1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 605 // To handle counter-based loop conditions. 606 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 607 608 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 609 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 612 613 // Comparisons that require checking two conditions. 614 if (Subtarget.hasSPE()) { 615 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 619 } 620 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 621 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 622 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 632 633 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 634 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 635 636 if (Subtarget.has64BitSupport()) { 637 // They also have instructions for converting between i64 and fp. 638 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 639 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 640 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 642 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 643 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 644 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 645 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 646 // This is just the low 32 bits of a (signed) fp->i64 conversion. 647 // We cannot do this with Promote because i64 is not a legal type. 648 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 649 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 650 651 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 652 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 654 } 655 } else { 656 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 657 if (Subtarget.hasSPE()) { 658 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 659 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 660 } else { 661 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 662 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 663 } 664 } 665 666 // With the instructions enabled under FPCVT, we can do everything. 667 if (Subtarget.hasFPCVT()) { 668 if (Subtarget.has64BitSupport()) { 669 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 670 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 671 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 674 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 675 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 676 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 677 } 678 679 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 680 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 683 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 684 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 685 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 686 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 687 } 688 689 if (Subtarget.use64BitRegs()) { 690 // 64-bit PowerPC implementations can support i64 types directly 691 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 692 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 693 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 694 // 64-bit PowerPC wants to expand i128 shifts itself. 695 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 696 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 697 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 698 } else { 699 // 32-bit PowerPC wants to expand i64 shifts itself. 700 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 701 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 702 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 703 } 704 705 // PowerPC has better expansions for funnel shifts than the generic 706 // TargetLowering::expandFunnelShift. 707 if (Subtarget.has64BitSupport()) { 708 setOperationAction(ISD::FSHL, MVT::i64, Custom); 709 setOperationAction(ISD::FSHR, MVT::i64, Custom); 710 } 711 setOperationAction(ISD::FSHL, MVT::i32, Custom); 712 setOperationAction(ISD::FSHR, MVT::i32, Custom); 713 714 if (Subtarget.hasVSX()) { 715 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 716 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 717 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 719 } 720 721 if (Subtarget.hasAltivec()) { 722 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 723 setOperationAction(ISD::SADDSAT, VT, Legal); 724 setOperationAction(ISD::SSUBSAT, VT, Legal); 725 setOperationAction(ISD::UADDSAT, VT, Legal); 726 setOperationAction(ISD::USUBSAT, VT, Legal); 727 } 728 // First set operation action for all vector types to expand. Then we 729 // will selectively turn on ones that can be effectively codegen'd. 730 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 731 // add/sub are legal for all supported vector VT's. 732 setOperationAction(ISD::ADD, VT, Legal); 733 setOperationAction(ISD::SUB, VT, Legal); 734 735 // For v2i64, these are only valid with P8Vector. This is corrected after 736 // the loop. 737 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 738 setOperationAction(ISD::SMAX, VT, Legal); 739 setOperationAction(ISD::SMIN, VT, Legal); 740 setOperationAction(ISD::UMAX, VT, Legal); 741 setOperationAction(ISD::UMIN, VT, Legal); 742 } 743 else { 744 setOperationAction(ISD::SMAX, VT, Expand); 745 setOperationAction(ISD::SMIN, VT, Expand); 746 setOperationAction(ISD::UMAX, VT, Expand); 747 setOperationAction(ISD::UMIN, VT, Expand); 748 } 749 750 if (Subtarget.hasVSX()) { 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 setOperationAction(ISD::FMINNUM, VT, Legal); 753 } 754 755 // Vector instructions introduced in P8 756 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 757 setOperationAction(ISD::CTPOP, VT, Legal); 758 setOperationAction(ISD::CTLZ, VT, Legal); 759 } 760 else { 761 setOperationAction(ISD::CTPOP, VT, Expand); 762 setOperationAction(ISD::CTLZ, VT, Expand); 763 } 764 765 // Vector instructions introduced in P9 766 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 767 setOperationAction(ISD::CTTZ, VT, Legal); 768 else 769 setOperationAction(ISD::CTTZ, VT, Expand); 770 771 // We promote all shuffles to v16i8. 772 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 773 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 774 775 // We promote all non-typed operations to v4i32. 776 setOperationAction(ISD::AND , VT, Promote); 777 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 778 setOperationAction(ISD::OR , VT, Promote); 779 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 780 setOperationAction(ISD::XOR , VT, Promote); 781 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 782 setOperationAction(ISD::LOAD , VT, Promote); 783 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 784 setOperationAction(ISD::SELECT, VT, Promote); 785 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 786 setOperationAction(ISD::VSELECT, VT, Legal); 787 setOperationAction(ISD::SELECT_CC, VT, Promote); 788 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 789 setOperationAction(ISD::STORE, VT, Promote); 790 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 791 792 // No other operations are legal. 793 setOperationAction(ISD::MUL , VT, Expand); 794 setOperationAction(ISD::SDIV, VT, Expand); 795 setOperationAction(ISD::SREM, VT, Expand); 796 setOperationAction(ISD::UDIV, VT, Expand); 797 setOperationAction(ISD::UREM, VT, Expand); 798 setOperationAction(ISD::FDIV, VT, Expand); 799 setOperationAction(ISD::FREM, VT, Expand); 800 setOperationAction(ISD::FNEG, VT, Expand); 801 setOperationAction(ISD::FSQRT, VT, Expand); 802 setOperationAction(ISD::FLOG, VT, Expand); 803 setOperationAction(ISD::FLOG10, VT, Expand); 804 setOperationAction(ISD::FLOG2, VT, Expand); 805 setOperationAction(ISD::FEXP, VT, Expand); 806 setOperationAction(ISD::FEXP2, VT, Expand); 807 setOperationAction(ISD::FSIN, VT, Expand); 808 setOperationAction(ISD::FCOS, VT, Expand); 809 setOperationAction(ISD::FABS, VT, Expand); 810 setOperationAction(ISD::FFLOOR, VT, Expand); 811 setOperationAction(ISD::FCEIL, VT, Expand); 812 setOperationAction(ISD::FTRUNC, VT, Expand); 813 setOperationAction(ISD::FRINT, VT, Expand); 814 setOperationAction(ISD::FNEARBYINT, VT, Expand); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 816 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 817 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 818 setOperationAction(ISD::MULHU, VT, Expand); 819 setOperationAction(ISD::MULHS, VT, Expand); 820 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 821 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 822 setOperationAction(ISD::UDIVREM, VT, Expand); 823 setOperationAction(ISD::SDIVREM, VT, Expand); 824 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 825 setOperationAction(ISD::FPOW, VT, Expand); 826 setOperationAction(ISD::BSWAP, VT, Expand); 827 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 828 setOperationAction(ISD::ROTL, VT, Expand); 829 setOperationAction(ISD::ROTR, VT, Expand); 830 831 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 832 setTruncStoreAction(VT, InnerVT, Expand); 833 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 834 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 836 } 837 } 838 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 839 if (!Subtarget.hasP8Vector()) { 840 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 841 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 842 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 844 } 845 846 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 847 // with merges, splats, etc. 848 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 849 850 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 851 // are cheap, so handle them before they get expanded to scalar. 852 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 853 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 854 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 857 858 setOperationAction(ISD::AND , MVT::v4i32, Legal); 859 setOperationAction(ISD::OR , MVT::v4i32, Legal); 860 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 861 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 862 setOperationAction(ISD::SELECT, MVT::v4i32, 863 Subtarget.useCRBits() ? Legal : Expand); 864 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 865 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 866 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 869 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 870 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 871 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 872 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 873 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 874 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 875 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 877 878 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 879 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 880 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 881 if (Subtarget.hasAltivec()) 882 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 883 setOperationAction(ISD::ROTL, VT, Legal); 884 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 885 if (Subtarget.hasP8Altivec()) 886 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 887 888 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 889 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 890 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 892 893 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 894 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 895 896 if (Subtarget.hasVSX()) { 897 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 898 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 899 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 900 } 901 902 if (Subtarget.hasP8Altivec()) 903 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 904 else 905 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 906 907 if (Subtarget.isISA3_1()) { 908 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 909 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 910 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 912 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 913 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 914 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 915 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 916 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 917 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 918 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 919 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 920 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 921 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 922 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 923 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 924 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 925 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 926 } 927 928 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 929 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 930 931 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 932 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 933 934 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 935 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 938 939 // Altivec does not contain unordered floating-point compare instructions 940 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 941 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 942 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 944 945 if (Subtarget.hasVSX()) { 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 947 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 948 if (Subtarget.hasP8Vector()) { 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 951 } 952 if (Subtarget.hasDirectMove() && isPPC64) { 953 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 954 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 957 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 961 } 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 963 964 // The nearbyint variants are not allowed to raise the inexact exception 965 // so we can only code-gen them with unsafe math. 966 if (TM.Options.UnsafeFPMath) { 967 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 968 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 969 } 970 971 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 972 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 973 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 974 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 975 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 976 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 977 setOperationAction(ISD::FROUND, MVT::f64, Legal); 978 setOperationAction(ISD::FRINT, MVT::f64, Legal); 979 980 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 981 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 982 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 983 setOperationAction(ISD::FROUND, MVT::f32, Legal); 984 setOperationAction(ISD::FRINT, MVT::f32, Legal); 985 986 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 987 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 988 989 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 990 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 991 992 // Share the Altivec comparison restrictions. 993 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 994 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 995 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 997 998 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 999 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1000 1001 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1002 1003 if (Subtarget.hasP8Vector()) 1004 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1005 1006 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1007 1008 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1009 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1010 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1011 1012 if (Subtarget.hasP8Altivec()) { 1013 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1014 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1015 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1016 1017 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1018 // SRL, but not for SRA because of the instructions available: 1019 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1020 // doing 1021 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1022 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1023 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1026 } 1027 else { 1028 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1029 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1030 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1031 1032 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1033 1034 // VSX v2i64 only supports non-arithmetic operations. 1035 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1036 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1037 } 1038 1039 if (Subtarget.isISA3_1()) 1040 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1041 else 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1043 1044 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1045 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1046 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1048 1049 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1050 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1052 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1053 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1055 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1056 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1057 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1058 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1059 1060 // Custom handling for partial vectors of integers converted to 1061 // floating point. We already have optimal handling for v2i32 through 1062 // the DAG combine, so those aren't necessary. 1063 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1064 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1067 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1068 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1071 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1072 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1075 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1076 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1079 1080 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1082 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1086 1087 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1088 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1089 1090 // Handle constrained floating-point operations of vector. 1091 // The predictor is `hasVSX` because altivec instruction has 1092 // no exception but VSX vector instruction has. 1093 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1106 1107 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1120 1121 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 1124 for (MVT FPT : MVT::fp_valuetypes()) 1125 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1126 1127 // Expand the SELECT to SELECT_CC 1128 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1129 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 } 1140 1141 if (Subtarget.hasP8Altivec()) { 1142 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1143 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1144 } 1145 1146 if (Subtarget.hasP9Vector()) { 1147 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1148 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1149 1150 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1151 // SRL, but not for SRA because of the instructions available: 1152 // VS{RL} and VS{RL}O. 1153 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1154 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1155 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1156 1157 setOperationAction(ISD::FADD, MVT::f128, Legal); 1158 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1159 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1160 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1161 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1162 1163 setOperationAction(ISD::FMA, MVT::f128, Legal); 1164 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1165 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1166 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1170 1171 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1172 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1173 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1174 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1175 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1176 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1177 1178 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1179 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1180 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1181 1182 // Handle constrained floating-point operations of fp128 1183 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1185 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1191 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1192 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1193 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1194 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1198 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1199 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1200 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1201 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1203 } else if (Subtarget.hasVSX()) { 1204 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1205 setOperationAction(ISD::STORE, MVT::f128, Promote); 1206 1207 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1208 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1209 1210 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1211 // fp_to_uint and int_to_fp. 1212 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1213 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1214 1215 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1216 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1217 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1218 setOperationAction(ISD::FABS, MVT::f128, Expand); 1219 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1220 setOperationAction(ISD::FMA, MVT::f128, Expand); 1221 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1222 1223 // Expand the fp_extend if the target type is fp128. 1224 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1225 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1226 1227 // Expand the fp_round if the source type is fp128. 1228 for (MVT VT : {MVT::f32, MVT::f64}) { 1229 setOperationAction(ISD::FP_ROUND, VT, Custom); 1230 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1231 } 1232 1233 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1234 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1235 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1236 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1237 1238 // Lower following f128 select_cc pattern: 1239 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1240 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1241 1242 // We need to handle f128 SELECT_CC with integer result type. 1243 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1244 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1245 } 1246 1247 if (Subtarget.hasP9Altivec()) { 1248 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1249 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1250 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1253 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1254 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1255 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1256 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1258 } 1259 1260 if (Subtarget.isISA3_1()) 1261 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1262 } 1263 1264 if (Subtarget.pairedVectorMemops()) { 1265 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1266 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1267 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1268 } 1269 if (Subtarget.hasMMA()) { 1270 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1271 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1272 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1273 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1274 } 1275 1276 if (Subtarget.has64BitSupport()) 1277 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1278 1279 if (Subtarget.isISA3_1()) 1280 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1281 1282 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1283 1284 if (!isPPC64) { 1285 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1286 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1287 } 1288 1289 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1290 setMaxAtomicSizeInBitsSupported(128); 1291 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1292 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1293 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1294 } 1295 1296 setBooleanContents(ZeroOrOneBooleanContent); 1297 1298 if (Subtarget.hasAltivec()) { 1299 // Altivec instructions set fields to all zeros or all ones. 1300 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1301 } 1302 1303 if (!isPPC64) { 1304 // These libcalls are not available in 32-bit. 1305 setLibcallName(RTLIB::SHL_I128, nullptr); 1306 setLibcallName(RTLIB::SRL_I128, nullptr); 1307 setLibcallName(RTLIB::SRA_I128, nullptr); 1308 setLibcallName(RTLIB::MULO_I64, nullptr); 1309 } 1310 1311 if (!isPPC64) 1312 setMaxAtomicSizeInBitsSupported(32); 1313 1314 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1315 1316 // We have target-specific dag combine patterns for the following nodes: 1317 setTargetDAGCombine(ISD::ADD); 1318 setTargetDAGCombine(ISD::SHL); 1319 setTargetDAGCombine(ISD::SRA); 1320 setTargetDAGCombine(ISD::SRL); 1321 setTargetDAGCombine(ISD::MUL); 1322 setTargetDAGCombine(ISD::FMA); 1323 setTargetDAGCombine(ISD::SINT_TO_FP); 1324 setTargetDAGCombine(ISD::BUILD_VECTOR); 1325 if (Subtarget.hasFPCVT()) 1326 setTargetDAGCombine(ISD::UINT_TO_FP); 1327 setTargetDAGCombine(ISD::LOAD); 1328 setTargetDAGCombine(ISD::STORE); 1329 setTargetDAGCombine(ISD::BR_CC); 1330 if (Subtarget.useCRBits()) 1331 setTargetDAGCombine(ISD::BRCOND); 1332 setTargetDAGCombine(ISD::BSWAP); 1333 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1334 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1335 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1336 1337 setTargetDAGCombine(ISD::SIGN_EXTEND); 1338 setTargetDAGCombine(ISD::ZERO_EXTEND); 1339 setTargetDAGCombine(ISD::ANY_EXTEND); 1340 1341 setTargetDAGCombine(ISD::TRUNCATE); 1342 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1343 1344 1345 if (Subtarget.useCRBits()) { 1346 setTargetDAGCombine(ISD::TRUNCATE); 1347 setTargetDAGCombine(ISD::SETCC); 1348 setTargetDAGCombine(ISD::SELECT_CC); 1349 } 1350 1351 if (Subtarget.hasP9Altivec()) { 1352 setTargetDAGCombine(ISD::ABS); 1353 setTargetDAGCombine(ISD::VSELECT); 1354 } 1355 1356 setLibcallName(RTLIB::LOG_F128, "logf128"); 1357 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1358 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1359 setLibcallName(RTLIB::EXP_F128, "expf128"); 1360 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1361 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1362 setLibcallName(RTLIB::COS_F128, "cosf128"); 1363 setLibcallName(RTLIB::POW_F128, "powf128"); 1364 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1365 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1366 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1367 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1368 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1369 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1370 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1371 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1372 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1373 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1374 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1375 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1376 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1377 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1378 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1379 1380 // With 32 condition bits, we don't need to sink (and duplicate) compares 1381 // aggressively in CodeGenPrep. 1382 if (Subtarget.useCRBits()) { 1383 setHasMultipleConditionRegisters(); 1384 setJumpIsExpensive(); 1385 } 1386 1387 setMinFunctionAlignment(Align(4)); 1388 1389 switch (Subtarget.getCPUDirective()) { 1390 default: break; 1391 case PPC::DIR_970: 1392 case PPC::DIR_A2: 1393 case PPC::DIR_E500: 1394 case PPC::DIR_E500mc: 1395 case PPC::DIR_E5500: 1396 case PPC::DIR_PWR4: 1397 case PPC::DIR_PWR5: 1398 case PPC::DIR_PWR5X: 1399 case PPC::DIR_PWR6: 1400 case PPC::DIR_PWR6X: 1401 case PPC::DIR_PWR7: 1402 case PPC::DIR_PWR8: 1403 case PPC::DIR_PWR9: 1404 case PPC::DIR_PWR10: 1405 case PPC::DIR_PWR_FUTURE: 1406 setPrefLoopAlignment(Align(16)); 1407 setPrefFunctionAlignment(Align(16)); 1408 break; 1409 } 1410 1411 if (Subtarget.enableMachineScheduler()) 1412 setSchedulingPreference(Sched::Source); 1413 else 1414 setSchedulingPreference(Sched::Hybrid); 1415 1416 computeRegisterProperties(STI.getRegisterInfo()); 1417 1418 // The Freescale cores do better with aggressive inlining of memcpy and 1419 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1420 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1421 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1422 MaxStoresPerMemset = 32; 1423 MaxStoresPerMemsetOptSize = 16; 1424 MaxStoresPerMemcpy = 32; 1425 MaxStoresPerMemcpyOptSize = 8; 1426 MaxStoresPerMemmove = 32; 1427 MaxStoresPerMemmoveOptSize = 8; 1428 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1429 // The A2 also benefits from (very) aggressive inlining of memcpy and 1430 // friends. The overhead of a the function call, even when warm, can be 1431 // over one hundred cycles. 1432 MaxStoresPerMemset = 128; 1433 MaxStoresPerMemcpy = 128; 1434 MaxStoresPerMemmove = 128; 1435 MaxLoadsPerMemcmp = 128; 1436 } else { 1437 MaxLoadsPerMemcmp = 8; 1438 MaxLoadsPerMemcmpOptSize = 4; 1439 } 1440 1441 IsStrictFPEnabled = true; 1442 1443 // Let the subtarget (CPU) decide if a predictable select is more expensive 1444 // than the corresponding branch. This information is used in CGP to decide 1445 // when to convert selects into branches. 1446 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1447 } 1448 1449 // *********************************** NOTE ************************************ 1450 // For selecting load and store instructions, the addressing modes are defined 1451 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1452 // patterns to match the load the store instructions. 1453 // 1454 // The TD definitions for the addressing modes correspond to their respective 1455 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1456 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1457 // address mode flags of a particular node. Afterwards, the computed address 1458 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1459 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1460 // accordingly, based on the preferred addressing mode. 1461 // 1462 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1463 // MemOpFlags contains all the possible flags that can be used to compute the 1464 // optimal addressing mode for load and store instructions. 1465 // AddrMode contains all the possible load and store addressing modes available 1466 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1467 // 1468 // When adding new load and store instructions, it is possible that new address 1469 // flags may need to be added into MemOpFlags, and a new addressing mode will 1470 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1471 // of the minimal and main distinguishing address flags for the new load/store 1472 // instructions) will need to be added into initializeAddrModeMap() below. 1473 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1474 // need to be updated to account for selecting the optimal addressing mode. 1475 // ***************************************************************************** 1476 /// Initialize the map that relates the different addressing modes of the load 1477 /// and store instructions to a set of flags. This ensures the load/store 1478 /// instruction is correctly matched during instruction selection. 1479 void PPCTargetLowering::initializeAddrModeMap() { 1480 AddrModesMap[PPC::AM_DForm] = { 1481 // LWZ, STW 1482 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1483 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1484 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1485 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1486 // LBZ, LHZ, STB, STH 1487 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1488 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1489 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1490 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1491 // LHA 1492 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1493 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1494 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1495 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1496 // LFS, LFD, STFS, STFD 1497 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1498 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1499 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1500 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1501 }; 1502 AddrModesMap[PPC::AM_DSForm] = { 1503 // LWA 1504 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1505 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1506 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1507 // LD, STD 1508 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1509 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1510 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1511 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1512 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1513 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1514 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1515 }; 1516 AddrModesMap[PPC::AM_DQForm] = { 1517 // LXV, STXV 1518 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1521 }; 1522 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1523 PPC::MOF_SubtargetP10}; 1524 // TODO: Add mapping for quadword load/store. 1525 } 1526 1527 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1528 /// the desired ByVal argument alignment. 1529 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1530 if (MaxAlign == MaxMaxAlign) 1531 return; 1532 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1533 if (MaxMaxAlign >= 32 && 1534 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1535 MaxAlign = Align(32); 1536 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1537 MaxAlign < 16) 1538 MaxAlign = Align(16); 1539 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1540 Align EltAlign; 1541 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1542 if (EltAlign > MaxAlign) 1543 MaxAlign = EltAlign; 1544 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1545 for (auto *EltTy : STy->elements()) { 1546 Align EltAlign; 1547 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1548 if (EltAlign > MaxAlign) 1549 MaxAlign = EltAlign; 1550 if (MaxAlign == MaxMaxAlign) 1551 break; 1552 } 1553 } 1554 } 1555 1556 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1557 /// function arguments in the caller parameter area. 1558 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1559 const DataLayout &DL) const { 1560 // 16byte and wider vectors are passed on 16byte boundary. 1561 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1562 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1563 if (Subtarget.hasAltivec()) 1564 getMaxByValAlign(Ty, Alignment, Align(16)); 1565 return Alignment.value(); 1566 } 1567 1568 bool PPCTargetLowering::useSoftFloat() const { 1569 return Subtarget.useSoftFloat(); 1570 } 1571 1572 bool PPCTargetLowering::hasSPE() const { 1573 return Subtarget.hasSPE(); 1574 } 1575 1576 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1577 return VT.isScalarInteger(); 1578 } 1579 1580 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1581 switch ((PPCISD::NodeType)Opcode) { 1582 case PPCISD::FIRST_NUMBER: break; 1583 case PPCISD::FSEL: return "PPCISD::FSEL"; 1584 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1585 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1586 case PPCISD::FCFID: return "PPCISD::FCFID"; 1587 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1588 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1589 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1590 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1591 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1592 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1593 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1594 case PPCISD::FP_TO_UINT_IN_VSR: 1595 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1596 case PPCISD::FP_TO_SINT_IN_VSR: 1597 return "PPCISD::FP_TO_SINT_IN_VSR"; 1598 case PPCISD::FRE: return "PPCISD::FRE"; 1599 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1600 case PPCISD::FTSQRT: 1601 return "PPCISD::FTSQRT"; 1602 case PPCISD::FSQRT: 1603 return "PPCISD::FSQRT"; 1604 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1605 case PPCISD::VPERM: return "PPCISD::VPERM"; 1606 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1607 case PPCISD::XXSPLTI_SP_TO_DP: 1608 return "PPCISD::XXSPLTI_SP_TO_DP"; 1609 case PPCISD::XXSPLTI32DX: 1610 return "PPCISD::XXSPLTI32DX"; 1611 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1612 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1613 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1614 case PPCISD::CMPB: return "PPCISD::CMPB"; 1615 case PPCISD::Hi: return "PPCISD::Hi"; 1616 case PPCISD::Lo: return "PPCISD::Lo"; 1617 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1618 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1619 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1620 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1621 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1622 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1623 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1624 case PPCISD::SRL: return "PPCISD::SRL"; 1625 case PPCISD::SRA: return "PPCISD::SRA"; 1626 case PPCISD::SHL: return "PPCISD::SHL"; 1627 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1628 case PPCISD::CALL: return "PPCISD::CALL"; 1629 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1630 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1631 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1632 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1633 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1634 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1635 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1636 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1637 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1638 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1639 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1640 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1641 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1642 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1643 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1644 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1645 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1646 case PPCISD::ANDI_rec_1_EQ_BIT: 1647 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1648 case PPCISD::ANDI_rec_1_GT_BIT: 1649 return "PPCISD::ANDI_rec_1_GT_BIT"; 1650 case PPCISD::VCMP: return "PPCISD::VCMP"; 1651 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1652 case PPCISD::LBRX: return "PPCISD::LBRX"; 1653 case PPCISD::STBRX: return "PPCISD::STBRX"; 1654 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1655 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1656 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1657 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1658 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1659 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1660 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1661 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1662 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1663 case PPCISD::ST_VSR_SCAL_INT: 1664 return "PPCISD::ST_VSR_SCAL_INT"; 1665 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1666 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1667 case PPCISD::BDZ: return "PPCISD::BDZ"; 1668 case PPCISD::MFFS: return "PPCISD::MFFS"; 1669 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1670 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1671 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1672 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1673 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1674 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1675 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1676 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1677 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1678 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1679 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1680 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1681 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1682 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1683 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1684 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1685 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1686 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1687 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1688 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1689 case PPCISD::PADDI_DTPREL: 1690 return "PPCISD::PADDI_DTPREL"; 1691 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1692 case PPCISD::SC: return "PPCISD::SC"; 1693 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1694 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1695 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1696 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1697 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1698 case PPCISD::VABSD: return "PPCISD::VABSD"; 1699 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1700 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1701 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1702 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1703 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1704 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1705 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1706 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1707 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1708 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1709 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1710 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1711 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1712 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1713 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1714 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1715 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1716 case PPCISD::STRICT_FADDRTZ: 1717 return "PPCISD::STRICT_FADDRTZ"; 1718 case PPCISD::STRICT_FCTIDZ: 1719 return "PPCISD::STRICT_FCTIDZ"; 1720 case PPCISD::STRICT_FCTIWZ: 1721 return "PPCISD::STRICT_FCTIWZ"; 1722 case PPCISD::STRICT_FCTIDUZ: 1723 return "PPCISD::STRICT_FCTIDUZ"; 1724 case PPCISD::STRICT_FCTIWUZ: 1725 return "PPCISD::STRICT_FCTIWUZ"; 1726 case PPCISD::STRICT_FCFID: 1727 return "PPCISD::STRICT_FCFID"; 1728 case PPCISD::STRICT_FCFIDU: 1729 return "PPCISD::STRICT_FCFIDU"; 1730 case PPCISD::STRICT_FCFIDS: 1731 return "PPCISD::STRICT_FCFIDS"; 1732 case PPCISD::STRICT_FCFIDUS: 1733 return "PPCISD::STRICT_FCFIDUS"; 1734 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1735 } 1736 return nullptr; 1737 } 1738 1739 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1740 EVT VT) const { 1741 if (!VT.isVector()) 1742 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1743 1744 return VT.changeVectorElementTypeToInteger(); 1745 } 1746 1747 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1748 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1749 return true; 1750 } 1751 1752 //===----------------------------------------------------------------------===// 1753 // Node matching predicates, for use by the tblgen matching code. 1754 //===----------------------------------------------------------------------===// 1755 1756 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1757 static bool isFloatingPointZero(SDValue Op) { 1758 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1759 return CFP->getValueAPF().isZero(); 1760 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1761 // Maybe this has already been legalized into the constant pool? 1762 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1763 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1764 return CFP->getValueAPF().isZero(); 1765 } 1766 return false; 1767 } 1768 1769 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1770 /// true if Op is undef or if it matches the specified value. 1771 static bool isConstantOrUndef(int Op, int Val) { 1772 return Op < 0 || Op == Val; 1773 } 1774 1775 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1776 /// VPKUHUM instruction. 