1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 // TODO - Remove this option if soft fp128 has been fully supported .
125 static cl::opt<bool>
126     EnableSoftFP128("enable-soft-fp128",
127                     cl::desc("temp option to enable soft fp128"), cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       // EFPU2 APU only supports f32
155       if (!Subtarget.hasEFPU2())
156         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
157     } else {
158       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
159       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
160     }
161   }
162 
163   // Match BITREVERSE to customized fast code sequence in the td file.
164   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
165   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
166 
167   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
168   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
169 
170   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
171   for (MVT VT : MVT::integer_valuetypes()) {
172     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
173     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
174   }
175 
176   if (Subtarget.isISA3_0()) {
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
178     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
179     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
180     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
181   } else {
182     // No extending loads from f16 or HW conversions back and forth.
183     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
184     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
185     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
186     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
187     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
188     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
189     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
190     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
191   }
192 
193   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194 
195   // PowerPC has pre-inc load and store's.
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
199   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
200   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
204   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
205   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
206   if (!Subtarget.hasSPE()) {
207     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
209     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
210     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
211   }
212 
213   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
214   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
215   for (MVT VT : ScalarIntVTs) {
216     setOperationAction(ISD::ADDC, VT, Legal);
217     setOperationAction(ISD::ADDE, VT, Legal);
218     setOperationAction(ISD::SUBC, VT, Legal);
219     setOperationAction(ISD::SUBE, VT, Legal);
220   }
221 
222   if (Subtarget.useCRBits()) {
223     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
224 
225     if (isPPC64 || Subtarget.hasFPCVT()) {
226       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
227       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
228                         isPPC64 ? MVT::i64 : MVT::i32);
229       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
230       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
231                         isPPC64 ? MVT::i64 : MVT::i32);
232 
233       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
234       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
235                          isPPC64 ? MVT::i64 : MVT::i32);
236       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239 
240       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
241       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
242                         isPPC64 ? MVT::i64 : MVT::i32);
243       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
244       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
245                         isPPC64 ? MVT::i64 : MVT::i32);
246 
247       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
248       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
249                         isPPC64 ? MVT::i64 : MVT::i32);
250       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253     } else {
254       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
255       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
256       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
257       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
258     }
259 
260     // PowerPC does not support direct load/store of condition registers.
261     setOperationAction(ISD::LOAD, MVT::i1, Custom);
262     setOperationAction(ISD::STORE, MVT::i1, Custom);
263 
264     // FIXME: Remove this once the ANDI glue bug is fixed:
265     if (ANDIGlueBug)
266       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
267 
268     for (MVT VT : MVT::integer_valuetypes()) {
269       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
270       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
271       setTruncStoreAction(VT, MVT::i1, Expand);
272     }
273 
274     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
275   }
276 
277   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
278   // PPC (the libcall is not available).
279   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
280   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
281   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
282   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
283 
284   // We do not currently implement these libm ops for PowerPC.
285   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
286   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
287   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
288   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
289   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
290   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
291 
292   // PowerPC has no SREM/UREM instructions unless we are on P9
293   // On P9 we may use a hardware instruction to compute the remainder.
294   // When the result of both the remainder and the division is required it is
295   // more efficient to compute the remainder from the result of the division
296   // rather than use the remainder instruction. The instructions are legalized
297   // directly because the DivRemPairsPass performs the transformation at the IR
298   // level.
299   if (Subtarget.isISA3_0()) {
300     setOperationAction(ISD::SREM, MVT::i32, Legal);
301     setOperationAction(ISD::UREM, MVT::i32, Legal);
302     setOperationAction(ISD::SREM, MVT::i64, Legal);
303     setOperationAction(ISD::UREM, MVT::i64, Legal);
304   } else {
305     setOperationAction(ISD::SREM, MVT::i32, Expand);
306     setOperationAction(ISD::UREM, MVT::i32, Expand);
307     setOperationAction(ISD::SREM, MVT::i64, Expand);
308     setOperationAction(ISD::UREM, MVT::i64, Expand);
309   }
310 
311   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
312   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
313   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
314   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
315   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
316   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
317   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
318   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
319   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
320 
321   // Handle constrained floating-point operations of scalar.
322   // TODO: Handle SPE specific operation.
323   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
324   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
325   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
326   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
327   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
328   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
329 
330   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
331   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
332   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
333   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
334   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
335   if (Subtarget.hasVSX()) {
336     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
337     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
338   }
339 
340   if (Subtarget.hasFSQRT()) {
341     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
342     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
343   }
344 
345   if (Subtarget.hasFPRND()) {
346     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
347     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
348     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
349     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
350 
351     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
352     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
353     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
354     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
355   }
356 
357   // We don't support sin/cos/sqrt/fmod/pow
358   setOperationAction(ISD::FSIN , MVT::f64, Expand);
359   setOperationAction(ISD::FCOS , MVT::f64, Expand);
360   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
361   setOperationAction(ISD::FREM , MVT::f64, Expand);
362   setOperationAction(ISD::FPOW , MVT::f64, Expand);
363   setOperationAction(ISD::FSIN , MVT::f32, Expand);
364   setOperationAction(ISD::FCOS , MVT::f32, Expand);
365   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
366   setOperationAction(ISD::FREM , MVT::f32, Expand);
367   setOperationAction(ISD::FPOW , MVT::f32, Expand);
368   if (Subtarget.hasSPE()) {
369     setOperationAction(ISD::FMA  , MVT::f64, Expand);
370     setOperationAction(ISD::FMA  , MVT::f32, Expand);
371   } else {
372     setOperationAction(ISD::FMA  , MVT::f64, Legal);
373     setOperationAction(ISD::FMA  , MVT::f32, Legal);
374   }
375 
376   if (Subtarget.hasSPE())
377     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
378 
379   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
380 
381   // If we're enabling GP optimizations, use hardware square root
382   if (!Subtarget.hasFSQRT() &&
383       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
384         Subtarget.hasFRE()))
385     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
386 
387   if (!Subtarget.hasFSQRT() &&
388       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
389         Subtarget.hasFRES()))
390     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
391 
392   if (Subtarget.hasFCPSGN()) {
393     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
394     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
395   } else {
396     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
397     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
398   }
399 
400   if (Subtarget.hasFPRND()) {
401     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
402     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
403     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
404     setOperationAction(ISD::FROUND, MVT::f64, Legal);
405 
406     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
407     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
408     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
409     setOperationAction(ISD::FROUND, MVT::f32, Legal);
410   }
411 
412   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
413   // to speed up scalar BSWAP64.
414   // CTPOP or CTTZ were introduced in P8/P9 respectively
415   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
416   if (Subtarget.hasP9Vector())
417     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
418   else
419     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
420   if (Subtarget.isISA3_0()) {
421     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
422     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
423   } else {
424     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
425     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
426   }
427 
428   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
429     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
430     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
431   } else {
432     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
433     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
434   }
435 
436   // PowerPC does not have ROTR
437   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
438   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
439 
440   if (!Subtarget.useCRBits()) {
441     // PowerPC does not have Select
442     setOperationAction(ISD::SELECT, MVT::i32, Expand);
443     setOperationAction(ISD::SELECT, MVT::i64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f32, Expand);
445     setOperationAction(ISD::SELECT, MVT::f64, Expand);
446   }
447 
448   // PowerPC wants to turn select_cc of FP into fsel when possible.
449   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
450   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
451 
452   // PowerPC wants to optimize integer setcc a bit
453   if (!Subtarget.useCRBits())
454     setOperationAction(ISD::SETCC, MVT::i32, Custom);
455 
456   if (Subtarget.hasFPU()) {
457     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
458     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
459     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
460 
461     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
462     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
463     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
464   }
465 
466   // PowerPC does not have BRCOND which requires SetCC
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
469 
470   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
471 
472   if (Subtarget.hasSPE()) {
473     // SPE has built-in conversions
474     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
475     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
476     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
477     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
478     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
479     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
480   } else {
481     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
482     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
483     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
484 
485     // PowerPC does not have [U|S]INT_TO_FP
486     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
487     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
488     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
489     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
490   }
491 
492   if (Subtarget.hasDirectMove() && isPPC64) {
493     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
494     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
495     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
496     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
497     if (TM.Options.UnsafeFPMath) {
498       setOperationAction(ISD::LRINT, MVT::f64, Legal);
499       setOperationAction(ISD::LRINT, MVT::f32, Legal);
500       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
501       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
502       setOperationAction(ISD::LROUND, MVT::f64, Legal);
503       setOperationAction(ISD::LROUND, MVT::f32, Legal);
504       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
505       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
506     }
507   } else {
508     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
509     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
510     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
511     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
512   }
513 
514   // We cannot sextinreg(i1).  Expand to shifts.
515   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
516 
517   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
518   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
519   // support continuation, user-level threading, and etc.. As a result, no
520   // other SjLj exception interfaces are implemented and please don't build
521   // your own exception handling based on them.
522   // LLVM/Clang supports zero-cost DWARF exception handling.
523   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
524   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
525 
526   // We want to legalize GlobalAddress and ConstantPool nodes into the
527   // appropriate instructions to materialize the address.
528   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
529   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
530   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
531   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
532   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
533   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
534   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
535   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
536   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
537   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
538 
539   // TRAP is legal.
540   setOperationAction(ISD::TRAP, MVT::Other, Legal);
541 
542   // TRAMPOLINE is custom lowered.
543   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
544   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
545 
546   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
547   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
548 
549   if (Subtarget.is64BitELFABI()) {
550     // VAARG always uses double-word chunks, so promote anything smaller.
551     setOperationAction(ISD::VAARG, MVT::i1, Promote);
552     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
553     setOperationAction(ISD::VAARG, MVT::i8, Promote);
554     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
555     setOperationAction(ISD::VAARG, MVT::i16, Promote);
556     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
557     setOperationAction(ISD::VAARG, MVT::i32, Promote);
558     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
559     setOperationAction(ISD::VAARG, MVT::Other, Expand);
560   } else if (Subtarget.is32BitELFABI()) {
561     // VAARG is custom lowered with the 32-bit SVR4 ABI.
562     setOperationAction(ISD::VAARG, MVT::Other, Custom);
563     setOperationAction(ISD::VAARG, MVT::i64, Custom);
564   } else
565     setOperationAction(ISD::VAARG, MVT::Other, Expand);
566 
567   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
568   if (Subtarget.is32BitELFABI())
569     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
570   else
571     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
572 
573   // Use the default implementation.
574   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
575   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
576   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
577   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
578   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
579   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
580   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
581   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
582   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
583 
584   // We want to custom lower some of our intrinsics.
585   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
586 
587   // To handle counter-based loop conditions.
588   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
589 
590   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
591   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
592   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
593   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
594 
595   // Comparisons that require checking two conditions.
596   if (Subtarget.hasSPE()) {
597     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
598     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
599     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
600     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
601   }
602   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
603   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
604   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
605   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
606   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
607   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
608   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
609   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
610   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
611   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
612   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
613   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
614 
615   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
616   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
617 
618   if (Subtarget.has64BitSupport()) {
619     // They also have instructions for converting between i64 and fp.
620     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
621     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
622     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
623     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
624     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
625     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
626     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
627     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
628     // This is just the low 32 bits of a (signed) fp->i64 conversion.
629     // We cannot do this with Promote because i64 is not a legal type.
630     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
631     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
632 
633     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
634       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
635       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
636     }
637   } else {
638     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
639     if (Subtarget.hasSPE()) {
640       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
641       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
642     } else {
643       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
644       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
645     }
646   }
647 
648   // With the instructions enabled under FPCVT, we can do everything.
649   if (Subtarget.hasFPCVT()) {
650     if (Subtarget.has64BitSupport()) {
651       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
652       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
653       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
654       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
655       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
656       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
657       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
658       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
659     }
660 
661     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
662     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
663     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
664     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
665     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
666     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
667     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
668     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
669   }
670 
671   if (Subtarget.use64BitRegs()) {
672     // 64-bit PowerPC implementations can support i64 types directly
673     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
674     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
675     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
676     // 64-bit PowerPC wants to expand i128 shifts itself.
677     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
678     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
679     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
680   } else {
681     // 32-bit PowerPC wants to expand i64 shifts itself.
682     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
683     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
684     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
685   }
686 
687   // PowerPC has better expansions for funnel shifts than the generic
688   // TargetLowering::expandFunnelShift.
689   if (Subtarget.has64BitSupport()) {
690     setOperationAction(ISD::FSHL, MVT::i64, Custom);
691     setOperationAction(ISD::FSHR, MVT::i64, Custom);
692   }
693   setOperationAction(ISD::FSHL, MVT::i32, Custom);
694   setOperationAction(ISD::FSHR, MVT::i32, Custom);
695 
696   if (Subtarget.hasVSX()) {
697     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
698     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
699     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
700     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
701   }
702 
703   if (Subtarget.hasAltivec()) {
704     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
705       setOperationAction(ISD::SADDSAT, VT, Legal);
706       setOperationAction(ISD::SSUBSAT, VT, Legal);
707       setOperationAction(ISD::UADDSAT, VT, Legal);
708       setOperationAction(ISD::USUBSAT, VT, Legal);
709     }
710     // First set operation action for all vector types to expand. Then we
711     // will selectively turn on ones that can be effectively codegen'd.
712     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
713       // add/sub are legal for all supported vector VT's.
714       setOperationAction(ISD::ADD, VT, Legal);
715       setOperationAction(ISD::SUB, VT, Legal);
716 
717       // For v2i64, these are only valid with P8Vector. This is corrected after
718       // the loop.
719       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
720         setOperationAction(ISD::SMAX, VT, Legal);
721         setOperationAction(ISD::SMIN, VT, Legal);
722         setOperationAction(ISD::UMAX, VT, Legal);
723         setOperationAction(ISD::UMIN, VT, Legal);
724       }
725       else {
726         setOperationAction(ISD::SMAX, VT, Expand);
727         setOperationAction(ISD::SMIN, VT, Expand);
728         setOperationAction(ISD::UMAX, VT, Expand);
729         setOperationAction(ISD::UMIN, VT, Expand);
730       }
731 
732       if (Subtarget.hasVSX()) {
733         setOperationAction(ISD::FMAXNUM, VT, Legal);
734         setOperationAction(ISD::FMINNUM, VT, Legal);
735       }
736 
737       // Vector instructions introduced in P8
738       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
739         setOperationAction(ISD::CTPOP, VT, Legal);
740         setOperationAction(ISD::CTLZ, VT, Legal);
741       }
742       else {
743         setOperationAction(ISD::CTPOP, VT, Expand);
744         setOperationAction(ISD::CTLZ, VT, Expand);
745       }
746 
747       // Vector instructions introduced in P9
748       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
749         setOperationAction(ISD::CTTZ, VT, Legal);
750       else
751         setOperationAction(ISD::CTTZ, VT, Expand);
752 
753       // We promote all shuffles to v16i8.
754       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
755       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
756 
757       // We promote all non-typed operations to v4i32.
758       setOperationAction(ISD::AND   , VT, Promote);
759       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
760       setOperationAction(ISD::OR    , VT, Promote);
761       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
762       setOperationAction(ISD::XOR   , VT, Promote);
763       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
764       setOperationAction(ISD::LOAD  , VT, Promote);
765       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
766       setOperationAction(ISD::SELECT, VT, Promote);
767       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
768       setOperationAction(ISD::VSELECT, VT, Legal);
769       setOperationAction(ISD::SELECT_CC, VT, Promote);
770       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
771       setOperationAction(ISD::STORE, VT, Promote);
772       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
773 
774       // No other operations are legal.
775       setOperationAction(ISD::MUL , VT, Expand);
776       setOperationAction(ISD::SDIV, VT, Expand);
777       setOperationAction(ISD::SREM, VT, Expand);
778       setOperationAction(ISD::UDIV, VT, Expand);
779       setOperationAction(ISD::UREM, VT, Expand);
780       setOperationAction(ISD::FDIV, VT, Expand);
781       setOperationAction(ISD::FREM, VT, Expand);
782       setOperationAction(ISD::FNEG, VT, Expand);
783       setOperationAction(ISD::FSQRT, VT, Expand);
784       setOperationAction(ISD::FLOG, VT, Expand);
785       setOperationAction(ISD::FLOG10, VT, Expand);
786       setOperationAction(ISD::FLOG2, VT, Expand);
787       setOperationAction(ISD::FEXP, VT, Expand);
788       setOperationAction(ISD::FEXP2, VT, Expand);
789       setOperationAction(ISD::FSIN, VT, Expand);
790       setOperationAction(ISD::FCOS, VT, Expand);
791       setOperationAction(ISD::FABS, VT, Expand);
792       setOperationAction(ISD::FFLOOR, VT, Expand);
793       setOperationAction(ISD::FCEIL,  VT, Expand);
794       setOperationAction(ISD::FTRUNC, VT, Expand);
795       setOperationAction(ISD::FRINT,  VT, Expand);
796       setOperationAction(ISD::FNEARBYINT, VT, Expand);
797       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
798       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
799       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
800       setOperationAction(ISD::MULHU, VT, Expand);
801       setOperationAction(ISD::MULHS, VT, Expand);
802       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
803       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
804       setOperationAction(ISD::UDIVREM, VT, Expand);
805       setOperationAction(ISD::SDIVREM, VT, Expand);
806       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
807       setOperationAction(ISD::FPOW, VT, Expand);
808       setOperationAction(ISD::BSWAP, VT, Expand);
809       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
810       setOperationAction(ISD::ROTL, VT, Expand);
811       setOperationAction(ISD::ROTR, VT, Expand);
812 
813       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
814         setTruncStoreAction(VT, InnerVT, Expand);
815         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
816         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
817         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
818       }
819     }
820     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
821     if (!Subtarget.hasP8Vector()) {
822       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
823       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
824       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
825       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
826     }
827 
828     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
829     // with merges, splats, etc.
830     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
831 
832     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
833     // are cheap, so handle them before they get expanded to scalar.
834     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
835     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
836     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
837     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
838     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
839 
840     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
841     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
842     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
843     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
844     setOperationAction(ISD::SELECT, MVT::v4i32,
845                        Subtarget.useCRBits() ? Legal : Expand);
846     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
847     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
848     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
849     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
850     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
851     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
852     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
853     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
854     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
855     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
856     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
857     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
858     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
859 
860     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
861     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
862     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
863     if (Subtarget.hasAltivec())
864       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
865         setOperationAction(ISD::ROTL, VT, Legal);
866     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
867     if (Subtarget.hasP8Altivec())
868       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
869 
870     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
871     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
872     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
873     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
874 
875     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
876     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
877 
878     if (Subtarget.hasVSX()) {
879       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
880       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
881     }
882 
883     if (Subtarget.hasP8Altivec())
884       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
885     else
886       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
887 
888     if (Subtarget.isISA3_1()) {
889       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
890       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
891       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
892       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
893       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
894       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
895       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
896       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
897       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
898       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
899       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
900       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
901       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
902       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
903       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
904       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
905       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
906       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
907     }
908 
909     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
910     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
911 
912     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
914 
915     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
916     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
917     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
918     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
919 
920     // Altivec does not contain unordered floating-point compare instructions
921     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
922     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
923     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
924     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
925 
926     if (Subtarget.hasVSX()) {
927       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
928       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
929       if (Subtarget.hasP8Vector()) {
930         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
931         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
932       }
933       if (Subtarget.hasDirectMove() && isPPC64) {
934         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
935         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
936         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
937         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
938         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
939         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
940         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
941         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
942       }
943       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
944 
945       // The nearbyint variants are not allowed to raise the inexact exception
946       // so we can only code-gen them with unsafe math.
947       if (TM.Options.UnsafeFPMath) {
948         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
949         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
950       }
951 
952       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
953       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
954       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
955       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
956       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
957       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
958       setOperationAction(ISD::FROUND, MVT::f64, Legal);
959       setOperationAction(ISD::FRINT, MVT::f64, Legal);
960 
961       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
962       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
963       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
964       setOperationAction(ISD::FROUND, MVT::f32, Legal);
965       setOperationAction(ISD::FRINT, MVT::f32, Legal);
966 
967       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
968       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
969 
970       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
971       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
972 
973       // Share the Altivec comparison restrictions.
974       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
975       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
976       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
977       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
978 
979       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
980       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
981 
982       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
983 
984       if (Subtarget.hasP8Vector())
985         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
986 
987       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
988 
989       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
990       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
991       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
992 
993       if (Subtarget.hasP8Altivec()) {
994         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
995         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
996         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
997 
998         // 128 bit shifts can be accomplished via 3 instructions for SHL and
999         // SRL, but not for SRA because of the instructions available:
1000         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1001         // doing
1002         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1003         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1004         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1005 
1006         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1007       }
1008       else {
1009         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1010         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1011         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1012 
1013         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1014 
1015         // VSX v2i64 only supports non-arithmetic operations.
1016         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1017         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1018       }
1019 
1020       if (Subtarget.isISA3_1())
1021         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1022       else
1023         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1024 
1025       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1026       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1027       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1028       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1029 
1030       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1031 
1032       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1033       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1034       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1035       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1036       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1037       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1038       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1039       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1040 
1041       // Custom handling for partial vectors of integers converted to
1042       // floating point. We already have optimal handling for v2i32 through
1043       // the DAG combine, so those aren't necessary.
1044       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1045       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1046       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1047       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1048       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1049       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1050       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1051       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1052       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1053       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1054       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1055       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1056       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1058       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1059       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1060 
1061       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1062       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1063       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1064       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1065       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1066       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1067 
1068       if (Subtarget.hasDirectMove())
1069         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1070       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1071 
1072       // Handle constrained floating-point operations of vector.
1073       // The predictor is `hasVSX` because altivec instruction has
1074       // no exception but VSX vector instruction has.
1075       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1076       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1077       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1078       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1079       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1080       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1081       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1082       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1083       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1084       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1085       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1086       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1087       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1088 
1089       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1090       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1091       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1092       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1093       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1094       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1095       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1096       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1097       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1098       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1099       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1100       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1101       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1102 
1103       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1104     }
1105 
1106     if (Subtarget.hasP8Altivec()) {
1107       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1108       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1109     }
1110 
1111     if (Subtarget.hasP9Vector()) {
1112       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1113       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1114 
1115       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1116       // SRL, but not for SRA because of the instructions available:
1117       // VS{RL} and VS{RL}O.
1118       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1119       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1120       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1121 
1122       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1123       setOperationAction(ISD::FADD, MVT::f128, Legal);
1124       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1125       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1126       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1127       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1128       // No extending loads to f128 on PPC.
1129       for (MVT FPT : MVT::fp_valuetypes())
1130         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1131       setOperationAction(ISD::FMA, MVT::f128, Legal);
1132       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1133       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1134       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1135       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1136       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1137       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1138 
1139       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1140       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1141       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1142       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1143       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1144       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1145 
1146       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1147       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1148       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1149       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1150       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1151       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1152       // No implementation for these ops for PowerPC.
1153       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1154       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1155       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1156       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1157       setOperationAction(ISD::FREM, MVT::f128, Expand);
1158 
1159       // Handle constrained floating-point operations of fp128
1160       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1161       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1162       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1164       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1165       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1166       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1167       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1168       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1169       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1170       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1171       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1172       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1173       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1175       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1176       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1177       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1178       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1179       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1180     } else if (Subtarget.hasAltivec() && EnableSoftFP128) {
1181       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1182 
1183       for (MVT FPT : MVT::fp_valuetypes())
1184         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1185 
1186       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1187       setOperationAction(ISD::STORE, MVT::f128, Promote);
1188 
1189       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1190       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1191 
1192       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1193       // fp_to_uint and int_to_fp.
1194       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1195       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1196 
1197       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1198       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1199       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1200       setOperationAction(ISD::FABS, MVT::f128, Expand);
1201       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1202       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1203       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1204       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1205       setOperationAction(ISD::FREM, MVT::f128, Expand);
1206       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1207       setOperationAction(ISD::FMA, MVT::f128, Expand);
1208       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1209 
1210       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1211       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1212 
1213       // Expand the fp_extend if the target type is fp128.
1214       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1215       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1216 
1217       // Expand the fp_round if the source type is fp128.
1218       for (MVT VT : {MVT::f32, MVT::f64}) {
1219         setOperationAction(ISD::FP_ROUND, VT, Custom);
1220         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1221       }
1222     }
1223 
1224     if (Subtarget.hasP9Altivec()) {
1225       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1226       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1227 
1228       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1229       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1230       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1231       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1232       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1233       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1234       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1235     }
1236 
1237     if (Subtarget.isISA3_1()) {
1238       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1239       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
1240     }
1241   }
1242 
1243   if (Subtarget.pairedVectorMemops()) {
1244     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1245     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1246     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1247   }
1248   if (Subtarget.hasMMA()) {
1249     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1250     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1251     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1252     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1253   }
1254 
1255   if (Subtarget.has64BitSupport())
1256     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1257 
1258   if (Subtarget.isISA3_1())
1259     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1260 
1261   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1262 
1263   if (!isPPC64) {
1264     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1265     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1266   }
1267 
1268   setBooleanContents(ZeroOrOneBooleanContent);
1269 
1270   if (Subtarget.hasAltivec()) {
1271     // Altivec instructions set fields to all zeros or all ones.
1272     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1273   }
1274 
1275   if (!isPPC64) {
1276     // These libcalls are not available in 32-bit.
1277     setLibcallName(RTLIB::SHL_I128, nullptr);
1278     setLibcallName(RTLIB::SRL_I128, nullptr);
1279     setLibcallName(RTLIB::SRA_I128, nullptr);
1280   }
1281 
1282   if (!isPPC64)
1283     setMaxAtomicSizeInBitsSupported(32);
1284 
1285   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1286 
1287   // We have target-specific dag combine patterns for the following nodes:
1288   setTargetDAGCombine(ISD::ADD);
1289   setTargetDAGCombine(ISD::SHL);
1290   setTargetDAGCombine(ISD::SRA);
1291   setTargetDAGCombine(ISD::SRL);
1292   setTargetDAGCombine(ISD::MUL);
1293   setTargetDAGCombine(ISD::FMA);
1294   setTargetDAGCombine(ISD::SINT_TO_FP);
1295   setTargetDAGCombine(ISD::BUILD_VECTOR);
1296   if (Subtarget.hasFPCVT())
1297     setTargetDAGCombine(ISD::UINT_TO_FP);
1298   setTargetDAGCombine(ISD::LOAD);
1299   setTargetDAGCombine(ISD::STORE);
1300   setTargetDAGCombine(ISD::BR_CC);
1301   if (Subtarget.useCRBits())
1302     setTargetDAGCombine(ISD::BRCOND);
1303   setTargetDAGCombine(ISD::BSWAP);
1304   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1305   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1306   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1307 
1308   setTargetDAGCombine(ISD::SIGN_EXTEND);
1309   setTargetDAGCombine(ISD::ZERO_EXTEND);
1310   setTargetDAGCombine(ISD::ANY_EXTEND);
1311 
1312   setTargetDAGCombine(ISD::TRUNCATE);
1313   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1314 
1315 
1316   if (Subtarget.useCRBits()) {
1317     setTargetDAGCombine(ISD::TRUNCATE);
1318     setTargetDAGCombine(ISD::SETCC);
1319     setTargetDAGCombine(ISD::SELECT_CC);
1320   }
1321 
1322   if (Subtarget.hasP9Altivec()) {
1323     setTargetDAGCombine(ISD::ABS);
1324     setTargetDAGCombine(ISD::VSELECT);
1325   }
1326 
1327   setLibcallName(RTLIB::LOG_F128, "logf128");
1328   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1329   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1330   setLibcallName(RTLIB::EXP_F128, "expf128");
1331   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1332   setLibcallName(RTLIB::SIN_F128, "sinf128");
1333   setLibcallName(RTLIB::COS_F128, "cosf128");
1334   setLibcallName(RTLIB::POW_F128, "powf128");
1335   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1336   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1337   setLibcallName(RTLIB::REM_F128, "fmodf128");
1338   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1339   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1340   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1341   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1342   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1343   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1344   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1345   setLibcallName(RTLIB::RINT_F128, "rintf128");
1346   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1347   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1348   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1349   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1350 
1351   // With 32 condition bits, we don't need to sink (and duplicate) compares
1352   // aggressively in CodeGenPrep.
1353   if (Subtarget.useCRBits()) {
1354     setHasMultipleConditionRegisters();
1355     setJumpIsExpensive();
1356   }
1357 
1358   setMinFunctionAlignment(Align(4));
1359 
1360   switch (Subtarget.getCPUDirective()) {
1361   default: break;
1362   case PPC::DIR_970:
1363   case PPC::DIR_A2:
1364   case PPC::DIR_E500:
1365   case PPC::DIR_E500mc:
1366   case PPC::DIR_E5500:
1367   case PPC::DIR_PWR4:
1368   case PPC::DIR_PWR5:
1369   case PPC::DIR_PWR5X:
1370   case PPC::DIR_PWR6:
1371   case PPC::DIR_PWR6X:
1372   case PPC::DIR_PWR7:
1373   case PPC::DIR_PWR8:
1374   case PPC::DIR_PWR9:
1375   case PPC::DIR_PWR10:
1376   case PPC::DIR_PWR_FUTURE:
1377     setPrefLoopAlignment(Align(16));
1378     setPrefFunctionAlignment(Align(16));
1379     break;
1380   }
1381 
1382   if (Subtarget.enableMachineScheduler())
1383     setSchedulingPreference(Sched::Source);
1384   else
1385     setSchedulingPreference(Sched::Hybrid);
1386 
1387   computeRegisterProperties(STI.getRegisterInfo());
1388 
1389   // The Freescale cores do better with aggressive inlining of memcpy and
1390   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1391   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1392       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1393     MaxStoresPerMemset = 32;
1394     MaxStoresPerMemsetOptSize = 16;
1395     MaxStoresPerMemcpy = 32;
1396     MaxStoresPerMemcpyOptSize = 8;
1397     MaxStoresPerMemmove = 32;
1398     MaxStoresPerMemmoveOptSize = 8;
1399   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1400     // The A2 also benefits from (very) aggressive inlining of memcpy and
1401     // friends. The overhead of a the function call, even when warm, can be
1402     // over one hundred cycles.
1403     MaxStoresPerMemset = 128;
1404     MaxStoresPerMemcpy = 128;
1405     MaxStoresPerMemmove = 128;
1406     MaxLoadsPerMemcmp = 128;
1407   } else {
1408     MaxLoadsPerMemcmp = 8;
1409     MaxLoadsPerMemcmpOptSize = 4;
1410   }
1411 
1412   IsStrictFPEnabled = true;
1413 
1414   // Let the subtarget (CPU) decide if a predictable select is more expensive
1415   // than the corresponding branch. This information is used in CGP to decide
1416   // when to convert selects into branches.
1417   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1418 }
1419 
1420 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1421 /// the desired ByVal argument alignment.
1422 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1423   if (MaxAlign == MaxMaxAlign)
1424     return;
1425   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1426     if (MaxMaxAlign >= 32 &&
1427         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1428       MaxAlign = Align(32);
1429     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1430              MaxAlign < 16)
1431       MaxAlign = Align(16);
1432   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1433     Align EltAlign;
1434     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1435     if (EltAlign > MaxAlign)
1436       MaxAlign = EltAlign;
1437   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1438     for (auto *EltTy : STy->elements()) {
1439       Align EltAlign;
1440       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1441       if (EltAlign > MaxAlign)
1442         MaxAlign = EltAlign;
1443       if (MaxAlign == MaxMaxAlign)
1444         break;
1445     }
1446   }
1447 }
1448 
1449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1450 /// function arguments in the caller parameter area.
1451 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1452                                                   const DataLayout &DL) const {
1453   // 16byte and wider vectors are passed on 16byte boundary.
1454   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1455   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1456   if (Subtarget.hasAltivec())
1457     getMaxByValAlign(Ty, Alignment, Align(16));
1458   return Alignment.value();
1459 }
1460 
1461 bool PPCTargetLowering::useSoftFloat() const {
1462   return Subtarget.useSoftFloat();
1463 }
1464 
1465 bool PPCTargetLowering::hasSPE() const {
1466   return Subtarget.hasSPE();
1467 }
1468 
1469 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1470   return VT.isScalarInteger();
1471 }
1472 
1473 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1474   switch ((PPCISD::NodeType)Opcode) {
1475   case PPCISD::FIRST_NUMBER:    break;
1476   case PPCISD::FSEL:            return "PPCISD::FSEL";
1477   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1478   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1479   case PPCISD::FCFID:           return "PPCISD::FCFID";
1480   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1481   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1482   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1483   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1484   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1485   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1486   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1487   case PPCISD::FP_TO_UINT_IN_VSR:
1488                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1489   case PPCISD::FP_TO_SINT_IN_VSR:
1490                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1491   case PPCISD::FRE:             return "PPCISD::FRE";
1492   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1493   case PPCISD::FTSQRT:
1494     return "PPCISD::FTSQRT";
1495   case PPCISD::FSQRT:
1496     return "PPCISD::FSQRT";
1497   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1498   case PPCISD::VPERM:           return "PPCISD::VPERM";
1499   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1500   case PPCISD::XXSPLTI_SP_TO_DP:
1501     return "PPCISD::XXSPLTI_SP_TO_DP";
1502   case PPCISD::XXSPLTI32DX:
1503     return "PPCISD::XXSPLTI32DX";
1504   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1505   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1506   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1507   case PPCISD::CMPB:            return "PPCISD::CMPB";
1508   case PPCISD::Hi:              return "PPCISD::Hi";
1509   case PPCISD::Lo:              return "PPCISD::Lo";
1510   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1511   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1512   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1513   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1514   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1515   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1516   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1517   case PPCISD::SRL:             return "PPCISD::SRL";
1518   case PPCISD::SRA:             return "PPCISD::SRA";
1519   case PPCISD::SHL:             return "PPCISD::SHL";
1520   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1521   case PPCISD::CALL:            return "PPCISD::CALL";
1522   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1523   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1524   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1525   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1526   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1527   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1528   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1529   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1530   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1531   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1532   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1533   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1534   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1535   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1536   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1537   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1538     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1539   case PPCISD::ANDI_rec_1_EQ_BIT:
1540     return "PPCISD::ANDI_rec_1_EQ_BIT";
1541   case PPCISD::ANDI_rec_1_GT_BIT:
1542     return "PPCISD::ANDI_rec_1_GT_BIT";
1543   case PPCISD::VCMP:            return "PPCISD::VCMP";
1544   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1545   case PPCISD::LBRX:            return "PPCISD::LBRX";
1546   case PPCISD::STBRX:           return "PPCISD::STBRX";
1547   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1548   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1549   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1550   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1551   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1552   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1553   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1554   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1555   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1556   case PPCISD::ST_VSR_SCAL_INT:
1557                                 return "PPCISD::ST_VSR_SCAL_INT";
1558   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1559   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1560   case PPCISD::BDZ:             return "PPCISD::BDZ";
1561   case PPCISD::MFFS:            return "PPCISD::MFFS";
1562   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1563   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1564   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1565   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1566   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1567   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1568   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1569   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1570   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1571   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1572   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1573   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1574   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1575   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1576   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1577   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1578   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1579   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1580   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1581   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1582   case PPCISD::PADDI_DTPREL:
1583     return "PPCISD::PADDI_DTPREL";
1584   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1585   case PPCISD::SC:              return "PPCISD::SC";
1586   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1587   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1588   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1589   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1590   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1591   case PPCISD::VABSD:           return "PPCISD::VABSD";
1592   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1593   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1594   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1595   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1596   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1597   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1598   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1599   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1600     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1601   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1602     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1603   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1604   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1605   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1606   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1607   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1608   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1609   case PPCISD::STRICT_FADDRTZ:
1610     return "PPCISD::STRICT_FADDRTZ";
1611   case PPCISD::STRICT_FCTIDZ:
1612     return "PPCISD::STRICT_FCTIDZ";
1613   case PPCISD::STRICT_FCTIWZ:
1614     return "PPCISD::STRICT_FCTIWZ";
1615   case PPCISD::STRICT_FCTIDUZ:
1616     return "PPCISD::STRICT_FCTIDUZ";
1617   case PPCISD::STRICT_FCTIWUZ:
1618     return "PPCISD::STRICT_FCTIWUZ";
1619   case PPCISD::STRICT_FCFID:
1620     return "PPCISD::STRICT_FCFID";
1621   case PPCISD::STRICT_FCFIDU:
1622     return "PPCISD::STRICT_FCFIDU";
1623   case PPCISD::STRICT_FCFIDS:
1624     return "PPCISD::STRICT_FCFIDS";
1625   case PPCISD::STRICT_FCFIDUS:
1626     return "PPCISD::STRICT_FCFIDUS";
1627   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1628   }
1629   return nullptr;
1630 }
1631 
1632 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1633                                           EVT VT) const {
1634   if (!VT.isVector())
1635     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1636 
1637   return VT.changeVectorElementTypeToInteger();
1638 }
1639 
1640 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1641   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1642   return true;
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 // Node matching predicates, for use by the tblgen matching code.
1647 //===----------------------------------------------------------------------===//
1648 
1649 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1650 static bool isFloatingPointZero(SDValue Op) {
1651   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1652     return CFP->getValueAPF().isZero();
1653   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1654     // Maybe this has already been legalized into the constant pool?
1655     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1656       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1657         return CFP->getValueAPF().isZero();
1658   }
1659   return false;
1660 }
1661 
1662 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1663 /// true if Op is undef or if it matches the specified value.
1664 static bool isConstantOrUndef(int Op, int Val) {
1665   return Op < 0 || Op == Val;
1666 }
1667 
1668 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1669 /// VPKUHUM instruction.
1670 /// The ShuffleKind distinguishes between big-endian operations with
1671 /// two different inputs (0), either-endian operations with two identical
1672 /// inputs (1), and little-endian operations with two different inputs (2).
1673 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1674 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1675                                SelectionDAG &DAG) {
1676   bool IsLE = DAG.getDataLayout().isLittleEndian();
1677   if (ShuffleKind == 0) {
1678     if (IsLE)
1679       return false;
1680     for (unsigned i = 0; i != 16; ++i)
1681       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1682         return false;
1683   } else if (ShuffleKind == 2) {
1684     if (!IsLE)
1685       return false;
1686     for (unsigned i = 0; i != 16; ++i)
1687       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1688         return false;
1689   } else if (ShuffleKind == 1) {
1690     unsigned j = IsLE ? 0 : 1;
1691     for (unsigned i = 0; i != 8; ++i)
1692       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1693           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1694         return false;
1695   }
1696   return true;
1697 }
1698 
1699 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1700 /// VPKUWUM instruction.
1701 /// The ShuffleKind distinguishes between big-endian operations with
1702 /// two different inputs (0), either-endian operations with two identical
1703 /// inputs (1), and little-endian operations with two different inputs (2).
1704 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1705 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1706                                SelectionDAG &DAG) {
1707   bool IsLE = DAG.getDataLayout().isLittleEndian();
1708   if (ShuffleKind == 0) {
1709     if (IsLE)
1710       return false;
1711     for (unsigned i = 0; i != 16; i += 2)
1712       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1713           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1714         return false;
1715   } else if (ShuffleKind == 2) {
1716     if (!IsLE)
1717       return false;
1718     for (unsigned i = 0; i != 16; i += 2)
1719       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1720           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1721         return false;
1722   } else if (ShuffleKind == 1) {
1723     unsigned j = IsLE ? 0 : 2;
1724     for (unsigned i = 0; i != 8; i += 2)
1725       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1726           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1727           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1728           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1729         return false;
1730   }
1731   return true;
1732 }
1733 
1734 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1735 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1736 /// current subtarget.
1737 ///
1738 /// The ShuffleKind distinguishes between big-endian operations with
1739 /// two different inputs (0), either-endian operations with two identical
1740 /// inputs (1), and little-endian operations with two different inputs (2).
1741 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1742 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1743                                SelectionDAG &DAG) {
1744   const PPCSubtarget& Subtarget =
1745       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1746   if (!Subtarget.hasP8Vector())
1747     return false;
1748 
1749   bool IsLE = DAG.getDataLayout().isLittleEndian();
1750   if (ShuffleKind == 0) {
1751     if (IsLE)
1752       return false;
1753     for (unsigned i = 0; i != 16; i += 4)
1754       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1755           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1756           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1757           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1758         return false;
1759   } else if (ShuffleKind == 2) {
1760     if (!IsLE)
1761       return false;
1762     for (unsigned i = 0; i != 16; i += 4)
1763       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1764           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1765           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1766           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1767         return false;
1768   } else if (ShuffleKind == 1) {
1769     unsigned j = IsLE ? 0 : 4;
1770     for (unsigned i = 0; i != 8; i += 4)
1771       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1772           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1773           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1774           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1775           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1776           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1777           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1778           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1779         return false;
1780   }
1781   return true;
1782 }
1783 
1784 /// isVMerge - Common function, used to match vmrg* shuffles.
1785 ///
1786 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1787                      unsigned LHSStart, unsigned RHSStart) {
1788   if (N->getValueType(0) != MVT::v16i8)
1789     return false;
1790   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1791          "Unsupported merge size!");
1792 
1793   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1794     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1795       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1796                              LHSStart+j+i*UnitSize) ||
1797           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1798                              RHSStart+j+i*UnitSize))
1799         return false;
1800     }
1801   return true;
1802 }
1803 
1804 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1805 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1806 /// The ShuffleKind distinguishes between big-endian merges with two
1807 /// different inputs (0), either-endian merges with two identical inputs (1),
1808 /// and little-endian merges with two different inputs (2).  For the latter,
1809 /// the input operands are swapped (see PPCInstrAltivec.td).
1810 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1811                              unsigned ShuffleKind, SelectionDAG &DAG) {
1812   if (DAG.getDataLayout().isLittleEndian()) {
1813     if (ShuffleKind == 1) // unary
1814       return isVMerge(N, UnitSize, 0, 0);
1815     else if (ShuffleKind == 2) // swapped
1816       return isVMerge(N, UnitSize, 0, 16);
1817     else
1818       return false;
1819   } else {
1820     if (ShuffleKind == 1) // unary
1821       return isVMerge(N, UnitSize, 8, 8);
1822     else if (ShuffleKind == 0) // normal
1823       return isVMerge(N, UnitSize, 8, 24);
1824     else
1825       return false;
1826   }
1827 }
1828 
1829 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1830 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1831 /// The ShuffleKind distinguishes between big-endian merges with two
1832 /// different inputs (0), either-endian merges with two identical inputs (1),
1833 /// and little-endian merges with two different inputs (2).  For the latter,
1834 /// the input operands are swapped (see PPCInstrAltivec.td).
1835 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1836                              unsigned ShuffleKind, SelectionDAG &DAG) {
1837   if (DAG.getDataLayout().isLittleEndian()) {
1838     if (ShuffleKind == 1) // unary
1839       return isVMerge(N, UnitSize, 8, 8);
1840     else if (ShuffleKind == 2) // swapped
1841       return isVMerge(N, UnitSize, 8, 24);
1842     else
1843       return false;
1844   } else {
1845     if (ShuffleKind == 1) // unary
1846       return isVMerge(N, UnitSize, 0, 0);
1847     else if (ShuffleKind == 0) // normal
1848       return isVMerge(N, UnitSize, 0, 16);
1849     else
1850       return false;
1851   }
1852 }
1853 
1854 /**
1855  * Common function used to match vmrgew and vmrgow shuffles
1856  *
1857  * The indexOffset determines whether to look for even or odd words in
1858  * the shuffle mask. This is based on the of the endianness of the target
1859  * machine.
1860  *   - Little Endian:
1861  *     - Use offset of 0 to check for odd elements
1862  *     - Use offset of 4 to check for even elements
1863  *   - Big Endian:
1864  *     - Use offset of 0 to check for even elements
1865  *     - Use offset of 4 to check for odd elements
1866  * A detailed description of the vector element ordering for little endian and
1867  * big endian can be found at
1868  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1869  * Targeting your applications - what little endian and big endian IBM XL C/C++
1870  * compiler differences mean to you
1871  *
1872  * The mask to the shuffle vector instruction specifies the indices of the
1873  * elements from the two input vectors to place in the result. The elements are
1874  * numbered in array-access order, starting with the first vector. These vectors
1875  * are always of type v16i8, thus each vector will contain 16 elements of size
1876  * 8. More info on the shuffle vector can be found in the
1877  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1878  * Language Reference.
1879  *
1880  * The RHSStartValue indicates whether the same input vectors are used (unary)
1881  * or two different input vectors are used, based on the following:
1882  *   - If the instruction uses the same vector for both inputs, the range of the
1883  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1884  *     be 0.
1885  *   - If the instruction has two different vectors then the range of the
1886  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1887  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1888  *     to 31 specify elements in the second vector).
1889  *
1890  * \param[in] N The shuffle vector SD Node to analyze
1891  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1892  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1893  * vector to the shuffle_vector instruction
1894  * \return true iff this shuffle vector represents an even or odd word merge
1895  */
1896 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1897                      unsigned RHSStartValue) {
1898   if (N->getValueType(0) != MVT::v16i8)
1899     return false;
1900 
1901   for (unsigned i = 0; i < 2; ++i)
1902     for (unsigned j = 0; j < 4; ++j)
1903       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1904                              i*RHSStartValue+j+IndexOffset) ||
1905           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1906                              i*RHSStartValue+j+IndexOffset+8))
1907         return false;
1908   return true;
1909 }
1910 
1911 /**
1912  * Determine if the specified shuffle mask is suitable for the vmrgew or
1913  * vmrgow instructions.
1914  *
1915  * \param[in] N The shuffle vector SD Node to analyze
1916  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1917  * \param[in] ShuffleKind Identify the type of merge:
1918  *   - 0 = big-endian merge with two different inputs;
1919  *   - 1 = either-endian merge with two identical inputs;
1920  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1921  *     little-endian merges).
1922  * \param[in] DAG The current SelectionDAG
1923  * \return true iff this shuffle mask
1924  */
1925 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1926                               unsigned ShuffleKind, SelectionDAG &DAG) {
1927   if (DAG.getDataLayout().isLittleEndian()) {
1928     unsigned indexOffset = CheckEven ? 4 : 0;
1929     if (ShuffleKind == 1) // Unary
1930       return isVMerge(N, indexOffset, 0);
1931     else if (ShuffleKind == 2) // swapped
1932       return isVMerge(N, indexOffset, 16);
1933     else
1934       return false;
1935   }
1936   else {
1937     unsigned indexOffset = CheckEven ? 0 : 4;
1938     if (ShuffleKind == 1) // Unary
1939       return isVMerge(N, indexOffset, 0);
1940     else if (ShuffleKind == 0) // Normal
1941       return isVMerge(N, indexOffset, 16);
1942     else
1943       return false;
1944   }
1945   return false;
1946 }
1947 
1948 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1949 /// amount, otherwise return -1.
1950 /// The ShuffleKind distinguishes between big-endian operations with two
1951 /// different inputs (0), either-endian operations with two identical inputs
1952 /// (1), and little-endian operations with two different inputs (2).  For the
1953 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1954 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1955                              SelectionDAG &DAG) {
1956   if (N->getValueType(0) != MVT::v16i8)
1957     return -1;
1958 
1959   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1960 
1961   // Find the first non-undef value in the shuffle mask.
1962   unsigned i;
1963   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1964     /*search*/;
1965 
1966   if (i == 16) return -1;  // all undef.
1967 
1968   // Otherwise, check to see if the rest of the elements are consecutively
1969   // numbered from this value.
1970   unsigned ShiftAmt = SVOp->getMaskElt(i);
1971   if (ShiftAmt < i) return -1;
1972 
1973   ShiftAmt -= i;
1974   bool isLE = DAG.getDataLayout().isLittleEndian();
1975 
1976   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1977     // Check the rest of the elements to see if they are consecutive.
1978     for (++i; i != 16; ++i)
1979       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1980         return -1;
1981   } else if (ShuffleKind == 1) {
1982     // Check the rest of the elements to see if they are consecutive.
1983     for (++i; i != 16; ++i)
1984       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1985         return -1;
1986   } else
1987     return -1;
1988 
1989   if (isLE)
1990     ShiftAmt = 16 - ShiftAmt;
1991 
1992   return ShiftAmt;
1993 }
1994 
1995 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1996 /// specifies a splat of a single element that is suitable for input to
1997 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1998 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1999   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2000          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2001 
2002   // The consecutive indices need to specify an element, not part of two
2003   // different elements.  So abandon ship early if this isn't the case.
2004   if (N->getMaskElt(0) % EltSize != 0)
2005     return false;
2006 
2007   // This is a splat operation if each element of the permute is the same, and
2008   // if the value doesn't reference the second vector.
2009   unsigned ElementBase = N->getMaskElt(0);
2010 
2011   // FIXME: Handle UNDEF elements too!
2012   if (ElementBase >= 16)
2013     return false;
2014 
2015   // Check that the indices are consecutive, in the case of a multi-byte element
2016   // splatted with a v16i8 mask.
2017   for (unsigned i = 1; i != EltSize; ++i)
2018     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2019       return false;
2020 
2021   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2022     if (N->getMaskElt(i) < 0) continue;
2023     for (unsigned j = 0; j != EltSize; ++j)
2024       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2025         return false;
2026   }
2027   return true;
2028 }
2029 
2030 /// Check that the mask is shuffling N byte elements. Within each N byte
2031 /// element of the mask, the indices could be either in increasing or
2032 /// decreasing order as long as they are consecutive.
2033 /// \param[in] N the shuffle vector SD Node to analyze
2034 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2035 /// Word/DoubleWord/QuadWord).
2036 /// \param[in] StepLen the delta indices number among the N byte element, if
2037 /// the mask is in increasing/decreasing order then it is 1/-1.
2038 /// \return true iff the mask is shuffling N byte elements.
2039 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2040                                    int StepLen) {
2041   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2042          "Unexpected element width.");
2043   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2044 
2045   unsigned NumOfElem = 16 / Width;
2046   unsigned MaskVal[16]; //  Width is never greater than 16
2047   for (unsigned i = 0; i < NumOfElem; ++i) {
2048     MaskVal[0] = N->getMaskElt(i * Width);
2049     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2050       return false;
2051     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2052       return false;
2053     }
2054 
2055     for (unsigned int j = 1; j < Width; ++j) {
2056       MaskVal[j] = N->getMaskElt(i * Width + j);
2057       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2058         return false;
2059       }
2060     }
2061   }
2062 
2063   return true;
2064 }
2065 
2066 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2067                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2068   if (!isNByteElemShuffleMask(N, 4, 1))
2069     return false;
2070 
2071   // Now we look at mask elements 0,4,8,12
2072   unsigned M0 = N->getMaskElt(0) / 4;
2073   unsigned M1 = N->getMaskElt(4) / 4;
2074   unsigned M2 = N->getMaskElt(8) / 4;
2075   unsigned M3 = N->getMaskElt(12) / 4;
2076   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2077   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2078 
2079   // Below, let H and L be arbitrary elements of the shuffle mask
2080   // where H is in the range [4,7] and L is in the range [0,3].
2081   // H, 1, 2, 3 or L, 5, 6, 7
2082   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2083       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2084     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2085     InsertAtByte = IsLE ? 12 : 0;
2086     Swap = M0 < 4;
2087     return true;
2088   }
2089   // 0, H, 2, 3 or 4, L, 6, 7
2090   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2091       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2092     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2093     InsertAtByte = IsLE ? 8 : 4;
2094     Swap = M1 < 4;
2095     return true;
2096   }
2097   // 0, 1, H, 3 or 4, 5, L, 7
2098   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2099       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2100     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2101     InsertAtByte = IsLE ? 4 : 8;
2102     Swap = M2 < 4;
2103     return true;
2104   }
2105   // 0, 1, 2, H or 4, 5, 6, L
2106   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2107       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2108     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2109     InsertAtByte = IsLE ? 0 : 12;
2110     Swap = M3 < 4;
2111     return true;
2112   }
2113 
2114   // If both vector operands for the shuffle are the same vector, the mask will
2115   // contain only elements from the first one and the second one will be undef.
2116   if (N->getOperand(1).isUndef()) {
2117     ShiftElts = 0;
2118     Swap = true;
2119     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2120     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2121       InsertAtByte = IsLE ? 12 : 0;
2122       return true;
2123     }
2124     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2125       InsertAtByte = IsLE ? 8 : 4;
2126       return true;
2127     }
2128     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2129       InsertAtByte = IsLE ? 4 : 8;
2130       return true;
2131     }
2132     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2133       InsertAtByte = IsLE ? 0 : 12;
2134       return true;
2135     }
2136   }
2137 
2138   return false;
2139 }
2140 
2141 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2142                                bool &Swap, bool IsLE) {
2143   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2144   // Ensure each byte index of the word is consecutive.
2145   if (!isNByteElemShuffleMask(N, 4, 1))
2146     return false;
2147 
2148   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2149   unsigned M0 = N->getMaskElt(0) / 4;
2150   unsigned M1 = N->getMaskElt(4) / 4;
2151   unsigned M2 = N->getMaskElt(8) / 4;
2152   unsigned M3 = N->getMaskElt(12) / 4;
2153 
2154   // If both vector operands for the shuffle are the same vector, the mask will
2155   // contain only elements from the first one and the second one will be undef.
2156   if (N->getOperand(1).isUndef()) {
2157     assert(M0 < 4 && "Indexing into an undef vector?");
2158     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2159       return false;
2160 
2161     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2162     Swap = false;
2163     return true;
2164   }
2165 
2166   // Ensure each word index of the ShuffleVector Mask is consecutive.
2167   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2168     return false;
2169 
2170   if (IsLE) {
2171     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2172       // Input vectors don't need to be swapped if the leading element
2173       // of the result is one of the 3 left elements of the second vector
2174       // (or if there is no shift to be done at all).
2175       Swap = false;
2176       ShiftElts = (8 - M0) % 8;
2177     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2178       // Input vectors need to be swapped if the leading element
2179       // of the result is one of the 3 left elements of the first vector
2180       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2181       Swap = true;
2182       ShiftElts = (4 - M0) % 4;
2183     }
2184 
2185     return true;
2186   } else {                                          // BE
2187     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2188       // Input vectors don't need to be swapped if the leading element
2189       // of the result is one of the 4 elements of the first vector.
2190       Swap = false;
2191       ShiftElts = M0;
2192     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2193       // Input vectors need to be swapped if the leading element
2194       // of the result is one of the 4 elements of the right vector.
2195       Swap = true;
2196       ShiftElts = M0 - 4;
2197     }
2198 
2199     return true;
2200   }
2201 }
2202 
2203 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2204   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2205 
2206   if (!isNByteElemShuffleMask(N, Width, -1))
2207     return false;
2208 
2209   for (int i = 0; i < 16; i += Width)
2210     if (N->getMaskElt(i) != i + Width - 1)
2211       return false;
2212 
2213   return true;
2214 }
2215 
2216 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2217   return isXXBRShuffleMaskHelper(N, 2);
2218 }
2219 
2220 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2221   return isXXBRShuffleMaskHelper(N, 4);
2222 }
2223 
2224 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2225   return isXXBRShuffleMaskHelper(N, 8);
2226 }
2227 
2228 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2229   return isXXBRShuffleMaskHelper(N, 16);
2230 }
2231 
2232 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2233 /// if the inputs to the instruction should be swapped and set \p DM to the
2234 /// value for the immediate.
2235 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2236 /// AND element 0 of the result comes from the first input (LE) or second input
2237 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2238 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2239 /// mask.
2240 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2241                                bool &Swap, bool IsLE) {
2242   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2243 
2244   // Ensure each byte index of the double word is consecutive.
2245   if (!isNByteElemShuffleMask(N, 8, 1))
2246     return false;
2247 
2248   unsigned M0 = N->getMaskElt(0) / 8;
2249   unsigned M1 = N->getMaskElt(8) / 8;
2250   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2251 
2252   // If both vector operands for the shuffle are the same vector, the mask will
2253   // contain only elements from the first one and the second one will be undef.
2254   if (N->getOperand(1).isUndef()) {
2255     if ((M0 | M1) < 2) {
2256       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2257       Swap = false;
2258       return true;
2259     } else
2260       return false;
2261   }
2262 
2263   if (IsLE) {
2264     if (M0 > 1 && M1 < 2) {
2265       Swap = false;
2266     } else if (M0 < 2 && M1 > 1) {
2267       M0 = (M0 + 2) % 4;
2268       M1 = (M1 + 2) % 4;
2269       Swap = true;
2270     } else
2271       return false;
2272 
2273     // Note: if control flow comes here that means Swap is already set above
2274     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2275     return true;
2276   } else { // BE
2277     if (M0 < 2 && M1 > 1) {
2278       Swap = false;
2279     } else if (M0 > 1 && M1 < 2) {
2280       M0 = (M0 + 2) % 4;
2281       M1 = (M1 + 2) % 4;
2282       Swap = true;
2283     } else
2284       return false;
2285 
2286     // Note: if control flow comes here that means Swap is already set above
2287     DM = (M0 << 1) + (M1 & 1);
2288     return true;
2289   }
2290 }
2291 
2292 
2293 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2294 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2295 /// elements are counted from the left of the vector register).
2296 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2297                                          SelectionDAG &DAG) {
2298   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2299   assert(isSplatShuffleMask(SVOp, EltSize));
2300   if (DAG.getDataLayout().isLittleEndian())
2301     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2302   else
2303     return SVOp->getMaskElt(0) / EltSize;
2304 }
2305 
2306 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2307 /// by using a vspltis[bhw] instruction of the specified element size, return
2308 /// the constant being splatted.  The ByteSize field indicates the number of
2309 /// bytes of each element [124] -> [bhw].
2310 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2311   SDValue OpVal(nullptr, 0);
2312 
2313   // If ByteSize of the splat is bigger than the element size of the
2314   // build_vector, then we have a case where we are checking for a splat where
2315   // multiple elements of the buildvector are folded together into a single
2316   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2317   unsigned EltSize = 16/N->getNumOperands();
2318   if (EltSize < ByteSize) {
2319     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2320     SDValue UniquedVals[4];
2321     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2322 
2323     // See if all of the elements in the buildvector agree across.
2324     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2325       if (N->getOperand(i).isUndef()) continue;
2326       // If the element isn't a constant, bail fully out.
2327       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2328 
2329       if (!UniquedVals[i&(Multiple-1)].getNode())
2330         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2331       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2332         return SDValue();  // no match.
2333     }
2334 
2335     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2336     // either constant or undef values that are identical for each chunk.  See
2337     // if these chunks can form into a larger vspltis*.
2338 
2339     // Check to see if all of the leading entries are either 0 or -1.  If
2340     // neither, then this won't fit into the immediate field.
2341     bool LeadingZero = true;
2342     bool LeadingOnes = true;
2343     for (unsigned i = 0; i != Multiple-1; ++i) {
2344       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2345 
2346       LeadingZero &= isNullConstant(UniquedVals[i]);
2347       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2348     }
2349     // Finally, check the least significant entry.
2350     if (LeadingZero) {
2351       if (!UniquedVals[Multiple-1].getNode())
2352         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2353       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2354       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2355         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2356     }
2357     if (LeadingOnes) {
2358       if (!UniquedVals[Multiple-1].getNode())
2359         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2360       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2361       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2362         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2363     }
2364 
2365     return SDValue();
2366   }
2367 
2368   // Check to see if this buildvec has a single non-undef value in its elements.
2369   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2370     if (N->getOperand(i).isUndef()) continue;
2371     if (!OpVal.getNode())
2372       OpVal = N->getOperand(i);
2373     else if (OpVal != N->getOperand(i))
2374       return SDValue();
2375   }
2376 
2377   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2378 
2379   unsigned ValSizeInBytes = EltSize;
2380   uint64_t Value = 0;
2381   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2382     Value = CN->getZExtValue();
2383   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2384     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2385     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2386   }
2387 
2388   // If the splat value is larger than the element value, then we can never do
2389   // this splat.  The only case that we could fit the replicated bits into our
2390   // immediate field for would be zero, and we prefer to use vxor for it.
2391   if (ValSizeInBytes < ByteSize) return SDValue();
2392 
2393   // If the element value is larger than the splat value, check if it consists
2394   // of a repeated bit pattern of size ByteSize.
2395   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2396     return SDValue();
2397 
2398   // Properly sign extend the value.
2399   int MaskVal = SignExtend32(Value, ByteSize * 8);
2400 
2401   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2402   if (MaskVal == 0) return SDValue();
2403 
2404   // Finally, if this value fits in a 5 bit sext field, return it
2405   if (SignExtend32<5>(MaskVal) == MaskVal)
2406     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2407   return SDValue();
2408 }
2409 
2410 //===----------------------------------------------------------------------===//
2411 //  Addressing Mode Selection
2412 //===----------------------------------------------------------------------===//
2413 
2414 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2415 /// or 64-bit immediate, and if the value can be accurately represented as a
2416 /// sign extension from a 16-bit value.  If so, this returns true and the
2417 /// immediate.
2418 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2419   if (!isa<ConstantSDNode>(N))
2420     return false;
2421 
2422   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2423   if (N->getValueType(0) == MVT::i32)
2424     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2425   else
2426     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2427 }
2428 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2429   return isIntS16Immediate(Op.getNode(), Imm);
2430 }
2431 
2432 
2433 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2434 /// be represented as an indexed [r+r] operation.
2435 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2436                                                SDValue &Index,
2437                                                SelectionDAG &DAG) const {
2438   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2439       UI != E; ++UI) {
2440     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2441       if (Memop->getMemoryVT() == MVT::f64) {
2442           Base = N.getOperand(0);
2443           Index = N.getOperand(1);
2444           return true;
2445       }
2446     }
2447   }
2448   return false;
2449 }
2450 
2451 /// isIntS34Immediate - This method tests if value of node given can be
2452 /// accurately represented as a sign extension from a 34-bit value.  If so,
2453 /// this returns true and the immediate.
