157     case Intrinsic::ppc_qpx_qvstfsa:
13158       VT = MVT::v4f32;
13159       break;
13160     case Intrinsic::ppc_qpx_qvstfcda:
13161       VT = MVT::v2f64;
13162       break;
13163     case Intrinsic::ppc_qpx_qvstfcsa:
13164       VT = MVT::v2f32;
13165       break;
13166     default:
13167       VT = MVT::v4i32;
13168       break;
13169     }
13170 
13171     Info.opc = ISD::INTRINSIC_VOID;
13172     Info.memVT = VT;
13173     Info.ptrVal = I.getArgOperand(1);
13174     Info.offset = 0;
13175     Info.size = VT.getStoreSize();
13176     Info.align = 1;
13177     Info.vol = false;
13178     Info.readMem = false;
13179     Info.writeMem = true;
13180     return true;
13181   }
13182   default:
13183     break;
13184   }
13185 
13186   return false;
13187 }
13188 
13189 /// getOptimalMemOpType - Returns the target specific optimal type for load
13190 /// and store operations as a result of memset, memcpy, and memmove
13191 /// lowering. If DstAlign is zero that means it's safe to destination
13192 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13193 /// means there isn't a need to check it against alignment requirement,
13194 /// probably because the source does not need to be loaded. If 'IsMemset' is
13195 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13196 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13197 /// source is constant so it does not need to be loaded.
13198 /// It returns EVT::Other if the type should be determined using generic
13199 /// target-independent logic.
13200 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13201                                            unsigned DstAlign, unsigned SrcAlign,
13202                                            bool IsMemset, bool ZeroMemset,
13203                                            bool MemcpyStrSrc,
13204                                            MachineFunction &MF) const {
13205   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13206     const Function *F = MF.getFunction();
13207     // When expanding a memset, require at least two QPX instructions to cover
13208     // the cost of loading the value to be stored from the constant pool.
13209     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13210        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13211         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
13212       return MVT::v4f64;
13213     }
13214 
13215     // We should use Altivec/VSX loads and stores when available. For unaligned
13216     // addresses, unaligned VSX loads are only fast starting with the P8.
13217     if (Subtarget.hasAltivec() && Size >= 16 &&
13218         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13219          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13220       return MVT::v4i32;
13221   }
13222 
13223   if (Subtarget.isPPC64()) {
13224     return MVT::i64;
13225   }
13226 
13227   return MVT::i32;
13228 }
13229 
13230 /// \brief Returns true if it is beneficial to convert a load of a constant
13231 /// to just the constant itself.
13232 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13233                                                           Type *Ty) const {
13234   assert(Ty->isIntegerTy());
13235 
13236   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13237   return !(BitSize == 0 || BitSize > 64);
13238 }
13239 
13240 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13241   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13242     return false;
13243   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13244   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13245   return NumBits1 == 64 && NumBits2 == 32;
13246 }
13247 
13248 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13249   if (!VT1.isInteger() || !VT2.isInteger())
13250     return false;
13251   unsigned NumBits1 = VT1.getSizeInBits();
13252   unsigned NumBits2 = VT2.getSizeInBits();
13253   return NumBits1 == 64 && NumBits2 == 32;
13254 }
13255 
13256 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13257   // Generally speaking, zexts are not free, but they are free when they can be
13258   // folded with other operations.
13259   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13260     EVT MemVT = LD->getMemoryVT();
13261     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13262          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13263         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13264          LD->getExtensionType() == ISD::ZEXTLOAD))
13265       return true;
13266   }
13267 
13268   // FIXME: Add other cases...
13269   //  - 32-bit shifts with a zext to i64
13270   //  - zext after ctlz, bswap, etc.
13271   //  - zext after and by a constant mask
13272 
13273   return TargetLowering::isZExtFree(Val, VT2);
13274 }
13275 
13276 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
13277   assert(VT.isFloatingPoint());
13278   return true;
13279 }
13280 
13281 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13282   return isInt<16>(Imm) || isUInt<16>(Imm);
13283 }
13284 
13285 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13286   return isInt<16>(Imm) || isUInt<16>(Imm);
13287 }
13288 
13289 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13290                                                        unsigned,
13291                                                        unsigned,
13292                                                        bool *Fast) const {
13293   if (DisablePPCUnaligned)
13294     return false;
13295 
13296   // PowerPC supports unaligned memory access for simple non-vector types.
13297   // Although accessing unaligned addresses is not as efficient as accessing
13298   // aligned addresses, it is generally more efficient than manual expansion,
13299   // and generally only traps for software emulation when crossing page
13300   // boundaries.
13301 
13302   if (!VT.isSimple())
13303     return false;
13304 
13305   if (VT.getSimpleVT().isVector()) {
13306     if (Subtarget.hasVSX()) {
13307       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13308           VT != MVT::v4f32 && VT != MVT::v4i32)
13309         return false;
13310     } else {
13311       return false;
13312     }
13313   }
13314 
13315   if (VT == MVT::ppcf128)
13316     return false;
13317 
13318   if (Fast)
13319     *Fast = true;
13320 
13321   return true;
13322 }
13323 
13324 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13325   VT = VT.getScalarType();
13326 
13327   if (!VT.isSimple())
13328     return false;
13329 
13330   switch (VT.getSimpleVT().SimpleTy) {
13331   case MVT::f32:
13332   case MVT::f64:
13333     return true;
13334   default:
13335     break;
13336   }
13337 
13338   return false;
13339 }
13340 
13341 const MCPhysReg *
13342 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13343   // LR is a callee-save register, but we must treat it as clobbered by any call
13344   // site. Hence we include LR in the scratch registers, which are in turn added
13345   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13346   // to CTR, which is used by any indirect call.