1777 /// The ShuffleKind distinguishes between big-endian operations with 1778 /// two different inputs (0), either-endian operations with two identical 1779 /// inputs (1), and little-endian operations with two different inputs (2). 1780 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1781 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1782 SelectionDAG &DAG) { 1783 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1784 if (ShuffleKind == 0) { 1785 if (IsLE) 1786 return false; 1787 for (unsigned i = 0; i != 16; ++i) 1788 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1789 return false; 1790 } else if (ShuffleKind == 2) { 1791 if (!IsLE) 1792 return false; 1793 for (unsigned i = 0; i != 16; ++i) 1794 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1795 return false; 1796 } else if (ShuffleKind == 1) { 1797 unsigned j = IsLE ? 0 : 1; 1798 for (unsigned i = 0; i != 8; ++i) 1799 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1800 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1801 return false; 1802 } 1803 return true; 1804 } 1805 1806 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1807 /// VPKUWUM instruction. 1808 /// The ShuffleKind distinguishes between big-endian operations with 1809 /// two different inputs (0), either-endian operations with two identical 1810 /// inputs (1), and little-endian operations with two different inputs (2). 1811 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1812 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1813 SelectionDAG &DAG) { 1814 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1815 if (ShuffleKind == 0) { 1816 if (IsLE) 1817 return false; 1818 for (unsigned i = 0; i != 16; i += 2) 1819 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1820 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1821 return false; 1822 } else if (ShuffleKind == 2) { 1823 if (!IsLE) 1824 return false; 1825 for (unsigned i = 0; i != 16; i += 2) 1826 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1827 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1828 return false; 1829 } else if (ShuffleKind == 1) { 1830 unsigned j = IsLE ? 0 : 2; 1831 for (unsigned i = 0; i != 8; i += 2) 1832 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1833 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1834 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1835 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1842 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1843 /// current subtarget. 1844 /// 1845 /// The ShuffleKind distinguishes between big-endian operations with 1846 /// two different inputs (0), either-endian operations with two identical 1847 /// inputs (1), and little-endian operations with two different inputs (2). 1848 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1849 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1850 SelectionDAG &DAG) { 1851 const PPCSubtarget& Subtarget = 1852 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1853 if (!Subtarget.hasP8Vector()) 1854 return false; 1855 1856 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1857 if (ShuffleKind == 0) { 1858 if (IsLE) 1859 return false; 1860 for (unsigned i = 0; i != 16; i += 4) 1861 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1862 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1863 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1864 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1865 return false; 1866 } else if (ShuffleKind == 2) { 1867 if (!IsLE) 1868 return false; 1869 for (unsigned i = 0; i != 16; i += 4) 1870 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1871 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1872 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1873 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1874 return false; 1875 } else if (ShuffleKind == 1) { 1876 unsigned j = IsLE ? 0 : 4; 1877 for (unsigned i = 0; i != 8; i += 4) 1878 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1879 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1880 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1881 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1882 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1883 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1884 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1885 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1886 return false; 1887 } 1888 return true; 1889 } 1890 1891 /// isVMerge - Common function, used to match vmrg* shuffles. 1892 /// 1893 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1894 unsigned LHSStart, unsigned RHSStart) { 1895 if (N->getValueType(0) != MVT::v16i8) 1896 return false; 1897 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1898 "Unsupported merge size!"); 1899 1900 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1901 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1902 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1903 LHSStart+j+i*UnitSize) || 1904 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1905 RHSStart+j+i*UnitSize)) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1912 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1913 /// The ShuffleKind distinguishes between big-endian merges with two 1914 /// different inputs (0), either-endian merges with two identical inputs (1), 1915 /// and little-endian merges with two different inputs (2). For the latter, 1916 /// the input operands are swapped (see PPCInstrAltivec.td). 1917 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1918 unsigned ShuffleKind, SelectionDAG &DAG) { 1919 if (DAG.getDataLayout().isLittleEndian()) { 1920 if (ShuffleKind == 1) // unary 1921 return isVMerge(N, UnitSize, 0, 0); 1922 else if (ShuffleKind == 2) // swapped 1923 return isVMerge(N, UnitSize, 0, 16); 1924 else 1925 return false; 1926 } else { 1927 if (ShuffleKind == 1) // unary 1928 return isVMerge(N, UnitSize, 8, 8); 1929 else if (ShuffleKind == 0) // normal 1930 return isVMerge(N, UnitSize, 8, 24); 1931 else 1932 return false; 1933 } 1934 } 1935 1936 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1937 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1938 /// The ShuffleKind distinguishes between big-endian merges with two 1939 /// different inputs (0), either-endian merges with two identical inputs (1), 1940 /// and little-endian merges with two different inputs (2). For the latter, 1941 /// the input operands are swapped (see PPCInstrAltivec.td). 1942 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1943 unsigned ShuffleKind, SelectionDAG &DAG) { 1944 if (DAG.getDataLayout().isLittleEndian()) { 1945 if (ShuffleKind == 1) // unary 1946 return isVMerge(N, UnitSize, 8, 8); 1947 else if (ShuffleKind == 2) // swapped 1948 return isVMerge(N, UnitSize, 8, 24); 1949 else 1950 return false; 1951 } else { 1952 if (ShuffleKind == 1) // unary 1953 return isVMerge(N, UnitSize, 0, 0); 1954 else if (ShuffleKind == 0) // normal 1955 return isVMerge(N, UnitSize, 0, 16); 1956 else 1957 return false; 1958 } 1959 } 1960 1961 /** 1962 * Common function used to match vmrgew and vmrgow shuffles 1963 * 1964 * The indexOffset determines whether to look for even or odd words in 1965 * the shuffle mask. This is based on the of the endianness of the target 1966 * machine. 1967 * - Little Endian: 1968 * - Use offset of 0 to check for odd elements 1969 * - Use offset of 4 to check for even elements 1970 * - Big Endian: 1971 * - Use offset of 0 to check for even elements 1972 * - Use offset of 4 to check for odd elements 1973 * A detailed description of the vector element ordering for little endian and 1974 * big endian can be found at 1975 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1976 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1977 * compiler differences mean to you 1978 * 1979 * The mask to the shuffle vector instruction specifies the indices of the 1980 * elements from the two input vectors to place in the result. The elements are 1981 * numbered in array-access order, starting with the first vector. These vectors 1982 * are always of type v16i8, thus each vector will contain 16 elements of size 1983 * 8. More info on the shuffle vector can be found in the 1984 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1985 * Language Reference. 1986 * 1987 * The RHSStartValue indicates whether the same input vectors are used (unary) 1988 * or two different input vectors are used, based on the following: 1989 * - If the instruction uses the same vector for both inputs, the range of the 1990 * indices will be 0 to 15. In this case, the RHSStart value passed should 1991 * be 0. 1992 * - If the instruction has two different vectors then the range of the 1993 * indices will be 0 to 31. In this case, the RHSStart value passed should 1994 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1995 * to 31 specify elements in the second vector). 1996 * 1997 * \param[in] N The shuffle vector SD Node to analyze 1998 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1999 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2000 * vector to the shuffle_vector instruction 2001 * \return true iff this shuffle vector represents an even or odd word merge 2002 */ 2003 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2004 unsigned RHSStartValue) { 2005 if (N->getValueType(0) != MVT::v16i8) 2006 return false; 2007 2008 for (unsigned i = 0; i < 2; ++i) 2009 for (unsigned j = 0; j < 4; ++j) 2010 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2011 i*RHSStartValue+j+IndexOffset) || 2012 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2013 i*RHSStartValue+j+IndexOffset+8)) 2014 return false; 2015 return true; 2016 } 2017 2018 /** 2019 * Determine if the specified shuffle mask is suitable for the vmrgew or 2020 * vmrgow instructions. 2021 * 2022 * \param[in] N The shuffle vector SD Node to analyze 2023 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2024 * \param[in] ShuffleKind Identify the type of merge: 2025 * - 0 = big-endian merge with two different inputs; 2026 * - 1 = either-endian merge with two identical inputs; 2027 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2028 * little-endian merges). 2029 * \param[in] DAG The current SelectionDAG 2030 * \return true iff this shuffle mask 2031 */ 2032 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2033 unsigned ShuffleKind, SelectionDAG &DAG) { 2034 if (DAG.getDataLayout().isLittleEndian()) { 2035 unsigned indexOffset = CheckEven ? 4 : 0; 2036 if (ShuffleKind == 1) // Unary 2037 return isVMerge(N, indexOffset, 0); 2038 else if (ShuffleKind == 2) // swapped 2039 return isVMerge(N, indexOffset, 16); 2040 else 2041 return false; 2042 } 2043 else { 2044 unsigned indexOffset = CheckEven ? 0 : 4; 2045 if (ShuffleKind == 1) // Unary 2046 return isVMerge(N, indexOffset, 0); 2047 else if (ShuffleKind == 0) // Normal 2048 return isVMerge(N, indexOffset, 16); 2049 else 2050 return false; 2051 } 2052 return false; 2053 } 2054 2055 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2056 /// amount, otherwise return -1. 2057 /// The ShuffleKind distinguishes between big-endian operations with two 2058 /// different inputs (0), either-endian operations with two identical inputs 2059 /// (1), and little-endian operations with two different inputs (2). For the 2060 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2061 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2062 SelectionDAG &DAG) { 2063 if (N->getValueType(0) != MVT::v16i8) 2064 return -1; 2065 2066 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2067 2068 // Find the first non-undef value in the shuffle mask. 2069 unsigned i; 2070 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2071 /*search*/; 2072 2073 if (i == 16) return -1; // all undef. 2074 2075 // Otherwise, check to see if the rest of the elements are consecutively 2076 // numbered from this value. 2077 unsigned ShiftAmt = SVOp->getMaskElt(i); 2078 if (ShiftAmt < i) return -1; 2079 2080 ShiftAmt -= i; 2081 bool isLE = DAG.getDataLayout().isLittleEndian(); 2082 2083 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2084 // Check the rest of the elements to see if they are consecutive. 2085 for (++i; i != 16; ++i) 2086 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2087 return -1; 2088 } else if (ShuffleKind == 1) { 2089 // Check the rest of the elements to see if they are consecutive. 2090 for (++i; i != 16; ++i) 2091 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2092 return -1; 2093 } else 2094 return -1; 2095 2096 if (isLE) 2097 ShiftAmt = 16 - ShiftAmt; 2098 2099 return ShiftAmt; 2100 } 2101 2102 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2103 /// specifies a splat of a single element that is suitable for input to 2104 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2105 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2106 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2107 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2108 2109 // The consecutive indices need to specify an element, not part of two 2110 // different elements. So abandon ship early if this isn't the case. 2111 if (N->getMaskElt(0) % EltSize != 0) 2112 return false; 2113 2114 // This is a splat operation if each element of the permute is the same, and 2115 // if the value doesn't reference the second vector. 2116 unsigned ElementBase = N->getMaskElt(0); 2117 2118 // FIXME: Handle UNDEF elements too! 2119 if (ElementBase >= 16) 2120 return false; 2121 2122 // Check that the indices are consecutive, in the case of a multi-byte element 2123 // splatted with a v16i8 mask. 2124 for (unsigned i = 1; i != EltSize; ++i) 2125 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2126 return false; 2127 2128 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2129 if (N->getMaskElt(i) < 0) continue; 2130 for (unsigned j = 0; j != EltSize; ++j) 2131 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2132 return false; 2133 } 2134 return true; 2135 } 2136 2137 /// Check that the mask is shuffling N byte elements. Within each N byte 2138 /// element of the mask, the indices could be either in increasing or 2139 /// decreasing order as long as they are consecutive. 2140 /// \param[in] N the shuffle vector SD Node to analyze 2141 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2142 /// Word/DoubleWord/QuadWord). 2143 /// \param[in] StepLen the delta indices number among the N byte element, if 2144 /// the mask is in increasing/decreasing order then it is 1/-1. 2145 /// \return true iff the mask is shuffling N byte elements. 2146 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2147 int StepLen) { 2148 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2149 "Unexpected element width."); 2150 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2151 2152 unsigned NumOfElem = 16 / Width; 2153 unsigned MaskVal[16]; // Width is never greater than 16 2154 for (unsigned i = 0; i < NumOfElem; ++i) { 2155 MaskVal[0] = N->getMaskElt(i * Width); 2156 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2157 return false; 2158 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2159 return false; 2160 } 2161 2162 for (unsigned int j = 1; j < Width; ++j) { 2163 MaskVal[j] = N->getMaskElt(i * Width + j); 2164 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2165 return false; 2166 } 2167 } 2168 } 2169 2170 return true; 2171 } 2172 2173 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2174 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2175 if (!isNByteElemShuffleMask(N, 4, 1)) 2176 return false; 2177 2178 // Now we look at mask elements 0,4,8,12 2179 unsigned M0 = N->getMaskElt(0) / 4; 2180 unsigned M1 = N->getMaskElt(4) / 4; 2181 unsigned M2 = N->getMaskElt(8) / 4; 2182 unsigned M3 = N->getMaskElt(12) / 4; 2183 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2184 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2185 2186 // Below, let H and L be arbitrary elements of the shuffle mask 2187 // where H is in the range [4,7] and L is in the range [0,3]. 2188 // H, 1, 2, 3 or L, 5, 6, 7 2189 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2190 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2191 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2192 InsertAtByte = IsLE ? 12 : 0; 2193 Swap = M0 < 4; 2194 return true; 2195 } 2196 // 0, H, 2, 3 or 4, L, 6, 7 2197 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2198 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2199 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2200 InsertAtByte = IsLE ? 8 : 4; 2201 Swap = M1 < 4; 2202 return true; 2203 } 2204 // 0, 1, H, 3 or 4, 5, L, 7 2205 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2206 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2207 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2208 InsertAtByte = IsLE ? 4 : 8; 2209 Swap = M2 < 4; 2210 return true; 2211 } 2212 // 0, 1, 2, H or 4, 5, 6, L 2213 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2214 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2215 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2216 InsertAtByte = IsLE ? 0 : 12; 2217 Swap = M3 < 4; 2218 return true; 2219 } 2220 2221 // If both vector operands for the shuffle are the same vector, the mask will 2222 // contain only elements from the first one and the second one will be undef. 2223 if (N->getOperand(1).isUndef()) { 2224 ShiftElts = 0; 2225 Swap = true; 2226 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2227 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2228 InsertAtByte = IsLE ? 12 : 0; 2229 return true; 2230 } 2231 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2232 InsertAtByte = IsLE ? 8 : 4; 2233 return true; 2234 } 2235 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2236 InsertAtByte = IsLE ? 4 : 8; 2237 return true; 2238 } 2239 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2240 InsertAtByte = IsLE ? 0 : 12; 2241 return true; 2242 } 2243 } 2244 2245 return false; 2246 } 2247 2248 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2249 bool &Swap, bool IsLE) { 2250 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2251 // Ensure each byte index of the word is consecutive. 2252 if (!isNByteElemShuffleMask(N, 4, 1)) 2253 return false; 2254 2255 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2256 unsigned M0 = N->getMaskElt(0) / 4; 2257 unsigned M1 = N->getMaskElt(4) / 4; 2258 unsigned M2 = N->getMaskElt(8) / 4; 2259 unsigned M3 = N->getMaskElt(12) / 4; 2260 2261 // If both vector operands for the shuffle are the same vector, the mask will 2262 // contain only elements from the first one and the second one will be undef. 2263 if (N->getOperand(1).isUndef()) { 2264 assert(M0 < 4 && "Indexing into an undef vector?"); 2265 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2266 return false; 2267 2268 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2269 Swap = false; 2270 return true; 2271 } 2272 2273 // Ensure each word index of the ShuffleVector Mask is consecutive. 2274 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2275 return false; 2276 2277 if (IsLE) { 2278 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2279 // Input vectors don't need to be swapped if the leading element 2280 // of the result is one of the 3 left elements of the second vector 2281 // (or if there is no shift to be done at all). 2282 Swap = false; 2283 ShiftElts = (8 - M0) % 8; 2284 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2285 // Input vectors need to be swapped if the leading element 2286 // of the result is one of the 3 left elements of the first vector 2287 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2288 Swap = true; 2289 ShiftElts = (4 - M0) % 4; 2290 } 2291 2292 return true; 2293 } else { // BE 2294 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2295 // Input vectors don't need to be swapped if the leading element 2296 // of the result is one of the 4 elements of the first vector. 2297 Swap = false; 2298 ShiftElts = M0; 2299 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2300 // Input vectors need to be swapped if the leading element 2301 // of the result is one of the 4 elements of the right vector. 2302 Swap = true; 2303 ShiftElts = M0 - 4; 2304 } 2305 2306 return true; 2307 } 2308 } 2309 2310 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2311 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2312 2313 if (!isNByteElemShuffleMask(N, Width, -1)) 2314 return false; 2315 2316 for (int i = 0; i < 16; i += Width) 2317 if (N->getMaskElt(i) != i + Width - 1) 2318 return false; 2319 2320 return true; 2321 } 2322 2323 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2324 return isXXBRShuffleMaskHelper(N, 2); 2325 } 2326 2327 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2328 return isXXBRShuffleMaskHelper(N, 4); 2329 } 2330 2331 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2332 return isXXBRShuffleMaskHelper(N, 8); 2333 } 2334 2335 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2336 return isXXBRShuffleMaskHelper(N, 16); 2337 } 2338 2339 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2340 /// if the inputs to the instruction should be swapped and set \p DM to the 2341 /// value for the immediate. 2342 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2343 /// AND element 0 of the result comes from the first input (LE) or second input 2344 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2345 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2346 /// mask. 2347 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2348 bool &Swap, bool IsLE) { 2349 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2350 2351 // Ensure each byte index of the double word is consecutive. 2352 if (!isNByteElemShuffleMask(N, 8, 1)) 2353 return false; 2354 2355 unsigned M0 = N->getMaskElt(0) / 8; 2356 unsigned M1 = N->getMaskElt(8) / 8; 2357 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2358 2359 // If both vector operands for the shuffle are the same vector, the mask will 2360 // contain only elements from the first one and the second one will be undef. 2361 if (N->getOperand(1).isUndef()) { 2362 if ((M0 | M1) < 2) { 2363 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2364 Swap = false; 2365 return true; 2366 } else 2367 return false; 2368 } 2369 2370 if (IsLE) { 2371 if (M0 > 1 && M1 < 2) { 2372 Swap = false; 2373 } else if (M0 < 2 && M1 > 1) { 2374 M0 = (M0 + 2) % 4; 2375 M1 = (M1 + 2) % 4; 2376 Swap = true; 2377 } else 2378 return false; 2379 2380 // Note: if control flow comes here that means Swap is already set above 2381 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2382 return true; 2383 } else { // BE 2384 if (M0 < 2 && M1 > 1) { 2385 Swap = false; 2386 } else if (M0 > 1 && M1 < 2) { 2387 M0 = (M0 + 2) % 4; 2388 M1 = (M1 + 2) % 4; 2389 Swap = true; 2390 } else 2391 return false; 2392 2393 // Note: if control flow comes here that means Swap is already set above 2394 DM = (M0 << 1) + (M1 & 1); 2395 return true; 2396 } 2397 } 2398 2399 2400 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2401 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2402 /// elements are counted from the left of the vector register). 2403 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2404 SelectionDAG &DAG) { 2405 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2406 assert(isSplatShuffleMask(SVOp, EltSize)); 2407 if (DAG.getDataLayout().isLittleEndian()) 2408 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2409 else 2410 return SVOp->getMaskElt(0) / EltSize; 2411 } 2412 2413 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2414 /// by using a vspltis[bhw] instruction of the specified element size, return 2415 /// the constant being splatted. The ByteSize field indicates the number of 2416 /// bytes of each element [124] -> [bhw]. 2417 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2418 SDValue OpVal(nullptr, 0); 2419 2420 // If ByteSize of the splat is bigger than the element size of the 2421 // build_vector, then we have a case where we are checking for a splat where 2422 // multiple elements of the buildvector are folded together into a single 2423 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2424 unsigned EltSize = 16/N->getNumOperands(); 2425 if (EltSize < ByteSize) { 2426 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2427 SDValue UniquedVals[4]; 2428 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2429 2430 // See if all of the elements in the buildvector agree across. 2431 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2432 if (N->getOperand(i).isUndef()) continue; 2433 // If the element isn't a constant, bail fully out. 2434 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2435 2436 if (!UniquedVals[i&(Multiple-1)].getNode()) 2437 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2438 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2439 return SDValue(); // no match. 2440 } 2441 2442 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2443 // either constant or undef values that are identical for each chunk. See 2444 // if these chunks can form into a larger vspltis*. 2445 2446 // Check to see if all of the leading entries are either 0 or -1. If 2447 // neither, then this won't fit into the immediate field. 2448 bool LeadingZero = true; 2449 bool LeadingOnes = true; 2450 for (unsigned i = 0; i != Multiple-1; ++i) { 2451 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2452 2453 LeadingZero &= isNullConstant(UniquedVals[i]); 2454 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2455 } 2456 // Finally, check the least significant entry. 2457 if (LeadingZero) { 2458 if (!UniquedVals[Multiple-1].getNode()) 2459 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2460 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2461 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2462 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2463 } 2464 if (LeadingOnes) { 2465 if (!UniquedVals[Multiple-1].getNode()) 2466 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2467 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2468 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2469 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2470 } 2471 2472 return SDValue(); 2473 } 2474 2475 // Check to see if this buildvec has a single non-undef value in its elements. 2476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2477 if (N->getOperand(i).isUndef()) continue; 2478 if (!OpVal.getNode()) 2479 OpVal = N->getOperand(i); 2480 else if (OpVal != N->getOperand(i)) 2481 return SDValue(); 2482 } 2483 2484 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2485 2486 unsigned ValSizeInBytes = EltSize; 2487 uint64_t Value = 0; 2488 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2489 Value = CN->getZExtValue(); 2490 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2491 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2492 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2493 } 2494 2495 // If the splat value is larger than the element value, then we can never do 2496 // this splat. The only case that we could fit the replicated bits into our 2497 // immediate field for would be zero, and we prefer to use vxor for it. 2498 if (ValSizeInBytes < ByteSize) return SDValue(); 2499 2500 // If the element value is larger than the splat value, check if it consists 2501 // of a repeated bit pattern of size ByteSize. 2502 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2503 return SDValue(); 2504 2505 // Properly sign extend the value. 2506 int MaskVal = SignExtend32(Value, ByteSize * 8); 2507 2508 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2509 if (MaskVal == 0) return SDValue(); 2510 2511 // Finally, if this value fits in a 5 bit sext field, return it 2512 if (SignExtend32<5>(MaskVal) == MaskVal) 2513 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2514 return SDValue(); 2515 } 2516 2517 //===----------------------------------------------------------------------===// 2518 // Addressing Mode Selection 2519 //===----------------------------------------------------------------------===// 2520 2521 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2522 /// or 64-bit immediate, and if the value can be accurately represented as a 2523 /// sign extension from a 16-bit value. If so, this returns true and the 2524 /// immediate. 2525 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2526 if (!isa<ConstantSDNode>(N)) 2527 return false; 2528 2529 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2530 if (N->getValueType(0) == MVT::i32) 2531 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2532 else 2533 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2534 } 2535 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2536 return isIntS16Immediate(Op.getNode(), Imm); 2537 } 2538 2539 /// Used when computing address flags for selecting loads and stores. 2540 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2541 /// An OR of two provably disjoint values is equivalent to an ADD. 2542 /// Most PPC load/store instructions compute the effective address as a sum, 2543 /// so doing this conversion is useful. 2544 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2545 if (N.getOpcode() != ISD::OR) 2546 return false; 2547 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2548 if (!LHSKnown.Zero.getBoolValue()) 2549 return false; 2550 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2551 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2552 } 2553 2554 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2555 /// be represented as an indexed [r+r] operation. 2556 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2557 SDValue &Index, 2558 SelectionDAG &DAG) const { 2559 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2560 UI != E; ++UI) { 2561 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2562 if (Memop->getMemoryVT() == MVT::f64) { 2563 Base = N.getOperand(0); 2564 Index = N.getOperand(1); 2565 return true; 2566 } 2567 } 2568 } 2569 return false; 2570 } 2571 2572 /// isIntS34Immediate - This method tests if value of node given can be 2573 /// accurately represented as a sign extension from a 34-bit value. If so, 2574 /// this returns true and the immediate. 2575 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2576 if (!isa<ConstantSDNode>(N)) 2577 return false; 2578 2579 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2580 return isInt<34>(Imm); 2581 } 2582 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2583 return isIntS34Immediate(Op.getNode(), Imm); 2584 } 2585 2586 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2587 /// can be represented as an indexed [r+r] operation. Returns false if it 2588 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2589 /// non-zero and N can be represented by a base register plus a signed 16-bit 2590 /// displacement, make a more precise judgement by checking (displacement % \p 2591 /// EncodingAlignment). 2592 bool PPCTargetLowering::SelectAddressRegReg( 2593 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2594 MaybeAlign EncodingAlignment) const { 2595 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2596 // a [pc+imm]. 2597 if (SelectAddressPCRel(N, Base)) 2598 return false; 2599 2600 int16_t Imm = 0; 2601 if (N.getOpcode() == ISD::ADD) { 2602 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2603 // SPE load/store can only handle 8-bit offsets. 2604 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2605 return true; 2606 if (isIntS16Immediate(N.getOperand(1), Imm) && 2607 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2608 return false; // r+i 2609 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2610 return false; // r+i 2611 2612 Base = N.getOperand(0); 2613 Index = N.getOperand(1); 2614 return true; 2615 } else if (N.getOpcode() == ISD::OR) { 2616 if (isIntS16Immediate(N.getOperand(1), Imm) && 2617 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2618 return false; // r+i can fold it if we can. 2619 2620 // If this is an or of disjoint bitfields, we can codegen this as an add 2621 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2622 // disjoint. 2623 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2624 2625 if (LHSKnown.Zero.getBoolValue()) { 2626 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2627 // If all of the bits are known zero on the LHS or RHS, the add won't 2628 // carry. 2629 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2630 Base = N.getOperand(0); 2631 Index = N.getOperand(1); 2632 return true; 2633 } 2634 } 2635 } 2636 2637 return false; 2638 } 2639 2640 // If we happen to be doing an i64 load or store into a stack slot that has 2641 // less than a 4-byte alignment, then the frame-index elimination may need to 2642 // use an indexed load or store instruction (because the offset may not be a 2643 // multiple of 4). The extra register needed to hold the offset comes from the 2644 // register scavenger, and it is possible that the scavenger will need to use 2645 // an emergency spill slot. As a result, we need to make sure that a spill slot 2646 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2647 // stack slot. 2648 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2649 // FIXME: This does not handle the LWA case. 2650 if (VT != MVT::i64) 2651 return; 2652 2653 // NOTE: We'll exclude negative FIs here, which come from argument 2654 // lowering, because there are no known test cases triggering this problem 2655 // using packed structures (or similar). We can remove this exclusion if 2656 // we find such a test case. The reason why this is so test-case driven is 2657 // because this entire 'fixup' is only to prevent crashes (from the 2658 // register scavenger) on not-really-valid inputs. For example, if we have: 2659 // %a = alloca i1 2660 // %b = bitcast i1* %a to i64* 2661 // store i64* a, i64 b 2662 // then the store should really be marked as 'align 1', but is not. If it 2663 // were marked as 'align 1' then the indexed form would have been 2664 // instruction-selected initially, and the problem this 'fixup' is preventing 2665 // won't happen regardless. 2666 if (FrameIdx < 0) 2667 return; 2668 2669 MachineFunction &MF = DAG.getMachineFunction(); 2670 MachineFrameInfo &MFI = MF.getFrameInfo(); 2671 2672 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2673 return; 2674 2675 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2676 FuncInfo->setHasNonRISpills(); 2677 } 2678 2679 /// Returns true if the address N can be represented by a base register plus 2680 /// a signed 16-bit displacement [r+imm], and if it is not better 2681 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2682 /// displacements that are multiples of that value. 2683 bool PPCTargetLowering::SelectAddressRegImm( 2684 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2685 MaybeAlign EncodingAlignment) const { 2686 // FIXME dl should come from parent load or store, not from address 2687 SDLoc dl(N); 2688 2689 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2690 // a [pc+imm]. 2691 if (SelectAddressPCRel(N, Base)) 2692 return false; 2693 2694 // If this can be more profitably realized as r+r, fail. 2695 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2696 return false; 2697 2698 if (N.getOpcode() == ISD::ADD) { 2699 int16_t imm = 0; 2700 if (isIntS16Immediate(N.getOperand(1), imm) && 2701 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2702 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2703 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2704 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2705 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2706 } else { 2707 Base = N.getOperand(0); 2708 } 2709 return true; // [r+i] 2710 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2711 // Match LOAD (ADD (X, Lo(G))). 2712 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2713 && "Cannot handle constant offsets yet!"); 2714 Disp = N.getOperand(1).getOperand(0); // The global address. 2715 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2716 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2717 Disp.getOpcode() == ISD::TargetConstantPool || 2718 Disp.getOpcode() == ISD::TargetJumpTable); 2719 Base = N.getOperand(0); 2720 return true; // [&g+r] 2721 } 2722 } else if (N.getOpcode() == ISD::OR) { 2723 int16_t imm = 0; 2724 if (isIntS16Immediate(N.getOperand(1), imm) && 2725 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2726 // If this is an or of disjoint bitfields, we can codegen this as an add 2727 // (for better address arithmetic) if the LHS and RHS of the OR are 2728 // provably disjoint. 2729 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2730 2731 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2732 // If all of the bits are known zero on the LHS or RHS, the add won't 2733 // carry. 2734 if (FrameIndexSDNode *FI = 2735 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2736 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2737 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2738 } else { 2739 Base = N.getOperand(0); 2740 } 2741 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2742 return true; 2743 } 2744 } 2745 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2746 // Loading from a constant address. 2747 2748 // If this address fits entirely in a 16-bit sext immediate field, codegen 2749 // this as "d, 0" 2750 int16_t Imm; 2751 if (isIntS16Immediate(CN, Imm) && 2752 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2753 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2754 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2755 CN->getValueType(0)); 2756 return true; 2757 } 2758 2759 // Handle 32-bit sext immediates with LIS + addr mode. 2760 if ((CN->getValueType(0) == MVT::i32 || 2761 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2762 (!EncodingAlignment || 2763 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2764 int Addr = (int)CN->getZExtValue(); 2765 2766 // Otherwise, break this down into an LIS + disp. 2767 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2768 2769 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2770 MVT::i32); 2771 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2772 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2773 return true; 2774 } 2775 } 2776 2777 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2778 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2779 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2780 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2781 } else 2782 Base = N; 2783 return true; // [r+0] 2784 } 2785 2786 /// Similar to the 16-bit case but for instructions that take a 34-bit 2787 /// displacement field (prefixed loads/stores). 2788 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2789 SDValue &Base, 2790 SelectionDAG &DAG) const { 2791 // Only on 64-bit targets. 2792 if (N.getValueType() != MVT::i64) 2793 return false; 2794 2795 SDLoc dl(N); 2796 int64_t Imm = 0; 2797 2798 if (N.getOpcode() == ISD::ADD) { 2799 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2800 return false; 2801 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2802 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2803 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2804 else 2805 Base = N.getOperand(0); 2806 return true; 2807 } 2808 2809 if (N.getOpcode() == ISD::OR) { 2810 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2811 return false; 2812 // If this is an or of disjoint bitfields, we can codegen this as an add 2813 // (for better address arithmetic) if the LHS and RHS of the OR are 2814 // provably disjoint. 2815 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2816 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2817 return false; 2818 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2819 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2820 else 2821 Base = N.getOperand(0); 2822 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2823 return true; 2824 } 2825 2826 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2827 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2828 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2829 return true; 2830 } 2831 2832 return false; 2833 } 2834 2835 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2836 /// represented as an indexed [r+r] operation. 2837 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2838 SDValue &Index, 2839 SelectionDAG &DAG) const { 2840 // Check to see if we can easily represent this as an [r+r] address. This 2841 // will fail if it thinks that the address is more profitably represented as 2842 // reg+imm, e.g. where imm = 0. 2843 if (SelectAddressRegReg(N, Base, Index, DAG)) 2844 return true; 2845 2846 // If the address is the result of an add, we will utilize the fact that the 2847 // address calculation includes an implicit add. However, we can reduce 2848 // register pressure if we do not materialize a constant just for use as the 2849 // index register. We only get rid of the add if it is not an add of a 2850 // value and a 16-bit signed constant and both have a single use. 2851 int16_t imm = 0; 2852 if (N.getOpcode() == ISD::ADD && 2853 (!isIntS16Immediate(N.getOperand(1), imm) || 2854 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2855 Base = N.getOperand(0); 2856 Index = N.getOperand(1); 2857 return true; 2858 } 2859 2860 // Otherwise, do it the hard way, using R0 as the base register. 2861 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2862 N.getValueType()); 2863 Index = N; 2864 return true; 2865 } 2866 2867 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2868 Ty *PCRelCand = dyn_cast<Ty>(N); 2869 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2870 } 2871 2872 /// Returns true if this address is a PC Relative address. 2873 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2874 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2875 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2876 // This is a materialize PC Relative node. Always select this as PC Relative. 2877 Base = N; 2878 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2879 return true; 2880 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2881 isValidPCRelNode<GlobalAddressSDNode>(N) || 2882 isValidPCRelNode<JumpTableSDNode>(N) || 2883 isValidPCRelNode<BlockAddressSDNode>(N)) 2884 return true; 2885 return false; 2886 } 2887 2888 /// Returns true if we should use a direct load into vector instruction 2889 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2890 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2891 2892 // If there are any other uses other than scalar to vector, then we should 2893 // keep it as a scalar load -> direct move pattern to prevent multiple 2894 // loads. 2895 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2896 if (!LD) 2897 return false; 2898 2899 EVT MemVT = LD->getMemoryVT(); 2900 if (!MemVT.isSimple()) 2901 return false; 2902 switch(MemVT.getSimpleVT().SimpleTy) { 2903 case MVT::i64: 2904 break; 2905 case MVT::i32: 2906 if (!ST.hasP8Vector()) 2907 return false; 2908 break; 2909 case MVT::i16: 2910 case MVT::i8: 2911 if (!ST.hasP9Vector()) 2912 return false; 2913 break; 2914 default: 2915 return false; 2916 } 2917 2918 SDValue LoadedVal(N, 0); 2919 if (!LoadedVal.hasOneUse()) 2920 return false; 2921 2922 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2923 UI != UE; ++UI) 2924 if (UI.getUse().get().getResNo() == 0 && 2925 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2926 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2927 return false; 2928 2929 return true; 2930 } 2931 2932 /// getPreIndexedAddressParts - returns true by value, base pointer and 2933 /// offset pointer and addressing mode by reference if the node's address 2934 /// can be legally represented as pre-indexed load / store address. 2935 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2936 SDValue &Offset, 2937 ISD::MemIndexedMode &AM, 2938 SelectionDAG &DAG) const { 2939 if (DisablePPCPreinc) return false; 2940 2941 bool isLoad = true; 2942 SDValue Ptr; 2943 EVT VT; 2944 unsigned Alignment; 2945 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2946 Ptr = LD->getBasePtr(); 2947 VT = LD->getMemoryVT(); 2948 Alignment = LD->getAlignment(); 2949 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2950 Ptr = ST->getBasePtr(); 2951 VT = ST->getMemoryVT(); 2952 Alignment = ST->getAlignment(); 2953 isLoad = false; 2954 } else 2955 return false; 2956 2957 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2958 // instructions because we can fold these into a more efficient instruction 2959 // instead, (such as LXSD). 2960 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2961 return false; 2962 } 2963 2964 // PowerPC doesn't have preinc load/store instructions for vectors 2965 if (VT.isVector()) 2966 return false; 2967 2968 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2969 // Common code will reject creating a pre-inc form if the base pointer 2970 // is a frame index, or if N is a store and the base pointer is either 2971 // the same as or a predecessor of the value being stored. Check for 2972 // those situations here, and try with swapped Base/Offset instead. 2973 bool Swap = false; 2974 2975 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2976 Swap = true; 2977 else if (!isLoad) { 2978 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2979 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2980 Swap = true; 2981 } 2982 2983 if (Swap) 2984 std::swap(Base, Offset); 2985 2986 AM = ISD::PRE_INC; 2987 return true; 2988 } 2989 2990 // LDU/STU can only handle immediates that are a multiple of 4. 2991 if (VT != MVT::i64) { 2992 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2993 return false; 2994 } else { 2995 // LDU/STU need an address with at least 4-byte alignment. 2996 if (Alignment < 4) 2997 return false; 2998 2999 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3000 return false; 3001 } 3002 3003 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3004 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3005 // sext i32 to i64 when addr mode is r+i. 3006 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3007 LD->getExtensionType() == ISD::SEXTLOAD && 3008 isa<ConstantSDNode>(Offset)) 3009 return false; 3010 } 3011 3012 AM = ISD::PRE_INC; 3013 return true; 3014 } 3015 3016 //===----------------------------------------------------------------------===// 3017 // LowerOperation implementation 3018 //===----------------------------------------------------------------------===// 3019 3020 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3021 /// and LoOpFlags to the target MO flags. 