2454 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2455   if (!isa<ConstantSDNode>(N))
2456     return false;
2457 
2458   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2459   return isInt<34>(Imm);
2460 }
2461 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2462   return isIntS34Immediate(Op.getNode(), Imm);
2463 }
2464 
2465 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2466 /// can be represented as an indexed [r+r] operation.  Returns false if it
2467 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2468 /// non-zero and N can be represented by a base register plus a signed 16-bit
2469 /// displacement, make a more precise judgement by checking (displacement % \p
2470 /// EncodingAlignment).
2471 bool PPCTargetLowering::SelectAddressRegReg(
2472     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2473     MaybeAlign EncodingAlignment) const {
2474   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2475   // a [pc+imm].
2476   if (SelectAddressPCRel(N, Base))
2477     return false;
2478 
2479   int16_t Imm = 0;
2480   if (N.getOpcode() == ISD::ADD) {
2481     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2482     // SPE load/store can only handle 8-bit offsets.
2483     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2484         return true;
2485     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2486         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2487       return false; // r+i
2488     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2489       return false;    // r+i
2490 
2491     Base = N.getOperand(0);
2492     Index = N.getOperand(1);
2493     return true;
2494   } else if (N.getOpcode() == ISD::OR) {
2495     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2496         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2497       return false; // r+i can fold it if we can.
2498 
2499     // If this is an or of disjoint bitfields, we can codegen this as an add
2500     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2501     // disjoint.
2502     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2503 
2504     if (LHSKnown.Zero.getBoolValue()) {
2505       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2506       // If all of the bits are known zero on the LHS or RHS, the add won't
2507       // carry.
2508       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2509         Base = N.getOperand(0);
2510         Index = N.getOperand(1);
2511         return true;
2512       }
2513     }
2514   }
2515 
2516   return false;
2517 }
2518 
2519 // If we happen to be doing an i64 load or store into a stack slot that has
2520 // less than a 4-byte alignment, then the frame-index elimination may need to
2521 // use an indexed load or store instruction (because the offset may not be a
2522 // multiple of 4). The extra register needed to hold the offset comes from the
2523 // register scavenger, and it is possible that the scavenger will need to use
2524 // an emergency spill slot. As a result, we need to make sure that a spill slot
2525 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2526 // stack slot.
2527 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2528   // FIXME: This does not handle the LWA case.
2529   if (VT != MVT::i64)
2530     return;
2531 
2532   // NOTE: We'll exclude negative FIs here, which come from argument
2533   // lowering, because there are no known test cases triggering this problem
2534   // using packed structures (or similar). We can remove this exclusion if
2535   // we find such a test case. The reason why this is so test-case driven is
2536   // because this entire 'fixup' is only to prevent crashes (from the
2537   // register scavenger) on not-really-valid inputs. For example, if we have:
2538   //   %a = alloca i1
2539   //   %b = bitcast i1* %a to i64*
2540   //   store i64* a, i64 b
2541   // then the store should really be marked as 'align 1', but is not. If it
2542   // were marked as 'align 1' then the indexed form would have been
2543   // instruction-selected initially, and the problem this 'fixup' is preventing
2544   // won't happen regardless.
2545   if (FrameIdx < 0)
2546     return;
2547 
2548   MachineFunction &MF = DAG.getMachineFunction();
2549   MachineFrameInfo &MFI = MF.getFrameInfo();
2550 
2551   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2552     return;
2553 
2554   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2555   FuncInfo->setHasNonRISpills();
2556 }
2557 
2558 /// Returns true if the address N can be represented by a base register plus
2559 /// a signed 16-bit displacement [r+imm], and if it is not better
2560 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2561 /// displacements that are multiples of that value.
2562 bool PPCTargetLowering::SelectAddressRegImm(
2563     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2564     MaybeAlign EncodingAlignment) const {
2565   // FIXME dl should come from parent load or store, not from address
2566   SDLoc dl(N);
2567 
2568   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2569   // a [pc+imm].
2570   if (SelectAddressPCRel(N, Base))
2571     return false;
2572 
2573   // If this can be more profitably realized as r+r, fail.
2574   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2575     return false;
2576 
2577   if (N.getOpcode() == ISD::ADD) {
2578     int16_t imm = 0;
2579     if (isIntS16Immediate(N.getOperand(1), imm) &&
2580         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2581       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2582       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2583         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2584         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2585       } else {
2586         Base = N.getOperand(0);
2587       }
2588       return true; // [r+i]
2589     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2590       // Match LOAD (ADD (X, Lo(G))).
2591       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2592              && "Cannot handle constant offsets yet!");
2593       Disp = N.getOperand(1).getOperand(0);  // The global address.
2594       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2595              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2596              Disp.getOpcode() == ISD::TargetConstantPool ||
2597              Disp.getOpcode() == ISD::TargetJumpTable);
2598       Base = N.getOperand(0);
2599       return true;  // [&g+r]
2600     }
2601   } else if (N.getOpcode() == ISD::OR) {
2602     int16_t imm = 0;
2603     if (isIntS16Immediate(N.getOperand(1), imm) &&
2604         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2605       // If this is an or of disjoint bitfields, we can codegen this as an add
2606       // (for better address arithmetic) if the LHS and RHS of the OR are
2607       // provably disjoint.
2608       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2609 
2610       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2611         // If all of the bits are known zero on the LHS or RHS, the add won't
2612         // carry.
2613         if (FrameIndexSDNode *FI =
2614               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2615           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2616           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2617         } else {
2618           Base = N.getOperand(0);
2619         }
2620         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2621         return true;
2622       }
2623     }
2624   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2625     // Loading from a constant address.
2626 
2627     // If this address fits entirely in a 16-bit sext immediate field, codegen
2628     // this as "d, 0"
2629     int16_t Imm;
2630     if (isIntS16Immediate(CN, Imm) &&
2631         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2632       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2633       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2634                              CN->getValueType(0));
2635       return true;
2636     }
2637 
2638     // Handle 32-bit sext immediates with LIS + addr mode.
2639     if ((CN->getValueType(0) == MVT::i32 ||
2640          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2641         (!EncodingAlignment ||
2642          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2643       int Addr = (int)CN->getZExtValue();
2644 
2645       // Otherwise, break this down into an LIS + disp.
2646       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2647 
2648       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2649                                    MVT::i32);
2650       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2651       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2652       return true;
2653     }
2654   }
2655 
2656   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2657   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2658     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2659     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2660   } else
2661     Base = N;
2662   return true;      // [r+0]
2663 }
2664 
2665 /// Similar to the 16-bit case but for instructions that take a 34-bit
2666 /// displacement field (prefixed loads/stores).
2667 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2668                                               SDValue &Base,
2669                                               SelectionDAG &DAG) const {
2670   // Only on 64-bit targets.
2671   if (N.getValueType() != MVT::i64)
2672     return false;
2673 
2674   SDLoc dl(N);
2675   int64_t Imm = 0;
2676 
2677   if (N.getOpcode() == ISD::ADD) {
2678     if (!isIntS34Immediate(N.getOperand(1), Imm))
2679       return false;
2680     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2681     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2682       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2683     else
2684       Base = N.getOperand(0);
2685     return true;
2686   }
2687 
2688   if (N.getOpcode() == ISD::OR) {
2689     if (!isIntS34Immediate(N.getOperand(1), Imm))
2690       return false;
2691     // If this is an or of disjoint bitfields, we can codegen this as an add
2692     // (for better address arithmetic) if the LHS and RHS of the OR are
2693     // provably disjoint.
2694     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2695     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2696       return false;
2697     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2698       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2699     else
2700       Base = N.getOperand(0);
2701     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2702     return true;
2703   }
2704 
2705   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2706     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2707     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2708     return true;
2709   }
2710 
2711   return false;
2712 }
2713 
2714 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2715 /// represented as an indexed [r+r] operation.
2716 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2717                                                 SDValue &Index,
2718                                                 SelectionDAG &DAG) const {
2719   // Check to see if we can easily represent this as an [r+r] address.  This
2720   // will fail if it thinks that the address is more profitably represented as
2721   // reg+imm, e.g. where imm = 0.
2722   if (SelectAddressRegReg(N, Base, Index, DAG))
2723     return true;
2724 
2725   // If the address is the result of an add, we will utilize the fact that the
2726   // address calculation includes an implicit add.  However, we can reduce
2727   // register pressure if we do not materialize a constant just for use as the
2728   // index register.  We only get rid of the add if it is not an add of a
2729   // value and a 16-bit signed constant and both have a single use.
2730   int16_t imm = 0;
2731   if (N.getOpcode() == ISD::ADD &&
2732       (!isIntS16Immediate(N.getOperand(1), imm) ||
2733        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2734     Base = N.getOperand(0);
2735     Index = N.getOperand(1);
2736     return true;
2737   }
2738 
2739   // Otherwise, do it the hard way, using R0 as the base register.
2740   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2741                          N.getValueType());
2742   Index = N;
2743   return true;
2744 }
2745 
2746 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2747   Ty *PCRelCand = dyn_cast<Ty>(N);
2748   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2749 }
2750 
2751 /// Returns true if this address is a PC Relative address.
2752 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2753 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2754 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2755   // This is a materialize PC Relative node. Always select this as PC Relative.
2756   Base = N;
2757   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2758     return true;
2759   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2760       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2761       isValidPCRelNode<JumpTableSDNode>(N) ||
2762       isValidPCRelNode<BlockAddressSDNode>(N))
2763     return true;
2764   return false;
2765 }
2766 
2767 /// Returns true if we should use a direct load into vector instruction
2768 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2769 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2770 
2771   // If there are any other uses other than scalar to vector, then we should
2772   // keep it as a scalar load -> direct move pattern to prevent multiple
2773   // loads.
2774   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2775   if (!LD)
2776     return false;
2777 
2778   EVT MemVT = LD->getMemoryVT();
2779   if (!MemVT.isSimple())
2780     return false;
2781   switch(MemVT.getSimpleVT().SimpleTy) {
2782   case MVT::i64:
2783     break;
2784   case MVT::i32:
2785     if (!ST.hasP8Vector())
2786       return false;
2787     break;
2788   case MVT::i16:
2789   case MVT::i8:
2790     if (!ST.hasP9Vector())
2791       return false;
2792     break;
2793   default:
2794     return false;
2795   }
2796 
2797   SDValue LoadedVal(N, 0);
2798   if (!LoadedVal.hasOneUse())
2799     return false;
2800 
2801   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2802        UI != UE; ++UI)
2803     if (UI.getUse().get().getResNo() == 0 &&
2804         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2805         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2806       return false;
2807 
2808   return true;
2809 }
2810 
2811 /// getPreIndexedAddressParts - returns true by value, base pointer and
2812 /// offset pointer and addressing mode by reference if the node's address
2813 /// can be legally represented as pre-indexed load / store address.
2814 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2815                                                   SDValue &Offset,
2816                                                   ISD::MemIndexedMode &AM,
2817                                                   SelectionDAG &DAG) const {
2818   if (DisablePPCPreinc) return false;
2819 
2820   bool isLoad = true;
2821   SDValue Ptr;
2822   EVT VT;
2823   unsigned Alignment;
2824   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2825     Ptr = LD->getBasePtr();
2826     VT = LD->getMemoryVT();
2827     Alignment = LD->getAlignment();
2828   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2829     Ptr = ST->getBasePtr();
2830     VT  = ST->getMemoryVT();
2831     Alignment = ST->getAlignment();
2832     isLoad = false;
2833   } else
2834     return false;
2835 
2836   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2837   // instructions because we can fold these into a more efficient instruction
2838   // instead, (such as LXSD).
2839   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2840     return false;
2841   }
2842 
2843   // PowerPC doesn't have preinc load/store instructions for vectors
2844   if (VT.isVector())
2845     return false;
2846 
2847   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2848     // Common code will reject creating a pre-inc form if the base pointer
2849     // is a frame index, or if N is a store and the base pointer is either
2850     // the same as or a predecessor of the value being stored.  Check for
2851     // those situations here, and try with swapped Base/Offset instead.
2852     bool Swap = false;
2853 
2854     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2855       Swap = true;
2856     else if (!isLoad) {
2857       SDValue Val = cast<StoreSDNode>(N)->getValue();
2858       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2859         Swap = true;
2860     }
2861 
2862     if (Swap)
2863       std::swap(Base, Offset);
2864 
2865     AM = ISD::PRE_INC;
2866     return true;
2867   }
2868 
2869   // LDU/STU can only handle immediates that are a multiple of 4.
2870   if (VT != MVT::i64) {
2871     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2872       return false;
2873   } else {
2874     // LDU/STU need an address with at least 4-byte alignment.
2875     if (Alignment < 4)
2876       return false;
2877 
2878     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2879       return false;
2880   }
2881 
2882   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2883     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2884     // sext i32 to i64 when addr mode is r+i.
2885     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2886         LD->getExtensionType() == ISD::SEXTLOAD &&
2887         isa<ConstantSDNode>(Offset))
2888       return false;
2889   }
2890 
2891   AM = ISD::PRE_INC;
2892   return true;
2893 }
2894 
2895 //===----------------------------------------------------------------------===//
2896 //  LowerOperation implementation
2897 //===----------------------------------------------------------------------===//
2898 
2899 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2900 /// and LoOpFlags to the target MO flags.
2901 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2902                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2903                                const GlobalValue *GV = nullptr) {
2904   HiOpFlags = PPCII::MO_HA;
2905   LoOpFlags = PPCII::MO_LO;
2906 
2907   // Don't use the pic base if not in PIC relocation model.
2908   if (IsPIC) {
2909     HiOpFlags |= PPCII::MO_PIC_FLAG;
2910     LoOpFlags |= PPCII::MO_PIC_FLAG;
2911   }
2912 }
2913 
2914 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2915                              SelectionDAG &DAG) {
2916   SDLoc DL(HiPart);
2917   EVT PtrVT = HiPart.getValueType();
2918   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2919 
2920   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2921   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2922 
2923   // With PIC, the first instruction is actually "GR+hi(&G)".
2924   if (isPIC)
2925     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2926                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2927 
2928   // Generate non-pic code that has direct accesses to the constant pool.
2929   // The address of the global is just (hi(&g)+lo(&g)).
2930   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2931 }
2932 
2933 static void setUsesTOCBasePtr(MachineFunction &MF) {
2934   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2935   FuncInfo->setUsesTOCBasePtr();
2936 }
2937 
2938 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2939   setUsesTOCBasePtr(DAG.getMachineFunction());
2940 }
2941 
2942 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2943                                        SDValue GA) const {
2944   const bool Is64Bit = Subtarget.isPPC64();
2945   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2946   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2947                         : Subtarget.isAIXABI()
2948                               ? DAG.getRegister(PPC::R2, VT)
2949                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2950   SDValue Ops[] = { GA, Reg };
2951   return DAG.getMemIntrinsicNode(
2952       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2953       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2954       MachineMemOperand::MOLoad);
2955 }
2956 
2957 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2958                                              SelectionDAG &DAG) const {
2959   EVT PtrVT = Op.getValueType();
2960   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2961   const Constant *C = CP->getConstVal();
2962 
2963   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2964   // The actual address of the GlobalValue is stored in the TOC.
2965   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2966     if (Subtarget.isUsingPCRelativeCalls()) {
2967       SDLoc DL(CP);
2968       EVT Ty = getPointerTy(DAG.getDataLayout());
2969       SDValue ConstPool = DAG.getTargetConstantPool(
2970           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2971       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2972     }
2973     setUsesTOCBasePtr(DAG);
2974     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2975     return getTOCEntry(DAG, SDLoc(CP), GA);
2976   }
2977 
2978   unsigned MOHiFlag, MOLoFlag;
2979   bool IsPIC = isPositionIndependent();
2980   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2981 
2982   if (IsPIC && Subtarget.isSVR4ABI()) {
2983     SDValue GA =
2984         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2985     return getTOCEntry(DAG, SDLoc(CP), GA);
2986   }
2987 
2988   SDValue CPIHi =
2989       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2990   SDValue CPILo =
2991       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2992   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2993 }
2994 
2995 // For 64-bit PowerPC, prefer the more compact relative encodings.
2996 // This trades 32 bits per jump table entry for one or two instructions
2997 // on the jump site.
2998 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2999   if (isJumpTableRelative())
3000     return MachineJumpTableInfo::EK_LabelDifference32;
3001 
3002   return TargetLowering::getJumpTableEncoding();
3003 }
3004 
3005 bool PPCTargetLowering::isJumpTableRelative() const {
3006   if (UseAbsoluteJumpTables)
3007     return false;
3008   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3009     return true;
3010   return TargetLowering::isJumpTableRelative();
3011 }
3012 
3013 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3014                                                     SelectionDAG &DAG) const {
3015   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3016     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3017 
3018   switch (getTargetMachine().getCodeModel()) {
3019   case CodeModel::Small:
3020   case CodeModel::Medium:
3021     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3022   default:
3023     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3024                        getPointerTy(DAG.getDataLayout()));
3025   }
3026 }
3027 
3028 const MCExpr *
3029 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3030                                                 unsigned JTI,
3031                                                 MCContext &Ctx) const {
3032   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3033     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3034 
3035   switch (getTargetMachine().getCodeModel()) {
3036   case CodeModel::Small:
3037   case CodeModel::Medium:
3038     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3039   default:
3040     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3041   }
3042 }
3043 
3044 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3045   EVT PtrVT = Op.getValueType();
3046   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3047 
3048   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3049   if (Subtarget.isUsingPCRelativeCalls()) {
3050     SDLoc DL(JT);
3051     EVT Ty = getPointerTy(DAG.getDataLayout());
3052     SDValue GA =
3053         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3054     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3055     return MatAddr;
3056   }
3057 
3058   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3059   // The actual address of the GlobalValue is stored in the TOC.
3060   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3061     setUsesTOCBasePtr(DAG);
3062     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3063     return getTOCEntry(DAG, SDLoc(JT), GA);
3064   }
3065 
3066   unsigned MOHiFlag, MOLoFlag;
3067   bool IsPIC = isPositionIndependent();
3068   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3069 
3070   if (IsPIC && Subtarget.isSVR4ABI()) {
3071     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3072                                         PPCII::MO_PIC_FLAG);
3073     return getTOCEntry(DAG, SDLoc(GA), GA);
3074   }
3075 
3076   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3077   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3078   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3079 }
3080 
3081 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3082                                              SelectionDAG &DAG) const {
3083   EVT PtrVT = Op.getValueType();
3084   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3085   const BlockAddress *BA = BASDN->getBlockAddress();
3086 
3087   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3088   if (Subtarget.isUsingPCRelativeCalls()) {
3089     SDLoc DL(BASDN);
3090     EVT Ty = getPointerTy(DAG.getDataLayout());
3091     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3092                                            PPCII::MO_PCREL_FLAG);
3093     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3094     return MatAddr;
3095   }
3096 
3097   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3098   // The actual BlockAddress is stored in the TOC.
3099   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3100     setUsesTOCBasePtr(DAG);
3101     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3102     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3103   }
3104 
3105   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3106   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3107     return getTOCEntry(
3108         DAG, SDLoc(BASDN),
3109         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3110 
3111   unsigned MOHiFlag, MOLoFlag;
3112   bool IsPIC = isPositionIndependent();
3113   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3114   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3115   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3116   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3117 }
3118 
3119 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3120                                               SelectionDAG &DAG) const {
3121   if (Subtarget.isAIXABI())
3122     return LowerGlobalTLSAddressAIX(Op, DAG);
3123 
3124   return LowerGlobalTLSAddressLinux(Op, DAG);
3125 }
3126 
3127 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3128                                                     SelectionDAG &DAG) const {
3129   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3130 
3131   if (DAG.getTarget().useEmulatedTLS())
3132     report_fatal_error("Emulated TLS is not yet supported on AIX");
3133 
3134   SDLoc dl(GA);
3135   const GlobalValue *GV = GA->getGlobal();
3136   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3137 
3138   // The general-dynamic model is the only access model supported for now, so
3139   // all the GlobalTLSAddress nodes are lowered with this model.
3140   // We need to generate two TOC entries, one for the variable offset, one for
3141   // the region handle. The global address for the TOC entry of the region
3142   // handle is created with the MO_TLSGD_FLAG flag so we can easily identify
3143   // this entry and add the right relocation.
3144   SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3145   SDValue RegionHandleTGA =
3146       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3147   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3148   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3149   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3150                      RegionHandle);
3151 }
3152 
3153 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3154                                                       SelectionDAG &DAG) const {
3155   // FIXME: TLS addresses currently use medium model code sequences,
3156   // which is the most useful form.  Eventually support for small and
3157   // large models could be added if users need it, at the cost of
3158   // additional complexity.
3159   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3160   if (DAG.getTarget().useEmulatedTLS())
3161     return LowerToTLSEmulatedModel(GA, DAG);
3162 
3163   SDLoc dl(GA);
3164   const GlobalValue *GV = GA->getGlobal();
3165   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3166   bool is64bit = Subtarget.isPPC64();
3167   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3168   PICLevel::Level picLevel = M->getPICLevel();
3169 
3170   const TargetMachine &TM = getTargetMachine();
3171   TLSModel::Model Model = TM.getTLSModel(GV);
3172 
3173   if (Model == TLSModel::LocalExec) {
3174     if (Subtarget.isUsingPCRelativeCalls()) {
3175       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3176       SDValue TGA = DAG.getTargetGlobalAddress(
3177           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3178       SDValue MatAddr =
3179           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3180       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3181     }
3182 
3183     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3184                                                PPCII::MO_TPREL_HA);
3185     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3186                                                PPCII::MO_TPREL_LO);
3187     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3188                              : DAG.getRegister(PPC::R2, MVT::i32);
3189 
3190     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3191     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3192   }
3193 
3194   if (Model == TLSModel::InitialExec) {
3195     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3196     SDValue TGA = DAG.getTargetGlobalAddress(
3197         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3198     SDValue TGATLS = DAG.getTargetGlobalAddress(
3199         GV, dl, PtrVT, 0,
3200         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3201     SDValue TPOffset;
3202     if (IsPCRel) {
3203       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3204       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3205                              MachinePointerInfo());
3206     } else {
3207       SDValue GOTPtr;
3208       if (is64bit) {
3209         setUsesTOCBasePtr(DAG);
3210         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3211         GOTPtr =
3212             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3213       } else {
3214         if (!TM.isPositionIndependent())
3215           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3216         else if (picLevel == PICLevel::SmallPIC)
3217           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3218         else
3219           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3220       }
3221       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3222     }
3223     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3224   }
3225 
3226   if (Model == TLSModel::GeneralDynamic) {
3227     if (Subtarget.isUsingPCRelativeCalls()) {
3228       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3229                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3230       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3231     }
3232 
3233     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3234     SDValue GOTPtr;
3235     if (is64bit) {
3236       setUsesTOCBasePtr(DAG);
3237       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3238       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3239                                    GOTReg, TGA);
3240     } else {
3241       if (picLevel == PICLevel::SmallPIC)
3242         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3243       else
3244         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3245     }
3246     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3247                        GOTPtr, TGA, TGA);
3248   }
3249 
3250   if (Model == TLSModel::LocalDynamic) {
3251     if (Subtarget.isUsingPCRelativeCalls()) {
3252       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3253                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3254       SDValue MatPCRel =
3255           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3256       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3257     }
3258 
3259     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3260     SDValue GOTPtr;
3261     if (is64bit) {
3262       setUsesTOCBasePtr(DAG);
3263       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3264       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3265                            GOTReg, TGA);
3266     } else {
3267       if (picLevel == PICLevel::SmallPIC)
3268         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3269       else
3270         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3271     }
3272     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3273                                   PtrVT, GOTPtr, TGA, TGA);
3274     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3275                                       PtrVT, TLSAddr, TGA);
3276     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3277   }
3278 
3279   llvm_unreachable("Unknown TLS model!");
3280 }
3281 
3282 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3283                                               SelectionDAG &DAG) const {
3284   EVT PtrVT = Op.getValueType();
3285   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3286   SDLoc DL(GSDN);
3287   const GlobalValue *GV = GSDN->getGlobal();
3288 
3289   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3290   // The actual address of the GlobalValue is stored in the TOC.
3291   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3292     if (Subtarget.isUsingPCRelativeCalls()) {
3293       EVT Ty = getPointerTy(DAG.getDataLayout());
3294       if (isAccessedAsGotIndirect(Op)) {
3295         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3296                                                 PPCII::MO_PCREL_FLAG |
3297                                                     PPCII::MO_GOT_FLAG);
3298         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3299         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3300                                    MachinePointerInfo());
3301         return Load;
3302       } else {
3303         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3304                                                 PPCII::MO_PCREL_FLAG);
3305         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3306       }
3307     }
3308     setUsesTOCBasePtr(DAG);
3309     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3310     return getTOCEntry(DAG, DL, GA);
3311   }
3312 
3313   unsigned MOHiFlag, MOLoFlag;
3314   bool IsPIC = isPositionIndependent();
3315   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3316 
3317   if (IsPIC && Subtarget.isSVR4ABI()) {
3318     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3319                                             GSDN->getOffset(),
3320                                             PPCII::MO_PIC_FLAG);
3321     return getTOCEntry(DAG, DL, GA);
3322   }
3323 
3324   SDValue GAHi =
3325     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3326   SDValue GALo =
3327     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3328 
3329   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3330 }
3331 
3332 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3333   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3334   SDLoc dl(Op);
3335 
3336   if (Op.getValueType() == MVT::v2i64) {
3337     // When the operands themselves are v2i64 values, we need to do something
3338     // special because VSX has no underlying comparison operations for these.
3339     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3340       // Equality can be handled by casting to the legal type for Altivec
3341       // comparisons, everything else needs to be expanded.
3342       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3343         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3344                  DAG.getSetCC(dl, MVT::v4i32,
3345                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3346                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3347                    CC));
3348       }
3349 
3350       return SDValue();
3351     }
3352 
3353     // We handle most of these in the usual way.
3354     return Op;
3355   }
3356 
3357   // If we're comparing for equality to zero, expose the fact that this is
3358   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3359   // fold the new nodes.
3360   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3361     return V;
3362 
3363   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3364     // Leave comparisons against 0 and -1 alone for now, since they're usually
3365     // optimized.  FIXME: revisit this when we can custom lower all setcc
3366     // optimizations.
3367     if (C->isAllOnesValue() || C->isNullValue())
3368       return SDValue();
3369   }
3370 
3371   // If we have an integer seteq/setne, turn it into a compare against zero
3372   // by xor'ing the rhs with the lhs, which is faster than setting a
3373   // condition register, reading it back out, and masking the correct bit.  The
3374   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3375   // the result to other bit-twiddling opportunities.
3376   EVT LHSVT = Op.getOperand(0).getValueType();
3377   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3378     EVT VT = Op.getValueType();
3379     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3380                                 Op.getOperand(1));
3381     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3382   }
3383   return SDValue();
3384 }
3385 
3386 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3387   SDNode *Node = Op.getNode();
3388   EVT VT = Node->getValueType(0);
3389   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3390   SDValue InChain = Node->getOperand(0);
3391   SDValue VAListPtr = Node->getOperand(1);
3392   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3393   SDLoc dl(Node);
3394 
3395   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3396 
3397   // gpr_index
3398   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3399                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3400   InChain = GprIndex.getValue(1);
3401 
3402   if (VT == MVT::i64) {
3403     // Check if GprIndex is even
3404     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3405                                  DAG.getConstant(1, dl, MVT::i32));
3406     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3407                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3408     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3409                                           DAG.getConstant(1, dl, MVT::i32));
3410     // Align GprIndex to be even if it isn't
3411     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3412                            GprIndex);
3413   }
3414 
3415   // fpr index is 1 byte after gpr
3416   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3417                                DAG.getConstant(1, dl, MVT::i32));
3418 
3419   // fpr
3420   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3421                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3422   InChain = FprIndex.getValue(1);
3423 
3424   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3425                                        DAG.getConstant(8, dl, MVT::i32));
3426 
3427   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3428                                         DAG.getConstant(4, dl, MVT::i32));
3429 
3430   // areas
3431   SDValue OverflowArea =
3432       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3433   InChain = OverflowArea.getValue(1);
3434 
3435   SDValue RegSaveArea =
3436       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3437   InChain = RegSaveArea.getValue(1);
3438 
3439   // select overflow_area if index > 8
3440   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3441                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3442 
3443   // adjustment constant gpr_index * 4/8
3444   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3445                                     VT.isInteger() ? GprIndex : FprIndex,
3446                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3447                                                     MVT::i32));
3448 
3449   // OurReg = RegSaveArea + RegConstant
3450   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3451                                RegConstant);
3452 
3453   // Floating types are 32 bytes into RegSaveArea
3454   if (VT.isFloatingPoint())
3455     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3456                          DAG.getConstant(32, dl, MVT::i32));
3457 
3458   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3459   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3460                                    VT.isInteger() ? GprIndex : FprIndex,
3461                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3462                                                    MVT::i32));
3463 
3464   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3465                               VT.isInteger() ? VAListPtr : FprPtr,
3466                               MachinePointerInfo(SV), MVT::i8);
3467 
3468   // determine if we should load from reg_save_area or overflow_area
3469   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3470 
3471   // increase overflow_area by 4/8 if gpr/fpr > 8
3472   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3473                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3474                                           dl, MVT::i32));
3475 
3476   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3477                              OverflowAreaPlusN);
3478 
3479   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3480                               MachinePointerInfo(), MVT::i32);
3481 
3482   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3483 }
3484 
3485 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3486   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3487 
3488   // We have to copy the entire va_list struct:
3489   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3490   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3491                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3492                        false, true, false, MachinePointerInfo(),
3493                        MachinePointerInfo());
3494 }
3495 
3496 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3497                                                   SelectionDAG &DAG) const {
3498   if (Subtarget.isAIXABI())
3499     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3500 
3501   return Op.getOperand(0);
3502 }
3503 
3504 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3505                                                 SelectionDAG &DAG) const {
3506   if (Subtarget.isAIXABI())
3507     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3508 
3509   SDValue Chain = Op.getOperand(0);
3510   SDValue Trmp = Op.getOperand(1); // trampoline
3511   SDValue FPtr = Op.getOperand(2); // nested function
3512   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3513   SDLoc dl(Op);
3514 
3515   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3516   bool isPPC64 = (PtrVT == MVT::i64);
3517   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3518 
3519   TargetLowering::ArgListTy Args;
3520   TargetLowering::ArgListEntry Entry;
3521 
3522   Entry.Ty = IntPtrTy;
3523   Entry.Node = Trmp; Args.push_back(Entry);
3524 
3525   // TrampSize == (isPPC64 ? 48 : 40);
3526   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3527                                isPPC64 ? MVT::i64 : MVT::i32);
3528   Args.push_back(Entry);
3529 
3530   Entry.Node = FPtr; Args.push_back(Entry);
3531   Entry.Node = Nest; Args.push_back(Entry);
3532 
3533   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3534   TargetLowering::CallLoweringInfo CLI(DAG);
3535   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3536       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3537       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3538 
3539   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3540   return CallResult.second;
3541 }
3542 
3543 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3544   MachineFunction &MF = DAG.getMachineFunction();
3545   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3546   EVT PtrVT = getPointerTy(MF.getDataLayout());
3547 
3548   SDLoc dl(Op);
3549 
3550   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3551     // vastart just stores the address of the VarArgsFrameIndex slot into the
3552     // memory location argument.
3553     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3554     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3555     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3556                         MachinePointerInfo(SV));
3557   }
3558 
3559   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3560   // We suppose the given va_list is already allocated.
3561   //
3562   // typedef struct {
3563   //  char gpr;     /* index into the array of 8 GPRs
3564   //                 * stored in the register save area
3565   //                 * gpr=0 corresponds to r3,
3566   //                 * gpr=1 to r4, etc.
3567   //                 */
3568   //  char fpr;     /* index into the array of 8 FPRs
3569   //                 * stored in the register save area
3570   //                 * fpr=0 corresponds to f1,
3571   //                 * fpr=1 to f2, etc.
3572   //                 */
3573   //  char *overflow_arg_area;
3574   //                /* location on stack that holds
3575   //                 * the next overflow argument
3576   //                 */
3577   //  char *reg_save_area;
3578   //               /* where r3:r10 and f1:f8 (if saved)
3579   //                * are stored
3580   //                */
3581   // } va_list[1];
3582 
3583   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3584   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3585   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3586                                             PtrVT);
3587   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3588                                  PtrVT);
3589 
3590   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3591   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3592 
3593   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3594   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3595 
3596   uint64_t FPROffset = 1;
3597   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3598 
3599   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3600 
3601   // Store first byte : number of int regs
3602   SDValue firstStore =
3603       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3604                         MachinePointerInfo(SV), MVT::i8);
3605   uint64_t nextOffset = FPROffset;
3606   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3607                                   ConstFPROffset);
3608 
3609   // Store second byte : number of float regs
3610   SDValue secondStore =
3611       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3612                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3613   nextOffset += StackOffset;
3614   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3615 
3616   // Store second word : arguments given on stack
3617   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3618                                     MachinePointerInfo(SV, nextOffset));
3619   nextOffset += FrameOffset;
3620   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3621 
3622   // Store third word : arguments given in registers
3623   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3624                       MachinePointerInfo(SV, nextOffset));
3625 }
3626 
3627 /// FPR - The set of FP registers that should be allocated for arguments
3628 /// on Darwin and AIX.
3629 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3630                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3631                                 PPC::F11, PPC::F12, PPC::F13};
3632 
3633 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3634 /// the stack.
3635 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3636                                        unsigned PtrByteSize) {
3637   unsigned ArgSize = ArgVT.getStoreSize();
3638   if (Flags.isByVal())
3639     ArgSize = Flags.getByValSize();
3640 
3641   // Round up to multiples of the pointer size, except for array members,
3642   // which are always packed.
3643   if (!Flags.isInConsecutiveRegs())
3644     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3645 
3646   return ArgSize;
3647 }
3648 
3649 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3650 /// on the stack.
3651 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3652                                          ISD::ArgFlagsTy Flags,
3653                                          unsigned PtrByteSize) {
3654   Align Alignment(PtrByteSize);
3655 
3656   // Altivec parameters are padded to a 16 byte boundary.
3657   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3658       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3659       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3660       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3661     Alignment = Align(16);
3662 
3663   // ByVal parameters are aligned as requested.
3664   if (Flags.isByVal()) {
3665     auto BVAlign = Flags.getNonZeroByValAlign();
3666     if (BVAlign > PtrByteSize) {
3667       if (BVAlign.value() % PtrByteSize != 0)
3668         llvm_unreachable(
3669             "ByVal alignment is not a multiple of the pointer size");
3670 
3671       Alignment = BVAlign;
3672     }
3673   }
3674 
3675   // Array members are always packed to their original alignment.
3676   if (Flags.isInConsecutiveRegs()) {
3677     // If the array member was split into multiple registers, the first
3678     // needs to be aligned to the size of the full type.  (Except for
3679     // ppcf128, which is only aligned as its f64 components.)
3680     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3681       Alignment = Align(OrigVT.getStoreSize());
3682     else
3683       Alignment = Align(ArgVT.getStoreSize());
3684   }
3685 
3686   return Alignment;
3687 }
3688 
3689 /// CalculateStackSlotUsed - Return whether this argument will use its
3690 /// stack slot (instead of being passed in registers).  ArgOffset,
3691 /// AvailableFPRs, and AvailableVRs must hold the current argument
3692 /// position, and will be updated to account for this argument.
3693 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3694                                    unsigned PtrByteSize, unsigned LinkageSize,
3695                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3696                                    unsigned &AvailableFPRs,
3697                                    unsigned &AvailableVRs) {
3698   bool UseMemory = false;
3699 
3700   // Respect alignment of argument on the stack.
3701   Align Alignment =
3702       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3703   ArgOffset = alignTo(ArgOffset, Alignment);
3704   // If there's no space left in the argument save area, we must
3705   // use memory (this check also catches zero-sized arguments).
3706   if (ArgOffset >= LinkageSize + ParamAreaSize)
3707     UseMemory = true;
3708 
3709   // Allocate argument on the stack.
3710   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3711   if (Flags.isInConsecutiveRegsLast())
3712     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3713   // If we overran the argument save area, we must use memory
3714   // (this check catches arguments passed partially in memory)
3715   if (ArgOffset > LinkageSize + ParamAreaSize)
3716     UseMemory = true;
3717 
3718   // However, if the argument is actually passed in an FPR or a VR,
3719   // we don't use memory after all.
3720   if (!Flags.isByVal()) {
3721     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3722       if (AvailableFPRs > 0) {
3723         --AvailableFPRs;
3724         return false;
3725       }
3726     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3727         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3728         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3729         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3730       if (AvailableVRs > 0) {
3731         --AvailableVRs;
3732         return false;
3733       }
3734   }
3735 
3736   return UseMemory;
3737 }
3738 
3739 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3740 /// ensure minimum alignment required for target.
3741 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3742                                      unsigned NumBytes) {
3743   return alignTo(NumBytes, Lowering->getStackAlign());
3744 }
3745 
3746 SDValue PPCTargetLowering::LowerFormalArguments(
3747     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3748     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3749     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3750   if (Subtarget.isAIXABI())
3751     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3752                                     InVals);
3753   if (Subtarget.is64BitELFABI())
3754     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3755                                        InVals);
3756   assert(Subtarget.is32BitELFABI());
3757   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3758                                      InVals);
3759 }
3760 
3761 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3762     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3763     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3764     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3765 
3766   // 32-bit SVR4 ABI Stack Frame Layout:
3767   //              +-----------------------------------+
3768   //        +-->  |            Back chain             |
3769   //        |     +-----------------------------------+
3770   //        |     | Floating-point register save area |
3771   //        |     +-----------------------------------+
3772   //        |     |    General register save area     |
3773   //        |     +-----------------------------------+
3774   //        |     |          CR save word             |
3775   //        |     +-----------------------------------+
3776   //        |     |         VRSAVE save word          |
3777   //        |     +-----------------------------------+
3778   //        |     |         Alignment padding         |
3779   //        |     +-----------------------------------+
3780   //        |     |     Vector register save area     |
3781   //        |     +-----------------------------------+
3782   //        |     |       Local variable space        |
3783   //        |     +-----------------------------------+
3784   //        |     |        Parameter list area        |
3785   //        |     +-----------------------------------+
3786   //        |     |           LR save word            |
3787   //        |     +-----------------------------------+
3788   // SP-->  +---  |            Back chain             |
3789   //              +-----------------------------------+
3790   //
3791   // Specifications:
3792   //   System V Application Binary Interface PowerPC Processor Supplement
3793   //   AltiVec Technology Programming Interface Manual
3794 
3795   MachineFunction &MF = DAG.getMachineFunction();
3796   MachineFrameInfo &MFI = MF.getFrameInfo();
3797   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3798 
3799   EVT PtrVT = getPointerTy(MF.getDataLayout());
3800   // Potential tail calls could cause overwriting of argument stack slots.
3801   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3802                        (CallConv == CallingConv::Fast));
3803   const Align PtrAlign(4);
3804 
3805   // Assign locations to all of the incoming arguments.
3806   SmallVector<CCValAssign, 16> ArgLocs;
3807   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3808                  *DAG.getContext());
3809 
3810   // Reserve space for the linkage area on the stack.
3811   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3812   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3813   if (useSoftFloat())
3814     CCInfo.PreAnalyzeFormalArguments(Ins);
3815 
3816   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3817   CCInfo.clearWasPPCF128();
3818 
3819   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3820     CCValAssign &VA = ArgLocs[i];
3821 
3822     // Arguments stored in registers.
3823     if (VA.isRegLoc()) {
3824       const TargetRegisterClass *RC;
3825       EVT ValVT = VA.getValVT();
3826 
3827       switch (ValVT.getSimpleVT().SimpleTy) {
3828         default:
3829           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3830         case MVT::i1:
3831         case MVT::i32:
3832           RC = &PPC::GPRCRegClass;
3833           break;
3834         case MVT::f32:
3835           if (Subtarget.hasP8Vector())
3836             RC = &PPC::VSSRCRegClass;
3837           else if (Subtarget.hasSPE())
3838             RC = &PPC::GPRCRegClass;
3839           else
3840             RC = &PPC::F4RCRegClass;
3841           break;
3842         case MVT::f64:
3843           if (Subtarget.hasVSX())
3844             RC = &PPC::VSFRCRegClass;
3845           else if (Subtarget.hasSPE())
3846             // SPE passes doubles in GPR pairs.
3847             RC = &PPC::GPRCRegClass;
3848           else
3849             RC = &PPC::F8RCRegClass;
3850           break;
3851         case MVT::v16i8:
3852         case MVT::v8i16:
3853         case MVT::v4i32:
3854           RC = &PPC::VRRCRegClass;
3855           break;
3856         case MVT::v4f32:
3857           RC = &PPC::VRRCRegClass;
3858           break;
3859         case MVT::v2f64:
3860         case MVT::v2i64:
3861           RC = &PPC::VRRCRegClass;
3862           break;
3863       }
3864 
3865       SDValue ArgValue;
3866       // Transform the arguments stored in physical registers into
3867       // virtual ones.
3868       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3869         assert(i + 1 < e && "No second half of double precision argument");
3870         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3871         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3872         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3873         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3874         if (!Subtarget.isLittleEndian())
3875           std::swap (ArgValueLo, ArgValueHi);
3876         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3877                                ArgValueHi);
3878       } else {
3879         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3880         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3881                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3882         if (ValVT == MVT::i1)
3883           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3884       }
3885 
3886       InVals.push_back(ArgValue);
3887     } else {
3888       // Argument stored in memory.
3889       assert(VA.isMemLoc());
3890 
3891       // Get the extended size of the argument type in stack
3892       unsigned ArgSize = VA.getLocVT().getStoreSize();
3893       // Get the actual size of the argument type
3894       unsigned ObjSize = VA.getValVT().getStoreSize();
3895       unsigned ArgOffset = VA.getLocMemOffset();
3896       // Stack objects in PPC32 are right justified.
3897       ArgOffset += ArgSize - ObjSize;
3898       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3899 
3900       // Create load nodes to retrieve arguments from the stack.
3901       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3902       InVals.push_back(
3903           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3904     }
3905   }
3906 
3907   // Assign locations to all of the incoming aggregate by value arguments.
3908   // Aggregates passed by value are stored in the local variable space of the
3909   // caller's stack frame, right above the parameter list area.
3910   SmallVector<CCValAssign, 16> ByValArgLocs;
3911   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3912                       ByValArgLocs, *DAG.getContext());
3913 
3914   // Reserve stack space for the allocations in CCInfo.
3915   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3916 
3917   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3918 
3919   // Area that is at least reserved in the caller of this function.
3920   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3921   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3922 
3923   // Set the size that is at least reserved in caller of this function.  Tail
3924   // call optimized function's reserved stack space needs to be aligned so that
3925   // taking the difference between two stack areas will result in an aligned
3926   // stack.
3927   MinReservedArea =
3928       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3929   FuncInfo->setMinReservedArea(MinReservedArea);
3930 
3931   SmallVector<SDValue, 8> MemOps;
3932 
3933   // If the function takes variable number of arguments, make a frame index for
3934   // the start of the first vararg value... for expansion of llvm.va_start.
3935   if (isVarArg) {
3936     static const MCPhysReg GPArgRegs[] = {
3937       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3938       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3939     };
3940     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3941 
3942     static const MCPhysReg FPArgRegs[] = {
3943       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3944       PPC::F8
3945     };
3946     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3947 
3948     if (useSoftFloat() || hasSPE())
3949        NumFPArgRegs = 0;
3950 
3951     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3952     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3953 
3954     // Make room for NumGPArgRegs and NumFPArgRegs.
3955     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3956                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3957 
3958     FuncInfo->setVarArgsStackOffset(
3959       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3960                             CCInfo.getNextStackOffset(), true));
3961 
3962     FuncInfo->setVarArgsFrameIndex(
3963         MFI.CreateStackObject(Depth, Align(8), false));
3964     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3965 
3966     // The fixed integer arguments of a variadic function are stored to the
3967     // VarArgsFrameIndex on the stack so that they may be loaded by
3968     // dereferencing the result of va_next.
3969     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3970       // Get an existing live-in vreg, or add a new one.
3971       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3972       if (!VReg)
3973         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3974 
3975       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3976       SDValue Store =
3977           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3978       MemOps.push_back(Store);
3979       // Increment the address by four for the next argument to store
3980       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3981       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3982     }
3983 
3984     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3985     // is set.
3986     // The double arguments are stored to the VarArgsFrameIndex
3987     // on the stack.
3988     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3989       // Get an existing live-in vreg, or add a new one.
3990       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3991       if (!VReg)
3992         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3993 
3994       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3995       SDValue Store =
3996           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3997       MemOps.push_back(Store);
3998       // Increment the address by eight for the next argument to store
3999       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4000                                          PtrVT);
4001       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4002     }
4003   }
4004 
4005   if (!MemOps.empty())
4006     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4007 
4008   return Chain;
4009 }
4010 
4011 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4012 // value to MVT::i64 and then truncate to the correct register size.
4013 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4014                                              EVT ObjectVT, SelectionDAG &DAG,
4015                                              SDValue ArgVal,
4016                                              const SDLoc &dl) const {
4017   if (Flags.isSExt())
4018     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4019                          DAG.getValueType(ObjectVT));
4020   else if (Flags.isZExt())
4021     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4022                          DAG.getValueType(ObjectVT));
4023 
4024   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4025 }
4026 
4027 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4028     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4029     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4030     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4031   // TODO: add description of PPC stack frame format, or at least some docs.
4032   //
4033   bool isELFv2ABI = Subtarget.isELFv2ABI();
4034   bool isLittleEndian = Subtarget.isLittleEndian();
4035   MachineFunction &MF = DAG.getMachineFunction();
4036   MachineFrameInfo &MFI = MF.getFrameInfo();
4037   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4038 
4039   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4040          "fastcc not supported on varargs functions");
4041 
4042   EVT PtrVT = getPointerTy(MF.getDataLayout());
4043   // Potential tail calls could cause overwriting of argument stack slots.
4044   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4045                        (CallConv == CallingConv::Fast));
4046   unsigned PtrByteSize = 8;
4047   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4048 
4049   static const MCPhysReg GPR[] = {
4050     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4051     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4052   };
4053   static const MCPhysReg VR[] = {
4054     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4055     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4056   };
4057 
4058   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4059   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4060   const unsigned Num_VR_Regs  = array_lengthof(VR);
4061 
4062   // Do a first pass over the arguments to determine whether the ABI
4063   // guarantees that our caller has allocated the parameter save area
4064   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4065   // in the ELFv2 ABI, it is true if this is a vararg function or if
4066   // any parameter is located in a stack slot.
4067 
4068   bool HasParameterArea = !isELFv2ABI || isVarArg;
4069   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4070   unsigned NumBytes = LinkageSize;
4071   unsigned AvailableFPRs = Num_FPR_Regs;
4072   unsigned AvailableVRs = Num_VR_Regs;
4073   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4074     if (Ins[i].Flags.isNest())
4075       continue;
4076 
4077     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4078                                PtrByteSize, LinkageSize, ParamAreaSize,
4079                                NumBytes, AvailableFPRs, AvailableVRs))
4080       HasParameterArea = true;
4081   }
4082 
4083   // Add DAG nodes to load the arguments or copy them out of registers.  On
4084   // entry to a function on PPC, the arguments start after the linkage area,
4085   // although the first ones are often in registers.
4086 
4087   unsigned ArgOffset = LinkageSize;
4088   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4089   SmallVector<SDValue, 8> MemOps;
4090   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4091   unsigned CurArgIdx = 0;
4092   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4093     SDValue ArgVal;
4094     bool needsLoad = false;
4095     EVT ObjectVT = Ins[ArgNo].VT;
4096     EVT OrigVT = Ins[ArgNo].ArgVT;
4097     unsigned ObjSize = ObjectVT.getStoreSize();
4098     unsigned ArgSize = ObjSize;
4099     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4100     if (Ins[ArgNo].isOrigArg()) {
4101       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4102       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4103     }
4104     // We re-align the argument offset for each argument, except when using the
4105     // fast calling convention, when we need to make sure we do that only when
4106     // we'll actually use a stack slot.
4107     unsigned CurArgOffset;
4108     Align Alignment;
4109     auto ComputeArgOffset = [&]() {
4110       /* Respect alignment of argument on the stack.  */
4111       Alignment =
4112           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4113       ArgOffset = alignTo(ArgOffset, Alignment);
4114       CurArgOffset = ArgOffset;
4115     };
4116 
4117     if (CallConv != CallingConv::Fast) {
4118       ComputeArgOffset();
4119 
4120       /* Compute GPR index associated with argument offset.  */
4121       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4122       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4123     }
4124 
4125     // FIXME the codegen can be much improved in some cases.
4126     // We do not have to keep everything in memory.
4127     if (Flags.isByVal()) {
4128       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4129 
4130       if (CallConv == CallingConv::Fast)
4131         ComputeArgOffset();
4132 
4133       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4134       ObjSize = Flags.getByValSize();
4135       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4136       // Empty aggregate parameters do not take up registers.  Examples:
4137       //   struct { } a;
4138       //   union  { } b;
4139       //   int c[0];
4140       // etc.  However, we have to provide a place-holder in InVals, so
4141       // pretend we have an 8-byte item at the current address for that
4142       // purpose.
4143       if (!ObjSize) {
4144         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4145         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4146         InVals.push_back(FIN);
4147         continue;
4148       }
4149 
4150       // Create a stack object covering all stack doublewords occupied
4151       // by the argument.  If the argument is (fully or partially) on
4152       // the stack, or if the argument is fully in registers but the
4153       // caller has allocated the parameter save anyway, we can refer
4154       // directly to the caller's stack frame.  Otherwise, create a
4155       // local copy in our own frame.
4156       int FI;
4157       if (HasParameterArea ||
4158           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4159         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4160       else
4161         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4162       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4163 
4164       // Handle aggregates smaller than 8 bytes.
4165       if (ObjSize < PtrByteSize) {
4166         // The value of the object is its address, which differs from the
4167         // address of the enclosing doubleword on big-endian systems.
4168         SDValue Arg = FIN;
4169         if (!isLittleEndian) {
4170           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4171           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4172         }
4173         InVals.push_back(Arg);
4174 
4175         if (GPR_idx != Num_GPR_Regs) {
4176           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4177           FuncInfo->addLiveInAttr(VReg, Flags);
4178           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4179           SDValue Store;
4180 
4181           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4182             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4183                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4184             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4185                                       MachinePointerInfo(&*FuncArg), ObjType);
4186           } else {
4187             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4188             // store the whole register as-is to the parameter save area
4189             // slot.
4190             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4191                                  MachinePointerInfo(&*FuncArg));
4192           }
4193 
4194           MemOps.push_back(Store);
4195         }
4196         // Whether we copied from a register or not, advance the offset
4197         // into the parameter save area by a full doubleword.
4198         ArgOffset += PtrByteSize;
4199         continue;
4200       }
4201 
4202       // The value of the object is its address, which is the address of
4203       // its first stack doubleword.
4204       InVals.push_back(FIN);
4205 
4206       // Store whatever pieces of the object are in registers to memory.
4207       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4208         if (GPR_idx == Num_GPR_Regs)
4209           break;
4210 
4211         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4212         FuncInfo->addLiveInAttr(VReg, Flags);
4213         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4214         SDValue Addr = FIN;
4215         if (j) {
4216           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4217           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4218         }
4219         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4220                                      MachinePointerInfo(&*FuncArg, j));
4221         MemOps.push_back(Store);
4222         ++GPR_idx;
4223       }
4224       ArgOffset += ArgSize;
4225       continue;
4226     }
4227 
4228     switch (ObjectVT.getSimpleVT().SimpleTy) {
4229     default: llvm_unreachable("Unhandled argument type!");
4230     case MVT::i1:
4231     case MVT::i32:
4232     case MVT::i64:
4233       if (Flags.isNest()) {
4234         // The 'nest' parameter, if any, is passed in R11.
4235         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4236         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4237 
4238         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4239           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4240 
4241         break;
4242       }
4243 
4244       // These can be scalar arguments or elements of an integer array type
4245       // passed directly.  Clang may use those instead of "byval" aggregate
4246       // types to avoid forcing arguments to memory unnecessarily.
4247       if (GPR_idx != Num_GPR_Regs) {
4248         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4249         FuncInfo->addLiveInAttr(VReg, Flags);
4250         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4251 
4252         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4253           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4254           // value to MVT::i64 and then truncate to the correct register size.
4255           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4256       } else {
4257         if (CallConv == CallingConv::Fast)
4258           ComputeArgOffset();
4259 
4260         needsLoad = true;
4261         ArgSize = PtrByteSize;
4262       }
4263       if (CallConv != CallingConv::Fast || needsLoad)
4264         ArgOffset += 8;
4265       break;
4266 
4267     case MVT::f32:
4268     case MVT::f64:
4269       // These can be scalar arguments or elements of a float array type
4270       // passed directly.  The latter are used to implement ELFv2 homogenous
4271       // float aggregates.
4272       if (FPR_idx != Num_FPR_Regs) {
4273         unsigned VReg;
4274 
4275         if (ObjectVT == MVT::f32)
4276           VReg = MF.addLiveIn(FPR[FPR_idx],
4277                               Subtarget.hasP8Vector()
4278                                   ? &PPC::VSSRCRegClass
4279                                   : &PPC::F4RCRegClass);
4280         else
4281           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4282                                                 ? &PPC::VSFRCRegClass
4283                                                 : &PPC::F8RCRegClass);
4284 
4285         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4286         ++FPR_idx;
4287       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4288         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4289         // once we support fp <-> gpr moves.
4290 
4291         // This can only ever happen in the presence of f32 array types,
4292         // since otherwise we never run out of FPRs before running out
4293         // of GPRs.
4294         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4295         FuncInfo->addLiveInAttr(VReg, Flags);
4296         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4297 
4298         if (ObjectVT == MVT::f32) {
4299           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4300             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4301                                  DAG.getConstant(32, dl, MVT::i32));
4302           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4303         }
4304 
4305         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4306       } else {
4307         if (CallConv == CallingConv::Fast)
4308           ComputeArgOffset();
4309 
4310         needsLoad = true;
4311       }
4312 
4313       // When passing an array of floats, the array occupies consecutive
4314       // space in the argument area; only round up to the next doubleword
4315       // at the end of the array.  Otherwise, each float takes 8 bytes.
4316       if (CallConv != CallingConv::Fast || needsLoad) {
4317         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4318         ArgOffset += ArgSize;
4319         if (Flags.isInConsecutiveRegsLast())
4320           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4321       }
4322       break;
4323     case MVT::v4f32:
4324     case MVT::v4i32:
4325     case MVT::v8i16:
4326     case MVT::v16i8:
4327     case MVT::v2f64:
4328     case MVT::v2i64:
4329     case MVT::v1i128:
4330     case MVT::f128:
4331       // These can be scalar arguments or elements of a vector array type
4332       // passed directly.  The latter are used to implement ELFv2 homogenous
4333       // vector aggregates.
4334       if (VR_idx != Num_VR_Regs) {
4335         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4336         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4337         ++VR_idx;
4338       } else {
4339         if (CallConv == CallingConv::Fast)
4340           ComputeArgOffset();
4341         needsLoad = true;
4342       }
4343       if (CallConv != CallingConv::Fast || needsLoad)
4344         ArgOffset += 16;
4345       break;
4346     }
4347 
4348     // We need to load the argument to a virtual register if we determined
4349     // above that we ran out of physical registers of the appropriate type.
4350     if (needsLoad) {
4351       if (ObjSize < ArgSize && !isLittleEndian)
4352         CurArgOffset += ArgSize - ObjSize;
4353       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4354       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4355       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4356     }
4357 
4358     InVals.push_back(ArgVal);
4359   }
4360 
4361   // Area that is at least reserved in the caller of this function.
4362   unsigned MinReservedArea;
4363   if (HasParameterArea)
4364     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4365   else
4366     MinReservedArea = LinkageSize;
4367 
4368   // Set the size that is at least reserved in caller of this function.  Tail
4369   // call optimized functions' reserved stack space needs to be aligned so that
4370   // taking the difference between two stack areas will result in an aligned
4371   // stack.
4372   MinReservedArea =
4373       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4374   FuncInfo->setMinReservedArea(MinReservedArea);
4375 
4376   // If the function takes variable number of arguments, make a frame index for
4377   // the start of the first vararg value... for expansion of llvm.va_start.
4378   // On ELFv2ABI spec, it writes:
4379   // C programs that are intended to be *portable* across different compilers
4380   // and architectures must use the header file <stdarg.h> to deal with variable
4381   // argument lists.
4382   if (isVarArg && MFI.hasVAStart()) {
4383     int Depth = ArgOffset;
4384 
4385     FuncInfo->setVarArgsFrameIndex(
4386       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4387     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4388 
4389     // If this function is vararg, store any remaining integer argument regs
4390     // to their spots on the stack so that they may be loaded by dereferencing
4391     // the result of va_next.
4392     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4393          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4394       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4395       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4396       SDValue Store =
4397           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4398       MemOps.push_back(Store);
4399       // Increment the address by four for the next argument to store
4400       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4401       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4402     }
4403   }
4404 
4405   if (!MemOps.empty())
4406     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4407 
4408   return Chain;
4409 }
4410 
4411 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4412 /// adjusted to accommodate the arguments for the tailcall.
4413 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4414                                    unsigned ParamSize) {
4415 
4416   if (!isTailCall) return 0;
4417 
4418   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4419   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4420   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4421   // Remember only if the new adjustment is bigger.
4422   if (SPDiff < FI->getTailCallSPDelta())
4423     FI->setTailCallSPDelta(SPDiff);
4424 
4425   return SPDiff;
4426 }
4427 
4428 static bool isFunctionGlobalAddress(SDValue Callee);
4429 
4430 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4431                               const TargetMachine &TM) {
4432   // It does not make sense to call callsShareTOCBase() with a caller that
4433   // is PC Relative since PC Relative callers do not have a TOC.
4434 #ifndef NDEBUG
4435   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4436   assert(!STICaller->isUsingPCRelativeCalls() &&
4437          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4438 #endif
4439 
4440   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4441   // don't have enough information to determine if the caller and callee share
4442   // the same  TOC base, so we have to pessimistically assume they don't for
4443   // correctness.
4444   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4445   if (!G)
4446     return false;
4447 
4448   const GlobalValue *GV = G->getGlobal();
4449 
4450   // If the callee is preemptable, then the static linker will use a plt-stub
4451   // which saves the toc to the stack, and needs a nop after the call
4452   // instruction to convert to a toc-restore.
4453   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4454     return false;
4455 
4456   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4457   // We may need a TOC restore in the situation where the caller requires a
4458   // valid TOC but the callee is PC Relative and does not.
4459   const Function *F = dyn_cast<Function>(GV);
4460   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4461 
4462   // If we have an Alias we can try to get the function from there.
4463   if (Alias) {
4464     const GlobalObject *GlobalObj = Alias->getBaseObject();
4465     F = dyn_cast<Function>(GlobalObj);
4466   }
4467 
4468   // If we still have no valid function pointer we do not have enough
4469   // information to determine if the callee uses PC Relative calls so we must
4470   // assume that it does.
4471   if (!F)
4472     return false;
4473 
4474   // If the callee uses PC Relative we cannot guarantee that the callee won't
4475   // clobber the TOC of the caller and so we must assume that the two
4476   // functions do not share a TOC base.
4477   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4478   if (STICallee->isUsingPCRelativeCalls())
4479     return false;
4480 
4481   // If the GV is not a strong definition then we need to assume it can be
4482   // replaced by another function at link time. The function that replaces
4483   // it may not share the same TOC as the caller since the callee may be
4484   // replaced by a PC Relative version of the same function.
4485   if (!GV->isStrongDefinitionForLinker())
4486     return false;
4487 
4488   // The medium and large code models are expected to provide a sufficiently
4489   // large TOC to provide all data addressing needs of a module with a
4490   // single TOC.
4491   if (CodeModel::Medium == TM.getCodeModel() ||
4492       CodeModel::Large == TM.getCodeModel())
4493     return true;
4494 
4495   // Any explicitly-specified sections and section prefixes must also match.
4496   // Also, if we're using -ffunction-sections, then each function is always in
4497   // a different section (the same is true for COMDAT functions).
4498   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4499       GV->getSection() != Caller->getSection())
4500     return false;
4501   if (const auto *F = dyn_cast<Function>(GV)) {
4502     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4503       return false;
4504   }
4505 
4506   return true;
4507 }
4508 
4509 static bool
4510 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4511                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4512   assert(Subtarget.is64BitELFABI());
4513 
4514   const unsigned PtrByteSize = 8;
4515   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4516 
4517   static const MCPhysReg GPR[] = {
4518     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4519     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4520   };
4521   static const MCPhysReg VR[] = {
4522     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4523     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4524   };
4525 
4526   const unsigned NumGPRs = array_lengthof(GPR);
4527   const unsigned NumFPRs = 13;
4528   const unsigned NumVRs = array_lengthof(VR);
4529   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4530 
4531   unsigned NumBytes = LinkageSize;
4532   unsigned AvailableFPRs = NumFPRs;
4533   unsigned AvailableVRs = NumVRs;
4534 
4535   for (const ISD::OutputArg& Param : Outs) {
4536     if (Param.Flags.isNest()) continue;
4537 
4538     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4539                                LinkageSize, ParamAreaSize, NumBytes,
4540                                AvailableFPRs, AvailableVRs))
4541       return true;
4542   }
4543   return false;
4544 }
4545 
4546 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4547   if (CB.arg_size() != CallerFn->arg_size())
4548     return false;
4549 
4550   auto CalleeArgIter = CB.arg_begin();
4551   auto CalleeArgEnd = CB.arg_end();
4552   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4553 
4554   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4555     const Value* CalleeArg = *CalleeArgIter;
4556     const Value* CallerArg = &(*CallerArgIter);
4557     if (CalleeArg == CallerArg)
4558       continue;
4559 
4560     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4561     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4562     //      }
4563     // 1st argument of callee is undef and has the same type as caller.