13347   static const MCPhysReg ScratchRegs[] = {
13348     PPC::X12, PPC::LR8, PPC::CTR8, 0
13349   };
13350 
13351   return ScratchRegs;
13352 }
13353 
13354 unsigned PPCTargetLowering::getExceptionPointerRegister(
13355     const Constant *PersonalityFn) const {
13356   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13357 }
13358 
13359 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13360     const Constant *PersonalityFn) const {
13361   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13362 }
13363 
13364 bool
13365 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13366                      EVT VT , unsigned DefinedValues) const {
13367   if (VT == MVT::v2i64)
13368     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13369 
13370   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13371     return true;
13372 
13373   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13374 }
13375 
13376 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13377   if (DisableILPPref || Subtarget.enableMachineScheduler())
13378     return TargetLowering::getSchedulingPreference(N);
13379 
13380   return Sched::ILP;
13381 }
13382 
13383 // Create a fast isel object.
13384 FastISel *
13385 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13386                                   const TargetLibraryInfo *LibInfo) const {
13387   return PPC::createFastISel(FuncInfo, LibInfo);
13388 }
13389 
13390 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13391   if (Subtarget.isDarwinABI()) return;
13392   if (!Subtarget.isPPC64()) return;
13393 
13394   // Update IsSplitCSR in PPCFunctionInfo
13395   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
13396   PFI->setIsSplitCSR(true);
13397 }
13398 
13399 void PPCTargetLowering::insertCopiesSplitCSR(
13400   MachineBasicBlock *Entry,
13401   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13402   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
13403   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13404   if (!IStart)
13405     return;
13406 
13407   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
13408   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13409   MachineBasicBlock::iterator MBBI = Entry->begin();
13410   for (const MCPhysReg *I = IStart; *I; ++I) {
13411     const TargetRegisterClass *RC = nullptr;
13412     if (PPC::G8RCRegClass.contains(*I))
13413       RC = &PPC::G8RCRegClass;
13414     else if (PPC::F8RCRegClass.contains(*I))
13415       RC = &PPC::F8RCRegClass;
13416     else if (PPC::CRRCRegClass.contains(*I))
13417       RC = &PPC::CRRCRegClass;
13418     else if (PPC::VRRCRegClass.contains(*I))
13419       RC = &PPC::VRRCRegClass;
13420     else
13421       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13422 
13423     unsigned NewVR = MRI->createVirtualRegister(RC);
13424     // Create copy from CSR to a virtual register.
13425     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13426     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13427     // nounwind. If we want to generalize this later, we may need to emit
13428     // CFI pseudo-instructions.
13429     assert(Entry->getParent()->getFunction()->hasFnAttribute(
13430              Attribute::NoUnwind) &&
13431            "Function should be nounwind in insertCopiesSplitCSR!");
13432     Entry->addLiveIn(*I);
13433     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13434       .addReg(*I);
13435 
13436     // Insert the copy-back instructions right before the terminator
13437     for (auto *Exit : Exits)
13438       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13439               TII->get(TargetOpcode::COPY), *I)
13440         .addReg(NewVR);
13441   }
13442 }
13443 
13444 // Override to enable LOAD_STACK_GUARD lowering on Linux.
13445 bool PPCTargetLowering::useLoadStackGuardNode() const {
13446   if (!Subtarget.isTargetLinux())
13447     return TargetLowering::useLoadStackGuardNode();
13448   return true;
13449 }
13450 
13451 // Override to disable global variable loading on Linux.
13452 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
13453   if (!Subtarget.isTargetLinux())
13454     return TargetLowering::insertSSPDeclarations(M);
13455 }
13456 
13457 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
13458   if (!VT.isSimple() || !Subtarget.hasVSX())
13459     return false;
13460 
13461   switch(VT.getSimpleVT().SimpleTy) {
13462   default:
13463     // For FP types that are currently not supported by PPC backend, return
13464     // false. Examples: f16, f80.
13465     return false;
13466   case MVT::f32:
13467   case MVT::f64:
13468   case MVT::ppcf128:
13469     return Imm.isPosZero();
13470   }
13471 }
13472 
13473 // For vector shift operation op, fold
13474 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
13475 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
13476                                   SelectionDAG &DAG) {
13477   SDValue N0 = N->getOperand(0);
13478   SDValue N1 = N->getOperand(1);
13479   EVT VT = N0.getValueType();
13480   unsigned OpSizeInBits = VT.getScalarSizeInBits();
13481   unsigned Opcode = N->getOpcode();
13482   unsigned TargetOpcode;
13483 
13484   switch (Opcode) {
13485   default:
13486     llvm_unreachable("Unexpected shift operation");
13487   case ISD::SHL:
13488     TargetOpcode = PPCISD::SHL;
13489     break;
13490   case ISD::SRL:
13491     TargetOpcode = PPCISD::SRL;
13492     break;
13493   case ISD::SRA:
13494     TargetOpcode = PPCISD::SRA;
13495     break;
13496   }
13497 
13498   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
13499       N1->getOpcode() == ISD::AND)
13500     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
13501       if (Mask->getZExtValue() == OpSizeInBits - 1)
13502         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
13503 
13504   return SDValue();
13505 }
13506 
13507 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
13508   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13509     return Value;
13510 
13511   return SDValue();
13512 }
13513 
13514 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
13515   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13516     return Value;
13517 
13518   return SDValue();
13519 }
13520 
13521 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
13522   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13523     return Value;
13524 
13525   return SDValue();
13526 }
13527