3022 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3023 unsigned &HiOpFlags, unsigned &LoOpFlags, 3024 const GlobalValue *GV = nullptr) { 3025 HiOpFlags = PPCII::MO_HA; 3026 LoOpFlags = PPCII::MO_LO; 3027 3028 // Don't use the pic base if not in PIC relocation model. 3029 if (IsPIC) { 3030 HiOpFlags |= PPCII::MO_PIC_FLAG; 3031 LoOpFlags |= PPCII::MO_PIC_FLAG; 3032 } 3033 } 3034 3035 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3036 SelectionDAG &DAG) { 3037 SDLoc DL(HiPart); 3038 EVT PtrVT = HiPart.getValueType(); 3039 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3040 3041 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3042 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3043 3044 // With PIC, the first instruction is actually "GR+hi(&G)". 3045 if (isPIC) 3046 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3047 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3048 3049 // Generate non-pic code that has direct accesses to the constant pool. 3050 // The address of the global is just (hi(&g)+lo(&g)). 3051 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3052 } 3053 3054 static void setUsesTOCBasePtr(MachineFunction &MF) { 3055 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3056 FuncInfo->setUsesTOCBasePtr(); 3057 } 3058 3059 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3060 setUsesTOCBasePtr(DAG.getMachineFunction()); 3061 } 3062 3063 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3064 SDValue GA) const { 3065 const bool Is64Bit = Subtarget.isPPC64(); 3066 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3067 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3068 : Subtarget.isAIXABI() 3069 ? DAG.getRegister(PPC::R2, VT) 3070 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3071 SDValue Ops[] = { GA, Reg }; 3072 return DAG.getMemIntrinsicNode( 3073 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3074 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3075 MachineMemOperand::MOLoad); 3076 } 3077 3078 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3079 SelectionDAG &DAG) const { 3080 EVT PtrVT = Op.getValueType(); 3081 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3082 const Constant *C = CP->getConstVal(); 3083 3084 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3085 // The actual address of the GlobalValue is stored in the TOC. 3086 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3087 if (Subtarget.isUsingPCRelativeCalls()) { 3088 SDLoc DL(CP); 3089 EVT Ty = getPointerTy(DAG.getDataLayout()); 3090 SDValue ConstPool = DAG.getTargetConstantPool( 3091 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3092 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3093 } 3094 setUsesTOCBasePtr(DAG); 3095 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3096 return getTOCEntry(DAG, SDLoc(CP), GA); 3097 } 3098 3099 unsigned MOHiFlag, MOLoFlag; 3100 bool IsPIC = isPositionIndependent(); 3101 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3102 3103 if (IsPIC && Subtarget.isSVR4ABI()) { 3104 SDValue GA = 3105 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3106 return getTOCEntry(DAG, SDLoc(CP), GA); 3107 } 3108 3109 SDValue CPIHi = 3110 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3111 SDValue CPILo = 3112 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3113 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3114 } 3115 3116 // For 64-bit PowerPC, prefer the more compact relative encodings. 3117 // This trades 32 bits per jump table entry for one or two instructions 3118 // on the jump site. 3119 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3120 if (isJumpTableRelative()) 3121 return MachineJumpTableInfo::EK_LabelDifference32; 3122 3123 return TargetLowering::getJumpTableEncoding(); 3124 } 3125 3126 bool PPCTargetLowering::isJumpTableRelative() const { 3127 if (UseAbsoluteJumpTables) 3128 return false; 3129 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3130 return true; 3131 return TargetLowering::isJumpTableRelative(); 3132 } 3133 3134 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3135 SelectionDAG &DAG) const { 3136 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3137 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3138 3139 switch (getTargetMachine().getCodeModel()) { 3140 case CodeModel::Small: 3141 case CodeModel::Medium: 3142 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3143 default: 3144 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3145 getPointerTy(DAG.getDataLayout())); 3146 } 3147 } 3148 3149 const MCExpr * 3150 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3151 unsigned JTI, 3152 MCContext &Ctx) const { 3153 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3154 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3155 3156 switch (getTargetMachine().getCodeModel()) { 3157 case CodeModel::Small: 3158 case CodeModel::Medium: 3159 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3160 default: 3161 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3162 } 3163 } 3164 3165 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3166 EVT PtrVT = Op.getValueType(); 3167 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3168 3169 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3170 if (Subtarget.isUsingPCRelativeCalls()) { 3171 SDLoc DL(JT); 3172 EVT Ty = getPointerTy(DAG.getDataLayout()); 3173 SDValue GA = 3174 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3175 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3176 return MatAddr; 3177 } 3178 3179 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3180 // The actual address of the GlobalValue is stored in the TOC. 3181 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3182 setUsesTOCBasePtr(DAG); 3183 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3184 return getTOCEntry(DAG, SDLoc(JT), GA); 3185 } 3186 3187 unsigned MOHiFlag, MOLoFlag; 3188 bool IsPIC = isPositionIndependent(); 3189 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3190 3191 if (IsPIC && Subtarget.isSVR4ABI()) { 3192 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3193 PPCII::MO_PIC_FLAG); 3194 return getTOCEntry(DAG, SDLoc(GA), GA); 3195 } 3196 3197 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3198 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3199 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3200 } 3201 3202 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3203 SelectionDAG &DAG) const { 3204 EVT PtrVT = Op.getValueType(); 3205 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3206 const BlockAddress *BA = BASDN->getBlockAddress(); 3207 3208 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3209 if (Subtarget.isUsingPCRelativeCalls()) { 3210 SDLoc DL(BASDN); 3211 EVT Ty = getPointerTy(DAG.getDataLayout()); 3212 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3213 PPCII::MO_PCREL_FLAG); 3214 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3215 return MatAddr; 3216 } 3217 3218 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3219 // The actual BlockAddress is stored in the TOC. 3220 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3221 setUsesTOCBasePtr(DAG); 3222 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3223 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3224 } 3225 3226 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3227 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3228 return getTOCEntry( 3229 DAG, SDLoc(BASDN), 3230 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3231 3232 unsigned MOHiFlag, MOLoFlag; 3233 bool IsPIC = isPositionIndependent(); 3234 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3235 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3236 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3237 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3238 } 3239 3240 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3241 SelectionDAG &DAG) const { 3242 if (Subtarget.isAIXABI()) 3243 return LowerGlobalTLSAddressAIX(Op, DAG); 3244 3245 return LowerGlobalTLSAddressLinux(Op, DAG); 3246 } 3247 3248 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3251 3252 if (DAG.getTarget().useEmulatedTLS()) 3253 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3254 3255 SDLoc dl(GA); 3256 const GlobalValue *GV = GA->getGlobal(); 3257 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3258 3259 // The general-dynamic model is the only access model supported for now, so 3260 // all the GlobalTLSAddress nodes are lowered with this model. 3261 // We need to generate two TOC entries, one for the variable offset, one for 3262 // the region handle. The global address for the TOC entry of the region 3263 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3264 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3265 SDValue VariableOffsetTGA = 3266 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3267 SDValue RegionHandleTGA = 3268 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3269 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3270 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3271 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3272 RegionHandle); 3273 } 3274 3275 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3276 SelectionDAG &DAG) const { 3277 // FIXME: TLS addresses currently use medium model code sequences, 3278 // which is the most useful form. Eventually support for small and 3279 // large models could be added if users need it, at the cost of 3280 // additional complexity. 3281 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3282 if (DAG.getTarget().useEmulatedTLS()) 3283 return LowerToTLSEmulatedModel(GA, DAG); 3284 3285 SDLoc dl(GA); 3286 const GlobalValue *GV = GA->getGlobal(); 3287 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3288 bool is64bit = Subtarget.isPPC64(); 3289 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3290 PICLevel::Level picLevel = M->getPICLevel(); 3291 3292 const TargetMachine &TM = getTargetMachine(); 3293 TLSModel::Model Model = TM.getTLSModel(GV); 3294 3295 if (Model == TLSModel::LocalExec) { 3296 if (Subtarget.isUsingPCRelativeCalls()) { 3297 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3298 SDValue TGA = DAG.getTargetGlobalAddress( 3299 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3300 SDValue MatAddr = 3301 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3302 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3303 } 3304 3305 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3306 PPCII::MO_TPREL_HA); 3307 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3308 PPCII::MO_TPREL_LO); 3309 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3310 : DAG.getRegister(PPC::R2, MVT::i32); 3311 3312 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3313 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3314 } 3315 3316 if (Model == TLSModel::InitialExec) { 3317 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3318 SDValue TGA = DAG.getTargetGlobalAddress( 3319 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3320 SDValue TGATLS = DAG.getTargetGlobalAddress( 3321 GV, dl, PtrVT, 0, 3322 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3323 SDValue TPOffset; 3324 if (IsPCRel) { 3325 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3326 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3327 MachinePointerInfo()); 3328 } else { 3329 SDValue GOTPtr; 3330 if (is64bit) { 3331 setUsesTOCBasePtr(DAG); 3332 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3333 GOTPtr = 3334 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3335 } else { 3336 if (!TM.isPositionIndependent()) 3337 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3338 else if (picLevel == PICLevel::SmallPIC) 3339 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3340 else 3341 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3342 } 3343 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3344 } 3345 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3346 } 3347 3348 if (Model == TLSModel::GeneralDynamic) { 3349 if (Subtarget.isUsingPCRelativeCalls()) { 3350 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3351 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3352 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3353 } 3354 3355 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3356 SDValue GOTPtr; 3357 if (is64bit) { 3358 setUsesTOCBasePtr(DAG); 3359 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3360 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3361 GOTReg, TGA); 3362 } else { 3363 if (picLevel == PICLevel::SmallPIC) 3364 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3365 else 3366 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3367 } 3368 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3369 GOTPtr, TGA, TGA); 3370 } 3371 3372 if (Model == TLSModel::LocalDynamic) { 3373 if (Subtarget.isUsingPCRelativeCalls()) { 3374 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3375 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3376 SDValue MatPCRel = 3377 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3378 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3379 } 3380 3381 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3382 SDValue GOTPtr; 3383 if (is64bit) { 3384 setUsesTOCBasePtr(DAG); 3385 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3386 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3387 GOTReg, TGA); 3388 } else { 3389 if (picLevel == PICLevel::SmallPIC) 3390 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3391 else 3392 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3393 } 3394 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3395 PtrVT, GOTPtr, TGA, TGA); 3396 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3397 PtrVT, TLSAddr, TGA); 3398 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3399 } 3400 3401 llvm_unreachable("Unknown TLS model!"); 3402 } 3403 3404 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3405 SelectionDAG &DAG) const { 3406 EVT PtrVT = Op.getValueType(); 3407 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3408 SDLoc DL(GSDN); 3409 const GlobalValue *GV = GSDN->getGlobal(); 3410 3411 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3412 // The actual address of the GlobalValue is stored in the TOC. 3413 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3414 if (Subtarget.isUsingPCRelativeCalls()) { 3415 EVT Ty = getPointerTy(DAG.getDataLayout()); 3416 if (isAccessedAsGotIndirect(Op)) { 3417 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3418 PPCII::MO_PCREL_FLAG | 3419 PPCII::MO_GOT_FLAG); 3420 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3421 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3422 MachinePointerInfo()); 3423 return Load; 3424 } else { 3425 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3426 PPCII::MO_PCREL_FLAG); 3427 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3428 } 3429 } 3430 setUsesTOCBasePtr(DAG); 3431 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3432 return getTOCEntry(DAG, DL, GA); 3433 } 3434 3435 unsigned MOHiFlag, MOLoFlag; 3436 bool IsPIC = isPositionIndependent(); 3437 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3438 3439 if (IsPIC && Subtarget.isSVR4ABI()) { 3440 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3441 GSDN->getOffset(), 3442 PPCII::MO_PIC_FLAG); 3443 return getTOCEntry(DAG, DL, GA); 3444 } 3445 3446 SDValue GAHi = 3447 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3448 SDValue GALo = 3449 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3450 3451 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3452 } 3453 3454 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3455 bool IsStrict = Op->isStrictFPOpcode(); 3456 ISD::CondCode CC = 3457 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3458 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3459 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3460 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3461 EVT LHSVT = LHS.getValueType(); 3462 SDLoc dl(Op); 3463 3464 // Soften the setcc with libcall if it is fp128. 3465 if (LHSVT == MVT::f128) { 3466 assert(!Subtarget.hasP9Vector() && 3467 "SETCC for f128 is already legal under Power9!"); 3468 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3469 Op->getOpcode() == ISD::STRICT_FSETCCS); 3470 if (RHS.getNode()) 3471 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3472 DAG.getCondCode(CC)); 3473 if (IsStrict) 3474 return DAG.getMergeValues({LHS, Chain}, dl); 3475 return LHS; 3476 } 3477 3478 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3479 3480 if (Op.getValueType() == MVT::v2i64) { 3481 // When the operands themselves are v2i64 values, we need to do something 3482 // special because VSX has no underlying comparison operations for these. 3483 if (LHS.getValueType() == MVT::v2i64) { 3484 // Equality can be handled by casting to the legal type for Altivec 3485 // comparisons, everything else needs to be expanded. 3486 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3487 return DAG.getNode( 3488 ISD::BITCAST, dl, MVT::v2i64, 3489 DAG.getSetCC(dl, MVT::v4i32, 3490 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3491 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3492 } 3493 3494 return SDValue(); 3495 } 3496 3497 // We handle most of these in the usual way. 3498 return Op; 3499 } 3500 3501 // If we're comparing for equality to zero, expose the fact that this is 3502 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3503 // fold the new nodes. 3504 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3505 return V; 3506 3507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3508 // Leave comparisons against 0 and -1 alone for now, since they're usually 3509 // optimized. FIXME: revisit this when we can custom lower all setcc 3510 // optimizations. 3511 if (C->isAllOnes() || C->isZero()) 3512 return SDValue(); 3513 } 3514 3515 // If we have an integer seteq/setne, turn it into a compare against zero 3516 // by xor'ing the rhs with the lhs, which is faster than setting a 3517 // condition register, reading it back out, and masking the correct bit. The 3518 // normal approach here uses sub to do this instead of xor. Using xor exposes 3519 // the result to other bit-twiddling opportunities. 3520 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3521 EVT VT = Op.getValueType(); 3522 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3523 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3524 } 3525 return SDValue(); 3526 } 3527 3528 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3529 SDNode *Node = Op.getNode(); 3530 EVT VT = Node->getValueType(0); 3531 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3532 SDValue InChain = Node->getOperand(0); 3533 SDValue VAListPtr = Node->getOperand(1); 3534 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3535 SDLoc dl(Node); 3536 3537 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3538 3539 // gpr_index 3540 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3541 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3542 InChain = GprIndex.getValue(1); 3543 3544 if (VT == MVT::i64) { 3545 // Check if GprIndex is even 3546 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3547 DAG.getConstant(1, dl, MVT::i32)); 3548 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3549 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3550 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3551 DAG.getConstant(1, dl, MVT::i32)); 3552 // Align GprIndex to be even if it isn't 3553 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3554 GprIndex); 3555 } 3556 3557 // fpr index is 1 byte after gpr 3558 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3559 DAG.getConstant(1, dl, MVT::i32)); 3560 3561 // fpr 3562 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3563 FprPtr, MachinePointerInfo(SV), MVT::i8); 3564 InChain = FprIndex.getValue(1); 3565 3566 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3567 DAG.getConstant(8, dl, MVT::i32)); 3568 3569 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3570 DAG.getConstant(4, dl, MVT::i32)); 3571 3572 // areas 3573 SDValue OverflowArea = 3574 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3575 InChain = OverflowArea.getValue(1); 3576 3577 SDValue RegSaveArea = 3578 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3579 InChain = RegSaveArea.getValue(1); 3580 3581 // select overflow_area if index > 8 3582 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3583 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3584 3585 // adjustment constant gpr_index * 4/8 3586 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3587 VT.isInteger() ? GprIndex : FprIndex, 3588 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3589 MVT::i32)); 3590 3591 // OurReg = RegSaveArea + RegConstant 3592 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3593 RegConstant); 3594 3595 // Floating types are 32 bytes into RegSaveArea 3596 if (VT.isFloatingPoint()) 3597 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3598 DAG.getConstant(32, dl, MVT::i32)); 3599 3600 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3601 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3602 VT.isInteger() ? GprIndex : FprIndex, 3603 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3604 MVT::i32)); 3605 3606 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3607 VT.isInteger() ? VAListPtr : FprPtr, 3608 MachinePointerInfo(SV), MVT::i8); 3609 3610 // determine if we should load from reg_save_area or overflow_area 3611 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3612 3613 // increase overflow_area by 4/8 if gpr/fpr > 8 3614 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3615 DAG.getConstant(VT.isInteger() ? 4 : 8, 3616 dl, MVT::i32)); 3617 3618 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3619 OverflowAreaPlusN); 3620 3621 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3622 MachinePointerInfo(), MVT::i32); 3623 3624 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3625 } 3626 3627 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3628 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3629 3630 // We have to copy the entire va_list struct: 3631 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3632 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3633 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3634 false, true, false, MachinePointerInfo(), 3635 MachinePointerInfo()); 3636 } 3637 3638 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3639 SelectionDAG &DAG) const { 3640 if (Subtarget.isAIXABI()) 3641 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3642 3643 return Op.getOperand(0); 3644 } 3645 3646 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3647 MachineFunction &MF = DAG.getMachineFunction(); 3648 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3649 3650 assert((Op.getOpcode() == ISD::INLINEASM || 3651 Op.getOpcode() == ISD::INLINEASM_BR) && 3652 "Expecting Inline ASM node."); 3653 3654 // If an LR store is already known to be required then there is not point in 3655 // checking this ASM as well. 3656 if (MFI.isLRStoreRequired()) 3657 return Op; 3658 3659 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3660 // type MVT::Glue. We want to ignore this last operand if that is the case. 3661 unsigned NumOps = Op.getNumOperands(); 3662 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3663 --NumOps; 3664 3665 // Check all operands that may contain the LR. 3666 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3667 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3668 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3669 ++i; // Skip the ID value. 3670 3671 switch (InlineAsm::getKind(Flags)) { 3672 default: 3673 llvm_unreachable("Bad flags!"); 3674 case InlineAsm::Kind_RegUse: 3675 case InlineAsm::Kind_Imm: 3676 case InlineAsm::Kind_Mem: 3677 i += NumVals; 3678 break; 3679 case InlineAsm::Kind_Clobber: 3680 case InlineAsm::Kind_RegDef: 3681 case InlineAsm::Kind_RegDefEarlyClobber: { 3682 for (; NumVals; --NumVals, ++i) { 3683 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3684 if (Reg != PPC::LR && Reg != PPC::LR8) 3685 continue; 3686 MFI.setLRStoreRequired(); 3687 return Op; 3688 } 3689 break; 3690 } 3691 } 3692 } 3693 3694 return Op; 3695 } 3696 3697 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3698 SelectionDAG &DAG) const { 3699 if (Subtarget.isAIXABI()) 3700 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3701 3702 SDValue Chain = Op.getOperand(0); 3703 SDValue Trmp = Op.getOperand(1); // trampoline 3704 SDValue FPtr = Op.getOperand(2); // nested function 3705 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3706 SDLoc dl(Op); 3707 3708 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3709 bool isPPC64 = (PtrVT == MVT::i64); 3710 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3711 3712 TargetLowering::ArgListTy Args; 3713 TargetLowering::ArgListEntry Entry; 3714 3715 Entry.Ty = IntPtrTy; 3716 Entry.Node = Trmp; Args.push_back(Entry); 3717 3718 // TrampSize == (isPPC64 ? 48 : 40); 3719 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3720 isPPC64 ? MVT::i64 : MVT::i32); 3721 Args.push_back(Entry); 3722 3723 Entry.Node = FPtr; Args.push_back(Entry); 3724 Entry.Node = Nest; Args.push_back(Entry); 3725 3726 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3727 TargetLowering::CallLoweringInfo CLI(DAG); 3728 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3729 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3730 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3731 3732 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3733 return CallResult.second; 3734 } 3735 3736 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3737 MachineFunction &MF = DAG.getMachineFunction(); 3738 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3739 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3740 3741 SDLoc dl(Op); 3742 3743 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3744 // vastart just stores the address of the VarArgsFrameIndex slot into the 3745 // memory location argument. 3746 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3747 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3748 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3749 MachinePointerInfo(SV)); 3750 } 3751 3752 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3753 // We suppose the given va_list is already allocated. 3754 // 3755 // typedef struct { 3756 // char gpr; /* index into the array of 8 GPRs 3757 // * stored in the register save area 3758 // * gpr=0 corresponds to r3, 3759 // * gpr=1 to r4, etc. 3760 // */ 3761 // char fpr; /* index into the array of 8 FPRs 3762 // * stored in the register save area 3763 // * fpr=0 corresponds to f1, 3764 // * fpr=1 to f2, etc. 3765 // */ 3766 // char *overflow_arg_area; 3767 // /* location on stack that holds 3768 // * the next overflow argument 3769 // */ 3770 // char *reg_save_area; 3771 // /* where r3:r10 and f1:f8 (if saved) 3772 // * are stored 3773 // */ 3774 // } va_list[1]; 3775 3776 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3777 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3778 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3779 PtrVT); 3780 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3781 PtrVT); 3782 3783 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3784 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3785 3786 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3787 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3788 3789 uint64_t FPROffset = 1; 3790 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3791 3792 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3793 3794 // Store first byte : number of int regs 3795 SDValue firstStore = 3796 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3797 MachinePointerInfo(SV), MVT::i8); 3798 uint64_t nextOffset = FPROffset; 3799 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3800 ConstFPROffset); 3801 3802 // Store second byte : number of float regs 3803 SDValue secondStore = 3804 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3805 MachinePointerInfo(SV, nextOffset), MVT::i8); 3806 nextOffset += StackOffset; 3807 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3808 3809 // Store second word : arguments given on stack 3810 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3811 MachinePointerInfo(SV, nextOffset)); 3812 nextOffset += FrameOffset; 3813 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3814 3815 // Store third word : arguments given in registers 3816 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3817 MachinePointerInfo(SV, nextOffset)); 3818 } 3819 3820 /// FPR - The set of FP registers that should be allocated for arguments 3821 /// on Darwin and AIX. 3822 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3823 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3824 PPC::F11, PPC::F12, PPC::F13}; 3825 3826 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3827 /// the stack. 3828 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3829 unsigned PtrByteSize) { 3830 unsigned ArgSize = ArgVT.getStoreSize(); 3831 if (Flags.isByVal()) 3832 ArgSize = Flags.getByValSize(); 3833 3834 // Round up to multiples of the pointer size, except for array members, 3835 // which are always packed. 3836 if (!Flags.isInConsecutiveRegs()) 3837 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3838 3839 return ArgSize; 3840 } 3841 3842 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3843 /// on the stack. 3844 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3845 ISD::ArgFlagsTy Flags, 3846 unsigned PtrByteSize) { 3847 Align Alignment(PtrByteSize); 3848 3849 // Altivec parameters are padded to a 16 byte boundary. 3850 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3851 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3852 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3853 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3854 Alignment = Align(16); 3855 3856 // ByVal parameters are aligned as requested. 3857 if (Flags.isByVal()) { 3858 auto BVAlign = Flags.getNonZeroByValAlign(); 3859 if (BVAlign > PtrByteSize) { 3860 if (BVAlign.value() % PtrByteSize != 0) 3861 llvm_unreachable( 3862 "ByVal alignment is not a multiple of the pointer size"); 3863 3864 Alignment = BVAlign; 3865 } 3866 } 3867 3868 // Array members are always packed to their original alignment. 3869 if (Flags.isInConsecutiveRegs()) { 3870 // If the array member was split into multiple registers, the first 3871 // needs to be aligned to the size of the full type. (Except for 3872 // ppcf128, which is only aligned as its f64 components.) 3873 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3874 Alignment = Align(OrigVT.getStoreSize()); 3875 else 3876 Alignment = Align(ArgVT.getStoreSize()); 3877 } 3878 3879 return Alignment; 3880 } 3881 3882 /// CalculateStackSlotUsed - Return whether this argument will use its 3883 /// stack slot (instead of being passed in registers). ArgOffset, 3884 /// AvailableFPRs, and AvailableVRs must hold the current argument 3885 /// position, and will be updated to account for this argument. 3886 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3887 unsigned PtrByteSize, unsigned LinkageSize, 3888 unsigned ParamAreaSize, unsigned &ArgOffset, 3889 unsigned &AvailableFPRs, 3890 unsigned &AvailableVRs) { 3891 bool UseMemory = false; 3892 3893 // Respect alignment of argument on the stack. 3894 Align Alignment = 3895 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3896 ArgOffset = alignTo(ArgOffset, Alignment); 3897 // If there's no space left in the argument save area, we must 3898 // use memory (this check also catches zero-sized arguments). 3899 if (ArgOffset >= LinkageSize + ParamAreaSize) 3900 UseMemory = true; 3901 3902 // Allocate argument on the stack. 3903 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3904 if (Flags.isInConsecutiveRegsLast()) 3905 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3906 // If we overran the argument save area, we must use memory 3907 // (this check catches arguments passed partially in memory) 3908 if (ArgOffset > LinkageSize + ParamAreaSize) 3909 UseMemory = true; 3910 3911 // However, if the argument is actually passed in an FPR or a VR, 3912 // we don't use memory after all. 3913 if (!Flags.isByVal()) { 3914 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3915 if (AvailableFPRs > 0) { 3916 --AvailableFPRs; 3917 return false; 3918 } 3919 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3920 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3921 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3922 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3923 if (AvailableVRs > 0) { 3924 --AvailableVRs; 3925 return false; 3926 } 3927 } 3928 3929 return UseMemory; 3930 } 3931 3932 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3933 /// ensure minimum alignment required for target. 3934 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3935 unsigned NumBytes) { 3936 return alignTo(NumBytes, Lowering->getStackAlign()); 3937 } 3938 3939 SDValue PPCTargetLowering::LowerFormalArguments( 3940 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3941 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3942 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3943 if (Subtarget.isAIXABI()) 3944 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3945 InVals); 3946 if (Subtarget.is64BitELFABI()) 3947 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3948 InVals); 3949 assert(Subtarget.is32BitELFABI()); 3950 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3951 InVals); 3952 } 3953 3954 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3955 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3956 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3957 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3958 3959 // 32-bit SVR4 ABI Stack Frame Layout: 3960 // +-----------------------------------+ 3961 // +--> | Back chain | 3962 // | +-----------------------------------+ 3963 // | | Floating-point register save area | 3964 // | +-----------------------------------+ 3965 // | | General register save area | 3966 // | +-----------------------------------+ 3967 // | | CR save word | 3968 // | +-----------------------------------+ 3969 // | | VRSAVE save word | 3970 // | +-----------------------------------+ 3971 // | | Alignment padding | 3972 // | +-----------------------------------+ 3973 // | | Vector register save area | 3974 // | +-----------------------------------+ 3975 // | | Local variable space | 3976 // | +-----------------------------------+ 3977 // | | Parameter list area | 3978 // | +-----------------------------------+ 3979 // | | LR save word | 3980 // | +-----------------------------------+ 3981 // SP--> +--- | Back chain | 3982 // +-----------------------------------+ 3983 // 3984 // Specifications: 3985 // System V Application Binary Interface PowerPC Processor Supplement 3986 // AltiVec Technology Programming Interface Manual 3987 3988 MachineFunction &MF = DAG.getMachineFunction(); 3989 MachineFrameInfo &MFI = MF.getFrameInfo(); 3990 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3991 3992 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3993 // Potential tail calls could cause overwriting of argument stack slots. 3994 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3995 (CallConv == CallingConv::Fast)); 3996 const Align PtrAlign(4); 3997 3998 // Assign locations to all of the incoming arguments. 3999 SmallVector<CCValAssign, 16> ArgLocs; 4000 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4001 *DAG.getContext()); 4002 4003 // Reserve space for the linkage area on the stack. 4004 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4005 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4006 if (useSoftFloat()) 4007 CCInfo.PreAnalyzeFormalArguments(Ins); 4008 4009 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4010 CCInfo.clearWasPPCF128(); 4011 4012 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4013 CCValAssign &VA = ArgLocs[i]; 4014 4015 // Arguments stored in registers. 4016 if (VA.isRegLoc()) { 4017 const TargetRegisterClass *RC; 4018 EVT ValVT = VA.getValVT(); 4019 4020 switch (ValVT.getSimpleVT().SimpleTy) { 4021 default: 4022 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4023 case MVT::i1: 4024 case MVT::i32: 4025 RC = &PPC::GPRCRegClass; 4026 break; 4027 case MVT::f32: 4028 if (Subtarget.hasP8Vector()) 4029 RC = &PPC::VSSRCRegClass; 4030 else if (Subtarget.hasSPE()) 4031 RC = &PPC::GPRCRegClass; 4032 else 4033 RC = &PPC::F4RCRegClass; 4034 break; 4035 case MVT::f64: 4036 if (Subtarget.hasVSX()) 4037 RC = &PPC::VSFRCRegClass; 4038 else if (Subtarget.hasSPE()) 4039 // SPE passes doubles in GPR pairs. 4040 RC = &PPC::GPRCRegClass; 4041 else 4042 RC = &PPC::F8RCRegClass; 4043 break; 4044 case MVT::v16i8: 4045 case MVT::v8i16: 4046 case MVT::v4i32: 4047 RC = &PPC::VRRCRegClass; 4048 break; 4049 case MVT::v4f32: 4050 RC = &PPC::VRRCRegClass; 4051 break; 4052 case MVT::v2f64: 4053 case MVT::v2i64: 4054 RC = &PPC::VRRCRegClass; 4055 break; 4056 } 4057 4058 SDValue ArgValue; 4059 // Transform the arguments stored in physical registers into 4060 // virtual ones. 4061 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4062 assert(i + 1 < e && "No second half of double precision argument"); 4063 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4064 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4065 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4066 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4067 if (!Subtarget.isLittleEndian()) 4068 std::swap (ArgValueLo, ArgValueHi); 4069 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4070 ArgValueHi); 4071 } else { 4072 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4073 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4074 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4075 if (ValVT == MVT::i1) 4076 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4077 } 4078 4079 InVals.push_back(ArgValue); 4080 } else { 4081 // Argument stored in memory. 4082 assert(VA.isMemLoc()); 4083 4084 // Get the extended size of the argument type in stack 4085 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4086 // Get the actual size of the argument type 4087 unsigned ObjSize = VA.getValVT().getStoreSize(); 4088 unsigned ArgOffset = VA.getLocMemOffset(); 4089 // Stack objects in PPC32 are right justified. 4090 ArgOffset += ArgSize - ObjSize; 4091 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4092 4093 // Create load nodes to retrieve arguments from the stack. 4094 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4095 InVals.push_back( 4096 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4097 } 4098 } 4099 4100 // Assign locations to all of the incoming aggregate by value arguments. 4101 // Aggregates passed by value are stored in the local variable space of the 4102 // caller's stack frame, right above the parameter list area. 4103 SmallVector<CCValAssign, 16> ByValArgLocs; 4104 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4105 ByValArgLocs, *DAG.getContext()); 4106 4107 // Reserve stack space for the allocations in CCInfo. 4108 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4109 4110 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4111 4112 // Area that is at least reserved in the caller of this function. 4113 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4114 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4115 4116 // Set the size that is at least reserved in caller of this function. Tail 4117 // call optimized function's reserved stack space needs to be aligned so that 4118 // taking the difference between two stack areas will result in an aligned 4119 // stack. 4120 MinReservedArea = 4121 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4122 FuncInfo->setMinReservedArea(MinReservedArea); 4123 4124 SmallVector<SDValue, 8> MemOps; 4125 4126 // If the function takes variable number of arguments, make a frame index for 4127 // the start of the first vararg value... for expansion of llvm.va_start. 4128 if (isVarArg) { 4129 static const MCPhysReg GPArgRegs[] = { 4130 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4131 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4132 }; 4133 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4134 4135 static const MCPhysReg FPArgRegs[] = { 4136 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4137 PPC::F8 4138 }; 4139 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4140 4141 if (useSoftFloat() || hasSPE()) 4142 NumFPArgRegs = 0; 4143 4144 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4145 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4146 4147 // Make room for NumGPArgRegs and NumFPArgRegs. 4148 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4149 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4150 4151 FuncInfo->setVarArgsStackOffset( 4152 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4153 CCInfo.getNextStackOffset(), true)); 4154 4155 FuncInfo->setVarArgsFrameIndex( 4156 MFI.CreateStackObject(Depth, Align(8), false)); 4157 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4158 4159 // The fixed integer arguments of a variadic function are stored to the 4160 // VarArgsFrameIndex on the stack so that they may be loaded by 4161 // dereferencing the result of va_next. 4162 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4163 // Get an existing live-in vreg, or add a new one. 4164 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4165 if (!VReg) 4166 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4167 4168 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4169 SDValue Store = 4170 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4171 MemOps.push_back(Store); 4172 // Increment the address by four for the next argument to store 4173 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4174 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4175 } 4176 4177 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4178 // is set. 4179 // The double arguments are stored to the VarArgsFrameIndex 4180 // on the stack. 4181 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4182 // Get an existing live-in vreg, or add a new one. 4183 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4184 if (!VReg) 4185 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4186 4187 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4188 SDValue Store = 4189 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4190 MemOps.push_back(Store); 4191 // Increment the address by eight for the next argument to store 4192 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4193 PtrVT); 4194 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4195 } 4196 } 4197 4198 if (!MemOps.empty()) 4199 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4200 4201 return Chain; 4202 } 4203 4204 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4205 // value to MVT::i64 and then truncate to the correct register size. 4206 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4207 EVT ObjectVT, SelectionDAG &DAG, 4208 SDValue ArgVal, 4209 const SDLoc &dl) const { 4210 if (Flags.isSExt()) 4211 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4212 DAG.getValueType(ObjectVT)); 4213 else if (Flags.isZExt()) 4214 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4215 DAG.getValueType(ObjectVT)); 4216 4217 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4218 } 4219 4220 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4221 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4222 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4223 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4224 // TODO: add description of PPC stack frame format, or at least some docs. 4225 // 4226 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4227 bool isLittleEndian = Subtarget.isLittleEndian(); 4228 MachineFunction &MF = DAG.getMachineFunction(); 4229 MachineFrameInfo &MFI = MF.getFrameInfo(); 4230 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4231 4232 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4233 "fastcc not supported on varargs functions"); 4234 4235 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4236 // Potential tail calls could cause overwriting of argument stack slots. 4237 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4238 (CallConv == CallingConv::Fast)); 4239 unsigned PtrByteSize = 8; 4240 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4241 4242 static const MCPhysReg GPR[] = { 4243 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4244 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4245 }; 4246 static const MCPhysReg VR[] = { 4247 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4248 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4249 }; 4250 4251 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4252 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4253 const unsigned Num_VR_Regs = array_lengthof(VR); 4254 4255 // Do a first pass over the arguments to determine whether the ABI 4256 // guarantees that our caller has allocated the parameter save area 4257 // on its stack frame. In the ELFv1 ABI, this is always the case; 4258 // in the ELFv2 ABI, it is true if this is a vararg function or if 4259 // any parameter is located in a stack slot. 4260 4261 bool HasParameterArea = !isELFv2ABI || isVarArg; 4262 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4263 unsigned NumBytes = LinkageSize; 4264 unsigned AvailableFPRs = Num_FPR_Regs; 4265 unsigned AvailableVRs = Num_VR_Regs; 4266 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4267 if (Ins[i].Flags.isNest()) 4268 continue; 4269 4270 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4271 PtrByteSize, LinkageSize, ParamAreaSize, 4272 NumBytes, AvailableFPRs, AvailableVRs)) 4273 HasParameterArea = true; 4274 } 4275 4276 // Add DAG nodes to load the arguments or copy them out of registers. On 4277 // entry to a function on PPC, the arguments start after the linkage area, 4278 // although the first ones are often in registers. 