4564     if (CalleeArg->getType() == CallerArg->getType() &&
4565         isa<UndefValue>(CalleeArg))
4566       continue;
4567 
4568     return false;
4569   }
4570 
4571   return true;
4572 }
4573 
4574 // Returns true if TCO is possible between the callers and callees
4575 // calling conventions.
4576 static bool
4577 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4578                                     CallingConv::ID CalleeCC) {
4579   // Tail calls are possible with fastcc and ccc.
4580   auto isTailCallableCC  = [] (CallingConv::ID CC){
4581       return  CC == CallingConv::C || CC == CallingConv::Fast;
4582   };
4583   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4584     return false;
4585 
4586   // We can safely tail call both fastcc and ccc callees from a c calling
4587   // convention caller. If the caller is fastcc, we may have less stack space
4588   // than a non-fastcc caller with the same signature so disable tail-calls in
4589   // that case.
4590   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4591 }
4592 
4593 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4594     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4595     const SmallVectorImpl<ISD::OutputArg> &Outs,
4596     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4597   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4598 
4599   if (DisableSCO && !TailCallOpt) return false;
4600 
4601   // Variadic argument functions are not supported.
4602   if (isVarArg) return false;
4603 
4604   auto &Caller = DAG.getMachineFunction().getFunction();
4605   // Check that the calling conventions are compatible for tco.
4606   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4607     return false;
4608 
4609   // Caller contains any byval parameter is not supported.
4610   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4611     return false;
4612 
4613   // Callee contains any byval parameter is not supported, too.
4614   // Note: This is a quick work around, because in some cases, e.g.
4615   // caller's stack size > callee's stack size, we are still able to apply
4616   // sibling call optimization. For example, gcc is able to do SCO for caller1
4617   // in the following example, but not for caller2.
4618   //   struct test {
4619   //     long int a;
4620   //     char ary[56];
4621   //   } gTest;
4622   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4623   //     b->a = v.a;
4624   //     return 0;
4625   //   }
4626   //   void caller1(struct test a, struct test c, struct test *b) {
4627   //     callee(gTest, b); }
4628   //   void caller2(struct test *b) { callee(gTest, b); }
4629   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4630     return false;
4631 
4632   // If callee and caller use different calling conventions, we cannot pass
4633   // parameters on stack since offsets for the parameter area may be different.
4634   if (Caller.getCallingConv() != CalleeCC &&
4635       needStackSlotPassParameters(Subtarget, Outs))
4636     return false;
4637 
4638   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4639   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4640   // callee potentially have different TOC bases then we cannot tail call since
4641   // we need to restore the TOC pointer after the call.
4642   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4643   // We cannot guarantee this for indirect calls or calls to external functions.
4644   // When PC-Relative addressing is used, the concept of the TOC is no longer
4645   // applicable so this check is not required.
4646   // Check first for indirect calls.
4647   if (!Subtarget.isUsingPCRelativeCalls() &&
4648       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4649     return false;
4650 
4651   // Check if we share the TOC base.
4652   if (!Subtarget.isUsingPCRelativeCalls() &&
4653       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4654     return false;
4655 
4656   // TCO allows altering callee ABI, so we don't have to check further.
4657   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4658     return true;
4659 
4660   if (DisableSCO) return false;
4661 
4662   // If callee use the same argument list that caller is using, then we can
4663   // apply SCO on this case. If it is not, then we need to check if callee needs
4664   // stack for passing arguments.
4665   // PC Relative tail calls may not have a CallBase.
4666   // If there is no CallBase we cannot verify if we have the same argument
4667   // list so assume that we don't have the same argument list.
4668   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4669       needStackSlotPassParameters(Subtarget, Outs))
4670     return false;
4671   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4672     return false;
4673 
4674   return true;
4675 }
4676 
4677 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4678 /// for tail call optimization. Targets which want to do tail call
4679 /// optimization should implement this function.
4680 bool
4681 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4682                                                      CallingConv::ID CalleeCC,
4683                                                      bool isVarArg,
4684                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4685                                                      SelectionDAG& DAG) const {
4686   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4687     return false;
4688 
4689   // Variable argument functions are not supported.
4690   if (isVarArg)
4691     return false;
4692 
4693   MachineFunction &MF = DAG.getMachineFunction();
4694   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4695   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4696     // Functions containing by val parameters are not supported.
4697     for (unsigned i = 0; i != Ins.size(); i++) {
4698        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4699        if (Flags.isByVal()) return false;
4700     }
4701 
4702     // Non-PIC/GOT tail calls are supported.
4703     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4704       return true;
4705 
4706     // At the moment we can only do local tail calls (in same module, hidden
4707     // or protected) if we are generating PIC.
4708     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4709       return G->getGlobal()->hasHiddenVisibility()
4710           || G->getGlobal()->hasProtectedVisibility();
4711   }
4712 
4713   return false;
4714 }
4715 
4716 /// isCallCompatibleAddress - Return the immediate to use if the specified
4717 /// 32-bit value is representable in the immediate field of a BxA instruction.
4718 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4719   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4720   if (!C) return nullptr;
4721 
4722   int Addr = C->getZExtValue();
4723   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4724       SignExtend32<26>(Addr) != Addr)
4725     return nullptr;  // Top 6 bits have to be sext of immediate.
4726 
4727   return DAG
4728       .getConstant(
4729           (int)C->getZExtValue() >> 2, SDLoc(Op),
4730           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4731       .getNode();
4732 }
4733 
4734 namespace {
4735 
4736 struct TailCallArgumentInfo {
4737   SDValue Arg;
4738   SDValue FrameIdxOp;
4739   int FrameIdx = 0;
4740 
4741   TailCallArgumentInfo() = default;
4742 };
4743 
4744 } // end anonymous namespace
4745 
4746 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4747 static void StoreTailCallArgumentsToStackSlot(
4748     SelectionDAG &DAG, SDValue Chain,
4749     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4750     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4751   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4752     SDValue Arg = TailCallArgs[i].Arg;
4753     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4754     int FI = TailCallArgs[i].FrameIdx;
4755     // Store relative to framepointer.
4756     MemOpChains.push_back(DAG.getStore(
4757         Chain, dl, Arg, FIN,
4758         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4759   }
4760 }
4761 
4762 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4763 /// the appropriate stack slot for the tail call optimized function call.
4764 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4765                                              SDValue OldRetAddr, SDValue OldFP,
4766                                              int SPDiff, const SDLoc &dl) {
4767   if (SPDiff) {
4768     // Calculate the new stack slot for the return address.
4769     MachineFunction &MF = DAG.getMachineFunction();
4770     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4771     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4772     bool isPPC64 = Subtarget.isPPC64();
4773     int SlotSize = isPPC64 ? 8 : 4;
4774     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4775     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4776                                                          NewRetAddrLoc, true);
4777     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4778     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4779     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4780                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4781   }
4782   return Chain;
4783 }
4784 
4785 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4786 /// the position of the argument.
4787 static void
4788 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4789                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4790                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4791   int Offset = ArgOffset + SPDiff;
4792   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4793   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4794   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4795   SDValue FIN = DAG.getFrameIndex(FI, VT);
4796   TailCallArgumentInfo Info;
4797   Info.Arg = Arg;
4798   Info.FrameIdxOp = FIN;
4799   Info.FrameIdx = FI;
4800   TailCallArguments.push_back(Info);
4801 }
4802 
4803 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4804 /// stack slot. Returns the chain as result and the loaded frame pointers in
4805 /// LROpOut/FPOpout. Used when tail calling.
4806 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4807     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4808     SDValue &FPOpOut, const SDLoc &dl) const {
4809   if (SPDiff) {
4810     // Load the LR and FP stack slot for later adjusting.
4811     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4812     LROpOut = getReturnAddrFrameIndex(DAG);
4813     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4814     Chain = SDValue(LROpOut.getNode(), 1);
4815   }
4816   return Chain;
4817 }
4818 
4819 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4820 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4821 /// specified by the specific parameter attribute. The copy will be passed as
4822 /// a byval function parameter.
4823 /// Sometimes what we are copying is the end of a larger object, the part that
4824 /// does not fit in registers.
4825 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4826                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4827                                          SelectionDAG &DAG, const SDLoc &dl) {
4828   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4829   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4830                        Flags.getNonZeroByValAlign(), false, false, false,
4831                        MachinePointerInfo(), MachinePointerInfo());
4832 }
4833 
4834 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4835 /// tail calls.
4836 static void LowerMemOpCallTo(
4837     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4838     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4839     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4840     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4841   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4842   if (!isTailCall) {
4843     if (isVector) {
4844       SDValue StackPtr;
4845       if (isPPC64)
4846         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4847       else
4848         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4849       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4850                            DAG.getConstant(ArgOffset, dl, PtrVT));
4851     }
4852     MemOpChains.push_back(
4853         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4854     // Calculate and remember argument location.
4855   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4856                                   TailCallArguments);
4857 }
4858 
4859 static void
4860 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4861                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4862                 SDValue FPOp,
4863                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4864   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4865   // might overwrite each other in case of tail call optimization.
4866   SmallVector<SDValue, 8> MemOpChains2;
4867   // Do not flag preceding copytoreg stuff together with the following stuff.
4868   InFlag = SDValue();
4869   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4870                                     MemOpChains2, dl);
4871   if (!MemOpChains2.empty())
4872     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4873 
4874   // Store the return address to the appropriate stack slot.
4875   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4876 
4877   // Emit callseq_end just before tailcall node.
4878   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4879                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4880   InFlag = Chain.getValue(1);
4881 }
4882 
4883 // Is this global address that of a function that can be called by name? (as
4884 // opposed to something that must hold a descriptor for an indirect call).
4885 static bool isFunctionGlobalAddress(SDValue Callee) {
4886   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4887     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4888         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4889       return false;
4890 
4891     return G->getGlobal()->getValueType()->isFunctionTy();
4892   }
4893 
4894   return false;
4895 }
4896 
4897 SDValue PPCTargetLowering::LowerCallResult(
4898     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4899     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4900     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4901   SmallVector<CCValAssign, 16> RVLocs;
4902   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4903                     *DAG.getContext());
4904 
4905   CCRetInfo.AnalyzeCallResult(
4906       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4907                ? RetCC_PPC_Cold
4908                : RetCC_PPC);
4909 
4910   // Copy all of the result registers out of their specified physreg.
4911   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4912     CCValAssign &VA = RVLocs[i];
4913     assert(VA.isRegLoc() && "Can only return in registers!");
4914 
4915     SDValue Val;
4916 
4917     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4918       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4919                                       InFlag);
4920       Chain = Lo.getValue(1);
4921       InFlag = Lo.getValue(2);
4922       VA = RVLocs[++i]; // skip ahead to next loc
4923       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4924                                       InFlag);
4925       Chain = Hi.getValue(1);
4926       InFlag = Hi.getValue(2);
4927       if (!Subtarget.isLittleEndian())
4928         std::swap (Lo, Hi);
4929       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
4930     } else {
4931       Val = DAG.getCopyFromReg(Chain, dl,
4932                                VA.getLocReg(), VA.getLocVT(), InFlag);
4933       Chain = Val.getValue(1);
4934       InFlag = Val.getValue(2);
4935     }
4936 
4937     switch (VA.getLocInfo()) {
4938     default: llvm_unreachable("Unknown loc info!");
4939     case CCValAssign::Full: break;
4940     case CCValAssign::AExt:
4941       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4942       break;
4943     case CCValAssign::ZExt:
4944       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4945                         DAG.getValueType(VA.getValVT()));
4946       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4947       break;
4948     case CCValAssign::SExt:
4949       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4950                         DAG.getValueType(VA.getValVT()));
4951       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4952       break;
4953     }
4954 
4955     InVals.push_back(Val);
4956   }
4957 
4958   return Chain;
4959 }
4960 
4961 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
4962                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
4963   // PatchPoint calls are not indirect.
4964   if (isPatchPoint)
4965     return false;
4966 
4967   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
4968     return false;
4969 
4970   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
4971   // becuase the immediate function pointer points to a descriptor instead of
4972   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
4973   // pointer immediate points to the global entry point, while the BLA would
4974   // need to jump to the local entry point (see rL211174).
4975   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
4976       isBLACompatibleAddress(Callee, DAG))
4977     return false;
4978 
4979   return true;
4980 }
4981 
4982 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
4983 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
4984   return Subtarget.isAIXABI() ||
4985          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
4986 }
4987 
4988 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
4989                               const Function &Caller,
4990                               const SDValue &Callee,
4991                               const PPCSubtarget &Subtarget,
4992                               const TargetMachine &TM) {
4993   if (CFlags.IsTailCall)
4994     return PPCISD::TC_RETURN;
4995 
4996   // This is a call through a function pointer.
4997   if (CFlags.IsIndirect) {
4998     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
4999     // indirect calls. The save of the caller's TOC pointer to the stack will be
5000     // inserted into the DAG as part of call lowering. The restore of the TOC
5001     // pointer is modeled by using a pseudo instruction for the call opcode that
5002     // represents the 2 instruction sequence of an indirect branch and link,
5003     // immediately followed by a load of the TOC pointer from the the stack save
5004     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5005     // as it is not saved or used.
5006     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5007                                                : PPCISD::BCTRL;
5008   }
5009 
5010   if (Subtarget.isUsingPCRelativeCalls()) {
5011     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5012     return PPCISD::CALL_NOTOC;
5013   }
5014 
5015   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5016   // immediately following the call instruction if the caller and callee may
5017   // have different TOC bases. At link time if the linker determines the calls
5018   // may not share a TOC base, the call is redirected to a trampoline inserted
5019   // by the linker. The trampoline will (among other things) save the callers
5020   // TOC pointer at an ABI designated offset in the linkage area and the linker
5021   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5022   // into gpr2.
5023   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5024     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5025                                                   : PPCISD::CALL_NOP;
5026 
5027   return PPCISD::CALL;
5028 }
5029 
5030 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5031                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5032   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5033     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5034       return SDValue(Dest, 0);
5035 
5036   // Returns true if the callee is local, and false otherwise.
5037   auto isLocalCallee = [&]() {
5038     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5039     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5040     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5041 
5042     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5043            !dyn_cast_or_null<GlobalIFunc>(GV);
5044   };
5045 
5046   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5047   // a static relocation model causes some versions of GNU LD (2.17.50, at
5048   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5049   // built with secure-PLT.
5050   bool UsePlt =
5051       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5052       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5053 
5054   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5055     const TargetMachine &TM = Subtarget.getTargetMachine();
5056     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5057     MCSymbolXCOFF *S =
5058         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5059 
5060     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5061     return DAG.getMCSymbol(S, PtrVT);
5062   };
5063 
5064   if (isFunctionGlobalAddress(Callee)) {
5065     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5066 
5067     if (Subtarget.isAIXABI()) {
5068       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5069       return getAIXFuncEntryPointSymbolSDNode(GV);
5070     }
5071     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5072                                       UsePlt ? PPCII::MO_PLT : 0);
5073   }
5074 
5075   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5076     const char *SymName = S->getSymbol();
5077     if (Subtarget.isAIXABI()) {
5078       // If there exists a user-declared function whose name is the same as the
5079       // ExternalSymbol's, then we pick up the user-declared version.
5080       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5081       if (const Function *F =
5082               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5083         return getAIXFuncEntryPointSymbolSDNode(F);
5084 
5085       // On AIX, direct function calls reference the symbol for the function's
5086       // entry point, which is named by prepending a "." before the function's
5087       // C-linkage name. A Qualname is returned here because an external
5088       // function entry point is a csect with XTY_ER property.
5089       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5090         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5091         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5092             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5093             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5094         return Sec->getQualNameSymbol();
5095       };
5096 
5097       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5098     }
5099     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5100                                        UsePlt ? PPCII::MO_PLT : 0);
5101   }
5102 
5103   // No transformation needed.
5104   assert(Callee.getNode() && "What no callee?");
5105   return Callee;
5106 }
5107 
5108 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5109   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5110          "Expected a CALLSEQ_STARTSDNode.");
5111 
5112   // The last operand is the chain, except when the node has glue. If the node
5113   // has glue, then the last operand is the glue, and the chain is the second
5114   // last operand.
5115   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5116   if (LastValue.getValueType() != MVT::Glue)
5117     return LastValue;
5118 
5119   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5120 }
5121 
5122 // Creates the node that moves a functions address into the count register
5123 // to prepare for an indirect call instruction.
5124 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5125                                 SDValue &Glue, SDValue &Chain,
5126                                 const SDLoc &dl) {
5127   SDValue MTCTROps[] = {Chain, Callee, Glue};
5128   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5129   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5130                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5131   // The glue is the second value produced.
5132   Glue = Chain.getValue(1);
5133 }
5134 
5135 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5136                                           SDValue &Glue, SDValue &Chain,
5137                                           SDValue CallSeqStart,
5138                                           const CallBase *CB, const SDLoc &dl,
5139                                           bool hasNest,
5140                                           const PPCSubtarget &Subtarget) {
5141   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5142   // entry point, but to the function descriptor (the function entry point
5143   // address is part of the function descriptor though).
5144   // The function descriptor is a three doubleword structure with the
5145   // following fields: function entry point, TOC base address and
5146   // environment pointer.
5147   // Thus for a call through a function pointer, the following actions need
5148   // to be performed:
5149   //   1. Save the TOC of the caller in the TOC save area of its stack
5150   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5151   //   2. Load the address of the function entry point from the function
5152   //      descriptor.
5153   //   3. Load the TOC of the callee from the function descriptor into r2.
5154   //   4. Load the environment pointer from the function descriptor into
5155   //      r11.
5156   //   5. Branch to the function entry point address.
5157   //   6. On return of the callee, the TOC of the caller needs to be
5158   //      restored (this is done in FinishCall()).
5159   //
5160   // The loads are scheduled at the beginning of the call sequence, and the
5161   // register copies are flagged together to ensure that no other
5162   // operations can be scheduled in between. E.g. without flagging the
5163   // copies together, a TOC access in the caller could be scheduled between
5164   // the assignment of the callee TOC and the branch to the callee, which leads
5165   // to incorrect code.
5166 
5167   // Start by loading the function address from the descriptor.
5168   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5169   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5170                       ? (MachineMemOperand::MODereferenceable |
5171                          MachineMemOperand::MOInvariant)
5172                       : MachineMemOperand::MONone;
5173 
5174   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5175 
5176   // Registers used in building the DAG.
5177   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5178   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5179 
5180   // Offsets of descriptor members.
5181   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5182   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5183 
5184   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5185   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5186 
5187   // One load for the functions entry point address.
5188   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5189                                     Alignment, MMOFlags);
5190 
5191   // One for loading the TOC anchor for the module that contains the called
5192   // function.
5193   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5194   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5195   SDValue TOCPtr =
5196       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5197                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5198 
5199   // One for loading the environment pointer.
5200   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5201   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5202   SDValue LoadEnvPtr =
5203       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5204                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5205 
5206 
5207   // Then copy the newly loaded TOC anchor to the TOC pointer.
5208   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5209   Chain = TOCVal.getValue(0);
5210   Glue = TOCVal.getValue(1);
5211 
5212   // If the function call has an explicit 'nest' parameter, it takes the
5213   // place of the environment pointer.
5214   assert((!hasNest || !Subtarget.isAIXABI()) &&
5215          "Nest parameter is not supported on AIX.");
5216   if (!hasNest) {
5217     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5218     Chain = EnvVal.getValue(0);
5219     Glue = EnvVal.getValue(1);
5220   }
5221 
5222   // The rest of the indirect call sequence is the same as the non-descriptor
5223   // DAG.
5224   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5225 }
5226 
5227 static void
5228 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5229                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5230                   SelectionDAG &DAG,
5231                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5232                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5233                   const PPCSubtarget &Subtarget) {
5234   const bool IsPPC64 = Subtarget.isPPC64();
5235   // MVT for a general purpose register.
5236   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5237 
5238   // First operand is always the chain.
5239   Ops.push_back(Chain);
5240 
5241   // If it's a direct call pass the callee as the second operand.
5242   if (!CFlags.IsIndirect)
5243     Ops.push_back(Callee);
5244   else {
5245     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5246 
5247     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5248     // on the stack (this would have been done in `LowerCall_64SVR4` or
5249     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5250     // represents both the indirect branch and a load that restores the TOC
5251     // pointer from the linkage area. The operand for the TOC restore is an add
5252     // of the TOC save offset to the stack pointer. This must be the second
5253     // operand: after the chain input but before any other variadic arguments.
5254     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5255     // saved or used.
5256     if (isTOCSaveRestoreRequired(Subtarget)) {
5257       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5258 
5259       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5260       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5261       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5262       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5263       Ops.push_back(AddTOC);
5264     }
5265 
5266     // Add the register used for the environment pointer.
5267     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5268       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5269                                     RegVT));
5270 
5271 
5272     // Add CTR register as callee so a bctr can be emitted later.
5273     if (CFlags.IsTailCall)
5274       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5275   }
5276 
5277   // If this is a tail call add stack pointer delta.
5278   if (CFlags.IsTailCall)
5279     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5280 
5281   // Add argument registers to the end of the list so that they are known live
5282   // into the call.
5283   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5284     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5285                                   RegsToPass[i].second.getValueType()));
5286 
5287   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5288   // no way to mark dependencies as implicit here.
5289   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5290   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5291        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5292     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5293 
5294   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5295   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5296     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5297 
5298   // Add a register mask operand representing the call-preserved registers.
5299   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5300   const uint32_t *Mask =
5301       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5302   assert(Mask && "Missing call preserved mask for calling convention");
5303   Ops.push_back(DAG.getRegisterMask(Mask));
5304 
5305   // If the glue is valid, it is the last operand.
5306   if (Glue.getNode())
5307     Ops.push_back(Glue);
5308 }
5309 
5310 SDValue PPCTargetLowering::FinishCall(
5311     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5312     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5313     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5314     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5315     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5316 
5317   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5318       Subtarget.isAIXABI())
5319     setUsesTOCBasePtr(DAG);
5320 
5321   unsigned CallOpc =
5322       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5323                     Subtarget, DAG.getTarget());
5324 
5325   if (!CFlags.IsIndirect)
5326     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5327   else if (Subtarget.usesFunctionDescriptors())
5328     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5329                                   dl, CFlags.HasNest, Subtarget);
5330   else
5331     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5332 
5333   // Build the operand list for the call instruction.
5334   SmallVector<SDValue, 8> Ops;
5335   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5336                     SPDiff, Subtarget);
5337 
5338   // Emit tail call.
5339   if (CFlags.IsTailCall) {
5340     // Indirect tail call when using PC Relative calls do not have the same
5341     // constraints.
5342     assert(((Callee.getOpcode() == ISD::Register &&
5343              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5344             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5345             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5346             isa<ConstantSDNode>(Callee) ||
5347             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5348            "Expecting a global address, external symbol, absolute value, "
5349            "register or an indirect tail call when PC Relative calls are "
5350            "used.");
5351     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5352     assert(CallOpc == PPCISD::TC_RETURN &&
5353            "Unexpected call opcode for a tail call.");
5354     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5355     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5356   }
5357 
5358   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5359   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5360   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5361   Glue = Chain.getValue(1);
5362 
5363   // When performing tail call optimization the callee pops its arguments off
5364   // the stack. Account for this here so these bytes can be pushed back on in
5365   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5366   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5367                          getTargetMachine().Options.GuaranteedTailCallOpt)
5368                             ? NumBytes
5369                             : 0;
5370 
5371   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5372                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5373                              Glue, dl);
5374   Glue = Chain.getValue(1);
5375 
5376   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5377                          DAG, InVals);
5378 }
5379 
5380 SDValue
5381 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5382                              SmallVectorImpl<SDValue> &InVals) const {
5383   SelectionDAG &DAG                     = CLI.DAG;
5384   SDLoc &dl                             = CLI.DL;
5385   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5386   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5387   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5388   SDValue Chain                         = CLI.Chain;
5389   SDValue Callee                        = CLI.Callee;
5390   bool &isTailCall                      = CLI.IsTailCall;
5391   CallingConv::ID CallConv              = CLI.CallConv;
5392   bool isVarArg                         = CLI.IsVarArg;
5393   bool isPatchPoint                     = CLI.IsPatchPoint;
5394   const CallBase *CB                    = CLI.CB;
5395 
5396   if (isTailCall) {
5397     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5398       isTailCall = false;
5399     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5400       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5401           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5402     else
5403       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5404                                                      Ins, DAG);
5405     if (isTailCall) {
5406       ++NumTailCalls;
5407       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5408         ++NumSiblingCalls;
5409 
5410       // PC Relative calls no longer guarantee that the callee is a Global
5411       // Address Node. The callee could be an indirect tail call in which
5412       // case the SDValue for the callee could be a load (to load the address
5413       // of a function pointer) or it may be a register copy (to move the
5414       // address of the callee from a function parameter into a virtual
5415       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5416       assert((Subtarget.isUsingPCRelativeCalls() ||
5417               isa<GlobalAddressSDNode>(Callee)) &&
5418              "Callee should be an llvm::Function object.");
5419 
5420       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5421                         << "\nTCO callee: ");
5422       LLVM_DEBUG(Callee.dump());
5423     }
5424   }
5425 
5426   if (!isTailCall && CB && CB->isMustTailCall())
5427     report_fatal_error("failed to perform tail call elimination on a call "
5428                        "site marked musttail");
5429 
5430   // When long calls (i.e. indirect calls) are always used, calls are always
5431   // made via function pointer. If we have a function name, first translate it
5432   // into a pointer.
5433   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5434       !isTailCall)
5435     Callee = LowerGlobalAddress(Callee, DAG);
5436 
5437   CallFlags CFlags(
5438       CallConv, isTailCall, isVarArg, isPatchPoint,
5439       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5440       // hasNest
5441       Subtarget.is64BitELFABI() &&
5442           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5443       CLI.NoMerge);
5444 
5445   if (Subtarget.isAIXABI())
5446     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5447                          InVals, CB);
5448 
5449   assert(Subtarget.isSVR4ABI());
5450   if (Subtarget.isPPC64())
5451     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5452                             InVals, CB);
5453   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5454                           InVals, CB);
5455 }
5456 
5457 SDValue PPCTargetLowering::LowerCall_32SVR4(
5458     SDValue Chain, SDValue Callee, CallFlags CFlags,
5459     const SmallVectorImpl<ISD::OutputArg> &Outs,
5460     const SmallVectorImpl<SDValue> &OutVals,
5461     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5462     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5463     const CallBase *CB) const {
5464   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5465   // of the 32-bit SVR4 ABI stack frame layout.
5466 
5467   const CallingConv::ID CallConv = CFlags.CallConv;
5468   const bool IsVarArg = CFlags.IsVarArg;
5469   const bool IsTailCall = CFlags.IsTailCall;
5470 
5471   assert((CallConv == CallingConv::C ||
5472           CallConv == CallingConv::Cold ||
5473           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5474 
5475   const Align PtrAlign(4);
5476 
5477   MachineFunction &MF = DAG.getMachineFunction();
5478 
5479   // Mark this function as potentially containing a function that contains a
5480   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5481   // and restoring the callers stack pointer in this functions epilog. This is
5482   // done because by tail calling the called function might overwrite the value
5483   // in this function's (MF) stack pointer stack slot 0(SP).
5484   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5485       CallConv == CallingConv::Fast)
5486     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5487 
5488   // Count how many bytes are to be pushed on the stack, including the linkage
5489   // area, parameter list area and the part of the local variable space which
5490   // contains copies of aggregates which are passed by value.
5491 
5492   // Assign locations to all of the outgoing arguments.
5493   SmallVector<CCValAssign, 16> ArgLocs;
5494   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5495 
5496   // Reserve space for the linkage area on the stack.
5497   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5498                        PtrAlign);
5499   if (useSoftFloat())
5500     CCInfo.PreAnalyzeCallOperands(Outs);
5501 
5502   if (IsVarArg) {
5503     // Handle fixed and variable vector arguments differently.
5504     // Fixed vector arguments go into registers as long as registers are
5505     // available. Variable vector arguments always go into memory.
5506     unsigned NumArgs = Outs.size();
5507 
5508     for (unsigned i = 0; i != NumArgs; ++i) {
5509       MVT ArgVT = Outs[i].VT;
5510       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5511       bool Result;
5512 
5513       if (Outs[i].IsFixed) {
5514         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5515                                CCInfo);
5516       } else {
5517         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5518                                       ArgFlags, CCInfo);
5519       }
5520 
5521       if (Result) {
5522 #ifndef NDEBUG
5523         errs() << "Call operand #" << i << " has unhandled type "
5524              << EVT(ArgVT).getEVTString() << "\n";
5525 #endif
5526         llvm_unreachable(nullptr);
5527       }
5528     }
5529   } else {
5530     // All arguments are treated the same.
5531     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5532   }
5533   CCInfo.clearWasPPCF128();
5534 
5535   // Assign locations to all of the outgoing aggregate by value arguments.
5536   SmallVector<CCValAssign, 16> ByValArgLocs;
5537   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5538 
5539   // Reserve stack space for the allocations in CCInfo.
5540   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5541 
5542   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5543 
5544   // Size of the linkage area, parameter list area and the part of the local
5545   // space variable where copies of aggregates which are passed by value are
5546   // stored.
5547   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5548 
5549   // Calculate by how many bytes the stack has to be adjusted in case of tail
5550   // call optimization.
5551   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5552 
5553   // Adjust the stack pointer for the new arguments...
5554   // These operations are automatically eliminated by the prolog/epilog pass
5555   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5556   SDValue CallSeqStart = Chain;
5557 
5558   // Load the return address and frame pointer so it can be moved somewhere else
5559   // later.
5560   SDValue LROp, FPOp;
5561   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5562 
5563   // Set up a copy of the stack pointer for use loading and storing any
5564   // arguments that may not fit in the registers available for argument
5565   // passing.
5566   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5567 
5568   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5569   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5570   SmallVector<SDValue, 8> MemOpChains;
5571 
5572   bool seenFloatArg = false;
5573   // Walk the register/memloc assignments, inserting copies/loads.
5574   // i - Tracks the index into the list of registers allocated for the call
5575   // RealArgIdx - Tracks the index into the list of actual function arguments
5576   // j - Tracks the index into the list of byval arguments
5577   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5578        i != e;
5579        ++i, ++RealArgIdx) {
5580     CCValAssign &VA = ArgLocs[i];
5581     SDValue Arg = OutVals[RealArgIdx];
5582     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5583 
5584     if (Flags.isByVal()) {
5585       // Argument is an aggregate which is passed by value, thus we need to
5586       // create a copy of it in the local variable space of the current stack
5587       // frame (which is the stack frame of the caller) and pass the address of
5588       // this copy to the callee.
5589       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5590       CCValAssign &ByValVA = ByValArgLocs[j++];
5591       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5592 
5593       // Memory reserved in the local variable space of the callers stack frame.
5594       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5595 
5596       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5597       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5598                            StackPtr, PtrOff);
5599 
5600       // Create a copy of the argument in the local area of the current
5601       // stack frame.
5602       SDValue MemcpyCall =
5603         CreateCopyOfByValArgument(Arg, PtrOff,
5604                                   CallSeqStart.getNode()->getOperand(0),
5605                                   Flags, DAG, dl);
5606 
5607       // This must go outside the CALLSEQ_START..END.
5608       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5609                                                      SDLoc(MemcpyCall));
5610       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5611                              NewCallSeqStart.getNode());
5612       Chain = CallSeqStart = NewCallSeqStart;
5613 
5614       // Pass the address of the aggregate copy on the stack either in a
5615       // physical register or in the parameter list area of the current stack
5616       // frame to the callee.
5617       Arg = PtrOff;
5618     }
5619 
5620     // When useCRBits() is true, there can be i1 arguments.
5621     // It is because getRegisterType(MVT::i1) => MVT::i1,
5622     // and for other integer types getRegisterType() => MVT::i32.
5623     // Extend i1 and ensure callee will get i32.
5624     if (Arg.getValueType() == MVT::i1)
5625       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5626                         dl, MVT::i32, Arg);
5627 
5628     if (VA.isRegLoc()) {
5629       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5630       // Put argument in a physical register.
5631       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5632         bool IsLE = Subtarget.isLittleEndian();
5633         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5634                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5635         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5636         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5637                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5638         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5639                              SVal.getValue(0)));
5640       } else
5641         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5642     } else {
5643       // Put argument in the parameter list area of the current stack frame.
5644       assert(VA.isMemLoc());
5645       unsigned LocMemOffset = VA.getLocMemOffset();
5646 
5647       if (!IsTailCall) {
5648         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5649         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5650                              StackPtr, PtrOff);
5651 
5652         MemOpChains.push_back(
5653             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5654       } else {
5655         // Calculate and remember argument location.
5656         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5657                                  TailCallArguments);
5658       }
5659     }
5660   }
5661 
5662   if (!MemOpChains.empty())
5663     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5664 
5665   // Build a sequence of copy-to-reg nodes chained together with token chain
5666   // and flag operands which copy the outgoing args into the appropriate regs.
5667   SDValue InFlag;
5668   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5669     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5670                              RegsToPass[i].second, InFlag);
5671     InFlag = Chain.getValue(1);
5672   }
5673 
5674   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5675   // registers.
5676   if (IsVarArg) {
5677     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5678     SDValue Ops[] = { Chain, InFlag };
5679 
5680     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5681                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5682 
5683     InFlag = Chain.getValue(1);
5684   }
5685 
5686   if (IsTailCall)
5687     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5688                     TailCallArguments);
5689 
5690   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5691                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5692 }
5693 
5694 // Copy an argument into memory, being careful to do this outside the
5695 // call sequence for the call to which the argument belongs.
5696 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5697     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5698     SelectionDAG &DAG, const SDLoc &dl) const {
5699   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5700                         CallSeqStart.getNode()->getOperand(0),
5701                         Flags, DAG, dl);
5702   // The MEMCPY must go outside the CALLSEQ_START..END.
5703   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5704   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5705                                                  SDLoc(MemcpyCall));
5706   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5707                          NewCallSeqStart.getNode());
5708   return NewCallSeqStart;
5709 }
5710 
5711 SDValue PPCTargetLowering::LowerCall_64SVR4(
5712     SDValue Chain, SDValue Callee, CallFlags CFlags,
5713     const SmallVectorImpl<ISD::OutputArg> &Outs,
5714     const SmallVectorImpl<SDValue> &OutVals,
5715     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5716     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5717     const CallBase *CB) const {
5718   bool isELFv2ABI = Subtarget.isELFv2ABI();
5719   bool isLittleEndian = Subtarget.isLittleEndian();
5720   unsigned NumOps = Outs.size();
5721   bool IsSibCall = false;
5722   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5723 
5724   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5725   unsigned PtrByteSize = 8;
5726 
5727   MachineFunction &MF = DAG.getMachineFunction();
5728 
5729   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5730     IsSibCall = true;
5731 
5732   // Mark this function as potentially containing a function that contains a
5733   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5734   // and restoring the callers stack pointer in this functions epilog. This is
5735   // done because by tail calling the called function might overwrite the value
5736   // in this function's (MF) stack pointer stack slot 0(SP).
5737   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5738     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5739 
5740   assert(!(IsFastCall && CFlags.IsVarArg) &&
5741          "fastcc not supported on varargs functions");
5742 
5743   // Count how many bytes are to be pushed on the stack, including the linkage
5744   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5745   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5746   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5747   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5748   unsigned NumBytes = LinkageSize;
5749   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5750 
5751   static const MCPhysReg GPR[] = {
5752     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5753     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5754   };
5755   static const MCPhysReg VR[] = {
5756     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5757     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5758   };
5759 
5760   const unsigned NumGPRs = array_lengthof(GPR);
5761   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5762   const unsigned NumVRs  = array_lengthof(VR);
5763 
5764   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5765   // can be passed to the callee in registers.
5766   // For the fast calling convention, there is another check below.
5767   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5768   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5769   if (!HasParameterArea) {
5770     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5771     unsigned AvailableFPRs = NumFPRs;
5772     unsigned AvailableVRs = NumVRs;
5773     unsigned NumBytesTmp = NumBytes;
5774     for (unsigned i = 0; i != NumOps; ++i) {
5775       if (Outs[i].Flags.isNest()) continue;
5776       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5777                                  PtrByteSize, LinkageSize, ParamAreaSize,
5778                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5779         HasParameterArea = true;
5780     }
5781   }
5782 
5783   // When using the fast calling convention, we don't provide backing for
5784   // arguments that will be in registers.
5785   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5786 
5787   // Avoid allocating parameter area for fastcc functions if all the arguments
5788   // can be passed in the registers.
5789   if (IsFastCall)
5790     HasParameterArea = false;
5791 
5792   // Add up all the space actually used.
5793   for (unsigned i = 0; i != NumOps; ++i) {
5794     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5795     EVT ArgVT = Outs[i].VT;
5796     EVT OrigVT = Outs[i].ArgVT;
5797 
5798     if (Flags.isNest())
5799       continue;
5800 
5801     if (IsFastCall) {
5802       if (Flags.isByVal()) {
5803         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5804         if (NumGPRsUsed > NumGPRs)
5805           HasParameterArea = true;
5806       } else {
5807         switch (ArgVT.getSimpleVT().SimpleTy) {
5808         default: llvm_unreachable("Unexpected ValueType for argument!");
5809         case MVT::i1:
5810         case MVT::i32:
5811         case MVT::i64:
5812           if (++NumGPRsUsed <= NumGPRs)
5813             continue;
5814           break;
5815         case MVT::v4i32:
5816         case MVT::v8i16:
5817         case MVT::v16i8:
5818         case MVT::v2f64:
5819         case MVT::v2i64:
5820         case MVT::v1i128:
5821         case MVT::f128:
5822           if (++NumVRsUsed <= NumVRs)
5823             continue;
5824           break;
5825         case MVT::v4f32:
5826           if (++NumVRsUsed <= NumVRs)
5827             continue;
5828           break;
5829         case MVT::f32:
5830         case MVT::f64:
5831           if (++NumFPRsUsed <= NumFPRs)
5832             continue;
5833           break;
5834         }
5835         HasParameterArea = true;
5836       }
5837     }
5838 
5839     /* Respect alignment of argument on the stack.  */
5840     auto Alignement =
5841         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5842     NumBytes = alignTo(NumBytes, Alignement);
5843 
5844     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5845     if (Flags.isInConsecutiveRegsLast())
5846       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5847   }
5848 
5849   unsigned NumBytesActuallyUsed = NumBytes;
5850 
5851   // In the old ELFv1 ABI,
5852   // the prolog code of the callee may store up to 8 GPR argument registers to
5853   // the stack, allowing va_start to index over them in memory if its varargs.
5854   // Because we cannot tell if this is needed on the caller side, we have to
5855   // conservatively assume that it is needed.  As such, make sure we have at
5856   // least enough stack space for the caller to store the 8 GPRs.
5857   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5858   // really requires memory operands, e.g. a vararg function.
5859   if (HasParameterArea)
5860     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5861   else
5862     NumBytes = LinkageSize;
5863 
5864   // Tail call needs the stack to be aligned.
5865   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5866     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5867 
5868   int SPDiff = 0;
5869 
5870   // Calculate by how many bytes the stack has to be adjusted in case of tail
5871   // call optimization.
5872   if (!IsSibCall)
5873     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5874 
5875   // To protect arguments on the stack from being clobbered in a tail call,
5876   // force all the loads to happen before doing any other lowering.
5877   if (CFlags.IsTailCall)
5878     Chain = DAG.getStackArgumentTokenFactor(Chain);
5879 
5880   // Adjust the stack pointer for the new arguments...
5881   // These operations are automatically eliminated by the prolog/epilog pass
5882   if (!IsSibCall)
5883     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5884   SDValue CallSeqStart = Chain;
5885 
5886   // Load the return address and frame pointer so it can be move somewhere else
5887   // later.
5888   SDValue LROp, FPOp;
5889   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5890 
5891   // Set up a copy of the stack pointer for use loading and storing any
5892   // arguments that may not fit in the registers available for argument
5893   // passing.
5894   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5895 
5896   // Figure out which arguments are going to go in registers, and which in
5897   // memory.  Also, if this is a vararg function, floating point operations
5898   // must be stored to our stack, and loaded into integer regs as well, if
5899   // any integer regs are available for argument passing.
5900   unsigned ArgOffset = LinkageSize;
5901 
5902   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5903   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5904 
5905   SmallVector<SDValue, 8> MemOpChains;
5906   for (unsigned i = 0; i != NumOps; ++i) {
5907     SDValue Arg = OutVals[i];
5908     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5909     EVT ArgVT = Outs[i].VT;
5910     EVT OrigVT = Outs[i].ArgVT;
5911 
5912     // PtrOff will be used to store the current argument to the stack if a
5913     // register cannot be found for it.
5914     SDValue PtrOff;
5915 
5916     // We re-align the argument offset for each argument, except when using the
5917     // fast calling convention, when we need to make sure we do that only when
5918     // we'll actually use a stack slot.
5919     auto ComputePtrOff = [&]() {
5920       /* Respect alignment of argument on the stack.  */
5921       auto Alignment =
5922           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5923       ArgOffset = alignTo(ArgOffset, Alignment);
5924 
5925       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5926 
5927       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5928     };
5929 
5930     if (!IsFastCall) {
5931       ComputePtrOff();
5932 
5933       /* Compute GPR index associated with argument offset.  */
5934       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5935       GPR_idx = std::min(GPR_idx, NumGPRs);
5936     }
5937 
5938     // Promote integers to 64-bit values.
5939     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5940       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5941       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5942       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5943     }
5944 
5945     // FIXME memcpy is used way more than necessary.  Correctness first.
5946     // Note: "by value" is code for passing a structure by value, not
5947     // basic types.
5948     if (Flags.isByVal()) {
5949       // Note: Size includes alignment padding, so
5950       //   struct x { short a; char b; }
5951       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5952       // These are the proper values we need for right-justifying the
5953       // aggregate in a parameter register.
5954       unsigned Size = Flags.getByValSize();
5955 
5956       // An empty aggregate parameter takes up no storage and no
5957       // registers.
5958       if (Size == 0)
5959         continue;
5960 
5961       if (IsFastCall)
5962         ComputePtrOff();
5963 
5964       // All aggregates smaller than 8 bytes must be passed right-justified.
5965       if (Size==1 || Size==2 || Size==4) {
5966         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5967         if (GPR_idx != NumGPRs) {
5968           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5969                                         MachinePointerInfo(), VT);
5970           MemOpChains.push_back(Load.getValue(1));
5971           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5972 
5973           ArgOffset += PtrByteSize;
5974           continue;
5975         }
5976       }
5977 
5978       if (GPR_idx == NumGPRs && Size < 8) {
5979         SDValue AddPtr = PtrOff;
5980         if (!isLittleEndian) {
5981           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5982                                           PtrOff.getValueType());
5983           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5984         }
5985         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5986                                                           CallSeqStart,
5987                                                           Flags, DAG, dl);
5988         ArgOffset += PtrByteSize;
5989         continue;
5990       }
5991       // Copy entire object into memory.  There are cases where gcc-generated
5992       // code assumes it is there, even if it could be put entirely into
5993       // registers.  (This is not what the doc says.)
5994 
5995       // FIXME: The above statement is likely due to a misunderstanding of the
5996       // documents.  All arguments must be copied into the parameter area BY
5997       // THE CALLEE in the event that the callee takes the address of any
5998       // formal argument.  That has not yet been implemented.  However, it is
5999       // reasonable to use the stack area as a staging area for the register
6000       // load.
6001 
6002       // Skip this for small aggregates, as we will use the same slot for a
6003       // right-justified copy, below.
6004       if (Size >= 8)
6005         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6006                                                           CallSeqStart,
6007                                                           Flags, DAG, dl);
6008 
6009       // When a register is available, pass a small aggregate right-justified.
6010       if (Size < 8 && GPR_idx != NumGPRs) {
6011         // The easiest way to get this right-justified in a register
6012         // is to copy the structure into the rightmost portion of a
6013         // local variable slot, then load the whole slot into the
6014         // register.
6015         // FIXME: The memcpy seems to produce pretty awful code for
6016         // small aggregates, particularly for packed ones.
6017         // FIXME: It would be preferable to use the slot in the
6018         // parameter save area instead of a new local variable.
6019         SDValue AddPtr = PtrOff;
6020         if (!isLittleEndian) {
6021           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6022           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6023         }
6024         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6025                                                           CallSeqStart,
6026                                                           Flags, DAG, dl);
6027 
6028         // Load the slot into the register.
6029         SDValue Load =
6030             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6031         MemOpChains.push_back(Load.getValue(1));
6032         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6033 
6034         // Done with this argument.
6035         ArgOffset += PtrByteSize;
6036         continue;
6037       }
6038 
6039       // For aggregates larger than PtrByteSize, copy the pieces of the
6040       // object that fit into registers from the parameter save area.
6041       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6042         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6043         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6044         if (GPR_idx != NumGPRs) {
6045           SDValue Load =
6046               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6047           MemOpChains.push_back(Load.getValue(1));
6048           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6049           ArgOffset += PtrByteSize;
6050         } else {
6051           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6052           break;
6053         }
6054       }
6055       continue;
6056     }
6057 
6058     switch (Arg.getSimpleValueType().SimpleTy) {
6059     default: llvm_unreachable("Unexpected ValueType for argument!");
6060     case MVT::i1:
6061     case MVT::i32:
6062     case MVT::i64:
6063       if (Flags.isNest()) {
6064         // The 'nest' parameter, if any, is passed in R11.
6065         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6066         break;
6067       }
6068 
6069       // These can be scalar arguments or elements of an integer array type
6070       // passed directly.  Clang may use those instead of "byval" aggregate
6071       // types to avoid forcing arguments to memory unnecessarily.
6072       if (GPR_idx != NumGPRs) {
6073         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6074       } else {
6075         if (IsFastCall)
6076           ComputePtrOff();
6077 
6078         assert(HasParameterArea &&
6079                "Parameter area must exist to pass an argument in memory.");
6080         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6081                          true, CFlags.IsTailCall, false, MemOpChains,
6082                          TailCallArguments, dl);
6083         if (IsFastCall)
6084           ArgOffset += PtrByteSize;
6085       }
6086       if (!IsFastCall)
6087         ArgOffset += PtrByteSize;
6088       break;
6089     case MVT::f32:
6090     case MVT::f64: {
6091       // These can be scalar arguments or elements of a float array type
6092       // passed directly.  The latter are used to implement ELFv2 homogenous
6093       // float aggregates.
6094 
6095       // Named arguments go into FPRs first, and once they overflow, the
6096       // remaining arguments go into GPRs and then the parameter save area.
6097       // Unnamed arguments for vararg functions always go to GPRs and
6098       // then the parameter save area.  For now, put all arguments to vararg
6099       // routines always in both locations (FPR *and* GPR or stack slot).
6100       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6101       bool NeededLoad = false;
6102 
6103       // First load the argument into the next available FPR.
6104       if (FPR_idx != NumFPRs)
6105         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6106 
6107       // Next, load the argument into GPR or stack slot if needed.
6108       if (!NeedGPROrStack)
6109         ;
6110       else if (GPR_idx != NumGPRs && !IsFastCall) {
6111         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6112         // once we support fp <-> gpr moves.
6113 
6114         // In the non-vararg case, this can only ever happen in the
6115         // presence of f32 array types, since otherwise we never run
6116         // out of FPRs before running out of GPRs.
6117         SDValue ArgVal;
6118 
6119         // Double values are always passed in a single GPR.
6120         if (Arg.getValueType() != MVT::f32) {
6121           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6122 
6123         // Non-array float values are extended and passed in a GPR.
6124         } else if (!Flags.isInConsecutiveRegs()) {
6125           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6126           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6127 
6128         // If we have an array of floats, we collect every odd element
6129         // together with its predecessor into one GPR.
6130         } else if (ArgOffset % PtrByteSize != 0) {
6131           SDValue Lo, Hi;
6132           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6133           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6134           if (!isLittleEndian)
6135             std::swap(Lo, Hi);
6136           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6137 
6138         // The final element, if even, goes into the first half of a GPR.
6139         } else if (Flags.isInConsecutiveRegsLast()) {
6140           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6141           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6142           if (!isLittleEndian)
6143             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6144                                  DAG.getConstant(32, dl, MVT::i32));
6145 
6146         // Non-final even elements are skipped; they will be handled
6147         // together the with subsequent argument on the next go-around.
6148         } else
6149           ArgVal = SDValue();
6150 
6151         if (ArgVal.getNode())
6152           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6153       } else {
6154         if (IsFastCall)
6155           ComputePtrOff();
6156 
6157         // Single-precision floating-point values are mapped to the
6158         // second (rightmost) word of the stack doubleword.
6159         if (Arg.getValueType() == MVT::f32 &&
6160             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6161           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6162           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6163         }
6164 
6165         assert(HasParameterArea &&
6166                "Parameter area must exist to pass an argument in memory.");
6167         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6168                          true, CFlags.IsTailCall, false, MemOpChains,
6169                          TailCallArguments, dl);
6170 
6171         NeededLoad = true;
6172       }
6173       // When passing an array of floats, the array occupies consecutive
6174       // space in the argument area; only round up to the next doubleword
6175       // at the end of the array.  Otherwise, each float takes 8 bytes.
6176       if (!IsFastCall || NeededLoad) {
6177         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6178                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6179         if (Flags.isInConsecutiveRegsLast())
6180           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6181       }
6182       break;
6183     }
6184     case MVT::v4f32:
6185     case MVT::v4i32:
6186     case MVT::v8i16:
6187     case MVT::v16i8:
6188     case MVT::v2f64:
6189     case MVT::v2i64:
6190     case MVT::v1i128:
6191     case MVT::f128:
6192       // These can be scalar arguments or elements of a vector array type
6193       // passed directly.  The latter are used to implement ELFv2 homogenous
6194       // vector aggregates.
6195 
6196       // For a varargs call, named arguments go into VRs or on the stack as
6197       // usual; unnamed arguments always go to the stack or the corresponding
6198       // GPRs when within range.  For now, we always put the value in both
6199       // locations (or even all three).
6200       if (CFlags.IsVarArg) {
6201         assert(HasParameterArea &&
6202                "Parameter area must exist if we have a varargs call.");
6203         // We could elide this store in the case where the object fits
6204         // entirely in R registers.  Maybe later.
6205         SDValue Store =
6206             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6207         MemOpChains.push_back(Store);
6208         if (VR_idx != NumVRs) {
6209           SDValue Load =
6210               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6211           MemOpChains.push_back(Load.getValue(1));
6212           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6213         }
6214         ArgOffset += 16;
6215         for (unsigned i=0; i<16; i+=PtrByteSize) {
6216           if (GPR_idx == NumGPRs)
6217             break;
6218           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6219                                    DAG.getConstant(i, dl, PtrVT));
6220           SDValue Load =
6221               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6222           MemOpChains.push_back(Load.getValue(1));
6223           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6224         }
6225         break;
6226       }
6227 
6228       // Non-varargs Altivec params go into VRs or on the stack.
6229       if (VR_idx != NumVRs) {
6230         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6231       } else {
6232         if (IsFastCall)
6233           ComputePtrOff();
6234 
6235         assert(HasParameterArea &&
6236                "Parameter area must exist to pass an argument in memory.");
6237         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6238                          true, CFlags.IsTailCall, true, MemOpChains,
6239                          TailCallArguments, dl);
6240         if (IsFastCall)
6241           ArgOffset += 16;
6242       }
6243 
6244       if (!IsFastCall)
6245         ArgOffset += 16;
6246       break;
6247     }
6248   }
6249 
6250   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6251          "mismatch in size of parameter area");
6252   (void)NumBytesActuallyUsed;
6253 
6254   if (!MemOpChains.empty())
6255     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6256 
6257   // Check if this is an indirect call (MTCTR/BCTRL).
6258   // See prepareDescriptorIndirectCall and buildCallOperands for more
6259   // information about calls through function pointers in the 64-bit SVR4 ABI.
6260   if (CFlags.IsIndirect) {
6261     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6262     // caller in the TOC save area.
6263     if (isTOCSaveRestoreRequired(Subtarget)) {
6264       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6265       // Load r2 into a virtual register and store it to the TOC save area.
6266       setUsesTOCBasePtr(DAG);
6267       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6268       // TOC save area offset.
6269       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6270       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6271       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6272       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6273                            MachinePointerInfo::getStack(
6274                                DAG.getMachineFunction(), TOCSaveOffset));
6275     }
6276     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6277     // This does not mean the MTCTR instruction must use R12; it's easier
6278     // to model this as an extra parameter, so do that.
6279     if (isELFv2ABI && !CFlags.IsPatchPoint)
6280       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6281   }
6282 
6283   // Build a sequence of copy-to-reg nodes chained together with token chain
6284   // and flag operands which copy the outgoing args into the appropriate regs.
6285   SDValue InFlag;
6286   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6287     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6288                              RegsToPass[i].second, InFlag);
6289     InFlag = Chain.getValue(1);
6290   }
6291 
6292   if (CFlags.IsTailCall && !IsSibCall)
6293     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6294                     TailCallArguments);
6295 
6296   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6297                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6298 }
6299 
6300 // Returns true when the shadow of a general purpose argument register
6301 // in the parameter save area is aligned to at least 'RequiredAlign'.
6302 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6303   assert(RequiredAlign.value() <= 16 &&
6304          "Required alignment greater than stack alignment.");
6305   switch (Reg) {
6306   default:
6307     report_fatal_error("called on invalid register.");
6308   case PPC::R5:
6309   case PPC::R9:
6310   case PPC::X3:
6311   case PPC::X5:
6312   case PPC::X7:
6313   case PPC::X9:
6314     // These registers are 16 byte aligned which is the most strict aligment
6315     // we can support.
6316     return true;
6317   case PPC::R3:
6318   case PPC::R7:
6319   case PPC::X4:
6320   case PPC::X6:
6321   case PPC::X8:
6322   case PPC::X10:
6323     // The shadow of these registers in the PSA is 8 byte aligned.
6324     return RequiredAlign <= 8;
6325   case PPC::R4:
6326   case PPC::R6:
6327   case PPC::R8:
6328   case PPC::R10:
6329     return RequiredAlign <= 4;
6330   }
6331 }
6332 
6333 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6334                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6335                    CCState &S) {
6336   AIXCCState &State = static_cast<AIXCCState &>(S);
6337   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6338       State.getMachineFunction().getSubtarget());
6339   const bool IsPPC64 = Subtarget.isPPC64();
6340   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6341   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6342 
6343   if (ValVT == MVT::f128)
6344     report_fatal_error("f128 is unimplemented on AIX.");
6345 
6346   if (ArgFlags.isNest())
6347     report_fatal_error("Nest arguments are unimplemented.");
6348 
6349   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6350                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6351                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6352   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6353                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6354                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6355 
6356   static const MCPhysReg VR[] = {// Vector registers.
6357                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6358                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6359                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6360 
6361   if (ArgFlags.isByVal()) {
6362     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6363       report_fatal_error("Pass-by-value arguments with alignment greater than "
6364                          "register width are not supported.");
6365 
6366     const unsigned ByValSize = ArgFlags.getByValSize();
6367 
6368     // An empty aggregate parameter takes up no storage and no registers,
6369     // but needs a MemLoc for a stack slot for the formal arguments side.
6370     if (ByValSize == 0) {
6371       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6372                                        State.getNextStackOffset(), RegVT,
6373                                        LocInfo));
6374       return false;
6375     }
6376 
6377     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6378     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6379     for (const unsigned E = Offset + StackSize; Offset < E;
6380          Offset += PtrAlign.value()) {
6381       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6382         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6383       else {
6384         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6385                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6386                                          LocInfo));
6387         break;
6388       }
6389     }
6390     return false;
6391   }
6392 
6393   // Arguments always reserve parameter save area.
6394   switch (ValVT.SimpleTy) {
6395   default:
6396     report_fatal_error("Unhandled value type for argument.");
6397   case MVT::i64:
6398     // i64 arguments should have been split to i32 for PPC32.
6399     assert(IsPPC64 && "PPC32 should have split i64 values.");
6400     LLVM_FALLTHROUGH;
6401   case MVT::i1:
6402   case MVT::i32: {
6403     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6404     // AIX integer arguments are always passed in register width.
6405     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6406       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6407                                   : CCValAssign::LocInfo::ZExt;
6408     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6409       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6410     else
6411       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6412 
6413     return false;
6414   }
6415   case MVT::f32:
6416   case MVT::f64: {
6417     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6418     const unsigned StoreSize = LocVT.getStoreSize();
6419     // Floats are always 4-byte aligned in the PSA on AIX.
6420     // This includes f64 in 64-bit mode for ABI compatibility.
6421     const unsigned Offset =
6422         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6423     unsigned FReg = State.AllocateReg(FPR);
6424     if (FReg)
6425       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6426 
6427     // Reserve and initialize GPRs or initialize the PSA as required.
6428     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6429       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6430         assert(FReg && "An FPR should be available when a GPR is reserved.");
6431         if (State.isVarArg()) {
6432           // Successfully reserved GPRs are only initialized for vararg calls.
6433           // Custom handling is required for:
6434           //   f64 in PPC32 needs to be split into 2 GPRs.
6435           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6436           State.addLoc(
6437               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6438         }
6439       } else {
6440         // If there are insufficient GPRs, the PSA needs to be initialized.
6441         // Initialization occurs even if an FPR was initialized for
6442         // compatibility with the AIX XL compiler. The full memory for the
6443         // argument will be initialized even if a prior word is saved in GPR.
6444         // A custom memLoc is used when the argument also passes in FPR so
6445         // that the callee handling can skip over it easily.
6446         State.addLoc(
6447             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6448                                              LocInfo)
6449                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6450         break;
6451       }
6452     }
6453 
6454     return false;
6455   }
6456   case MVT::v4f32:
6457   case MVT::v4i32:
6458   case MVT::v8i16:
6459   case MVT::v16i8:
6460   case MVT::v2i64:
6461   case MVT::v2f64:
6462   case MVT::v1i128: {
6463     const unsigned VecSize = 16;
6464     const Align VecAlign(VecSize);
6465 
6466     if (!State.isVarArg()) {
6467       // If there are vector registers remaining we don't consume any stack
6468       // space.
6469       if (unsigned VReg = State.AllocateReg(VR)) {
6470         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6471         return false;
6472       }
6473       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6474       // might be allocated in the portion of the PSA that is shadowed by the
6475       // GPRs.
6476       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6477       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6478       return false;
6479     }
6480 
6481     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6482     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6483 
6484     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6485     // Burn any underaligned registers and their shadowed stack space until
6486     // we reach the required alignment.
6487     while (NextRegIndex != GPRs.size() &&
6488            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6489       // Shadow allocate register and its stack shadow.
6490       unsigned Reg = State.AllocateReg(GPRs);
6491       State.AllocateStack(PtrSize, PtrAlign);
6492       assert(Reg && "Allocating register unexpectedly failed.");
6493       (void)Reg;
6494       NextRegIndex = State.getFirstUnallocated(GPRs);
6495     }
6496 
6497     // Vectors that are passed as fixed arguments are handled differently.
6498     // They are passed in VRs if any are available (unlike arguments passed
6499     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6500     // functions)
6501     if (State.isFixed(ValNo)) {
6502       if (unsigned VReg = State.AllocateReg(VR)) {
6503         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6504         // Shadow allocate GPRs and stack space even though we pass in a VR.
6505         for (unsigned I = 0; I != VecSize; I += PtrSize)
6506           State.AllocateReg(GPRs);
6507         State.AllocateStack(VecSize, VecAlign);
6508         return false;
6509       }
6510       // No vector registers remain so pass on the stack.
6511       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6512       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6513       return false;
6514     }
6515 
6516     // If all GPRS are consumed then we pass the argument fully on the stack.
6517     if (NextRegIndex == GPRs.size()) {
6518       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6519       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6520       return false;
6521     }
6522 
6523     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6524     // half of the argument, and then need to pass the remaining half on the
6525     // stack.
6526     if (GPRs[NextRegIndex] == PPC::R9) {
6527       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6528       State.addLoc(
6529           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6530 
6531       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6532       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6533       assert(FirstReg && SecondReg &&
6534              "Allocating R9 or R10 unexpectedly failed.");
6535       State.addLoc(
6536           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6537       State.addLoc(
6538           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6539       return false;
6540     }
6541 
6542     // We have enough GPRs to fully pass the vector argument, and we have
6543     // already consumed any underaligned registers. Start with the custom
6544     // MemLoc and then the custom RegLocs.
6545     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6546     State.addLoc(
6547         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6548     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6549       const unsigned Reg = State.AllocateReg(GPRs);
6550       assert(Reg && "Failed to allocated register for vararg vector argument");
6551       State.addLoc(
6552           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6553     }
6554     return false;
6555   }
6556   }
6557   return true;
6558 }
6559 
6560 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6561                                                     bool IsPPC64) {
6562   assert((IsPPC64 || SVT != MVT::i64) &&
6563          "i64 should have been split for 32-bit codegen.");
6564 
6565   switch (SVT) {
6566   default:
6567     report_fatal_error("Unexpected value type for formal argument");
6568   case MVT::i1:
6569   case MVT::i32:
6570   case MVT::i64:
6571     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6572   case MVT::f32:
6573     return &PPC::F4RCRegClass;
6574   case MVT::f64:
6575     return &PPC::F8RCRegClass;
6576   case MVT::v4f32:
6577   case MVT::v4i32:
6578   case MVT::v8i16:
6579   case MVT::v16i8:
6580   case MVT::v2i64:
6581   case MVT::v2f64:
6582   case MVT::v1i128:
6583     return &PPC::VRRCRegClass;
6584   }
6585 }
6586 
6587 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6588                                         SelectionDAG &DAG, SDValue ArgValue,
6589                                         MVT LocVT, const SDLoc &dl) {
6590   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6591   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6592 
6593   if (Flags.isSExt())
6594     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6595                            DAG.getValueType(ValVT));
6596   else if (Flags.isZExt())
6597     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6598                            DAG.getValueType(ValVT));
6599 
6600   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6601 }
6602 
6603 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6604   const unsigned LASize = FL->getLinkageSize();
6605 
6606   if (PPC::GPRCRegClass.contains(Reg)) {
6607     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6608            "Reg must be a valid argument register!");
6609     return LASize + 4 * (Reg - PPC::R3);
6610   }
6611 
6612   if (PPC::G8RCRegClass.contains(Reg)) {
6613     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6614            "Reg must be a valid argument register!");
6615     return LASize + 8 * (Reg - PPC::X3);
6616   }
6617 
6618   llvm_unreachable("Only general purpose registers expected.");
6619 }
6620 
6621 //   AIX ABI Stack Frame Layout:
6622 //
6623 //   Low Memory +--------------------------------------------+
6624 //   SP   +---> | Back chain                                 | ---+
6625 //        |     +--------------------------------------------+    |
6626 //        |     | Saved Condition Register                   |    |
6627 //        |     +--------------------------------------------+    |
6628 //        |     | Saved Linkage Register                     |    |
6629 //        |     +--------------------------------------------+    | Linkage Area
6630 //        |     | Reserved for compilers                     |    |
6631 //        |     +--------------------------------------------+    |
6632 //        |     | Reserved for binders                       |    |
6633 //        |     +--------------------------------------------+    |
6634 //        |     | Saved TOC pointer                          | ---+
6635 //        |     +--------------------------------------------+
6636 //        |     | Parameter save area                        |
6637 //        |     +--------------------------------------------+
6638 //        |     | Alloca space                               |
6639 //        |     +--------------------------------------------+
6640 //        |     | Local variable space                       |
6641 //        |     +--------------------------------------------+
6642 //        |     | Float/int conversion temporary             |
6643 //        |     +--------------------------------------------+
6644 //        |     | Save area for AltiVec registers            |
6645 //        |     +--------------------------------------------+
6646 //        |     | AltiVec alignment padding                  |
6647 //        |     +--------------------------------------------+
6648 //        |     | Save area for VRSAVE register              |
6649 //        |     +--------------------------------------------+
6650 //        |     | Save area for General Purpose registers    |
6651 //        |     +--------------------------------------------+
6652 //        |     | Save area for Floating Point registers     |
6653 //        |     +--------------------------------------------+
6654 //        +---- | Back chain                                 |
6655 // High Memory  +--------------------------------------------+
6656 //
6657 //  Specifications:
6658 //  AIX 7.2 Assembler Language Reference
6659 //  Subroutine linkage convention
6660 
6661 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6662     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6663     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6664     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6665 
6666   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6667           CallConv == CallingConv::Fast) &&
6668          "Unexpected calling convention!");
6669 
6670   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6671     report_fatal_error("Tail call support is unimplemented on AIX.");
6672 
6673   if (useSoftFloat())
6674     report_fatal_error("Soft float support is unimplemented on AIX.");
6675 
6676   const PPCSubtarget &Subtarget =
6677       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6678 
6679   const bool IsPPC64 = Subtarget.isPPC64();
6680   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6681 
6682   // Assign locations to all of the incoming arguments.
6683   SmallVector<CCValAssign, 16> ArgLocs;
6684   MachineFunction &MF = DAG.getMachineFunction();
6685   MachineFrameInfo &MFI = MF.getFrameInfo();
6686   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6687   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6688 
6689   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6690   // Reserve space for the linkage area on the stack.
6691   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6692   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6693   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6694 
6695   SmallVector<SDValue, 8> MemOps;
6696 
6697   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6698     CCValAssign &VA = ArgLocs[I++];
6699     MVT LocVT = VA.getLocVT();
6700     MVT ValVT = VA.getValVT();
6701     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6702     // For compatibility with the AIX XL compiler, the float args in the
6703     // parameter save area are initialized even if the argument is available
6704     // in register.  The caller is required to initialize both the register
6705     // and memory, however, the callee can choose to expect it in either.
6706     // The memloc is dismissed here because the argument is retrieved from
6707     // the register.
6708     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6709       continue;
6710 
6711     auto HandleMemLoc = [&]() {
6712       const unsigned LocSize = LocVT.getStoreSize();
6713       const unsigned ValSize = ValVT.getStoreSize();
6714       assert((ValSize <= LocSize) &&
6715              "Object size is larger than size of MemLoc");
6716       int CurArgOffset = VA.getLocMemOffset();
6717       // Objects are right-justified because AIX is big-endian.
6718       if (LocSize > ValSize)
6719         CurArgOffset += LocSize - ValSize;
6720       // Potential tail calls could cause overwriting of argument stack slots.
6721       const bool IsImmutable =
6722           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6723             (CallConv == CallingConv::Fast));
6724       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6725       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6726       SDValue ArgValue =
6727           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6728       InVals.push_back(ArgValue);
6729     };
6730 
6731     // Vector arguments to VaArg functions are passed both on the stack, and
6732     // in any available GPRs. Load the value from the stack and add the GPRs
6733     // as live ins.
6734     if (VA.isMemLoc() && VA.needsCustom()) {
6735       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6736       assert(isVarArg && "Only use custom memloc for vararg.");
6737       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6738       // matching custom RegLocs.
6739       const unsigned OriginalValNo = VA.getValNo();
6740       (void)OriginalValNo;
6741 
6742       auto HandleCustomVecRegLoc = [&]() {
6743         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6744                "Missing custom RegLoc.");
6745         VA = ArgLocs[I++];
6746         assert(VA.getValVT().isVector() &&
6747                "Unexpected Val type for custom RegLoc.");
6748         assert(VA.getValNo() == OriginalValNo &&
6749                "ValNo mismatch between custom MemLoc and RegLoc.");
6750         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6751         MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6752       };
6753 
6754       HandleMemLoc();
6755       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6756       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6757       // R10.
6758       HandleCustomVecRegLoc();
6759       HandleCustomVecRegLoc();
6760 
6761       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6762       // we passed the vector in R5, R6, R7 and R8.
6763       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6764         assert(!IsPPC64 &&
6765                "Only 2 custom RegLocs expected for 64-bit codegen.");
6766         HandleCustomVecRegLoc();
6767         HandleCustomVecRegLoc();
6768       }
6769 
6770       continue;
6771     }
6772 
6773     if (VA.isRegLoc()) {
6774       if (VA.getValVT().isScalarInteger())
6775         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6776       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector())
6777         FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32
6778                                           ? PPCFunctionInfo::ShortFloatPoint
6779                                           : PPCFunctionInfo::LongFloatPoint);
6780     }
6781 
6782     if (Flags.isByVal() && VA.isMemLoc()) {
6783       const unsigned Size =
6784           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
6785                   PtrByteSize);
6786       const int FI = MF.getFrameInfo().CreateFixedObject(
6787           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
6788           /* IsAliased */ true);
6789       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6790       InVals.push_back(FIN);
6791 
6792       continue;
6793     }
6794 
6795     if (Flags.isByVal()) {
6796       assert(VA.isRegLoc() && "MemLocs should already be handled.");
6797 
6798       const MCPhysReg ArgReg = VA.getLocReg();
6799       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
6800 
6801       if (Flags.getNonZeroByValAlign() > PtrByteSize)
6802         report_fatal_error("Over aligned byvals not supported yet.");
6803 
6804       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
6805       const int FI = MF.getFrameInfo().CreateFixedObject(
6806           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
6807           /* IsAliased */ true);
6808       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6809       InVals.push_back(FIN);
6810 
6811       // Add live ins for all the RegLocs for the same ByVal.
6812       const TargetRegisterClass *RegClass =
6813           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6814 
6815       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
6816                                                unsigned Offset) {
6817         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
6818         // Since the callers side has left justified the aggregate in the
6819         // register, we can simply store the entire register into the stack
6820         // slot.
6821         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6822         // The store to the fixedstack object is needed becuase accessing a
6823         // field of the ByVal will use a gep and load. Ideally we will optimize
6824         // to extracting the value from the register directly, and elide the
6825         // stores when the arguments address is not taken, but that will need to
6826         // be future work.
6827         SDValue Store = DAG.getStore(
6828             CopyFrom.getValue(1), dl, CopyFrom,
6829             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
6830             MachinePointerInfo::getFixedStack(MF, FI, Offset));
6831 
6832         MemOps.push_back(Store);
6833       };
6834 
6835       unsigned Offset = 0;
6836       HandleRegLoc(VA.getLocReg(), Offset);
6837       Offset += PtrByteSize;
6838       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
6839            Offset += PtrByteSize) {
6840         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6841                "RegLocs should be for ByVal argument.");
6842 
6843         const CCValAssign RL = ArgLocs[I++];
6844         HandleRegLoc(RL.getLocReg(), Offset);
6845         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6846       }
6847 
6848       if (Offset != StackSize) {
6849         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6850                "Expected MemLoc for remaining bytes.");
6851         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
6852         // Consume the MemLoc.The InVal has already been emitted, so nothing
6853         // more needs to be done.
6854         ++I;
6855       }
6856 
6857       continue;
6858     }
6859 
6860     if (VA.isRegLoc() && !VA.needsCustom()) {
6861       MVT::SimpleValueType SVT = ValVT.SimpleTy;
6862       unsigned VReg =
6863           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6864       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6865       if (ValVT.isScalarInteger() &&
6866           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
6867         ArgValue =
6868             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6869       }
6870       InVals.push_back(ArgValue);
6871       continue;
6872     }
6873     if (VA.isMemLoc()) {
6874       HandleMemLoc();
6875       continue;
6876     }
6877   }
6878 
6879   // On AIX a minimum of 8 words is saved to the parameter save area.
6880   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6881   // Area that is at least reserved in the caller of this function.
6882   unsigned CallerReservedArea =
6883       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
6884 
6885   // Set the size that is at least reserved in caller of this function. Tail
6886   // call optimized function's reserved stack space needs to be aligned so
6887   // that taking the difference between two stack areas will result in an
6888   // aligned stack.
6889   CallerReservedArea =
6890       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
6891   FuncInfo->setMinReservedArea(CallerReservedArea);
6892 
6893   if (isVarArg) {
6894     FuncInfo->setVarArgsFrameIndex(
6895         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
6896     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
6897 
6898     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6899                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6900 
6901     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6902                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6903     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
6904 
6905     // The fixed integer arguments of a variadic function are stored to the
6906     // VarArgsFrameIndex on the stack so that they may be loaded by
6907     // dereferencing the result of va_next.
6908     for (unsigned GPRIndex =
6909              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
6910          GPRIndex < NumGPArgRegs; ++GPRIndex) {
6911 
6912       const unsigned VReg =
6913           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
6914                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
6915 
6916       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
6917       SDValue Store =
6918           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
6919       MemOps.push_back(Store);
6920       // Increment the address for the next argument to store.
6921       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
6922       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
6923     }
6924   }
6925 
6926   if (!MemOps.empty())
6927     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
6928 
6929   return Chain;
6930 }
6931 
6932 SDValue PPCTargetLowering::LowerCall_AIX(
6933     SDValue Chain, SDValue Callee, CallFlags CFlags,
6934     const SmallVectorImpl<ISD::OutputArg> &Outs,
6935     const SmallVectorImpl<SDValue> &OutVals,
6936     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6937     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6938     const CallBase *CB) const {
6939   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
6940   // AIX ABI stack frame layout.
6941 
6942   assert((CFlags.CallConv == CallingConv::C ||
6943           CFlags.CallConv == CallingConv::Cold ||
6944           CFlags.CallConv == CallingConv::Fast) &&
6945          "Unexpected calling convention!");
6946 
6947   if (CFlags.IsPatchPoint)
6948     report_fatal_error("This call type is unimplemented on AIX.");
6949 
6950   const PPCSubtarget& Subtarget =
6951       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
6952 
6953   MachineFunction &MF = DAG.getMachineFunction();
6954   SmallVector<CCValAssign, 16> ArgLocs;
6955   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
6956                     *DAG.getContext());
6957 
6958   // Reserve space for the linkage save area (LSA) on the stack.
6959   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
6960   //   [SP][CR][LR][2 x reserved][TOC].
6961   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
6962   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6963   const bool IsPPC64 = Subtarget.isPPC64();
6964   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
6965   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6966   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6967   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
6968 
6969   // The prolog code of the callee may store up to 8 GPR argument registers to
6970   // the stack, allowing va_start to index over them in memory if the callee
6971   // is variadic.
6972   // Because we cannot tell if this is needed on the caller side, we have to
6973   // conservatively assume that it is needed.  As such, make sure we have at
6974   // least enough stack space for the caller to store the 8 GPRs.
6975   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
6976   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
6977                                      CCInfo.getNextStackOffset());
6978 
6979   // Adjust the stack pointer for the new arguments...
6980   // These operations are automatically eliminated by the prolog/epilog pass.
6981   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6982   SDValue CallSeqStart = Chain;
6983 
6984   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6985   SmallVector<SDValue, 8> MemOpChains;
6986 
6987   // Set up a copy of the stack pointer for loading and storing any
6988   // arguments that may not fit in the registers available for argument
6989   // passing.
6990   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
6991                                    : DAG.getRegister(PPC::R1, MVT::i32);
6992 
6993   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
6994     const unsigned ValNo = ArgLocs[I].getValNo();
6995     SDValue Arg = OutVals[ValNo];
6996     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
6997 
6998     if (Flags.isByVal()) {
6999       const unsigned ByValSize = Flags.getByValSize();
7000 
7001       // Nothing to do for zero-sized ByVals on the caller side.
7002       if (!ByValSize) {
7003         ++I;
7004         continue;
7005       }
7006 
7007       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7008         return DAG.getExtLoad(
7009             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7010             (LoadOffset != 0)
7011                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7012                 : Arg,
7013             MachinePointerInfo(), VT);
7014       };
7015 
7016       unsigned LoadOffset = 0;
7017 
7018       // Initialize registers, which are fully occupied by the by-val argument.
7019       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7020         SDValue Load = GetLoad(PtrVT, LoadOffset);
7021         MemOpChains.push_back(Load.getValue(1));
7022         LoadOffset += PtrByteSize;
7023         const CCValAssign &ByValVA = ArgLocs[I++];
7024         assert(ByValVA.getValNo() == ValNo &&
7025                "Unexpected location for pass-by-value argument.");
7026         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7027       }
7028 
7029       if (LoadOffset == ByValSize)
7030         continue;
7031 
7032       // There must be one more loc to handle the remainder.
7033       assert(ArgLocs[I].getValNo() == ValNo &&
7034              "Expected additional location for by-value argument.");
7035 
7036       if (ArgLocs[I].isMemLoc()) {
7037         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7038         const CCValAssign &ByValVA = ArgLocs[I++];
7039         ISD::ArgFlagsTy MemcpyFlags = Flags;
7040         // Only memcpy the bytes that don't pass in register.
7041         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7042         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7043             (LoadOffset != 0)
7044                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7045                 : Arg,
7046             DAG.getObjectPtrOffset(dl, StackPtr,
7047                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7048             CallSeqStart, MemcpyFlags, DAG, dl);
7049         continue;
7050       }
7051 
7052       // Initialize the final register residue.
7053       // Any residue that occupies the final by-val arg register must be
7054       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7055       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7056       // 2 and 1 byte loads.
7057       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7058       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7059              "Unexpected register residue for by-value argument.");
7060       SDValue ResidueVal;
7061       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7062         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7063         const MVT VT =
7064             N == 1 ? MVT::i8
7065                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7066         SDValue Load = GetLoad(VT, LoadOffset);
7067         MemOpChains.push_back(Load.getValue(1));
7068         LoadOffset += N;
7069         Bytes += N;
7070 
7071         // By-val arguments are passed left-justfied in register.
7072         // Every load here needs to be shifted, otherwise a full register load
7073         // should have been used.
7074         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7075                "Unexpected load emitted during handling of pass-by-value "
7076                "argument.");
7077         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7078         EVT ShiftAmountTy =
7079             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7080         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7081         SDValue ShiftedLoad =
7082             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7083         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7084                                               ShiftedLoad)
7085                                 : ShiftedLoad;
7086       }
7087 
7088       const CCValAssign &ByValVA = ArgLocs[I++];
7089       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7090       continue;
7091     }
7092 
7093     CCValAssign &VA = ArgLocs[I++];
7094     const MVT LocVT = VA.getLocVT();
7095     const MVT ValVT = VA.getValVT();
7096 
7097     switch (VA.getLocInfo()) {
7098     default:
7099       report_fatal_error("Unexpected argument extension type.");
7100     case CCValAssign::Full:
7101       break;
7102     case CCValAssign::ZExt:
7103       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7104       break;
7105     case CCValAssign::SExt:
7106       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7107       break;
7108     }
7109 
7110     if (VA.isRegLoc() && !VA.needsCustom()) {
7111       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7112       continue;
7113     }
7114 
7115     // Vector arguments passed to VarArg functions need custom handling when
7116     // they are passed (at least partially) in GPRs.
7117     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7118       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7119       // Store value to its stack slot.
7120       SDValue PtrOff =
7121           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7122       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7123       SDValue Store =
7124           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7125       MemOpChains.push_back(Store);
7126       const unsigned OriginalValNo = VA.getValNo();
7127       // Then load the GPRs from the stack
7128       unsigned LoadOffset = 0;
7129       auto HandleCustomVecRegLoc = [&]() {
7130         assert(I != E && "Unexpected end of CCvalAssigns.");
7131         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7132                "Expected custom RegLoc.");
7133         CCValAssign RegVA = ArgLocs[I++];
7134         assert(RegVA.getValNo() == OriginalValNo &&
7135                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7136         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7137                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7138         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7139         MemOpChains.push_back(Load.getValue(1));
7140         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7141         LoadOffset += PtrByteSize;
7142       };
7143 
7144       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7145       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7146       // R10.
7147       HandleCustomVecRegLoc();
7148       HandleCustomVecRegLoc();
7149 
7150       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7151           ArgLocs[I].getValNo() == OriginalValNo) {
7152         assert(!IsPPC64 &&
7153                "Only 2 custom RegLocs expected for 64-bit codegen.");
7154         HandleCustomVecRegLoc();
7155         HandleCustomVecRegLoc();
7156       }
7157 
7158       continue;
7159     }
7160 
7161     if (VA.isMemLoc()) {
7162       SDValue PtrOff =
7163           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7164       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7165       MemOpChains.push_back(
7166           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7167 
7168       continue;
7169     }
7170 
7171     if (!ValVT.isFloatingPoint())
7172       report_fatal_error(
7173           "Unexpected register handling for calling convention.");
7174 
7175     // Custom handling is used for GPR initializations for vararg float
7176     // arguments.
7177     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7178            LocVT.isInteger() &&
7179            "Custom register handling only expected for VarArg.");
7180 
7181     SDValue ArgAsInt =
7182         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7183 
7184     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7185       // f32 in 32-bit GPR
7186       // f64 in 64-bit GPR
7187       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7188     else if (Arg.getValueType().getFixedSizeInBits() <
7189              LocVT.getFixedSizeInBits())
7190       // f32 in 64-bit GPR.
7191       RegsToPass.push_back(std::make_pair(
7192           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7193     else {
7194       // f64 in two 32-bit GPRs
7195       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7196       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7197              "Unexpected custom register for argument!");
7198       CCValAssign &GPR1 = VA;
7199       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7200                                      DAG.getConstant(32, dl, MVT::i8));
7201       RegsToPass.push_back(std::make_pair(
7202           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7203 
7204       if (I != E) {
7205         // If only 1 GPR was available, there will only be one custom GPR and
7206         // the argument will also pass in memory.
7207         CCValAssign &PeekArg = ArgLocs[I];
7208         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7209           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7210           CCValAssign &GPR2 = ArgLocs[I++];
7211           RegsToPass.push_back(std::make_pair(
7212               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7213         }
7214       }
7215     }
7216   }
7217 
7218   if (!MemOpChains.empty())
7219     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7220 
7221   // For indirect calls, we need to save the TOC base to the stack for
7222   // restoration after the call.
7223   if (CFlags.IsIndirect) {
7224     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7225     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7226     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7227     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7228     const unsigned TOCSaveOffset =
7229         Subtarget.getFrameLowering()->getTOCSaveOffset();
7230 
7231     setUsesTOCBasePtr(DAG);
7232     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7233     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7234     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7235     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7236     Chain = DAG.getStore(
7237         Val.getValue(1), dl, Val, AddPtr,
7238         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7239   }
7240 
7241   // Build a sequence of copy-to-reg nodes chained together with token chain
7242   // and flag operands which copy the outgoing args into the appropriate regs.
7243   SDValue InFlag;
7244   for (auto Reg : RegsToPass) {
7245     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7246     InFlag = Chain.getValue(1);
7247   }
7248 
7249   const int SPDiff = 0;
7250   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7251                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7252 }
7253 
7254 bool
7255 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7256                                   MachineFunction &MF, bool isVarArg,
7257                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7258                                   LLVMContext &Context) const {
7259   SmallVector<CCValAssign, 16> RVLocs;
7260   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7261   return CCInfo.CheckReturn(
7262       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7263                 ? RetCC_PPC_Cold
7264                 : RetCC_PPC);
7265 }
7266 
7267 SDValue
7268 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7269                                bool isVarArg,
7270                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7271                                const SmallVectorImpl<SDValue> &OutVals,
7272                                const SDLoc &dl, SelectionDAG &DAG) const {
7273   SmallVector<CCValAssign, 16> RVLocs;
7274   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7275                  *DAG.getContext());
7276   CCInfo.AnalyzeReturn(Outs,
7277                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7278                            ? RetCC_PPC_Cold
7279                            : RetCC_PPC);
7280 
7281   SDValue Flag;
7282   SmallVector<SDValue, 4> RetOps(1, Chain);
7283 
7284   // Copy the result values into the output registers.
7285   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7286     CCValAssign &VA = RVLocs[i];
7287     assert(VA.isRegLoc() && "Can only return in registers!");
7288 
7289     SDValue Arg = OutVals[RealResIdx];
7290 
7291     switch (VA.getLocInfo()) {
7292     default: llvm_unreachable("Unknown loc info!");
7293     case CCValAssign::Full: break;
7294     case CCValAssign::AExt:
7295       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7296       break;
7297     case CCValAssign::ZExt:
7298       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7299       break;
7300     case CCValAssign::SExt:
7301       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7302       break;
7303     }
7304     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7305       bool isLittleEndian = Subtarget.isLittleEndian();
7306       // Legalize ret f64 -> ret 2 x i32.
7307       SDValue SVal =
7308           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7309                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7310       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7311       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7312       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7313                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7314       Flag = Chain.getValue(1);
7315       VA = RVLocs[++i]; // skip ahead to next loc
7316       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7317     } else
7318       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7319     Flag = Chain.getValue(1);
7320     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7321   }
7322 
7323   RetOps[0] = Chain;  // Update chain.
7324 
7325   // Add the flag if we have it.
7326   if (Flag.getNode())
7327     RetOps.push_back(Flag);
7328 
7329   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7330 }
7331 
7332 SDValue
7333 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7334                                                 SelectionDAG &DAG) const {
7335   SDLoc dl(Op);
7336 
7337   // Get the correct type for integers.
7338   EVT IntVT = Op.getValueType();
7339 
7340   // Get the inputs.
7341   SDValue Chain = Op.getOperand(0);
7342   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7343   // Build a DYNAREAOFFSET node.
7344   SDValue Ops[2] = {Chain, FPSIdx};
7345   SDVTList VTs = DAG.getVTList(IntVT);
7346   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7347 }
7348 
7349 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7350                                              SelectionDAG &DAG) const {
7351   // When we pop the dynamic allocation we need to restore the SP link.
7352   SDLoc dl(Op);
7353 
7354   // Get the correct type for pointers.
7355   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7356 
7357   // Construct the stack pointer operand.
7358   bool isPPC64 = Subtarget.isPPC64();
7359   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7360   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7361 
7362   // Get the operands for the STACKRESTORE.
7363   SDValue Chain = Op.getOperand(0);
7364   SDValue SaveSP = Op.getOperand(1);
7365 
7366   // Load the old link SP.
7367   SDValue LoadLinkSP =
7368       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7369 
7370   // Restore the stack pointer.
7371   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7372 
7373   // Store the old link SP.
7374   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7375 }
7376 
7377 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7378   MachineFunction &MF = DAG.getMachineFunction();
7379   bool isPPC64 = Subtarget.isPPC64();
7380   EVT PtrVT = getPointerTy(MF.getDataLayout());
7381 
7382   // Get current frame pointer save index.  The users of this index will be
7383   // primarily DYNALLOC instructions.
7384   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7385   int RASI = FI->getReturnAddrSaveIndex();
7386 
7387   // If the frame pointer save index hasn't been defined yet.
7388   if (!RASI) {
7389     // Find out what the fix offset of the frame pointer save area.
7390     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7391     // Allocate the frame index for frame pointer save area.
7392     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7393     // Save the result.
7394     FI->setReturnAddrSaveIndex(RASI);
7395   }
7396   return DAG.getFrameIndex(RASI, PtrVT);
7397 }
7398 
7399 SDValue
7400 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7401   MachineFunction &MF = DAG.getMachineFunction();
7402   bool isPPC64 = Subtarget.isPPC64();
7403   EVT PtrVT = getPointerTy(MF.getDataLayout());
7404 
7405   // Get current frame pointer save index.  The users of this index will be
7406   // primarily DYNALLOC instructions.
7407   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7408   int FPSI = FI->getFramePointerSaveIndex();
7409 
7410   // If the frame pointer save index hasn't been defined yet.
7411   if (!FPSI) {
7412     // Find out what the fix offset of the frame pointer save area.
7413     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7414     // Allocate the frame index for frame pointer save area.
7415     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7416     // Save the result.
7417     FI->setFramePointerSaveIndex(FPSI);
7418   }
7419   return DAG.getFrameIndex(FPSI, PtrVT);
7420 }
7421 
7422 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7423                                                    SelectionDAG &DAG) const {
7424   MachineFunction &MF = DAG.getMachineFunction();
7425   // Get the inputs.
7426   SDValue Chain = Op.getOperand(0);
7427   SDValue Size  = Op.getOperand(1);
7428   SDLoc dl(Op);
7429 
7430   // Get the correct type for pointers.
7431   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7432   // Negate the size.
7433   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7434                                 DAG.getConstant(0, dl, PtrVT), Size);
7435   // Construct a node for the frame pointer save index.
7436   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7437   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7438   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7439   if (hasInlineStackProbe(MF))
7440     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7441   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7442 }
7443 
7444 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7445                                                      SelectionDAG &DAG) const {
7446   MachineFunction &MF = DAG.getMachineFunction();
7447 
7448   bool isPPC64 = Subtarget.isPPC64();
7449   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7450 
7451   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7452   return DAG.getFrameIndex(FI, PtrVT);
7453 }
7454 
7455 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7456                                                SelectionDAG &DAG) const {
7457   SDLoc DL(Op);
7458   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7459                      DAG.getVTList(MVT::i32, MVT::Other),
7460                      Op.getOperand(0), Op.getOperand(1));
7461 }
7462 
7463 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7464                                                 SelectionDAG &DAG) const {
7465   SDLoc DL(Op);
7466   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7467                      Op.getOperand(0), Op.getOperand(1));
7468 }
7469 
7470 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7471   if (Op.getValueType().isVector())
7472     return LowerVectorLoad(Op, DAG);
7473 
7474   assert(Op.getValueType() == MVT::i1 &&
7475          "Custom lowering only for i1 loads");
7476 
7477   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7478 
7479   SDLoc dl(Op);
7480   LoadSDNode *LD = cast<LoadSDNode>(Op);
7481 
7482   SDValue Chain = LD->getChain();
7483   SDValue BasePtr = LD->getBasePtr();
7484   MachineMemOperand *MMO = LD->getMemOperand();
7485 
7486   SDValue NewLD =
7487       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7488                      BasePtr, MVT::i8, MMO);
7489   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7490 
7491   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7492   return DAG.getMergeValues(Ops, dl);
7493 }
7494 
7495 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7496   if (Op.getOperand(1).getValueType().isVector())
7497     return LowerVectorStore(Op, DAG);
7498 
7499   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7500          "Custom lowering only for i1 stores");
7501 
7502   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7503 
7504   SDLoc dl(Op);
7505   StoreSDNode *ST = cast<StoreSDNode>(Op);
7506 
7507   SDValue Chain = ST->getChain();
7508   SDValue BasePtr = ST->getBasePtr();
7509   SDValue Value = ST->getValue();
7510   MachineMemOperand *MMO = ST->getMemOperand();
7511 
7512   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7513                       Value);
7514   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7515 }
7516 
7517 // FIXME: Remove this once the ANDI glue bug is fixed:
7518 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7519   assert(Op.getValueType() == MVT::i1 &&
7520          "Custom lowering only for i1 results");
7521 
7522   SDLoc DL(Op);
7523   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7524 }
7525 
7526 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7527                                                SelectionDAG &DAG) const {
7528 
7529   // Implements a vector truncate that fits in a vector register as a shuffle.
7530   // We want to legalize vector truncates down to where the source fits in
7531   // a vector register (and target is therefore smaller than vector register
7532   // size).  At that point legalization will try to custom lower the sub-legal
7533   // result and get here - where we can contain the truncate as a single target
7534   // operation.
7535 
7536   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7537   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7538   //
7539   // We will implement it for big-endian ordering as this (where x denotes
7540   // undefined):
7541   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7542   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7543   //
7544   // The same operation in little-endian ordering will be:
7545   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7546   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7547 
7548   EVT TrgVT = Op.getValueType();
7549   assert(TrgVT.isVector() && "Vector type expected.");
7550   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7551   EVT EltVT = TrgVT.getVectorElementType();
7552   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7553       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7554       !isPowerOf2_32(EltVT.getSizeInBits()))
7555     return SDValue();
7556 
7557   SDValue N1 = Op.getOperand(0);
7558   EVT SrcVT = N1.getValueType();
7559   unsigned SrcSize = SrcVT.getSizeInBits();
7560   if (SrcSize > 256 ||
7561       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7562       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7563     return SDValue();
7564   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7565     return SDValue();
7566 
7567   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7568   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7569 
7570   SDLoc DL(Op);
7571   SDValue Op1, Op2;
7572   if (SrcSize == 256) {
7573     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7574     EVT SplitVT =
7575         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7576     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7577     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7578                       DAG.getConstant(0, DL, VecIdxTy));
7579     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7580                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7581   }
7582   else {
7583     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7584     Op2 = DAG.getUNDEF(WideVT);
7585   }
7586 
7587   // First list the elements we want to keep.
7588   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7589   SmallVector<int, 16> ShuffV;
7590   if (Subtarget.isLittleEndian())
7591     for (unsigned i = 0; i < TrgNumElts; ++i)
7592       ShuffV.push_back(i * SizeMult);
7593   else
7594     for (unsigned i = 1; i <= TrgNumElts; ++i)
7595       ShuffV.push_back(i * SizeMult - 1);
7596 
7597   // Populate the remaining elements with undefs.
7598   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7599     // ShuffV.push_back(i + WideNumElts);
7600     ShuffV.push_back(WideNumElts + 1);
7601 
7602   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7603   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7604   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7605 }
7606 
7607 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7608 /// possible.
7609 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7610   // Not FP, or using SPE? Not a fsel.
7611   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7612       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7613     return Op;
7614 
7615   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7616 
7617   EVT ResVT = Op.getValueType();
7618   EVT CmpVT = Op.getOperand(0).getValueType();
7619   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7620   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7621   SDLoc dl(Op);
7622   SDNodeFlags Flags = Op.getNode()->getFlags();
7623 
7624   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7625   // presence of infinities.
7626   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7627     switch (CC) {
7628     default:
7629       break;
7630     case ISD::SETOGT:
7631     case ISD::SETGT:
7632       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7633     case ISD::SETOLT:
7634     case ISD::SETLT:
7635       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7636     }
7637   }
7638 
7639   // We might be able to do better than this under some circumstances, but in
7640   // general, fsel-based lowering of select is a finite-math-only optimization.
7641   // For more information, see section F.3 of the 2.06 ISA specification.
7642   // With ISA 3.0
7643   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7644       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7645     return Op;
7646 
7647   // If the RHS of the comparison is a 0.0, we don't need to do the
7648   // subtraction at all.
7649   SDValue Sel1;
7650   if (isFloatingPointZero(RHS))
7651     switch (CC) {
7652     default: break;       // SETUO etc aren't handled by fsel.
7653     case ISD::SETNE:
7654       std::swap(TV, FV);
7655       LLVM_FALLTHROUGH;
7656     case ISD::SETEQ:
7657       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7658         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7659       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7660       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7661         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7662       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7663                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7664     case ISD::SETULT:
7665     case ISD::SETLT:
7666       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7667       LLVM_FALLTHROUGH;
7668     case ISD::SETOGE:
7669     case ISD::SETGE:
7670       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7671         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7672       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7673     case ISD::SETUGT:
7674     case ISD::SETGT:
7675       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7676       LLVM_FALLTHROUGH;
7677     case ISD::SETOLE:
7678     case ISD::SETLE:
7679       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7680         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7681       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7682                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7683     }
7684 
7685   SDValue Cmp;
7686   switch (CC) {
7687   default: break;       // SETUO etc aren't handled by fsel.
7688   case ISD::SETNE:
7689     std::swap(TV, FV);
7690     LLVM_FALLTHROUGH;
7691   case ISD::SETEQ:
7692     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7693     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7694       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7695     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7696     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7697       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7698     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7699                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7700   case ISD::SETULT:
7701   case ISD::SETLT:
7702     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7703     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7704       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7705     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7706   case ISD::SETOGE:
7707   case ISD::SETGE:
7708     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7709     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7710       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7711     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7712   case ISD::SETUGT:
7713   case ISD::SETGT:
7714     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7715     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7716       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7717     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7718   case ISD::SETOLE:
7719   case ISD::SETLE:
7720     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7721     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7722       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7723     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7724   }
7725   return Op;
7726 }
7727 
7728 static unsigned getPPCStrictOpcode(unsigned Opc) {
7729   switch (Opc) {
7730   default:
7731     llvm_unreachable("No strict version of this opcode!");
7732   case PPCISD::FCTIDZ:
7733     return PPCISD::STRICT_FCTIDZ;
7734   case PPCISD::FCTIWZ:
7735     return PPCISD::STRICT_FCTIWZ;
7736   case PPCISD::FCTIDUZ:
7737     return PPCISD::STRICT_FCTIDUZ;
7738   case PPCISD::FCTIWUZ:
7739     return PPCISD::STRICT_FCTIWUZ;
7740   case PPCISD::FCFID:
7741     return PPCISD::STRICT_FCFID;
7742   case PPCISD::FCFIDU:
7743     return PPCISD::STRICT_FCFIDU;
7744   case PPCISD::FCFIDS:
7745     return PPCISD::STRICT_FCFIDS;
7746   case PPCISD::FCFIDUS:
7747     return PPCISD::STRICT_FCFIDUS;
7748   }
7749 }
7750 
7751 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7752                               const PPCSubtarget &Subtarget) {
7753   SDLoc dl(Op);
7754   bool IsStrict = Op->isStrictFPOpcode();
7755   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7756                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7757 
7758   // TODO: Any other flags to propagate?
7759   SDNodeFlags Flags;
7760   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7761 
7762   // For strict nodes, source is the second operand.
7763   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7764   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7765   assert(Src.getValueType().isFloatingPoint());
7766   if (Src.getValueType() == MVT::f32) {
7767     if (IsStrict) {
7768       Src =
7769           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
7770                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
7771       Chain = Src.getValue(1);
7772     } else
7773       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7774   }
7775   SDValue Conv;
7776   unsigned Opc = ISD::DELETED_NODE;
7777   switch (Op.getSimpleValueType().SimpleTy) {
7778   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7779   case MVT::i32:
7780     Opc = IsSigned ? PPCISD::FCTIWZ
7781                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
7782     break;
7783   case MVT::i64:
7784     assert((IsSigned || Subtarget.hasFPCVT()) &&
7785            "i64 FP_TO_UINT is supported only with FPCVT");
7786     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
7787   }
7788   if (IsStrict) {
7789     Opc = getPPCStrictOpcode(Opc);
7790     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
7791                        {Chain, Src}, Flags);
7792   } else {
7793     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
7794   }
7795   return Conv;
7796 }
7797 
7798 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7799                                                SelectionDAG &DAG,
7800                                                const SDLoc &dl) const {
7801   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
7802   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7803                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7804   bool IsStrict = Op->isStrictFPOpcode();
7805 
7806   // Convert the FP value to an int value through memory.
7807   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7808                   (IsSigned || Subtarget.hasFPCVT());
7809   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7810   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7811   MachinePointerInfo MPI =
7812       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7813 
7814   // Emit a store to the stack slot.
7815   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
7816   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
7817   if (i32Stack) {
7818     MachineFunction &MF = DAG.getMachineFunction();
7819     Alignment = Align(4);
7820     MachineMemOperand *MMO =
7821         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7822     SDValue Ops[] = { Chain, Tmp, FIPtr };
7823     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7824               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7825   } else
7826     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
7827 
7828   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7829   // add in a bias on big endian.
7830   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7831     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7832                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7833     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7834   }
7835 
7836   RLI.Chain = Chain;
7837   RLI.Ptr = FIPtr;
7838   RLI.MPI = MPI;
7839   RLI.Alignment = Alignment;
7840 }
7841 
7842 /// Custom lowers floating point to integer conversions to use
7843 /// the direct move instructions available in ISA 2.07 to avoid the
7844 /// need for load/store combinations.
7845 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7846                                                     SelectionDAG &DAG,
7847                                                     const SDLoc &dl) const {
7848   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
7849   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
7850   if (Op->isStrictFPOpcode())
7851     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
7852   else
7853     return Mov;
7854 }
7855 
7856 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7857                                           const SDLoc &dl) const {
7858   bool IsStrict = Op->isStrictFPOpcode();
7859   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7860                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7861   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7862   EVT SrcVT = Src.getValueType();
7863   EVT DstVT = Op.getValueType();
7864 
7865   // FP to INT conversions are legal for f128.
7866   if (SrcVT == MVT::f128)
7867     return Subtarget.hasP9Vector() ? Op : SDValue();
7868 
7869   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7870   // PPC (the libcall is not available).
7871   if (SrcVT == MVT::ppcf128) {
7872     if (DstVT == MVT::i32) {
7873       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
7874       // set other fast-math flags to FP operations in both strict and
7875       // non-strict cases. (FP_TO_SINT, FSUB)
7876       SDNodeFlags Flags;
7877       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7878 
7879       if (IsSigned) {
7880         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7881                                  DAG.getIntPtrConstant(0, dl));
7882         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7883                                  DAG.getIntPtrConstant(1, dl));
7884 
7885         // Add the two halves of the long double in round-to-zero mode, and use
7886         // a smaller FP_TO_SINT.
7887         if (IsStrict) {
7888           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
7889                                     DAG.getVTList(MVT::f64, MVT::Other),
7890                                     {Op.getOperand(0), Lo, Hi}, Flags);
7891           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7892                              DAG.getVTList(MVT::i32, MVT::Other),
7893                              {Res.getValue(1), Res}, Flags);
7894         } else {
7895           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7896           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7897         }
7898       } else {
7899         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7900         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7901         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7902         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
7903         if (IsStrict) {
7904           // Sel = Src < 0x80000000
7905           // FltOfs = select Sel, 0.0, 0x80000000
7906           // IntOfs = select Sel, 0, 0x80000000
7907           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7908           SDValue Chain = Op.getOperand(0);
7909           EVT SetCCVT =
7910               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7911           EVT DstSetCCVT =
7912               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7913           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7914                                      Chain, true);
7915           Chain = Sel.getValue(1);
7916 
7917           SDValue FltOfs = DAG.getSelect(
7918               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7919           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7920 
7921           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
7922                                     DAG.getVTList(SrcVT, MVT::Other),
7923                                     {Chain, Src, FltOfs}, Flags);
7924           Chain = Val.getValue(1);
7925           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7926                                      DAG.getVTList(DstVT, MVT::Other),
7927                                      {Chain, Val}, Flags);
7928           Chain = SInt.getValue(1);
7929           SDValue IntOfs = DAG.getSelect(
7930               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
7931           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7932           return DAG.getMergeValues({Result, Chain}, dl);
7933         } else {
7934           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7935           // FIXME: generated code sucks.
7936           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
7937           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7938           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
7939           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
7940           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
7941         }
7942       }
7943     }
7944 
7945     return SDValue();
7946   }
7947 
7948   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7949     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7950 
7951   ReuseLoadInfo RLI;
7952   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7953 
7954   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7955                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7956 }
7957 
7958 // We're trying to insert a regular store, S, and then a load, L. If the
7959 // incoming value, O, is a load, we might just be able to have our load use the
7960 // address used by O. However, we don't know if anything else will store to
7961 // that address before we can load from it. To prevent this situation, we need
7962 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7963 // the same chain operand as O, we create a token factor from the chain results
7964 // of O and L, and we replace all uses of O's chain result with that token
7965 // factor (see spliceIntoChain below for this last part).
7966 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7967                                             ReuseLoadInfo &RLI,
7968                                             SelectionDAG &DAG,
7969                                             ISD::LoadExtType ET) const {
7970   // Conservatively skip reusing for constrained FP nodes.
7971   if (Op->isStrictFPOpcode())
7972     return false;
7973 
7974   SDLoc dl(Op);
7975   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7976                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7977   if (ET == ISD::NON_EXTLOAD &&
7978       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7979       isOperationLegalOrCustom(Op.getOpcode(),
7980                                Op.getOperand(0).getValueType())) {
7981 
7982     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7983     return true;
7984   }
7985 
7986   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7987   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7988       LD->isNonTemporal())
7989     return false;
7990   if (LD->getMemoryVT() != MemVT)
7991     return false;
7992 
7993   // If the result of the load is an illegal type, then we can't build a
7994   // valid chain for reuse since the legalised loads and token factor node that
7995   // ties the legalised loads together uses a different output chain then the
7996   // illegal load.
7997   if (!isTypeLegal(LD->getValueType(0)))
7998     return false;
7999 
8000   RLI.Ptr = LD->getBasePtr();
8001   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8002     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8003            "Non-pre-inc AM on PPC?");
8004     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8005                           LD->getOffset());
8006   }
8007 
8008   RLI.Chain = LD->getChain();
8009   RLI.MPI = LD->getPointerInfo();
8010   RLI.IsDereferenceable = LD->isDereferenceable();
8011   RLI.IsInvariant = LD->isInvariant();
8012   RLI.Alignment = LD->getAlign();
8013   RLI.AAInfo = LD->getAAInfo();
8014   RLI.Ranges = LD->getRanges();
8015 
8016   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8017   return true;
8018 }
8019 
8020 // Given the head of the old chain, ResChain, insert a token factor containing
8021 // it and NewResChain, and make users of ResChain now be users of that token
8022 // factor.
8023 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8024 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8025                                         SDValue NewResChain,
8026                                         SelectionDAG &DAG) const {
8027   if (!ResChain)
8028     return;
8029 
8030   SDLoc dl(NewResChain);
8031 
8032   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8033                            NewResChain, DAG.getUNDEF(MVT::Other));
8034   assert(TF.getNode() != NewResChain.getNode() &&
8035          "A new TF really is required here");
8036 
8037   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8038   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8039 }
8040 
8041 /// Analyze profitability of direct move
8042 /// prefer float load to int load plus direct move
8043 /// when there is no integer use of int load
8044 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8045   SDNode *Origin = Op.getOperand(0).getNode();
8046   if (Origin->getOpcode() != ISD::LOAD)
8047     return true;
8048 
8049   // If there is no LXSIBZX/LXSIHZX, like Power8,
8050   // prefer direct move if the memory size is 1 or 2 bytes.
8051   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8052   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8053     return true;
8054 
8055   for (SDNode::use_iterator UI = Origin->use_begin(),
8056                             UE = Origin->use_end();
8057        UI != UE; ++UI) {
8058 
8059     // Only look at the users of the loaded value.
8060     if (UI.getUse().get().getResNo() != 0)
8061       continue;
8062 
8063     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8064         UI->getOpcode() != ISD::UINT_TO_FP &&
8065         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8066         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8067       return true;
8068   }
8069 
8070   return false;
8071 }
8072 
8073 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8074                               const PPCSubtarget &Subtarget,
8075                               SDValue Chain = SDValue()) {
8076   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8077                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8078   SDLoc dl(Op);
8079 
8080   // TODO: Any other flags to propagate?
8081   SDNodeFlags Flags;
8082   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8083 
8084   // If we have FCFIDS, then use it when converting to single-precision.
8085   // Otherwise, convert to double-precision and then round.
8086   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8087   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8088                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8089   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8090   if (Op->isStrictFPOpcode()) {
8091     if (!Chain)
8092       Chain = Op.getOperand(0);
8093     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8094                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8095   } else
8096     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8097 }
8098 
8099 /// Custom lowers integer to floating point conversions to use
8100 /// the direct move instructions available in ISA 2.07 to avoid the
8101 /// need for load/store combinations.
8102 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8103                                                     SelectionDAG &DAG,
8104                                                     const SDLoc &dl) const {
8105   assert((Op.getValueType() == MVT::f32 ||
8106           Op.getValueType() == MVT::f64) &&
8107          "Invalid floating point type as target of conversion");
8108   assert(Subtarget.hasFPCVT() &&
8109          "Int to FP conversions with direct moves require FPCVT");
8110   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8111   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8112   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8113                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8114   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8115   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8116   return convertIntToFP(Op, Mov, DAG, Subtarget);
8117 }
8118 
8119 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8120 
8121   EVT VecVT = Vec.getValueType();
8122   assert(VecVT.isVector() && "Expected a vector type.");
8123   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8124 
8125   EVT EltVT = VecVT.getVectorElementType();
8126   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8127   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8128 
8129   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8130   SmallVector<SDValue, 16> Ops(NumConcat);
8131   Ops[0] = Vec;
8132   SDValue UndefVec = DAG.getUNDEF(VecVT);
8133   for (unsigned i = 1; i < NumConcat; ++i)
8134     Ops[i] = UndefVec;
8135 
8136   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8137 }
8138 
8139 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8140                                                 const SDLoc &dl) const {
8141   bool IsStrict = Op->isStrictFPOpcode();
8142   unsigned Opc = Op.getOpcode();
8143   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8144   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8145           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8146          "Unexpected conversion type");
8147   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8148          "Supports conversions to v2f64/v4f32 only.");
8149 
8150   // TODO: Any other flags to propagate?
8151   SDNodeFlags Flags;
8152   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8153 
8154   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8155   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8156 
8157   SDValue Wide = widenVec(DAG, Src, dl);
8158   EVT WideVT = Wide.getValueType();
8159   unsigned WideNumElts = WideVT.getVectorNumElements();
8160   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8161 
8162   SmallVector<int, 16> ShuffV;
8163   for (unsigned i = 0; i < WideNumElts; ++i)
8164     ShuffV.push_back(i + WideNumElts);
8165 
8166   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8167   int SaveElts = FourEltRes ? 4 : 2;
8168   if (Subtarget.isLittleEndian())
8169     for (int i = 0; i < SaveElts; i++)
8170       ShuffV[i * Stride] = i;
8171   else
8172     for (int i = 1; i <= SaveElts; i++)
8173       ShuffV[i * Stride - 1] = i - 1;
8174 
8175   SDValue ShuffleSrc2 =
8176       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8177   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8178 
8179   SDValue Extend;
8180   if (SignedConv) {
8181     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8182     EVT ExtVT = Src.getValueType();
8183     if (Subtarget.hasP9Altivec())
8184       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8185                                IntermediateVT.getVectorNumElements());
8186 
8187     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8188                          DAG.getValueType(ExtVT));
8189   } else
8190     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8191 
8192   if (IsStrict)
8193     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8194                        {Op.getOperand(0), Extend}, Flags);
8195 
8196   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8197 }
8198 
8199 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8200                                           SelectionDAG &DAG) const {
8201   SDLoc dl(Op);
8202   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8203                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8204   bool IsStrict = Op->isStrictFPOpcode();
8205   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8206   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8207 
8208   // TODO: Any other flags to propagate?
8209   SDNodeFlags Flags;
8210   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8211 
8212   EVT InVT = Src.getValueType();
8213   EVT OutVT = Op.getValueType();
8214   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8215       isOperationCustom(Op.getOpcode(), InVT))
8216     return LowerINT_TO_FPVector(Op, DAG, dl);
8217 
8218   // Conversions to f128 are legal.
8219   if (Op.getValueType() == MVT::f128)
8220     return Subtarget.hasP9Vector() ? Op : SDValue();
8221 
8222   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8223   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8224     return SDValue();
8225 
8226   if (Src.getValueType() == MVT::i1) {
8227     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8228                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8229                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8230     if (IsStrict)
8231       return DAG.getMergeValues({Sel, Chain}, dl);
8232     else
8233       return Sel;
8234   }
8235 
8236   // If we have direct moves, we can do all the conversion, skip the store/load
8237   // however, without FPCVT we can't do most conversions.
8238   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8239       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8240     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8241 
8242   assert((IsSigned || Subtarget.hasFPCVT()) &&
8243          "UINT_TO_FP is supported only with FPCVT");
8244 
8245   if (Src.getValueType() == MVT::i64) {
8246     SDValue SINT = Src;
8247     // When converting to single-precision, we actually need to convert
8248     // to double-precision first and then round to single-precision.
8249     // To avoid double-rounding effects during that operation, we have
8250     // to prepare the input operand.  Bits that might be truncated when
8251     // converting to double-precision are replaced by a bit that won't
8252     // be lost at this stage, but is below the single-precision rounding
8253     // position.
8254     //
8255     // However, if -enable-unsafe-fp-math is in effect, accept double
8256     // rounding to avoid the extra overhead.
8257     if (Op.getValueType() == MVT::f32 &&
8258         !Subtarget.hasFPCVT() &&
8259         !DAG.getTarget().Options.UnsafeFPMath) {
8260 
8261       // Twiddle input to make sure the low 11 bits are zero.  (If this
8262       // is the case, we are guaranteed the value will fit into the 53 bit
8263       // mantissa of an IEEE double-precision value without rounding.)
8264       // If any of those low 11 bits were not zero originally, make sure
8265       // bit 12 (value 2048) is set instead, so that the final rounding
8266       // to single-precision gets the correct result.
8267       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8268                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8269       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8270                           Round, DAG.getConstant(2047, dl, MVT::i64));
8271       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8272       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8273                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8274 
8275       // However, we cannot use that value unconditionally: if the magnitude
8276       // of the input value is small, the bit-twiddling we did above might
8277       // end up visibly changing the output.  Fortunately, in that case, we
8278       // don't need to twiddle bits since the original input will convert
8279       // exactly to double-precision floating-point already.  Therefore,
8280       // construct a conditional to use the original value if the top 11
8281       // bits are all sign-bit copies, and use the rounded value computed
8282       // above otherwise.
8283       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8284                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8285       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8286                          Cond, DAG.getConstant(1, dl, MVT::i64));
8287       Cond = DAG.getSetCC(
8288           dl,
8289           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8290           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8291 
8292       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8293     }
8294 
8295     ReuseLoadInfo RLI;
8296     SDValue Bits;
8297 
8298     MachineFunction &MF = DAG.getMachineFunction();
8299     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8300       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8301                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8302       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8303     } else if (Subtarget.hasLFIWAX() &&
8304                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8305       MachineMemOperand *MMO =
8306         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8307                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8308       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8309       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8310                                      DAG.getVTList(MVT::f64, MVT::Other),
8311                                      Ops, MVT::i32, MMO);
8312       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8313     } else if (Subtarget.hasFPCVT() &&
8314                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8315       MachineMemOperand *MMO =
8316         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8317                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8318       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8319       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8320                                      DAG.getVTList(MVT::f64, MVT::Other),
8321                                      Ops, MVT::i32, MMO);
8322       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8323     } else if (((Subtarget.hasLFIWAX() &&
8324                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8325                 (Subtarget.hasFPCVT() &&
8326                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8327                SINT.getOperand(0).getValueType() == MVT::i32) {
8328       MachineFrameInfo &MFI = MF.getFrameInfo();
8329       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8330 
8331       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8332       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8333 
8334       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8335                                    MachinePointerInfo::getFixedStack(
8336                                        DAG.getMachineFunction(), FrameIdx));
8337       Chain = Store;
8338 
8339       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8340              "Expected an i32 store");
8341 
8342       RLI.Ptr = FIdx;
8343       RLI.Chain = Chain;
8344       RLI.MPI =
8345           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8346       RLI.Alignment = Align(4);
8347 
8348       MachineMemOperand *MMO =
8349         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8350                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8351       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8352       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8353                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8354                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8355                                      Ops, MVT::i32, MMO);
8356       Chain = Bits.getValue(1);
8357     } else
8358       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8359 
8360     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8361     if (IsStrict)
8362       Chain = FP.getValue(1);
8363 
8364     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8365       if (IsStrict)
8366         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8367                          DAG.getVTList(MVT::f32, MVT::Other),
8368                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8369       else
8370         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8371                          DAG.getIntPtrConstant(0, dl));
8372     }
8373     return FP;
8374   }
8375 
8376   assert(Src.getValueType() == MVT::i32 &&
8377          "Unhandled INT_TO_FP type in custom expander!");
8378   // Since we only generate this in 64-bit mode, we can take advantage of
8379   // 64-bit registers.  In particular, sign extend the input value into the
8380   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8381   // then lfd it and fcfid it.
8382   MachineFunction &MF = DAG.getMachineFunction();
8383   MachineFrameInfo &MFI = MF.getFrameInfo();
8384   EVT PtrVT = getPointerTy(MF.getDataLayout());
8385 
8386   SDValue Ld;
8387   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8388     ReuseLoadInfo RLI;
8389     bool ReusingLoad;
8390     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8391       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8392       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8393 
8394       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8395                                    MachinePointerInfo::getFixedStack(
8396                                        DAG.getMachineFunction(), FrameIdx));
8397       Chain = Store;
8398 
8399       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8400              "Expected an i32 store");
8401 
8402       RLI.Ptr = FIdx;
8403       RLI.Chain = Chain;
8404       RLI.MPI =
8405           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8406       RLI.Alignment = Align(4);
8407     }
8408 
8409     MachineMemOperand *MMO =
8410       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8411                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8412     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8413     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8414                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8415                                  MVT::i32, MMO);
8416     Chain = Ld.getValue(1);
8417     if (ReusingLoad)
8418       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8419   } else {
8420     assert(Subtarget.isPPC64() &&
8421            "i32->FP without LFIWAX supported only on PPC64");
8422 
8423     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8424     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8425 
8426     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8427 
8428     // STD the extended value into the stack slot.
8429     SDValue Store = DAG.getStore(
8430         Chain, dl, Ext64, FIdx,
8431         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8432     Chain = Store;
8433 
8434     // Load the value as a double.
8435     Ld = DAG.getLoad(
8436         MVT::f64, dl, Chain, FIdx,
8437         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8438     Chain = Ld.getValue(1);
8439   }
8440 
8441   // FCFID it and return it.
8442   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8443   if (IsStrict)
8444     Chain = FP.getValue(1);
8445   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8446     if (IsStrict)
8447       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8448                        DAG.getVTList(MVT::f32, MVT::Other),
8449                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8450     else
8451       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8452                        DAG.getIntPtrConstant(0, dl));
8453   }
8454   return FP;
8455 }
8456 
8457 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8458                                             SelectionDAG &DAG) const {
8459   SDLoc dl(Op);
8460   /*
8461    The rounding mode is in bits 30:31 of FPSR, and has the following
8462    settings:
8463      00 Round to nearest
8464      01 Round to 0
8465      10 Round to +inf
8466      11 Round to -inf
8467 
8468   FLT_ROUNDS, on the other hand, expects the following:
8469     -1 Undefined
8470      0 Round to 0
8471      1 Round to nearest
8472      2 Round to +inf
8473      3 Round to -inf
8474 
8475   To perform the conversion, we do:
8476     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8477   */
8478 
8479   MachineFunction &MF = DAG.getMachineFunction();
8480   EVT VT = Op.getValueType();
8481   EVT PtrVT = getPointerTy(MF.getDataLayout());
8482 
8483   // Save FP Control Word to register
8484   SDValue Chain = Op.getOperand(0);
8485   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8486   Chain = MFFS.getValue(1);
8487 
8488   SDValue CWD;
8489   if (isTypeLegal(MVT::i64)) {
8490     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8491                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8492   } else {
8493     // Save FP register to stack slot
8494     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8495     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8496     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8497 
8498     // Load FP Control Word from low 32 bits of stack slot.
8499     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8500            "Stack slot adjustment is valid only on big endian subtargets!");
8501     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8502     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8503     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8504     Chain = CWD.getValue(1);
8505   }
8506 
8507   // Transform as necessary
8508   SDValue CWD1 =
8509     DAG.getNode(ISD::AND, dl, MVT::i32,
8510                 CWD, DAG.getConstant(3, dl, MVT::i32));
8511   SDValue CWD2 =
8512     DAG.getNode(ISD::SRL, dl, MVT::i32,
8513                 DAG.getNode(ISD::AND, dl, MVT::i32,
8514                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8515                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8516                             DAG.getConstant(3, dl, MVT::i32)),
8517                 DAG.getConstant(1, dl, MVT::i32));
8518 
8519   SDValue RetVal =
8520     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8521 
8522   RetVal =
8523       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8524                   dl, VT, RetVal);
8525 
8526   return DAG.getMergeValues({RetVal, Chain}, dl);
8527 }
8528 
8529 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8530   EVT VT = Op.getValueType();
8531   unsigned BitWidth = VT.getSizeInBits();
8532   SDLoc dl(Op);
8533   assert(Op.getNumOperands() == 3 &&
8534          VT == Op.getOperand(1).getValueType() &&
8535          "Unexpected SHL!");
8536 
8537   // Expand into a bunch of logical ops.  Note that these ops
8538   // depend on the PPC behavior for oversized shift amounts.
8539   SDValue Lo = Op.getOperand(0);
8540   SDValue Hi = Op.getOperand(1);
8541   SDValue Amt = Op.getOperand(2);
8542   EVT AmtVT = Amt.getValueType();
8543 
8544   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8545                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8546   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8547   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8548   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8549   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8550                              DAG.getConstant(-BitWidth, dl, AmtVT));
8551   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8552   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8553   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8554   SDValue OutOps[] = { OutLo, OutHi };
8555   return DAG.getMergeValues(OutOps, dl);
8556 }
8557 
8558 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8559   EVT VT = Op.getValueType();
8560   SDLoc dl(Op);
8561   unsigned BitWidth = VT.getSizeInBits();
8562   assert(Op.getNumOperands() == 3 &&
8563          VT == Op.getOperand(1).getValueType() &&
8564          "Unexpected SRL!");
8565 
8566   // Expand into a bunch of logical ops.  Note that these ops
8567   // depend on the PPC behavior for oversized shift amounts.
8568   SDValue Lo = Op.getOperand(0);
8569   SDValue Hi = Op.getOperand(1);
8570   SDValue Amt = Op.getOperand(2);
8571   EVT AmtVT = Amt.getValueType();
8572 
8573   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8574                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8575   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8576   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8577   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8578   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8579                              DAG.getConstant(-BitWidth, dl, AmtVT));
8580   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8581   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8582   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8583   SDValue OutOps[] = { OutLo, OutHi };
8584   return DAG.getMergeValues(OutOps, dl);
8585 }
8586 
8587 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8588   SDLoc dl(Op);
8589   EVT VT = Op.getValueType();
8590   unsigned BitWidth = VT.getSizeInBits();
8591   assert(Op.getNumOperands() == 3 &&
8592          VT == Op.getOperand(1).getValueType() &&
8593          "Unexpected SRA!");
8594 
8595   // Expand into a bunch of logical ops, followed by a select_cc.
8596   SDValue Lo = Op.getOperand(0);
8597   SDValue Hi = Op.getOperand(1);
8598   SDValue Amt = Op.getOperand(2);
8599   EVT AmtVT = Amt.getValueType();
8600 
8601   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8602                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8603   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8604   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8605   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8606   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8607                              DAG.getConstant(-BitWidth, dl, AmtVT));
8608   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8609   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8610   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8611                                   Tmp4, Tmp6, ISD::SETLE);
8612   SDValue OutOps[] = { OutLo, OutHi };
8613   return DAG.getMergeValues(OutOps, dl);
8614 }
8615 
8616 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8617                                             SelectionDAG &DAG) const {
8618   SDLoc dl(Op);
8619   EVT VT = Op.getValueType();
8620   unsigned BitWidth = VT.getSizeInBits();
8621 
8622   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8623   SDValue X = Op.getOperand(0);
8624   SDValue Y = Op.getOperand(1);
8625   SDValue Z = Op.getOperand(2);
8626   EVT AmtVT = Z.getValueType();
8627 
8628   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8629   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8630   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8631   // on PowerPC shift by BW being well defined.