4279 4280 unsigned ArgOffset = LinkageSize; 4281 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4282 SmallVector<SDValue, 8> MemOps; 4283 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4284 unsigned CurArgIdx = 0; 4285 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4286 SDValue ArgVal; 4287 bool needsLoad = false; 4288 EVT ObjectVT = Ins[ArgNo].VT; 4289 EVT OrigVT = Ins[ArgNo].ArgVT; 4290 unsigned ObjSize = ObjectVT.getStoreSize(); 4291 unsigned ArgSize = ObjSize; 4292 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4293 if (Ins[ArgNo].isOrigArg()) { 4294 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4295 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4296 } 4297 // We re-align the argument offset for each argument, except when using the 4298 // fast calling convention, when we need to make sure we do that only when 4299 // we'll actually use a stack slot. 4300 unsigned CurArgOffset; 4301 Align Alignment; 4302 auto ComputeArgOffset = [&]() { 4303 /* Respect alignment of argument on the stack. */ 4304 Alignment = 4305 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4306 ArgOffset = alignTo(ArgOffset, Alignment); 4307 CurArgOffset = ArgOffset; 4308 }; 4309 4310 if (CallConv != CallingConv::Fast) { 4311 ComputeArgOffset(); 4312 4313 /* Compute GPR index associated with argument offset. */ 4314 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4315 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4316 } 4317 4318 // FIXME the codegen can be much improved in some cases. 4319 // We do not have to keep everything in memory. 4320 if (Flags.isByVal()) { 4321 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4322 4323 if (CallConv == CallingConv::Fast) 4324 ComputeArgOffset(); 4325 4326 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4327 ObjSize = Flags.getByValSize(); 4328 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4329 // Empty aggregate parameters do not take up registers. Examples: 4330 // struct { } a; 4331 // union { } b; 4332 // int c[0]; 4333 // etc. However, we have to provide a place-holder in InVals, so 4334 // pretend we have an 8-byte item at the current address for that 4335 // purpose. 4336 if (!ObjSize) { 4337 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4338 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4339 InVals.push_back(FIN); 4340 continue; 4341 } 4342 4343 // Create a stack object covering all stack doublewords occupied 4344 // by the argument. If the argument is (fully or partially) on 4345 // the stack, or if the argument is fully in registers but the 4346 // caller has allocated the parameter save anyway, we can refer 4347 // directly to the caller's stack frame. Otherwise, create a 4348 // local copy in our own frame. 4349 int FI; 4350 if (HasParameterArea || 4351 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4352 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4353 else 4354 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4355 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4356 4357 // Handle aggregates smaller than 8 bytes. 4358 if (ObjSize < PtrByteSize) { 4359 // The value of the object is its address, which differs from the 4360 // address of the enclosing doubleword on big-endian systems. 4361 SDValue Arg = FIN; 4362 if (!isLittleEndian) { 4363 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4364 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4365 } 4366 InVals.push_back(Arg); 4367 4368 if (GPR_idx != Num_GPR_Regs) { 4369 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4370 FuncInfo->addLiveInAttr(VReg, Flags); 4371 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4372 SDValue Store; 4373 4374 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4375 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4376 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4377 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4378 MachinePointerInfo(&*FuncArg), ObjType); 4379 } else { 4380 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4381 // store the whole register as-is to the parameter save area 4382 // slot. 4383 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4384 MachinePointerInfo(&*FuncArg)); 4385 } 4386 4387 MemOps.push_back(Store); 4388 } 4389 // Whether we copied from a register or not, advance the offset 4390 // into the parameter save area by a full doubleword. 4391 ArgOffset += PtrByteSize; 4392 continue; 4393 } 4394 4395 // The value of the object is its address, which is the address of 4396 // its first stack doubleword. 4397 InVals.push_back(FIN); 4398 4399 // Store whatever pieces of the object are in registers to memory. 4400 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4401 if (GPR_idx == Num_GPR_Regs) 4402 break; 4403 4404 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4405 FuncInfo->addLiveInAttr(VReg, Flags); 4406 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4407 SDValue Addr = FIN; 4408 if (j) { 4409 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4410 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4411 } 4412 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4413 MachinePointerInfo(&*FuncArg, j)); 4414 MemOps.push_back(Store); 4415 ++GPR_idx; 4416 } 4417 ArgOffset += ArgSize; 4418 continue; 4419 } 4420 4421 switch (ObjectVT.getSimpleVT().SimpleTy) { 4422 default: llvm_unreachable("Unhandled argument type!"); 4423 case MVT::i1: 4424 case MVT::i32: 4425 case MVT::i64: 4426 if (Flags.isNest()) { 4427 // The 'nest' parameter, if any, is passed in R11. 4428 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4429 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4430 4431 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4432 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4433 4434 break; 4435 } 4436 4437 // These can be scalar arguments or elements of an integer array type 4438 // passed directly. Clang may use those instead of "byval" aggregate 4439 // types to avoid forcing arguments to memory unnecessarily. 4440 if (GPR_idx != Num_GPR_Regs) { 4441 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4442 FuncInfo->addLiveInAttr(VReg, Flags); 4443 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4444 4445 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4446 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4447 // value to MVT::i64 and then truncate to the correct register size. 4448 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4449 } else { 4450 if (CallConv == CallingConv::Fast) 4451 ComputeArgOffset(); 4452 4453 needsLoad = true; 4454 ArgSize = PtrByteSize; 4455 } 4456 if (CallConv != CallingConv::Fast || needsLoad) 4457 ArgOffset += 8; 4458 break; 4459 4460 case MVT::f32: 4461 case MVT::f64: 4462 // These can be scalar arguments or elements of a float array type 4463 // passed directly. The latter are used to implement ELFv2 homogenous 4464 // float aggregates. 4465 if (FPR_idx != Num_FPR_Regs) { 4466 unsigned VReg; 4467 4468 if (ObjectVT == MVT::f32) 4469 VReg = MF.addLiveIn(FPR[FPR_idx], 4470 Subtarget.hasP8Vector() 4471 ? &PPC::VSSRCRegClass 4472 : &PPC::F4RCRegClass); 4473 else 4474 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4475 ? &PPC::VSFRCRegClass 4476 : &PPC::F8RCRegClass); 4477 4478 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4479 ++FPR_idx; 4480 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4481 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4482 // once we support fp <-> gpr moves. 4483 4484 // This can only ever happen in the presence of f32 array types, 4485 // since otherwise we never run out of FPRs before running out 4486 // of GPRs. 4487 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4488 FuncInfo->addLiveInAttr(VReg, Flags); 4489 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4490 4491 if (ObjectVT == MVT::f32) { 4492 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4493 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4494 DAG.getConstant(32, dl, MVT::i32)); 4495 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4496 } 4497 4498 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4499 } else { 4500 if (CallConv == CallingConv::Fast) 4501 ComputeArgOffset(); 4502 4503 needsLoad = true; 4504 } 4505 4506 // When passing an array of floats, the array occupies consecutive 4507 // space in the argument area; only round up to the next doubleword 4508 // at the end of the array. Otherwise, each float takes 8 bytes. 4509 if (CallConv != CallingConv::Fast || needsLoad) { 4510 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4511 ArgOffset += ArgSize; 4512 if (Flags.isInConsecutiveRegsLast()) 4513 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4514 } 4515 break; 4516 case MVT::v4f32: 4517 case MVT::v4i32: 4518 case MVT::v8i16: 4519 case MVT::v16i8: 4520 case MVT::v2f64: 4521 case MVT::v2i64: 4522 case MVT::v1i128: 4523 case MVT::f128: 4524 // These can be scalar arguments or elements of a vector array type 4525 // passed directly. The latter are used to implement ELFv2 homogenous 4526 // vector aggregates. 4527 if (VR_idx != Num_VR_Regs) { 4528 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4529 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4530 ++VR_idx; 4531 } else { 4532 if (CallConv == CallingConv::Fast) 4533 ComputeArgOffset(); 4534 needsLoad = true; 4535 } 4536 if (CallConv != CallingConv::Fast || needsLoad) 4537 ArgOffset += 16; 4538 break; 4539 } 4540 4541 // We need to load the argument to a virtual register if we determined 4542 // above that we ran out of physical registers of the appropriate type. 4543 if (needsLoad) { 4544 if (ObjSize < ArgSize && !isLittleEndian) 4545 CurArgOffset += ArgSize - ObjSize; 4546 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4547 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4548 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4549 } 4550 4551 InVals.push_back(ArgVal); 4552 } 4553 4554 // Area that is at least reserved in the caller of this function. 4555 unsigned MinReservedArea; 4556 if (HasParameterArea) 4557 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4558 else 4559 MinReservedArea = LinkageSize; 4560 4561 // Set the size that is at least reserved in caller of this function. Tail 4562 // call optimized functions' reserved stack space needs to be aligned so that 4563 // taking the difference between two stack areas will result in an aligned 4564 // stack. 4565 MinReservedArea = 4566 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4567 FuncInfo->setMinReservedArea(MinReservedArea); 4568 4569 // If the function takes variable number of arguments, make a frame index for 4570 // the start of the first vararg value... for expansion of llvm.va_start. 4571 // On ELFv2ABI spec, it writes: 4572 // C programs that are intended to be *portable* across different compilers 4573 // and architectures must use the header file <stdarg.h> to deal with variable 4574 // argument lists. 4575 if (isVarArg && MFI.hasVAStart()) { 4576 int Depth = ArgOffset; 4577 4578 FuncInfo->setVarArgsFrameIndex( 4579 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4580 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4581 4582 // If this function is vararg, store any remaining integer argument regs 4583 // to their spots on the stack so that they may be loaded by dereferencing 4584 // the result of va_next. 4585 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4586 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4587 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4588 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4589 SDValue Store = 4590 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4591 MemOps.push_back(Store); 4592 // Increment the address by four for the next argument to store 4593 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4594 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4595 } 4596 } 4597 4598 if (!MemOps.empty()) 4599 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4600 4601 return Chain; 4602 } 4603 4604 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4605 /// adjusted to accommodate the arguments for the tailcall. 4606 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4607 unsigned ParamSize) { 4608 4609 if (!isTailCall) return 0; 4610 4611 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4612 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4613 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4614 // Remember only if the new adjustment is bigger. 4615 if (SPDiff < FI->getTailCallSPDelta()) 4616 FI->setTailCallSPDelta(SPDiff); 4617 4618 return SPDiff; 4619 } 4620 4621 static bool isFunctionGlobalAddress(SDValue Callee); 4622 4623 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4624 const TargetMachine &TM) { 4625 // It does not make sense to call callsShareTOCBase() with a caller that 4626 // is PC Relative since PC Relative callers do not have a TOC. 4627 #ifndef NDEBUG 4628 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4629 assert(!STICaller->isUsingPCRelativeCalls() && 4630 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4631 #endif 4632 4633 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4634 // don't have enough information to determine if the caller and callee share 4635 // the same TOC base, so we have to pessimistically assume they don't for 4636 // correctness. 4637 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4638 if (!G) 4639 return false; 4640 4641 const GlobalValue *GV = G->getGlobal(); 4642 4643 // If the callee is preemptable, then the static linker will use a plt-stub 4644 // which saves the toc to the stack, and needs a nop after the call 4645 // instruction to convert to a toc-restore. 4646 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4647 return false; 4648 4649 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4650 // We may need a TOC restore in the situation where the caller requires a 4651 // valid TOC but the callee is PC Relative and does not. 4652 const Function *F = dyn_cast<Function>(GV); 4653 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4654 4655 // If we have an Alias we can try to get the function from there. 4656 if (Alias) { 4657 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4658 F = dyn_cast<Function>(GlobalObj); 4659 } 4660 4661 // If we still have no valid function pointer we do not have enough 4662 // information to determine if the callee uses PC Relative calls so we must 4663 // assume that it does. 4664 if (!F) 4665 return false; 4666 4667 // If the callee uses PC Relative we cannot guarantee that the callee won't 4668 // clobber the TOC of the caller and so we must assume that the two 4669 // functions do not share a TOC base. 4670 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4671 if (STICallee->isUsingPCRelativeCalls()) 4672 return false; 4673 4674 // If the GV is not a strong definition then we need to assume it can be 4675 // replaced by another function at link time. The function that replaces 4676 // it may not share the same TOC as the caller since the callee may be 4677 // replaced by a PC Relative version of the same function. 4678 if (!GV->isStrongDefinitionForLinker()) 4679 return false; 4680 4681 // The medium and large code models are expected to provide a sufficiently 4682 // large TOC to provide all data addressing needs of a module with a 4683 // single TOC. 4684 if (CodeModel::Medium == TM.getCodeModel() || 4685 CodeModel::Large == TM.getCodeModel()) 4686 return true; 4687 4688 // Any explicitly-specified sections and section prefixes must also match. 4689 // Also, if we're using -ffunction-sections, then each function is always in 4690 // a different section (the same is true for COMDAT functions). 4691 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4692 GV->getSection() != Caller->getSection()) 4693 return false; 4694 if (const auto *F = dyn_cast<Function>(GV)) { 4695 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4696 return false; 4697 } 4698 4699 return true; 4700 } 4701 4702 static bool 4703 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4704 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4705 assert(Subtarget.is64BitELFABI()); 4706 4707 const unsigned PtrByteSize = 8; 4708 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4709 4710 static const MCPhysReg GPR[] = { 4711 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4712 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4713 }; 4714 static const MCPhysReg VR[] = { 4715 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4716 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4717 }; 4718 4719 const unsigned NumGPRs = array_lengthof(GPR); 4720 const unsigned NumFPRs = 13; 4721 const unsigned NumVRs = array_lengthof(VR); 4722 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4723 4724 unsigned NumBytes = LinkageSize; 4725 unsigned AvailableFPRs = NumFPRs; 4726 unsigned AvailableVRs = NumVRs; 4727 4728 for (const ISD::OutputArg& Param : Outs) { 4729 if (Param.Flags.isNest()) continue; 4730 4731 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4732 LinkageSize, ParamAreaSize, NumBytes, 4733 AvailableFPRs, AvailableVRs)) 4734 return true; 4735 } 4736 return false; 4737 } 4738 4739 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4740 if (CB.arg_size() != CallerFn->arg_size()) 4741 return false; 4742 4743 auto CalleeArgIter = CB.arg_begin(); 4744 auto CalleeArgEnd = CB.arg_end(); 4745 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4746 4747 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4748 const Value* CalleeArg = *CalleeArgIter; 4749 const Value* CallerArg = &(*CallerArgIter); 4750 if (CalleeArg == CallerArg) 4751 continue; 4752 4753 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4754 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4755 // } 4756 // 1st argument of callee is undef and has the same type as caller. 4757 if (CalleeArg->getType() == CallerArg->getType() && 4758 isa<UndefValue>(CalleeArg)) 4759 continue; 4760 4761 return false; 4762 } 4763 4764 return true; 4765 } 4766 4767 // Returns true if TCO is possible between the callers and callees 4768 // calling conventions. 4769 static bool 4770 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4771 CallingConv::ID CalleeCC) { 4772 // Tail calls are possible with fastcc and ccc. 4773 auto isTailCallableCC = [] (CallingConv::ID CC){ 4774 return CC == CallingConv::C || CC == CallingConv::Fast; 4775 }; 4776 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4777 return false; 4778 4779 // We can safely tail call both fastcc and ccc callees from a c calling 4780 // convention caller. If the caller is fastcc, we may have less stack space 4781 // than a non-fastcc caller with the same signature so disable tail-calls in 4782 // that case. 4783 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4784 } 4785 4786 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4787 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4788 const SmallVectorImpl<ISD::OutputArg> &Outs, 4789 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4790 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4791 4792 if (DisableSCO && !TailCallOpt) return false; 4793 4794 // Variadic argument functions are not supported. 4795 if (isVarArg) return false; 4796 4797 auto &Caller = DAG.getMachineFunction().getFunction(); 4798 // Check that the calling conventions are compatible for tco. 4799 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4800 return false; 4801 4802 // Caller contains any byval parameter is not supported. 4803 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4804 return false; 4805 4806 // Callee contains any byval parameter is not supported, too. 4807 // Note: This is a quick work around, because in some cases, e.g. 4808 // caller's stack size > callee's stack size, we are still able to apply 4809 // sibling call optimization. For example, gcc is able to do SCO for caller1 4810 // in the following example, but not for caller2. 4811 // struct test { 4812 // long int a; 4813 // char ary[56]; 4814 // } gTest; 4815 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4816 // b->a = v.a; 4817 // return 0; 4818 // } 4819 // void caller1(struct test a, struct test c, struct test *b) { 4820 // callee(gTest, b); } 4821 // void caller2(struct test *b) { callee(gTest, b); } 4822 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4823 return false; 4824 4825 // If callee and caller use different calling conventions, we cannot pass 4826 // parameters on stack since offsets for the parameter area may be different. 4827 if (Caller.getCallingConv() != CalleeCC && 4828 needStackSlotPassParameters(Subtarget, Outs)) 4829 return false; 4830 4831 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4832 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4833 // callee potentially have different TOC bases then we cannot tail call since 4834 // we need to restore the TOC pointer after the call. 4835 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4836 // We cannot guarantee this for indirect calls or calls to external functions. 4837 // When PC-Relative addressing is used, the concept of the TOC is no longer 4838 // applicable so this check is not required. 4839 // Check first for indirect calls. 4840 if (!Subtarget.isUsingPCRelativeCalls() && 4841 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4842 return false; 4843 4844 // Check if we share the TOC base. 4845 if (!Subtarget.isUsingPCRelativeCalls() && 4846 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4847 return false; 4848 4849 // TCO allows altering callee ABI, so we don't have to check further. 4850 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4851 return true; 4852 4853 if (DisableSCO) return false; 4854 4855 // If callee use the same argument list that caller is using, then we can 4856 // apply SCO on this case. If it is not, then we need to check if callee needs 4857 // stack for passing arguments. 4858 // PC Relative tail calls may not have a CallBase. 4859 // If there is no CallBase we cannot verify if we have the same argument 4860 // list so assume that we don't have the same argument list. 4861 if (CB && !hasSameArgumentList(&Caller, *CB) && 4862 needStackSlotPassParameters(Subtarget, Outs)) 4863 return false; 4864 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4865 return false; 4866 4867 return true; 4868 } 4869 4870 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4871 /// for tail call optimization. Targets which want to do tail call 4872 /// optimization should implement this function. 4873 bool 4874 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4875 CallingConv::ID CalleeCC, 4876 bool isVarArg, 4877 const SmallVectorImpl<ISD::InputArg> &Ins, 4878 SelectionDAG& DAG) const { 4879 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4880 return false; 4881 4882 // Variable argument functions are not supported. 4883 if (isVarArg) 4884 return false; 4885 4886 MachineFunction &MF = DAG.getMachineFunction(); 4887 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4888 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4889 // Functions containing by val parameters are not supported. 4890 for (unsigned i = 0; i != Ins.size(); i++) { 4891 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4892 if (Flags.isByVal()) return false; 4893 } 4894 4895 // Non-PIC/GOT tail calls are supported. 4896 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4897 return true; 4898 4899 // At the moment we can only do local tail calls (in same module, hidden 4900 // or protected) if we are generating PIC. 4901 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4902 return G->getGlobal()->hasHiddenVisibility() 4903 || G->getGlobal()->hasProtectedVisibility(); 4904 } 4905 4906 return false; 4907 } 4908 4909 /// isCallCompatibleAddress - Return the immediate to use if the specified 4910 /// 32-bit value is representable in the immediate field of a BxA instruction. 4911 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4912 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4913 if (!C) return nullptr; 4914 4915 int Addr = C->getZExtValue(); 4916 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4917 SignExtend32<26>(Addr) != Addr) 4918 return nullptr; // Top 6 bits have to be sext of immediate. 4919 4920 return DAG 4921 .getConstant( 4922 (int)C->getZExtValue() >> 2, SDLoc(Op), 4923 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4924 .getNode(); 4925 } 4926 4927 namespace { 4928 4929 struct TailCallArgumentInfo { 4930 SDValue Arg; 4931 SDValue FrameIdxOp; 4932 int FrameIdx = 0; 4933 4934 TailCallArgumentInfo() = default; 4935 }; 4936 4937 } // end anonymous namespace 4938 4939 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4940 static void StoreTailCallArgumentsToStackSlot( 4941 SelectionDAG &DAG, SDValue Chain, 4942 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4943 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4944 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4945 SDValue Arg = TailCallArgs[i].Arg; 4946 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4947 int FI = TailCallArgs[i].FrameIdx; 4948 // Store relative to framepointer. 4949 MemOpChains.push_back(DAG.getStore( 4950 Chain, dl, Arg, FIN, 4951 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4952 } 4953 } 4954 4955 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4956 /// the appropriate stack slot for the tail call optimized function call. 4957 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4958 SDValue OldRetAddr, SDValue OldFP, 4959 int SPDiff, const SDLoc &dl) { 4960 if (SPDiff) { 4961 // Calculate the new stack slot for the return address. 4962 MachineFunction &MF = DAG.getMachineFunction(); 4963 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4964 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4965 bool isPPC64 = Subtarget.isPPC64(); 4966 int SlotSize = isPPC64 ? 8 : 4; 4967 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4968 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4969 NewRetAddrLoc, true); 4970 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4971 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4972 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4973 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4974 } 4975 return Chain; 4976 } 4977 4978 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4979 /// the position of the argument. 4980 static void 4981 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4982 SDValue Arg, int SPDiff, unsigned ArgOffset, 4983 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4984 int Offset = ArgOffset + SPDiff; 4985 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4986 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4987 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4988 SDValue FIN = DAG.getFrameIndex(FI, VT); 4989 TailCallArgumentInfo Info; 4990 Info.Arg = Arg; 4991 Info.FrameIdxOp = FIN; 4992 Info.FrameIdx = FI; 4993 TailCallArguments.push_back(Info); 4994 } 4995 4996 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4997 /// stack slot. Returns the chain as result and the loaded frame pointers in 4998 /// LROpOut/FPOpout. Used when tail calling. 4999 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5000 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5001 SDValue &FPOpOut, const SDLoc &dl) const { 5002 if (SPDiff) { 5003 // Load the LR and FP stack slot for later adjusting. 5004 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5005 LROpOut = getReturnAddrFrameIndex(DAG); 5006 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5007 Chain = SDValue(LROpOut.getNode(), 1); 5008 } 5009 return Chain; 5010 } 5011 5012 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5013 /// by "Src" to address "Dst" of size "Size". Alignment information is 5014 /// specified by the specific parameter attribute. The copy will be passed as 5015 /// a byval function parameter. 5016 /// Sometimes what we are copying is the end of a larger object, the part that 5017 /// does not fit in registers. 5018 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5019 SDValue Chain, ISD::ArgFlagsTy Flags, 5020 SelectionDAG &DAG, const SDLoc &dl) { 5021 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5022 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5023 Flags.getNonZeroByValAlign(), false, false, false, 5024 MachinePointerInfo(), MachinePointerInfo()); 5025 } 5026 5027 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5028 /// tail calls. 5029 static void LowerMemOpCallTo( 5030 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5031 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5032 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5033 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5034 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5035 if (!isTailCall) { 5036 if (isVector) { 5037 SDValue StackPtr; 5038 if (isPPC64) 5039 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5040 else 5041 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5042 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5043 DAG.getConstant(ArgOffset, dl, PtrVT)); 5044 } 5045 MemOpChains.push_back( 5046 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5047 // Calculate and remember argument location. 5048 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5049 TailCallArguments); 5050 } 5051 5052 static void 5053 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5054 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5055 SDValue FPOp, 5056 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5057 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5058 // might overwrite each other in case of tail call optimization. 5059 SmallVector<SDValue, 8> MemOpChains2; 5060 // Do not flag preceding copytoreg stuff together with the following stuff. 5061 InFlag = SDValue(); 5062 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5063 MemOpChains2, dl); 5064 if (!MemOpChains2.empty()) 5065 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5066 5067 // Store the return address to the appropriate stack slot. 5068 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5069 5070 // Emit callseq_end just before tailcall node. 5071 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5072 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5073 InFlag = Chain.getValue(1); 5074 } 5075 5076 // Is this global address that of a function that can be called by name? (as 5077 // opposed to something that must hold a descriptor for an indirect call). 5078 static bool isFunctionGlobalAddress(SDValue Callee) { 5079 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5080 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5081 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5082 return false; 5083 5084 return G->getGlobal()->getValueType()->isFunctionTy(); 5085 } 5086 5087 return false; 5088 } 5089 5090 SDValue PPCTargetLowering::LowerCallResult( 5091 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5092 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5093 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5094 SmallVector<CCValAssign, 16> RVLocs; 5095 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5096 *DAG.getContext()); 5097 5098 CCRetInfo.AnalyzeCallResult( 5099 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5100 ? RetCC_PPC_Cold 5101 : RetCC_PPC); 5102 5103 // Copy all of the result registers out of their specified physreg. 5104 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5105 CCValAssign &VA = RVLocs[i]; 5106 assert(VA.isRegLoc() && "Can only return in registers!"); 5107 5108 SDValue Val; 5109 5110 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5111 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5112 InFlag); 5113 Chain = Lo.getValue(1); 5114 InFlag = Lo.getValue(2); 5115 VA = RVLocs[++i]; // skip ahead to next loc 5116 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5117 InFlag); 5118 Chain = Hi.getValue(1); 5119 InFlag = Hi.getValue(2); 5120 if (!Subtarget.isLittleEndian()) 5121 std::swap (Lo, Hi); 5122 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5123 } else { 5124 Val = DAG.getCopyFromReg(Chain, dl, 5125 VA.getLocReg(), VA.getLocVT(), InFlag); 5126 Chain = Val.getValue(1); 5127 InFlag = Val.getValue(2); 5128 } 5129 5130 switch (VA.getLocInfo()) { 5131 default: llvm_unreachable("Unknown loc info!"); 5132 case CCValAssign::Full: break; 5133 case CCValAssign::AExt: 5134 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5135 break; 5136 case CCValAssign::ZExt: 5137 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5138 DAG.getValueType(VA.getValVT())); 5139 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5140 break; 5141 case CCValAssign::SExt: 5142 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5143 DAG.getValueType(VA.getValVT())); 5144 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5145 break; 5146 } 5147 5148 InVals.push_back(Val); 5149 } 5150 5151 return Chain; 5152 } 5153 5154 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5155 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5156 // PatchPoint calls are not indirect. 5157 if (isPatchPoint) 5158 return false; 5159 5160 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5161 return false; 5162 5163 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5164 // becuase the immediate function pointer points to a descriptor instead of 5165 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5166 // pointer immediate points to the global entry point, while the BLA would 5167 // need to jump to the local entry point (see rL211174). 5168 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5169 isBLACompatibleAddress(Callee, DAG)) 5170 return false; 5171 5172 return true; 5173 } 5174 5175 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5176 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5177 return Subtarget.isAIXABI() || 5178 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5179 } 5180 5181 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5182 const Function &Caller, 5183 const SDValue &Callee, 5184 const PPCSubtarget &Subtarget, 5185 const TargetMachine &TM) { 5186 if (CFlags.IsTailCall) 5187 return PPCISD::TC_RETURN; 5188 5189 // This is a call through a function pointer. 5190 if (CFlags.IsIndirect) { 5191 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5192 // indirect calls. The save of the caller's TOC pointer to the stack will be 5193 // inserted into the DAG as part of call lowering. The restore of the TOC 5194 // pointer is modeled by using a pseudo instruction for the call opcode that 5195 // represents the 2 instruction sequence of an indirect branch and link, 5196 // immediately followed by a load of the TOC pointer from the the stack save 5197 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5198 // as it is not saved or used. 5199 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5200 : PPCISD::BCTRL; 5201 } 5202 5203 if (Subtarget.isUsingPCRelativeCalls()) { 5204 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5205 return PPCISD::CALL_NOTOC; 5206 } 5207 5208 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5209 // immediately following the call instruction if the caller and callee may 5210 // have different TOC bases. At link time if the linker determines the calls 5211 // may not share a TOC base, the call is redirected to a trampoline inserted 5212 // by the linker. The trampoline will (among other things) save the callers 5213 // TOC pointer at an ABI designated offset in the linkage area and the linker 5214 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5215 // into gpr2. 5216 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5217 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5218 : PPCISD::CALL_NOP; 5219 5220 return PPCISD::CALL; 5221 } 5222 5223 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5224 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5225 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5226 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5227 return SDValue(Dest, 0); 5228 5229 // Returns true if the callee is local, and false otherwise. 5230 auto isLocalCallee = [&]() { 5231 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5232 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5233 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5234 5235 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5236 !dyn_cast_or_null<GlobalIFunc>(GV); 5237 }; 5238 5239 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5240 // a static relocation model causes some versions of GNU LD (2.17.50, at 5241 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5242 // built with secure-PLT. 5243 bool UsePlt = 5244 Subtarget.is32BitELFABI() && !isLocalCallee() && 5245 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5246 5247 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5248 const TargetMachine &TM = Subtarget.getTargetMachine(); 5249 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5250 MCSymbolXCOFF *S = 5251 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5252 5253 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5254 return DAG.getMCSymbol(S, PtrVT); 5255 }; 5256 5257 if (isFunctionGlobalAddress(Callee)) { 5258 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5259 5260 if (Subtarget.isAIXABI()) { 5261 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5262 return getAIXFuncEntryPointSymbolSDNode(GV); 5263 } 5264 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5265 UsePlt ? PPCII::MO_PLT : 0); 5266 } 5267 5268 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5269 const char *SymName = S->getSymbol(); 5270 if (Subtarget.isAIXABI()) { 5271 // If there exists a user-declared function whose name is the same as the 5272 // ExternalSymbol's, then we pick up the user-declared version. 5273 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5274 if (const Function *F = 5275 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5276 return getAIXFuncEntryPointSymbolSDNode(F); 5277 5278 // On AIX, direct function calls reference the symbol for the function's 5279 // entry point, which is named by prepending a "." before the function's 5280 // C-linkage name. A Qualname is returned here because an external 5281 // function entry point is a csect with XTY_ER property. 5282 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5283 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5284 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5285 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5286 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5287 return Sec->getQualNameSymbol(); 5288 }; 5289 5290 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5291 } 5292 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5293 UsePlt ? PPCII::MO_PLT : 0); 5294 } 5295 5296 // No transformation needed. 5297 assert(Callee.getNode() && "What no callee?"); 5298 return Callee; 5299 } 5300 5301 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5302 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5303 "Expected a CALLSEQ_STARTSDNode."); 5304 5305 // The last operand is the chain, except when the node has glue. If the node 5306 // has glue, then the last operand is the glue, and the chain is the second 5307 // last operand. 5308 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5309 if (LastValue.getValueType() != MVT::Glue) 5310 return LastValue; 5311 5312 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5313 } 5314 5315 // Creates the node that moves a functions address into the count register 5316 // to prepare for an indirect call instruction. 5317 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5318 SDValue &Glue, SDValue &Chain, 5319 const SDLoc &dl) { 5320 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5321 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5322 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5323 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5324 // The glue is the second value produced. 5325 Glue = Chain.getValue(1); 5326 } 5327 5328 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5329 SDValue &Glue, SDValue &Chain, 5330 SDValue CallSeqStart, 5331 const CallBase *CB, const SDLoc &dl, 5332 bool hasNest, 5333 const PPCSubtarget &Subtarget) { 5334 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5335 // entry point, but to the function descriptor (the function entry point 5336 // address is part of the function descriptor though). 5337 // The function descriptor is a three doubleword structure with the 5338 // following fields: function entry point, TOC base address and 5339 // environment pointer. 5340 // Thus for a call through a function pointer, the following actions need 5341 // to be performed: 5342 // 1. Save the TOC of the caller in the TOC save area of its stack 5343 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5344 // 2. Load the address of the function entry point from the function 5345 // descriptor. 5346 // 3. Load the TOC of the callee from the function descriptor into r2. 5347 // 4. Load the environment pointer from the function descriptor into 5348 // r11. 5349 // 5. Branch to the function entry point address. 5350 // 6. On return of the callee, the TOC of the caller needs to be 5351 // restored (this is done in FinishCall()). 5352 // 5353 // The loads are scheduled at the beginning of the call sequence, and the 5354 // register copies are flagged together to ensure that no other 5355 // operations can be scheduled in between. E.g. without flagging the 5356 // copies together, a TOC access in the caller could be scheduled between 5357 // the assignment of the callee TOC and the branch to the callee, which leads 5358 // to incorrect code. 5359 5360 // Start by loading the function address from the descriptor. 5361 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5362 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5363 ? (MachineMemOperand::MODereferenceable | 5364 MachineMemOperand::MOInvariant) 5365 : MachineMemOperand::MONone; 5366 5367 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5368 5369 // Registers used in building the DAG. 5370 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5371 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5372 5373 // Offsets of descriptor members. 5374 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5375 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5376 5377 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5378 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5379 5380 // One load for the functions entry point address. 5381 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5382 Alignment, MMOFlags); 5383 5384 // One for loading the TOC anchor for the module that contains the called 5385 // function. 5386 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5387 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5388 SDValue TOCPtr = 5389 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5390 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5391 5392 // One for loading the environment pointer. 5393 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5394 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5395 SDValue LoadEnvPtr = 5396 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5397 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5398 5399 5400 // Then copy the newly loaded TOC anchor to the TOC pointer. 5401 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5402 Chain = TOCVal.getValue(0); 5403 Glue = TOCVal.getValue(1); 5404 5405 // If the function call has an explicit 'nest' parameter, it takes the 5406 // place of the environment pointer. 5407 assert((!hasNest || !Subtarget.isAIXABI()) && 5408 "Nest parameter is not supported on AIX."); 5409 if (!hasNest) { 5410 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5411 Chain = EnvVal.getValue(0); 5412 Glue = EnvVal.getValue(1); 5413 } 5414 5415 // The rest of the indirect call sequence is the same as the non-descriptor 5416 // DAG. 5417 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5418 } 5419 5420 static void 5421 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5422 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5423 SelectionDAG &DAG, 5424 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5425 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5426 const PPCSubtarget &Subtarget) { 5427 const bool IsPPC64 = Subtarget.isPPC64(); 5428 // MVT for a general purpose register. 5429 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5430 5431 // First operand is always the chain. 5432 Ops.push_back(Chain); 5433 5434 // If it's a direct call pass the callee as the second operand. 5435 if (!CFlags.IsIndirect) 5436 Ops.push_back(Callee); 5437 else { 5438 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5439 5440 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5441 // on the stack (this would have been done in `LowerCall_64SVR4` or 5442 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5443 // represents both the indirect branch and a load that restores the TOC 5444 // pointer from the linkage area. The operand for the TOC restore is an add 5445 // of the TOC save offset to the stack pointer. This must be the second 5446 // operand: after the chain input but before any other variadic arguments. 5447 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5448 // saved or used. 5449 if (isTOCSaveRestoreRequired(Subtarget)) { 5450 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5451 5452 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5453 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5454 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5455 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5456 Ops.push_back(AddTOC); 5457 } 5458 5459 // Add the register used for the environment pointer. 