8632   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8633                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8634   SDValue SubZ =
8635       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8636   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8637   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8638   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8639 }
8640 
8641 //===----------------------------------------------------------------------===//
8642 // Vector related lowering.
8643 //
8644 
8645 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8646 /// element size of SplatSize. Cast the result to VT.
8647 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8648                                       SelectionDAG &DAG, const SDLoc &dl) {
8649   static const MVT VTys[] = { // canonical VT to use for each size.
8650     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8651   };
8652 
8653   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8654 
8655   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8656   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8657     SplatSize = 1;
8658     Val = 0xFF;
8659   }
8660 
8661   EVT CanonicalVT = VTys[SplatSize-1];
8662 
8663   // Build a canonical splat for this value.
8664   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8665 }
8666 
8667 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8668 /// specified intrinsic ID.
8669 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8670                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8671   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8672   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8673                      DAG.getConstant(IID, dl, MVT::i32), Op);
8674 }
8675 
8676 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8677 /// specified intrinsic ID.
8678 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8679                                 SelectionDAG &DAG, const SDLoc &dl,
8680                                 EVT DestVT = MVT::Other) {
8681   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8682   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8683                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8684 }
8685 
8686 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8687 /// specified intrinsic ID.
8688 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8689                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8690                                 EVT DestVT = MVT::Other) {
8691   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8692   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8693                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8694 }
8695 
8696 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8697 /// amount.  The result has the specified value type.
8698 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8699                            SelectionDAG &DAG, const SDLoc &dl) {
8700   // Force LHS/RHS to be the right type.
8701   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8702   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8703 
8704   int Ops[16];
8705   for (unsigned i = 0; i != 16; ++i)
8706     Ops[i] = i + Amt;
8707   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8708   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8709 }
8710 
8711 /// Do we have an efficient pattern in a .td file for this node?
8712 ///
8713 /// \param V - pointer to the BuildVectorSDNode being matched
8714 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8715 ///
8716 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8717 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8718 /// the opposite is true (expansion is beneficial) are:
8719 /// - The node builds a vector out of integers that are not 32 or 64-bits
8720 /// - The node builds a vector out of constants
8721 /// - The node is a "load-and-splat"
8722 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8723 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8724                                             bool HasDirectMove,
8725                                             bool HasP8Vector) {
8726   EVT VecVT = V->getValueType(0);
8727   bool RightType = VecVT == MVT::v2f64 ||
8728     (HasP8Vector && VecVT == MVT::v4f32) ||
8729     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8730   if (!RightType)
8731     return false;
8732 
8733   bool IsSplat = true;
8734   bool IsLoad = false;
8735   SDValue Op0 = V->getOperand(0);
8736 
8737   // This function is called in a block that confirms the node is not a constant
8738   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8739   // different constants.
8740   if (V->isConstant())
8741     return false;
8742   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8743     if (V->getOperand(i).isUndef())
8744       return false;
8745     // We want to expand nodes that represent load-and-splat even if the
8746     // loaded value is a floating point truncation or conversion to int.
8747     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8748         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8749          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8750         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8751          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8752         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8753          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8754       IsLoad = true;
8755     // If the operands are different or the input is not a load and has more
8756     // uses than just this BV node, then it isn't a splat.
8757     if (V->getOperand(i) != Op0 ||
8758         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8759       IsSplat = false;
8760   }
8761   return !(IsSplat && IsLoad);
8762 }
8763 
8764 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8765 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8766 
8767   SDLoc dl(Op);
8768   SDValue Op0 = Op->getOperand(0);
8769 
8770   if ((Op.getValueType() != MVT::f128) ||
8771       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8772       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8773       (Op0.getOperand(1).getValueType() != MVT::i64))
8774     return SDValue();
8775 
8776   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8777                      Op0.getOperand(1));
8778 }
8779 
8780 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8781   const SDValue *InputLoad = &Op;
8782   if (InputLoad->getOpcode() == ISD::BITCAST)
8783     InputLoad = &InputLoad->getOperand(0);
8784   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8785       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8786     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8787     InputLoad = &InputLoad->getOperand(0);
8788   }
8789   if (InputLoad->getOpcode() != ISD::LOAD)
8790     return nullptr;
8791   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8792   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8793 }
8794 
8795 // Convert the argument APFloat to a single precision APFloat if there is no
8796 // loss in information during the conversion to single precision APFloat and the
8797 // resulting number is not a denormal number. Return true if successful.
8798 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8799   APFloat APFloatToConvert = ArgAPFloat;
8800   bool LosesInfo = true;
8801   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8802                            &LosesInfo);
8803   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8804   if (Success)
8805     ArgAPFloat = APFloatToConvert;
8806   return Success;
8807 }
8808 
8809 // Bitcast the argument APInt to a double and convert it to a single precision
8810 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8811 // argument if there is no loss in information during the conversion from
8812 // double to single precision APFloat and the resulting number is not a denormal
8813 // number. Return true if successful.
8814 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8815   double DpValue = ArgAPInt.bitsToDouble();
8816   APFloat APFloatDp(DpValue);
8817   bool Success = convertToNonDenormSingle(APFloatDp);
8818   if (Success)
8819     ArgAPInt = APFloatDp.bitcastToAPInt();
8820   return Success;
8821 }
8822 
8823 // Nondestructive check for convertTonNonDenormSingle.
8824 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
8825   // Only convert if it loses info, since XXSPLTIDP should
8826   // handle the other case.
8827   APFloat APFloatToConvert = ArgAPFloat;
8828   bool LosesInfo = true;
8829   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8830                            &LosesInfo);
8831 
8832   return (!LosesInfo && !APFloatToConvert.isDenormal());
8833 }
8834 
8835 // If this is a case we can't handle, return null and let the default
8836 // expansion code take care of it.  If we CAN select this case, and if it
8837 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8838 // this case more efficiently than a constant pool load, lower it to the
8839 // sequence of ops that should be used.
8840 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8841                                              SelectionDAG &DAG) const {
8842   SDLoc dl(Op);
8843   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8844   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8845 
8846   // Check if this is a splat of a constant value.
8847   APInt APSplatBits, APSplatUndef;
8848   unsigned SplatBitSize;
8849   bool HasAnyUndefs;
8850   bool BVNIsConstantSplat =
8851       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8852                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
8853 
8854   // If it is a splat of a double, check if we can shrink it to a 32 bit
8855   // non-denormal float which when converted back to double gives us the same
8856   // double. This is to exploit the XXSPLTIDP instruction.
8857   // If we lose precision, we use XXSPLTI32DX.
8858   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
8859       Subtarget.hasPrefixInstrs()) {
8860     // Check the type first to short-circuit so we don't modify APSplatBits if
8861     // this block isn't executed.
8862     if ((Op->getValueType(0) == MVT::v2f64) &&
8863         convertToNonDenormSingle(APSplatBits)) {
8864       SDValue SplatNode = DAG.getNode(
8865           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
8866           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
8867       return DAG.getBitcast(Op.getValueType(), SplatNode);
8868     } else {
8869       // We may lose precision, so we have to use XXSPLTI32DX.
8870 
8871       uint32_t Hi =
8872           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
8873       uint32_t Lo =
8874           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
8875       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
8876 
8877       if (!Hi || !Lo)
8878         // If either load is 0, then we should generate XXLXOR to set to 0.
8879         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
8880 
8881       if (Hi)
8882         SplatNode = DAG.getNode(
8883             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8884             DAG.getTargetConstant(0, dl, MVT::i32),
8885             DAG.getTargetConstant(Hi, dl, MVT::i32));
8886 
8887       if (Lo)
8888         SplatNode =
8889             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8890                         DAG.getTargetConstant(1, dl, MVT::i32),
8891                         DAG.getTargetConstant(Lo, dl, MVT::i32));
8892 
8893       return DAG.getBitcast(Op.getValueType(), SplatNode);
8894     }
8895   }
8896 
8897   if (!BVNIsConstantSplat || SplatBitSize > 32) {
8898 
8899     bool IsPermutedLoad = false;
8900     const SDValue *InputLoad =
8901         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
8902     // Handle load-and-splat patterns as we have instructions that will do this
8903     // in one go.
8904     if (InputLoad && DAG.isSplatValue(Op, true)) {
8905       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8906 
8907       // We have handling for 4 and 8 byte elements.
8908       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8909 
8910       // Checking for a single use of this load, we have to check for vector
8911       // width (128 bits) / ElementSize uses (since each operand of the
8912       // BUILD_VECTOR is a separate use of the value.
8913       unsigned NumUsesOfInputLD = 128 / ElementSize;
8914       for (SDValue BVInOp : Op->ops())
8915         if (BVInOp.isUndef())
8916           NumUsesOfInputLD--;
8917       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
8918       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
8919           ((Subtarget.hasVSX() && ElementSize == 64) ||
8920            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8921         SDValue Ops[] = {
8922           LD->getChain(),    // Chain
8923           LD->getBasePtr(),  // Ptr
8924           DAG.getValueType(Op.getValueType()) // VT
8925         };
8926         SDValue LdSplt = DAG.getMemIntrinsicNode(
8927             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8928             Ops, LD->getMemoryVT(), LD->getMemOperand());
8929         // Replace all uses of the output chain of the original load with the
8930         // output chain of the new load.
8931         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
8932                                       LdSplt.getValue(1));
8933         return LdSplt;
8934       }
8935     }
8936 
8937     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
8938     // 32-bits can be lowered to VSX instructions under certain conditions.
8939     // Without VSX, there is no pattern more efficient than expanding the node.
8940     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
8941         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8942                                         Subtarget.hasP8Vector()))
8943       return Op;
8944     return SDValue();
8945   }
8946 
8947   uint64_t SplatBits = APSplatBits.getZExtValue();
8948   uint64_t SplatUndef = APSplatUndef.getZExtValue();
8949   unsigned SplatSize = SplatBitSize / 8;
8950 
8951   // First, handle single instruction cases.
8952 
8953   // All zeros?
8954   if (SplatBits == 0) {
8955     // Canonicalize all zero vectors to be v4i32.
8956     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8957       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8958       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8959     }
8960     return Op;
8961   }
8962 
8963   // We have XXSPLTIW for constant splats four bytes wide.
8964   // Given vector length is a multiple of 4, 2-byte splats can be replaced
8965   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
8966   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
8967   // turned into a 4-byte splat of 0xABABABAB.
8968   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
8969     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
8970                                   Op.getValueType(), DAG, dl);
8971 
8972   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
8973     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8974                                   dl);
8975 
8976   // We have XXSPLTIB for constant splats one byte wide.
8977   if (Subtarget.hasP9Vector() && SplatSize == 1)
8978     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8979                                   dl);
8980 
8981   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8982   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8983                     (32-SplatBitSize));
8984   if (SextVal >= -16 && SextVal <= 15)
8985     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
8986                                   dl);
8987 
8988   // Two instruction sequences.
8989 
8990   // If this value is in the range [-32,30] and is even, use:
8991   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8992   // If this value is in the range [17,31] and is odd, use:
8993   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8994   // If this value is in the range [-31,-17] and is odd, use:
8995   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8996   // Note the last two are three-instruction sequences.
8997   if (SextVal >= -32 && SextVal <= 31) {
8998     // To avoid having these optimizations undone by constant folding,
8999     // we convert to a pseudo that will be expanded later into one of
9000     // the above forms.
9001     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9002     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9003               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9004     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9005     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9006     if (VT == Op.getValueType())
9007       return RetVal;
9008     else
9009       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9010   }
9011 
9012   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9013   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9014   // for fneg/fabs.
9015   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9016     // Make -1 and vspltisw -1:
9017     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9018 
9019     // Make the VSLW intrinsic, computing 0x8000_0000.
9020     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9021                                    OnesV, DAG, dl);
9022 
9023     // xor by OnesV to invert it.
9024     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9025     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9026   }
9027 
9028   // Check to see if this is a wide variety of vsplti*, binop self cases.
9029   static const signed char SplatCsts[] = {
9030     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9031     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9032   };
9033 
9034   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9035     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9036     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9037     int i = SplatCsts[idx];
9038 
9039     // Figure out what shift amount will be used by altivec if shifted by i in
9040     // this splat size.
9041     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9042 
9043     // vsplti + shl self.
9044     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9045       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9046       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9047         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9048         Intrinsic::ppc_altivec_vslw
9049       };
9050       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9051       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9052     }
9053 
9054     // vsplti + srl self.
9055     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9056       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9057       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9058         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9059         Intrinsic::ppc_altivec_vsrw
9060       };
9061       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9062       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9063     }
9064 
9065     // vsplti + rol self.
9066     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9067                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9068       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9069       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9070         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9071         Intrinsic::ppc_altivec_vrlw
9072       };
9073       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9074       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9075     }
9076 
9077     // t = vsplti c, result = vsldoi t, t, 1
9078     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9079       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9080       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9081       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9082     }
9083     // t = vsplti c, result = vsldoi t, t, 2
9084     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9085       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9086       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9087       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9088     }
9089     // t = vsplti c, result = vsldoi t, t, 3
9090     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9091       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9092       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9093       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9094     }
9095   }
9096 
9097   return SDValue();
9098 }
9099 
9100 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9101 /// the specified operations to build the shuffle.
9102 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9103                                       SDValue RHS, SelectionDAG &DAG,
9104                                       const SDLoc &dl) {
9105   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9106   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9107   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9108 
9109   enum {
9110     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9111     OP_VMRGHW,
9112     OP_VMRGLW,
9113     OP_VSPLTISW0,
9114     OP_VSPLTISW1,
9115     OP_VSPLTISW2,
9116     OP_VSPLTISW3,
9117     OP_VSLDOI4,
9118     OP_VSLDOI8,
9119     OP_VSLDOI12
9120   };
9121 
9122   if (OpNum == OP_COPY) {
9123     if (LHSID == (1*9+2)*9+3) return LHS;
9124     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9125     return RHS;
9126   }
9127 
9128   SDValue OpLHS, OpRHS;
9129   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9130   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9131 
9132   int ShufIdxs[16];
9133   switch (OpNum) {
9134   default: llvm_unreachable("Unknown i32 permute!");
9135   case OP_VMRGHW:
9136     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9137     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9138     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9139     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9140     break;
9141   case OP_VMRGLW:
9142     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9143     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9144     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9145     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9146     break;
9147   case OP_VSPLTISW0:
9148     for (unsigned i = 0; i != 16; ++i)
9149       ShufIdxs[i] = (i&3)+0;
9150     break;
9151   case OP_VSPLTISW1:
9152     for (unsigned i = 0; i != 16; ++i)
9153       ShufIdxs[i] = (i&3)+4;
9154     break;
9155   case OP_VSPLTISW2:
9156     for (unsigned i = 0; i != 16; ++i)
9157       ShufIdxs[i] = (i&3)+8;
9158     break;
9159   case OP_VSPLTISW3:
9160     for (unsigned i = 0; i != 16; ++i)
9161       ShufIdxs[i] = (i&3)+12;
9162     break;
9163   case OP_VSLDOI4:
9164     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9165   case OP_VSLDOI8:
9166     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9167   case OP_VSLDOI12:
9168     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9169   }
9170   EVT VT = OpLHS.getValueType();
9171   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9172   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9173   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9174   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9175 }
9176 
9177 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9178 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9179 /// SDValue.
9180 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9181                                            SelectionDAG &DAG) const {
9182   const unsigned BytesInVector = 16;
9183   bool IsLE = Subtarget.isLittleEndian();
9184   SDLoc dl(N);
9185   SDValue V1 = N->getOperand(0);
9186   SDValue V2 = N->getOperand(1);
9187   unsigned ShiftElts = 0, InsertAtByte = 0;
9188   bool Swap = false;
9189 
9190   // Shifts required to get the byte we want at element 7.
9191   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9192                                    0, 15, 14, 13, 12, 11, 10, 9};
9193   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9194                                 1, 2,  3,  4,  5,  6,  7,  8};
9195 
9196   ArrayRef<int> Mask = N->getMask();
9197   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9198 
9199   // For each mask element, find out if we're just inserting something
9200   // from V2 into V1 or vice versa.
9201   // Possible permutations inserting an element from V2 into V1:
9202   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9203   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9204   //   ...
9205   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9206   // Inserting from V1 into V2 will be similar, except mask range will be
9207   // [16,31].
9208 
9209   bool FoundCandidate = false;
9210   // If both vector operands for the shuffle are the same vector, the mask
9211   // will contain only elements from the first one and the second one will be
9212   // undef.
9213   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9214   // Go through the mask of half-words to find an element that's being moved
9215   // from one vector to the other.
9216   for (unsigned i = 0; i < BytesInVector; ++i) {
9217     unsigned CurrentElement = Mask[i];
9218     // If 2nd operand is undefined, we should only look for element 7 in the
9219     // Mask.
9220     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9221       continue;
9222 
9223     bool OtherElementsInOrder = true;
9224     // Examine the other elements in the Mask to see if they're in original
9225     // order.
9226     for (unsigned j = 0; j < BytesInVector; ++j) {
9227       if (j == i)
9228         continue;
9229       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9230       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9231       // in which we always assume we're always picking from the 1st operand.
9232       int MaskOffset =
9233           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9234       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9235         OtherElementsInOrder = false;
9236         break;
9237       }
9238     }
9239     // If other elements are in original order, we record the number of shifts
9240     // we need to get the element we want into element 7. Also record which byte
9241     // in the vector we should insert into.
9242     if (OtherElementsInOrder) {
9243       // If 2nd operand is undefined, we assume no shifts and no swapping.
9244       if (V2.isUndef()) {
9245         ShiftElts = 0;
9246         Swap = false;
9247       } else {
9248         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9249         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9250                          : BigEndianShifts[CurrentElement & 0xF];
9251         Swap = CurrentElement < BytesInVector;
9252       }
9253       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9254       FoundCandidate = true;
9255       break;
9256     }
9257   }
9258 
9259   if (!FoundCandidate)
9260     return SDValue();
9261 
9262   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9263   // optionally with VECSHL if shift is required.
9264   if (Swap)
9265     std::swap(V1, V2);
9266   if (V2.isUndef())
9267     V2 = V1;
9268   if (ShiftElts) {
9269     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9270                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9271     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9272                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9273   }
9274   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9275                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9276 }
9277 
9278 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9279 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9280 /// SDValue.
9281 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9282                                            SelectionDAG &DAG) const {
9283   const unsigned NumHalfWords = 8;
9284   const unsigned BytesInVector = NumHalfWords * 2;
9285   // Check that the shuffle is on half-words.
9286   if (!isNByteElemShuffleMask(N, 2, 1))
9287     return SDValue();
9288 
9289   bool IsLE = Subtarget.isLittleEndian();
9290   SDLoc dl(N);
9291   SDValue V1 = N->getOperand(0);
9292   SDValue V2 = N->getOperand(1);
9293   unsigned ShiftElts = 0, InsertAtByte = 0;
9294   bool Swap = false;
9295 
9296   // Shifts required to get the half-word we want at element 3.
9297   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9298   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9299 
9300   uint32_t Mask = 0;
9301   uint32_t OriginalOrderLow = 0x1234567;
9302   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9303   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9304   // 32-bit space, only need 4-bit nibbles per element.
9305   for (unsigned i = 0; i < NumHalfWords; ++i) {
9306     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9307     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9308   }
9309 
9310   // For each mask element, find out if we're just inserting something
9311   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9312   // from V2 into V1:
9313   //   X, 1, 2, 3, 4, 5, 6, 7
9314   //   0, X, 2, 3, 4, 5, 6, 7
9315   //   0, 1, X, 3, 4, 5, 6, 7
9316   //   0, 1, 2, X, 4, 5, 6, 7
9317   //   0, 1, 2, 3, X, 5, 6, 7
9318   //   0, 1, 2, 3, 4, X, 6, 7
9319   //   0, 1, 2, 3, 4, 5, X, 7
9320   //   0, 1, 2, 3, 4, 5, 6, X
9321   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9322 
9323   bool FoundCandidate = false;
9324   // Go through the mask of half-words to find an element that's being moved
9325   // from one vector to the other.
9326   for (unsigned i = 0; i < NumHalfWords; ++i) {
9327     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9328     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9329     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9330     uint32_t TargetOrder = 0x0;
9331 
9332     // If both vector operands for the shuffle are the same vector, the mask
9333     // will contain only elements from the first one and the second one will be
9334     // undef.
9335     if (V2.isUndef()) {
9336       ShiftElts = 0;
9337       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9338       TargetOrder = OriginalOrderLow;
9339       Swap = false;
9340       // Skip if not the correct element or mask of other elements don't equal
9341       // to our expected order.
9342       if (MaskOneElt == VINSERTHSrcElem &&
9343           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9344         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9345         FoundCandidate = true;
9346         break;
9347       }
9348     } else { // If both operands are defined.
9349       // Target order is [8,15] if the current mask is between [0,7].
9350       TargetOrder =
9351           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9352       // Skip if mask of other elements don't equal our expected order.
9353       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9354         // We only need the last 3 bits for the number of shifts.
9355         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9356                          : BigEndianShifts[MaskOneElt & 0x7];
9357         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9358         Swap = MaskOneElt < NumHalfWords;
9359         FoundCandidate = true;
9360         break;
9361       }
9362     }
9363   }
9364 
9365   if (!FoundCandidate)
9366     return SDValue();
9367 
9368   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9369   // optionally with VECSHL if shift is required.
9370   if (Swap)
9371     std::swap(V1, V2);
9372   if (V2.isUndef())
9373     V2 = V1;
9374   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9375   if (ShiftElts) {
9376     // Double ShiftElts because we're left shifting on v16i8 type.
9377     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9378                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9379     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9380     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9381                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9382     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9383   }
9384   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9385   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9386                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9387   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9388 }
9389 
9390 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9391 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9392 /// return the default SDValue.
9393 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9394                                               SelectionDAG &DAG) const {
9395   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9396   // to v16i8. Peek through the bitcasts to get the actual operands.
9397   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9398   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9399 
9400   auto ShuffleMask = SVN->getMask();
9401   SDValue VecShuffle(SVN, 0);
9402   SDLoc DL(SVN);
9403 
9404   // Check that we have a four byte shuffle.
9405   if (!isNByteElemShuffleMask(SVN, 4, 1))
9406     return SDValue();
9407 
9408   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9409   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9410     std::swap(LHS, RHS);
9411     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9412     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9413   }
9414 
9415   // Ensure that the RHS is a vector of constants.
9416   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9417   if (!BVN)
9418     return SDValue();
9419 
9420   // Check if RHS is a splat of 4-bytes (or smaller).
9421   APInt APSplatValue, APSplatUndef;
9422   unsigned SplatBitSize;
9423   bool HasAnyUndefs;
9424   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9425                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9426       SplatBitSize > 32)
9427     return SDValue();
9428 
9429   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9430   // The instruction splats a constant C into two words of the source vector
9431   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9432   // Thus we check that the shuffle mask is the equivalent  of
9433   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9434   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9435   // within each word are consecutive, so we only need to check the first byte.
9436   SDValue Index;
9437   bool IsLE = Subtarget.isLittleEndian();
9438   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9439       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9440        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9441     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9442   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9443            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9444             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9445     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9446   else
9447     return SDValue();
9448 
9449   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9450   // for XXSPLTI32DX.
9451   unsigned SplatVal = APSplatValue.getZExtValue();
9452   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9453     SplatVal |= (SplatVal << SplatBitSize);
9454 
9455   SDValue SplatNode = DAG.getNode(
9456       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9457       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9458   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9459 }
9460 
9461 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9462 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9463 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9464 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9465 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9466   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9467   assert(Op.getValueType() == MVT::v1i128 &&
9468          "Only set v1i128 as custom, other type shouldn't reach here!");
9469   SDLoc dl(Op);
9470   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9471   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9472   unsigned SHLAmt = N1.getConstantOperandVal(0);
9473   if (SHLAmt % 8 == 0) {
9474     SmallVector<int, 16> Mask(16, 0);
9475     std::iota(Mask.begin(), Mask.end(), 0);
9476     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9477     if (SDValue Shuffle =
9478             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9479                                  DAG.getUNDEF(MVT::v16i8), Mask))
9480       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9481   }
9482   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9483   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9484                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9485   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9486                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9487   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9488   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9489 }
9490 
9491 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9492 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9493 /// return the code it can be lowered into.  Worst case, it can always be
9494 /// lowered into a vperm.
9495 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9496                                                SelectionDAG &DAG) const {
9497   SDLoc dl(Op);
9498   SDValue V1 = Op.getOperand(0);
9499   SDValue V2 = Op.getOperand(1);
9500   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9501 
9502   // Any nodes that were combined in the target-independent combiner prior
9503   // to vector legalization will not be sent to the target combine. Try to
9504   // combine it here.
9505   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9506     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9507       return NewShuffle;
9508     Op = NewShuffle;
9509     SVOp = cast<ShuffleVectorSDNode>(Op);
9510     V1 = Op.getOperand(0);
9511     V2 = Op.getOperand(1);
9512   }
9513   EVT VT = Op.getValueType();
9514   bool isLittleEndian = Subtarget.isLittleEndian();
9515 
9516   unsigned ShiftElts, InsertAtByte;
9517   bool Swap = false;
9518 
9519   // If this is a load-and-splat, we can do that with a single instruction
9520   // in some cases. However if the load has multiple uses, we don't want to
9521   // combine it because that will just produce multiple loads.
9522   bool IsPermutedLoad = false;
9523   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9524   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9525       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9526       InputLoad->hasOneUse()) {
9527     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9528     int SplatIdx =
9529       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9530 
9531     // The splat index for permuted loads will be in the left half of the vector
9532     // which is strictly wider than the loaded value by 8 bytes. So we need to
9533     // adjust the splat index to point to the correct address in memory.
9534     if (IsPermutedLoad) {
9535       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9536       SplatIdx += IsFourByte ? 2 : 1;
9537       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9538              "Splat of a value outside of the loaded memory");
9539     }
9540 
9541     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9542     // For 4-byte load-and-splat, we need Power9.
9543     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9544       uint64_t Offset = 0;
9545       if (IsFourByte)
9546         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9547       else
9548         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9549 
9550       SDValue BasePtr = LD->getBasePtr();
9551       if (Offset != 0)
9552         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9553                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9554       SDValue Ops[] = {
9555         LD->getChain(),    // Chain
9556         BasePtr,           // BasePtr
9557         DAG.getValueType(Op.getValueType()) // VT
9558       };
9559       SDVTList VTL =
9560         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9561       SDValue LdSplt =
9562         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9563                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9564       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9565       if (LdSplt.getValueType() != SVOp->getValueType(0))
9566         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9567       return LdSplt;
9568     }
9569   }
9570   if (Subtarget.hasP9Vector() &&
9571       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9572                            isLittleEndian)) {
9573     if (Swap)
9574       std::swap(V1, V2);
9575     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9576     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9577     if (ShiftElts) {
9578       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9579                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9580       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9581                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9582       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9583     }
9584     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9585                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9586     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9587   }
9588 
9589   if (Subtarget.hasPrefixInstrs()) {
9590     SDValue SplatInsertNode;
9591     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9592       return SplatInsertNode;
9593   }
9594 
9595   if (Subtarget.hasP9Altivec()) {
9596     SDValue NewISDNode;
9597     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9598       return NewISDNode;
9599 
9600     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9601       return NewISDNode;
9602   }
9603 
9604   if (Subtarget.hasVSX() &&
9605       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9606     if (Swap)
9607       std::swap(V1, V2);
9608     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9609     SDValue Conv2 =
9610         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9611 
9612     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9613                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9614     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9615   }
9616 
9617   if (Subtarget.hasVSX() &&
9618     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9619     if (Swap)
9620       std::swap(V1, V2);
9621     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9622     SDValue Conv2 =
9623         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9624 
9625     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9626                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9627     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9628   }
9629 
9630   if (Subtarget.hasP9Vector()) {
9631      if (PPC::isXXBRHShuffleMask(SVOp)) {
9632       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9633       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9634       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9635     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9636       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9637       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9638       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9639     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9640       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9641       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9642       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9643     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9644       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9645       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9646       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9647     }
9648   }
9649 
9650   if (Subtarget.hasVSX()) {
9651     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9652       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9653 
9654       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9655       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9656                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9657       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9658     }
9659 
9660     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9661     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9662       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9663       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9664       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9665     }
9666   }
9667 
9668   // Cases that are handled by instructions that take permute immediates
9669   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9670   // selected by the instruction selector.
9671   if (V2.isUndef()) {
9672     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9673         PPC::isSplatShuffleMask(SVOp, 2) ||
9674         PPC::isSplatShuffleMask(SVOp, 4) ||
9675         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9676         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9677         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9678         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9679         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9680         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9681         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9682         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9683         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9684         (Subtarget.hasP8Altivec() && (
9685          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9686          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9687          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9688       return Op;
9689     }
9690   }
9691 
9692   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9693   // and produce a fixed permutation.  If any of these match, do not lower to
9694   // VPERM.
9695   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9696   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9697       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9698       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9699       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9700       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9701       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9702       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9703       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9704       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9705       (Subtarget.hasP8Altivec() && (
9706        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9707        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9708        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9709     return Op;
9710 
9711   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9712   // perfect shuffle table to emit an optimal matching sequence.
9713   ArrayRef<int> PermMask = SVOp->getMask();
9714 
9715   unsigned PFIndexes[4];
9716   bool isFourElementShuffle = true;
9717   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9718     unsigned EltNo = 8;   // Start out undef.
9719     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9720       if (PermMask[i*4+j] < 0)
9721         continue;   // Undef, ignore it.
9722 
9723       unsigned ByteSource = PermMask[i*4+j];
9724       if ((ByteSource & 3) != j) {
9725         isFourElementShuffle = false;
9726         break;
9727       }
9728 
9729       if (EltNo == 8) {
9730         EltNo = ByteSource/4;
9731       } else if (EltNo != ByteSource/4) {
9732         isFourElementShuffle = false;
9733         break;
9734       }
9735     }
9736     PFIndexes[i] = EltNo;
9737   }
9738 
9739   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9740   // perfect shuffle vector to determine if it is cost effective to do this as
9741   // discrete instructions, or whether we should use a vperm.
9742   // For now, we skip this for little endian until such time as we have a
9743   // little-endian perfect shuffle table.
9744   if (isFourElementShuffle && !isLittleEndian) {
9745     // Compute the index in the perfect shuffle table.
9746     unsigned PFTableIndex =
9747       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9748 
9749     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9750     unsigned Cost  = (PFEntry >> 30);
9751 
9752     // Determining when to avoid vperm is tricky.  Many things affect the cost
9753     // of vperm, particularly how many times the perm mask needs to be computed.
9754     // For example, if the perm mask can be hoisted out of a loop or is already
9755     // used (perhaps because there are multiple permutes with the same shuffle
9756     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9757     // the loop requires an extra register.
9758     //
9759     // As a compromise, we only emit discrete instructions if the shuffle can be
9760     // generated in 3 or fewer operations.  When we have loop information
9761     // available, if this block is within a loop, we should avoid using vperm
9762     // for 3-operation perms and use a constant pool load instead.
9763     if (Cost < 3)
9764       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9765   }
9766 
9767   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9768   // vector that will get spilled to the constant pool.
9769   if (V2.isUndef()) V2 = V1;
9770 
9771   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9772   // that it is in input element units, not in bytes.  Convert now.
9773 
9774   // For little endian, the order of the input vectors is reversed, and
9775   // the permutation mask is complemented with respect to 31.  This is
9776   // necessary to produce proper semantics with the big-endian-biased vperm
9777   // instruction.
9778   EVT EltVT = V1.getValueType().getVectorElementType();
9779   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9780 
9781   SmallVector<SDValue, 16> ResultMask;
9782   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9783     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9784 
9785     for (unsigned j = 0; j != BytesPerElement; ++j)
9786       if (isLittleEndian)
9787         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9788                                              dl, MVT::i32));
9789       else
9790         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9791                                              MVT::i32));
9792   }
9793 
9794   ShufflesHandledWithVPERM++;
9795   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9796   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9797   LLVM_DEBUG(SVOp->dump());
9798   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9799   LLVM_DEBUG(VPermMask.dump());
9800 
9801   if (isLittleEndian)
9802     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9803                        V2, V1, VPermMask);
9804   else
9805     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9806                        V1, V2, VPermMask);
9807 }
9808 
9809 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9810 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9811 /// information about the intrinsic.
9812 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9813                                  bool &isDot, const PPCSubtarget &Subtarget) {
9814   unsigned IntrinsicID =
9815       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9816   CompareOpc = -1;
9817   isDot = false;
9818   switch (IntrinsicID) {
9819   default:
9820     return false;
9821   // Comparison predicates.
9822   case Intrinsic::ppc_altivec_vcmpbfp_p:
9823     CompareOpc = 966;
9824     isDot = true;
9825     break;
9826   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9827     CompareOpc = 198;
9828     isDot = true;
9829     break;
9830   case Intrinsic::ppc_altivec_vcmpequb_p:
9831     CompareOpc = 6;
9832     isDot = true;
9833     break;
9834   case Intrinsic::ppc_altivec_vcmpequh_p:
9835     CompareOpc = 70;
9836     isDot = true;
9837     break;
9838   case Intrinsic::ppc_altivec_vcmpequw_p:
9839     CompareOpc = 134;
9840     isDot = true;
9841     break;
9842   case Intrinsic::ppc_altivec_vcmpequd_p:
9843     if (Subtarget.hasP8Altivec()) {
9844       CompareOpc = 199;
9845       isDot = true;
9846     } else
9847       return false;
9848     break;
9849   case Intrinsic::ppc_altivec_vcmpneb_p:
9850   case Intrinsic::ppc_altivec_vcmpneh_p:
9851   case Intrinsic::ppc_altivec_vcmpnew_p:
9852   case Intrinsic::ppc_altivec_vcmpnezb_p:
9853   case Intrinsic::ppc_altivec_vcmpnezh_p:
9854   case Intrinsic::ppc_altivec_vcmpnezw_p:
9855     if (Subtarget.hasP9Altivec()) {
9856       switch (IntrinsicID) {
9857       default:
9858         llvm_unreachable("Unknown comparison intrinsic.");
9859       case Intrinsic::ppc_altivec_vcmpneb_p:
9860         CompareOpc = 7;
9861         break;
9862       case Intrinsic::ppc_altivec_vcmpneh_p:
9863         CompareOpc = 71;
9864         break;
9865       case Intrinsic::ppc_altivec_vcmpnew_p:
9866         CompareOpc = 135;
9867         break;
9868       case Intrinsic::ppc_altivec_vcmpnezb_p:
9869         CompareOpc = 263;
9870         break;
9871       case Intrinsic::ppc_altivec_vcmpnezh_p:
9872         CompareOpc = 327;
9873         break;
9874       case Intrinsic::ppc_altivec_vcmpnezw_p:
9875         CompareOpc = 391;
9876         break;
9877       }
9878       isDot = true;
9879     } else
9880       return false;
9881     break;
9882   case Intrinsic::ppc_altivec_vcmpgefp_p:
9883     CompareOpc = 454;
9884     isDot = true;
9885     break;
9886   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9887     CompareOpc = 710;
9888     isDot = true;
9889     break;
9890   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9891     CompareOpc = 774;
9892     isDot = true;
9893     break;
9894   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9895     CompareOpc = 838;
9896     isDot = true;
9897     break;
9898   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9899     CompareOpc = 902;
9900     isDot = true;
9901     break;
9902   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9903     if (Subtarget.hasP8Altivec()) {
9904       CompareOpc = 967;
9905       isDot = true;
9906     } else
9907       return false;
9908     break;
9909   case Intrinsic::ppc_altivec_vcmpgtub_p:
9910     CompareOpc = 518;
9911     isDot = true;
9912     break;
9913   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9914     CompareOpc = 582;
9915     isDot = true;
9916     break;
9917   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9918     CompareOpc = 646;
9919     isDot = true;
9920     break;
9921   case Intrinsic::ppc_altivec_vcmpgtud_p:
9922     if (Subtarget.hasP8Altivec()) {
9923       CompareOpc = 711;
9924       isDot = true;
9925     } else
9926       return false;
9927     break;
9928 
9929   case Intrinsic::ppc_altivec_vcmpequq:
9930   case Intrinsic::ppc_altivec_vcmpgtsq:
9931   case Intrinsic::ppc_altivec_vcmpgtuq:
9932     if (!Subtarget.isISA3_1())
9933       return false;
9934     switch (IntrinsicID) {
9935     default:
9936       llvm_unreachable("Unknown comparison intrinsic.");
9937     case Intrinsic::ppc_altivec_vcmpequq:
9938       CompareOpc = 455;
9939       break;
9940     case Intrinsic::ppc_altivec_vcmpgtsq:
9941       CompareOpc = 903;
9942       break;
9943     case Intrinsic::ppc_altivec_vcmpgtuq:
9944       CompareOpc = 647;
9945       break;
9946     }
9947     break;
9948 
9949   // VSX predicate comparisons use the same infrastructure
9950   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9951   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9952   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9953   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9954   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9955   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9956     if (Subtarget.hasVSX()) {
9957       switch (IntrinsicID) {
9958       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9959         CompareOpc = 99;
9960         break;
9961       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9962         CompareOpc = 115;
9963         break;
9964       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9965         CompareOpc = 107;
9966         break;
9967       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9968         CompareOpc = 67;
9969         break;
9970       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9971         CompareOpc = 83;
9972         break;
9973       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9974         CompareOpc = 75;
9975         break;
9976       }
9977       isDot = true;
9978     } else
9979       return false;
9980     break;
9981 
9982   // Normal Comparisons.
9983   case Intrinsic::ppc_altivec_vcmpbfp:
9984     CompareOpc = 966;
9985     break;
9986   case Intrinsic::ppc_altivec_vcmpeqfp:
9987     CompareOpc = 198;
9988     break;
9989   case Intrinsic::ppc_altivec_vcmpequb:
9990     CompareOpc = 6;
9991     break;
9992   case Intrinsic::ppc_altivec_vcmpequh:
9993     CompareOpc = 70;
9994     break;
9995   case Intrinsic::ppc_altivec_vcmpequw:
9996     CompareOpc = 134;
9997     break;
9998   case Intrinsic::ppc_altivec_vcmpequd:
9999     if (Subtarget.hasP8Altivec())
10000       CompareOpc = 199;
10001     else
10002       return false;
10003     break;
10004   case Intrinsic::ppc_altivec_vcmpneb:
10005   case Intrinsic::ppc_altivec_vcmpneh:
10006   case Intrinsic::ppc_altivec_vcmpnew:
10007   case Intrinsic::ppc_altivec_vcmpnezb:
10008   case Intrinsic::ppc_altivec_vcmpnezh:
10009   case Intrinsic::ppc_altivec_vcmpnezw:
10010     if (Subtarget.hasP9Altivec())
10011       switch (IntrinsicID) {
10012       default:
10013         llvm_unreachable("Unknown comparison intrinsic.");
10014       case Intrinsic::ppc_altivec_vcmpneb:
10015         CompareOpc = 7;
10016         break;
10017       case Intrinsic::ppc_altivec_vcmpneh:
10018         CompareOpc = 71;
10019         break;
10020       case Intrinsic::ppc_altivec_vcmpnew:
10021         CompareOpc = 135;
10022         break;
10023       case Intrinsic::ppc_altivec_vcmpnezb:
10024         CompareOpc = 263;
10025         break;
10026       case Intrinsic::ppc_altivec_vcmpnezh:
10027         CompareOpc = 327;
10028         break;
10029       case Intrinsic::ppc_altivec_vcmpnezw:
10030         CompareOpc = 391;
10031         break;
10032       }
10033     else
10034       return false;
10035     break;
10036   case Intrinsic::ppc_altivec_vcmpgefp:
10037     CompareOpc = 454;
10038     break;
10039   case Intrinsic::ppc_altivec_vcmpgtfp:
10040     CompareOpc = 710;
10041     break;
10042   case Intrinsic::ppc_altivec_vcmpgtsb:
10043     CompareOpc = 774;
10044     break;
10045   case Intrinsic::ppc_altivec_vcmpgtsh:
10046     CompareOpc = 838;
10047     break;
10048   case Intrinsic::ppc_altivec_vcmpgtsw:
10049     CompareOpc = 902;
10050     break;
10051   case Intrinsic::ppc_altivec_vcmpgtsd:
10052     if (Subtarget.hasP8Altivec())
10053       CompareOpc = 967;
10054     else
10055       return false;
10056     break;
10057   case Intrinsic::ppc_altivec_vcmpgtub:
10058     CompareOpc = 518;
10059     break;
10060   case Intrinsic::ppc_altivec_vcmpgtuh:
10061     CompareOpc = 582;
10062     break;
10063   case Intrinsic::ppc_altivec_vcmpgtuw:
10064     CompareOpc = 646;
10065     break;
10066   case Intrinsic::ppc_altivec_vcmpgtud:
10067     if (Subtarget.hasP8Altivec())
10068       CompareOpc = 711;
10069     else
10070       return false;
10071     break;
10072   case Intrinsic::ppc_altivec_vcmpequq_p:
10073   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10074   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10075     if (!Subtarget.isISA3_1())
10076       return false;
10077     switch (IntrinsicID) {
10078     default:
10079       llvm_unreachable("Unknown comparison intrinsic.");
10080     case Intrinsic::ppc_altivec_vcmpequq_p:
10081       CompareOpc = 455;
10082       break;
10083     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10084       CompareOpc = 903;
10085       break;
10086     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10087       CompareOpc = 647;
10088       break;
10089     }
10090     isDot = true;
10091     break;
10092   }
10093   return true;
10094 }
10095 
10096 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10097 /// lower, do it, otherwise return null.
10098 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10099                                                    SelectionDAG &DAG) const {
10100   unsigned IntrinsicID =
10101     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10102 
10103   SDLoc dl(Op);
10104 
10105   switch (IntrinsicID) {
10106   case Intrinsic::thread_pointer:
10107     // Reads the thread pointer register, used for __builtin_thread_pointer.
10108     if (Subtarget.isPPC64())
10109       return DAG.getRegister(PPC::X13, MVT::i64);
10110     return DAG.getRegister(PPC::R2, MVT::i32);
10111 
10112   case Intrinsic::ppc_mma_disassemble_acc:
10113   case Intrinsic::ppc_vsx_disassemble_pair: {
10114     int NumVecs = 2;
10115     SDValue WideVec = Op.getOperand(1);
10116     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10117       NumVecs = 4;
10118       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10119     }
10120     SmallVector<SDValue, 4> RetOps;
10121     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10122       SDValue Extract = DAG.getNode(
10123           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10124           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10125                                                      : VecNo,
10126                           dl, getPointerTy(DAG.getDataLayout())));
10127       RetOps.push_back(Extract);
10128     }
10129     return DAG.getMergeValues(RetOps, dl);
10130   }
10131   }
10132 
10133   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10134   // opcode number of the comparison.
10135   int CompareOpc;
10136   bool isDot;
10137   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10138     return SDValue();    // Don't custom lower most intrinsics.
10139 
10140   // If this is a non-dot comparison, make the VCMP node and we are done.
10141   if (!isDot) {
10142     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10143                               Op.getOperand(1), Op.getOperand(2),
10144                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10145     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10146   }
10147 
10148   // Create the PPCISD altivec 'dot' comparison node.
10149   SDValue Ops[] = {
10150     Op.getOperand(2),  // LHS
10151     Op.getOperand(3),  // RHS
10152     DAG.getConstant(CompareOpc, dl, MVT::i32)
10153   };
10154   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10155   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10156 
10157   // Now that we have the comparison, emit a copy from the CR to a GPR.
10158   // This is flagged to the above dot comparison.
10159   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10160                                 DAG.getRegister(PPC::CR6, MVT::i32),
10161                                 CompNode.getValue(1));
10162 
10163   // Unpack the result based on how the target uses it.
10164   unsigned BitNo;   // Bit # of CR6.
10165   bool InvertBit;   // Invert result?
10166   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10167   default:  // Can't happen, don't crash on invalid number though.
10168   case 0:   // Return the value of the EQ bit of CR6.
10169     BitNo = 0; InvertBit = false;
10170     break;
10171   case 1:   // Return the inverted value of the EQ bit of CR6.
10172     BitNo = 0; InvertBit = true;
10173     break;
10174   case 2:   // Return the value of the LT bit of CR6.
10175     BitNo = 2; InvertBit = false;
10176     break;
10177   case 3:   // Return the inverted value of the LT bit of CR6.
10178     BitNo = 2; InvertBit = true;
10179     break;
10180   }
10181 
10182   // Shift the bit into the low position.
10183   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10184                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10185   // Isolate the bit.
10186   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10187                       DAG.getConstant(1, dl, MVT::i32));
10188 
10189   // If we are supposed to, toggle the bit.
10190   if (InvertBit)
10191     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10192                         DAG.getConstant(1, dl, MVT::i32));
10193   return Flags;
10194 }
10195 
10196 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10197                                                SelectionDAG &DAG) const {
10198   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10199   // the beginning of the argument list.
10200   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10201   SDLoc DL(Op);
10202   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10203   case Intrinsic::ppc_cfence: {
10204     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10205     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10206     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10207                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10208                                                   Op.getOperand(ArgStart + 1)),
10209                                       Op.getOperand(0)),
10210                    0);
10211   }
10212   default:
10213     break;
10214   }
10215   return SDValue();
10216 }
10217 
10218 // Lower scalar BSWAP64 to xxbrd.
10219 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10220   SDLoc dl(Op);
10221   // MTVSRDD
10222   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10223                    Op.getOperand(0));
10224   // XXBRD
10225   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10226   // MFVSRD
10227   int VectorIndex = 0;
10228   if (Subtarget.isLittleEndian())
10229     VectorIndex = 1;
10230   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10231                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10232   return Op;
10233 }
10234 
10235 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10236 // compared to a value that is atomically loaded (atomic loads zero-extend).
10237 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10238                                                 SelectionDAG &DAG) const {
10239   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10240          "Expecting an atomic compare-and-swap here.");
10241   SDLoc dl(Op);
10242   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10243   EVT MemVT = AtomicNode->getMemoryVT();
10244   if (MemVT.getSizeInBits() >= 32)
10245     return Op;
10246 
10247   SDValue CmpOp = Op.getOperand(2);
10248   // If this is already correctly zero-extended, leave it alone.
10249   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10250   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10251     return Op;
10252 
10253   // Clear the high bits of the compare operand.
10254   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10255   SDValue NewCmpOp =
10256     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10257                 DAG.getConstant(MaskVal, dl, MVT::i32));
10258 
10259   // Replace the existing compare operand with the properly zero-extended one.
10260   SmallVector<SDValue, 4> Ops;
10261   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10262     Ops.push_back(AtomicNode->getOperand(i));
10263   Ops[2] = NewCmpOp;
10264   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10265   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10266   auto NodeTy =
10267     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10268   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10269 }
10270 
10271 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10272                                                  SelectionDAG &DAG) const {
10273   SDLoc dl(Op);
10274   // Create a stack slot that is 16-byte aligned.
10275   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10276   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10277   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10278   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10279 
10280   // Store the input value into Value#0 of the stack slot.
10281   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10282                                MachinePointerInfo());
10283   // Load it out.
10284   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10285 }
10286 
10287 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10288                                                   SelectionDAG &DAG) const {
10289   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10290          "Should only be called for ISD::INSERT_VECTOR_ELT");
10291 
10292   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10293 
10294   EVT VT = Op.getValueType();
10295   SDLoc dl(Op);
10296   SDValue V1 = Op.getOperand(0);
10297   SDValue V2 = Op.getOperand(1);
10298   SDValue V3 = Op.getOperand(2);
10299 
10300   if (Subtarget.isISA3_1()) {
10301     // On P10, we have legal lowering for constant and variable indices for
10302     // integer vectors.
10303     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10304         VT == MVT::v2i64)
10305       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10306     // For f32 and f64 vectors, we have legal lowering for variable indices.
10307     // For f32 we also have legal lowering when the element is loaded from
10308     // memory.
10309     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10310       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10311         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10312       return SDValue();
10313     }
10314   }
10315 
10316   // Before P10, we have legal lowering for constant indices but not for
10317   // variable ones.
10318   if (!C)
10319     return SDValue();
10320 
10321   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10322   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10323     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10324     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10325     unsigned InsertAtElement = C->getZExtValue();
10326     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10327     if (Subtarget.isLittleEndian()) {
10328       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10329     }
10330     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10331                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10332   }
10333   return Op;
10334 }
10335 
10336 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10337                                            SelectionDAG &DAG) const {
10338   SDLoc dl(Op);
10339   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10340   SDValue LoadChain = LN->getChain();
10341   SDValue BasePtr = LN->getBasePtr();
10342   EVT VT = Op.getValueType();
10343 
10344   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10345     return Op;
10346 
10347   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10348   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10349   // 2 or 4 vsx registers.
10350   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10351          "Type unsupported without MMA");
10352   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10353          "Type unsupported without paired vector support");
10354   Align Alignment = LN->getAlign();
10355   SmallVector<SDValue, 4> Loads;
10356   SmallVector<SDValue, 4> LoadChains;
10357   unsigned NumVecs = VT.getSizeInBits() / 128;
10358   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10359     SDValue Load =
10360         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10361                     LN->getPointerInfo().getWithOffset(Idx * 16),
10362                     commonAlignment(Alignment, Idx * 16),
10363                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10364     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10365                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10366     Loads.push_back(Load);
10367     LoadChains.push_back(Load.getValue(1));
10368   }
10369   if (Subtarget.isLittleEndian()) {
10370     std::reverse(Loads.begin(), Loads.end());
10371     std::reverse(LoadChains.begin(), LoadChains.end());
10372   }
10373   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10374   SDValue Value =
10375       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10376                   dl, VT, Loads);
10377   SDValue RetOps[] = {Value, TF};
10378   return DAG.getMergeValues(RetOps, dl);
10379 }
10380 
10381 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10382                                             SelectionDAG &DAG) const {
10383   SDLoc dl(Op);
10384   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10385   SDValue StoreChain = SN->getChain();
10386   SDValue BasePtr = SN->getBasePtr();
10387   SDValue Value = SN->getValue();
10388   EVT StoreVT = Value.getValueType();
10389 
10390   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10391     return Op;
10392 
10393   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10394   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10395   // underlying registers individually.
10396   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10397          "Type unsupported without MMA");
10398   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10399          "Type unsupported without paired vector support");
10400   Align Alignment = SN->getAlign();
10401   SmallVector<SDValue, 4> Stores;
10402   unsigned NumVecs = 2;
10403   if (StoreVT == MVT::v512i1) {
10404     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10405     NumVecs = 4;
10406   }
10407   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10408     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10409     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10410                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10411     SDValue Store =
10412         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10413                      SN->getPointerInfo().getWithOffset(Idx * 16),
10414                      commonAlignment(Alignment, Idx * 16),
10415                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10416     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10417                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10418     Stores.push_back(Store);
10419   }
10420   SDValue TF = DAG.getTokenFactor(dl, Stores);
10421   return TF;
10422 }
10423 
10424 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10425   SDLoc dl(Op);
10426   if (Op.getValueType() == MVT::v4i32) {
10427     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10428 
10429     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10430     // +16 as shift amt.
10431     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10432     SDValue RHSSwap =   // = vrlw RHS, 16
10433       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10434 
10435     // Shrinkify inputs to v8i16.
10436     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10437     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10438     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10439 
10440     // Low parts multiplied together, generating 32-bit results (we ignore the
10441     // top parts).
10442     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10443                                         LHS, RHS, DAG, dl, MVT::v4i32);
10444 
10445     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10446                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10447     // Shift the high parts up 16 bits.
10448     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10449                               Neg16, DAG, dl);
10450     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10451   } else if (Op.getValueType() == MVT::v16i8) {
10452     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10453     bool isLittleEndian = Subtarget.isLittleEndian();
10454 
10455     // Multiply the even 8-bit parts, producing 16-bit sums.
10456     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10457                                            LHS, RHS, DAG, dl, MVT::v8i16);
10458     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10459 
10460     // Multiply the odd 8-bit parts, producing 16-bit sums.
10461     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10462                                           LHS, RHS, DAG, dl, MVT::v8i16);
10463     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10464 
10465     // Merge the results together.  Because vmuleub and vmuloub are
10466     // instructions with a big-endian bias, we must reverse the
10467     // element numbering and reverse the meaning of "odd" and "even"
10468     // when generating little endian code.
10469     int Ops[16];
10470     for (unsigned i = 0; i != 8; ++i) {
10471       if (isLittleEndian) {
10472         Ops[i*2  ] = 2*i;
10473         Ops[i*2+1] = 2*i+16;
10474       } else {
10475         Ops[i*2  ] = 2*i+1;
10476         Ops[i*2+1] = 2*i+1+16;
10477       }
10478     }
10479     if (isLittleEndian)
10480       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10481     else
10482       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10483   } else {
10484     llvm_unreachable("Unknown mul to lower!");
10485   }
10486 }
10487 
10488 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10489   bool IsStrict = Op->isStrictFPOpcode();
10490   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10491       !Subtarget.hasP9Vector())
10492     return SDValue();
10493 
10494   return Op;
10495 }
10496 
10497 // Custom lowering for fpext vf32 to v2f64
10498 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10499 
10500   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10501          "Should only be called for ISD::FP_EXTEND");
10502 
10503   // FIXME: handle extends from half precision float vectors on P9.
10504   // We only want to custom lower an extend from v2f32 to v2f64.
10505   if (Op.getValueType() != MVT::v2f64 ||
10506       Op.getOperand(0).getValueType() != MVT::v2f32)
10507     return SDValue();
10508 
10509   SDLoc dl(Op);
10510   SDValue Op0 = Op.getOperand(0);
10511 
10512   switch (Op0.getOpcode()) {
10513   default:
10514     return SDValue();
10515   case ISD::EXTRACT_SUBVECTOR: {
10516     assert(Op0.getNumOperands() == 2 &&
10517            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10518            "Node should have 2 operands with second one being a constant!");
10519 
10520     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10521       return SDValue();
10522 
10523     // Custom lower is only done for high or low doubleword.
10524     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10525     if (Idx % 2 != 0)
10526       return SDValue();
10527 
10528     // Since input is v4f32, at this point Idx is either 0 or 2.
10529     // Shift to get the doubleword position we want.
10530     int DWord = Idx >> 1;
10531 
10532     // High and low word positions are different on little endian.
10533     if (Subtarget.isLittleEndian())
10534       DWord ^= 0x1;
10535 
10536     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10537                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10538   }
10539   case ISD::FADD:
10540   case ISD::FMUL:
10541   case ISD::FSUB: {
10542     SDValue NewLoad[2];
10543     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10544       // Ensure both input are loads.
10545       SDValue LdOp = Op0.getOperand(i);
10546       if (LdOp.getOpcode() != ISD::LOAD)
10547         return SDValue();
10548       // Generate new load node.
10549       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10550       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10551       NewLoad[i] = DAG.getMemIntrinsicNode(
10552           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10553           LD->getMemoryVT(), LD->getMemOperand());
10554     }
10555     SDValue NewOp =
10556         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10557                     NewLoad[1], Op0.getNode()->getFlags());
10558     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10559                        DAG.getConstant(0, dl, MVT::i32));
10560   }
10561   case ISD::LOAD: {
10562     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10563     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10564     SDValue NewLd = DAG.getMemIntrinsicNode(
10565         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10566         LD->getMemoryVT(), LD->getMemOperand());
10567     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10568                        DAG.getConstant(0, dl, MVT::i32));
10569   }
10570   }
10571   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10572 }
10573 
10574 /// LowerOperation - Provide custom lowering hooks for some operations.
10575 ///
10576 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10577   switch (Op.getOpcode()) {
10578   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10579   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10580   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10581   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10582   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10583   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10584   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10585   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10586   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10587 
10588   // Variable argument lowering.
10589   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10590   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10591   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10592 
10593   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10594   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10595   case ISD::GET_DYNAMIC_AREA_OFFSET:
10596     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10597 
10598   // Exception handling lowering.
10599   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10600   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10601   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10602 
10603   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10604   case ISD::STORE:              return LowerSTORE(Op, DAG);
10605   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10606   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10607   case ISD::STRICT_FP_TO_UINT:
10608   case ISD::STRICT_FP_TO_SINT:
10609   case ISD::FP_TO_UINT:
10610   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10611   case ISD::STRICT_UINT_TO_FP:
10612   case ISD::STRICT_SINT_TO_FP:
10613   case ISD::UINT_TO_FP:
10614   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10615   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10616 
10617   // Lower 64-bit shifts.
10618   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10619   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10620   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10621 
10622   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10623   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10624 
10625   // Vector-related lowering.
10626   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10627   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10628   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10629   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10630   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10631   case ISD::MUL:                return LowerMUL(Op, DAG);
10632   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10633   case ISD::STRICT_FP_ROUND:
10634   case ISD::FP_ROUND:
10635     return LowerFP_ROUND(Op, DAG);
10636   case ISD::ROTL:               return LowerROTL(Op, DAG);
10637 
10638   // For counter-based loop handling.
10639   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10640 
10641   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10642 
10643   // Frame & Return address.
10644   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10645   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10646 
10647   case ISD::INTRINSIC_VOID:
10648     return LowerINTRINSIC_VOID(Op, DAG);
10649   case ISD::BSWAP:
10650     return LowerBSWAP(Op, DAG);
10651   case ISD::ATOMIC_CMP_SWAP:
10652     return LowerATOMIC_CMP_SWAP(Op, DAG);
10653   }
10654 }
10655 
10656 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10657                                            SmallVectorImpl<SDValue>&Results,
10658                                            SelectionDAG &DAG) const {
10659   SDLoc dl(N);
10660   switch (N->getOpcode()) {
10661   default:
10662     llvm_unreachable("Do not know how to custom type legalize this operation!");
10663   case ISD::READCYCLECOUNTER: {
10664     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10665     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10666 
10667     Results.push_back(
10668         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10669     Results.push_back(RTB.getValue(2));
10670     break;
10671   }
10672   case ISD::INTRINSIC_W_CHAIN: {
10673     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10674         Intrinsic::loop_decrement)
10675       break;
10676 
10677     assert(N->getValueType(0) == MVT::i1 &&
10678            "Unexpected result type for CTR decrement intrinsic");
10679     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10680                                  N->getValueType(0));
10681     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10682     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10683                                  N->getOperand(1));
10684 
10685     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10686     Results.push_back(NewInt.getValue(1));
10687     break;
10688   }
10689   case ISD::VAARG: {
10690     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10691       return;
10692 
10693     EVT VT = N->getValueType(0);
10694 
10695     if (VT == MVT::i64) {
10696       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10697 
10698       Results.push_back(NewNode);
10699       Results.push_back(NewNode.getValue(1));
10700     }
10701     return;
10702   }
10703   case ISD::STRICT_FP_TO_SINT:
10704   case ISD::STRICT_FP_TO_UINT:
10705   case ISD::FP_TO_SINT:
10706   case ISD::FP_TO_UINT:
10707     // LowerFP_TO_INT() can only handle f32 and f64.
10708     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10709         MVT::ppcf128)
10710       return;
10711     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10712     return;
10713   case ISD::TRUNCATE: {
10714     if (!N->getValueType(0).isVector())
10715       return;
10716     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10717     if (Lowered)
10718       Results.push_back(Lowered);
10719     return;
10720   }
10721   case ISD::FSHL:
10722   case ISD::FSHR:
10723     // Don't handle funnel shifts here.
10724     return;
10725   case ISD::BITCAST:
10726     // Don't handle bitcast here.
10727     return;
10728   case ISD::FP_EXTEND:
10729     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10730     if (Lowered)
10731       Results.push_back(Lowered);
10732     return;
10733   }
10734 }
10735 
10736 //===----------------------------------------------------------------------===//
10737 //  Other Lowering Code
10738 //===----------------------------------------------------------------------===//
10739 
10740 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10741   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10742   Function *Func = Intrinsic::getDeclaration(M, Id);
10743   return Builder.CreateCall(Func, {});
10744 }
10745 
10746 // The mappings for emitLeading/TrailingFence is taken from
10747 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10748 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10749                                                  Instruction *Inst,
10750                                                  AtomicOrdering Ord) const {
10751   if (Ord == AtomicOrdering::SequentiallyConsistent)
10752     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10753   if (isReleaseOrStronger(Ord))
10754     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10755   return nullptr;
10756 }
10757 
10758 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10759                                                   Instruction *Inst,
10760                                                   AtomicOrdering Ord) const {
10761   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10762     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10763     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10764     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10765     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10766       return Builder.CreateCall(
10767           Intrinsic::getDeclaration(
10768               Builder.GetInsertBlock()->getParent()->getParent(),
10769               Intrinsic::ppc_cfence, {Inst->getType()}),
10770           {Inst});
10771     // FIXME: Can use isync for rmw operation.