5460 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5461 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5462 RegVT)); 5463 5464 5465 // Add CTR register as callee so a bctr can be emitted later. 5466 if (CFlags.IsTailCall) 5467 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5468 } 5469 5470 // If this is a tail call add stack pointer delta. 5471 if (CFlags.IsTailCall) 5472 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5473 5474 // Add argument registers to the end of the list so that they are known live 5475 // into the call. 5476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5477 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5478 RegsToPass[i].second.getValueType())); 5479 5480 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5481 // no way to mark dependencies as implicit here. 5482 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5483 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5484 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5485 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5486 5487 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5488 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5489 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5490 5491 // Add a register mask operand representing the call-preserved registers. 5492 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5493 const uint32_t *Mask = 5494 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5495 assert(Mask && "Missing call preserved mask for calling convention"); 5496 Ops.push_back(DAG.getRegisterMask(Mask)); 5497 5498 // If the glue is valid, it is the last operand. 5499 if (Glue.getNode()) 5500 Ops.push_back(Glue); 5501 } 5502 5503 SDValue PPCTargetLowering::FinishCall( 5504 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5505 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5506 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5507 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5508 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5509 5510 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5511 Subtarget.isAIXABI()) 5512 setUsesTOCBasePtr(DAG); 5513 5514 unsigned CallOpc = 5515 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5516 Subtarget, DAG.getTarget()); 5517 5518 if (!CFlags.IsIndirect) 5519 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5520 else if (Subtarget.usesFunctionDescriptors()) 5521 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5522 dl, CFlags.HasNest, Subtarget); 5523 else 5524 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5525 5526 // Build the operand list for the call instruction. 5527 SmallVector<SDValue, 8> Ops; 5528 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5529 SPDiff, Subtarget); 5530 5531 // Emit tail call. 5532 if (CFlags.IsTailCall) { 5533 // Indirect tail call when using PC Relative calls do not have the same 5534 // constraints. 5535 assert(((Callee.getOpcode() == ISD::Register && 5536 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5537 Callee.getOpcode() == ISD::TargetExternalSymbol || 5538 Callee.getOpcode() == ISD::TargetGlobalAddress || 5539 isa<ConstantSDNode>(Callee) || 5540 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5541 "Expecting a global address, external symbol, absolute value, " 5542 "register or an indirect tail call when PC Relative calls are " 5543 "used."); 5544 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5545 assert(CallOpc == PPCISD::TC_RETURN && 5546 "Unexpected call opcode for a tail call."); 5547 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5548 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5549 } 5550 5551 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5552 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5553 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5554 Glue = Chain.getValue(1); 5555 5556 // When performing tail call optimization the callee pops its arguments off 5557 // the stack. Account for this here so these bytes can be pushed back on in 5558 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5559 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5560 getTargetMachine().Options.GuaranteedTailCallOpt) 5561 ? NumBytes 5562 : 0; 5563 5564 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5565 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5566 Glue, dl); 5567 Glue = Chain.getValue(1); 5568 5569 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5570 DAG, InVals); 5571 } 5572 5573 SDValue 5574 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5575 SmallVectorImpl<SDValue> &InVals) const { 5576 SelectionDAG &DAG = CLI.DAG; 5577 SDLoc &dl = CLI.DL; 5578 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5579 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5580 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5581 SDValue Chain = CLI.Chain; 5582 SDValue Callee = CLI.Callee; 5583 bool &isTailCall = CLI.IsTailCall; 5584 CallingConv::ID CallConv = CLI.CallConv; 5585 bool isVarArg = CLI.IsVarArg; 5586 bool isPatchPoint = CLI.IsPatchPoint; 5587 const CallBase *CB = CLI.CB; 5588 5589 if (isTailCall) { 5590 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5591 isTailCall = false; 5592 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5593 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5594 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5595 else 5596 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5597 Ins, DAG); 5598 if (isTailCall) { 5599 ++NumTailCalls; 5600 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5601 ++NumSiblingCalls; 5602 5603 // PC Relative calls no longer guarantee that the callee is a Global 5604 // Address Node. The callee could be an indirect tail call in which 5605 // case the SDValue for the callee could be a load (to load the address 5606 // of a function pointer) or it may be a register copy (to move the 5607 // address of the callee from a function parameter into a virtual 5608 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5609 assert((Subtarget.isUsingPCRelativeCalls() || 5610 isa<GlobalAddressSDNode>(Callee)) && 5611 "Callee should be an llvm::Function object."); 5612 5613 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5614 << "\nTCO callee: "); 5615 LLVM_DEBUG(Callee.dump()); 5616 } 5617 } 5618 5619 if (!isTailCall && CB && CB->isMustTailCall()) 5620 report_fatal_error("failed to perform tail call elimination on a call " 5621 "site marked musttail"); 5622 5623 // When long calls (i.e. indirect calls) are always used, calls are always 5624 // made via function pointer. If we have a function name, first translate it 5625 // into a pointer. 5626 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5627 !isTailCall) 5628 Callee = LowerGlobalAddress(Callee, DAG); 5629 5630 CallFlags CFlags( 5631 CallConv, isTailCall, isVarArg, isPatchPoint, 5632 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5633 // hasNest 5634 Subtarget.is64BitELFABI() && 5635 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5636 CLI.NoMerge); 5637 5638 if (Subtarget.isAIXABI()) 5639 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5640 InVals, CB); 5641 5642 assert(Subtarget.isSVR4ABI()); 5643 if (Subtarget.isPPC64()) 5644 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5645 InVals, CB); 5646 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5647 InVals, CB); 5648 } 5649 5650 SDValue PPCTargetLowering::LowerCall_32SVR4( 5651 SDValue Chain, SDValue Callee, CallFlags CFlags, 5652 const SmallVectorImpl<ISD::OutputArg> &Outs, 5653 const SmallVectorImpl<SDValue> &OutVals, 5654 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5655 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5656 const CallBase *CB) const { 5657 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5658 // of the 32-bit SVR4 ABI stack frame layout. 5659 5660 const CallingConv::ID CallConv = CFlags.CallConv; 5661 const bool IsVarArg = CFlags.IsVarArg; 5662 const bool IsTailCall = CFlags.IsTailCall; 5663 5664 assert((CallConv == CallingConv::C || 5665 CallConv == CallingConv::Cold || 5666 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5667 5668 const Align PtrAlign(4); 5669 5670 MachineFunction &MF = DAG.getMachineFunction(); 5671 5672 // Mark this function as potentially containing a function that contains a 5673 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5674 // and restoring the callers stack pointer in this functions epilog. This is 5675 // done because by tail calling the called function might overwrite the value 5676 // in this function's (MF) stack pointer stack slot 0(SP). 5677 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5678 CallConv == CallingConv::Fast) 5679 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5680 5681 // Count how many bytes are to be pushed on the stack, including the linkage 5682 // area, parameter list area and the part of the local variable space which 5683 // contains copies of aggregates which are passed by value. 5684 5685 // Assign locations to all of the outgoing arguments. 5686 SmallVector<CCValAssign, 16> ArgLocs; 5687 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5688 5689 // Reserve space for the linkage area on the stack. 5690 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5691 PtrAlign); 5692 if (useSoftFloat()) 5693 CCInfo.PreAnalyzeCallOperands(Outs); 5694 5695 if (IsVarArg) { 5696 // Handle fixed and variable vector arguments differently. 5697 // Fixed vector arguments go into registers as long as registers are 5698 // available. Variable vector arguments always go into memory. 5699 unsigned NumArgs = Outs.size(); 5700 5701 for (unsigned i = 0; i != NumArgs; ++i) { 5702 MVT ArgVT = Outs[i].VT; 5703 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5704 bool Result; 5705 5706 if (Outs[i].IsFixed) { 5707 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5708 CCInfo); 5709 } else { 5710 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5711 ArgFlags, CCInfo); 5712 } 5713 5714 if (Result) { 5715 #ifndef NDEBUG 5716 errs() << "Call operand #" << i << " has unhandled type " 5717 << EVT(ArgVT).getEVTString() << "\n"; 5718 #endif 5719 llvm_unreachable(nullptr); 5720 } 5721 } 5722 } else { 5723 // All arguments are treated the same. 5724 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5725 } 5726 CCInfo.clearWasPPCF128(); 5727 5728 // Assign locations to all of the outgoing aggregate by value arguments. 5729 SmallVector<CCValAssign, 16> ByValArgLocs; 5730 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5731 5732 // Reserve stack space for the allocations in CCInfo. 5733 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5734 5735 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5736 5737 // Size of the linkage area, parameter list area and the part of the local 5738 // space variable where copies of aggregates which are passed by value are 5739 // stored. 5740 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5741 5742 // Calculate by how many bytes the stack has to be adjusted in case of tail 5743 // call optimization. 5744 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5745 5746 // Adjust the stack pointer for the new arguments... 5747 // These operations are automatically eliminated by the prolog/epilog pass 5748 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5749 SDValue CallSeqStart = Chain; 5750 5751 // Load the return address and frame pointer so it can be moved somewhere else 5752 // later. 5753 SDValue LROp, FPOp; 5754 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5755 5756 // Set up a copy of the stack pointer for use loading and storing any 5757 // arguments that may not fit in the registers available for argument 5758 // passing. 5759 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5760 5761 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5762 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5763 SmallVector<SDValue, 8> MemOpChains; 5764 5765 bool seenFloatArg = false; 5766 // Walk the register/memloc assignments, inserting copies/loads. 5767 // i - Tracks the index into the list of registers allocated for the call 5768 // RealArgIdx - Tracks the index into the list of actual function arguments 5769 // j - Tracks the index into the list of byval arguments 5770 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5771 i != e; 5772 ++i, ++RealArgIdx) { 5773 CCValAssign &VA = ArgLocs[i]; 5774 SDValue Arg = OutVals[RealArgIdx]; 5775 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5776 5777 if (Flags.isByVal()) { 5778 // Argument is an aggregate which is passed by value, thus we need to 5779 // create a copy of it in the local variable space of the current stack 5780 // frame (which is the stack frame of the caller) and pass the address of 5781 // this copy to the callee. 5782 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5783 CCValAssign &ByValVA = ByValArgLocs[j++]; 5784 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5785 5786 // Memory reserved in the local variable space of the callers stack frame. 5787 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5788 5789 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5790 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5791 StackPtr, PtrOff); 5792 5793 // Create a copy of the argument in the local area of the current 5794 // stack frame. 5795 SDValue MemcpyCall = 5796 CreateCopyOfByValArgument(Arg, PtrOff, 5797 CallSeqStart.getNode()->getOperand(0), 5798 Flags, DAG, dl); 5799 5800 // This must go outside the CALLSEQ_START..END. 5801 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5802 SDLoc(MemcpyCall)); 5803 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5804 NewCallSeqStart.getNode()); 5805 Chain = CallSeqStart = NewCallSeqStart; 5806 5807 // Pass the address of the aggregate copy on the stack either in a 5808 // physical register or in the parameter list area of the current stack 5809 // frame to the callee. 5810 Arg = PtrOff; 5811 } 5812 5813 // When useCRBits() is true, there can be i1 arguments. 5814 // It is because getRegisterType(MVT::i1) => MVT::i1, 5815 // and for other integer types getRegisterType() => MVT::i32. 5816 // Extend i1 and ensure callee will get i32. 5817 if (Arg.getValueType() == MVT::i1) 5818 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5819 dl, MVT::i32, Arg); 5820 5821 if (VA.isRegLoc()) { 5822 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5823 // Put argument in a physical register. 5824 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5825 bool IsLE = Subtarget.isLittleEndian(); 5826 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5827 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5828 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5829 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5830 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5831 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5832 SVal.getValue(0))); 5833 } else 5834 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5835 } else { 5836 // Put argument in the parameter list area of the current stack frame. 5837 assert(VA.isMemLoc()); 5838 unsigned LocMemOffset = VA.getLocMemOffset(); 5839 5840 if (!IsTailCall) { 5841 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5842 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5843 StackPtr, PtrOff); 5844 5845 MemOpChains.push_back( 5846 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5847 } else { 5848 // Calculate and remember argument location. 5849 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5850 TailCallArguments); 5851 } 5852 } 5853 } 5854 5855 if (!MemOpChains.empty()) 5856 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5857 5858 // Build a sequence of copy-to-reg nodes chained together with token chain 5859 // and flag operands which copy the outgoing args into the appropriate regs. 5860 SDValue InFlag; 5861 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5862 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5863 RegsToPass[i].second, InFlag); 5864 InFlag = Chain.getValue(1); 5865 } 5866 5867 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5868 // registers. 5869 if (IsVarArg) { 5870 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5871 SDValue Ops[] = { Chain, InFlag }; 5872 5873 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5874 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5875 5876 InFlag = Chain.getValue(1); 5877 } 5878 5879 if (IsTailCall) 5880 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5881 TailCallArguments); 5882 5883 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5884 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5885 } 5886 5887 // Copy an argument into memory, being careful to do this outside the 5888 // call sequence for the call to which the argument belongs. 5889 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5890 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5891 SelectionDAG &DAG, const SDLoc &dl) const { 5892 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5893 CallSeqStart.getNode()->getOperand(0), 5894 Flags, DAG, dl); 5895 // The MEMCPY must go outside the CALLSEQ_START..END. 5896 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5897 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5898 SDLoc(MemcpyCall)); 5899 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5900 NewCallSeqStart.getNode()); 5901 return NewCallSeqStart; 5902 } 5903 5904 SDValue PPCTargetLowering::LowerCall_64SVR4( 5905 SDValue Chain, SDValue Callee, CallFlags CFlags, 5906 const SmallVectorImpl<ISD::OutputArg> &Outs, 5907 const SmallVectorImpl<SDValue> &OutVals, 5908 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5909 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5910 const CallBase *CB) const { 5911 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5912 bool isLittleEndian = Subtarget.isLittleEndian(); 5913 unsigned NumOps = Outs.size(); 5914 bool IsSibCall = false; 5915 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5916 5917 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5918 unsigned PtrByteSize = 8; 5919 5920 MachineFunction &MF = DAG.getMachineFunction(); 5921 5922 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5923 IsSibCall = true; 5924 5925 // Mark this function as potentially containing a function that contains a 5926 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5927 // and restoring the callers stack pointer in this functions epilog. This is 5928 // done because by tail calling the called function might overwrite the value 5929 // in this function's (MF) stack pointer stack slot 0(SP). 5930 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5931 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5932 5933 assert(!(IsFastCall && CFlags.IsVarArg) && 5934 "fastcc not supported on varargs functions"); 5935 5936 // Count how many bytes are to be pushed on the stack, including the linkage 5937 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5938 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5939 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5940 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5941 unsigned NumBytes = LinkageSize; 5942 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5943 5944 static const MCPhysReg GPR[] = { 5945 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5946 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5947 }; 5948 static const MCPhysReg VR[] = { 5949 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5950 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5951 }; 5952 5953 const unsigned NumGPRs = array_lengthof(GPR); 5954 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5955 const unsigned NumVRs = array_lengthof(VR); 5956 5957 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5958 // can be passed to the callee in registers. 5959 // For the fast calling convention, there is another check below. 5960 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5961 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5962 if (!HasParameterArea) { 5963 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5964 unsigned AvailableFPRs = NumFPRs; 5965 unsigned AvailableVRs = NumVRs; 5966 unsigned NumBytesTmp = NumBytes; 5967 for (unsigned i = 0; i != NumOps; ++i) { 5968 if (Outs[i].Flags.isNest()) continue; 5969 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5970 PtrByteSize, LinkageSize, ParamAreaSize, 5971 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5972 HasParameterArea = true; 5973 } 5974 } 5975 5976 // When using the fast calling convention, we don't provide backing for 5977 // arguments that will be in registers. 5978 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5979 5980 // Avoid allocating parameter area for fastcc functions if all the arguments 5981 // can be passed in the registers. 5982 if (IsFastCall) 5983 HasParameterArea = false; 5984 5985 // Add up all the space actually used. 5986 for (unsigned i = 0; i != NumOps; ++i) { 5987 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5988 EVT ArgVT = Outs[i].VT; 5989 EVT OrigVT = Outs[i].ArgVT; 5990 5991 if (Flags.isNest()) 5992 continue; 5993 5994 if (IsFastCall) { 5995 if (Flags.isByVal()) { 5996 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5997 if (NumGPRsUsed > NumGPRs) 5998 HasParameterArea = true; 5999 } else { 6000 switch (ArgVT.getSimpleVT().SimpleTy) { 6001 default: llvm_unreachable("Unexpected ValueType for argument!"); 6002 case MVT::i1: 6003 case MVT::i32: 6004 case MVT::i64: 6005 if (++NumGPRsUsed <= NumGPRs) 6006 continue; 6007 break; 6008 case MVT::v4i32: 6009 case MVT::v8i16: 6010 case MVT::v16i8: 6011 case MVT::v2f64: 6012 case MVT::v2i64: 6013 case MVT::v1i128: 6014 case MVT::f128: 6015 if (++NumVRsUsed <= NumVRs) 6016 continue; 6017 break; 6018 case MVT::v4f32: 6019 if (++NumVRsUsed <= NumVRs) 6020 continue; 6021 break; 6022 case MVT::f32: 6023 case MVT::f64: 6024 if (++NumFPRsUsed <= NumFPRs) 6025 continue; 6026 break; 6027 } 6028 HasParameterArea = true; 6029 } 6030 } 6031 6032 /* Respect alignment of argument on the stack. */ 6033 auto Alignement = 6034 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6035 NumBytes = alignTo(NumBytes, Alignement); 6036 6037 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6038 if (Flags.isInConsecutiveRegsLast()) 6039 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6040 } 6041 6042 unsigned NumBytesActuallyUsed = NumBytes; 6043 6044 // In the old ELFv1 ABI, 6045 // the prolog code of the callee may store up to 8 GPR argument registers to 6046 // the stack, allowing va_start to index over them in memory if its varargs. 6047 // Because we cannot tell if this is needed on the caller side, we have to 6048 // conservatively assume that it is needed. As such, make sure we have at 6049 // least enough stack space for the caller to store the 8 GPRs. 6050 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6051 // really requires memory operands, e.g. a vararg function. 6052 if (HasParameterArea) 6053 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6054 else 6055 NumBytes = LinkageSize; 6056 6057 // Tail call needs the stack to be aligned. 6058 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6059 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6060 6061 int SPDiff = 0; 6062 6063 // Calculate by how many bytes the stack has to be adjusted in case of tail 6064 // call optimization. 6065 if (!IsSibCall) 6066 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6067 6068 // To protect arguments on the stack from being clobbered in a tail call, 6069 // force all the loads to happen before doing any other lowering. 6070 if (CFlags.IsTailCall) 6071 Chain = DAG.getStackArgumentTokenFactor(Chain); 6072 6073 // Adjust the stack pointer for the new arguments... 6074 // These operations are automatically eliminated by the prolog/epilog pass 6075 if (!IsSibCall) 6076 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6077 SDValue CallSeqStart = Chain; 6078 6079 // Load the return address and frame pointer so it can be move somewhere else 6080 // later. 6081 SDValue LROp, FPOp; 6082 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6083 6084 // Set up a copy of the stack pointer for use loading and storing any 6085 // arguments that may not fit in the registers available for argument 6086 // passing. 6087 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6088 6089 // Figure out which arguments are going to go in registers, and which in 6090 // memory. Also, if this is a vararg function, floating point operations 6091 // must be stored to our stack, and loaded into integer regs as well, if 6092 // any integer regs are available for argument passing. 6093 unsigned ArgOffset = LinkageSize; 6094 6095 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6096 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6097 6098 SmallVector<SDValue, 8> MemOpChains; 6099 for (unsigned i = 0; i != NumOps; ++i) { 6100 SDValue Arg = OutVals[i]; 6101 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6102 EVT ArgVT = Outs[i].VT; 6103 EVT OrigVT = Outs[i].ArgVT; 6104 6105 // PtrOff will be used to store the current argument to the stack if a 6106 // register cannot be found for it. 6107 SDValue PtrOff; 6108 6109 // We re-align the argument offset for each argument, except when using the 6110 // fast calling convention, when we need to make sure we do that only when 6111 // we'll actually use a stack slot. 6112 auto ComputePtrOff = [&]() { 6113 /* Respect alignment of argument on the stack. */ 6114 auto Alignment = 6115 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6116 ArgOffset = alignTo(ArgOffset, Alignment); 6117 6118 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6119 6120 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6121 }; 6122 6123 if (!IsFastCall) { 6124 ComputePtrOff(); 6125 6126 /* Compute GPR index associated with argument offset. */ 6127 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6128 GPR_idx = std::min(GPR_idx, NumGPRs); 6129 } 6130 6131 // Promote integers to 64-bit values. 6132 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6133 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6134 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6135 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6136 } 6137 6138 // FIXME memcpy is used way more than necessary. Correctness first. 6139 // Note: "by value" is code for passing a structure by value, not 6140 // basic types. 6141 if (Flags.isByVal()) { 6142 // Note: Size includes alignment padding, so 6143 // struct x { short a; char b; } 6144 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6145 // These are the proper values we need for right-justifying the 6146 // aggregate in a parameter register. 6147 unsigned Size = Flags.getByValSize(); 6148 6149 // An empty aggregate parameter takes up no storage and no 6150 // registers. 6151 if (Size == 0) 6152 continue; 6153 6154 if (IsFastCall) 6155 ComputePtrOff(); 6156 6157 // All aggregates smaller than 8 bytes must be passed right-justified. 6158 if (Size==1 || Size==2 || Size==4) { 6159 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6160 if (GPR_idx != NumGPRs) { 6161 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6162 MachinePointerInfo(), VT); 6163 MemOpChains.push_back(Load.getValue(1)); 6164 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6165 6166 ArgOffset += PtrByteSize; 6167 continue; 6168 } 6169 } 6170 6171 if (GPR_idx == NumGPRs && Size < 8) { 6172 SDValue AddPtr = PtrOff; 6173 if (!isLittleEndian) { 6174 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6175 PtrOff.getValueType()); 6176 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6177 } 6178 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6179 CallSeqStart, 6180 Flags, DAG, dl); 6181 ArgOffset += PtrByteSize; 6182 continue; 6183 } 6184 // Copy entire object into memory. There are cases where gcc-generated 6185 // code assumes it is there, even if it could be put entirely into 6186 // registers. (This is not what the doc says.) 6187 6188 // FIXME: The above statement is likely due to a misunderstanding of the 6189 // documents. All arguments must be copied into the parameter area BY 6190 // THE CALLEE in the event that the callee takes the address of any 6191 // formal argument. That has not yet been implemented. However, it is 6192 // reasonable to use the stack area as a staging area for the register 6193 // load. 6194 6195 // Skip this for small aggregates, as we will use the same slot for a 6196 // right-justified copy, below. 6197 if (Size >= 8) 6198 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6199 CallSeqStart, 6200 Flags, DAG, dl); 6201 6202 // When a register is available, pass a small aggregate right-justified. 6203 if (Size < 8 && GPR_idx != NumGPRs) { 6204 // The easiest way to get this right-justified in a register 6205 // is to copy the structure into the rightmost portion of a 6206 // local variable slot, then load the whole slot into the 6207 // register. 6208 // FIXME: The memcpy seems to produce pretty awful code for 6209 // small aggregates, particularly for packed ones. 6210 // FIXME: It would be preferable to use the slot in the 6211 // parameter save area instead of a new local variable. 6212 SDValue AddPtr = PtrOff; 6213 if (!isLittleEndian) { 6214 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6215 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6216 } 6217 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6218 CallSeqStart, 6219 Flags, DAG, dl); 6220 6221 // Load the slot into the register. 6222 SDValue Load = 6223 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6224 MemOpChains.push_back(Load.getValue(1)); 6225 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6226 6227 // Done with this argument. 6228 ArgOffset += PtrByteSize; 6229 continue; 6230 } 6231 6232 // For aggregates larger than PtrByteSize, copy the pieces of the 6233 // object that fit into registers from the parameter save area. 6234 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6235 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6236 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6237 if (GPR_idx != NumGPRs) { 6238 SDValue Load = 6239 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6240 MemOpChains.push_back(Load.getValue(1)); 6241 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6242 ArgOffset += PtrByteSize; 6243 } else { 6244 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6245 break; 6246 } 6247 } 6248 continue; 6249 } 6250 6251 switch (Arg.getSimpleValueType().SimpleTy) { 6252 default: llvm_unreachable("Unexpected ValueType for argument!"); 6253 case MVT::i1: 6254 case MVT::i32: 6255 case MVT::i64: 6256 if (Flags.isNest()) { 6257 // The 'nest' parameter, if any, is passed in R11. 6258 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6259 break; 6260 } 6261 6262 // These can be scalar arguments or elements of an integer array type 6263 // passed directly. Clang may use those instead of "byval" aggregate 6264 // types to avoid forcing arguments to memory unnecessarily. 6265 if (GPR_idx != NumGPRs) { 6266 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6267 } else { 6268 if (IsFastCall) 6269 ComputePtrOff(); 6270 6271 assert(HasParameterArea && 6272 "Parameter area must exist to pass an argument in memory."); 6273 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6274 true, CFlags.IsTailCall, false, MemOpChains, 6275 TailCallArguments, dl); 6276 if (IsFastCall) 6277 ArgOffset += PtrByteSize; 6278 } 6279 if (!IsFastCall) 6280 ArgOffset += PtrByteSize; 6281 break; 6282 case MVT::f32: 6283 case MVT::f64: { 6284 // These can be scalar arguments or elements of a float array type 6285 // passed directly. The latter are used to implement ELFv2 homogenous 6286 // float aggregates. 6287 6288 // Named arguments go into FPRs first, and once they overflow, the 6289 // remaining arguments go into GPRs and then the parameter save area. 6290 // Unnamed arguments for vararg functions always go to GPRs and 6291 // then the parameter save area. For now, put all arguments to vararg 6292 // routines always in both locations (FPR *and* GPR or stack slot). 6293 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6294 bool NeededLoad = false; 6295 6296 // First load the argument into the next available FPR. 6297 if (FPR_idx != NumFPRs) 6298 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6299 6300 // Next, load the argument into GPR or stack slot if needed. 6301 if (!NeedGPROrStack) 6302 ; 6303 else if (GPR_idx != NumGPRs && !IsFastCall) { 6304 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6305 // once we support fp <-> gpr moves. 6306 6307 // In the non-vararg case, this can only ever happen in the 6308 // presence of f32 array types, since otherwise we never run 6309 // out of FPRs before running out of GPRs. 6310 SDValue ArgVal; 6311 6312 // Double values are always passed in a single GPR. 6313 if (Arg.getValueType() != MVT::f32) { 6314 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6315 6316 // Non-array float values are extended and passed in a GPR. 6317 } else if (!Flags.isInConsecutiveRegs()) { 6318 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6319 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6320 6321 // If we have an array of floats, we collect every odd element 6322 // together with its predecessor into one GPR. 6323 } else if (ArgOffset % PtrByteSize != 0) { 6324 SDValue Lo, Hi; 6325 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6326 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6327 if (!isLittleEndian) 6328 std::swap(Lo, Hi); 6329 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6330 6331 // The final element, if even, goes into the first half of a GPR. 6332 } else if (Flags.isInConsecutiveRegsLast()) { 6333 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6334 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6335 if (!isLittleEndian) 6336 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6337 DAG.getConstant(32, dl, MVT::i32)); 6338 6339 // Non-final even elements are skipped; they will be handled 6340 // together the with subsequent argument on the next go-around. 6341 } else 6342 ArgVal = SDValue(); 6343 6344 if (ArgVal.getNode()) 6345 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6346 } else { 6347 if (IsFastCall) 6348 ComputePtrOff(); 6349 6350 // Single-precision floating-point values are mapped to the 6351 // second (rightmost) word of the stack doubleword. 6352 if (Arg.getValueType() == MVT::f32 && 6353 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6354 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6355 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6356 } 6357 6358 assert(HasParameterArea && 6359 "Parameter area must exist to pass an argument in memory."); 6360 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6361 true, CFlags.IsTailCall, false, MemOpChains, 6362 TailCallArguments, dl); 6363 6364 NeededLoad = true; 6365 } 6366 // When passing an array of floats, the array occupies consecutive 6367 // space in the argument area; only round up to the next doubleword 6368 // at the end of the array. Otherwise, each float takes 8 bytes. 6369 if (!IsFastCall || NeededLoad) { 6370 ArgOffset += (Arg.getValueType() == MVT::f32 && 6371 Flags.isInConsecutiveRegs()) ? 4 : 8; 6372 if (Flags.isInConsecutiveRegsLast()) 6373 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6374 } 6375 break; 6376 } 6377 case MVT::v4f32: 6378 case MVT::v4i32: 6379 case MVT::v8i16: 6380 case MVT::v16i8: 6381 case MVT::v2f64: 6382 case MVT::v2i64: 6383 case MVT::v1i128: 6384 case MVT::f128: 6385 // These can be scalar arguments or elements of a vector array type 6386 // passed directly. The latter are used to implement ELFv2 homogenous 6387 // vector aggregates. 6388 6389 // For a varargs call, named arguments go into VRs or on the stack as 6390 // usual; unnamed arguments always go to the stack or the corresponding 6391 // GPRs when within range. For now, we always put the value in both 6392 // locations (or even all three). 6393 if (CFlags.IsVarArg) { 6394 assert(HasParameterArea && 6395 "Parameter area must exist if we have a varargs call."); 6396 // We could elide this store in the case where the object fits 6397 // entirely in R registers. Maybe later. 6398 SDValue Store = 6399 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6400 MemOpChains.push_back(Store); 6401 if (VR_idx != NumVRs) { 6402 SDValue Load = 6403 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6404 MemOpChains.push_back(Load.getValue(1)); 6405 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6406 } 6407 ArgOffset += 16; 6408 for (unsigned i=0; i<16; i+=PtrByteSize) { 6409 if (GPR_idx == NumGPRs) 6410 break; 6411 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6412 DAG.getConstant(i, dl, PtrVT)); 6413 SDValue Load = 6414 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6415 MemOpChains.push_back(Load.getValue(1)); 6416 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6417 } 6418 break; 6419 } 6420 6421 // Non-varargs Altivec params go into VRs or on the stack. 6422 if (VR_idx != NumVRs) { 6423 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6424 } else { 6425 if (IsFastCall) 6426 ComputePtrOff(); 6427 6428 assert(HasParameterArea && 6429 "Parameter area must exist to pass an argument in memory."); 6430 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6431 true, CFlags.IsTailCall, true, MemOpChains, 6432 TailCallArguments, dl); 6433 if (IsFastCall) 6434 ArgOffset += 16; 6435 } 6436 6437 if (!IsFastCall) 6438 ArgOffset += 16; 6439 break; 6440 } 6441 } 6442 6443 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6444 "mismatch in size of parameter area"); 6445 (void)NumBytesActuallyUsed; 6446 6447 if (!MemOpChains.empty()) 6448 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6449 6450 // Check if this is an indirect call (MTCTR/BCTRL). 6451 // See prepareDescriptorIndirectCall and buildCallOperands for more 6452 // information about calls through function pointers in the 64-bit SVR4 ABI. 6453 if (CFlags.IsIndirect) { 6454 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6455 // caller in the TOC save area. 6456 if (isTOCSaveRestoreRequired(Subtarget)) { 6457 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6458 // Load r2 into a virtual register and store it to the TOC save area. 6459 setUsesTOCBasePtr(DAG); 6460 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6461 // TOC save area offset. 6462 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6463 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6464 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6465 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6466 MachinePointerInfo::getStack( 6467 DAG.getMachineFunction(), TOCSaveOffset)); 6468 } 6469 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6470 // This does not mean the MTCTR instruction must use R12; it's easier 6471 // to model this as an extra parameter, so do that. 6472 if (isELFv2ABI && !CFlags.IsPatchPoint) 6473 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6474 } 6475 6476 // Build a sequence of copy-to-reg nodes chained together with token chain 6477 // and flag operands which copy the outgoing args into the appropriate regs. 6478 SDValue InFlag; 6479 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6480 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6481 RegsToPass[i].second, InFlag); 6482 InFlag = Chain.getValue(1); 6483 } 6484 6485 if (CFlags.IsTailCall && !IsSibCall) 6486 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6487 TailCallArguments); 6488 6489 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6490 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6491 } 6492 6493 // Returns true when the shadow of a general purpose argument register 6494 // in the parameter save area is aligned to at least 'RequiredAlign'. 6495 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6496 assert(RequiredAlign.value() <= 16 && 6497 "Required alignment greater than stack alignment."); 6498 switch (Reg) { 6499 default: 6500 report_fatal_error("called on invalid register."); 6501 case PPC::R5: 6502 case PPC::R9: 6503 case PPC::X3: 6504 case PPC::X5: 6505 case PPC::X7: 6506 case PPC::X9: 6507 // These registers are 16 byte aligned which is the most strict aligment 6508 // we can support. 6509 return true; 6510 case PPC::R3: 6511 case PPC::R7: 6512 case PPC::X4: 6513 case PPC::X6: 6514 case PPC::X8: 6515 case PPC::X10: 6516 // The shadow of these registers in the PSA is 8 byte aligned. 6517 return RequiredAlign <= 8; 6518 case PPC::R4: 6519 case PPC::R6: 6520 case PPC::R8: 6521 case PPC::R10: 6522 return RequiredAlign <= 4; 6523 } 6524 } 6525 6526 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6527 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6528 CCState &S) { 6529 AIXCCState &State = static_cast<AIXCCState &>(S); 6530 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6531 State.getMachineFunction().getSubtarget()); 6532 const bool IsPPC64 = Subtarget.isPPC64(); 6533 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6534 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6535 6536 if (ValVT == MVT::f128) 6537 report_fatal_error("f128 is unimplemented on AIX."); 6538 6539 if (ArgFlags.isNest()) 6540 report_fatal_error("Nest arguments are unimplemented."); 6541 6542 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6543 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6544 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6545 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6546 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6547 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6548 6549 static const MCPhysReg VR[] = {// Vector registers. 6550 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6551 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6552 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6553 6554 if (ArgFlags.isByVal()) { 6555 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6556 report_fatal_error("Pass-by-value arguments with alignment greater than " 6557 "register width are not supported."); 6558 6559 const unsigned ByValSize = ArgFlags.getByValSize(); 6560 6561 // An empty aggregate parameter takes up no storage and no registers, 6562 // but needs a MemLoc for a stack slot for the formal arguments side. 6563 if (ByValSize == 0) { 6564 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6565 State.getNextStackOffset(), RegVT, 6566 LocInfo)); 6567 return false; 6568 } 6569 6570 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6571 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6572 for (const unsigned E = Offset + StackSize; Offset < E; 6573 Offset += PtrAlign.value()) { 6574 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6575 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6576 else { 6577 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6578 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6579 LocInfo)); 6580 break; 6581 } 6582 } 6583 return false; 6584 } 6585 6586 // Arguments always reserve parameter save area. 6587 switch (ValVT.SimpleTy) { 6588 default: 6589 report_fatal_error("Unhandled value type for argument."); 6590 case MVT::i64: 6591 // i64 arguments should have been split to i32 for PPC32. 6592 assert(IsPPC64 && "PPC32 should have split i64 values."); 6593 LLVM_FALLTHROUGH; 6594 case MVT::i1: 6595 case MVT::i32: { 6596 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6597 // AIX integer arguments are always passed in register width. 6598 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6599 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6600 : CCValAssign::LocInfo::ZExt; 6601 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6602 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6603 else 6604 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6605 6606 return false; 6607 } 6608 case MVT::f32: 6609 case MVT::f64: { 6610 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6611 const unsigned StoreSize = LocVT.getStoreSize(); 6612 // Floats are always 4-byte aligned in the PSA on AIX. 6613 // This includes f64 in 64-bit mode for ABI compatibility. 6614 const unsigned Offset = 6615 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6616 unsigned FReg = State.AllocateReg(FPR); 6617 if (FReg) 6618 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6619 6620 // Reserve and initialize GPRs or initialize the PSA as required. 6621 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6622 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6623 assert(FReg && "An FPR should be available when a GPR is reserved."); 6624 if (State.isVarArg()) { 6625 // Successfully reserved GPRs are only initialized for vararg calls. 6626 // Custom handling is required for: 6627 // f64 in PPC32 needs to be split into 2 GPRs. 6628 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6629 State.addLoc( 6630 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6631 } 6632 } else { 6633 // If there are insufficient GPRs, the PSA needs to be initialized. 6634 // Initialization occurs even if an FPR was initialized for 6635 // compatibility with the AIX XL compiler. The full memory for the 6636 // argument will be initialized even if a prior word is saved in GPR. 6637 // A custom memLoc is used when the argument also passes in FPR so 6638 // that the callee handling can skip over it easily. 6639 State.addLoc( 6640 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6641 LocInfo) 6642 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6643 break; 6644 } 6645 } 6646 6647 return false; 6648 } 6649 case MVT::v4f32: 6650 case MVT::v4i32: 6651 case MVT::v8i16: 6652 case MVT::v16i8: 6653 case MVT::v2i64: 6654 case MVT::v2f64: 6655 case MVT::v1i128: { 6656 const unsigned VecSize = 16; 6657 const Align VecAlign(VecSize); 6658 6659 if (!State.isVarArg()) { 6660 // If there are vector registers remaining we don't consume any stack 6661 // space. 6662 if (unsigned VReg = State.AllocateReg(VR)) { 6663 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6664 return false; 6665 } 6666 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6667 // might be allocated in the portion of the PSA that is shadowed by the 6668 // GPRs. 6669 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6670 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6671 return false; 6672 } 6673 6674 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6675 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6676 6677 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6678 // Burn any underaligned registers and their shadowed stack space until 6679 // we reach the required alignment. 6680 while (NextRegIndex != GPRs.size() && 6681 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6682 // Shadow allocate register and its stack shadow. 6683 unsigned Reg = State.AllocateReg(GPRs); 6684 State.AllocateStack(PtrSize, PtrAlign); 6685 assert(Reg && "Allocating register unexpectedly failed."); 6686 (void)Reg; 6687 NextRegIndex = State.getFirstUnallocated(GPRs); 6688 } 6689 6690 // Vectors that are passed as fixed arguments are handled differently. 6691 // They are passed in VRs if any are available (unlike arguments passed 6692 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6693 // functions) 6694 if (State.isFixed(ValNo)) { 6695 if (unsigned VReg = State.AllocateReg(VR)) { 6696 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6697 // Shadow allocate GPRs and stack space even though we pass in a VR. 6698 for (unsigned I = 0; I != VecSize; I += PtrSize) 6699 State.AllocateReg(GPRs); 6700 State.AllocateStack(VecSize, VecAlign); 6701 return false; 6702 } 6703 // No vector registers remain so pass on the stack. 6704 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6705 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6706 return false; 6707 } 6708 6709 // If all GPRS are consumed then we pass the argument fully on the stack. 6710 if (NextRegIndex == GPRs.size()) { 6711 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6712 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6713 return false; 6714 } 6715 6716 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6717 // half of the argument, and then need to pass the remaining half on the 6718 // stack. 6719 if (GPRs[NextRegIndex] == PPC::R9) { 6720 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6721 State.addLoc( 6722 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6723 6724 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6725 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6726 assert(FirstReg && SecondReg && 6727 "Allocating R9 or R10 unexpectedly failed."); 6728 State.addLoc( 6729 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6730 State.addLoc( 6731 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6732 return false; 6733 } 6734 6735 // We have enough GPRs to fully pass the vector argument, and we have 6736 // already consumed any underaligned registers. Start with the custom 6737 // MemLoc and then the custom RegLocs. 6738 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6739 State.addLoc( 6740 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6741 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6742 const unsigned Reg = State.AllocateReg(GPRs); 6743 assert(Reg && "Failed to allocated register for vararg vector argument"); 6744 State.addLoc( 6745 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6746 } 6747 return false; 6748 } 6749 } 6750 return true; 6751 } 6752 6753 // So far, this function is only used by LowerFormalArguments_AIX() 6754 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6755 bool IsPPC64, 6756 bool HasP8Vector, 6757 bool HasVSX) { 6758 assert((IsPPC64 || SVT != MVT::i64) && 6759 "i64 should have been split for 32-bit codegen."); 6760 6761 switch (SVT) { 6762 default: 6763 report_fatal_error("Unexpected value type for formal argument"); 6764 case MVT::i1: 6765 case MVT::i32: 6766 case MVT::i64: 6767 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6768 case MVT::f32: 6769 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6770 case MVT::f64: 6771 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6772 case MVT::v4f32: 6773 case MVT::v4i32: 6774 case MVT::v8i16: 6775 case MVT::v16i8: 6776 case MVT::v2i64: 6777 case MVT::v2f64: 6778 case MVT::v1i128: 6779 return &PPC::VRRCRegClass; 6780 } 6781 } 6782 6783 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6784 SelectionDAG &DAG, SDValue ArgValue, 6785 MVT LocVT, const SDLoc &dl) { 6786 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6787 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6788 6789 if (Flags.isSExt()) 6790 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6791 DAG.getValueType(ValVT)); 6792 else if (Flags.isZExt()) 6793 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6794 DAG.getValueType(ValVT)); 6795 6796 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6797 } 6798 6799 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6800 const unsigned LASize = FL->getLinkageSize(); 6801 6802 if (PPC::GPRCRegClass.contains(Reg)) { 6803 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6804 "Reg must be a valid argument register!"); 6805 return LASize + 4 * (Reg - PPC::R3); 6806 } 6807 6808 if (PPC::G8RCRegClass.contains(Reg)) { 6809 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6810 "Reg must be a valid argument register!"); 6811 return LASize + 8 * (Reg - PPC::X3); 6812 } 6813 6814 llvm_unreachable("Only general purpose registers expected."); 6815 } 6816 6817 // AIX ABI Stack Frame Layout: 6818 // 6819 // Low Memory +--------------------------------------------+ 6820 // SP +---> | Back chain | ---+ 6821 // | +--------------------------------------------+ | 6822 // | | Saved Condition Register | | 6823 // | +--------------------------------------------+ | 6824 // | | Saved Linkage Register | | 6825 // | +--------------------------------------------+ | Linkage Area 6826 // | | Reserved for compilers | | 6827 // | +--------------------------------------------+ | 6828 // | | Reserved for binders | | 6829 // | +--------------------------------------------+ | 6830 // | | Saved TOC pointer | ---+ 6831 // | +--------------------------------------------+ 6832 // | | Parameter save area | 6833 // | +--------------------------------------------+ 6834 // | | Alloca space | 6835 // | +--------------------------------------------+ 6836 // | | Local variable space | 6837 // | +--------------------------------------------+ 6838 // | | Float/int conversion temporary | 6839 // | +--------------------------------------------+ 6840 // | | Save area for AltiVec registers | 6841 // | +--------------------------------------------+ 6842 // | | AltiVec alignment padding | 6843 // | +--------------------------------------------+ 6844 // | | Save area for VRSAVE register | 6845 // | +--------------------------------------------+ 6846 // | | Save area for General Purpose registers | 6847 // | +--------------------------------------------+ 6848 // | | Save area for Floating Point registers | 6849 // | +--------------------------------------------+ 6850 // +---- | Back chain | 6851 // High Memory +--------------------------------------------+ 6852 // 6853 // Specifications: 6854 // AIX 7.2 Assembler Language Reference 6855 // Subroutine linkage convention 6856 6857 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6858 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6859 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6860 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6861 6862 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6863 CallConv == CallingConv::Fast) && 6864 "Unexpected calling convention!"); 6865 6866 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6867 report_fatal_error("Tail call support is unimplemented on AIX."); 6868 6869 if (useSoftFloat()) 6870 report_fatal_error("Soft float support is unimplemented on AIX."); 6871 6872 const PPCSubtarget &Subtarget = 6873 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6874 6875 const bool IsPPC64 = Subtarget.isPPC64(); 6876 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6877 6878 // Assign locations to all of the incoming arguments. 6879 SmallVector<CCValAssign, 16> ArgLocs; 6880 MachineFunction &MF = DAG.getMachineFunction(); 6881 MachineFrameInfo &MFI = MF.getFrameInfo(); 6882 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6883 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6884 6885 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6886 // Reserve space for the linkage area on the stack. 6887 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6888 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6889 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6890 6891 SmallVector<SDValue, 8> MemOps; 6892 6893 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6894 CCValAssign &VA = ArgLocs[I++]; 6895 MVT LocVT = VA.getLocVT(); 6896 MVT ValVT = VA.getValVT(); 6897 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6898 // For compatibility with the AIX XL compiler, the float args in the 6899 // parameter save area are initialized even if the argument is available 6900 // in register. The caller is required to initialize both the register 6901 // and memory, however, the callee can choose to expect it in either. 6902 // The memloc is dismissed here because the argument is retrieved from 6903 // the register. 6904 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6905 continue; 6906 6907 auto HandleMemLoc = [&]() { 6908 const unsigned LocSize = LocVT.getStoreSize(); 6909 const unsigned ValSize = ValVT.getStoreSize(); 6910 assert((ValSize <= LocSize) && 6911 "Object size is larger than size of MemLoc"); 6912 int CurArgOffset = VA.getLocMemOffset(); 6913 // Objects are right-justified because AIX is big-endian. 6914 if (LocSize > ValSize) 6915 CurArgOffset += LocSize - ValSize; 6916 // Potential tail calls could cause overwriting of argument stack slots. 6917 const bool IsImmutable = 6918 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6919 (CallConv == CallingConv::Fast)); 6920 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6921 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6922 SDValue ArgValue = 6923 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6924 InVals.push_back(ArgValue); 6925 }; 6926 6927 // Vector arguments to VaArg functions are passed both on the stack, and 6928 // in any available GPRs. Load the value from the stack and add the GPRs 6929 // as live ins. 6930 if (VA.isMemLoc() && VA.needsCustom()) { 6931 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6932 assert(isVarArg && "Only use custom memloc for vararg."); 6933 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6934 // matching custom RegLocs. 6935 const unsigned OriginalValNo = VA.getValNo(); 6936 (void)OriginalValNo; 6937 6938 auto HandleCustomVecRegLoc = [&]() { 6939 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6940 "Missing custom RegLoc."); 6941 VA = ArgLocs[I++]; 6942 assert(VA.getValVT().isVector() && 6943 "Unexpected Val type for custom RegLoc."); 6944 assert(VA.getValNo() == OriginalValNo && 6945 "ValNo mismatch between custom MemLoc and RegLoc."); 6946 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6947 MF.addLiveIn(VA.getLocReg(), 6948 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6949 Subtarget.hasVSX())); 6950 }; 6951 6952 HandleMemLoc(); 6953 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6954 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6955 // R10. 6956 HandleCustomVecRegLoc(); 6957 HandleCustomVecRegLoc(); 6958 6959 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6960 // we passed the vector in R5, R6, R7 and R8. 6961 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6962 assert(!IsPPC64 && 6963 "Only 2 custom RegLocs expected for 64-bit codegen."); 6964 HandleCustomVecRegLoc(); 6965 HandleCustomVecRegLoc(); 6966 } 6967 6968 continue; 6969 } 6970 6971 if (VA.isRegLoc()) { 6972 if (VA.getValVT().isScalarInteger()) 6973 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6974 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6975 switch (VA.getValVT().SimpleTy) { 6976 default: 6977 report_fatal_error("Unhandled value type for argument."); 6978 case MVT::f32: 6979 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6980 break; 6981 case MVT::f64: 6982 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 6983 break; 6984 } 6985 } else if (VA.getValVT().isVector()) { 6986 switch (VA.getValVT().SimpleTy) { 6987 default: 6988 report_fatal_error("Unhandled value type for argument."); 6989 case MVT::v16i8: 6990 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 6991 break; 6992 case MVT::v8i16: 6993 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 6994 break; 6995 case MVT::v4i32: 6996 case MVT::v2i64: 6997 case MVT::v1i128: 6998 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 6999 break; 7000 case MVT::v4f32: 7001 case MVT::v2f64: 7002 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7003 break; 7004 } 7005 } 7006 } 7007 7008 if (Flags.isByVal() && VA.isMemLoc()) { 7009 const unsigned Size = 7010 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7011 PtrByteSize); 7012 const int FI = MF.getFrameInfo().CreateFixedObject( 7013 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7014 /* IsAliased */ true); 7015 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7016 InVals.push_back(FIN); 7017 7018 continue; 7019 } 7020 7021 if (Flags.isByVal()) { 7022 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7023 7024 const MCPhysReg ArgReg = VA.getLocReg(); 7025 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7026 7027 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7028 report_fatal_error("Over aligned byvals not supported yet."); 7029 7030 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7031 const int FI = MF.getFrameInfo().CreateFixedObject( 7032 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7033 /* IsAliased */ true); 7034 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7035 InVals.push_back(FIN); 7036 7037 // Add live ins for all the RegLocs for the same ByVal. 7038 const TargetRegisterClass *RegClass = 7039 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7040 7041 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7042 unsigned Offset) { 7043 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7044 // Since the callers side has left justified the aggregate in the 7045 // register, we can simply store the entire register into the stack 7046 // slot. 7047 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7048 // The store to the fixedstack object is needed becuase accessing a 7049 // field of the ByVal will use a gep and load. Ideally we will optimize 7050 // to extracting the value from the register directly, and elide the 7051 // stores when the arguments address is not taken, but that will need to 7052 // be future work. 7053 SDValue Store = DAG.getStore( 7054 CopyFrom.getValue(1), dl, CopyFrom, 7055 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7056 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7057 7058 MemOps.push_back(Store); 7059 }; 7060 7061 unsigned Offset = 0; 7062 HandleRegLoc(VA.getLocReg(), Offset); 7063 Offset += PtrByteSize; 7064 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7065 Offset += PtrByteSize) { 7066 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7067 "RegLocs should be for ByVal argument."); 7068 7069 const CCValAssign RL = ArgLocs[I++]; 7070 HandleRegLoc(RL.getLocReg(), Offset); 7071 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7072 } 7073 7074 if (Offset != StackSize) { 7075 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7076 "Expected MemLoc for remaining bytes."); 7077 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7078 // Consume the MemLoc.The InVal has already been emitted, so nothing 7079 // more needs to be done. 7080 ++I; 7081 } 7082 7083 continue; 7084 } 7085 7086 if (VA.isRegLoc() && !VA.needsCustom()) { 7087 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7088 Register VReg = 7089 MF.addLiveIn(VA.getLocReg(), 7090 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7091 Subtarget.hasVSX())); 7092 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7093 if (ValVT.isScalarInteger() && 7094 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7095 ArgValue = 7096 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7097 } 7098 InVals.push_back(ArgValue); 7099 continue; 7100 } 7101 if (VA.isMemLoc()) { 7102 HandleMemLoc(); 7103 continue; 7104 } 7105 } 7106 7107 // On AIX a minimum of 8 words is saved to the parameter save area. 7108 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7109 // Area that is at least reserved in the caller of this function. 7110 unsigned CallerReservedArea = 7111 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7112 7113 // Set the size that is at least reserved in caller of this function. Tail 7114 // call optimized function's reserved stack space needs to be aligned so 7115 // that taking the difference between two stack areas will result in an 7116 // aligned stack. 7117 CallerReservedArea = 7118 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7119 FuncInfo->setMinReservedArea(CallerReservedArea); 7120 7121 if (isVarArg) { 7122 FuncInfo->setVarArgsFrameIndex( 7123 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7124 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7125 7126 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7127 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7128 7129 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7130 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7131 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7132 7133 // The fixed integer arguments of a variadic function are stored to the 7134 // VarArgsFrameIndex on the stack so that they may be loaded by 7135 // dereferencing the result of va_next. 7136 for (unsigned GPRIndex = 7137 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7138 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7139 7140 const unsigned VReg = 7141 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7142 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7143 7144 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7145 SDValue Store = 7146 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7147 MemOps.push_back(Store); 7148 // Increment the address for the next argument to store. 7149 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7150 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7151 } 7152 } 7153 7154 if (!MemOps.empty()) 7155 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7156 7157 return Chain; 7158 } 7159 7160 SDValue PPCTargetLowering::LowerCall_AIX( 7161 SDValue Chain, SDValue Callee, CallFlags CFlags, 7162 const SmallVectorImpl<ISD::OutputArg> &Outs, 7163 const SmallVectorImpl<SDValue> &OutVals, 7164 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7165 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7166 const CallBase *CB) const { 7167 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7168 // AIX ABI stack frame layout. 7169 7170 assert((CFlags.CallConv == CallingConv::C || 7171 CFlags.CallConv == CallingConv::Cold || 7172 CFlags.CallConv == CallingConv::Fast) && 7173 "Unexpected calling convention!"); 7174 7175 if (CFlags.IsPatchPoint) 7176 report_fatal_error("This call type is unimplemented on AIX."); 7177 7178 const PPCSubtarget& Subtarget = 7179 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7180 7181 MachineFunction &MF = DAG.getMachineFunction(); 7182 SmallVector<CCValAssign, 16> ArgLocs; 7183 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7184 *DAG.getContext()); 7185 7186 // Reserve space for the linkage save area (LSA) on the stack. 7187 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7188 // [SP][CR][LR][2 x reserved][TOC]. 7189 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7190 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7191 const bool IsPPC64 = Subtarget.isPPC64(); 7192 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7193 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7194 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7195 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7196 7197 // The prolog code of the callee may store up to 8 GPR argument registers to 7198 // the stack, allowing va_start to index over them in memory if the callee 7199 // is variadic. 7200 // Because we cannot tell if this is needed on the caller side, we have to 7201 // conservatively assume that it is needed. As such, make sure we have at 7202 // least enough stack space for the caller to store the 8 GPRs. 7203 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7204 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7205 CCInfo.getNextStackOffset()); 7206 7207 // Adjust the stack pointer for the new arguments... 7208 // These operations are automatically eliminated by the prolog/epilog pass. 7209 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7210 SDValue CallSeqStart = Chain; 7211 7212 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7213 SmallVector<SDValue, 8> MemOpChains; 7214 7215 // Set up a copy of the stack pointer for loading and storing any 7216 // arguments that may not fit in the registers available for argument 7217 // passing. 7218 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7219 : DAG.getRegister(PPC::R1, MVT::i32); 7220 7221 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7222 const unsigned ValNo = ArgLocs[I].getValNo(); 7223 SDValue Arg = OutVals[ValNo]; 7224 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7225 7226 if (Flags.isByVal()) { 7227 const unsigned ByValSize = Flags.getByValSize(); 7228 7229 // Nothing to do for zero-sized ByVals on the caller side. 7230 if (!ByValSize) { 7231 ++I; 7232 continue; 7233 } 7234 7235 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7236 return DAG.getExtLoad( 7237 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7238 (LoadOffset != 0) 7239 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7240 : Arg, 7241 MachinePointerInfo(), VT); 7242 }; 7243 7244 unsigned LoadOffset = 0; 7245 7246 // Initialize registers, which are fully occupied by the by-val argument. 7247 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7248 SDValue Load = GetLoad(PtrVT, LoadOffset); 7249 MemOpChains.push_back(Load.getValue(1)); 7250 LoadOffset += PtrByteSize; 7251 const CCValAssign &ByValVA = ArgLocs[I++]; 7252 assert(ByValVA.getValNo() == ValNo && 7253 "Unexpected location for pass-by-value argument."); 7254 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7255 } 7256 7257 if (LoadOffset == ByValSize) 7258 continue; 7259 7260 // There must be one more loc to handle the remainder. 7261 assert(ArgLocs[I].getValNo() == ValNo && 7262 "Expected additional location for by-value argument."); 7263 7264 if (ArgLocs[I].isMemLoc()) { 7265 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7266 const CCValAssign &ByValVA = ArgLocs[I++]; 7267 ISD::ArgFlagsTy MemcpyFlags = Flags; 7268 // Only memcpy the bytes that don't pass in register. 7269 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7270 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7271 (LoadOffset != 0) 7272 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7273 : Arg, 7274 DAG.getObjectPtrOffset(dl, StackPtr, 7275 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7276 CallSeqStart, MemcpyFlags, DAG, dl); 7277 continue; 7278 } 7279 7280 // Initialize the final register residue. 7281 // Any residue that occupies the final by-val arg register must be 7282 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7283 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7284 // 2 and 1 byte loads. 7285 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7286 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7287 "Unexpected register residue for by-value argument."); 7288 SDValue ResidueVal; 7289 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7290 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7291 const MVT VT = 7292 N == 1 ? MVT::i8 7293 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7294 SDValue Load = GetLoad(VT, LoadOffset); 7295 MemOpChains.push_back(Load.getValue(1)); 7296 LoadOffset += N; 7297 Bytes += N; 7298 7299 // By-val arguments are passed left-justfied in register. 7300 // Every load here needs to be shifted, otherwise a full register load 7301 // should have been used. 7302 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7303 "Unexpected load emitted during handling of pass-by-value " 7304 "argument."); 7305 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7306 EVT ShiftAmountTy = 7307 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7308 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7309 SDValue ShiftedLoad = 7310 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7311 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7312 ShiftedLoad) 7313 : ShiftedLoad; 7314 } 7315 7316 const CCValAssign &ByValVA = ArgLocs[I++]; 7317 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7318 continue; 7319 } 7320 7321 CCValAssign &VA = ArgLocs[I++]; 7322 const MVT LocVT = VA.getLocVT(); 7323 const MVT ValVT = VA.getValVT(); 7324 7325 switch (VA.getLocInfo()) { 7326 default: 7327 report_fatal_error("Unexpected argument extension type."); 7328 case CCValAssign::Full: 7329 break; 7330 case CCValAssign::ZExt: 7331 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7332 break; 7333 case CCValAssign::SExt: 7334 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7335 break; 7336 } 7337 7338 if (VA.isRegLoc() && !VA.needsCustom()) { 7339 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7340 continue; 7341 } 7342 7343 // Vector arguments passed to VarArg functions need custom handling when 7344 // they are passed (at least partially) in GPRs. 7345 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7346 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7347 // Store value to its stack slot. 7348 SDValue PtrOff = 7349 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7350 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7351 SDValue Store = 7352 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7353 MemOpChains.push_back(Store); 7354 const unsigned OriginalValNo = VA.getValNo(); 7355 // Then load the GPRs from the stack 7356 unsigned LoadOffset = 0; 7357 auto HandleCustomVecRegLoc = [&]() { 7358 assert(I != E && "Unexpected end of CCvalAssigns."); 7359 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7360 "Expected custom RegLoc."); 7361 CCValAssign RegVA = ArgLocs[I++]; 7362 assert(RegVA.getValNo() == OriginalValNo && 7363 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7364 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7365 DAG.getConstant(LoadOffset, dl, PtrVT)); 7366 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7367 MemOpChains.push_back(Load.getValue(1)); 7368 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7369 LoadOffset += PtrByteSize; 7370 }; 7371 7372 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7373 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7374 // R10. 7375 HandleCustomVecRegLoc(); 7376 HandleCustomVecRegLoc(); 7377 7378 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7379 ArgLocs[I].getValNo() == OriginalValNo) { 7380 assert(!IsPPC64 && 7381 "Only 2 custom RegLocs expected for 64-bit codegen."); 7382 HandleCustomVecRegLoc(); 7383 HandleCustomVecRegLoc(); 7384 } 7385 7386 continue; 7387 } 7388 7389 if (VA.isMemLoc()) { 7390 SDValue PtrOff = 7391 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7392 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7393 MemOpChains.push_back( 7394 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7395 7396 continue; 7397 } 7398 7399 if (!ValVT.isFloatingPoint()) 7400 report_fatal_error( 7401 "Unexpected register handling for calling convention."); 7402 7403 // Custom handling is used for GPR initializations for vararg float 7404 // arguments. 7405 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7406 LocVT.isInteger() && 7407 "Custom register handling only expected for VarArg."); 7408 7409 SDValue ArgAsInt = 7410 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7411 7412 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7413 // f32 in 32-bit GPR 7414 // f64 in 64-bit GPR 7415 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7416 else if (Arg.getValueType().getFixedSizeInBits() < 7417 LocVT.getFixedSizeInBits()) 7418 // f32 in 64-bit GPR. 7419 RegsToPass.push_back(std::make_pair( 7420 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7421 else { 7422 // f64 in two 32-bit GPRs 7423 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7424 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7425 "Unexpected custom register for argument!"); 7426 CCValAssign &GPR1 = VA; 7427 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7428 DAG.getConstant(32, dl, MVT::i8)); 7429 RegsToPass.push_back(std::make_pair( 7430 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7431 7432 if (I != E) { 7433 // If only 1 GPR was available, there will only be one custom GPR and 7434 // the argument will also pass in memory. 7435 CCValAssign &PeekArg = ArgLocs[I]; 7436 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7437 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7438 CCValAssign &GPR2 = ArgLocs[I++]; 7439 RegsToPass.push_back(std::make_pair( 7440 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7441 } 7442 } 7443 } 7444 } 7445 7446 if (!MemOpChains.empty()) 7447 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7448 7449 // For indirect calls, we need to save the TOC base to the stack for 7450 // restoration after the call. 7451 if (CFlags.IsIndirect) { 7452 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7453 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7454 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7455 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7456 const unsigned TOCSaveOffset = 7457 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7458 7459 setUsesTOCBasePtr(DAG); 7460 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7461 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7462 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7463 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7464 Chain = DAG.getStore( 7465 Val.getValue(1), dl, Val, AddPtr, 7466 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7467 } 7468 7469 // Build a sequence of copy-to-reg nodes chained together with token chain 7470 // and flag operands which copy the outgoing args into the appropriate regs. 7471 SDValue InFlag; 7472 for (auto Reg : RegsToPass) { 7473 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7474 InFlag = Chain.getValue(1); 7475 } 7476 7477 const int SPDiff = 0; 7478 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7479 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7480 } 7481 7482 bool 7483 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7484 MachineFunction &MF, bool isVarArg, 7485 const SmallVectorImpl<ISD::OutputArg> &Outs, 7486 LLVMContext &Context) const { 7487 SmallVector<CCValAssign, 16> RVLocs; 7488 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7489 return CCInfo.CheckReturn( 7490 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7491 ? RetCC_PPC_Cold 7492 : RetCC_PPC); 7493 } 7494 7495 SDValue 7496 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7497 bool isVarArg, 7498 const SmallVectorImpl<ISD::OutputArg> &Outs, 7499 const SmallVectorImpl<SDValue> &OutVals, 7500 const SDLoc &dl, SelectionDAG &DAG) const { 7501 SmallVector<CCValAssign, 16> RVLocs; 7502 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7503 *DAG.getContext()); 7504 CCInfo.AnalyzeReturn(Outs, 7505 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7506 ? RetCC_PPC_Cold 7507 : RetCC_PPC); 7508 7509 SDValue Flag; 7510 SmallVector<SDValue, 4> RetOps(1, Chain); 7511 7512 // Copy the result values into the output registers. 7513 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7514 CCValAssign &VA = RVLocs[i]; 7515 assert(VA.isRegLoc() && "Can only return in registers!"); 7516 7517 SDValue Arg = OutVals[RealResIdx]; 7518 7519 switch (VA.getLocInfo()) { 7520 default: llvm_unreachable("Unknown loc info!"); 7521 case CCValAssign::Full: break; 7522 case CCValAssign::AExt: 7523 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7524 break; 7525 case CCValAssign::ZExt: 7526 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7527 break; 7528 case CCValAssign::SExt: 7529 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7530 break; 7531 } 7532 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7533 bool isLittleEndian = Subtarget.isLittleEndian(); 7534 // Legalize ret f64 -> ret 2 x i32. 7535 SDValue SVal = 7536 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7537 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7538 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7539 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7540 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7541 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7542 Flag = Chain.getValue(1); 7543 VA = RVLocs[++i]; // skip ahead to next loc 7544 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7545 } else 7546 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7547 Flag = Chain.getValue(1); 7548 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7549 } 7550 7551 RetOps[0] = Chain; // Update chain. 7552 7553 // Add the flag if we have it. 7554 if (Flag.getNode()) 7555 RetOps.push_back(Flag); 7556 7557 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7558 } 7559 7560 SDValue 7561 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7562 SelectionDAG &DAG) const { 7563 SDLoc dl(Op); 7564 7565 // Get the correct type for integers. 7566 EVT IntVT = Op.getValueType(); 7567 7568 // Get the inputs. 7569 SDValue Chain = Op.getOperand(0); 7570 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7571 // Build a DYNAREAOFFSET node. 7572 SDValue Ops[2] = {Chain, FPSIdx}; 7573 SDVTList VTs = DAG.getVTList(IntVT); 7574 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7575 } 7576 7577 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7578 SelectionDAG &DAG) const { 7579 // When we pop the dynamic allocation we need to restore the SP link. 7580 SDLoc dl(Op); 7581 7582 // Get the correct type for pointers. 7583 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7584 7585 // Construct the stack pointer operand. 7586 bool isPPC64 = Subtarget.isPPC64(); 7587 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7588 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7589 7590 // Get the operands for the STACKRESTORE. 7591 SDValue Chain = Op.getOperand(0); 7592 SDValue SaveSP = Op.getOperand(1); 7593 7594 // Load the old link SP. 7595 SDValue LoadLinkSP = 7596 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7597 7598 // Restore the stack pointer. 7599 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7600 7601 // Store the old link SP. 7602 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7603 } 7604 7605 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7606 MachineFunction &MF = DAG.getMachineFunction(); 7607 bool isPPC64 = Subtarget.isPPC64(); 7608 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7609 7610 // Get current frame pointer save index. The users of this index will be 7611 // primarily DYNALLOC instructions. 7612 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7613 int RASI = FI->getReturnAddrSaveIndex(); 7614 7615 // If the frame pointer save index hasn't been defined yet. 7616 if (!RASI) { 7617 // Find out what the fix offset of the frame pointer save area. 7618 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7619 // Allocate the frame index for frame pointer save area. 7620 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7621 // Save the result. 7622 FI->setReturnAddrSaveIndex(RASI); 7623 } 7624 return DAG.getFrameIndex(RASI, PtrVT); 7625 } 7626 7627 SDValue 7628 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7629 MachineFunction &MF = DAG.getMachineFunction(); 7630 bool isPPC64 = Subtarget.isPPC64(); 7631 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7632 7633 // Get current frame pointer save index. The users of this index will be 7634 // primarily DYNALLOC instructions. 7635 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7636 int FPSI = FI->getFramePointerSaveIndex(); 7637 7638 // If the frame pointer save index hasn't been defined yet. 7639 if (!FPSI) { 7640 // Find out what the fix offset of the frame pointer save area. 7641 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7642 // Allocate the frame index for frame pointer save area. 7643 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7644 // Save the result. 7645 FI->setFramePointerSaveIndex(FPSI); 7646 } 7647 return DAG.getFrameIndex(FPSI, PtrVT); 7648 } 7649 7650 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7651 SelectionDAG &DAG) const { 7652 MachineFunction &MF = DAG.getMachineFunction(); 7653 // Get the inputs. 7654 SDValue Chain = Op.getOperand(0); 7655 SDValue Size = Op.getOperand(1); 7656 SDLoc dl(Op); 7657 7658 // Get the correct type for pointers. 7659 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7660 // Negate the size. 7661 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7662 DAG.getConstant(0, dl, PtrVT), Size); 7663 // Construct a node for the frame pointer save index. 7664 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7665 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7666 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7667 if (hasInlineStackProbe(MF)) 7668 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7669 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7670 } 7671 7672 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7673 SelectionDAG &DAG) const { 7674 MachineFunction &MF = DAG.getMachineFunction(); 7675 7676 bool isPPC64 = Subtarget.isPPC64(); 7677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7678 7679 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7680 return DAG.getFrameIndex(FI, PtrVT); 7681 } 7682 7683 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7684 SelectionDAG &DAG) const { 7685 SDLoc DL(Op); 7686 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7687 DAG.getVTList(MVT::i32, MVT::Other), 7688 Op.getOperand(0), Op.getOperand(1)); 7689 } 7690 7691 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7692 SelectionDAG &DAG) const { 7693 SDLoc DL(Op); 7694 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7695 Op.getOperand(0), Op.getOperand(1)); 7696 } 7697 7698 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7699 if (Op.getValueType().isVector()) 7700 return LowerVectorLoad(Op, DAG); 7701 7702 assert(Op.getValueType() == MVT::i1 && 7703 "Custom lowering only for i1 loads"); 7704 7705 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7706 7707 SDLoc dl(Op); 7708 LoadSDNode *LD = cast<LoadSDNode>(Op); 7709 7710 SDValue Chain = LD->getChain(); 7711 SDValue BasePtr = LD->getBasePtr(); 7712 MachineMemOperand *MMO = LD->getMemOperand(); 7713 7714 SDValue NewLD = 7715 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7716 BasePtr, MVT::i8, MMO); 7717 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7718 7719 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7720 return DAG.getMergeValues(Ops, dl); 7721 } 7722 7723 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7724 if (Op.getOperand(1).getValueType().isVector()) 7725 return LowerVectorStore(Op, DAG); 7726 7727 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7728 "Custom lowering only for i1 stores"); 7729 7730 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7731 7732 SDLoc dl(Op); 7733 StoreSDNode *ST = cast<StoreSDNode>(Op); 7734 7735 SDValue Chain = ST->getChain(); 7736 SDValue BasePtr = ST->getBasePtr(); 7737 SDValue Value = ST->getValue(); 7738 MachineMemOperand *MMO = ST->getMemOperand(); 7739 7740 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7741 Value); 7742 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7743 } 7744 7745 // FIXME: Remove this once the ANDI glue bug is fixed: 7746 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7747 assert(Op.getValueType() == MVT::i1 && 7748 "Custom lowering only for i1 results"); 7749 7750 SDLoc DL(Op); 7751 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7752 } 7753 7754 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7755 SelectionDAG &DAG) const { 7756 7757 // Implements a vector truncate that fits in a vector register as a shuffle. 7758 // We want to legalize vector truncates down to where the source fits in 7759 // a vector register (and target is therefore smaller than vector register 7760 // size). At that point legalization will try to custom lower the sub-legal 7761 // result and get here - where we can contain the truncate as a single target 7762 // operation. 7763 7764 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7765 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7766 // 7767 // We will implement it for big-endian ordering as this (where x denotes 7768 // undefined): 7769 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7770 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7771 // 7772 // The same operation in little-endian ordering will be: 7773 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7774 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7775 7776 EVT TrgVT = Op.getValueType(); 7777 assert(TrgVT.isVector() && "Vector type expected."); 7778 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7779 EVT EltVT = TrgVT.getVectorElementType(); 7780 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7781 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7782 !isPowerOf2_32(EltVT.getSizeInBits())) 7783 return SDValue(); 7784 7785 SDValue N1 = Op.getOperand(0); 7786 EVT SrcVT = N1.getValueType(); 7787 unsigned SrcSize = SrcVT.getSizeInBits(); 7788 if (SrcSize > 256 || 7789 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7790 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7791 return SDValue(); 7792 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7793 return SDValue(); 7794 7795 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7796 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7797 7798 SDLoc DL(Op); 7799 SDValue Op1, Op2; 7800 if (SrcSize == 256) { 7801 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7802 EVT SplitVT = 7803 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7804 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7805 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7806 DAG.getConstant(0, DL, VecIdxTy)); 7807 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7808 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7809 } 7810 else { 7811 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7812 Op2 = DAG.getUNDEF(WideVT); 7813 } 7814 7815 // First list the elements we want to keep. 7816 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7817 SmallVector<int, 16> ShuffV; 7818 if (Subtarget.isLittleEndian()) 7819 for (unsigned i = 0; i < TrgNumElts; ++i) 7820 ShuffV.push_back(i * SizeMult); 7821 else 7822 for (unsigned i = 1; i <= TrgNumElts; ++i) 7823 ShuffV.push_back(i * SizeMult - 1); 7824 7825 // Populate the remaining elements with undefs. 7826 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7827 // ShuffV.push_back(i + WideNumElts); 7828 ShuffV.push_back(WideNumElts + 1); 7829 7830 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7831 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7832 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7833 } 7834 7835 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7836 /// possible. 7837 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7838 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7839 EVT ResVT = Op.getValueType(); 7840 EVT CmpVT = Op.getOperand(0).getValueType(); 7841 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7842 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7843 SDLoc dl(Op); 7844 7845 // Without power9-vector, we don't have native instruction for f128 comparison. 7846 // Following transformation to libcall is needed for setcc: 7847 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7848 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7849 SDValue Z = DAG.getSetCC( 7850 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7851 LHS, RHS, CC); 7852 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7853 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7854 } 7855 7856 // Not FP, or using SPE? Not a fsel. 7857 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7858 Subtarget.hasSPE()) 7859 return Op; 7860 7861 SDNodeFlags Flags = Op.getNode()->getFlags(); 7862 7863 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7864 // presence of infinities. 7865 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7866 switch (CC) { 7867 default: 7868 break; 7869 case ISD::SETOGT: 7870 case ISD::SETGT: 7871 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7872 case ISD::SETOLT: 7873 case ISD::SETLT: 7874 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7875 } 7876 } 7877 7878 // We might be able to do better than this under some circumstances, but in 7879 // general, fsel-based lowering of select is a finite-math-only optimization. 7880 // For more information, see section F.3 of the 2.06 ISA specification. 