10772     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10773   }
10774   return nullptr;
10775 }
10776 
10777 MachineBasicBlock *
10778 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10779                                     unsigned AtomicSize,
10780                                     unsigned BinOpcode,
10781                                     unsigned CmpOpcode,
10782                                     unsigned CmpPred) const {
10783   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10784   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10785 
10786   auto LoadMnemonic = PPC::LDARX;
10787   auto StoreMnemonic = PPC::STDCX;
10788   switch (AtomicSize) {
10789   default:
10790     llvm_unreachable("Unexpected size of atomic entity");
10791   case 1:
10792     LoadMnemonic = PPC::LBARX;
10793     StoreMnemonic = PPC::STBCX;
10794     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10795     break;
10796   case 2:
10797     LoadMnemonic = PPC::LHARX;
10798     StoreMnemonic = PPC::STHCX;
10799     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10800     break;
10801   case 4:
10802     LoadMnemonic = PPC::LWARX;
10803     StoreMnemonic = PPC::STWCX;
10804     break;
10805   case 8:
10806     LoadMnemonic = PPC::LDARX;
10807     StoreMnemonic = PPC::STDCX;
10808     break;
10809   }
10810 
10811   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10812   MachineFunction *F = BB->getParent();
10813   MachineFunction::iterator It = ++BB->getIterator();
10814 
10815   Register dest = MI.getOperand(0).getReg();
10816   Register ptrA = MI.getOperand(1).getReg();
10817   Register ptrB = MI.getOperand(2).getReg();
10818   Register incr = MI.getOperand(3).getReg();
10819   DebugLoc dl = MI.getDebugLoc();
10820 
10821   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10822   MachineBasicBlock *loop2MBB =
10823     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10824   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10825   F->insert(It, loopMBB);
10826   if (CmpOpcode)
10827     F->insert(It, loop2MBB);
10828   F->insert(It, exitMBB);
10829   exitMBB->splice(exitMBB->begin(), BB,
10830                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10831   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10832 
10833   MachineRegisterInfo &RegInfo = F->getRegInfo();
10834   Register TmpReg = (!BinOpcode) ? incr :
10835     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10836                                            : &PPC::GPRCRegClass);
10837 
10838   //  thisMBB:
10839   //   ...
10840   //   fallthrough --> loopMBB
10841   BB->addSuccessor(loopMBB);
10842 
10843   //  loopMBB:
10844   //   l[wd]arx dest, ptr
10845   //   add r0, dest, incr
10846   //   st[wd]cx. r0, ptr
10847   //   bne- loopMBB
10848   //   fallthrough --> exitMBB
10849 
10850   // For max/min...
10851   //  loopMBB:
10852   //   l[wd]arx dest, ptr
10853   //   cmpl?[wd] incr, dest
10854   //   bgt exitMBB
10855   //  loop2MBB:
10856   //   st[wd]cx. dest, ptr
10857   //   bne- loopMBB
10858   //   fallthrough --> exitMBB
10859 
10860   BB = loopMBB;
10861   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10862     .addReg(ptrA).addReg(ptrB);
10863   if (BinOpcode)
10864     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10865   if (CmpOpcode) {
10866     // Signed comparisons of byte or halfword values must be sign-extended.
10867     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10868       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10869       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10870               ExtReg).addReg(dest);
10871       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10872         .addReg(incr).addReg(ExtReg);
10873     } else
10874       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10875         .addReg(incr).addReg(dest);
10876 
10877     BuildMI(BB, dl, TII->get(PPC::BCC))
10878       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10879     BB->addSuccessor(loop2MBB);
10880     BB->addSuccessor(exitMBB);
10881     BB = loop2MBB;
10882   }
10883   BuildMI(BB, dl, TII->get(StoreMnemonic))
10884     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10885   BuildMI(BB, dl, TII->get(PPC::BCC))
10886     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10887   BB->addSuccessor(loopMBB);
10888   BB->addSuccessor(exitMBB);
10889 
10890   //  exitMBB:
10891   //   ...
10892   BB = exitMBB;
10893   return BB;
10894 }
10895 
10896 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
10897   switch(MI.getOpcode()) {
10898   default:
10899     return false;
10900   case PPC::COPY:
10901     return TII->isSignExtended(MI);
10902   case PPC::LHA:
10903   case PPC::LHA8:
10904   case PPC::LHAU:
10905   case PPC::LHAU8:
10906   case PPC::LHAUX:
10907   case PPC::LHAUX8:
10908   case PPC::LHAX:
10909   case PPC::LHAX8:
10910   case PPC::LWA:
10911   case PPC::LWAUX:
10912   case PPC::LWAX:
10913   case PPC::LWAX_32:
10914   case PPC::LWA_32:
10915   case PPC::PLHA:
10916   case PPC::PLHA8:
10917   case PPC::PLHA8pc:
10918   case PPC::PLHApc:
10919   case PPC::PLWA:
10920   case PPC::PLWA8:
10921   case PPC::PLWA8pc:
10922   case PPC::PLWApc:
10923   case PPC::EXTSB:
10924   case PPC::EXTSB8:
10925   case PPC::EXTSB8_32_64:
10926   case PPC::EXTSB8_rec:
10927   case PPC::EXTSB_rec:
10928   case PPC::EXTSH:
10929   case PPC::EXTSH8:
10930   case PPC::EXTSH8_32_64:
10931   case PPC::EXTSH8_rec:
10932   case PPC::EXTSH_rec:
10933   case PPC::EXTSW:
10934   case PPC::EXTSWSLI:
10935   case PPC::EXTSWSLI_32_64:
10936   case PPC::EXTSWSLI_32_64_rec:
10937   case PPC::EXTSWSLI_rec:
10938   case PPC::EXTSW_32:
10939   case PPC::EXTSW_32_64:
10940   case PPC::EXTSW_32_64_rec:
10941   case PPC::EXTSW_rec:
10942   case PPC::SRAW:
10943   case PPC::SRAWI:
10944   case PPC::SRAWI_rec:
10945   case PPC::SRAW_rec:
10946     return true;
10947   }
10948   return false;
10949 }
10950 
10951 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10952     MachineInstr &MI, MachineBasicBlock *BB,
10953     bool is8bit, // operation
10954     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10955   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10956   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10957 
10958   // If this is a signed comparison and the value being compared is not known
10959   // to be sign extended, sign extend it here.
10960   DebugLoc dl = MI.getDebugLoc();
10961   MachineFunction *F = BB->getParent();
10962   MachineRegisterInfo &RegInfo = F->getRegInfo();
10963   Register incr = MI.getOperand(3).getReg();
10964   bool IsSignExtended = Register::isVirtualRegister(incr) &&
10965     isSignExtended(*RegInfo.getVRegDef(incr), TII);
10966 
10967   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
10968     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10969     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
10970         .addReg(MI.getOperand(3).getReg());
10971     MI.getOperand(3).setReg(ValueReg);
10972   }
10973   // If we support part-word atomic mnemonics, just use them
10974   if (Subtarget.hasPartwordAtomics())
10975     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10976                             CmpPred);
10977 
10978   // In 64 bit mode we have to use 64 bits for addresses, even though the
10979   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10980   // registers without caring whether they're 32 or 64, but here we're
10981   // doing actual arithmetic on the addresses.
10982   bool is64bit = Subtarget.isPPC64();
10983   bool isLittleEndian = Subtarget.isLittleEndian();
10984   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10985 
10986   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10987   MachineFunction::iterator It = ++BB->getIterator();
10988 
10989   Register dest = MI.getOperand(0).getReg();
10990   Register ptrA = MI.getOperand(1).getReg();
10991   Register ptrB = MI.getOperand(2).getReg();
10992 
10993   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10994   MachineBasicBlock *loop2MBB =
10995       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10996   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10997   F->insert(It, loopMBB);
10998   if (CmpOpcode)
10999     F->insert(It, loop2MBB);
11000   F->insert(It, exitMBB);
11001   exitMBB->splice(exitMBB->begin(), BB,
11002                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11003   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11004 
11005   const TargetRegisterClass *RC =
11006       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11007   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11008 
11009   Register PtrReg = RegInfo.createVirtualRegister(RC);
11010   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11011   Register ShiftReg =
11012       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11013   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11014   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11015   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11016   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11017   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11018   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11019   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11020   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11021   Register Ptr1Reg;
11022   Register TmpReg =
11023       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11024 
11025   //  thisMBB:
11026   //   ...
11027   //   fallthrough --> loopMBB
11028   BB->addSuccessor(loopMBB);
11029 
11030   // The 4-byte load must be aligned, while a char or short may be
11031   // anywhere in the word.  Hence all this nasty bookkeeping code.
11032   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11033   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11034   //   xori shift, shift1, 24 [16]
11035   //   rlwinm ptr, ptr1, 0, 0, 29
11036   //   slw incr2, incr, shift
11037   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11038   //   slw mask, mask2, shift
11039   //  loopMBB:
11040   //   lwarx tmpDest, ptr
11041   //   add tmp, tmpDest, incr2
11042   //   andc tmp2, tmpDest, mask
11043   //   and tmp3, tmp, mask
11044   //   or tmp4, tmp3, tmp2
11045   //   stwcx. tmp4, ptr
11046   //   bne- loopMBB
11047   //   fallthrough --> exitMBB
11048   //   srw dest, tmpDest, shift
11049   if (ptrA != ZeroReg) {
11050     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11051     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11052         .addReg(ptrA)
11053         .addReg(ptrB);
11054   } else {
11055     Ptr1Reg = ptrB;
11056   }
11057   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11058   // mode.
11059   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11060       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11061       .addImm(3)
11062       .addImm(27)
11063       .addImm(is8bit ? 28 : 27);
11064   if (!isLittleEndian)
11065     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11066         .addReg(Shift1Reg)
11067         .addImm(is8bit ? 24 : 16);
11068   if (is64bit)
11069     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11070         .addReg(Ptr1Reg)
11071         .addImm(0)
11072         .addImm(61);
11073   else
11074     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11075         .addReg(Ptr1Reg)
11076         .addImm(0)
11077         .addImm(0)
11078         .addImm(29);
11079   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11080   if (is8bit)
11081     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11082   else {
11083     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11084     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11085         .addReg(Mask3Reg)
11086         .addImm(65535);
11087   }
11088   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11089       .addReg(Mask2Reg)
11090       .addReg(ShiftReg);
11091 
11092   BB = loopMBB;
11093   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11094       .addReg(ZeroReg)
11095       .addReg(PtrReg);
11096   if (BinOpcode)
11097     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11098         .addReg(Incr2Reg)
11099         .addReg(TmpDestReg);
11100   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11101       .addReg(TmpDestReg)
11102       .addReg(MaskReg);
11103   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11104   if (CmpOpcode) {
11105     // For unsigned comparisons, we can directly compare the shifted values.
11106     // For signed comparisons we shift and sign extend.
11107     Register SReg = RegInfo.createVirtualRegister(GPRC);
11108     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11109         .addReg(TmpDestReg)
11110         .addReg(MaskReg);
11111     unsigned ValueReg = SReg;
11112     unsigned CmpReg = Incr2Reg;
11113     if (CmpOpcode == PPC::CMPW) {
11114       ValueReg = RegInfo.createVirtualRegister(GPRC);
11115       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11116           .addReg(SReg)
11117           .addReg(ShiftReg);
11118       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11119       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11120           .addReg(ValueReg);
11121       ValueReg = ValueSReg;
11122       CmpReg = incr;
11123     }
11124     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11125         .addReg(CmpReg)
11126         .addReg(ValueReg);
11127     BuildMI(BB, dl, TII->get(PPC::BCC))
11128         .addImm(CmpPred)
11129         .addReg(PPC::CR0)
11130         .addMBB(exitMBB);
11131     BB->addSuccessor(loop2MBB);
11132     BB->addSuccessor(exitMBB);
11133     BB = loop2MBB;
11134   }
11135   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11136   BuildMI(BB, dl, TII->get(PPC::STWCX))
11137       .addReg(Tmp4Reg)
11138       .addReg(ZeroReg)
11139       .addReg(PtrReg);
11140   BuildMI(BB, dl, TII->get(PPC::BCC))
11141       .addImm(PPC::PRED_NE)
11142       .addReg(PPC::CR0)
11143       .addMBB(loopMBB);
11144   BB->addSuccessor(loopMBB);
11145   BB->addSuccessor(exitMBB);
11146 
11147   //  exitMBB:
11148   //   ...
11149   BB = exitMBB;
11150   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11151       .addReg(TmpDestReg)
11152       .addReg(ShiftReg);
11153   return BB;
11154 }
11155 
11156 llvm::MachineBasicBlock *
11157 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11158                                     MachineBasicBlock *MBB) const {
11159   DebugLoc DL = MI.getDebugLoc();
11160   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11161   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11162 
11163   MachineFunction *MF = MBB->getParent();
11164   MachineRegisterInfo &MRI = MF->getRegInfo();
11165 
11166   const BasicBlock *BB = MBB->getBasicBlock();
11167   MachineFunction::iterator I = ++MBB->getIterator();
11168 
11169   Register DstReg = MI.getOperand(0).getReg();
11170   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11171   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11172   Register mainDstReg = MRI.createVirtualRegister(RC);
11173   Register restoreDstReg = MRI.createVirtualRegister(RC);
11174 
11175   MVT PVT = getPointerTy(MF->getDataLayout());
11176   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11177          "Invalid Pointer Size!");
11178   // For v = setjmp(buf), we generate
11179   //
11180   // thisMBB:
11181   //  SjLjSetup mainMBB
11182   //  bl mainMBB
11183   //  v_restore = 1
11184   //  b sinkMBB
11185   //
11186   // mainMBB:
11187   //  buf[LabelOffset] = LR
11188   //  v_main = 0
11189   //
11190   // sinkMBB:
11191   //  v = phi(main, restore)
11192   //
11193 
11194   MachineBasicBlock *thisMBB = MBB;
11195   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11196   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11197   MF->insert(I, mainMBB);
11198   MF->insert(I, sinkMBB);
11199 
11200   MachineInstrBuilder MIB;
11201 
11202   // Transfer the remainder of BB and its successor edges to sinkMBB.
11203   sinkMBB->splice(sinkMBB->begin(), MBB,
11204                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11205   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11206 
11207   // Note that the structure of the jmp_buf used here is not compatible
11208   // with that used by libc, and is not designed to be. Specifically, it
11209   // stores only those 'reserved' registers that LLVM does not otherwise
11210   // understand how to spill. Also, by convention, by the time this
11211   // intrinsic is called, Clang has already stored the frame address in the
11212   // first slot of the buffer and stack address in the third. Following the
11213   // X86 target code, we'll store the jump address in the second slot. We also
11214   // need to save the TOC pointer (R2) to handle jumps between shared
11215   // libraries, and that will be stored in the fourth slot. The thread
11216   // identifier (R13) is not affected.
11217 
11218   // thisMBB:
11219   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11220   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11221   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11222 
11223   // Prepare IP either in reg.
11224   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11225   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11226   Register BufReg = MI.getOperand(1).getReg();
11227 
11228   if (Subtarget.is64BitELFABI()) {
11229     setUsesTOCBasePtr(*MBB->getParent());
11230     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11231               .addReg(PPC::X2)
11232               .addImm(TOCOffset)
11233               .addReg(BufReg)
11234               .cloneMemRefs(MI);
11235   }
11236 
11237   // Naked functions never have a base pointer, and so we use r1. For all
11238   // other functions, this decision must be delayed until during PEI.
11239   unsigned BaseReg;
11240   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11241     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11242   else
11243     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11244 
11245   MIB = BuildMI(*thisMBB, MI, DL,
11246                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11247             .addReg(BaseReg)
11248             .addImm(BPOffset)
11249             .addReg(BufReg)
11250             .cloneMemRefs(MI);
11251 
11252   // Setup
11253   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11254   MIB.addRegMask(TRI->getNoPreservedMask());
11255 
11256   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11257 
11258   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11259           .addMBB(mainMBB);
11260   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11261 
11262   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11263   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11264 
11265   // mainMBB:
11266   //  mainDstReg = 0
11267   MIB =
11268       BuildMI(mainMBB, DL,
11269               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11270 
11271   // Store IP
11272   if (Subtarget.isPPC64()) {
11273     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11274             .addReg(LabelReg)
11275             .addImm(LabelOffset)
11276             .addReg(BufReg);
11277   } else {
11278     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11279             .addReg(LabelReg)
11280             .addImm(LabelOffset)
11281             .addReg(BufReg);
11282   }
11283   MIB.cloneMemRefs(MI);
11284 
11285   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11286   mainMBB->addSuccessor(sinkMBB);
11287 
11288   // sinkMBB:
11289   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11290           TII->get(PPC::PHI), DstReg)
11291     .addReg(mainDstReg).addMBB(mainMBB)
11292     .addReg(restoreDstReg).addMBB(thisMBB);
11293 
11294   MI.eraseFromParent();
11295   return sinkMBB;
11296 }
11297 
11298 MachineBasicBlock *
11299 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11300                                      MachineBasicBlock *MBB) const {
11301   DebugLoc DL = MI.getDebugLoc();
11302   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11303 
11304   MachineFunction *MF = MBB->getParent();
11305   MachineRegisterInfo &MRI = MF->getRegInfo();
11306 
11307   MVT PVT = getPointerTy(MF->getDataLayout());
11308   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11309          "Invalid Pointer Size!");
11310 
11311   const TargetRegisterClass *RC =
11312     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11313   Register Tmp = MRI.createVirtualRegister(RC);
11314   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11315   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11316   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11317   unsigned BP =
11318       (PVT == MVT::i64)
11319           ? PPC::X30
11320           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11321                                                               : PPC::R30);
11322 
11323   MachineInstrBuilder MIB;
11324 
11325   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11326   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11327   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11328   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11329 
11330   Register BufReg = MI.getOperand(0).getReg();
11331 
11332   // Reload FP (the jumped-to function may not have had a
11333   // frame pointer, and if so, then its r31 will be restored
11334   // as necessary).
11335   if (PVT == MVT::i64) {
11336     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11337             .addImm(0)
11338             .addReg(BufReg);
11339   } else {
11340     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11341             .addImm(0)
11342             .addReg(BufReg);
11343   }
11344   MIB.cloneMemRefs(MI);
11345 
11346   // Reload IP
11347   if (PVT == MVT::i64) {
11348     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11349             .addImm(LabelOffset)
11350             .addReg(BufReg);
11351   } else {
11352     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11353             .addImm(LabelOffset)
11354             .addReg(BufReg);
11355   }
11356   MIB.cloneMemRefs(MI);
11357 
11358   // Reload SP
11359   if (PVT == MVT::i64) {
11360     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11361             .addImm(SPOffset)
11362             .addReg(BufReg);
11363   } else {
11364     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11365             .addImm(SPOffset)
11366             .addReg(BufReg);
11367   }
11368   MIB.cloneMemRefs(MI);
11369 
11370   // Reload BP
11371   if (PVT == MVT::i64) {
11372     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11373             .addImm(BPOffset)
11374             .addReg(BufReg);
11375   } else {
11376     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11377             .addImm(BPOffset)
11378             .addReg(BufReg);
11379   }
11380   MIB.cloneMemRefs(MI);
11381 
11382   // Reload TOC
11383   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11384     setUsesTOCBasePtr(*MBB->getParent());
11385     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11386               .addImm(TOCOffset)
11387               .addReg(BufReg)
11388               .cloneMemRefs(MI);
11389   }
11390 
11391   // Jump
11392   BuildMI(*MBB, MI, DL,
11393           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11394   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11395 
11396   MI.eraseFromParent();
11397   return MBB;
11398 }
11399 
11400 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11401   // If the function specifically requests inline stack probes, emit them.
11402   if (MF.getFunction().hasFnAttribute("probe-stack"))
11403     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11404            "inline-asm";
11405   return false;
11406 }
11407 
11408 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11409   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11410   unsigned StackAlign = TFI->getStackAlignment();
11411   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11412          "Unexpected stack alignment");
11413   // The default stack probe size is 4096 if the function has no
11414   // stack-probe-size attribute.
11415   unsigned StackProbeSize = 4096;
11416   const Function &Fn = MF.getFunction();
11417   if (Fn.hasFnAttribute("stack-probe-size"))
11418     Fn.getFnAttribute("stack-probe-size")
11419         .getValueAsString()
11420         .getAsInteger(0, StackProbeSize);
11421   // Round down to the stack alignment.
11422   StackProbeSize &= ~(StackAlign - 1);
11423   return StackProbeSize ? StackProbeSize : StackAlign;
11424 }
11425 
11426 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11427 // into three phases. In the first phase, it uses pseudo instruction
11428 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11429 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11430 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11431 // MaxCallFrameSize so that it can calculate correct data area pointer.
11432 MachineBasicBlock *
11433 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11434                                     MachineBasicBlock *MBB) const {
11435   const bool isPPC64 = Subtarget.isPPC64();
11436   MachineFunction *MF = MBB->getParent();
11437   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11438   DebugLoc DL = MI.getDebugLoc();
11439   const unsigned ProbeSize = getStackProbeSize(*MF);
11440   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11441   MachineRegisterInfo &MRI = MF->getRegInfo();
11442   // The CFG of probing stack looks as
11443   //         +-----+
11444   //         | MBB |
11445   //         +--+--+
11446   //            |
11447   //       +----v----+
11448   //  +--->+ TestMBB +---+
11449   //  |    +----+----+   |
11450   //  |         |        |
11451   //  |   +-----v----+   |
11452   //  +---+ BlockMBB |   |
11453   //      +----------+   |
11454   //                     |
11455   //       +---------+   |
11456   //       | TailMBB +<--+
11457   //       +---------+
11458   // In MBB, calculate previous frame pointer and final stack pointer.
11459   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11460   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11461   // TailMBB is spliced via \p MI.
11462   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11463   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11464   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11465 
11466   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11467   MF->insert(MBBIter, TestMBB);
11468   MF->insert(MBBIter, BlockMBB);
11469   MF->insert(MBBIter, TailMBB);
11470 
11471   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11472   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11473 
11474   Register DstReg = MI.getOperand(0).getReg();
11475   Register NegSizeReg = MI.getOperand(1).getReg();
11476   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11477   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11478   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11479   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11480 
11481   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11482   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11483   // NegSize.
11484   unsigned ProbeOpc;
11485   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11486     ProbeOpc =
11487         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11488   else
11489     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11490     // and NegSizeReg will be allocated in the same phyreg to avoid
11491     // redundant copy when NegSizeReg has only one use which is current MI and
11492     // will be replaced by PREPARE_PROBED_ALLOCA then.
11493     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11494                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11495   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11496       .addDef(ActualNegSizeReg)
11497       .addReg(NegSizeReg)
11498       .add(MI.getOperand(2))
11499       .add(MI.getOperand(3));
11500 
11501   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11502   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11503           FinalStackPtr)
11504       .addReg(SPReg)
11505       .addReg(ActualNegSizeReg);
11506 
11507   // Materialize a scratch register for update.
11508   int64_t NegProbeSize = -(int64_t)ProbeSize;
11509   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11510   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11511   if (!isInt<16>(NegProbeSize)) {
11512     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11513     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11514         .addImm(NegProbeSize >> 16);
11515     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11516             ScratchReg)
11517         .addReg(TempReg)
11518         .addImm(NegProbeSize & 0xFFFF);
11519   } else
11520     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11521         .addImm(NegProbeSize);
11522 
11523   {
11524     // Probing leading residual part.
11525     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11526     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11527         .addReg(ActualNegSizeReg)
11528         .addReg(ScratchReg);
11529     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11530     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11531         .addReg(Div)
11532         .addReg(ScratchReg);
11533     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11534     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11535         .addReg(Mul)
11536         .addReg(ActualNegSizeReg);
11537     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11538         .addReg(FramePointer)
11539         .addReg(SPReg)
11540         .addReg(NegMod);
11541   }
11542 
11543   {
11544     // Remaining part should be multiple of ProbeSize.
11545     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11546     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11547         .addReg(SPReg)
11548         .addReg(FinalStackPtr);
11549     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11550         .addImm(PPC::PRED_EQ)
11551         .addReg(CmpResult)
11552         .addMBB(TailMBB);
11553     TestMBB->addSuccessor(BlockMBB);
11554     TestMBB->addSuccessor(TailMBB);
11555   }
11556 
11557   {
11558     // Touch the block.
11559     // |P...|P...|P...
11560     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11561         .addReg(FramePointer)
11562         .addReg(SPReg)
11563         .addReg(ScratchReg);
11564     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11565     BlockMBB->addSuccessor(TestMBB);
11566   }
11567 
11568   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11569   // DYNAREAOFFSET pseudo instruction to get the future result.
11570   Register MaxCallFrameSizeReg =
11571       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11572   BuildMI(TailMBB, DL,
11573           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11574           MaxCallFrameSizeReg)
11575       .add(MI.getOperand(2))
11576       .add(MI.getOperand(3));
11577   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11578       .addReg(SPReg)
11579       .addReg(MaxCallFrameSizeReg);
11580 
11581   // Splice instructions after MI to TailMBB.
11582   TailMBB->splice(TailMBB->end(), MBB,
11583                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11584   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11585   MBB->addSuccessor(TestMBB);
11586 
11587   // Delete the pseudo instruction.
11588   MI.eraseFromParent();
11589 
11590   ++NumDynamicAllocaProbed;
11591   return TailMBB;
11592 }
11593 
11594 MachineBasicBlock *
11595 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11596                                                MachineBasicBlock *BB) const {
11597   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11598       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11599     if (Subtarget.is64BitELFABI() &&
11600         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11601         !Subtarget.isUsingPCRelativeCalls()) {
11602       // Call lowering should have added an r2 operand to indicate a dependence
11603       // on the TOC base pointer value. It can't however, because there is no
11604       // way to mark the dependence as implicit there, and so the stackmap code
11605       // will confuse it with a regular operand. Instead, add the dependence
11606       // here.
11607       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11608     }
11609 
11610     return emitPatchPoint(MI, BB);
11611   }
11612 
11613   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11614       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11615     return emitEHSjLjSetJmp(MI, BB);
11616   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11617              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11618     return emitEHSjLjLongJmp(MI, BB);
11619   }
11620 
11621   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11622 
11623   // To "insert" these instructions we actually have to insert their
11624   // control-flow patterns.
11625   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11626   MachineFunction::iterator It = ++BB->getIterator();
11627 
11628   MachineFunction *F = BB->getParent();
11629 
11630   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11631       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11632       MI.getOpcode() == PPC::SELECT_I8) {
11633     SmallVector<MachineOperand, 2> Cond;
11634     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11635         MI.getOpcode() == PPC::SELECT_CC_I8)
11636       Cond.push_back(MI.getOperand(4));
11637     else
11638       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11639     Cond.push_back(MI.getOperand(1));
11640 
11641     DebugLoc dl = MI.getDebugLoc();
11642     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11643                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11644   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11645              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11646              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11647              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11648              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11649              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11650              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11651              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11652              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11653              MI.getOpcode() == PPC::SELECT_F4 ||
11654              MI.getOpcode() == PPC::SELECT_F8 ||
11655              MI.getOpcode() == PPC::SELECT_F16 ||
11656              MI.getOpcode() == PPC::SELECT_SPE ||
11657              MI.getOpcode() == PPC::SELECT_SPE4 ||
11658              MI.getOpcode() == PPC::SELECT_VRRC ||
11659              MI.getOpcode() == PPC::SELECT_VSFRC ||
11660              MI.getOpcode() == PPC::SELECT_VSSRC ||
11661              MI.getOpcode() == PPC::SELECT_VSRC) {
11662     // The incoming instruction knows the destination vreg to set, the
11663     // condition code register to branch on, the true/false values to
11664     // select between, and a branch opcode to use.
11665 
11666     //  thisMBB:
11667     //  ...
11668     //   TrueVal = ...
11669     //   cmpTY ccX, r1, r2
11670     //   bCC copy1MBB
11671     //   fallthrough --> copy0MBB
11672     MachineBasicBlock *thisMBB = BB;
11673     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11674     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11675     DebugLoc dl = MI.getDebugLoc();
11676     F->insert(It, copy0MBB);
11677     F->insert(It, sinkMBB);
11678 
11679     // Transfer the remainder of BB and its successor edges to sinkMBB.
11680     sinkMBB->splice(sinkMBB->begin(), BB,
11681                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11682     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11683 
11684     // Next, add the true and fallthrough blocks as its successors.
11685     BB->addSuccessor(copy0MBB);
11686     BB->addSuccessor(sinkMBB);
11687 
11688     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11689         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11690         MI.getOpcode() == PPC::SELECT_F16 ||
11691         MI.getOpcode() == PPC::SELECT_SPE4 ||
11692         MI.getOpcode() == PPC::SELECT_SPE ||
11693         MI.getOpcode() == PPC::SELECT_VRRC ||
11694         MI.getOpcode() == PPC::SELECT_VSFRC ||
11695         MI.getOpcode() == PPC::SELECT_VSSRC ||
11696         MI.getOpcode() == PPC::SELECT_VSRC) {
11697       BuildMI(BB, dl, TII->get(PPC::BC))
11698           .addReg(MI.getOperand(1).getReg())
11699           .addMBB(sinkMBB);
11700     } else {
11701       unsigned SelectPred = MI.getOperand(4).getImm();
11702       BuildMI(BB, dl, TII->get(PPC::BCC))
11703           .addImm(SelectPred)
11704           .addReg(MI.getOperand(1).getReg())
11705           .addMBB(sinkMBB);
11706     }
11707 
11708     //  copy0MBB:
11709     //   %FalseValue = ...
11710     //   # fallthrough to sinkMBB
11711     BB = copy0MBB;
11712 
11713     // Update machine-CFG edges
11714     BB->addSuccessor(sinkMBB);
11715 
11716     //  sinkMBB:
11717     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11718     //  ...
11719     BB = sinkMBB;
11720     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11721         .addReg(MI.getOperand(3).getReg())
11722         .addMBB(copy0MBB)
11723         .addReg(MI.getOperand(2).getReg())
11724         .addMBB(thisMBB);
11725   } else if (MI.getOpcode() == PPC::ReadTB) {
11726     // To read the 64-bit time-base register on a 32-bit target, we read the
11727     // two halves. Should the counter have wrapped while it was being read, we
11728     // need to try again.
11729     // ...
11730     // readLoop:
11731     // mfspr Rx,TBU # load from TBU
11732     // mfspr Ry,TB  # load from TB
11733     // mfspr Rz,TBU # load from TBU
11734     // cmpw crX,Rx,Rz # check if 'old'='new'
11735     // bne readLoop   # branch if they're not equal
11736     // ...
11737 
11738     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11739     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11740     DebugLoc dl = MI.getDebugLoc();
11741     F->insert(It, readMBB);
11742     F->insert(It, sinkMBB);
11743 
11744     // Transfer the remainder of BB and its successor edges to sinkMBB.
11745     sinkMBB->splice(sinkMBB->begin(), BB,
11746                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11747     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11748 
11749     BB->addSuccessor(readMBB);
11750     BB = readMBB;
11751 
11752     MachineRegisterInfo &RegInfo = F->getRegInfo();
11753     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11754     Register LoReg = MI.getOperand(0).getReg();
11755     Register HiReg = MI.getOperand(1).getReg();
11756 
11757     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11758     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11759     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11760 
11761     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11762 
11763     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11764         .addReg(HiReg)
11765         .addReg(ReadAgainReg);
11766     BuildMI(BB, dl, TII->get(PPC::BCC))
11767         .addImm(PPC::PRED_NE)
11768         .addReg(CmpReg)
11769         .addMBB(readMBB);
11770 
11771     BB->addSuccessor(readMBB);
11772     BB->addSuccessor(sinkMBB);
11773   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11774     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11775   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11776     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11777   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11778     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11779   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11780     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11781 
11782   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11783     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11784   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11785     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11786   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11787     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11788   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11789     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11790 
11791   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11792     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11793   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11794     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11795   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11796     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11797   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11798     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11799 
11800   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11801     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11802   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11803     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11804   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11805     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11806   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11807     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11808 
11809   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11810     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11811   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11812     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11813   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11814     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11815   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11816     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11817 
11818   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11819     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11820   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11821     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11822   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11823     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11824   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11825     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11826 
11827   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11828     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11829   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11830     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11831   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11832     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11833   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11834     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11835 
11836   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11837     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11838   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11839     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11840   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11841     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11842   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11843     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11844 
11845   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11846     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11847   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11848     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11849   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11850     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11851   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11852     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11853 
11854   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11855     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11856   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11857     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11858   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11859     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11860   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11861     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11862 
11863   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11864     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11865   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11866     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11867   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11868     BB = EmitAtomicBinary(MI, BB, 4, 0);
11869   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11870     BB = EmitAtomicBinary(MI, BB, 8, 0);
11871   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11872            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11873            (Subtarget.hasPartwordAtomics() &&
11874             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11875            (Subtarget.hasPartwordAtomics() &&
11876             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11877     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11878 
11879     auto LoadMnemonic = PPC::LDARX;
11880     auto StoreMnemonic = PPC::STDCX;
11881     switch (MI.getOpcode()) {
11882     default:
11883       llvm_unreachable("Compare and swap of unknown size");
11884     case PPC::ATOMIC_CMP_SWAP_I8:
11885       LoadMnemonic = PPC::LBARX;
11886       StoreMnemonic = PPC::STBCX;
11887       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11888       break;
11889     case PPC::ATOMIC_CMP_SWAP_I16:
11890       LoadMnemonic = PPC::LHARX;
11891       StoreMnemonic = PPC::STHCX;
11892       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11893       break;
11894     case PPC::ATOMIC_CMP_SWAP_I32:
11895       LoadMnemonic = PPC::LWARX;
11896       StoreMnemonic = PPC::STWCX;
11897       break;
11898     case PPC::ATOMIC_CMP_SWAP_I64:
11899       LoadMnemonic = PPC::LDARX;
11900       StoreMnemonic = PPC::STDCX;
11901       break;
11902     }
11903     Register dest = MI.getOperand(0).getReg();
11904     Register ptrA = MI.getOperand(1).getReg();
11905     Register ptrB = MI.getOperand(2).getReg();
11906     Register oldval = MI.getOperand(3).getReg();
11907     Register newval = MI.getOperand(4).getReg();
11908     DebugLoc dl = MI.getDebugLoc();
11909 
11910     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11911     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11912     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11913     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11914     F->insert(It, loop1MBB);
11915     F->insert(It, loop2MBB);
11916     F->insert(It, midMBB);
11917     F->insert(It, exitMBB);
11918     exitMBB->splice(exitMBB->begin(), BB,
11919                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11920     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11921 
11922     //  thisMBB:
11923     //   ...
11924     //   fallthrough --> loopMBB
11925     BB->addSuccessor(loop1MBB);
11926 
11927     // loop1MBB:
11928     //   l[bhwd]arx dest, ptr
11929     //   cmp[wd] dest, oldval
11930     //   bne- midMBB
11931     // loop2MBB:
11932     //   st[bhwd]cx. newval, ptr
11933     //   bne- loopMBB
11934     //   b exitBB
11935     // midMBB:
11936     //   st[bhwd]cx. dest, ptr
11937     // exitBB:
11938     BB = loop1MBB;
11939     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11940     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11941         .addReg(oldval)
11942         .addReg(dest);
11943     BuildMI(BB, dl, TII->get(PPC::BCC))
11944         .addImm(PPC::PRED_NE)
11945         .addReg(PPC::CR0)
11946         .addMBB(midMBB);
11947     BB->addSuccessor(loop2MBB);
11948     BB->addSuccessor(midMBB);
11949 
11950     BB = loop2MBB;
11951     BuildMI(BB, dl, TII->get(StoreMnemonic))
11952         .addReg(newval)
11953         .addReg(ptrA)
11954         .addReg(ptrB);
11955     BuildMI(BB, dl, TII->get(PPC::BCC))
11956         .addImm(PPC::PRED_NE)
11957         .addReg(PPC::CR0)
11958         .addMBB(loop1MBB);
11959     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11960     BB->addSuccessor(loop1MBB);
11961     BB->addSuccessor(exitMBB);
11962 
11963     BB = midMBB;
11964     BuildMI(BB, dl, TII->get(StoreMnemonic))
11965         .addReg(dest)
11966         .addReg(ptrA)
11967         .addReg(ptrB);
11968     BB->addSuccessor(exitMBB);
11969 
11970     //  exitMBB:
11971     //   ...
11972     BB = exitMBB;
11973   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11974              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11975     // We must use 64-bit registers for addresses when targeting 64-bit,
11976     // since we're actually doing arithmetic on them.  Other registers
11977     // can be 32-bit.
11978     bool is64bit = Subtarget.isPPC64();
11979     bool isLittleEndian = Subtarget.isLittleEndian();
11980     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11981 
11982     Register dest = MI.getOperand(0).getReg();
11983     Register ptrA = MI.getOperand(1).getReg();
11984     Register ptrB = MI.getOperand(2).getReg();
11985     Register oldval = MI.getOperand(3).getReg();
11986     Register newval = MI.getOperand(4).getReg();
11987     DebugLoc dl = MI.getDebugLoc();
11988 
11989     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11990     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11991     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11992     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11993     F->insert(It, loop1MBB);
11994     F->insert(It, loop2MBB);
11995     F->insert(It, midMBB);
11996     F->insert(It, exitMBB);
11997     exitMBB->splice(exitMBB->begin(), BB,
11998                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11999     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12000 
12001     MachineRegisterInfo &RegInfo = F->getRegInfo();
12002     const TargetRegisterClass *RC =
12003         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12004     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12005 
12006     Register PtrReg = RegInfo.createVirtualRegister(RC);
12007     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12008     Register ShiftReg =
12009         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12010     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12011     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12012     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12013     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12014     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12015     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12016     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12017     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12018     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12019     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12020     Register Ptr1Reg;
12021     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12022     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12023     //  thisMBB:
12024     //   ...
12025     //   fallthrough --> loopMBB
12026     BB->addSuccessor(loop1MBB);
12027 
12028     // The 4-byte load must be aligned, while a char or short may be
12029     // anywhere in the word.  Hence all this nasty bookkeeping code.
12030     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12031     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12032     //   xori shift, shift1, 24 [16]
12033     //   rlwinm ptr, ptr1, 0, 0, 29
12034     //   slw newval2, newval, shift
12035     //   slw oldval2, oldval,shift
12036     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12037     //   slw mask, mask2, shift
12038     //   and newval3, newval2, mask
12039     //   and oldval3, oldval2, mask
12040     // loop1MBB:
12041     //   lwarx tmpDest, ptr
12042     //   and tmp, tmpDest, mask
12043     //   cmpw tmp, oldval3
12044     //   bne- midMBB
12045     // loop2MBB:
12046     //   andc tmp2, tmpDest, mask
12047     //   or tmp4, tmp2, newval3
12048     //   stwcx. tmp4, ptr
12049     //   bne- loop1MBB
12050     //   b exitBB
12051     // midMBB:
12052     //   stwcx. tmpDest, ptr
12053     // exitBB:
12054     //   srw dest, tmpDest, shift
12055     if (ptrA != ZeroReg) {
12056       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12057       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12058           .addReg(ptrA)
12059           .addReg(ptrB);
12060     } else {
12061       Ptr1Reg = ptrB;
12062     }
12063 
12064     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12065     // mode.
12066     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12067         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12068         .addImm(3)
12069         .addImm(27)
12070         .addImm(is8bit ? 28 : 27);
12071     if (!isLittleEndian)
12072       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12073           .addReg(Shift1Reg)
12074           .addImm(is8bit ? 24 : 16);
12075     if (is64bit)
12076       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12077           .addReg(Ptr1Reg)
12078           .addImm(0)
12079           .addImm(61);
12080     else
12081       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12082           .addReg(Ptr1Reg)
12083           .addImm(0)
12084           .addImm(0)
12085           .addImm(29);
12086     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12087         .addReg(newval)
12088         .addReg(ShiftReg);
12089     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12090         .addReg(oldval)
12091         .addReg(ShiftReg);
12092     if (is8bit)
12093       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12094     else {
12095       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12096       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12097           .addReg(Mask3Reg)
12098           .addImm(65535);
12099     }
12100     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12101         .addReg(Mask2Reg)
12102         .addReg(ShiftReg);
12103     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12104         .addReg(NewVal2Reg)
12105         .addReg(MaskReg);
12106     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12107         .addReg(OldVal2Reg)
12108         .addReg(MaskReg);
12109 
12110     BB = loop1MBB;
12111     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12112         .addReg(ZeroReg)
12113         .addReg(PtrReg);
12114     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12115         .addReg(TmpDestReg)
12116         .addReg(MaskReg);
12117     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12118         .addReg(TmpReg)
12119         .addReg(OldVal3Reg);
12120     BuildMI(BB, dl, TII->get(PPC::BCC))
12121         .addImm(PPC::PRED_NE)
12122         .addReg(PPC::CR0)
12123         .addMBB(midMBB);
12124     BB->addSuccessor(loop2MBB);
12125     BB->addSuccessor(midMBB);
12126 
12127     BB = loop2MBB;
12128     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12129         .addReg(TmpDestReg)
12130         .addReg(MaskReg);
12131     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12132         .addReg(Tmp2Reg)
12133         .addReg(NewVal3Reg);
12134     BuildMI(BB, dl, TII->get(PPC::STWCX))
12135         .addReg(Tmp4Reg)
12136         .addReg(ZeroReg)
12137         .addReg(PtrReg);
12138     BuildMI(BB, dl, TII->get(PPC::BCC))
12139         .addImm(PPC::PRED_NE)
12140         .addReg(PPC::CR0)
12141         .addMBB(loop1MBB);
12142     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12143     BB->addSuccessor(loop1MBB);
12144     BB->addSuccessor(exitMBB);
12145 
12146     BB = midMBB;
12147     BuildMI(BB, dl, TII->get(PPC::STWCX))
12148         .addReg(TmpDestReg)
12149         .addReg(ZeroReg)
12150         .addReg(PtrReg);
12151     BB->addSuccessor(exitMBB);
12152 
12153     //  exitMBB:
12154     //   ...
12155     BB = exitMBB;
12156     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12157         .addReg(TmpReg)
12158         .addReg(ShiftReg);
12159   } else if (MI.getOpcode() == PPC::FADDrtz) {
12160     // This pseudo performs an FADD with rounding mode temporarily forced
12161     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12162     // is not modeled at the SelectionDAG level.
12163     Register Dest = MI.getOperand(0).getReg();
12164     Register Src1 = MI.getOperand(1).getReg();
12165     Register Src2 = MI.getOperand(2).getReg();
12166     DebugLoc dl = MI.getDebugLoc();
12167 
12168     MachineRegisterInfo &RegInfo = F->getRegInfo();
12169     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12170 
12171     // Save FPSCR value.
12172     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12173 
12174     // Set rounding mode to round-to-zero.
12175     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12176         .addImm(31)
12177         .addReg(PPC::RM, RegState::ImplicitDefine);
12178 
12179     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12180         .addImm(30)
12181         .addReg(PPC::RM, RegState::ImplicitDefine);
12182 
12183     // Perform addition.
12184     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12185                    .addReg(Src1)
12186                    .addReg(Src2);
12187     if (MI.getFlag(MachineInstr::NoFPExcept))
12188       MIB.setMIFlag(MachineInstr::NoFPExcept);
12189 
12190     // Restore FPSCR value.
12191     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12192   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12193              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12194              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12195              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12196     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12197                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12198                           ? PPC::ANDI8_rec
12199                           : PPC::ANDI_rec;
12200     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12201                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12202 
12203     MachineRegisterInfo &RegInfo = F->getRegInfo();
12204     Register Dest = RegInfo.createVirtualRegister(
12205         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12206 
12207     DebugLoc Dl = MI.getDebugLoc();
12208     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12209         .addReg(MI.getOperand(1).getReg())
12210         .addImm(1);
12211     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12212             MI.getOperand(0).getReg())
12213         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12214   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12215     DebugLoc Dl = MI.getDebugLoc();
12216     MachineRegisterInfo &RegInfo = F->getRegInfo();
12217     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12218     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12219     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12220             MI.getOperand(0).getReg())
12221         .addReg(CRReg);
12222   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12223     DebugLoc Dl = MI.getDebugLoc();
12224     unsigned Imm = MI.getOperand(1).getImm();
12225     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12226     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12227             MI.getOperand(0).getReg())
12228         .addReg(PPC::CR0EQ);
12229   } else if (MI.getOpcode() == PPC::SETRNDi) {
12230     DebugLoc dl = MI.getDebugLoc();
12231     Register OldFPSCRReg = MI.getOperand(0).getReg();
12232 
12233     // Save FPSCR value.
12234     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12235 
12236     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12237     // the following settings:
12238     //   00 Round to nearest
12239     //   01 Round to 0
12240     //   10 Round to +inf
12241     //   11 Round to -inf
12242 
12243     // When the operand is immediate, using the two least significant bits of
12244     // the immediate to set the bits 62:63 of FPSCR.
12245     unsigned Mode = MI.getOperand(1).getImm();
12246     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12247         .addImm(31)
12248         .addReg(PPC::RM, RegState::ImplicitDefine);
12249 
12250     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12251         .addImm(30)
12252         .addReg(PPC::RM, RegState::ImplicitDefine);
12253   } else if (MI.getOpcode() == PPC::SETRND) {
12254     DebugLoc dl = MI.getDebugLoc();
12255 
12256     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12257     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12258     // If the target doesn't have DirectMove, we should use stack to do the
12259     // conversion, because the target doesn't have the instructions like mtvsrd
12260     // or mfvsrd to do this conversion directly.
12261     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12262       if (Subtarget.hasDirectMove()) {
12263         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12264           .addReg(SrcReg);
12265       } else {
12266         // Use stack to do the register copy.
12267         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12268         MachineRegisterInfo &RegInfo = F->getRegInfo();
12269         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12270         if (RC == &PPC::F8RCRegClass) {
12271           // Copy register from F8RCRegClass to G8RCRegclass.
12272           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12273                  "Unsupported RegClass.");
12274 
12275           StoreOp = PPC::STFD;
12276           LoadOp = PPC::LD;
12277         } else {
12278           // Copy register from G8RCRegClass to F8RCRegclass.
12279           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12280                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12281                  "Unsupported RegClass.");
12282         }
12283 
12284         MachineFrameInfo &MFI = F->getFrameInfo();
12285         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12286 
12287         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12288             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12289             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12290             MFI.getObjectAlign(FrameIdx));
12291 
12292         // Store the SrcReg into the stack.
12293         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12294           .addReg(SrcReg)
12295           .addImm(0)
12296           .addFrameIndex(FrameIdx)
12297           .addMemOperand(MMOStore);
12298 
12299         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12300             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12301             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12302             MFI.getObjectAlign(FrameIdx));
12303 
12304         // Load from the stack where SrcReg is stored, and save to DestReg,
12305         // so we have done the RegClass conversion from RegClass::SrcReg to
12306         // RegClass::DestReg.
12307         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12308           .addImm(0)
12309           .addFrameIndex(FrameIdx)
12310           .addMemOperand(MMOLoad);
12311       }
12312     };
12313 
12314     Register OldFPSCRReg = MI.getOperand(0).getReg();
12315 
12316     // Save FPSCR value.
12317     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12318 
12319     // When the operand is gprc register, use two least significant bits of the
12320     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12321     //
12322     // copy OldFPSCRTmpReg, OldFPSCRReg
12323     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12324     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12325     // copy NewFPSCRReg, NewFPSCRTmpReg
12326     // mtfsf 255, NewFPSCRReg
12327     MachineOperand SrcOp = MI.getOperand(1);
12328     MachineRegisterInfo &RegInfo = F->getRegInfo();
12329     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12330 
12331     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12332 
12333     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12334     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12335 
12336     // The first operand of INSERT_SUBREG should be a register which has
12337     // subregisters, we only care about its RegClass, so we should use an
12338     // IMPLICIT_DEF register.
12339     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12340     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12341       .addReg(ImDefReg)
12342       .add(SrcOp)
12343       .addImm(1);
12344 
12345     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12346     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12347       .addReg(OldFPSCRTmpReg)
12348       .addReg(ExtSrcReg)
12349       .addImm(0)
12350       .addImm(62);
12351 
12352     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12353     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12354 
12355     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12356     // bits of FPSCR.
12357     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12358       .addImm(255)
12359       .addReg(NewFPSCRReg)
12360       .addImm(0)
12361       .addImm(0);
12362   } else if (MI.getOpcode() == PPC::SETFLM) {
12363     DebugLoc Dl = MI.getDebugLoc();
12364 
12365     // Result of setflm is previous FPSCR content, so we need to save it first.
12366     Register OldFPSCRReg = MI.getOperand(0).getReg();
12367     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12368 
12369     // Put bits in 32:63 to FPSCR.
12370     Register NewFPSCRReg = MI.getOperand(1).getReg();
12371     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12372         .addImm(255)
12373         .addReg(NewFPSCRReg)
12374         .addImm(0)
12375         .addImm(0);
12376   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12377              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12378     return emitProbedAlloca(MI, BB);
12379   } else {
12380     llvm_unreachable("Unexpected instr type to insert");
12381   }
12382 
12383   MI.eraseFromParent(); // The pseudo instruction is gone now.
12384   return BB;
12385 }
12386 
12387 //===----------------------------------------------------------------------===//
12388 // Target Optimization Hooks
12389 //===----------------------------------------------------------------------===//
12390 
12391 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12392   // For the estimates, convergence is quadratic, so we essentially double the
12393   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12394   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12395   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12396   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12397   if (VT.getScalarType() == MVT::f64)
12398     RefinementSteps++;
12399   return RefinementSteps;
12400 }
12401 
12402 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12403                                             const DenormalMode &Mode) const {
12404   // We only have VSX Vector Test for software Square Root.
12405   EVT VT = Op.getValueType();
12406   if (!isTypeLegal(MVT::i1) ||
12407       (VT != MVT::f64 &&
12408        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12409     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12410 
12411   SDLoc DL(Op);
12412   // The output register of FTSQRT is CR field.
12413   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12414   // ftsqrt BF,FRB
12415   // Let e_b be the unbiased exponent of the double-precision
12416   // floating-point operand in register FRB.
12417   // fe_flag is set to 1 if either of the following conditions occurs.
12418   //   - The double-precision floating-point operand in register FRB is a zero,
12419   //     a NaN, or an infinity, or a negative value.
12420   //   - e_b is less than or equal to -970.
12421   // Otherwise fe_flag is set to 0.
12422   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12423   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12424   // exponent is less than -970)
12425   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12426   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12427                                     FTSQRT, SRIdxVal),
12428                  0);
12429 }
12430 
12431 SDValue
12432 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12433                                                SelectionDAG &DAG) const {
12434   // We only have VSX Vector Square Root.
12435   EVT VT = Op.getValueType();
12436   if (VT != MVT::f64 &&
12437       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12438     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12439 
12440   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12441 }
12442 
12443 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12444                                            int Enabled, int &RefinementSteps,
12445                                            bool &UseOneConstNR,
12446                                            bool Reciprocal) const {
12447   EVT VT = Operand.getValueType();
12448   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12449       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12450       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12451       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12452     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12453       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12454 
12455     // The Newton-Raphson computation with a single constant does not provide
12456     // enough accuracy on some CPUs.
12457     UseOneConstNR = !Subtarget.needsTwoConstNR();
12458     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12459   }
12460   return SDValue();
12461 }
12462 
12463 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12464                                             int Enabled,
12465                                             int &RefinementSteps) const {
12466   EVT VT = Operand.getValueType();
12467   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12468       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12469       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12470       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12471     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12472       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12473     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12474   }
12475   return SDValue();
12476 }
12477 
12478 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12479   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12480   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12481   // enabled for division), this functionality is redundant with the default
12482   // combiner logic (once the division -> reciprocal/multiply transformation
12483   // has taken place). As a result, this matters more for older cores than for
12484   // newer ones.
12485 
12486   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12487   // reciprocal if there are two or more FDIVs (for embedded cores with only
12488   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12489   switch (Subtarget.getCPUDirective()) {
12490   default:
12491     return 3;
12492   case PPC::DIR_440:
12493   case PPC::DIR_A2:
12494   case PPC::DIR_E500:
12495   case PPC::DIR_E500mc:
12496   case PPC::DIR_E5500:
12497     return 2;
12498   }
12499 }
12500 
12501 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12502 // collapsed, and so we need to look through chains of them.
12503 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12504                                      int64_t& Offset, SelectionDAG &DAG) {
12505   if (DAG.isBaseWithConstantOffset(Loc)) {
12506     Base = Loc.getOperand(0);
12507     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12508 
12509     // The base might itself be a base plus an offset, and if so, accumulate
12510     // that as well.
12511     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12512   }
12513 }
12514 
12515 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12516                             unsigned Bytes, int Dist,
12517                             SelectionDAG &DAG) {
12518   if (VT.getSizeInBits() / 8 != Bytes)
12519     return false;
12520 
12521   SDValue BaseLoc = Base->getBasePtr();
12522   if (Loc.getOpcode() == ISD::FrameIndex) {
12523     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12524       return false;
12525     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12526     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12527     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12528     int FS  = MFI.getObjectSize(FI);
12529     int BFS = MFI.getObjectSize(BFI);
12530     if (FS != BFS || FS != (int)Bytes) return false;
12531     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12532   }
12533 
12534   SDValue Base1 = Loc, Base2 = BaseLoc;
12535   int64_t Offset1 = 0, Offset2 = 0;
12536   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12537   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12538   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12539     return true;
12540 
12541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12542   const GlobalValue *GV1 = nullptr;
12543   const GlobalValue *GV2 = nullptr;
12544   Offset1 = 0;
12545   Offset2 = 0;
12546   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12547   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12548   if (isGA1 && isGA2 && GV1 == GV2)
12549     return Offset1 == (Offset2 + Dist*Bytes);
12550   return false;
12551 }
12552 
12553 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12554 // not enforce equality of the chain operands.
12555 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12556                             unsigned Bytes, int Dist,
12557                             SelectionDAG &DAG) {
12558   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12559     EVT VT = LS->getMemoryVT();
12560     SDValue Loc = LS->getBasePtr();
12561     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12562   }
12563 
12564   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12565     EVT VT;
12566     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12567     default: return false;
12568     case Intrinsic::ppc_altivec_lvx:
12569     case Intrinsic::ppc_altivec_lvxl:
12570     case Intrinsic::ppc_vsx_lxvw4x:
12571     case Intrinsic::ppc_vsx_lxvw4x_be:
12572       VT = MVT::v4i32;
12573       break;
12574     case Intrinsic::ppc_vsx_lxvd2x:
12575     case Intrinsic::ppc_vsx_lxvd2x_be:
12576       VT = MVT::v2f64;
12577       break;
12578     case Intrinsic::ppc_altivec_lvebx:
12579       VT = MVT::i8;
12580       break;
12581     case Intrinsic::ppc_altivec_lvehx:
12582       VT = MVT::i16;
12583       break;
12584     case Intrinsic::ppc_altivec_lvewx:
12585       VT = MVT::i32;
12586       break;
12587     }
12588 
12589     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12590   }
12591 
12592   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12593     EVT VT;
12594     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12595     default: return false;
12596     case Intrinsic::ppc_altivec_stvx:
12597     case Intrinsic::ppc_altivec_stvxl:
12598     case Intrinsic::ppc_vsx_stxvw4x:
12599       VT = MVT::v4i32;
12600       break;
12601     case Intrinsic::ppc_vsx_stxvd2x:
12602       VT = MVT::v2f64;
12603       break;
12604     case Intrinsic::ppc_vsx_stxvw4x_be:
12605       VT = MVT::v4i32;
12606       break;
12607     case Intrinsic::ppc_vsx_stxvd2x_be:
12608       VT = MVT::v2f64;
12609       break;
12610     case Intrinsic::ppc_altivec_stvebx:
12611       VT = MVT::i8;
12612       break;
12613     case Intrinsic::ppc_altivec_stvehx:
12614       VT = MVT::i16;
12615       break;
12616     case Intrinsic::ppc_altivec_stvewx:
12617       VT = MVT::i32;
12618       break;
12619     }
12620 
12621     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12622   }
12623 
12624   return false;
12625 }
12626 
12627 // Return true is there is a nearyby consecutive load to the one provided
12628 // (regardless of alignment). We search up and down the chain, looking though
12629 // token factors and other loads (but nothing else). As a result, a true result
12630 // indicates that it is safe to create a new consecutive load adjacent to the
12631 // load provided.
12632 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12633   SDValue Chain = LD->getChain();
12634   EVT VT = LD->getMemoryVT();
12635 
12636   SmallSet<SDNode *, 16> LoadRoots;
12637   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12638   SmallSet<SDNode *, 16> Visited;
12639 
12640   // First, search up the chain, branching to follow all token-factor operands.
12641   // If we find a consecutive load, then we're done, otherwise, record all
12642   // nodes just above the top-level loads and token factors.
12643   while (!Queue.empty()) {
12644     SDNode *ChainNext = Queue.pop_back_val();
12645     if (!Visited.insert(ChainNext).second)
12646       continue;
12647 
12648     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12649       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12650         return true;
12651 
12652       if (!Visited.count(ChainLD->getChain().getNode()))
12653         Queue.push_back(ChainLD->getChain().getNode());
12654     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12655       for (const SDUse &O : ChainNext->ops())
12656         if (!Visited.count(O.getNode()))
12657           Queue.push_back(O.getNode());
12658     } else
12659       LoadRoots.insert(ChainNext);
12660   }
12661 
12662   // Second, search down the chain, starting from the top-level nodes recorded
12663   // in the first phase. These top-level nodes are the nodes just above all
12664   // loads and token factors. Starting with their uses, recursively look though
12665   // all loads (just the chain uses) and token factors to find a consecutive
12666   // load.
12667   Visited.clear();
12668   Queue.clear();
12669 
12670   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12671        IE = LoadRoots.end(); I != IE; ++I) {
12672     Queue.push_back(*I);
12673 
12674     while (!Queue.empty()) {
12675       SDNode *LoadRoot = Queue.pop_back_val();
12676       if (!Visited.insert(LoadRoot).second)
12677         continue;
12678 
12679       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12680         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12681           return true;
12682 
12683       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12684            UE = LoadRoot->use_end(); UI != UE; ++UI)
12685         if (((isa<MemSDNode>(*UI) &&
12686             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12687             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12688           Queue.push_back(*UI);
12689     }
12690   }
12691 
12692   return false;
12693 }
12694 
12695 /// This function is called when we have proved that a SETCC node can be replaced
12696 /// by subtraction (and other supporting instructions) so that the result of
12697 /// comparison is kept in a GPR instead of CR. This function is purely for
12698 /// codegen purposes and has some flags to guide the codegen process.
12699 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12700                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12701   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12702 
12703   // Zero extend the operands to the largest legal integer. Originally, they
12704   // must be of a strictly smaller size.
12705   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12706                          DAG.getConstant(Size, DL, MVT::i32));
12707   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12708                          DAG.getConstant(Size, DL, MVT::i32));
12709 
12710   // Swap if needed. Depends on the condition code.
12711   if (Swap)
12712     std::swap(Op0, Op1);
12713 
12714   // Subtract extended integers.
12715   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12716 
12717   // Move the sign bit to the least significant position and zero out the rest.
12718   // Now the least significant bit carries the result of original comparison.
12719   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12720                              DAG.getConstant(Size - 1, DL, MVT::i32));
12721   auto Final = Shifted;
12722 
12723   // Complement the result if needed. Based on the condition code.
12724   if (Complement)
12725     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12726                         DAG.getConstant(1, DL, MVT::i64));
12727 
12728   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12729 }
12730 
12731 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12732                                                   DAGCombinerInfo &DCI) const {
12733   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12734 
12735   SelectionDAG &DAG = DCI.DAG;
12736   SDLoc DL(N);
12737 
12738   // Size of integers being compared has a critical role in the following
12739   // analysis, so we prefer to do this when all types are legal.
12740   if (!DCI.isAfterLegalizeDAG())
12741     return SDValue();
12742 
12743   // If all users of SETCC extend its value to a legal integer type
12744   // then we replace SETCC with a subtraction
12745   for (SDNode::use_iterator UI = N->use_begin(),
12746        UE = N->use_end(); UI != UE; ++UI) {
12747     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12748       return SDValue();
12749   }
12750 
12751   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12752   auto OpSize = N->getOperand(0).getValueSizeInBits();
12753 
12754   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12755 
12756   if (OpSize < Size) {
12757     switch (CC) {
12758     default: break;
12759     case ISD::SETULT:
12760       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12761     case ISD::SETULE:
12762       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12763     case ISD::SETUGT:
12764       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12765     case ISD::SETUGE:
12766       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12767     }
12768   }
12769 
12770   return SDValue();
12771 }
12772 
12773 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12774                                                   DAGCombinerInfo &DCI) const {
12775   SelectionDAG &DAG = DCI.DAG;
12776   SDLoc dl(N);
12777 
12778   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12779   // If we're tracking CR bits, we need to be careful that we don't have:
12780   //   trunc(binary-ops(zext(x), zext(y)))
12781   // or
12782   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12783   // such that we're unnecessarily moving things into GPRs when it would be
12784   // better to keep them in CR bits.
12785 
12786   // Note that trunc here can be an actual i1 trunc, or can be the effective
12787   // truncation that comes from a setcc or select_cc.
12788   if (N->getOpcode() == ISD::TRUNCATE &&
12789       N->getValueType(0) != MVT::i1)
12790     return SDValue();
12791 
12792   if (N->getOperand(0).getValueType() != MVT::i32 &&
12793       N->getOperand(0).getValueType() != MVT::i64)
12794     return SDValue();
12795 
12796   if (N->getOpcode() == ISD::SETCC ||
12797       N->getOpcode() == ISD::SELECT_CC) {
12798     // If we're looking at a comparison, then we need to make sure that the
12799     // high bits (all except for the first) don't matter the result.