7881 // With ISA 3.0 7882 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7883 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7884 return Op; 7885 7886 // If the RHS of the comparison is a 0.0, we don't need to do the 7887 // subtraction at all. 7888 SDValue Sel1; 7889 if (isFloatingPointZero(RHS)) 7890 switch (CC) { 7891 default: break; // SETUO etc aren't handled by fsel. 7892 case ISD::SETNE: 7893 std::swap(TV, FV); 7894 LLVM_FALLTHROUGH; 7895 case ISD::SETEQ: 7896 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7897 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7898 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7899 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7900 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7901 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7902 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7903 case ISD::SETULT: 7904 case ISD::SETLT: 7905 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7906 LLVM_FALLTHROUGH; 7907 case ISD::SETOGE: 7908 case ISD::SETGE: 7909 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7910 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7911 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7912 case ISD::SETUGT: 7913 case ISD::SETGT: 7914 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7915 LLVM_FALLTHROUGH; 7916 case ISD::SETOLE: 7917 case ISD::SETLE: 7918 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7919 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7920 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7921 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7922 } 7923 7924 SDValue Cmp; 7925 switch (CC) { 7926 default: break; // SETUO etc aren't handled by fsel. 7927 case ISD::SETNE: 7928 std::swap(TV, FV); 7929 LLVM_FALLTHROUGH; 7930 case ISD::SETEQ: 7931 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7932 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7933 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7934 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7935 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7936 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7937 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7938 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7939 case ISD::SETULT: 7940 case ISD::SETLT: 7941 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7942 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7943 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7944 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7945 case ISD::SETOGE: 7946 case ISD::SETGE: 7947 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7948 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7949 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7950 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7951 case ISD::SETUGT: 7952 case ISD::SETGT: 7953 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7954 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7955 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7956 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7957 case ISD::SETOLE: 7958 case ISD::SETLE: 7959 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7960 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7961 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7962 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7963 } 7964 return Op; 7965 } 7966 7967 static unsigned getPPCStrictOpcode(unsigned Opc) { 7968 switch (Opc) { 7969 default: 7970 llvm_unreachable("No strict version of this opcode!"); 7971 case PPCISD::FCTIDZ: 7972 return PPCISD::STRICT_FCTIDZ; 7973 case PPCISD::FCTIWZ: 7974 return PPCISD::STRICT_FCTIWZ; 7975 case PPCISD::FCTIDUZ: 7976 return PPCISD::STRICT_FCTIDUZ; 7977 case PPCISD::FCTIWUZ: 7978 return PPCISD::STRICT_FCTIWUZ; 7979 case PPCISD::FCFID: 7980 return PPCISD::STRICT_FCFID; 7981 case PPCISD::FCFIDU: 7982 return PPCISD::STRICT_FCFIDU; 7983 case PPCISD::FCFIDS: 7984 return PPCISD::STRICT_FCFIDS; 7985 case PPCISD::FCFIDUS: 7986 return PPCISD::STRICT_FCFIDUS; 7987 } 7988 } 7989 7990 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7991 const PPCSubtarget &Subtarget) { 7992 SDLoc dl(Op); 7993 bool IsStrict = Op->isStrictFPOpcode(); 7994 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7995 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7996 7997 // TODO: Any other flags to propagate? 7998 SDNodeFlags Flags; 7999 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8000 8001 // For strict nodes, source is the second operand. 8002 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8003 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8004 assert(Src.getValueType().isFloatingPoint()); 8005 if (Src.getValueType() == MVT::f32) { 8006 if (IsStrict) { 8007 Src = 8008 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8009 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8010 Chain = Src.getValue(1); 8011 } else 8012 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8013 } 8014 SDValue Conv; 8015 unsigned Opc = ISD::DELETED_NODE; 8016 switch (Op.getSimpleValueType().SimpleTy) { 8017 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8018 case MVT::i32: 8019 Opc = IsSigned ? PPCISD::FCTIWZ 8020 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8021 break; 8022 case MVT::i64: 8023 assert((IsSigned || Subtarget.hasFPCVT()) && 8024 "i64 FP_TO_UINT is supported only with FPCVT"); 8025 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8026 } 8027 if (IsStrict) { 8028 Opc = getPPCStrictOpcode(Opc); 8029 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8030 {Chain, Src}, Flags); 8031 } else { 8032 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8033 } 8034 return Conv; 8035 } 8036 8037 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8038 SelectionDAG &DAG, 8039 const SDLoc &dl) const { 8040 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8041 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8042 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8043 bool IsStrict = Op->isStrictFPOpcode(); 8044 8045 // Convert the FP value to an int value through memory. 8046 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8047 (IsSigned || Subtarget.hasFPCVT()); 8048 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8049 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8050 MachinePointerInfo MPI = 8051 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8052 8053 // Emit a store to the stack slot. 8054 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8055 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8056 if (i32Stack) { 8057 MachineFunction &MF = DAG.getMachineFunction(); 8058 Alignment = Align(4); 8059 MachineMemOperand *MMO = 8060 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8061 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8062 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8063 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8064 } else 8065 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8066 8067 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8068 // add in a bias on big endian. 8069 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8070 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8071 DAG.getConstant(4, dl, FIPtr.getValueType())); 8072 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8073 } 8074 8075 RLI.Chain = Chain; 8076 RLI.Ptr = FIPtr; 8077 RLI.MPI = MPI; 8078 RLI.Alignment = Alignment; 8079 } 8080 8081 /// Custom lowers floating point to integer conversions to use 8082 /// the direct move instructions available in ISA 2.07 to avoid the 8083 /// need for load/store combinations. 8084 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8085 SelectionDAG &DAG, 8086 const SDLoc &dl) const { 8087 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8088 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8089 if (Op->isStrictFPOpcode()) 8090 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8091 else 8092 return Mov; 8093 } 8094 8095 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8096 const SDLoc &dl) const { 8097 bool IsStrict = Op->isStrictFPOpcode(); 8098 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8099 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8100 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8101 EVT SrcVT = Src.getValueType(); 8102 EVT DstVT = Op.getValueType(); 8103 8104 // FP to INT conversions are legal for f128. 8105 if (SrcVT == MVT::f128) 8106 return Subtarget.hasP9Vector() ? Op : SDValue(); 8107 8108 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8109 // PPC (the libcall is not available). 8110 if (SrcVT == MVT::ppcf128) { 8111 if (DstVT == MVT::i32) { 8112 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8113 // set other fast-math flags to FP operations in both strict and 8114 // non-strict cases. (FP_TO_SINT, FSUB) 8115 SDNodeFlags Flags; 8116 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8117 8118 if (IsSigned) { 8119 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8120 DAG.getIntPtrConstant(0, dl)); 8121 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8122 DAG.getIntPtrConstant(1, dl)); 8123 8124 // Add the two halves of the long double in round-to-zero mode, and use 8125 // a smaller FP_TO_SINT. 8126 if (IsStrict) { 8127 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8128 DAG.getVTList(MVT::f64, MVT::Other), 8129 {Op.getOperand(0), Lo, Hi}, Flags); 8130 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8131 DAG.getVTList(MVT::i32, MVT::Other), 8132 {Res.getValue(1), Res}, Flags); 8133 } else { 8134 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8135 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8136 } 8137 } else { 8138 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8139 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8140 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8141 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8142 if (IsStrict) { 8143 // Sel = Src < 0x80000000 8144 // FltOfs = select Sel, 0.0, 0x80000000 8145 // IntOfs = select Sel, 0, 0x80000000 8146 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8147 SDValue Chain = Op.getOperand(0); 8148 EVT SetCCVT = 8149 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8150 EVT DstSetCCVT = 8151 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8152 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8153 Chain, true); 8154 Chain = Sel.getValue(1); 8155 8156 SDValue FltOfs = DAG.getSelect( 8157 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8158 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8159 8160 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8161 DAG.getVTList(SrcVT, MVT::Other), 8162 {Chain, Src, FltOfs}, Flags); 8163 Chain = Val.getValue(1); 8164 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8165 DAG.getVTList(DstVT, MVT::Other), 8166 {Chain, Val}, Flags); 8167 Chain = SInt.getValue(1); 8168 SDValue IntOfs = DAG.getSelect( 8169 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8170 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8171 return DAG.getMergeValues({Result, Chain}, dl); 8172 } else { 8173 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8174 // FIXME: generated code sucks. 8175 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8176 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8177 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8178 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8179 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8180 } 8181 } 8182 } 8183 8184 return SDValue(); 8185 } 8186 8187 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8188 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8189 8190 ReuseLoadInfo RLI; 8191 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8192 8193 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8194 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8195 } 8196 8197 // We're trying to insert a regular store, S, and then a load, L. If the 8198 // incoming value, O, is a load, we might just be able to have our load use the 8199 // address used by O. However, we don't know if anything else will store to 8200 // that address before we can load from it. To prevent this situation, we need 8201 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8202 // the same chain operand as O, we create a token factor from the chain results 8203 // of O and L, and we replace all uses of O's chain result with that token 8204 // factor (see spliceIntoChain below for this last part). 8205 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8206 ReuseLoadInfo &RLI, 8207 SelectionDAG &DAG, 8208 ISD::LoadExtType ET) const { 8209 // Conservatively skip reusing for constrained FP nodes. 8210 if (Op->isStrictFPOpcode()) 8211 return false; 8212 8213 SDLoc dl(Op); 8214 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8215 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8216 if (ET == ISD::NON_EXTLOAD && 8217 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8218 isOperationLegalOrCustom(Op.getOpcode(), 8219 Op.getOperand(0).getValueType())) { 8220 8221 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8222 return true; 8223 } 8224 8225 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8226 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8227 LD->isNonTemporal()) 8228 return false; 8229 if (LD->getMemoryVT() != MemVT) 8230 return false; 8231 8232 // If the result of the load is an illegal type, then we can't build a 8233 // valid chain for reuse since the legalised loads and token factor node that 8234 // ties the legalised loads together uses a different output chain then the 8235 // illegal load. 8236 if (!isTypeLegal(LD->getValueType(0))) 8237 return false; 8238 8239 RLI.Ptr = LD->getBasePtr(); 8240 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8241 assert(LD->getAddressingMode() == ISD::PRE_INC && 8242 "Non-pre-inc AM on PPC?"); 8243 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8244 LD->getOffset()); 8245 } 8246 8247 RLI.Chain = LD->getChain(); 8248 RLI.MPI = LD->getPointerInfo(); 8249 RLI.IsDereferenceable = LD->isDereferenceable(); 8250 RLI.IsInvariant = LD->isInvariant(); 8251 RLI.Alignment = LD->getAlign(); 8252 RLI.AAInfo = LD->getAAInfo(); 8253 RLI.Ranges = LD->getRanges(); 8254 8255 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8256 return true; 8257 } 8258 8259 // Given the head of the old chain, ResChain, insert a token factor containing 8260 // it and NewResChain, and make users of ResChain now be users of that token 8261 // factor. 8262 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8263 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8264 SDValue NewResChain, 8265 SelectionDAG &DAG) const { 8266 if (!ResChain) 8267 return; 8268 8269 SDLoc dl(NewResChain); 8270 8271 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8272 NewResChain, DAG.getUNDEF(MVT::Other)); 8273 assert(TF.getNode() != NewResChain.getNode() && 8274 "A new TF really is required here"); 8275 8276 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8277 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8278 } 8279 8280 /// Analyze profitability of direct move 8281 /// prefer float load to int load plus direct move 8282 /// when there is no integer use of int load 8283 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8284 SDNode *Origin = Op.getOperand(0).getNode(); 8285 if (Origin->getOpcode() != ISD::LOAD) 8286 return true; 8287 8288 // If there is no LXSIBZX/LXSIHZX, like Power8, 8289 // prefer direct move if the memory size is 1 or 2 bytes. 8290 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8291 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8292 return true; 8293 8294 for (SDNode::use_iterator UI = Origin->use_begin(), 8295 UE = Origin->use_end(); 8296 UI != UE; ++UI) { 8297 8298 // Only look at the users of the loaded value. 8299 if (UI.getUse().get().getResNo() != 0) 8300 continue; 8301 8302 if (UI->getOpcode() != ISD::SINT_TO_FP && 8303 UI->getOpcode() != ISD::UINT_TO_FP && 8304 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8305 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8306 return true; 8307 } 8308 8309 return false; 8310 } 8311 8312 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8313 const PPCSubtarget &Subtarget, 8314 SDValue Chain = SDValue()) { 8315 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8316 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8317 SDLoc dl(Op); 8318 8319 // TODO: Any other flags to propagate? 8320 SDNodeFlags Flags; 8321 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8322 8323 // If we have FCFIDS, then use it when converting to single-precision. 8324 // Otherwise, convert to double-precision and then round. 8325 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8326 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8327 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8328 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8329 if (Op->isStrictFPOpcode()) { 8330 if (!Chain) 8331 Chain = Op.getOperand(0); 8332 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8333 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8334 } else 8335 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8336 } 8337 8338 /// Custom lowers integer to floating point conversions to use 8339 /// the direct move instructions available in ISA 2.07 to avoid the 8340 /// need for load/store combinations. 8341 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8342 SelectionDAG &DAG, 8343 const SDLoc &dl) const { 8344 assert((Op.getValueType() == MVT::f32 || 8345 Op.getValueType() == MVT::f64) && 8346 "Invalid floating point type as target of conversion"); 8347 assert(Subtarget.hasFPCVT() && 8348 "Int to FP conversions with direct moves require FPCVT"); 8349 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8350 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8351 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8352 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8353 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8354 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8355 return convertIntToFP(Op, Mov, DAG, Subtarget); 8356 } 8357 8358 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8359 8360 EVT VecVT = Vec.getValueType(); 8361 assert(VecVT.isVector() && "Expected a vector type."); 8362 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8363 8364 EVT EltVT = VecVT.getVectorElementType(); 8365 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8366 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8367 8368 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8369 SmallVector<SDValue, 16> Ops(NumConcat); 8370 Ops[0] = Vec; 8371 SDValue UndefVec = DAG.getUNDEF(VecVT); 8372 for (unsigned i = 1; i < NumConcat; ++i) 8373 Ops[i] = UndefVec; 8374 8375 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8376 } 8377 8378 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8379 const SDLoc &dl) const { 8380 bool IsStrict = Op->isStrictFPOpcode(); 8381 unsigned Opc = Op.getOpcode(); 8382 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8383 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8384 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8385 "Unexpected conversion type"); 8386 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8387 "Supports conversions to v2f64/v4f32 only."); 8388 8389 // TODO: Any other flags to propagate? 8390 SDNodeFlags Flags; 8391 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8392 8393 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8394 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8395 8396 SDValue Wide = widenVec(DAG, Src, dl); 8397 EVT WideVT = Wide.getValueType(); 8398 unsigned WideNumElts = WideVT.getVectorNumElements(); 8399 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8400 8401 SmallVector<int, 16> ShuffV; 8402 for (unsigned i = 0; i < WideNumElts; ++i) 8403 ShuffV.push_back(i + WideNumElts); 8404 8405 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8406 int SaveElts = FourEltRes ? 4 : 2; 8407 if (Subtarget.isLittleEndian()) 8408 for (int i = 0; i < SaveElts; i++) 8409 ShuffV[i * Stride] = i; 8410 else 8411 for (int i = 1; i <= SaveElts; i++) 8412 ShuffV[i * Stride - 1] = i - 1; 8413 8414 SDValue ShuffleSrc2 = 8415 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8416 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8417 8418 SDValue Extend; 8419 if (SignedConv) { 8420 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8421 EVT ExtVT = Src.getValueType(); 8422 if (Subtarget.hasP9Altivec()) 8423 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8424 IntermediateVT.getVectorNumElements()); 8425 8426 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8427 DAG.getValueType(ExtVT)); 8428 } else 8429 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8430 8431 if (IsStrict) 8432 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8433 {Op.getOperand(0), Extend}, Flags); 8434 8435 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8436 } 8437 8438 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8439 SelectionDAG &DAG) const { 8440 SDLoc dl(Op); 8441 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8442 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8443 bool IsStrict = Op->isStrictFPOpcode(); 8444 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8445 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8446 8447 // TODO: Any other flags to propagate? 8448 SDNodeFlags Flags; 8449 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8450 8451 EVT InVT = Src.getValueType(); 8452 EVT OutVT = Op.getValueType(); 8453 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8454 isOperationCustom(Op.getOpcode(), InVT)) 8455 return LowerINT_TO_FPVector(Op, DAG, dl); 8456 8457 // Conversions to f128 are legal. 8458 if (Op.getValueType() == MVT::f128) 8459 return Subtarget.hasP9Vector() ? Op : SDValue(); 8460 8461 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8462 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8463 return SDValue(); 8464 8465 if (Src.getValueType() == MVT::i1) { 8466 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8467 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8468 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8469 if (IsStrict) 8470 return DAG.getMergeValues({Sel, Chain}, dl); 8471 else 8472 return Sel; 8473 } 8474 8475 // If we have direct moves, we can do all the conversion, skip the store/load 8476 // however, without FPCVT we can't do most conversions. 8477 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8478 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8479 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8480 8481 assert((IsSigned || Subtarget.hasFPCVT()) && 8482 "UINT_TO_FP is supported only with FPCVT"); 8483 8484 if (Src.getValueType() == MVT::i64) { 8485 SDValue SINT = Src; 8486 // When converting to single-precision, we actually need to convert 8487 // to double-precision first and then round to single-precision. 8488 // To avoid double-rounding effects during that operation, we have 8489 // to prepare the input operand. Bits that might be truncated when 8490 // converting to double-precision are replaced by a bit that won't 8491 // be lost at this stage, but is below the single-precision rounding 8492 // position. 8493 // 8494 // However, if -enable-unsafe-fp-math is in effect, accept double 8495 // rounding to avoid the extra overhead. 8496 if (Op.getValueType() == MVT::f32 && 8497 !Subtarget.hasFPCVT() && 8498 !DAG.getTarget().Options.UnsafeFPMath) { 8499 8500 // Twiddle input to make sure the low 11 bits are zero. (If this 8501 // is the case, we are guaranteed the value will fit into the 53 bit 8502 // mantissa of an IEEE double-precision value without rounding.) 8503 // If any of those low 11 bits were not zero originally, make sure 8504 // bit 12 (value 2048) is set instead, so that the final rounding 8505 // to single-precision gets the correct result. 8506 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8507 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8508 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8509 Round, DAG.getConstant(2047, dl, MVT::i64)); 8510 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8511 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8512 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8513 8514 // However, we cannot use that value unconditionally: if the magnitude 8515 // of the input value is small, the bit-twiddling we did above might 8516 // end up visibly changing the output. Fortunately, in that case, we 8517 // don't need to twiddle bits since the original input will convert 8518 // exactly to double-precision floating-point already. Therefore, 8519 // construct a conditional to use the original value if the top 11 8520 // bits are all sign-bit copies, and use the rounded value computed 8521 // above otherwise. 8522 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8523 SINT, DAG.getConstant(53, dl, MVT::i32)); 8524 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8525 Cond, DAG.getConstant(1, dl, MVT::i64)); 8526 Cond = DAG.getSetCC( 8527 dl, 8528 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8529 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8530 8531 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8532 } 8533 8534 ReuseLoadInfo RLI; 8535 SDValue Bits; 8536 8537 MachineFunction &MF = DAG.getMachineFunction(); 8538 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8539 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8540 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8541 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8542 } else if (Subtarget.hasLFIWAX() && 8543 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8544 MachineMemOperand *MMO = 8545 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8546 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8547 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8548 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8549 DAG.getVTList(MVT::f64, MVT::Other), 8550 Ops, MVT::i32, MMO); 8551 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8552 } else if (Subtarget.hasFPCVT() && 8553 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8554 MachineMemOperand *MMO = 8555 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8556 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8557 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8558 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8559 DAG.getVTList(MVT::f64, MVT::Other), 8560 Ops, MVT::i32, MMO); 8561 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8562 } else if (((Subtarget.hasLFIWAX() && 8563 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8564 (Subtarget.hasFPCVT() && 8565 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8566 SINT.getOperand(0).getValueType() == MVT::i32) { 8567 MachineFrameInfo &MFI = MF.getFrameInfo(); 8568 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8569 8570 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8571 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8572 8573 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8574 MachinePointerInfo::getFixedStack( 8575 DAG.getMachineFunction(), FrameIdx)); 8576 Chain = Store; 8577 8578 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8579 "Expected an i32 store"); 8580 8581 RLI.Ptr = FIdx; 8582 RLI.Chain = Chain; 8583 RLI.MPI = 8584 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8585 RLI.Alignment = Align(4); 8586 8587 MachineMemOperand *MMO = 8588 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8589 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8590 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8591 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8592 PPCISD::LFIWZX : PPCISD::LFIWAX, 8593 dl, DAG.getVTList(MVT::f64, MVT::Other), 8594 Ops, MVT::i32, MMO); 8595 Chain = Bits.getValue(1); 8596 } else 8597 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8598 8599 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8600 if (IsStrict) 8601 Chain = FP.getValue(1); 8602 8603 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8604 if (IsStrict) 8605 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8606 DAG.getVTList(MVT::f32, MVT::Other), 8607 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8608 else 8609 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8610 DAG.getIntPtrConstant(0, dl)); 8611 } 8612 return FP; 8613 } 8614 8615 assert(Src.getValueType() == MVT::i32 && 8616 "Unhandled INT_TO_FP type in custom expander!"); 8617 // Since we only generate this in 64-bit mode, we can take advantage of 8618 // 64-bit registers. In particular, sign extend the input value into the 8619 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8620 // then lfd it and fcfid it. 8621 MachineFunction &MF = DAG.getMachineFunction(); 8622 MachineFrameInfo &MFI = MF.getFrameInfo(); 8623 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8624 8625 SDValue Ld; 8626 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8627 ReuseLoadInfo RLI; 8628 bool ReusingLoad; 8629 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8630 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8631 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8632 8633 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8634 MachinePointerInfo::getFixedStack( 8635 DAG.getMachineFunction(), FrameIdx)); 8636 Chain = Store; 8637 8638 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8639 "Expected an i32 store"); 8640 8641 RLI.Ptr = FIdx; 8642 RLI.Chain = Chain; 8643 RLI.MPI = 8644 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8645 RLI.Alignment = Align(4); 8646 } 8647 8648 MachineMemOperand *MMO = 8649 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8650 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8651 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8652 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8653 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8654 MVT::i32, MMO); 8655 Chain = Ld.getValue(1); 8656 if (ReusingLoad) 8657 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8658 } else { 8659 assert(Subtarget.isPPC64() && 8660 "i32->FP without LFIWAX supported only on PPC64"); 8661 8662 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8663 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8664 8665 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8666 8667 // STD the extended value into the stack slot. 8668 SDValue Store = DAG.getStore( 8669 Chain, dl, Ext64, FIdx, 8670 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8671 Chain = Store; 8672 8673 // Load the value as a double. 8674 Ld = DAG.getLoad( 8675 MVT::f64, dl, Chain, FIdx, 8676 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8677 Chain = Ld.getValue(1); 8678 } 8679 8680 // FCFID it and return it. 8681 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8682 if (IsStrict) 8683 Chain = FP.getValue(1); 8684 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8685 if (IsStrict) 8686 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8687 DAG.getVTList(MVT::f32, MVT::Other), 8688 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8689 else 8690 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8691 DAG.getIntPtrConstant(0, dl)); 8692 } 8693 return FP; 8694 } 8695 8696 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8697 SelectionDAG &DAG) const { 8698 SDLoc dl(Op); 8699 /* 8700 The rounding mode is in bits 30:31 of FPSR, and has the following 8701 settings: 8702 00 Round to nearest 8703 01 Round to 0 8704 10 Round to +inf 8705 11 Round to -inf 8706 8707 FLT_ROUNDS, on the other hand, expects the following: 8708 -1 Undefined 8709 0 Round to 0 8710 1 Round to nearest 8711 2 Round to +inf 8712 3 Round to -inf 8713 8714 To perform the conversion, we do: 8715 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8716 */ 8717 8718 MachineFunction &MF = DAG.getMachineFunction(); 8719 EVT VT = Op.getValueType(); 8720 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8721 8722 // Save FP Control Word to register 8723 SDValue Chain = Op.getOperand(0); 8724 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8725 Chain = MFFS.getValue(1); 8726 8727 SDValue CWD; 8728 if (isTypeLegal(MVT::i64)) { 8729 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8730 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8731 } else { 8732 // Save FP register to stack slot 8733 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8734 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8735 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8736 8737 // Load FP Control Word from low 32 bits of stack slot. 8738 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8739 "Stack slot adjustment is valid only on big endian subtargets!"); 8740 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8741 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8742 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8743 Chain = CWD.getValue(1); 8744 } 8745 8746 // Transform as necessary 8747 SDValue CWD1 = 8748 DAG.getNode(ISD::AND, dl, MVT::i32, 8749 CWD, DAG.getConstant(3, dl, MVT::i32)); 8750 SDValue CWD2 = 8751 DAG.getNode(ISD::SRL, dl, MVT::i32, 8752 DAG.getNode(ISD::AND, dl, MVT::i32, 8753 DAG.getNode(ISD::XOR, dl, MVT::i32, 8754 CWD, DAG.getConstant(3, dl, MVT::i32)), 8755 DAG.getConstant(3, dl, MVT::i32)), 8756 DAG.getConstant(1, dl, MVT::i32)); 8757 8758 SDValue RetVal = 8759 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8760 8761 RetVal = 8762 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8763 dl, VT, RetVal); 8764 8765 return DAG.getMergeValues({RetVal, Chain}, dl); 8766 } 8767 8768 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8769 EVT VT = Op.getValueType(); 8770 unsigned BitWidth = VT.getSizeInBits(); 8771 SDLoc dl(Op); 8772 assert(Op.getNumOperands() == 3 && 8773 VT == Op.getOperand(1).getValueType() && 8774 "Unexpected SHL!"); 8775 8776 // Expand into a bunch of logical ops. Note that these ops 8777 // depend on the PPC behavior for oversized shift amounts. 8778 SDValue Lo = Op.getOperand(0); 8779 SDValue Hi = Op.getOperand(1); 8780 SDValue Amt = Op.getOperand(2); 8781 EVT AmtVT = Amt.getValueType(); 8782 8783 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8784 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8785 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8786 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8787 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8788 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8789 DAG.getConstant(-BitWidth, dl, AmtVT)); 8790 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8791 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8792 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8793 SDValue OutOps[] = { OutLo, OutHi }; 8794 return DAG.getMergeValues(OutOps, dl); 8795 } 8796 8797 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8798 EVT VT = Op.getValueType(); 8799 SDLoc dl(Op); 8800 unsigned BitWidth = VT.getSizeInBits(); 8801 assert(Op.getNumOperands() == 3 && 8802 VT == Op.getOperand(1).getValueType() && 8803 "Unexpected SRL!"); 8804 8805 // Expand into a bunch of logical ops. Note that these ops 8806 // depend on the PPC behavior for oversized shift amounts. 8807 SDValue Lo = Op.getOperand(0); 8808 SDValue Hi = Op.getOperand(1); 8809 SDValue Amt = Op.getOperand(2); 8810 EVT AmtVT = Amt.getValueType(); 8811 8812 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8813 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8814 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8815 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8816 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8817 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8818 DAG.getConstant(-BitWidth, dl, AmtVT)); 8819 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8820 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8821 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8822 SDValue OutOps[] = { OutLo, OutHi }; 8823 return DAG.getMergeValues(OutOps, dl); 8824 } 8825 8826 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8827 SDLoc dl(Op); 8828 EVT VT = Op.getValueType(); 8829 unsigned BitWidth = VT.getSizeInBits(); 8830 assert(Op.getNumOperands() == 3 && 8831 VT == Op.getOperand(1).getValueType() && 8832 "Unexpected SRA!"); 8833 8834 // Expand into a bunch of logical ops, followed by a select_cc. 8835 SDValue Lo = Op.getOperand(0); 8836 SDValue Hi = Op.getOperand(1); 8837 SDValue Amt = Op.getOperand(2); 8838 EVT AmtVT = Amt.getValueType(); 8839 8840 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8841 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8842 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8843 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8844 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8845 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8846 DAG.getConstant(-BitWidth, dl, AmtVT)); 8847 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8848 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8849 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8850 Tmp4, Tmp6, ISD::SETLE); 8851 SDValue OutOps[] = { OutLo, OutHi }; 8852 return DAG.getMergeValues(OutOps, dl); 8853 } 8854 8855 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8856 SelectionDAG &DAG) const { 8857 SDLoc dl(Op); 8858 EVT VT = Op.getValueType(); 8859 unsigned BitWidth = VT.getSizeInBits(); 8860 8861 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8862 SDValue X = Op.getOperand(0); 8863 SDValue Y = Op.getOperand(1); 8864 SDValue Z = Op.getOperand(2); 8865 EVT AmtVT = Z.getValueType(); 8866 8867 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8868 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8869 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8870 // on PowerPC shift by BW being well defined. 8871 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8872 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8873 SDValue SubZ = 8874 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8875 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8876 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8877 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8878 } 8879 8880 //===----------------------------------------------------------------------===// 8881 // Vector related lowering. 8882 // 8883 8884 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8885 /// element size of SplatSize. Cast the result to VT. 8886 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8887 SelectionDAG &DAG, const SDLoc &dl) { 8888 static const MVT VTys[] = { // canonical VT to use for each size. 8889 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8890 }; 8891 8892 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8893 8894 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8895 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8896 SplatSize = 1; 8897 Val = 0xFF; 8898 } 8899 8900 EVT CanonicalVT = VTys[SplatSize-1]; 8901 8902 // Build a canonical splat for this value. 8903 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8904 } 8905 8906 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8907 /// specified intrinsic ID. 8908 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8909 const SDLoc &dl, EVT DestVT = MVT::Other) { 8910 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8911 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8912 DAG.getConstant(IID, dl, MVT::i32), Op); 8913 } 8914 8915 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8916 /// specified intrinsic ID. 8917 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8918 SelectionDAG &DAG, const SDLoc &dl, 8919 EVT DestVT = MVT::Other) { 8920 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8921 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8922 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8923 } 8924 8925 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8926 /// specified intrinsic ID. 8927 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8928 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8929 EVT DestVT = MVT::Other) { 8930 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8931 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8932 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8933 } 8934 8935 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8936 /// amount. The result has the specified value type. 8937 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8938 SelectionDAG &DAG, const SDLoc &dl) { 8939 // Force LHS/RHS to be the right type. 8940 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8941 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8942 8943 int Ops[16]; 8944 for (unsigned i = 0; i != 16; ++i) 8945 Ops[i] = i + Amt; 8946 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8947 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8948 } 8949 8950 /// Do we have an efficient pattern in a .td file for this node? 8951 /// 8952 /// \param V - pointer to the BuildVectorSDNode being matched 8953 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8954 /// 8955 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8956 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8957 /// the opposite is true (expansion is beneficial) are: 8958 /// - The node builds a vector out of integers that are not 32 or 64-bits 8959 /// - The node builds a vector out of constants 8960 /// - The node is a "load-and-splat" 8961 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8962 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8963 bool HasDirectMove, 8964 bool HasP8Vector) { 8965 EVT VecVT = V->getValueType(0); 8966 bool RightType = VecVT == MVT::v2f64 || 8967 (HasP8Vector && VecVT == MVT::v4f32) || 8968 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8969 if (!RightType) 8970 return false; 8971 8972 bool IsSplat = true; 8973 bool IsLoad = false; 8974 SDValue Op0 = V->getOperand(0); 8975 8976 // This function is called in a block that confirms the node is not a constant 8977 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8978 // different constants. 8979 if (V->isConstant()) 8980 return false; 8981 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8982 if (V->getOperand(i).isUndef()) 8983 return false; 8984 // We want to expand nodes that represent load-and-splat even if the 8985 // loaded value is a floating point truncation or conversion to int. 8986 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8987 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8988 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8989 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8990 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8991 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8992 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8993 IsLoad = true; 8994 // If the operands are different or the input is not a load and has more 8995 // uses than just this BV node, then it isn't a splat. 8996 if (V->getOperand(i) != Op0 || 8997 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8998 IsSplat = false; 8999 } 9000 return !(IsSplat && IsLoad); 9001 } 9002 9003 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9004 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9005 9006 SDLoc dl(Op); 9007 SDValue Op0 = Op->getOperand(0); 9008 9009 if ((Op.getValueType() != MVT::f128) || 9010 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9011 (Op0.getOperand(0).getValueType() != MVT::i64) || 9012 (Op0.getOperand(1).getValueType() != MVT::i64)) 9013 return SDValue(); 9014 9015 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9016 Op0.getOperand(1)); 9017 } 9018 9019 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9020 const SDValue *InputLoad = &Op; 9021 if (InputLoad->getOpcode() == ISD::BITCAST) 9022 InputLoad = &InputLoad->getOperand(0); 9023 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9024 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9025 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9026 InputLoad = &InputLoad->getOperand(0); 9027 } 9028 if (InputLoad->getOpcode() != ISD::LOAD) 9029 return nullptr; 9030 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9031 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9032 } 9033 9034 // Convert the argument APFloat to a single precision APFloat if there is no 9035 // loss in information during the conversion to single precision APFloat and the 9036 // resulting number is not a denormal number. Return true if successful. 9037 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9038 APFloat APFloatToConvert = ArgAPFloat; 9039 bool LosesInfo = true; 9040 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9041 &LosesInfo); 9042 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9043 if (Success) 9044 ArgAPFloat = APFloatToConvert; 9045 return Success; 9046 } 9047 9048 // Bitcast the argument APInt to a double and convert it to a single precision 9049 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9050 // argument if there is no loss in information during the conversion from 9051 // double to single precision APFloat and the resulting number is not a denormal 9052 // number. Return true if successful. 9053 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9054 double DpValue = ArgAPInt.bitsToDouble(); 9055 APFloat APFloatDp(DpValue); 9056 bool Success = convertToNonDenormSingle(APFloatDp); 9057 if (Success) 9058 ArgAPInt = APFloatDp.bitcastToAPInt(); 9059 return Success; 9060 } 9061 9062 // Nondestructive check for convertTonNonDenormSingle. 9063 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9064 // Only convert if it loses info, since XXSPLTIDP should 9065 // handle the other case. 9066 APFloat APFloatToConvert = ArgAPFloat; 9067 bool LosesInfo = true; 9068 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9069 &LosesInfo); 9070 9071 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9072 } 9073 9074 // If this is a case we can't handle, return null and let the default 9075 // expansion code take care of it. If we CAN select this case, and if it 9076 // selects to a single instruction, return Op. Otherwise, if we can codegen 9077 // this case more efficiently than a constant pool load, lower it to the 9078 // sequence of ops that should be used. 9079 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9080 SelectionDAG &DAG) const { 9081 SDLoc dl(Op); 9082 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9083 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9084 9085 // Check if this is a splat of a constant value. 9086 APInt APSplatBits, APSplatUndef; 9087 unsigned SplatBitSize; 9088 bool HasAnyUndefs; 9089 bool BVNIsConstantSplat = 9090 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9091 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9092 9093 // If it is a splat of a double, check if we can shrink it to a 32 bit 9094 // non-denormal float which when converted back to double gives us the same 9095 // double. This is to exploit the XXSPLTIDP instruction. 