12800     ISD::CondCode CC =
12801       cast<CondCodeSDNode>(N->getOperand(
12802         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12803     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12804 
12805     if (ISD::isSignedIntSetCC(CC)) {
12806       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12807           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12808         return SDValue();
12809     } else if (ISD::isUnsignedIntSetCC(CC)) {
12810       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12811                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12812           !DAG.MaskedValueIsZero(N->getOperand(1),
12813                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12814         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12815                                              : SDValue());
12816     } else {
12817       // This is neither a signed nor an unsigned comparison, just make sure
12818       // that the high bits are equal.
12819       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12820       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12821 
12822       // We don't really care about what is known about the first bit (if
12823       // anything), so pretend that it is known zero for both to ensure they can
12824       // be compared as constants.
12825       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
12826       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
12827 
12828       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
12829           Op1Known.getConstant() != Op2Known.getConstant())
12830         return SDValue();
12831     }
12832   }
12833 
12834   // We now know that the higher-order bits are irrelevant, we just need to
12835   // make sure that all of the intermediate operations are bit operations, and
12836   // all inputs are extensions.
12837   if (N->getOperand(0).getOpcode() != ISD::AND &&
12838       N->getOperand(0).getOpcode() != ISD::OR  &&
12839       N->getOperand(0).getOpcode() != ISD::XOR &&
12840       N->getOperand(0).getOpcode() != ISD::SELECT &&
12841       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12842       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12843       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12844       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12845       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12846     return SDValue();
12847 
12848   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12849       N->getOperand(1).getOpcode() != ISD::AND &&
12850       N->getOperand(1).getOpcode() != ISD::OR  &&
12851       N->getOperand(1).getOpcode() != ISD::XOR &&
12852       N->getOperand(1).getOpcode() != ISD::SELECT &&
12853       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12854       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12855       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12856       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12857       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12858     return SDValue();
12859 
12860   SmallVector<SDValue, 4> Inputs;
12861   SmallVector<SDValue, 8> BinOps, PromOps;
12862   SmallPtrSet<SDNode *, 16> Visited;
12863 
12864   for (unsigned i = 0; i < 2; ++i) {
12865     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12866           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12867           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12868           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12869         isa<ConstantSDNode>(N->getOperand(i)))
12870       Inputs.push_back(N->getOperand(i));
12871     else
12872       BinOps.push_back(N->getOperand(i));
12873 
12874     if (N->getOpcode() == ISD::TRUNCATE)
12875       break;
12876   }
12877 
12878   // Visit all inputs, collect all binary operations (and, or, xor and
12879   // select) that are all fed by extensions.
12880   while (!BinOps.empty()) {
12881     SDValue BinOp = BinOps.pop_back_val();
12882 
12883     if (!Visited.insert(BinOp.getNode()).second)
12884       continue;
12885 
12886     PromOps.push_back(BinOp);
12887 
12888     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12889       // The condition of the select is not promoted.
12890       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12891         continue;
12892       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12893         continue;
12894 
12895       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12896             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12897             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12898            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12899           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12900         Inputs.push_back(BinOp.getOperand(i));
12901       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12902                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12903                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12904                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12905                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12906                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12907                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12908                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12909                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12910         BinOps.push_back(BinOp.getOperand(i));
12911       } else {
12912         // We have an input that is not an extension or another binary
12913         // operation; we'll abort this transformation.
12914         return SDValue();
12915       }
12916     }
12917   }
12918 
12919   // Make sure that this is a self-contained cluster of operations (which
12920   // is not quite the same thing as saying that everything has only one
12921   // use).
12922   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12923     if (isa<ConstantSDNode>(Inputs[i]))
12924       continue;
12925 
12926     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12927                               UE = Inputs[i].getNode()->use_end();
12928          UI != UE; ++UI) {
12929       SDNode *User = *UI;
12930       if (User != N && !Visited.count(User))
12931         return SDValue();
12932 
12933       // Make sure that we're not going to promote the non-output-value
12934       // operand(s) or SELECT or SELECT_CC.
12935       // FIXME: Although we could sometimes handle this, and it does occur in
12936       // practice that one of the condition inputs to the select is also one of
12937       // the outputs, we currently can't deal with this.
12938       if (User->getOpcode() == ISD::SELECT) {
12939         if (User->getOperand(0) == Inputs[i])
12940           return SDValue();
12941       } else if (User->getOpcode() == ISD::SELECT_CC) {
12942         if (User->getOperand(0) == Inputs[i] ||
12943             User->getOperand(1) == Inputs[i])
12944           return SDValue();
12945       }
12946     }
12947   }
12948 
12949   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12950     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12951                               UE = PromOps[i].getNode()->use_end();
12952          UI != UE; ++UI) {
12953       SDNode *User = *UI;
12954       if (User != N && !Visited.count(User))
12955         return SDValue();
12956 
12957       // Make sure that we're not going to promote the non-output-value
12958       // operand(s) or SELECT or SELECT_CC.
12959       // FIXME: Although we could sometimes handle this, and it does occur in
12960       // practice that one of the condition inputs to the select is also one of
12961       // the outputs, we currently can't deal with this.
12962       if (User->getOpcode() == ISD::SELECT) {
12963         if (User->getOperand(0) == PromOps[i])
12964           return SDValue();
12965       } else if (User->getOpcode() == ISD::SELECT_CC) {
12966         if (User->getOperand(0) == PromOps[i] ||
12967             User->getOperand(1) == PromOps[i])
12968           return SDValue();
12969       }
12970     }
12971   }
12972 
12973   // Replace all inputs with the extension operand.
12974   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12975     // Constants may have users outside the cluster of to-be-promoted nodes,
12976     // and so we need to replace those as we do the promotions.
12977     if (isa<ConstantSDNode>(Inputs[i]))
12978       continue;
12979     else
12980       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12981   }
12982 
12983   std::list<HandleSDNode> PromOpHandles;
12984   for (auto &PromOp : PromOps)
12985     PromOpHandles.emplace_back(PromOp);
12986 
12987   // Replace all operations (these are all the same, but have a different
12988   // (i1) return type). DAG.getNode will validate that the types of
12989   // a binary operator match, so go through the list in reverse so that
12990   // we've likely promoted both operands first. Any intermediate truncations or
12991   // extensions disappear.
12992   while (!PromOpHandles.empty()) {
12993     SDValue PromOp = PromOpHandles.back().getValue();
12994     PromOpHandles.pop_back();
12995 
12996     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12997         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12998         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12999         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13000       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13001           PromOp.getOperand(0).getValueType() != MVT::i1) {
13002         // The operand is not yet ready (see comment below).
13003         PromOpHandles.emplace_front(PromOp);
13004         continue;
13005       }
13006 
13007       SDValue RepValue = PromOp.getOperand(0);
13008       if (isa<ConstantSDNode>(RepValue))
13009         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13010 
13011       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13012       continue;
13013     }
13014 
13015     unsigned C;
13016     switch (PromOp.getOpcode()) {
13017     default:             C = 0; break;
13018     case ISD::SELECT:    C = 1; break;
13019     case ISD::SELECT_CC: C = 2; break;
13020     }
13021 
13022     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13023          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13024         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13025          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13026       // The to-be-promoted operands of this node have not yet been
13027       // promoted (this should be rare because we're going through the
13028       // list backward, but if one of the operands has several users in
13029       // this cluster of to-be-promoted nodes, it is possible).
13030       PromOpHandles.emplace_front(PromOp);
13031       continue;
13032     }
13033 
13034     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13035                                 PromOp.getNode()->op_end());
13036 
13037     // If there are any constant inputs, make sure they're replaced now.
13038     for (unsigned i = 0; i < 2; ++i)
13039       if (isa<ConstantSDNode>(Ops[C+i]))
13040         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13041 
13042     DAG.ReplaceAllUsesOfValueWith(PromOp,
13043       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13044   }
13045 
13046   // Now we're left with the initial truncation itself.
13047   if (N->getOpcode() == ISD::TRUNCATE)
13048     return N->getOperand(0);
13049 
13050   // Otherwise, this is a comparison. The operands to be compared have just
13051   // changed type (to i1), but everything else is the same.
13052   return SDValue(N, 0);
13053 }
13054 
13055 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13056                                                   DAGCombinerInfo &DCI) const {
13057   SelectionDAG &DAG = DCI.DAG;
13058   SDLoc dl(N);
13059 
13060   // If we're tracking CR bits, we need to be careful that we don't have:
13061   //   zext(binary-ops(trunc(x), trunc(y)))
13062   // or
13063   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13064   // such that we're unnecessarily moving things into CR bits that can more
13065   // efficiently stay in GPRs. Note that if we're not certain that the high
13066   // bits are set as required by the final extension, we still may need to do
13067   // some masking to get the proper behavior.
13068 
13069   // This same functionality is important on PPC64 when dealing with
13070   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13071   // the return values of functions. Because it is so similar, it is handled
13072   // here as well.
13073 
13074   if (N->getValueType(0) != MVT::i32 &&
13075       N->getValueType(0) != MVT::i64)
13076     return SDValue();
13077 
13078   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13079         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13080     return SDValue();
13081 
13082   if (N->getOperand(0).getOpcode() != ISD::AND &&
13083       N->getOperand(0).getOpcode() != ISD::OR  &&
13084       N->getOperand(0).getOpcode() != ISD::XOR &&
13085       N->getOperand(0).getOpcode() != ISD::SELECT &&
13086       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13087     return SDValue();
13088 
13089   SmallVector<SDValue, 4> Inputs;
13090   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13091   SmallPtrSet<SDNode *, 16> Visited;
13092 
13093   // Visit all inputs, collect all binary operations (and, or, xor and
13094   // select) that are all fed by truncations.
13095   while (!BinOps.empty()) {
13096     SDValue BinOp = BinOps.pop_back_val();
13097 
13098     if (!Visited.insert(BinOp.getNode()).second)
13099       continue;
13100 
13101     PromOps.push_back(BinOp);
13102 
13103     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13104       // The condition of the select is not promoted.
13105       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13106         continue;
13107       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13108         continue;
13109 
13110       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13111           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13112         Inputs.push_back(BinOp.getOperand(i));
13113       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13114                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13115                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13116                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13117                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13118         BinOps.push_back(BinOp.getOperand(i));
13119       } else {
13120         // We have an input that is not a truncation or another binary
13121         // operation; we'll abort this transformation.
13122         return SDValue();
13123       }
13124     }
13125   }
13126 
13127   // The operands of a select that must be truncated when the select is
13128   // promoted because the operand is actually part of the to-be-promoted set.
13129   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13130 
13131   // Make sure that this is a self-contained cluster of operations (which
13132   // is not quite the same thing as saying that everything has only one
13133   // use).
13134   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13135     if (isa<ConstantSDNode>(Inputs[i]))
13136       continue;
13137 
13138     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13139                               UE = Inputs[i].getNode()->use_end();
13140          UI != UE; ++UI) {
13141       SDNode *User = *UI;
13142       if (User != N && !Visited.count(User))
13143         return SDValue();
13144 
13145       // If we're going to promote the non-output-value operand(s) or SELECT or
13146       // SELECT_CC, record them for truncation.
13147       if (User->getOpcode() == ISD::SELECT) {
13148         if (User->getOperand(0) == Inputs[i])
13149           SelectTruncOp[0].insert(std::make_pair(User,
13150                                     User->getOperand(0).getValueType()));
13151       } else if (User->getOpcode() == ISD::SELECT_CC) {
13152         if (User->getOperand(0) == Inputs[i])
13153           SelectTruncOp[0].insert(std::make_pair(User,
13154                                     User->getOperand(0).getValueType()));
13155         if (User->getOperand(1) == Inputs[i])
13156           SelectTruncOp[1].insert(std::make_pair(User,
13157                                     User->getOperand(1).getValueType()));
13158       }
13159     }
13160   }
13161 
13162   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13163     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13164                               UE = PromOps[i].getNode()->use_end();
13165          UI != UE; ++UI) {
13166       SDNode *User = *UI;
13167       if (User != N && !Visited.count(User))
13168         return SDValue();
13169 
13170       // If we're going to promote the non-output-value operand(s) or SELECT or
13171       // SELECT_CC, record them for truncation.
13172       if (User->getOpcode() == ISD::SELECT) {
13173         if (User->getOperand(0) == PromOps[i])
13174           SelectTruncOp[0].insert(std::make_pair(User,
13175                                     User->getOperand(0).getValueType()));
13176       } else if (User->getOpcode() == ISD::SELECT_CC) {
13177         if (User->getOperand(0) == PromOps[i])
13178           SelectTruncOp[0].insert(std::make_pair(User,
13179                                     User->getOperand(0).getValueType()));
13180         if (User->getOperand(1) == PromOps[i])
13181           SelectTruncOp[1].insert(std::make_pair(User,
13182                                     User->getOperand(1).getValueType()));
13183       }
13184     }
13185   }
13186 
13187   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13188   bool ReallyNeedsExt = false;
13189   if (N->getOpcode() != ISD::ANY_EXTEND) {
13190     // If all of the inputs are not already sign/zero extended, then
13191     // we'll still need to do that at the end.
13192     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13193       if (isa<ConstantSDNode>(Inputs[i]))
13194         continue;
13195 
13196       unsigned OpBits =
13197         Inputs[i].getOperand(0).getValueSizeInBits();
13198       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13199 
13200       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13201            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13202                                   APInt::getHighBitsSet(OpBits,
13203                                                         OpBits-PromBits))) ||
13204           (N->getOpcode() == ISD::SIGN_EXTEND &&
13205            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13206              (OpBits-(PromBits-1)))) {
13207         ReallyNeedsExt = true;
13208         break;
13209       }
13210     }
13211   }
13212 
13213   // Replace all inputs, either with the truncation operand, or a
13214   // truncation or extension to the final output type.
13215   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13216     // Constant inputs need to be replaced with the to-be-promoted nodes that
13217     // use them because they might have users outside of the cluster of
13218     // promoted nodes.
13219     if (isa<ConstantSDNode>(Inputs[i]))
13220       continue;
13221 
13222     SDValue InSrc = Inputs[i].getOperand(0);
13223     if (Inputs[i].getValueType() == N->getValueType(0))
13224       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13225     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13226       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13227         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13228     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13229       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13230         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13231     else
13232       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13233         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13234   }
13235 
13236   std::list<HandleSDNode> PromOpHandles;
13237   for (auto &PromOp : PromOps)
13238     PromOpHandles.emplace_back(PromOp);
13239 
13240   // Replace all operations (these are all the same, but have a different
13241   // (promoted) return type). DAG.getNode will validate that the types of
13242   // a binary operator match, so go through the list in reverse so that
13243   // we've likely promoted both operands first.
13244   while (!PromOpHandles.empty()) {
13245     SDValue PromOp = PromOpHandles.back().getValue();
13246     PromOpHandles.pop_back();
13247 
13248     unsigned C;
13249     switch (PromOp.getOpcode()) {
13250     default:             C = 0; break;
13251     case ISD::SELECT:    C = 1; break;
13252     case ISD::SELECT_CC: C = 2; break;
13253     }
13254 
13255     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13256          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13257         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13258          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13259       // The to-be-promoted operands of this node have not yet been
13260       // promoted (this should be rare because we're going through the
13261       // list backward, but if one of the operands has several users in
13262       // this cluster of to-be-promoted nodes, it is possible).
13263       PromOpHandles.emplace_front(PromOp);
13264       continue;
13265     }
13266 
13267     // For SELECT and SELECT_CC nodes, we do a similar check for any
13268     // to-be-promoted comparison inputs.
13269     if (PromOp.getOpcode() == ISD::SELECT ||
13270         PromOp.getOpcode() == ISD::SELECT_CC) {
13271       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13272            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13273           (SelectTruncOp[1].count(PromOp.getNode()) &&
13274            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13275         PromOpHandles.emplace_front(PromOp);
13276         continue;
13277       }
13278     }
13279 
13280     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13281                                 PromOp.getNode()->op_end());
13282 
13283     // If this node has constant inputs, then they'll need to be promoted here.
13284     for (unsigned i = 0; i < 2; ++i) {
13285       if (!isa<ConstantSDNode>(Ops[C+i]))
13286         continue;
13287       if (Ops[C+i].getValueType() == N->getValueType(0))
13288         continue;
13289 
13290       if (N->getOpcode() == ISD::SIGN_EXTEND)
13291         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13292       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13293         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13294       else
13295         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13296     }
13297 
13298     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13299     // truncate them again to the original value type.
13300     if (PromOp.getOpcode() == ISD::SELECT ||
13301         PromOp.getOpcode() == ISD::SELECT_CC) {
13302       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13303       if (SI0 != SelectTruncOp[0].end())
13304         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13305       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13306       if (SI1 != SelectTruncOp[1].end())
13307         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13308     }
13309 
13310     DAG.ReplaceAllUsesOfValueWith(PromOp,
13311       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13312   }
13313 
13314   // Now we're left with the initial extension itself.
13315   if (!ReallyNeedsExt)
13316     return N->getOperand(0);
13317 
13318   // To zero extend, just mask off everything except for the first bit (in the
13319   // i1 case).
13320   if (N->getOpcode() == ISD::ZERO_EXTEND)
13321     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13322                        DAG.getConstant(APInt::getLowBitsSet(
13323                                          N->getValueSizeInBits(0), PromBits),
13324                                        dl, N->getValueType(0)));
13325 
13326   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13327          "Invalid extension type");
13328   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13329   SDValue ShiftCst =
13330       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13331   return DAG.getNode(
13332       ISD::SRA, dl, N->getValueType(0),
13333       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13334       ShiftCst);
13335 }
13336 
13337 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13338                                         DAGCombinerInfo &DCI) const {
13339   assert(N->getOpcode() == ISD::SETCC &&
13340          "Should be called with a SETCC node");
13341 
13342   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13343   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13344     SDValue LHS = N->getOperand(0);
13345     SDValue RHS = N->getOperand(1);
13346 
13347     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13348     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13349         LHS.hasOneUse())
13350       std::swap(LHS, RHS);
13351 
13352     // x == 0-y --> x+y == 0
13353     // x != 0-y --> x+y != 0
13354     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13355         RHS.hasOneUse()) {
13356       SDLoc DL(N);
13357       SelectionDAG &DAG = DCI.DAG;
13358       EVT VT = N->getValueType(0);
13359       EVT OpVT = LHS.getValueType();
13360       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13361       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13362     }
13363   }
13364 
13365   return DAGCombineTruncBoolExt(N, DCI);
13366 }
13367 
13368 // Is this an extending load from an f32 to an f64?
13369 static bool isFPExtLoad(SDValue Op) {
13370   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13371     return LD->getExtensionType() == ISD::EXTLOAD &&
13372       Op.getValueType() == MVT::f64;
13373   return false;
13374 }
13375 
13376 /// Reduces the number of fp-to-int conversion when building a vector.
13377 ///
13378 /// If this vector is built out of floating to integer conversions,
13379 /// transform it to a vector built out of floating point values followed by a
13380 /// single floating to integer conversion of the vector.
13381 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13382 /// becomes (fptosi (build_vector ($A, $B, ...)))
13383 SDValue PPCTargetLowering::
13384 combineElementTruncationToVectorTruncation(SDNode *N,
13385                                            DAGCombinerInfo &DCI) const {
13386   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13387          "Should be called with a BUILD_VECTOR node");
13388 
13389   SelectionDAG &DAG = DCI.DAG;
13390   SDLoc dl(N);
13391 
13392   SDValue FirstInput = N->getOperand(0);
13393   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13394          "The input operand must be an fp-to-int conversion.");
13395 
13396   // This combine happens after legalization so the fp_to_[su]i nodes are
13397   // already converted to PPCSISD nodes.
13398   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13399   if (FirstConversion == PPCISD::FCTIDZ ||
13400       FirstConversion == PPCISD::FCTIDUZ ||
13401       FirstConversion == PPCISD::FCTIWZ ||
13402       FirstConversion == PPCISD::FCTIWUZ) {
13403     bool IsSplat = true;
13404     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13405       FirstConversion == PPCISD::FCTIWUZ;
13406     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13407     SmallVector<SDValue, 4> Ops;
13408     EVT TargetVT = N->getValueType(0);
13409     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13410       SDValue NextOp = N->getOperand(i);
13411       if (NextOp.getOpcode() != PPCISD::MFVSR)
13412         return SDValue();
13413       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13414       if (NextConversion != FirstConversion)
13415         return SDValue();
13416       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13417       // This is not valid if the input was originally double precision. It is
13418       // also not profitable to do unless this is an extending load in which
13419       // case doing this combine will allow us to combine consecutive loads.
13420       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13421         return SDValue();
13422       if (N->getOperand(i) != FirstInput)
13423         IsSplat = false;
13424     }
13425 
13426     // If this is a splat, we leave it as-is since there will be only a single
13427     // fp-to-int conversion followed by a splat of the integer. This is better
13428     // for 32-bit and smaller ints and neutral for 64-bit ints.
13429     if (IsSplat)
13430       return SDValue();
13431 
13432     // Now that we know we have the right type of node, get its operands
13433     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13434       SDValue In = N->getOperand(i).getOperand(0);
13435       if (Is32Bit) {
13436         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13437         // here, we know that all inputs are extending loads so this is safe).
13438         if (In.isUndef())
13439           Ops.push_back(DAG.getUNDEF(SrcVT));
13440         else {
13441           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13442                                       MVT::f32, In.getOperand(0),
13443                                       DAG.getIntPtrConstant(1, dl));
13444           Ops.push_back(Trunc);
13445         }
13446       } else
13447         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13448     }
13449 
13450     unsigned Opcode;
13451     if (FirstConversion == PPCISD::FCTIDZ ||
13452         FirstConversion == PPCISD::FCTIWZ)
13453       Opcode = ISD::FP_TO_SINT;
13454     else
13455       Opcode = ISD::FP_TO_UINT;
13456 
13457     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13458     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13459     return DAG.getNode(Opcode, dl, TargetVT, BV);
13460   }
13461   return SDValue();
13462 }
13463 
13464 /// Reduce the number of loads when building a vector.
13465 ///
13466 /// Building a vector out of multiple loads can be converted to a load
13467 /// of the vector type if the loads are consecutive. If the loads are
13468 /// consecutive but in descending order, a shuffle is added at the end
13469 /// to reorder the vector.
13470 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13471   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13472          "Should be called with a BUILD_VECTOR node");
13473 
13474   SDLoc dl(N);
13475 
13476   // Return early for non byte-sized type, as they can't be consecutive.
13477   if (!N->getValueType(0).getVectorElementType().isByteSized())
13478     return SDValue();
13479 
13480   bool InputsAreConsecutiveLoads = true;
13481   bool InputsAreReverseConsecutive = true;
13482   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13483   SDValue FirstInput = N->getOperand(0);
13484   bool IsRoundOfExtLoad = false;
13485 
13486   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13487       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13488     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13489     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13490   }
13491   // Not a build vector of (possibly fp_rounded) loads.
13492   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13493       N->getNumOperands() == 1)
13494     return SDValue();
13495 
13496   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13497     // If any inputs are fp_round(extload), they all must be.
13498     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13499       return SDValue();
13500 
13501     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13502       N->getOperand(i);
13503     if (NextInput.getOpcode() != ISD::LOAD)
13504       return SDValue();
13505 
13506     SDValue PreviousInput =
13507       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13508     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13509     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13510 
13511     // If any inputs are fp_round(extload), they all must be.
13512     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13513       return SDValue();
13514 
13515     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13516       InputsAreConsecutiveLoads = false;
13517     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13518       InputsAreReverseConsecutive = false;
13519 
13520     // Exit early if the loads are neither consecutive nor reverse consecutive.
13521     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13522       return SDValue();
13523   }
13524 
13525   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13526          "The loads cannot be both consecutive and reverse consecutive.");
13527 
13528   SDValue FirstLoadOp =
13529     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13530   SDValue LastLoadOp =
13531     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13532                        N->getOperand(N->getNumOperands()-1);
13533 
13534   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13535   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13536   if (InputsAreConsecutiveLoads) {
13537     assert(LD1 && "Input needs to be a LoadSDNode.");
13538     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13539                        LD1->getBasePtr(), LD1->getPointerInfo(),
13540                        LD1->getAlignment());
13541   }
13542   if (InputsAreReverseConsecutive) {
13543     assert(LDL && "Input needs to be a LoadSDNode.");
13544     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13545                                LDL->getBasePtr(), LDL->getPointerInfo(),
13546                                LDL->getAlignment());
13547     SmallVector<int, 16> Ops;
13548     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13549       Ops.push_back(i);
13550 
13551     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13552                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13553   }
13554   return SDValue();
13555 }
13556 
13557 // This function adds the required vector_shuffle needed to get
13558 // the elements of the vector extract in the correct position
13559 // as specified by the CorrectElems encoding.
13560 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13561                                       SDValue Input, uint64_t Elems,
13562                                       uint64_t CorrectElems) {
13563   SDLoc dl(N);
13564 
13565   unsigned NumElems = Input.getValueType().getVectorNumElements();
13566   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13567 
13568   // Knowing the element indices being extracted from the original
13569   // vector and the order in which they're being inserted, just put
13570   // them at element indices required for the instruction.
13571   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13572     if (DAG.getDataLayout().isLittleEndian())
13573       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13574     else
13575       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13576     CorrectElems = CorrectElems >> 8;
13577     Elems = Elems >> 8;
13578   }
13579 
13580   SDValue Shuffle =
13581       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13582                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13583 
13584   EVT VT = N->getValueType(0);
13585   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13586 
13587   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13588                                Input.getValueType().getVectorElementType(),
13589                                VT.getVectorNumElements());
13590   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13591                      DAG.getValueType(ExtVT));
13592 }
13593 
13594 // Look for build vector patterns where input operands come from sign
13595 // extended vector_extract elements of specific indices. If the correct indices
13596 // aren't used, add a vector shuffle to fix up the indices and create
13597 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13598 // during instruction selection.
13599 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13600   // This array encodes the indices that the vector sign extend instructions
13601   // extract from when extending from one type to another for both BE and LE.
13602   // The right nibble of each byte corresponds to the LE incides.
13603   // and the left nibble of each byte corresponds to the BE incides.
13604   // For example: 0x3074B8FC  byte->word
13605   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13606   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13607   // For example: 0x000070F8  byte->double word
13608   // For LE: the allowed indices are: 0x0,0x8
13609   // For BE: the allowed indices are: 0x7,0xF
13610   uint64_t TargetElems[] = {
13611       0x3074B8FC, // b->w
13612       0x000070F8, // b->d
13613       0x10325476, // h->w
13614       0x00003074, // h->d
13615       0x00001032, // w->d
13616   };
13617 
13618   uint64_t Elems = 0;
13619   int Index;
13620   SDValue Input;
13621 
13622   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13623     if (!Op)
13624       return false;
13625     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13626         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13627       return false;
13628 
13629     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13630     // of the right width.
13631     SDValue Extract = Op.getOperand(0);
13632     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13633       Extract = Extract.getOperand(0);
13634     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13635       return false;
13636 
13637     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13638     if (!ExtOp)
13639       return false;
13640 
13641     Index = ExtOp->getZExtValue();
13642     if (Input && Input != Extract.getOperand(0))
13643       return false;
13644 
13645     if (!Input)
13646       Input = Extract.getOperand(0);
13647 
13648     Elems = Elems << 8;
13649     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13650     Elems |= Index;
13651 
13652     return true;
13653   };
13654 
13655   // If the build vector operands aren't sign extended vector extracts,
13656   // of the same input vector, then return.
13657   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13658     if (!isSExtOfVecExtract(N->getOperand(i))) {
13659       return SDValue();
13660     }
13661   }
13662 
13663   // If the vector extract indicies are not correct, add the appropriate
13664   // vector_shuffle.
13665   int TgtElemArrayIdx;
13666   int InputSize = Input.getValueType().getScalarSizeInBits();
13667   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13668   if (InputSize + OutputSize == 40)
13669     TgtElemArrayIdx = 0;
13670   else if (InputSize + OutputSize == 72)
13671     TgtElemArrayIdx = 1;
13672   else if (InputSize + OutputSize == 48)
13673     TgtElemArrayIdx = 2;
13674   else if (InputSize + OutputSize == 80)
13675     TgtElemArrayIdx = 3;
13676   else if (InputSize + OutputSize == 96)
13677     TgtElemArrayIdx = 4;
13678   else
13679     return SDValue();
13680 
13681   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13682   CorrectElems = DAG.getDataLayout().isLittleEndian()
13683                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13684                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13685   if (Elems != CorrectElems) {
13686     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13687   }
13688 
13689   // Regular lowering will catch cases where a shuffle is not needed.
13690   return SDValue();
13691 }
13692 
13693 // Look for the pattern of a load from a narrow width to i128, feeding
13694 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13695 // (LXVRZX). This node represents a zero extending load that will be matched
13696 // to the Load VSX Vector Rightmost instructions.
13697 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13698   SDLoc DL(N);
13699 
13700   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13701   if (N->getValueType(0) != MVT::v1i128)
13702     return SDValue();
13703 
13704   SDValue Operand = N->getOperand(0);
13705   // Proceed with the transformation if the operand to the BUILD_VECTOR
13706   // is a load instruction.
13707   if (Operand.getOpcode() != ISD::LOAD)
13708     return SDValue();
13709 
13710   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13711   EVT MemoryType = LD->getMemoryVT();
13712 
13713   // This transformation is only valid if the we are loading either a byte,
13714   // halfword, word, or doubleword.
13715   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13716                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13717 
13718   // Ensure that the load from the narrow width is being zero extended to i128.
13719   if (!ValidLDType ||
13720       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13721        LD->getExtensionType() != ISD::EXTLOAD))
13722     return SDValue();
13723 
13724   SDValue LoadOps[] = {
13725       LD->getChain(), LD->getBasePtr(),
13726       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13727 
13728   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13729                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13730                                  LoadOps, MemoryType, LD->getMemOperand());
13731 }
13732 
13733 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13734                                                  DAGCombinerInfo &DCI) const {
13735   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13736          "Should be called with a BUILD_VECTOR node");
13737 
13738   SelectionDAG &DAG = DCI.DAG;
13739   SDLoc dl(N);
13740 
13741   if (!Subtarget.hasVSX())
13742     return SDValue();
13743 
13744   // The target independent DAG combiner will leave a build_vector of
13745   // float-to-int conversions intact. We can generate MUCH better code for
13746   // a float-to-int conversion of a vector of floats.
13747   SDValue FirstInput = N->getOperand(0);
13748   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13749     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13750     if (Reduced)
13751       return Reduced;
13752   }
13753 
13754   // If we're building a vector out of consecutive loads, just load that
13755   // vector type.
13756   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13757   if (Reduced)
13758     return Reduced;
13759 
13760   // If we're building a vector out of extended elements from another vector
13761   // we have P9 vector integer extend instructions. The code assumes legal
13762   // input types (i.e. it can't handle things like v4i16) so do not run before
13763   // legalization.
13764   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13765     Reduced = combineBVOfVecSExt(N, DAG);
13766     if (Reduced)
13767       return Reduced;
13768   }
13769 
13770   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13771   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13772   // is a load from <valid narrow width> to i128.
13773   if (Subtarget.isISA3_1()) {
13774     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13775     if (BVOfZLoad)
13776       return BVOfZLoad;
13777   }
13778 
13779   if (N->getValueType(0) != MVT::v2f64)
13780     return SDValue();
13781 
13782   // Looking for:
13783   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13784   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13785       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13786     return SDValue();
13787   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13788       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13789     return SDValue();
13790   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13791     return SDValue();
13792 
13793   SDValue Ext1 = FirstInput.getOperand(0);
13794   SDValue Ext2 = N->getOperand(1).getOperand(0);
13795   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13796      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13797     return SDValue();
13798 
13799   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13800   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13801   if (!Ext1Op || !Ext2Op)
13802     return SDValue();
13803   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13804       Ext1.getOperand(0) != Ext2.getOperand(0))
13805     return SDValue();
13806 
13807   int FirstElem = Ext1Op->getZExtValue();
13808   int SecondElem = Ext2Op->getZExtValue();
13809   int SubvecIdx;
13810   if (FirstElem == 0 && SecondElem == 1)
13811     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13812   else if (FirstElem == 2 && SecondElem == 3)
13813     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13814   else
13815     return SDValue();
13816 
13817   SDValue SrcVec = Ext1.getOperand(0);
13818   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13819     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13820   return DAG.getNode(NodeType, dl, MVT::v2f64,
13821                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13822 }
13823 
13824 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13825                                               DAGCombinerInfo &DCI) const {
13826   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13827           N->getOpcode() == ISD::UINT_TO_FP) &&
13828          "Need an int -> FP conversion node here");
13829 
13830   if (useSoftFloat() || !Subtarget.has64BitSupport())
13831     return SDValue();
13832 
13833   SelectionDAG &DAG = DCI.DAG;
13834   SDLoc dl(N);
13835   SDValue Op(N, 0);
13836 
13837   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13838   // from the hardware.
13839   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13840     return SDValue();
13841   if (!Op.getOperand(0).getValueType().isSimple())
13842     return SDValue();
13843   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13844       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13845     return SDValue();
13846 
13847   SDValue FirstOperand(Op.getOperand(0));
13848   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13849     (FirstOperand.getValueType() == MVT::i8 ||
13850      FirstOperand.getValueType() == MVT::i16);
13851   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13852     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13853     bool DstDouble = Op.getValueType() == MVT::f64;
13854     unsigned ConvOp = Signed ?
13855       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13856       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13857     SDValue WidthConst =
13858       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13859                             dl, false);
13860     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13861     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13862     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13863                                          DAG.getVTList(MVT::f64, MVT::Other),
13864                                          Ops, MVT::i8, LDN->getMemOperand());
13865 
13866     // For signed conversion, we need to sign-extend the value in the VSR
13867     if (Signed) {
13868       SDValue ExtOps[] = { Ld, WidthConst };
13869       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13870       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13871     } else
13872       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13873   }
13874 
13875 
13876   // For i32 intermediate values, unfortunately, the conversion functions
13877   // leave the upper 32 bits of the value are undefined. Within the set of
13878   // scalar instructions, we have no method for zero- or sign-extending the
13879   // value. Thus, we cannot handle i32 intermediate values here.
13880   if (Op.getOperand(0).getValueType() == MVT::i32)
13881     return SDValue();
13882 
13883   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13884          "UINT_TO_FP is supported only with FPCVT");
13885 
13886   // If we have FCFIDS, then use it when converting to single-precision.
13887   // Otherwise, convert to double-precision and then round.
13888   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13889                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13890                                                             : PPCISD::FCFIDS)
13891                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13892                                                             : PPCISD::FCFID);
13893   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13894                   ? MVT::f32
13895                   : MVT::f64;
13896 
13897   // If we're converting from a float, to an int, and back to a float again,
13898   // then we don't need the store/load pair at all.
13899   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13900        Subtarget.hasFPCVT()) ||
13901       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13902     SDValue Src = Op.getOperand(0).getOperand(0);
13903     if (Src.getValueType() == MVT::f32) {
13904       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13905       DCI.AddToWorklist(Src.getNode());
13906     } else if (Src.getValueType() != MVT::f64) {
13907       // Make sure that we don't pick up a ppc_fp128 source value.
13908       return SDValue();
13909     }
13910 
13911     unsigned FCTOp =
13912       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13913                                                         PPCISD::FCTIDUZ;
13914 
13915     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13916     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13917 
13918     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13919       FP = DAG.getNode(ISD::FP_ROUND, dl,
13920                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13921       DCI.AddToWorklist(FP.getNode());
13922     }
13923 
13924     return FP;
13925   }
13926 
13927   return SDValue();
13928 }
13929 
13930 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13931 // builtins) into loads with swaps.
13932 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13933                                               DAGCombinerInfo &DCI) const {
13934   SelectionDAG &DAG = DCI.DAG;
13935   SDLoc dl(N);
13936   SDValue Chain;
13937   SDValue Base;
13938   MachineMemOperand *MMO;
13939 
13940   switch (N->getOpcode()) {
13941   default:
13942     llvm_unreachable("Unexpected opcode for little endian VSX load");
13943   case ISD::LOAD: {
13944     LoadSDNode *LD = cast<LoadSDNode>(N);
13945     Chain = LD->getChain();
13946     Base = LD->getBasePtr();
13947     MMO = LD->getMemOperand();
13948     // If the MMO suggests this isn't a load of a full vector, leave
13949     // things alone.  For a built-in, we have to make the change for
13950     // correctness, so if there is a size problem that will be a bug.
13951     if (MMO->getSize() < 16)
13952       return SDValue();
13953     break;
13954   }
13955   case ISD::INTRINSIC_W_CHAIN: {
13956     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13957     Chain = Intrin->getChain();
13958     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13959     // us what we want. Get operand 2 instead.
13960     Base = Intrin->getOperand(2);
13961     MMO = Intrin->getMemOperand();
13962     break;
13963   }
13964   }
13965 
13966   MVT VecTy = N->getValueType(0).getSimpleVT();
13967 
13968   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13969   // aligned and the type is a vector with elements up to 4 bytes
13970   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13971       VecTy.getScalarSizeInBits() <= 32) {
13972     return SDValue();
13973   }
13974 
13975   SDValue LoadOps[] = { Chain, Base };
13976   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13977                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13978                                          LoadOps, MVT::v2f64, MMO);
13979 
13980   DCI.AddToWorklist(Load.getNode());
13981   Chain = Load.getValue(1);
13982   SDValue Swap = DAG.getNode(
13983       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13984   DCI.AddToWorklist(Swap.getNode());
13985 
13986   // Add a bitcast if the resulting load type doesn't match v2f64.
13987   if (VecTy != MVT::v2f64) {
13988     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13989     DCI.AddToWorklist(N.getNode());
13990     // Package {bitcast value, swap's chain} to match Load's shape.
13991     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13992                        N, Swap.getValue(1));
13993   }
13994 
13995   return Swap;
13996 }
13997 
13998 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13999 // builtins) into stores with swaps.
14000 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14001                                                DAGCombinerInfo &DCI) const {
14002   SelectionDAG &DAG = DCI.DAG;
14003   SDLoc dl(N);
14004   SDValue Chain;
14005   SDValue Base;
14006   unsigned SrcOpnd;
14007   MachineMemOperand *MMO;
14008 
14009   switch (N->getOpcode()) {
14010   default:
14011     llvm_unreachable("Unexpected opcode for little endian VSX store");
14012   case ISD::STORE: {
14013     StoreSDNode *ST = cast<StoreSDNode>(N);
14014     Chain = ST->getChain();
14015     Base = ST->getBasePtr();
14016     MMO = ST->getMemOperand();
14017     SrcOpnd = 1;
14018     // If the MMO suggests this isn't a store of a full vector, leave
14019     // things alone.  For a built-in, we have to make the change for
14020     // correctness, so if there is a size problem that will be a bug.
14021     if (MMO->getSize() < 16)
14022       return SDValue();
14023     break;
14024   }
14025   case ISD::INTRINSIC_VOID: {
14026     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14027     Chain = Intrin->getChain();
14028     // Intrin->getBasePtr() oddly does not get what we want.
14029     Base = Intrin->getOperand(3);
14030     MMO = Intrin->getMemOperand();
14031     SrcOpnd = 2;
14032     break;
14033   }
14034   }
14035 
14036   SDValue Src = N->getOperand(SrcOpnd);
14037   MVT VecTy = Src.getValueType().getSimpleVT();
14038 
14039   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14040   // aligned and the type is a vector with elements up to 4 bytes
14041   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14042       VecTy.getScalarSizeInBits() <= 32) {
14043     return SDValue();
14044   }
14045 
14046   // All stores are done as v2f64 and possible bit cast.
14047   if (VecTy != MVT::v2f64) {
14048     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14049     DCI.AddToWorklist(Src.getNode());
14050   }
14051 
14052   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14053                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14054   DCI.AddToWorklist(Swap.getNode());
14055   Chain = Swap.getValue(1);
14056   SDValue StoreOps[] = { Chain, Swap, Base };
14057   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14058                                           DAG.getVTList(MVT::Other),
14059                                           StoreOps, VecTy, MMO);
14060   DCI.AddToWorklist(Store.getNode());
14061   return Store;
14062 }
14063 
14064 // Handle DAG combine for STORE (FP_TO_INT F).
14065 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14066                                                DAGCombinerInfo &DCI) const {
14067 
14068   SelectionDAG &DAG = DCI.DAG;
14069   SDLoc dl(N);
14070   unsigned Opcode = N->getOperand(1).getOpcode();
14071 
14072   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14073          && "Not a FP_TO_INT Instruction!");
14074 
14075   SDValue Val = N->getOperand(1).getOperand(0);
14076   EVT Op1VT = N->getOperand(1).getValueType();
14077   EVT ResVT = Val.getValueType();
14078 
14079   if (!isTypeLegal(ResVT))
14080     return SDValue();
14081 
14082   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14083   bool ValidTypeForStoreFltAsInt =
14084         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14085          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14086 
14087   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14088       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14089     return SDValue();
14090 
14091   // Extend f32 values to f64
14092   if (ResVT.getScalarSizeInBits() == 32) {
14093     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14094     DCI.AddToWorklist(Val.getNode());
14095   }
14096 
14097   // Set signed or unsigned conversion opcode.
14098   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14099                           PPCISD::FP_TO_SINT_IN_VSR :
14100                           PPCISD::FP_TO_UINT_IN_VSR;
14101 
14102   Val = DAG.getNode(ConvOpcode,
14103                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14104   DCI.AddToWorklist(Val.getNode());
14105 
14106   // Set number of bytes being converted.
14107   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14108   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14109                     DAG.getIntPtrConstant(ByteSize, dl, false),
14110                     DAG.getValueType(Op1VT) };
14111 
14112   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14113           DAG.getVTList(MVT::Other), Ops,
14114           cast<StoreSDNode>(N)->getMemoryVT(),
14115           cast<StoreSDNode>(N)->getMemOperand());
14116 
14117   DCI.AddToWorklist(Val.getNode());
14118   return Val;
14119 }
14120 
14121 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14122   // Check that the source of the element keeps flipping
14123   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14124   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14125   for (int i = 1, e = Mask.size(); i < e; i++) {
14126     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14127       return false;
14128     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14129       return false;
14130     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14131   }
14132   return true;
14133 }
14134 
14135 static bool isSplatBV(SDValue Op) {
14136   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14137     return false;
14138   SDValue FirstOp;
14139 
14140   // Find first non-undef input.
14141   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14142     FirstOp = Op.getOperand(i);
14143     if (!FirstOp.isUndef())
14144       break;
14145   }
14146 
14147   // All inputs are undef or the same as the first non-undef input.
14148   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14149     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14150       return false;
14151   return true;
14152 }
14153 
14154 static SDValue isScalarToVec(SDValue Op) {
14155   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14156     return Op;
14157   if (Op.getOpcode() != ISD::BITCAST)
14158     return SDValue();
14159   Op = Op.getOperand(0);
14160   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14161     return Op;
14162   return SDValue();
14163 }
14164 
14165 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14166                                             int LHSMaxIdx, int RHSMinIdx,
14167                                             int RHSMaxIdx, int HalfVec) {
14168   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14169     int Idx = ShuffV[i];
14170     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14171       ShuffV[i] += HalfVec;
14172   }
14173 }
14174 
14175 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14176 // the original is:
14177 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14178 // In such a case, just change the shuffle mask to extract the element
14179 // from the permuted index.
14180 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14181   SDLoc dl(OrigSToV);
14182   EVT VT = OrigSToV.getValueType();
14183   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14184          "Expecting a SCALAR_TO_VECTOR here");
14185   SDValue Input = OrigSToV.getOperand(0);
14186 
14187   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14188     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14189     SDValue OrigVector = Input.getOperand(0);
14190 
14191     // Can't handle non-const element indices or different vector types
14192     // for the input to the extract and the output of the scalar_to_vector.
14193     if (Idx && VT == OrigVector.getValueType()) {
14194       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14195       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14196       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14197     }
14198   }
14199   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14200                      OrigSToV.getOperand(0));
14201 }
14202 
14203 // On little endian subtargets, combine shuffles such as:
14204 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14205 // into:
14206 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14207 // because the latter can be matched to a single instruction merge.
14208 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14209 // to put the value into element zero. Adjust the shuffle mask so that the
14210 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14211 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14212                                                 SelectionDAG &DAG) const {
14213   SDValue LHS = SVN->getOperand(0);
14214   SDValue RHS = SVN->getOperand(1);
14215   auto Mask = SVN->getMask();
14216   int NumElts = LHS.getValueType().getVectorNumElements();
14217   SDValue Res(SVN, 0);
14218   SDLoc dl(SVN);
14219 
14220   // None of these combines are useful on big endian systems since the ISA
14221   // already has a big endian bias.
14222   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14223     return Res;
14224 
14225   // If this is not a shuffle of a shuffle and the first element comes from
14226   // the second vector, canonicalize to the commuted form. This will make it
14227   // more likely to match one of the single instruction patterns.
14228   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14229       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14230     std::swap(LHS, RHS);
14231     Res = DAG.getCommutedVectorShuffle(*SVN);
14232     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14233   }
14234 
14235   // Adjust the shuffle mask if either input vector comes from a
14236   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14237   // form (to prevent the need for a swap).
14238   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14239   SDValue SToVLHS = isScalarToVec(LHS);
14240   SDValue SToVRHS = isScalarToVec(RHS);
14241   if (SToVLHS || SToVRHS) {
14242     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14243                             : SToVRHS.getValueType().getVectorNumElements();
14244     int NumEltsOut = ShuffV.size();
14245 
14246     // Initially assume that neither input is permuted. These will be adjusted
14247     // accordingly if either input is.
14248     int LHSMaxIdx = -1;
14249     int RHSMinIdx = -1;
14250     int RHSMaxIdx = -1;
14251     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14252 
14253     // Get the permuted scalar to vector nodes for the source(s) that come from
14254     // ISD::SCALAR_TO_VECTOR.
14255     if (SToVLHS) {
14256       // Set up the values for the shuffle vector fixup.
14257       LHSMaxIdx = NumEltsOut / NumEltsIn;
14258       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14259       if (SToVLHS.getValueType() != LHS.getValueType())
14260         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14261       LHS = SToVLHS;
14262     }
14263     if (SToVRHS) {
14264       RHSMinIdx = NumEltsOut;
14265       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14266       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14267       if (SToVRHS.getValueType() != RHS.getValueType())
14268         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14269       RHS = SToVRHS;
14270     }
14271 
14272     // Fix up the shuffle mask to reflect where the desired element actually is.
14273     // The minimum and maximum indices that correspond to element zero for both
14274     // the LHS and RHS are computed and will control which shuffle mask entries
14275     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14276     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14277     // HalfVec to refer to the corresponding element in the permuted vector.
14278     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14279                                     HalfVec);
14280     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14281 
14282     // We may have simplified away the shuffle. We won't be able to do anything
14283     // further with it here.
14284     if (!isa<ShuffleVectorSDNode>(Res))
14285       return Res;
14286     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14287   }
14288 
14289   // The common case after we commuted the shuffle is that the RHS is a splat
14290   // and we have elements coming in from the splat at indices that are not
14291   // conducive to using a merge.
14292   // Example:
14293   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14294   if (!isSplatBV(RHS))
14295     return Res;
14296 
14297   // We are looking for a mask such that all even elements are from
14298   // one vector and all odd elements from the other.
14299   if (!isAlternatingShuffMask(Mask, NumElts))
14300     return Res;
14301 
14302   // Adjust the mask so we are pulling in the same index from the splat
14303   // as the index from the interesting vector in consecutive elements.
14304   // Example (even elements from first vector):
14305   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14306   if (Mask[0] < NumElts)
14307     for (int i = 1, e = Mask.size(); i < e; i += 2)
14308       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14309   // Example (odd elements from first vector):
14310   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14311   else
14312     for (int i = 0, e = Mask.size(); i < e; i += 2)
14313       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14314 
14315   // If the RHS has undefs, we need to remove them since we may have created
14316   // a shuffle that adds those instead of the splat value.
14317   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14318   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14319 
14320   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14321   return Res;
14322 }
14323 
14324 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14325                                                 LSBaseSDNode *LSBase,
14326                                                 DAGCombinerInfo &DCI) const {
14327   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14328         "Not a reverse memop pattern!");
14329 
14330   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14331     auto Mask = SVN->getMask();
14332     int i = 0;
14333     auto I = Mask.rbegin();
14334     auto E = Mask.rend();
14335 
14336     for (; I != E; ++I) {
14337       if (*I != i)
14338         return false;
14339       i++;
14340     }
14341     return true;
14342   };
14343 
14344   SelectionDAG &DAG = DCI.DAG;
14345   EVT VT = SVN->getValueType(0);
14346 
14347   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14348     return SDValue();
14349 
14350   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14351   // See comment in PPCVSXSwapRemoval.cpp.
14352   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14353   if (!Subtarget.hasP9Vector())
14354     return SDValue();
14355 
14356   if(!IsElementReverse(SVN))
14357     return SDValue();
14358 
14359   if (LSBase->getOpcode() == ISD::LOAD) {
14360     SDLoc dl(SVN);
14361     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14362     return DAG.getMemIntrinsicNode(
14363         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14364         LSBase->getMemoryVT(), LSBase->getMemOperand());
14365   }
14366 
14367   if (LSBase->getOpcode() == ISD::STORE) {
14368     SDLoc dl(LSBase);
14369     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14370                           LSBase->getBasePtr()};
14371     return DAG.getMemIntrinsicNode(
14372         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14373         LSBase->getMemoryVT(), LSBase->getMemOperand());
14374   }
14375 
14376   llvm_unreachable("Expected a load or store node here");
14377 }
14378 
14379 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14380                                              DAGCombinerInfo &DCI) const {
14381   SelectionDAG &DAG = DCI.DAG;
14382   SDLoc dl(N);
14383   switch (N->getOpcode()) {
14384   default: break;
14385   case ISD::ADD:
14386     return combineADD(N, DCI);
14387   case ISD::SHL:
14388     return combineSHL(N, DCI);
14389   case ISD::SRA:
14390     return combineSRA(N, DCI);
14391   case ISD::SRL:
14392     return combineSRL(N, DCI);
14393   case ISD::MUL:
14394     return combineMUL(N, DCI);
14395   case ISD::FMA:
14396   case PPCISD::FNMSUB:
14397     return combineFMALike(N, DCI);
14398   case PPCISD::SHL:
14399     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14400         return N->getOperand(0);
14401     break;
14402   case PPCISD::SRL:
14403     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14404         return N->getOperand(0);
14405     break;
14406   case PPCISD::SRA:
14407     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14408       if (C->isNullValue() ||   //  0 >>s V -> 0.
14409           C->isAllOnesValue())    // -1 >>s V -> -1.
14410         return N->getOperand(0);
14411     }
14412     break;
14413   case ISD::SIGN_EXTEND:
14414   case ISD::ZERO_EXTEND:
14415   case ISD::ANY_EXTEND:
14416     return DAGCombineExtBoolTrunc(N, DCI);
14417   case ISD::TRUNCATE:
14418     return combineTRUNCATE(N, DCI);
14419   case ISD::SETCC:
14420     if (SDValue CSCC = combineSetCC(N, DCI))
14421       return CSCC;
14422     LLVM_FALLTHROUGH;
14423   case ISD::SELECT_CC:
14424     return DAGCombineTruncBoolExt(N, DCI);
14425   case ISD::SINT_TO_FP:
14426   case ISD::UINT_TO_FP:
14427     return combineFPToIntToFP(N, DCI);
14428   case ISD::VECTOR_SHUFFLE:
14429     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14430       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14431       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14432     }
14433     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14434   case ISD::STORE: {
14435 
14436     EVT Op1VT = N->getOperand(1).getValueType();
14437     unsigned Opcode = N->getOperand(1).getOpcode();
14438 
14439     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14440       SDValue Val= combineStoreFPToInt(N, DCI);
14441       if (Val)
14442         return Val;
14443     }
14444 
14445     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14446       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14447       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14448       if (Val)
14449         return Val;
14450     }
14451 
14452     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14453     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14454         N->getOperand(1).getNode()->hasOneUse() &&
14455         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14456          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14457 
14458       // STBRX can only handle simple types and it makes no sense to store less
14459       // two bytes in byte-reversed order.
14460       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14461       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14462         break;
14463 
14464       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14465       // Do an any-extend to 32-bits if this is a half-word input.
14466       if (BSwapOp.getValueType() == MVT::i16)
14467         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14468 
14469       // If the type of BSWAP operand is wider than stored memory width
14470       // it need to be shifted to the right side before STBRX.
14471       if (Op1VT.bitsGT(mVT)) {
14472         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14473         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14474                               DAG.getConstant(Shift, dl, MVT::i32));
14475         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14476         if (Op1VT == MVT::i64)
14477           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14478       }
14479 
14480       SDValue Ops[] = {
14481         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14482       };
14483       return
14484         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14485                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14486                                 cast<StoreSDNode>(N)->getMemOperand());
14487     }
14488 
14489     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14490     // So it can increase the chance of CSE constant construction.
14491     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14492         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14493       // Need to sign-extended to 64-bits to handle negative values.
14494       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14495       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14496                                     MemVT.getSizeInBits());
14497       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14498 
14499       // DAG.getTruncStore() can't be used here because it doesn't accept
14500       // the general (base + offset) addressing mode.
14501       // So we use UpdateNodeOperands and setTruncatingStore instead.
14502       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14503                              N->getOperand(3));
14504       cast<StoreSDNode>(N)->setTruncatingStore(true);
14505       return SDValue(N, 0);
14506     }
14507 
14508     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14509     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14510     if (Op1VT.isSimple()) {
14511       MVT StoreVT = Op1VT.getSimpleVT();
14512       if (Subtarget.needsSwapsForVSXMemOps() &&
14513           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14514            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14515         return expandVSXStoreForLE(N, DCI);
14516     }
14517     break;
14518   }
14519   case ISD::LOAD: {
14520     LoadSDNode *LD = cast<LoadSDNode>(N);
14521     EVT VT = LD->getValueType(0);
14522 
14523     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14524     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14525     if (VT.isSimple()) {
14526       MVT LoadVT = VT.getSimpleVT();
14527       if (Subtarget.needsSwapsForVSXMemOps() &&
14528           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14529            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14530         return expandVSXLoadForLE(N, DCI);
14531     }
14532 
14533     // We sometimes end up with a 64-bit integer load, from which we extract
14534     // two single-precision floating-point numbers. This happens with
14535     // std::complex<float>, and other similar structures, because of the way we
14536     // canonicalize structure copies. However, if we lack direct moves,
14537     // then the final bitcasts from the extracted integer values to the
14538     // floating-point numbers turn into store/load pairs. Even with direct moves,
14539     // just loading the two floating-point numbers is likely better.
14540     auto ReplaceTwoFloatLoad = [&]() {
14541       if (VT != MVT::i64)
14542         return false;
14543 
14544       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14545           LD->isVolatile())
14546         return false;
14547 
14548       //  We're looking for a sequence like this:
14549       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14550       //      t16: i64 = srl t13, Constant:i32<32>
14551       //    t17: i32 = truncate t16
14552       //  t18: f32 = bitcast t17
14553       //    t19: i32 = truncate t13
14554       //  t20: f32 = bitcast t19
14555 
14556       if (!LD->hasNUsesOfValue(2, 0))
14557         return false;
14558 
14559       auto UI = LD->use_begin();
14560       while (UI.getUse().getResNo() != 0) ++UI;
14561       SDNode *Trunc = *UI++;
14562       while (UI.getUse().getResNo() != 0) ++UI;
14563       SDNode *RightShift = *UI;
14564       if (Trunc->getOpcode() != ISD::TRUNCATE)
14565         std::swap(Trunc, RightShift);
14566 
14567       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14568           Trunc->getValueType(0) != MVT::i32 ||
14569           !Trunc->hasOneUse())
14570         return false;
14571       if (RightShift->getOpcode() != ISD::SRL ||
14572           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14573           RightShift->getConstantOperandVal(1) != 32 ||
14574           !RightShift->hasOneUse())
14575         return false;
14576 
14577       SDNode *Trunc2 = *RightShift->use_begin();
14578       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14579           Trunc2->getValueType(0) != MVT::i32 ||
14580           !Trunc2->hasOneUse())
14581         return false;
14582 
14583       SDNode *Bitcast = *Trunc->use_begin();
14584       SDNode *Bitcast2 = *Trunc2->use_begin();
14585 
14586       if (Bitcast->getOpcode() != ISD::BITCAST ||
14587           Bitcast->getValueType(0) != MVT::f32)
14588         return false;
14589       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14590           Bitcast2->getValueType(0) != MVT::f32)
14591         return false;
14592 
14593       if (Subtarget.isLittleEndian())
14594         std::swap(Bitcast, Bitcast2);
14595 
14596       // Bitcast has the second float (in memory-layout order) and Bitcast2
14597       // has the first one.
14598 
14599       SDValue BasePtr = LD->getBasePtr();
14600       if (LD->isIndexed()) {
14601         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14602                "Non-pre-inc AM on PPC?");
14603         BasePtr =
14604           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14605                       LD->getOffset());
14606       }
14607 
14608       auto MMOFlags =
14609           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14610       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14611                                       LD->getPointerInfo(), LD->getAlignment(),
14612                                       MMOFlags, LD->getAAInfo());
14613       SDValue AddPtr =
14614         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14615                     BasePtr, DAG.getIntPtrConstant(4, dl));
14616       SDValue FloatLoad2 = DAG.getLoad(
14617           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14618           LD->getPointerInfo().getWithOffset(4),
14619           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14620 
14621       if (LD->isIndexed()) {
14622         // Note that DAGCombine should re-form any pre-increment load(s) from
14623         // what is produced here if that makes sense.
14624         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14625       }
14626 
14627       DCI.CombineTo(Bitcast2, FloatLoad);
14628       DCI.CombineTo(Bitcast, FloatLoad2);
14629 
14630       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14631                                     SDValue(FloatLoad2.getNode(), 1));
14632       return true;
14633     };
14634 
14635     if (ReplaceTwoFloatLoad())
14636       return SDValue(N, 0);
14637 
14638     EVT MemVT = LD->getMemoryVT();
14639     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14640     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14641     if (LD->isUnindexed() && VT.isVector() &&
14642         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14643           // P8 and later hardware should just use LOAD.
14644           !Subtarget.hasP8Vector() &&
14645           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14646            VT == MVT::v4f32))) &&
14647         LD->getAlign() < ABIAlignment) {
14648       // This is a type-legal unaligned Altivec load.
14649       SDValue Chain = LD->getChain();
14650       SDValue Ptr = LD->getBasePtr();
14651       bool isLittleEndian = Subtarget.isLittleEndian();
14652 
14653       // This implements the loading of unaligned vectors as described in
14654       // the venerable Apple Velocity Engine overview. Specifically:
14655       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14656       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14657       //
14658       // The general idea is to expand a sequence of one or more unaligned
14659       // loads into an alignment-based permutation-control instruction (lvsl
14660       // or lvsr), a series of regular vector loads (which always truncate
14661       // their input address to an aligned address), and a series of
14662       // permutations.  The results of these permutations are the requested
14663       // loaded values.  The trick is that the last "extra" load is not taken
14664       // from the address you might suspect (sizeof(vector) bytes after the
14665       // last requested load), but rather sizeof(vector) - 1 bytes after the
14666       // last requested vector. The point of this is to avoid a page fault if
14667       // the base address happened to be aligned. This works because if the
14668       // base address is aligned, then adding less than a full vector length
14669       // will cause the last vector in the sequence to be (re)loaded.
14670       // Otherwise, the next vector will be fetched as you might suspect was
14671       // necessary.
14672 
14673       // We might be able to reuse the permutation generation from
14674       // a different base address offset from this one by an aligned amount.
14675       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14676       // optimization later.
14677       Intrinsic::ID Intr, IntrLD, IntrPerm;
14678       MVT PermCntlTy, PermTy, LDTy;
14679       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14680                             : Intrinsic::ppc_altivec_lvsl;
14681       IntrLD = Intrinsic::ppc_altivec_lvx;
14682       IntrPerm = Intrinsic::ppc_altivec_vperm;
14683       PermCntlTy = MVT::v16i8;
14684       PermTy = MVT::v4i32;
14685       LDTy = MVT::v4i32;
14686 
14687       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14688 
14689       // Create the new MMO for the new base load. It is like the original MMO,
14690       // but represents an area in memory almost twice the vector size centered
14691       // on the original address. If the address is unaligned, we might start
14692       // reading up to (sizeof(vector)-1) bytes below the address of the
14693       // original unaligned load.
14694       MachineFunction &MF = DAG.getMachineFunction();
14695       MachineMemOperand *BaseMMO =
14696         MF.getMachineMemOperand(LD->getMemOperand(),
14697                                 -(long)MemVT.getStoreSize()+1,
14698                                 2*MemVT.getStoreSize()-1);
14699 
14700       // Create the new base load.
14701       SDValue LDXIntID =
14702           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14703       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14704       SDValue BaseLoad =
14705         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14706                                 DAG.getVTList(PermTy, MVT::Other),
14707                                 BaseLoadOps, LDTy, BaseMMO);
14708 
14709       // Note that the value of IncOffset (which is provided to the next
14710       // load's pointer info offset value, and thus used to calculate the
14711       // alignment), and the value of IncValue (which is actually used to
14712       // increment the pointer value) are different! This is because we
14713       // require the next load to appear to be aligned, even though it
14714       // is actually offset from the base pointer by a lesser amount.
14715       int IncOffset = VT.getSizeInBits() / 8;
14716       int IncValue = IncOffset;
14717 
14718       // Walk (both up and down) the chain looking for another load at the real
14719       // (aligned) offset (the alignment of the other load does not matter in
14720       // this case). If found, then do not use the offset reduction trick, as
14721       // that will prevent the loads from being later combined (as they would
14722       // otherwise be duplicates).
14723       if (!findConsecutiveLoad(LD, DAG))
14724         --IncValue;
14725 
14726       SDValue Increment =
14727           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14728       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14729 
14730       MachineMemOperand *ExtraMMO =
14731         MF.getMachineMemOperand(LD->getMemOperand(),
14732                                 1, 2*MemVT.getStoreSize()-1);
14733       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14734       SDValue ExtraLoad =
14735         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14736                                 DAG.getVTList(PermTy, MVT::Other),
14737                                 ExtraLoadOps, LDTy, ExtraMMO);
14738 
14739       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14740         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14741 
14742       // Because vperm has a big-endian bias, we must reverse the order
14743       // of the input vectors and complement the permute control vector
14744       // when generating little endian code.  We have already handled the
14745       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14746       // and ExtraLoad here.
14747       SDValue Perm;
14748       if (isLittleEndian)
14749         Perm = BuildIntrinsicOp(IntrPerm,
14750                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14751       else
14752         Perm = BuildIntrinsicOp(IntrPerm,
14753                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14754 
14755       if (VT != PermTy)
14756         Perm = Subtarget.hasAltivec()
14757                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14758                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14759                                  DAG.getTargetConstant(1, dl, MVT::i64));
14760                                // second argument is 1 because this rounding
14761                                // is always exact.
14762 
14763       // The output of the permutation is our loaded result, the TokenFactor is
14764       // our new chain.
14765       DCI.CombineTo(N, Perm, TF);
14766       return SDValue(N, 0);
14767     }
14768     }
14769     break;
14770     case ISD::INTRINSIC_WO_CHAIN: {
14771       bool isLittleEndian = Subtarget.isLittleEndian();
14772       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14773       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14774                                            : Intrinsic::ppc_altivec_lvsl);
14775       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14776         SDValue Add = N->getOperand(1);
14777 
14778         int Bits = 4 /* 16 byte alignment */;
14779 
14780         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14781                                   APInt::getAllOnesValue(Bits /* alignment */)
14782                                       .zext(Add.getScalarValueSizeInBits()))) {
14783           SDNode *BasePtr = Add->getOperand(0).getNode();
14784           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14785                                     UE = BasePtr->use_end();
14786                UI != UE; ++UI) {
14787             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14788                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14789                     IID) {
14790               // We've found another LVSL/LVSR, and this address is an aligned
14791               // multiple of that one. The results will be the same, so use the
14792               // one we've just found instead.
14793 
14794               return SDValue(*UI, 0);
14795             }
14796           }
14797         }
14798 
14799         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14800           SDNode *BasePtr = Add->getOperand(0).getNode();
14801           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14802                UE = BasePtr->use_end(); UI != UE; ++UI) {
14803             if (UI->getOpcode() == ISD::ADD &&
14804                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14805                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14806                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14807                 (1ULL << Bits) == 0) {
14808               SDNode *OtherAdd = *UI;
14809               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14810                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14811                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14812                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14813                   return SDValue(*VI, 0);
14814                 }
14815               }
14816             }
14817           }
14818         }
14819       }
14820 
14821       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14822       // Expose the vabsduw/h/b opportunity for down stream
14823       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14824           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14825            IID == Intrinsic::ppc_altivec_vmaxsh ||
14826            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14827         SDValue V1 = N->getOperand(1);
14828         SDValue V2 = N->getOperand(2);
14829         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14830              V1.getSimpleValueType() == MVT::v8i16 ||
14831              V1.getSimpleValueType() == MVT::v16i8) &&
14832             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14833           // (0-a, a)
14834           if (V1.getOpcode() == ISD::SUB &&
14835               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14836               V1.getOperand(1) == V2) {
14837             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14838           }
14839           // (a, 0-a)
14840           if (V2.getOpcode() == ISD::SUB &&
14841               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14842               V2.getOperand(1) == V1) {
14843             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14844           }
14845           // (x-y, y-x)
14846           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14847               V1.getOperand(0) == V2.getOperand(1) &&
14848               V1.getOperand(1) == V2.getOperand(0)) {
14849             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14850           }
14851         }
14852       }
14853     }
14854 
14855     break;
14856   case ISD::INTRINSIC_W_CHAIN:
14857     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14858     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14859     if (Subtarget.needsSwapsForVSXMemOps()) {
14860       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14861       default:
14862         break;
14863       case Intrinsic::ppc_vsx_lxvw4x:
14864       case Intrinsic::ppc_vsx_lxvd2x:
14865         return expandVSXLoadForLE(N, DCI);
14866       }
14867     }
14868     break;
14869   case ISD::INTRINSIC_VOID:
14870     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14871     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14872     if (Subtarget.needsSwapsForVSXMemOps()) {
14873       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14874       default:
14875         break;
14876       case Intrinsic::ppc_vsx_stxvw4x:
14877       case Intrinsic::ppc_vsx_stxvd2x:
14878         return expandVSXStoreForLE(N, DCI);
14879       }
14880     }
14881     break;
14882   case ISD::BSWAP:
14883     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14884     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14885         N->getOperand(0).hasOneUse() &&
14886         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14887          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14888           N->getValueType(0) == MVT::i64))) {
14889       SDValue Load = N->getOperand(0);
14890       LoadSDNode *LD = cast<LoadSDNode>(Load);
14891       // Create the byte-swapping load.
14892       SDValue Ops[] = {
14893         LD->getChain(),    // Chain
14894         LD->getBasePtr(),  // Ptr
14895         DAG.getValueType(N->getValueType(0)) // VT
14896       };
14897       SDValue BSLoad =
14898         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14899                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14900                                               MVT::i64 : MVT::i32, MVT::Other),
14901                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14902 
14903       // If this is an i16 load, insert the truncate.
14904       SDValue ResVal = BSLoad;
14905       if (N->getValueType(0) == MVT::i16)
14906         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14907 
14908       // First, combine the bswap away.  This makes the value produced by the
14909       // load dead.
14910       DCI.CombineTo(N, ResVal);
14911 
14912       // Next, combine the load away, we give it a bogus result value but a real
14913       // chain result.  The result value is dead because the bswap is dead.
14914       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14915 
14916       // Return N so it doesn't get rechecked!
14917       return SDValue(N, 0);
14918     }
14919     break;
14920   case PPCISD::VCMP:
14921     // If a VCMP_rec node already exists with exactly the same operands as this
14922     // node, use its result instead of this node (VCMP_rec computes both a CR6
14923     // and a normal output).
14924     //
14925     if (!N->getOperand(0).hasOneUse() &&
14926         !N->getOperand(1).hasOneUse() &&
14927         !N->getOperand(2).hasOneUse()) {
14928 
14929       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
14930       SDNode *VCMPrecNode = nullptr;
14931 
14932       SDNode *LHSN = N->getOperand(0).getNode();
14933       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14934            UI != E; ++UI)
14935         if (UI->getOpcode() == PPCISD::VCMP_rec &&
14936             UI->getOperand(1) == N->getOperand(1) &&
14937             UI->getOperand(2) == N->getOperand(2) &&
14938             UI->getOperand(0) == N->getOperand(0)) {
14939           VCMPrecNode = *UI;
14940           break;
14941         }
14942 
14943       // If there is no VCMP_rec node, or if the flag value has a single use,
14944       // don't transform this.
14945       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
14946         break;
14947 
14948       // Look at the (necessarily single) use of the flag value.  If it has a
14949       // chain, this transformation is more complex.  Note that multiple things
14950       // could use the value result, which we should ignore.
14951       SDNode *FlagUser = nullptr;
14952       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
14953            FlagUser == nullptr; ++UI) {
14954         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
14955         SDNode *User = *UI;
14956         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14957           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
14958             FlagUser = User;
14959             break;
14960           }
14961         }
14962       }
14963 
14964       // If the user is a MFOCRF instruction, we know this is safe.
14965       // Otherwise we give up for right now.
14966       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14967         return SDValue(VCMPrecNode, 0);
14968     }
14969     break;
14970   case ISD::BRCOND: {
14971     SDValue Cond = N->getOperand(1);
14972     SDValue Target = N->getOperand(2);
14973 
14974     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14975         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14976           Intrinsic::loop_decrement) {
14977 
14978       // We now need to make the intrinsic dead (it cannot be instruction
14979       // selected).
14980       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14981       assert(Cond.getNode()->hasOneUse() &&
14982              "Counter decrement has more than one use");
14983 
14984       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14985                          N->getOperand(0), Target);
14986     }
14987   }
14988   break;
14989   case ISD::BR_CC: {
14990     // If this is a branch on an altivec predicate comparison, lower this so
14991     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14992     // lowering is done pre-legalize, because the legalizer lowers the predicate
14993     // compare down to code that is difficult to reassemble.
14994     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14995     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14996 
14997     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14998     // value. If so, pass-through the AND to get to the intrinsic.
14999     if (LHS.getOpcode() == ISD::AND &&
15000         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15001         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15002           Intrinsic::loop_decrement &&
15003         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15004         !isNullConstant(LHS.getOperand(1)))
15005       LHS = LHS.getOperand(0);
15006 
15007     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15008         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15009           Intrinsic::loop_decrement &&
15010         isa<ConstantSDNode>(RHS)) {
15011       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15012              "Counter decrement comparison is not EQ or NE");
15013 
15014       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15015       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15016                     (CC == ISD::SETNE && !Val);
15017 
15018       // We now need to make the intrinsic dead (it cannot be instruction
15019       // selected).
15020       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15021       assert(LHS.getNode()->hasOneUse() &&
15022              "Counter decrement has more than one use");
15023 
15024       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15025                          N->getOperand(0), N->getOperand(4));
15026     }
15027 
15028     int CompareOpc;
15029     bool isDot;
15030 
15031     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15032         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15033         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15034       assert(isDot && "Can't compare against a vector result!");
15035 
15036       // If this is a comparison against something other than 0/1, then we know
15037       // that the condition is never/always true.
15038       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15039       if (Val != 0 && Val != 1) {
15040         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15041           return N->getOperand(0);
15042         // Always !=, turn it into an unconditional branch.
15043         return DAG.getNode(ISD::BR, dl, MVT::Other,
15044                            N->getOperand(0), N->getOperand(4));
15045       }
15046 
15047       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15048 
15049       // Create the PPCISD altivec 'dot' comparison node.
15050       SDValue Ops[] = {
15051         LHS.getOperand(2),  // LHS of compare
15052         LHS.getOperand(3),  // RHS of compare
15053         DAG.getConstant(CompareOpc, dl, MVT::i32)
15054       };
15055       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15056       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15057 
15058       // Unpack the result based on how the target uses it.
15059       PPC::Predicate CompOpc;
15060       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15061       default:  // Can't happen, don't crash on invalid number though.
15062       case 0:   // Branch on the value of the EQ bit of CR6.
15063         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15064         break;
15065       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15066         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15067         break;
15068       case 2:   // Branch on the value of the LT bit of CR6.
15069         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15070         break;
15071       case 3:   // Branch on the inverted value of the LT bit of CR6.
15072         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15073         break;
15074       }
15075 
15076       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15077                          DAG.getConstant(CompOpc, dl, MVT::i32),
15078                          DAG.getRegister(PPC::CR6, MVT::i32),
15079                          N->getOperand(4), CompNode.getValue(1));
15080     }
15081     break;
15082   }
15083   case ISD::BUILD_VECTOR:
15084     return DAGCombineBuildVector(N, DCI);
15085   case ISD::ABS:
15086     return combineABS(N, DCI);
15087   case ISD::VSELECT:
15088     return combineVSelect(N, DCI);
15089   }
15090 
15091   return SDValue();
15092 }
15093 
15094 SDValue
15095 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15096                                  SelectionDAG &DAG,
15097                                  SmallVectorImpl<SDNode *> &Created) const {
15098   // fold (sdiv X, pow2)
15099   EVT VT = N->getValueType(0);
15100   if (VT == MVT::i64 && !Subtarget.isPPC64())
15101     return SDValue();
15102   if ((VT != MVT::i32 && VT != MVT::i64) ||
15103       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15104     return SDValue();
15105 
15106   SDLoc DL(N);
15107   SDValue N0 = N->getOperand(0);
15108 
15109   bool IsNegPow2 = (-Divisor).isPowerOf2();
15110   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15111   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15112 
15113   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15114   Created.push_back(Op.getNode());
15115 
15116   if (IsNegPow2) {
15117     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15118     Created.push_back(Op.getNode());
15119   }
15120 
15121   return Op;
15122 }
15123 
15124 //===----------------------------------------------------------------------===//
15125 // Inline Assembly Support
15126 //===----------------------------------------------------------------------===//
15127 
15128 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15129                                                       KnownBits &Known,
15130                                                       const APInt &DemandedElts,
15131                                                       const SelectionDAG &DAG,
15132                                                       unsigned Depth) const {
15133   Known.resetAll();
15134   switch (Op.getOpcode()) {
15135   default: break;
15136   case PPCISD::LBRX: {
15137     // lhbrx is known to have the top bits cleared out.
15138     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15139       Known.Zero = 0xFFFF0000;
15140     break;
15141   }
15142   case ISD::INTRINSIC_WO_CHAIN: {
15143     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15144     default: break;
15145     case Intrinsic::ppc_altivec_vcmpbfp_p:
15146     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15147     case Intrinsic::ppc_altivec_vcmpequb_p:
15148     case Intrinsic::ppc_altivec_vcmpequh_p:
15149     case Intrinsic::ppc_altivec_vcmpequw_p:
15150     case Intrinsic::ppc_altivec_vcmpequd_p:
15151     case Intrinsic::ppc_altivec_vcmpequq_p:
15152     case Intrinsic::ppc_altivec_vcmpgefp_p:
15153     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15154     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15155     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15156     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15157     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15158     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15159     case Intrinsic::ppc_altivec_vcmpgtub_p:
15160     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15161     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15162     case Intrinsic::ppc_altivec_vcmpgtud_p:
15163     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15164       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15165       break;
15166     }
15167   }
15168   }
15169 }
15170 
15171 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15172   switch (Subtarget.getCPUDirective()) {
15173   default: break;
15174   case PPC::DIR_970:
15175   case PPC::DIR_PWR4:
15176   case PPC::DIR_PWR5:
15177   case PPC::DIR_PWR5X:
15178   case PPC::DIR_PWR6:
15179   case PPC::DIR_PWR6X:
15180   case PPC::DIR_PWR7:
15181   case PPC::DIR_PWR8:
15182   case PPC::DIR_PWR9:
15183   case PPC::DIR_PWR10:
15184   case PPC::DIR_PWR_FUTURE: {
15185     if (!ML)
15186       break;
15187 
15188     if (!DisableInnermostLoopAlign32) {
15189       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15190       // so that we can decrease cache misses and branch-prediction misses.
15191       // Actual alignment of the loop will depend on the hotness check and other
15192       // logic in alignBlocks.
15193       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15194         return Align(32);
15195     }
15196 
15197     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15198 
15199     // For small loops (between 5 and 8 instructions), align to a 32-byte
15200     // boundary so that the entire loop fits in one instruction-cache line.
15201     uint64_t LoopSize = 0;
15202     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15203       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15204         LoopSize += TII->getInstSizeInBytes(*J);
15205         if (LoopSize > 32)
15206           break;
15207       }
15208 
15209     if (LoopSize > 16 && LoopSize <= 32)
15210       return Align(32);
15211 
15212     break;
15213   }
15214   }
15215 
15216   return TargetLowering::getPrefLoopAlignment(ML);
15217 }
15218 
15219 /// getConstraintType - Given a constraint, return the type of
15220 /// constraint it is for this target.
15221 PPCTargetLowering::ConstraintType
15222 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15223   if (Constraint.size() == 1) {
15224     switch (Constraint[0]) {
15225     default: break;
15226     case 'b':
15227     case 'r':
15228     case 'f':
15229     case 'd':
15230     case 'v':
15231     case 'y':
15232       return C_RegisterClass;
15233     case 'Z':
15234       // FIXME: While Z does indicate a memory constraint, it specifically
15235       // indicates an r+r address (used in conjunction with the 'y' modifier
15236       // in the replacement string). Currently, we're forcing the base
15237       // register to be r0 in the asm printer (which is interpreted as zero)
15238       // and forming the complete address in the second register. This is
15239       // suboptimal.
15240       return C_Memory;
15241     }
15242   } else if (Constraint == "wc") { // individual CR bits.
15243     return C_RegisterClass;
15244   } else if (Constraint == "wa" || Constraint == "wd" ||
15245              Constraint == "wf" || Constraint == "ws" ||
15246              Constraint == "wi" || Constraint == "ww") {
15247     return C_RegisterClass; // VSX registers.
15248   }
15249   return TargetLowering::getConstraintType(Constraint);
15250 }
15251 
15252 /// Examine constraint type and operand type and determine a weight value.
15253 /// This object must already have been set up with the operand type
15254 /// and the current alternative constraint selected.
15255 TargetLowering::ConstraintWeight
15256 PPCTargetLowering::getSingleConstraintMatchWeight(
15257     AsmOperandInfo &info, const char *constraint) const {
15258   ConstraintWeight weight = CW_Invalid;
15259   Value *CallOperandVal = info.CallOperandVal;
15260     // If we don't have a value, we can't do a match,
15261     // but allow it at the lowest weight.
15262   if (!CallOperandVal)
15263     return CW_Default;
15264   Type *type = CallOperandVal->getType();
15265 
15266   // Look at the constraint type.
15267   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15268     return CW_Register; // an individual CR bit.
15269   else if ((StringRef(constraint) == "wa" ||
15270             StringRef(constraint) == "wd" ||
15271             StringRef(constraint) == "wf") &&
15272            type->isVectorTy())
15273     return CW_Register;
15274   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15275     return CW_Register; // just hold 64-bit integers data.
15276   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15277     return CW_Register;
15278   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15279     return CW_Register;
15280 
15281   switch (*constraint) {
15282   default:
15283     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15284     break;
15285   case 'b':
15286     if (type->isIntegerTy())
15287       weight = CW_Register;
15288     break;
15289   case 'f':
15290     if (type->isFloatTy())
15291       weight = CW_Register;
15292     break;
15293   case 'd':
15294     if (type->isDoubleTy())
15295       weight = CW_Register;
15296     break;
15297   case 'v':
15298     if (type->isVectorTy())
15299       weight = CW_Register;
15300     break;
15301   case 'y':
15302     weight = CW_Register;
15303     break;
15304   case 'Z':
15305     weight = CW_Memory;
15306     break;
15307   }
15308   return weight;
15309 }
15310 
15311 std::pair<unsigned, const TargetRegisterClass *>
15312 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15313                                                 StringRef Constraint,
15314                                                 MVT VT) const {
15315   if (Constraint.size() == 1) {
15316     // GCC RS6000 Constraint Letters
15317     switch (Constraint[0]) {
15318     case 'b':   // R1-R31
15319       if (VT == MVT::i64 && Subtarget.isPPC64())
15320         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15321       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15322     case 'r':   // R0-R31
15323       if (VT == MVT::i64 && Subtarget.isPPC64())
15324         return std::make_pair(0U, &PPC::G8RCRegClass);
15325       return std::make_pair(0U, &PPC::GPRCRegClass);
15326     // 'd' and 'f' constraints are both defined to be "the floating point
15327     // registers", where one is for 32-bit and the other for 64-bit. We don't
15328     // really care overly much here so just give them all the same reg classes.
15329     case 'd':
15330     case 'f':
15331       if (Subtarget.hasSPE()) {
15332         if (VT == MVT::f32 || VT == MVT::i32)
15333           return std::make_pair(0U, &PPC::GPRCRegClass);
15334         if (VT == MVT::f64 || VT == MVT::i64)
15335           return std::make_pair(0U, &PPC::SPERCRegClass);
15336       } else {
15337         if (VT == MVT::f32 || VT == MVT::i32)
15338           return std::make_pair(0U, &PPC::F4RCRegClass);
15339         if (VT == MVT::f64 || VT == MVT::i64)
15340           return std::make_pair(0U, &PPC::F8RCRegClass);
15341       }
15342       break;
15343     case 'v':
15344       if (Subtarget.hasAltivec())
15345         return std::make_pair(0U, &PPC::VRRCRegClass);
15346       break;
15347     case 'y':   // crrc
15348       return std::make_pair(0U, &PPC::CRRCRegClass);
15349     }
15350   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15351     // An individual CR bit.
15352     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15353   } else if ((Constraint == "wa" || Constraint == "wd" ||
15354              Constraint == "wf" || Constraint == "wi") &&
15355              Subtarget.hasVSX()) {
15356     return std::make_pair(0U, &PPC::VSRCRegClass);
15357   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15358     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15359       return std::make_pair(0U, &PPC::VSSRCRegClass);
15360     else
15361       return std::make_pair(0U, &PPC::VSFRCRegClass);
15362   }
15363 
15364   // Handle special cases of physical registers that are not properly handled
15365   // by the base class.
15366   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15367     // If we name a VSX register, we can't defer to the base class because it
15368     // will not recognize the correct register (their names will be VSL{0-31}
15369     // and V{0-31} so they won't match). So we match them here.
15370     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15371       int VSNum = atoi(Constraint.data() + 3);
15372       assert(VSNum >= 0 && VSNum <= 63 &&
15373              "Attempted to access a vsr out of range");
15374       if (VSNum < 32)
15375         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15376       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15377     }
15378 
15379     // For float registers, we can't defer to the base class as it will match
15380     // the SPILLTOVSRRC class.
15381     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15382       int RegNum = atoi(Constraint.data() + 2);
15383       if (RegNum > 31 || RegNum < 0)
15384         report_fatal_error("Invalid floating point register number");
15385       if (VT == MVT::f32 || VT == MVT::i32)
15386         return Subtarget.hasSPE()
15387                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15388                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15389       if (VT == MVT::f64 || VT == MVT::i64)
15390         return Subtarget.hasSPE()
15391                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15392                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15393     }
15394   }
15395 
15396   std::pair<unsigned, const TargetRegisterClass *> R =
15397       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15398 
15399   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15400   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15401   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15402   // register.
15403   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15404   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15405   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15406       PPC::GPRCRegClass.contains(R.first))
15407     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15408                             PPC::sub_32, &PPC::G8RCRegClass),
15409                           &PPC::G8RCRegClass);
15410 
15411   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15412   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15413     R.first = PPC::CR0;
15414     R.second = &PPC::CRRCRegClass;
15415   }
15416   // FIXME: This warning should ideally be emitted in the front end.
15417   const auto &TM = getTargetMachine();
15418   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
15419     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
15420          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
15421         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
15422       errs() << "warning: vector registers 20 to 32 are reserved in the "
15423                 "default AIX AltiVec ABI and cannot be used\n";
15424   }
15425 
15426   return R;
15427 }
15428 
15429 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15430 /// vector.  If it is invalid, don't add anything to Ops.
15431 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15432                                                      std::string &Constraint,
15433                                                      std::vector<SDValue>&Ops,
15434                                                      SelectionDAG &DAG) const {
15435   SDValue Result;
15436 
15437   // Only support length 1 constraints.
15438   if (Constraint.length() > 1) return;
15439 
15440   char Letter = Constraint[0];
15441   switch (Letter) {
15442   default: break;
15443   case 'I':
15444   case 'J':
15445   case 'K':
15446   case 'L':
15447   case 'M':
15448   case 'N':
15449   case 'O':
15450   case 'P': {
15451     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15452     if (!CST) return; // Must be an immediate to match.
15453     SDLoc dl(Op);
15454     int64_t Value = CST->getSExtValue();
15455     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15456                          // numbers are printed as such.
15457     switch (Letter) {
15458     default: llvm_unreachable("Unknown constraint letter!");
15459     case 'I':  // "I" is a signed 16-bit constant.
15460       if (isInt<16>(Value))
15461         Result = DAG.getTargetConstant(Value, dl, TCVT);
15462       break;
15463     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15464       if (isShiftedUInt<16, 16>(Value))
15465         Result = DAG.getTargetConstant(Value, dl, TCVT);
15466       break;
15467     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15468       if (isShiftedInt<16, 16>(Value))
15469         Result = DAG.getTargetConstant(Value, dl, TCVT);
15470       break;
15471     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15472       if (isUInt<16>(Value))
15473         Result = DAG.getTargetConstant(Value, dl, TCVT);
15474       break;
15475     case 'M':  // "M" is a constant that is greater than 31.
15476       if (Value > 31)
15477         Result = DAG.getTargetConstant(Value, dl, TCVT);
15478       break;
15479     case 'N':  // "N" is a positive constant that is an exact power of two.
15480       if (Value > 0 && isPowerOf2_64(Value))
15481         Result = DAG.getTargetConstant(Value, dl, TCVT);
15482       break;
15483     case 'O':  // "O" is the constant zero.
15484       if (Value == 0)
15485         Result = DAG.getTargetConstant(Value, dl, TCVT);
15486       break;
15487     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15488       if (isInt<16>(-Value))
15489         Result = DAG.getTargetConstant(Value, dl, TCVT);
15490       break;
15491     }
15492     break;
15493   }
15494   }
15495 
15496   if (Result.getNode()) {
15497     Ops.push_back(Result);
15498     return;
15499   }
15500 
15501   // Handle standard constraint letters.
15502   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15503 }
15504 
15505 // isLegalAddressingMode - Return true if the addressing mode represented
15506 // by AM is legal for this target, for a load/store of the specified type.
15507 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15508                                               const AddrMode &AM, Type *Ty,
15509                                               unsigned AS,
15510                                               Instruction *I) const {
15511   // Vector type r+i form is supported since power9 as DQ form. We don't check
15512   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15513   // imm form is preferred and the offset can be adjusted to use imm form later
15514   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15515   // max offset to check legal addressing mode, we should be a little aggressive
15516   // to contain other offsets for that LSRUse.
15517   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15518     return false;
15519 
15520   // PPC allows a sign-extended 16-bit immediate field.
15521   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15522     return false;
15523 
15524   // No global is ever allowed as a base.
15525   if (AM.BaseGV)
15526     return false;
15527 
15528   // PPC only support r+r,
15529   switch (AM.Scale) {
15530   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15531     break;
15532   case 1:
15533     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15534       return false;
15535     // Otherwise we have r+r or r+i.
15536     break;
15537   case 2:
15538     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15539       return false;
15540     // Allow 2*r as r+r.
15541     break;
15542   default:
15543     // No other scales are supported.
15544     return false;
15545   }
15546 
15547   return true;
15548 }
15549 
15550 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15551                                            SelectionDAG &DAG) const {
15552   MachineFunction &MF = DAG.getMachineFunction();
15553   MachineFrameInfo &MFI = MF.getFrameInfo();
15554   MFI.setReturnAddressIsTaken(true);
15555 
15556   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15557     return SDValue();
15558 
15559   SDLoc dl(Op);
15560   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15561 
15562   // Make sure the function does not optimize away the store of the RA to
15563   // the stack.
15564   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15565   FuncInfo->setLRStoreRequired();
15566   bool isPPC64 = Subtarget.isPPC64();
15567   auto PtrVT = getPointerTy(MF.getDataLayout());
15568 
15569   if (Depth > 0) {
15570     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15571     SDValue Offset =
15572         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15573                         isPPC64 ? MVT::i64 : MVT::i32);
15574     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15575                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15576                        MachinePointerInfo());
15577   }
15578 
15579   // Just load the return address off the stack.
15580   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15581   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15582                      MachinePointerInfo());
15583 }
15584 
15585 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15586                                           SelectionDAG &DAG) const {
15587   SDLoc dl(Op);
15588   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15589 
15590   MachineFunction &MF = DAG.getMachineFunction();
15591   MachineFrameInfo &MFI = MF.getFrameInfo();
15592   MFI.setFrameAddressIsTaken(true);
15593 
15594   EVT PtrVT = getPointerTy(MF.getDataLayout());
15595   bool isPPC64 = PtrVT == MVT::i64;
15596 
15597   // Naked functions never have a frame pointer, and so we use r1. For all
15598   // other functions, this decision must be delayed until during PEI.
15599   unsigned FrameReg;
15600   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15601     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15602   else
15603     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15604 
15605   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15606                                          PtrVT);
15607   while (Depth--)
15608     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15609                             FrameAddr, MachinePointerInfo());
15610   return FrameAddr;
15611 }
15612 
15613 // FIXME? Maybe this could be a TableGen attribute on some registers and
15614 // this table could be generated automatically from RegInfo.
15615 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15616                                               const MachineFunction &MF) const {
15617   bool isPPC64 = Subtarget.isPPC64();
15618 
15619   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15620   if (!is64Bit && VT != LLT::scalar(32))
15621     report_fatal_error("Invalid register global variable type");
15622 
15623   Register Reg = StringSwitch<Register>(RegName)
15624                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15625                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15626                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15627                      .Default(Register());
15628 
15629   if (Reg)
15630     return Reg;
15631   report_fatal_error("Invalid register name global variable");
15632 }
15633 
15634 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15635   // 32-bit SVR4 ABI access everything as got-indirect.
15636   if (Subtarget.is32BitELFABI())
15637     return true;
15638 
15639   // AIX accesses everything indirectly through the TOC, which is similar to
15640   // the GOT.
15641   if (Subtarget.isAIXABI())
15642     return true;
15643 
15644   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15645   // If it is small or large code model, module locals are accessed
15646   // indirectly by loading their address from .toc/.got.
15647   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15648     return true;
15649 
15650   // JumpTable and BlockAddress are accessed as got-indirect.
15651   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15652     return true;
15653 
15654   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15655     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15656 
15657   return false;
15658 }
15659 
15660 bool
15661 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15662   // The PowerPC target isn't yet aware of offsets.
15663   return false;
15664 }
15665 
15666 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15667                                            const CallInst &I,
15668                                            MachineFunction &MF,
15669                                            unsigned Intrinsic) const {
15670   switch (Intrinsic) {
15671   case Intrinsic::ppc_altivec_lvx:
15672   case Intrinsic::ppc_altivec_lvxl:
15673   case Intrinsic::ppc_altivec_lvebx:
15674   case Intrinsic::ppc_altivec_lvehx:
15675   case Intrinsic::ppc_altivec_lvewx:
15676   case Intrinsic::ppc_vsx_lxvd2x:
15677   case Intrinsic::ppc_vsx_lxvw4x:
15678   case Intrinsic::ppc_vsx_lxvd2x_be:
15679   case Intrinsic::ppc_vsx_lxvw4x_be:
15680   case Intrinsic::ppc_vsx_lxvl:
15681   case Intrinsic::ppc_vsx_lxvll: {
15682     EVT VT;
15683     switch (Intrinsic) {
15684     case Intrinsic::ppc_altivec_lvebx:
15685       VT = MVT::i8;
15686       break;
15687     case Intrinsic::ppc_altivec_lvehx:
15688       VT = MVT::i16;
15689       break;
15690     case Intrinsic::ppc_altivec_lvewx:
15691       VT = MVT::i32;
15692       break;
15693     case Intrinsic::ppc_vsx_lxvd2x:
15694     case Intrinsic::ppc_vsx_lxvd2x_be:
15695       VT = MVT::v2f64;
15696       break;
15697     default:
15698       VT = MVT::v4i32;
15699       break;
15700     }
15701 
15702     Info.opc = ISD::INTRINSIC_W_CHAIN;
15703     Info.memVT = VT;
15704     Info.ptrVal = I.getArgOperand(0);
15705     Info.offset = -VT.getStoreSize()+1;
15706     Info.size = 2*VT.getStoreSize()-1;
15707     Info.align = Align(1);
15708     Info.flags = MachineMemOperand::MOLoad;
15709     return true;
15710   }
15711   case Intrinsic::ppc_altivec_stvx:
15712   case Intrinsic::ppc_altivec_stvxl:
15713   case Intrinsic::ppc_altivec_stvebx:
15714   case Intrinsic::ppc_altivec_stvehx:
15715   case Intrinsic::ppc_altivec_stvewx:
15716   case Intrinsic::ppc_vsx_stxvd2x:
15717   case Intrinsic::ppc_vsx_stxvw4x:
15718   case Intrinsic::ppc_vsx_stxvd2x_be:
15719   case Intrinsic::ppc_vsx_stxvw4x_be:
15720   case Intrinsic::ppc_vsx_stxvl:
15721   case Intrinsic::ppc_vsx_stxvll: {
15722     EVT VT;
15723     switch (Intrinsic) {
15724     case Intrinsic::ppc_altivec_stvebx:
15725       VT = MVT::i8;
15726       break;
15727     case Intrinsic::ppc_altivec_stvehx:
15728       VT = MVT::i16;
15729       break;
15730     case Intrinsic::ppc_altivec_stvewx:
15731       VT = MVT::i32;
15732       break;
15733     case Intrinsic::ppc_vsx_stxvd2x:
15734     case Intrinsic::ppc_vsx_stxvd2x_be:
15735       VT = MVT::v2f64;
15736       break;
15737     default:
15738       VT = MVT::v4i32;
15739       break;
15740     }
15741 
15742     Info.opc = ISD::INTRINSIC_VOID;
15743     Info.memVT = VT;
15744     Info.ptrVal = I.getArgOperand(1);
15745     Info.offset = -VT.getStoreSize()+1;
15746     Info.size = 2*VT.getStoreSize()-1;
15747     Info.align = Align(1);
15748     Info.flags = MachineMemOperand::MOStore;
15749     return true;
15750   }
15751   default:
15752     break;
15753   }
15754 
15755   return false;
15756 }
15757 
15758 /// It returns EVT::Other if the type should be determined using generic
15759 /// target-independent logic.
15760 EVT PPCTargetLowering::getOptimalMemOpType(
15761     const MemOp &Op, const AttributeList &FuncAttributes) const {
15762   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15763     // We should use Altivec/VSX loads and stores when available. For unaligned
15764     // addresses, unaligned VSX loads are only fast starting with the P8.
15765     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15766         (Op.isAligned(Align(16)) ||
15767          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15768       return MVT::v4i32;
15769   }
15770 
15771   if (Subtarget.isPPC64()) {
15772     return MVT::i64;
15773   }
15774 
15775   return MVT::i32;
15776 }
15777 
15778 /// Returns true if it is beneficial to convert a load of a constant
15779 /// to just the constant itself.
15780 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15781                                                           Type *Ty) const {
15782   assert(Ty->isIntegerTy());
15783 
15784   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15785   return !(BitSize == 0 || BitSize > 64);
15786 }
15787 
15788 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15789   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15790     return false;
15791   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15792   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15793   return NumBits1 == 64 && NumBits2 == 32;
15794 }
15795 
15796 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15797   if (!VT1.isInteger() || !VT2.isInteger())
15798     return false;
15799   unsigned NumBits1 = VT1.getSizeInBits();
15800   unsigned NumBits2 = VT2.getSizeInBits();
15801   return NumBits1 == 64 && NumBits2 == 32;
15802 }
15803 
15804 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15805   // Generally speaking, zexts are not free, but they are free when they can be
15806   // folded with other operations.
15807   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15808     EVT MemVT = LD->getMemoryVT();
15809     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15810          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15811         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15812          LD->getExtensionType() == ISD::ZEXTLOAD))
15813       return true;
15814   }
15815 
15816   // FIXME: Add other cases...
15817   //  - 32-bit shifts with a zext to i64
15818   //  - zext after ctlz, bswap, etc.
15819   //  - zext after and by a constant mask
15820 
15821   return TargetLowering::isZExtFree(Val, VT2);
15822 }
15823 
15824 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15825   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15826          "invalid fpext types");
15827   // Extending to float128 is not free.
15828   if (DestVT == MVT::f128)
15829     return false;
15830   return true;
15831 }
15832 
15833 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15834   return isInt<16>(Imm) || isUInt<16>(Imm);
15835 }
15836 
15837 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15838   return isInt<16>(Imm) || isUInt<16>(Imm);
15839 }
15840 
15841 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
15842                                                        MachineMemOperand::Flags,
15843                                                        bool *Fast) const {
15844   if (DisablePPCUnaligned)
15845     return false;
15846 
15847   // PowerPC supports unaligned memory access for simple non-vector types.
15848   // Although accessing unaligned addresses is not as efficient as accessing
15849   // aligned addresses, it is generally more efficient than manual expansion,
15850   // and generally only traps for software emulation when crossing page
15851   // boundaries.
15852 
15853   if (!VT.isSimple())
15854     return false;
15855 
15856   if (VT.isFloatingPoint() && !VT.isVector() &&
15857       !Subtarget.allowsUnalignedFPAccess())
15858     return false;
15859 
15860   if (VT.getSimpleVT().isVector()) {
15861     if (Subtarget.hasVSX()) {
15862       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15863           VT != MVT::v4f32 && VT != MVT::v4i32)
15864         return false;
15865     } else {
15866       return false;
15867     }
15868   }
15869 
15870   if (VT == MVT::ppcf128)
15871     return false;
15872 
15873   if (Fast)
15874     *Fast = true;
15875 
15876   return true;
15877 }
15878 
15879 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
15880                                                SDValue C) const {
15881   // Check integral scalar types.
15882   if (!VT.isScalarInteger())
15883     return false;
15884   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
15885     if (!ConstNode->getAPIntValue().isSignedIntN(64))
15886       return false;
15887     // This transformation will generate >= 2 operations. But the following
15888     // cases will generate <= 2 instructions during ISEL. So exclude them.
15889     // 1. If the constant multiplier fits 16 bits, it can be handled by one
15890     // HW instruction, ie. MULLI
15891     // 2. If the multiplier after shifted fits 16 bits, an extra shift
15892     // instruction is needed than case 1, ie. MULLI and RLDICR
15893     int64_t Imm = ConstNode->getSExtValue();
15894     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
15895     Imm >>= Shift;
15896     if (isInt<16>(Imm))
15897       return false;
15898     uint64_t UImm = static_cast<uint64_t>(Imm);
15899     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
15900         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
15901       return true;
15902   }
15903   return false;
15904 }
15905 
15906 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15907                                                    EVT VT) const {
15908   return isFMAFasterThanFMulAndFAdd(
15909       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15910 }
15911 
15912 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15913                                                    Type *Ty) const {
15914   switch (Ty->getScalarType()->getTypeID()) {
15915   case Type::FloatTyID:
15916   case Type::DoubleTyID:
15917     return true;
15918   case Type::FP128TyID:
15919     return Subtarget.hasP9Vector();
15920   default:
15921     return false;
15922   }
15923 }
15924 
15925 // FIXME: add more patterns which are not profitable to hoist.
15926 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15927   if (!I->hasOneUse())
15928     return true;
15929 
15930   Instruction *User = I->user_back();
15931   assert(User && "A single use instruction with no uses.");
15932 
15933   switch (I->getOpcode()) {
15934   case Instruction::FMul: {
15935     // Don't break FMA, PowerPC prefers FMA.
15936     if (User->getOpcode() != Instruction::FSub &&
15937         User->getOpcode() != Instruction::FAdd)
15938       return true;
15939 
15940     const TargetOptions &Options = getTargetMachine().Options;
15941     const Function *F = I->getFunction();
15942     const DataLayout &DL = F->getParent()->getDataLayout();
15943     Type *Ty = User->getOperand(0)->getType();
15944 
15945     return !(
15946         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15947         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15948         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15949   }
15950   case Instruction::Load: {
15951     // Don't break "store (load float*)" pattern, this pattern will be combined
15952     // to "store (load int32)" in later InstCombine pass. See function
15953     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15954     // cycles than loading a 32 bit integer.
15955     LoadInst *LI = cast<LoadInst>(I);
15956     // For the loads that combineLoadToOperationType does nothing, like
15957     // ordered load, it should be profitable to hoist them.
15958     // For swifterror load, it can only be used for pointer to pointer type, so
15959     // later type check should get rid of this case.
15960     if (!LI->isUnordered())
15961       return true;
15962 
15963     if (User->getOpcode() != Instruction::Store)
15964       return true;
15965 
15966     if (I->getType()->getTypeID() != Type::FloatTyID)
15967       return true;
15968 
15969     return false;
15970   }
15971   default:
15972     return true;
15973   }
15974   return true;
15975 }
15976 
15977 const MCPhysReg *
15978 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15979   // LR is a callee-save register, but we must treat it as clobbered by any call
15980   // site. Hence we include LR in the scratch registers, which are in turn added
15981   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15982   // to CTR, which is used by any indirect call.
15983   static const MCPhysReg ScratchRegs[] = {
15984     PPC::X12, PPC::LR8, PPC::CTR8, 0
15985   };
15986 
15987   return ScratchRegs;
15988 }
15989 
15990 Register PPCTargetLowering::getExceptionPointerRegister(
15991     const Constant *PersonalityFn) const {
15992   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15993 }
15994 
15995 Register PPCTargetLowering::getExceptionSelectorRegister(
15996     const Constant *PersonalityFn) const {
15997   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15998 }
15999 
16000 bool
16001 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16002                      EVT VT , unsigned DefinedValues) const {
16003   if (VT == MVT::v2i64)
16004     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16005 
16006   if (Subtarget.hasVSX())
16007     return true;
16008 
16009   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16010 }
16011 
16012 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16013   if (DisableILPPref || Subtarget.enableMachineScheduler())
16014     return TargetLowering::getSchedulingPreference(N);
16015 
16016   return Sched::ILP;
16017 }
16018 
16019 // Create a fast isel object.
16020 FastISel *
16021 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16022                                   const TargetLibraryInfo *LibInfo) const {
16023   return PPC::createFastISel(FuncInfo, LibInfo);
16024 }
16025 
16026 // 'Inverted' means the FMA opcode after negating one multiplicand.
16027 // For example, (fma -a b c) = (fnmsub a b c)
16028 static unsigned invertFMAOpcode(unsigned Opc) {
16029   switch (Opc) {
16030   default:
16031     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16032   case ISD::FMA:
16033     return PPCISD::FNMSUB;
16034   case PPCISD::FNMSUB:
16035     return ISD::FMA;
16036   }
16037 }
16038 
16039 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16040                                                 bool LegalOps, bool OptForSize,
16041                                                 NegatibleCost &Cost,
16042                                                 unsigned Depth) const {
16043   if (Depth > SelectionDAG::MaxRecursionDepth)
16044     return SDValue();
16045 
16046   unsigned Opc = Op.getOpcode();
16047   EVT VT = Op.getValueType();
16048   SDNodeFlags Flags = Op.getNode()->getFlags();
16049 
16050   switch (Opc) {
16051   case PPCISD::FNMSUB:
16052     if (!Op.hasOneUse() || !isTypeLegal(VT))
16053       break;
16054 
16055     const TargetOptions &Options = getTargetMachine().Options;
16056     SDValue N0 = Op.getOperand(0);
16057     SDValue N1 = Op.getOperand(1);
16058     SDValue N2 = Op.getOperand(2);
16059     SDLoc Loc(Op);
16060 
16061     NegatibleCost N2Cost = NegatibleCost::Expensive;
16062     SDValue NegN2 =
16063         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16064 
16065     if (!NegN2)
16066       return SDValue();
16067 
16068     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16069     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16070     // These transformations may change sign of zeroes. For example,
16071     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16072     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16073       // Try and choose the cheaper one to negate.
16074       NegatibleCost N0Cost = NegatibleCost::Expensive;
16075       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16076                                            N0Cost, Depth + 1);
16077 
16078       NegatibleCost N1Cost = NegatibleCost::Expensive;
16079       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16080                                            N1Cost, Depth + 1);
16081 
16082       if (NegN0 && N0Cost <= N1Cost) {
16083         Cost = std::min(N0Cost, N2Cost);
16084         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16085       } else if (NegN1) {
16086         Cost = std::min(N1Cost, N2Cost);
16087         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16088       }
16089     }
16090 
16091     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16092     if (isOperationLegal(ISD::FMA, VT)) {
16093       Cost = N2Cost;
16094       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16095     }
16096 
16097     break;
16098   }
16099 
16100   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16101                                               Cost, Depth);
16102 }
16103 
16104 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16105 bool PPCTargetLowering::useLoadStackGuardNode() const {
16106   if (!Subtarget.isTargetLinux())
16107     return TargetLowering::useLoadStackGuardNode();
16108   return true;
16109 }
16110 
16111 // Override to disable global variable loading on Linux.
16112 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16113   if (!Subtarget.isTargetLinux())
16114     return TargetLowering::insertSSPDeclarations(M);
16115 }
16116 
16117 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16118                                      bool ForCodeSize) const {
16119   if (!VT.isSimple() || !Subtarget.hasVSX())
16120     return false;
16121 
16122   switch(VT.getSimpleVT().SimpleTy) {
16123   default:
16124     // For FP types that are currently not supported by PPC backend, return
16125     // false. Examples: f16, f80.
16126     return false;
16127   case MVT::f32:
16128   case MVT::f64:
16129     if (Subtarget.hasPrefixInstrs()) {
16130       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16131       return true;
16132     }
16133     LLVM_FALLTHROUGH;
16134   case MVT::ppcf128:
16135     return Imm.isPosZero();
16136   }
16137 }
16138 
16139 // For vector shift operation op, fold
16140 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16141 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16142                                   SelectionDAG &DAG) {
16143   SDValue N0 = N->getOperand(0);
16144   SDValue N1 = N->getOperand(1);
16145   EVT VT = N0.getValueType();
16146   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16147   unsigned Opcode = N->getOpcode();
16148   unsigned TargetOpcode;
16149 
16150   switch (Opcode) {
16151   default:
16152     llvm_unreachable("Unexpected shift operation");
16153   case ISD::SHL:
16154     TargetOpcode = PPCISD::SHL;
16155     break;
16156   case ISD::SRL:
16157     TargetOpcode = PPCISD::SRL;
16158     break;
16159   case ISD::SRA:
16160     TargetOpcode = PPCISD::SRA;
16161     break;
16162   }
16163 
16164   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16165       N1->getOpcode() == ISD::AND)
16166     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16167       if (Mask->getZExtValue() == OpSizeInBits - 1)
16168         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16169 
16170   return SDValue();
16171 }
16172 
16173 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16174   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16175     return Value;
16176 
16177   SDValue N0 = N->getOperand(0);
16178   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16179   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16180       N0.getOpcode() != ISD::SIGN_EXTEND ||
16181       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16182       N->getValueType(0) != MVT::i64)
16183     return SDValue();
16184 
16185   // We can't save an operation here if the value is already extended, and
16186   // the existing shift is easier to combine.
16187   SDValue ExtsSrc = N0.getOperand(0);
16188   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16189       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16190     return SDValue();
16191 
16192   SDLoc DL(N0);
16193   SDValue ShiftBy = SDValue(CN1, 0);
16194   // We want the shift amount to be i32 on the extswli, but the shift could
16195   // have an i64.
16196   if (ShiftBy.getValueType() == MVT::i64)
16197     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16198 
16199   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16200                          ShiftBy);
16201 }
16202 
16203 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16204   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16205     return Value;
16206 
16207   return SDValue();
16208 }
16209 
16210 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16211   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16212     return Value;
16213 
16214   return SDValue();
16215 }
16216 
16217 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16218 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16219 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16220 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16221 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16222                                  const PPCSubtarget &Subtarget) {
16223   if (!Subtarget.isPPC64())
16224     return SDValue();
16225 
16226   SDValue LHS = N->getOperand(0);
16227   SDValue RHS = N->getOperand(1);
16228 
16229   auto isZextOfCompareWithConstant = [](SDValue Op) {
16230     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16231         Op.getValueType() != MVT::i64)
16232       return false;
16233 
16234     SDValue Cmp = Op.getOperand(0);
16235     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16236         Cmp.getOperand(0).getValueType() != MVT::i64)
16237       return false;
16238 
16239     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16240       int64_t NegConstant = 0 - Constant->getSExtValue();
16241       // Due to the limitations of the addi instruction,
16242       // -C is required to be [-32768, 32767].
16243       return isInt<16>(NegConstant);
16244     }
16245 
16246     return false;
16247   };
16248 
16249   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16250   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16251 
16252   // If there is a pattern, canonicalize a zext operand to the RHS.
16253   if (LHSHasPattern && !RHSHasPattern)
16254     std::swap(LHS, RHS);
16255   else if (!LHSHasPattern && !RHSHasPattern)
16256     return SDValue();
16257 
16258   SDLoc DL(N);
16259   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16260   SDValue Cmp = RHS.getOperand(0);
16261   SDValue Z = Cmp.getOperand(0);
16262   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16263 
16264   assert(Constant && "Constant Should not be a null pointer.");
16265   int64_t NegConstant = 0 - Constant->getSExtValue();
16266 
16267   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16268   default: break;
16269   case ISD::SETNE: {
16270     //                                 when C == 0
16271     //                             --> addze X, (addic Z, -1).carry
16272     //                            /
16273     // add X, (zext(setne Z, C))--
16274     //                            \    when -32768 <= -C <= 32767 && C != 0
16275     //                             --> addze X, (addic (addi Z, -C), -1).carry
16276     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16277                               DAG.getConstant(NegConstant, DL, MVT::i64));
16278     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16279     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16280                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16281     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16282                        SDValue(Addc.getNode(), 1));
16283     }
16284   case ISD::SETEQ: {
16285     //                                 when C == 0
16286     //                             --> addze X, (subfic Z, 0).carry
16287     //                            /
16288     // add X, (zext(sete  Z, C))--
16289     //                            \    when -32768 <= -C <= 32767 && C != 0
16290     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16291     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16292                               DAG.getConstant(NegConstant, DL, MVT::i64));
16293     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16294     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16295                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16296     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16297                        SDValue(Subc.getNode(), 1));
16298     }
16299   }
16300 
16301   return SDValue();
16302 }
16303 
16304 // Transform
16305 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16306 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16307 // In this case both C1 and C2 must be known constants.
16308 // C1+C2 must fit into a 34 bit signed integer.
16309 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16310                                           const PPCSubtarget &Subtarget) {
16311   if (!Subtarget.isUsingPCRelativeCalls())
16312     return SDValue();
16313 
16314   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16315   // If we find that node try to cast the Global Address and the Constant.
16316   SDValue LHS = N->getOperand(0);
16317   SDValue RHS = N->getOperand(1);
16318 
16319   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16320     std::swap(LHS, RHS);
16321 
16322   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16323     return SDValue();
16324 
16325   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16326   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16327   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16328 
16329   // Check that both casts succeeded.
16330   if (!GSDN || !ConstNode)
16331     return SDValue();
16332 
16333   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16334   SDLoc DL(GSDN);
16335 
16336   // The signed int offset needs to fit in 34 bits.
16337   if (!isInt<34>(NewOffset))
16338     return SDValue();
16339 
16340   // The new global address is a copy of the old global address except
16341   // that it has the updated Offset.
16342   SDValue GA =
16343       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16344                                  NewOffset, GSDN->getTargetFlags());
16345   SDValue MatPCRel =
16346       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16347   return MatPCRel;
16348 }
16349 
16350 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16351   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16352     return Value;
16353 
16354   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16355     return Value;
16356 
16357   return SDValue();
16358 }
16359 
16360 // Detect TRUNCATE operations on bitcasts of float128 values.
16361 // What we are looking for here is the situtation where we extract a subset
16362 // of bits from a 128 bit float.
16363 // This can be of two forms:
16364 // 1) BITCAST of f128 feeding TRUNCATE
16365 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16366 // The reason this is required is because we do not have a legal i128 type
16367 // and so we want to prevent having to store the f128 and then reload part
16368 // of it.
16369 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16370                                            DAGCombinerInfo &DCI) const {
16371   // If we are using CRBits then try that first.
16372   if (Subtarget.useCRBits()) {
16373     // Check if CRBits did anything and return that if it did.
16374     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16375       return CRTruncValue;
16376   }
16377 
16378   SDLoc dl(N);
16379   SDValue Op0 = N->getOperand(0);
16380 
16381   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16382   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16383     EVT VT = N->getValueType(0);
16384     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16385       return SDValue();
16386     SDValue Sub = Op0.getOperand(0);
16387     if (Sub.getOpcode() == ISD::SUB) {
16388       SDValue SubOp0 = Sub.getOperand(0);
16389       SDValue SubOp1 = Sub.getOperand(1);
16390       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16391           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16392         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16393                                SubOp1.getOperand(0),
16394                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16395       }
16396     }
16397   }
16398 
16399   // Looking for a truncate of i128 to i64.
16400   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16401     return SDValue();
16402 
16403   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16404 
16405   // SRL feeding TRUNCATE.
16406   if (Op0.getOpcode() == ISD::SRL) {
16407     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16408     // The right shift has to be by 64 bits.
16409     if (!ConstNode || ConstNode->getZExtValue() != 64)
16410       return SDValue();
16411 
16412     // Switch the element number to extract.
16413     EltToExtract = EltToExtract ? 0 : 1;
16414     // Update Op0 past the SRL.
16415     Op0 = Op0.getOperand(0);
16416   }
16417 
16418   // BITCAST feeding a TRUNCATE possibly via SRL.
16419   if (Op0.getOpcode() == ISD::BITCAST &&
16420       Op0.getValueType() == MVT::i128 &&
16421       Op0.getOperand(0).getValueType() == MVT::f128) {
16422     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16423     return DCI.DAG.getNode(
16424         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16425         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16426   }
16427   return SDValue();
16428 }
16429 
16430 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16431   SelectionDAG &DAG = DCI.DAG;
16432 
16433   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16434   if (!ConstOpOrElement)
16435     return SDValue();
16436 
16437   // An imul is usually smaller than the alternative sequence for legal type.
16438   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16439       isOperationLegal(ISD::MUL, N->getValueType(0)))
16440     return SDValue();
16441 
16442   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16443     switch (this->Subtarget.getCPUDirective()) {
16444     default:
16445       // TODO: enhance the condition for subtarget before pwr8
16446       return false;
16447     case PPC::DIR_PWR8:
16448       //  type        mul     add    shl
16449       // scalar        4       1      1
16450       // vector        7       2      2
16451       return true;
16452     case PPC::DIR_PWR9:
16453     case PPC::DIR_PWR10:
16454     case PPC::DIR_PWR_FUTURE:
16455       //  type        mul     add    shl
16456       // scalar        5       2      2
16457       // vector        7       2      2
16458 
16459       // The cycle RATIO of related operations are showed as a table above.
16460       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16461       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16462       // are 4, it is always profitable; but for 3 instrs patterns
16463       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16464       // So we should only do it for vector type.
16465       return IsAddOne && IsNeg ? VT.isVector() : true;
16466     }
16467   };
16468 
16469   EVT VT = N->getValueType(0);
16470   SDLoc DL(N);
16471 
16472   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16473   bool IsNeg = MulAmt.isNegative();
16474   APInt MulAmtAbs = MulAmt.abs();
16475 
16476   if ((MulAmtAbs - 1).isPowerOf2()) {
16477     // (mul x, 2^N + 1) => (add (shl x, N), x)
16478     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16479 
16480     if (!IsProfitable(IsNeg, true, VT))
16481       return SDValue();
16482 
16483     SDValue Op0 = N->getOperand(0);
16484     SDValue Op1 =
16485         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16486                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16487     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16488 
16489     if (!IsNeg)
16490       return Res;
16491 
16492     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16493   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16494     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16495     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16496 
16497     if (!IsProfitable(IsNeg, false, VT))
16498       return SDValue();
16499 
16500     SDValue Op0 = N->getOperand(0);
16501     SDValue Op1 =
16502         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16503                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16504 
16505     if (!IsNeg)
16506       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16507     else
16508       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16509 
16510   } else {
16511     return SDValue();
16512   }
16513 }
16514 
16515 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16516 // in combiner since we need to check SD flags and other subtarget features.
16517 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16518                                           DAGCombinerInfo &DCI) const {
16519   SDValue N0 = N->getOperand(0);
16520   SDValue N1 = N->getOperand(1);
16521   SDValue N2 = N->getOperand(2);
16522   SDNodeFlags Flags = N->getFlags();
16523   EVT VT = N->getValueType(0);
16524   SelectionDAG &DAG = DCI.DAG;
16525   const TargetOptions &Options = getTargetMachine().Options;
16526   unsigned Opc = N->getOpcode();
16527   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16528   bool LegalOps = !DCI.isBeforeLegalizeOps();
16529   SDLoc Loc(N);
16530 
16531   if (!isOperationLegal(ISD::FMA, VT))
16532     return SDValue();
16533 
16534   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16535   // since (fnmsub a b c)=-0 while c-ab=+0.
16536   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16537     return SDValue();
16538 
16539   // (fma (fneg a) b c) => (fnmsub a b c)
16540   // (fnmsub (fneg a) b c) => (fma a b c)
16541   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16542     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16543 
16544   // (fma a (fneg b) c) => (fnmsub a b c)
16545   // (fnmsub a (fneg b) c) => (fma a b c)
16546   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16547     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16548 
16549   return SDValue();
16550 }
16551 
16552 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16553   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16554   if (!Subtarget.is64BitELFABI())
16555     return false;
16556 
16557   // If not a tail call then no need to proceed.
16558   if (!CI->isTailCall())
16559     return false;
16560 
16561   // If sibling calls have been disabled and tail-calls aren't guaranteed
16562   // there is no reason to duplicate.
16563   auto &TM = getTargetMachine();
16564   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16565     return false;
16566 
16567   // Can't tail call a function called indirectly, or if it has variadic args.
16568   const Function *Callee = CI->getCalledFunction();
16569   if (!Callee || Callee->isVarArg())
16570     return false;
16571 
16572   // Make sure the callee and caller calling conventions are eligible for tco.
16573   const Function *Caller = CI->getParent()->getParent();
16574   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16575                                            CI->getCallingConv()))
16576       return false;
16577 
16578   // If the function is local then we have a good chance at tail-calling it
16579   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16580 }
16581 
16582 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16583   if (!Subtarget.hasVSX())
16584     return false;
16585   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16586     return true;
16587   return VT == MVT::f32 || VT == MVT::f64 ||
16588     VT == MVT::v4f32 || VT == MVT::v2f64;
16589 }
16590 
16591 bool PPCTargetLowering::
16592 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16593   const Value *Mask = AndI.getOperand(1);
16594   // If the mask is suitable for andi. or andis. we should sink the and.
16595   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16596     // Can't handle constants wider than 64-bits.
16597     if (CI->getBitWidth() > 64)
16598       return false;
16599     int64_t ConstVal = CI->getZExtValue();
16600     return isUInt<16>(ConstVal) ||
16601       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16602   }
16603 
16604   // For non-constant masks, we can always use the record-form and.
16605   return true;
16606 }
16607 
16608 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16609 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16610 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16611 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16612 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16613 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16614   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16615   assert(Subtarget.hasP9Altivec() &&
16616          "Only combine this when P9 altivec supported!");
16617   EVT VT = N->getValueType(0);
16618   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16619     return SDValue();
16620 
16621   SelectionDAG &DAG = DCI.DAG;
16622   SDLoc dl(N);
16623   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16624     // Even for signed integers, if it's known to be positive (as signed
16625     // integer) due to zero-extended inputs.
16626     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16627     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16628     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16629          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16630         (SubOpcd1 == ISD::ZERO_EXTEND ||
16631          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16632       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16633                          N->getOperand(0)->getOperand(0),
16634                          N->getOperand(0)->getOperand(1),
16635                          DAG.getTargetConstant(0, dl, MVT::i32));
16636     }
16637 
16638     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16639     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16640         N->getOperand(0).hasOneUse()) {
16641       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16642                          N->getOperand(0)->getOperand(0),
16643                          N->getOperand(0)->getOperand(1),
16644                          DAG.getTargetConstant(1, dl, MVT::i32));
16645     }
16646   }
16647 
16648   return SDValue();
16649 }
16650 
16651 // For type v4i32/v8ii16/v16i8, transform
16652 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16653 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16654 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16655 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16656 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16657                                           DAGCombinerInfo &DCI) const {
16658   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16659   assert(Subtarget.hasP9Altivec() &&
16660          "Only combine this when P9 altivec supported!");
16661 
16662   SelectionDAG &DAG = DCI.DAG;
16663   SDLoc dl(N);
16664   SDValue Cond = N->getOperand(0);
16665   SDValue TrueOpnd = N->getOperand(1);
16666   SDValue FalseOpnd = N->getOperand(2);
16667   EVT VT = N->getOperand(1).getValueType();
16668 
16669   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16670       FalseOpnd.getOpcode() != ISD::SUB)
16671     return SDValue();
16672 
16673   // ABSD only available for type v4i32/v8i16/v16i8
16674   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16675     return SDValue();
16676 
16677   // At least to save one more dependent computation
16678   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16679     return SDValue();
16680 
16681   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16682 
16683   // Can only handle unsigned comparison here
16684   switch (CC) {
16685   default:
16686     return SDValue();
16687   case ISD::SETUGT:
16688   case ISD::SETUGE:
16689     break;
16690   case ISD::SETULT:
16691   case ISD::SETULE:
16692     std::swap(TrueOpnd, FalseOpnd);
16693     break;
16694   }
16695 
16696   SDValue CmpOpnd1 = Cond.getOperand(0);
16697   SDValue CmpOpnd2 = Cond.getOperand(1);
16698 
16699   // SETCC CmpOpnd1 CmpOpnd2 cond
16700   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16701   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16702   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16703       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16704       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16705       FalseOpnd.getOperand(1) == CmpOpnd1) {
16706     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16707                        CmpOpnd1, CmpOpnd2,
16708                        DAG.getTargetConstant(0, dl, MVT::i32));
16709   }
16710 
16711   return SDValue();
16712 }
16713