9096 // If we lose precision, we use XXSPLTI32DX. 9097 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9098 Subtarget.hasPrefixInstrs()) { 9099 // Check the type first to short-circuit so we don't modify APSplatBits if 9100 // this block isn't executed. 9101 if ((Op->getValueType(0) == MVT::v2f64) && 9102 convertToNonDenormSingle(APSplatBits)) { 9103 SDValue SplatNode = DAG.getNode( 9104 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9105 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9106 return DAG.getBitcast(Op.getValueType(), SplatNode); 9107 } else { 9108 // We may lose precision, so we have to use XXSPLTI32DX. 9109 9110 uint32_t Hi = 9111 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9112 uint32_t Lo = 9113 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9114 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9115 9116 if (!Hi || !Lo) 9117 // If either load is 0, then we should generate XXLXOR to set to 0. 9118 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9119 9120 if (Hi) 9121 SplatNode = DAG.getNode( 9122 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9123 DAG.getTargetConstant(0, dl, MVT::i32), 9124 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9125 9126 if (Lo) 9127 SplatNode = 9128 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9129 DAG.getTargetConstant(1, dl, MVT::i32), 9130 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9131 9132 return DAG.getBitcast(Op.getValueType(), SplatNode); 9133 } 9134 } 9135 9136 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9137 9138 bool IsPermutedLoad = false; 9139 const SDValue *InputLoad = 9140 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9141 // Handle load-and-splat patterns as we have instructions that will do this 9142 // in one go. 9143 if (InputLoad && DAG.isSplatValue(Op, true)) { 9144 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9145 9146 // We have handling for 4 and 8 byte elements. 9147 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9148 9149 // Checking for a single use of this load, we have to check for vector 9150 // width (128 bits) / ElementSize uses (since each operand of the 9151 // BUILD_VECTOR is a separate use of the value. 9152 unsigned NumUsesOfInputLD = 128 / ElementSize; 9153 for (SDValue BVInOp : Op->ops()) 9154 if (BVInOp.isUndef()) 9155 NumUsesOfInputLD--; 9156 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9157 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9158 ((Subtarget.hasVSX() && ElementSize == 64) || 9159 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9160 SDValue Ops[] = { 9161 LD->getChain(), // Chain 9162 LD->getBasePtr(), // Ptr 9163 DAG.getValueType(Op.getValueType()) // VT 9164 }; 9165 SDValue LdSplt = DAG.getMemIntrinsicNode( 9166 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9167 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9168 // Replace all uses of the output chain of the original load with the 9169 // output chain of the new load. 9170 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9171 LdSplt.getValue(1)); 9172 return LdSplt; 9173 } 9174 } 9175 9176 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9177 // 32-bits can be lowered to VSX instructions under certain conditions. 9178 // Without VSX, there is no pattern more efficient than expanding the node. 9179 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9180 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9181 Subtarget.hasP8Vector())) 9182 return Op; 9183 return SDValue(); 9184 } 9185 9186 uint64_t SplatBits = APSplatBits.getZExtValue(); 9187 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9188 unsigned SplatSize = SplatBitSize / 8; 9189 9190 // First, handle single instruction cases. 9191 9192 // All zeros? 9193 if (SplatBits == 0) { 9194 // Canonicalize all zero vectors to be v4i32. 9195 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9196 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9197 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9198 } 9199 return Op; 9200 } 9201 9202 // We have XXSPLTIW for constant splats four bytes wide. 9203 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9204 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9205 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9206 // turned into a 4-byte splat of 0xABABABAB. 9207 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9208 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9209 Op.getValueType(), DAG, dl); 9210 9211 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9212 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9213 dl); 9214 9215 // We have XXSPLTIB for constant splats one byte wide. 9216 if (Subtarget.hasP9Vector() && SplatSize == 1) 9217 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9218 dl); 9219 9220 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9221 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9222 (32-SplatBitSize)); 9223 if (SextVal >= -16 && SextVal <= 15) 9224 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9225 dl); 9226 9227 // Two instruction sequences. 9228 9229 // If this value is in the range [-32,30] and is even, use: 9230 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9231 // If this value is in the range [17,31] and is odd, use: 9232 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9233 // If this value is in the range [-31,-17] and is odd, use: 9234 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9235 // Note the last two are three-instruction sequences. 9236 if (SextVal >= -32 && SextVal <= 31) { 9237 // To avoid having these optimizations undone by constant folding, 9238 // we convert to a pseudo that will be expanded later into one of 9239 // the above forms. 9240 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9241 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9242 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9243 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9244 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9245 if (VT == Op.getValueType()) 9246 return RetVal; 9247 else 9248 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9249 } 9250 9251 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9252 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9253 // for fneg/fabs. 9254 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9255 // Make -1 and vspltisw -1: 9256 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9257 9258 // Make the VSLW intrinsic, computing 0x8000_0000. 9259 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9260 OnesV, DAG, dl); 9261 9262 // xor by OnesV to invert it. 9263 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9264 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9265 } 9266 9267 // Check to see if this is a wide variety of vsplti*, binop self cases. 9268 static const signed char SplatCsts[] = { 9269 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9270 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9271 }; 9272 9273 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9274 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9275 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9276 int i = SplatCsts[idx]; 9277 9278 // Figure out what shift amount will be used by altivec if shifted by i in 9279 // this splat size. 9280 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9281 9282 // vsplti + shl self. 9283 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9284 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9285 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9286 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9287 Intrinsic::ppc_altivec_vslw 9288 }; 9289 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9290 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9291 } 9292 9293 // vsplti + srl self. 9294 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9295 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9296 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9297 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9298 Intrinsic::ppc_altivec_vsrw 9299 }; 9300 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9301 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9302 } 9303 9304 // vsplti + rol self. 9305 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9306 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9307 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9308 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9309 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9310 Intrinsic::ppc_altivec_vrlw 9311 }; 9312 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9313 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9314 } 9315 9316 // t = vsplti c, result = vsldoi t, t, 1 9317 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9318 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9319 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9320 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9321 } 9322 // t = vsplti c, result = vsldoi t, t, 2 9323 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9324 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9325 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9326 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9327 } 9328 // t = vsplti c, result = vsldoi t, t, 3 9329 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9330 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9331 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9332 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9333 } 9334 } 9335 9336 return SDValue(); 9337 } 9338 9339 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9340 /// the specified operations to build the shuffle. 9341 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9342 SDValue RHS, SelectionDAG &DAG, 9343 const SDLoc &dl) { 9344 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9345 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9346 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9347 9348 enum { 9349 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9350 OP_VMRGHW, 9351 OP_VMRGLW, 9352 OP_VSPLTISW0, 9353 OP_VSPLTISW1, 9354 OP_VSPLTISW2, 9355 OP_VSPLTISW3, 9356 OP_VSLDOI4, 9357 OP_VSLDOI8, 9358 OP_VSLDOI12 9359 }; 9360 9361 if (OpNum == OP_COPY) { 9362 if (LHSID == (1*9+2)*9+3) return LHS; 9363 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9364 return RHS; 9365 } 9366 9367 SDValue OpLHS, OpRHS; 9368 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9369 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9370 9371 int ShufIdxs[16]; 9372 switch (OpNum) { 9373 default: llvm_unreachable("Unknown i32 permute!"); 9374 case OP_VMRGHW: 9375 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9376 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9377 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9378 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9379 break; 9380 case OP_VMRGLW: 9381 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9382 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9383 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9384 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9385 break; 9386 case OP_VSPLTISW0: 9387 for (unsigned i = 0; i != 16; ++i) 9388 ShufIdxs[i] = (i&3)+0; 9389 break; 9390 case OP_VSPLTISW1: 9391 for (unsigned i = 0; i != 16; ++i) 9392 ShufIdxs[i] = (i&3)+4; 9393 break; 9394 case OP_VSPLTISW2: 9395 for (unsigned i = 0; i != 16; ++i) 9396 ShufIdxs[i] = (i&3)+8; 9397 break; 9398 case OP_VSPLTISW3: 9399 for (unsigned i = 0; i != 16; ++i) 9400 ShufIdxs[i] = (i&3)+12; 9401 break; 9402 case OP_VSLDOI4: 9403 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9404 case OP_VSLDOI8: 9405 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9406 case OP_VSLDOI12: 9407 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9408 } 9409 EVT VT = OpLHS.getValueType(); 9410 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9411 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9412 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9413 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9414 } 9415 9416 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9417 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9418 /// SDValue. 9419 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9420 SelectionDAG &DAG) const { 9421 const unsigned BytesInVector = 16; 9422 bool IsLE = Subtarget.isLittleEndian(); 9423 SDLoc dl(N); 9424 SDValue V1 = N->getOperand(0); 9425 SDValue V2 = N->getOperand(1); 9426 unsigned ShiftElts = 0, InsertAtByte = 0; 9427 bool Swap = false; 9428 9429 // Shifts required to get the byte we want at element 7. 9430 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9431 0, 15, 14, 13, 12, 11, 10, 9}; 9432 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9433 1, 2, 3, 4, 5, 6, 7, 8}; 9434 9435 ArrayRef<int> Mask = N->getMask(); 9436 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9437 9438 // For each mask element, find out if we're just inserting something 9439 // from V2 into V1 or vice versa. 9440 // Possible permutations inserting an element from V2 into V1: 9441 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9442 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9443 // ... 9444 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9445 // Inserting from V1 into V2 will be similar, except mask range will be 9446 // [16,31]. 9447 9448 bool FoundCandidate = false; 9449 // If both vector operands for the shuffle are the same vector, the mask 9450 // will contain only elements from the first one and the second one will be 9451 // undef. 9452 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9453 // Go through the mask of half-words to find an element that's being moved 9454 // from one vector to the other. 9455 for (unsigned i = 0; i < BytesInVector; ++i) { 9456 unsigned CurrentElement = Mask[i]; 9457 // If 2nd operand is undefined, we should only look for element 7 in the 9458 // Mask. 9459 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9460 continue; 9461 9462 bool OtherElementsInOrder = true; 9463 // Examine the other elements in the Mask to see if they're in original 9464 // order. 9465 for (unsigned j = 0; j < BytesInVector; ++j) { 9466 if (j == i) 9467 continue; 9468 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9469 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9470 // in which we always assume we're always picking from the 1st operand. 9471 int MaskOffset = 9472 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9473 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9474 OtherElementsInOrder = false; 9475 break; 9476 } 9477 } 9478 // If other elements are in original order, we record the number of shifts 9479 // we need to get the element we want into element 7. Also record which byte 9480 // in the vector we should insert into. 9481 if (OtherElementsInOrder) { 9482 // If 2nd operand is undefined, we assume no shifts and no swapping. 9483 if (V2.isUndef()) { 9484 ShiftElts = 0; 9485 Swap = false; 9486 } else { 9487 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9488 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9489 : BigEndianShifts[CurrentElement & 0xF]; 9490 Swap = CurrentElement < BytesInVector; 9491 } 9492 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9493 FoundCandidate = true; 9494 break; 9495 } 9496 } 9497 9498 if (!FoundCandidate) 9499 return SDValue(); 9500 9501 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9502 // optionally with VECSHL if shift is required. 9503 if (Swap) 9504 std::swap(V1, V2); 9505 if (V2.isUndef()) 9506 V2 = V1; 9507 if (ShiftElts) { 9508 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9509 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9510 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9511 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9512 } 9513 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9514 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9515 } 9516 9517 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9518 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9519 /// SDValue. 9520 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9521 SelectionDAG &DAG) const { 9522 const unsigned NumHalfWords = 8; 9523 const unsigned BytesInVector = NumHalfWords * 2; 9524 // Check that the shuffle is on half-words. 9525 if (!isNByteElemShuffleMask(N, 2, 1)) 9526 return SDValue(); 9527 9528 bool IsLE = Subtarget.isLittleEndian(); 9529 SDLoc dl(N); 9530 SDValue V1 = N->getOperand(0); 9531 SDValue V2 = N->getOperand(1); 9532 unsigned ShiftElts = 0, InsertAtByte = 0; 9533 bool Swap = false; 9534 9535 // Shifts required to get the half-word we want at element 3. 9536 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9537 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9538 9539 uint32_t Mask = 0; 9540 uint32_t OriginalOrderLow = 0x1234567; 9541 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9542 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9543 // 32-bit space, only need 4-bit nibbles per element. 9544 for (unsigned i = 0; i < NumHalfWords; ++i) { 9545 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9546 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9547 } 9548 9549 // For each mask element, find out if we're just inserting something 9550 // from V2 into V1 or vice versa. Possible permutations inserting an element 9551 // from V2 into V1: 9552 // X, 1, 2, 3, 4, 5, 6, 7 9553 // 0, X, 2, 3, 4, 5, 6, 7 9554 // 0, 1, X, 3, 4, 5, 6, 7 9555 // 0, 1, 2, X, 4, 5, 6, 7 9556 // 0, 1, 2, 3, X, 5, 6, 7 9557 // 0, 1, 2, 3, 4, X, 6, 7 9558 // 0, 1, 2, 3, 4, 5, X, 7 9559 // 0, 1, 2, 3, 4, 5, 6, X 9560 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9561 9562 bool FoundCandidate = false; 9563 // Go through the mask of half-words to find an element that's being moved 9564 // from one vector to the other. 9565 for (unsigned i = 0; i < NumHalfWords; ++i) { 9566 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9567 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9568 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9569 uint32_t TargetOrder = 0x0; 9570 9571 // If both vector operands for the shuffle are the same vector, the mask 9572 // will contain only elements from the first one and the second one will be 9573 // undef. 9574 if (V2.isUndef()) { 9575 ShiftElts = 0; 9576 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9577 TargetOrder = OriginalOrderLow; 9578 Swap = false; 9579 // Skip if not the correct element or mask of other elements don't equal 9580 // to our expected order. 9581 if (MaskOneElt == VINSERTHSrcElem && 9582 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9583 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9584 FoundCandidate = true; 9585 break; 9586 } 9587 } else { // If both operands are defined. 9588 // Target order is [8,15] if the current mask is between [0,7]. 9589 TargetOrder = 9590 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9591 // Skip if mask of other elements don't equal our expected order. 9592 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9593 // We only need the last 3 bits for the number of shifts. 9594 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9595 : BigEndianShifts[MaskOneElt & 0x7]; 9596 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9597 Swap = MaskOneElt < NumHalfWords; 9598 FoundCandidate = true; 9599 break; 9600 } 9601 } 9602 } 9603 9604 if (!FoundCandidate) 9605 return SDValue(); 9606 9607 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9608 // optionally with VECSHL if shift is required. 9609 if (Swap) 9610 std::swap(V1, V2); 9611 if (V2.isUndef()) 9612 V2 = V1; 9613 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9614 if (ShiftElts) { 9615 // Double ShiftElts because we're left shifting on v16i8 type. 9616 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9617 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9618 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9619 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9620 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9621 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9622 } 9623 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9624 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9625 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9626 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9627 } 9628 9629 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9630 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9631 /// return the default SDValue. 9632 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9633 SelectionDAG &DAG) const { 9634 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9635 // to v16i8. Peek through the bitcasts to get the actual operands. 9636 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9637 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9638 9639 auto ShuffleMask = SVN->getMask(); 9640 SDValue VecShuffle(SVN, 0); 9641 SDLoc DL(SVN); 9642 9643 // Check that we have a four byte shuffle. 9644 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9645 return SDValue(); 9646 9647 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9648 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9649 std::swap(LHS, RHS); 9650 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9651 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9652 } 9653 9654 // Ensure that the RHS is a vector of constants. 9655 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9656 if (!BVN) 9657 return SDValue(); 9658 9659 // Check if RHS is a splat of 4-bytes (or smaller). 9660 APInt APSplatValue, APSplatUndef; 9661 unsigned SplatBitSize; 9662 bool HasAnyUndefs; 9663 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9664 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9665 SplatBitSize > 32) 9666 return SDValue(); 9667 9668 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9669 // The instruction splats a constant C into two words of the source vector 9670 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9671 // Thus we check that the shuffle mask is the equivalent of 9672 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9673 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9674 // within each word are consecutive, so we only need to check the first byte. 9675 SDValue Index; 9676 bool IsLE = Subtarget.isLittleEndian(); 9677 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9678 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9679 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9680 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9681 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9682 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9683 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9684 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9685 else 9686 return SDValue(); 9687 9688 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9689 // for XXSPLTI32DX. 9690 unsigned SplatVal = APSplatValue.getZExtValue(); 9691 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9692 SplatVal |= (SplatVal << SplatBitSize); 9693 9694 SDValue SplatNode = DAG.getNode( 9695 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9696 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9697 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9698 } 9699 9700 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9701 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9702 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9703 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9704 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9705 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9706 assert(Op.getValueType() == MVT::v1i128 && 9707 "Only set v1i128 as custom, other type shouldn't reach here!"); 9708 SDLoc dl(Op); 9709 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9710 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9711 unsigned SHLAmt = N1.getConstantOperandVal(0); 9712 if (SHLAmt % 8 == 0) { 9713 SmallVector<int, 16> Mask(16, 0); 9714 std::iota(Mask.begin(), Mask.end(), 0); 9715 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9716 if (SDValue Shuffle = 9717 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9718 DAG.getUNDEF(MVT::v16i8), Mask)) 9719 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9720 } 9721 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9722 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9723 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9724 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9725 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9726 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9727 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9728 } 9729 9730 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9731 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9732 /// return the code it can be lowered into. Worst case, it can always be 9733 /// lowered into a vperm. 9734 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9735 SelectionDAG &DAG) const { 9736 SDLoc dl(Op); 9737 SDValue V1 = Op.getOperand(0); 9738 SDValue V2 = Op.getOperand(1); 9739 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9740 9741 // Any nodes that were combined in the target-independent combiner prior 9742 // to vector legalization will not be sent to the target combine. Try to 9743 // combine it here. 9744 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9745 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9746 return NewShuffle; 9747 Op = NewShuffle; 9748 SVOp = cast<ShuffleVectorSDNode>(Op); 9749 V1 = Op.getOperand(0); 9750 V2 = Op.getOperand(1); 9751 } 9752 EVT VT = Op.getValueType(); 9753 bool isLittleEndian = Subtarget.isLittleEndian(); 9754 9755 unsigned ShiftElts, InsertAtByte; 9756 bool Swap = false; 9757 9758 // If this is a load-and-splat, we can do that with a single instruction 9759 // in some cases. However if the load has multiple uses, we don't want to 9760 // combine it because that will just produce multiple loads. 9761 bool IsPermutedLoad = false; 9762 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9763 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9764 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9765 InputLoad->hasOneUse()) { 9766 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9767 int SplatIdx = 9768 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9769 9770 // The splat index for permuted loads will be in the left half of the vector 9771 // which is strictly wider than the loaded value by 8 bytes. So we need to 9772 // adjust the splat index to point to the correct address in memory. 9773 if (IsPermutedLoad) { 9774 assert((isLittleEndian || IsFourByte) && 9775 "Unexpected size for permuted load on big endian target"); 9776 SplatIdx += IsFourByte ? 2 : 1; 9777 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9778 "Splat of a value outside of the loaded memory"); 9779 } 9780 9781 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9782 // For 4-byte load-and-splat, we need Power9. 9783 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9784 uint64_t Offset = 0; 9785 if (IsFourByte) 9786 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9787 else 9788 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9789 9790 // If the width of the load is the same as the width of the splat, 9791 // loading with an offset would load the wrong memory. 9792 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9793 Offset = 0; 9794 9795 SDValue BasePtr = LD->getBasePtr(); 9796 if (Offset != 0) 9797 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9798 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9799 SDValue Ops[] = { 9800 LD->getChain(), // Chain 9801 BasePtr, // BasePtr 9802 DAG.getValueType(Op.getValueType()) // VT 9803 }; 9804 SDVTList VTL = 9805 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9806 SDValue LdSplt = 9807 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9808 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9809 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9810 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9811 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9812 return LdSplt; 9813 } 9814 } 9815 if (Subtarget.hasP9Vector() && 9816 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9817 isLittleEndian)) { 9818 if (Swap) 9819 std::swap(V1, V2); 9820 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9821 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9822 if (ShiftElts) { 9823 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9824 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9825 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9826 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9827 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9828 } 9829 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9830 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9831 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9832 } 9833 9834 if (Subtarget.hasPrefixInstrs()) { 9835 SDValue SplatInsertNode; 9836 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9837 return SplatInsertNode; 9838 } 9839 9840 if (Subtarget.hasP9Altivec()) { 9841 SDValue NewISDNode; 9842 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9843 return NewISDNode; 9844 9845 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9846 return NewISDNode; 9847 } 9848 9849 if (Subtarget.hasVSX() && 9850 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9851 if (Swap) 9852 std::swap(V1, V2); 9853 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9854 SDValue Conv2 = 9855 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9856 9857 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9858 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9859 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9860 } 9861 9862 if (Subtarget.hasVSX() && 9863 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9864 if (Swap) 9865 std::swap(V1, V2); 9866 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9867 SDValue Conv2 = 9868 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9869 9870 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9871 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9872 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9873 } 9874 9875 if (Subtarget.hasP9Vector()) { 9876 if (PPC::isXXBRHShuffleMask(SVOp)) { 9877 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9878 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9879 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9880 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9881 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9882 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9883 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9884 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9885 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9886 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9887 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9888 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9889 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9890 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9891 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9892 } 9893 } 9894 9895 if (Subtarget.hasVSX()) { 9896 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9897 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9898 9899 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9900 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9901 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9902 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9903 } 9904 9905 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9906 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9907 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9908 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9909 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9910 } 9911 } 9912 9913 // Cases that are handled by instructions that take permute immediates 9914 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9915 // selected by the instruction selector. 9916 if (V2.isUndef()) { 9917 if (PPC::isSplatShuffleMask(SVOp, 1) || 9918 PPC::isSplatShuffleMask(SVOp, 2) || 9919 PPC::isSplatShuffleMask(SVOp, 4) || 9920 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9921 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9922 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9923 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9924 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9925 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9926 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9927 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9928 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9929 (Subtarget.hasP8Altivec() && ( 9930 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9931 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9932 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9933 return Op; 9934 } 9935 } 9936 9937 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9938 // and produce a fixed permutation. If any of these match, do not lower to 9939 // VPERM. 9940 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9941 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9942 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9943 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9944 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9945 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9946 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9947 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9948 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9949 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9950 (Subtarget.hasP8Altivec() && ( 9951 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9952 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9953 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9954 return Op; 9955 9956 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9957 // perfect shuffle table to emit an optimal matching sequence. 9958 ArrayRef<int> PermMask = SVOp->getMask(); 9959 9960 unsigned PFIndexes[4]; 9961 bool isFourElementShuffle = true; 9962 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9963 unsigned EltNo = 8; // Start out undef. 9964 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9965 if (PermMask[i*4+j] < 0) 9966 continue; // Undef, ignore it. 9967 9968 unsigned ByteSource = PermMask[i*4+j]; 9969 if ((ByteSource & 3) != j) { 9970 isFourElementShuffle = false; 9971 break; 9972 } 9973 9974 if (EltNo == 8) { 9975 EltNo = ByteSource/4; 9976 } else if (EltNo != ByteSource/4) { 9977 isFourElementShuffle = false; 9978 break; 9979 } 9980 } 9981 PFIndexes[i] = EltNo; 9982 } 9983 9984 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9985 // perfect shuffle vector to determine if it is cost effective to do this as 9986 // discrete instructions, or whether we should use a vperm. 9987 // For now, we skip this for little endian until such time as we have a 9988 // little-endian perfect shuffle table. 9989 if (isFourElementShuffle && !isLittleEndian) { 9990 // Compute the index in the perfect shuffle table. 9991 unsigned PFTableIndex = 9992 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9993 9994 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9995 unsigned Cost = (PFEntry >> 30); 9996 9997 // Determining when to avoid vperm is tricky. Many things affect the cost 9998 // of vperm, particularly how many times the perm mask needs to be computed. 9999 // For example, if the perm mask can be hoisted out of a loop or is already 10000 // used (perhaps because there are multiple permutes with the same shuffle 10001 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10002 // the loop requires an extra register. 10003 // 10004 // As a compromise, we only emit discrete instructions if the shuffle can be 10005 // generated in 3 or fewer operations. When we have loop information 10006 // available, if this block is within a loop, we should avoid using vperm 10007 // for 3-operation perms and use a constant pool load instead. 10008 if (Cost < 3) 10009 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10010 } 10011 10012 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10013 // vector that will get spilled to the constant pool. 10014 if (V2.isUndef()) V2 = V1; 10015 10016 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10017 // that it is in input element units, not in bytes. Convert now. 10018 10019 // For little endian, the order of the input vectors is reversed, and 10020 // the permutation mask is complemented with respect to 31. This is 10021 // necessary to produce proper semantics with the big-endian-biased vperm 10022 // instruction. 10023 EVT EltVT = V1.getValueType().getVectorElementType(); 10024 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10025 10026 SmallVector<SDValue, 16> ResultMask; 10027 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10028 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10029 10030 for (unsigned j = 0; j != BytesPerElement; ++j) 10031 if (isLittleEndian) 10032 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10033 dl, MVT::i32)); 10034 else 10035 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10036 MVT::i32)); 10037 } 10038 10039 ShufflesHandledWithVPERM++; 10040 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10041 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10042 LLVM_DEBUG(SVOp->dump()); 10043 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10044 LLVM_DEBUG(VPermMask.dump()); 10045 10046 if (isLittleEndian) 10047 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10048 V2, V1, VPermMask); 10049 else 10050 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10051 V1, V2, VPermMask); 10052 } 10053 10054 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10055 /// vector comparison. If it is, return true and fill in Opc/isDot with 10056 /// information about the intrinsic. 10057 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10058 bool &isDot, const PPCSubtarget &Subtarget) { 10059 unsigned IntrinsicID = 10060 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10061 CompareOpc = -1; 10062 isDot = false; 10063 switch (IntrinsicID) { 10064 default: 10065 return false; 10066 // Comparison predicates. 10067 case Intrinsic::ppc_altivec_vcmpbfp_p: 10068 CompareOpc = 966; 10069 isDot = true; 10070 break; 10071 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10072 CompareOpc = 198; 10073 isDot = true; 10074 break; 10075 case Intrinsic::ppc_altivec_vcmpequb_p: 10076 CompareOpc = 6; 10077 isDot = true; 10078 break; 10079 case Intrinsic::ppc_altivec_vcmpequh_p: 10080 CompareOpc = 70; 10081 isDot = true; 10082 break; 10083 case Intrinsic::ppc_altivec_vcmpequw_p: 10084 CompareOpc = 134; 10085 isDot = true; 10086 break; 10087 case Intrinsic::ppc_altivec_vcmpequd_p: 10088 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10089 CompareOpc = 199; 10090 isDot = true; 10091 } else 10092 return false; 10093 break; 10094 case Intrinsic::ppc_altivec_vcmpneb_p: 10095 case Intrinsic::ppc_altivec_vcmpneh_p: 10096 case Intrinsic::ppc_altivec_vcmpnew_p: 10097 case Intrinsic::ppc_altivec_vcmpnezb_p: 10098 case Intrinsic::ppc_altivec_vcmpnezh_p: 10099 case Intrinsic::ppc_altivec_vcmpnezw_p: 10100 if (Subtarget.hasP9Altivec()) { 10101 switch (IntrinsicID) { 10102 default: 10103 llvm_unreachable("Unknown comparison intrinsic."); 10104 case Intrinsic::ppc_altivec_vcmpneb_p: 10105 CompareOpc = 7; 10106 break; 10107 case Intrinsic::ppc_altivec_vcmpneh_p: 10108 CompareOpc = 71; 10109 break; 10110 case Intrinsic::ppc_altivec_vcmpnew_p: 10111 CompareOpc = 135; 10112 break; 10113 case Intrinsic::ppc_altivec_vcmpnezb_p: 10114 CompareOpc = 263; 10115 break; 10116 case Intrinsic::ppc_altivec_vcmpnezh_p: 10117 CompareOpc = 327; 10118 break; 10119 case Intrinsic::ppc_altivec_vcmpnezw_p: 10120 CompareOpc = 391; 10121 break; 10122 } 10123 isDot = true; 10124 } else 10125 return false; 10126 break; 10127 case Intrinsic::ppc_altivec_vcmpgefp_p: 10128 CompareOpc = 454; 10129 isDot = true; 10130 break; 10131 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10132 CompareOpc = 710; 10133 isDot = true; 10134 break; 10135 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10136 CompareOpc = 774; 10137 isDot = true; 10138 break; 10139 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10140 CompareOpc = 838; 10141 isDot = true; 10142 break; 10143 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10144 CompareOpc = 902; 10145 isDot = true; 10146 break; 10147 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10148 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10149 CompareOpc = 967; 10150 isDot = true; 10151 } else 10152 return false; 10153 break; 10154 case Intrinsic::ppc_altivec_vcmpgtub_p: 10155 CompareOpc = 518; 10156 isDot = true; 10157 break; 10158 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10159 CompareOpc = 582; 10160 isDot = true; 10161 break; 10162 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10163 CompareOpc = 646; 10164 isDot = true; 10165 break; 10166 case Intrinsic::ppc_altivec_vcmpgtud_p: 10167 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10168 CompareOpc = 711; 10169 isDot = true; 10170 } else 10171 return false; 10172 break; 10173 10174 case Intrinsic::ppc_altivec_vcmpequq: 10175 case Intrinsic::ppc_altivec_vcmpgtsq: 10176 case Intrinsic::ppc_altivec_vcmpgtuq: 10177 if (!Subtarget.isISA3_1()) 10178 return false; 10179 switch (IntrinsicID) { 10180 default: 10181 llvm_unreachable("Unknown comparison intrinsic."); 10182 case Intrinsic::ppc_altivec_vcmpequq: 10183 CompareOpc = 455; 10184 break; 10185 case Intrinsic::ppc_altivec_vcmpgtsq: 10186 CompareOpc = 903; 10187 break; 10188 case Intrinsic::ppc_altivec_vcmpgtuq: 10189 CompareOpc = 647; 10190 break; 10191 } 10192 break; 10193 10194 // VSX predicate comparisons use the same infrastructure 10195 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10196 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10197 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10198 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10199 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10200 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10201 if (Subtarget.hasVSX()) { 10202 switch (IntrinsicID) { 10203 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10204 CompareOpc = 99; 10205 break; 10206 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10207 CompareOpc = 115; 10208 break; 10209 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10210 CompareOpc = 107; 10211 break; 10212 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10213 CompareOpc = 67; 10214 break; 10215 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10216 CompareOpc = 83; 10217 break; 10218 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10219 CompareOpc = 75; 10220 break; 10221 } 10222 isDot = true; 10223 } else 10224 return false; 10225 break; 10226 10227 // Normal Comparisons. 10228 case Intrinsic::ppc_altivec_vcmpbfp: 10229 CompareOpc = 966; 10230 break; 10231 case Intrinsic::ppc_altivec_vcmpeqfp: 10232 CompareOpc = 198; 10233 break; 10234 case Intrinsic::ppc_altivec_vcmpequb: 10235 CompareOpc = 6; 10236 break; 10237 case Intrinsic::ppc_altivec_vcmpequh: 10238 CompareOpc = 70; 10239 break; 10240 case Intrinsic::ppc_altivec_vcmpequw: 10241 CompareOpc = 134; 10242 break; 10243 case Intrinsic::ppc_altivec_vcmpequd: 10244 if (Subtarget.hasP8Altivec()) 10245 CompareOpc = 199; 10246 else 10247 return false; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpneb: 10250 case Intrinsic::ppc_altivec_vcmpneh: 10251 case Intrinsic::ppc_altivec_vcmpnew: 10252 case Intrinsic::ppc_altivec_vcmpnezb: 10253 case Intrinsic::ppc_altivec_vcmpnezh: 10254 case Intrinsic::ppc_altivec_vcmpnezw: 10255 if (Subtarget.hasP9Altivec()) 10256 switch (IntrinsicID) { 10257 default: 10258 llvm_unreachable("Unknown comparison intrinsic."); 10259 case Intrinsic::ppc_altivec_vcmpneb: 10260 CompareOpc = 7; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpneh: 10263 CompareOpc = 71; 10264 break; 10265 case Intrinsic::ppc_altivec_vcmpnew: 10266 CompareOpc = 135; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpnezb: 10269 CompareOpc = 263; 10270 break; 10271 case Intrinsic::ppc_altivec_vcmpnezh: 10272 CompareOpc = 327; 10273 break; 10274 case Intrinsic::ppc_altivec_vcmpnezw: 10275 CompareOpc = 391; 10276 break; 10277 } 10278 else 10279 return false; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpgefp: 10282 CompareOpc = 454; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpgtfp: 10285 CompareOpc = 710; 10286 break; 10287 case Intrinsic::ppc_altivec_vcmpgtsb: 10288 CompareOpc = 774; 10289 break; 10290 case Intrinsic::ppc_altivec_vcmpgtsh: 10291 CompareOpc = 838; 10292 break; 10293 case Intrinsic::ppc_altivec_vcmpgtsw: 10294 CompareOpc = 902; 10295 break; 10296 case Intrinsic::ppc_altivec_vcmpgtsd: 10297 if (Subtarget.hasP8Altivec()) 10298 CompareOpc = 967; 10299 else 10300 return false; 10301 break; 10302 case Intrinsic::ppc_altivec_vcmpgtub: 10303 CompareOpc = 518; 10304 break; 10305 case Intrinsic::ppc_altivec_vcmpgtuh: 10306 CompareOpc = 582; 10307 break; 10308 case Intrinsic::ppc_altivec_vcmpgtuw: 10309 CompareOpc = 646; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpgtud: 10312 if (Subtarget.hasP8Altivec()) 10313 CompareOpc = 711; 10314 else 10315 return false; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpequq_p: 10318 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10319 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10320 if (!Subtarget.isISA3_1()) 10321 return false; 10322 switch (IntrinsicID) { 10323 default: 10324 llvm_unreachable("Unknown comparison intrinsic."); 10325 case Intrinsic::ppc_altivec_vcmpequq_p: 10326 CompareOpc = 455; 10327 break; 10328 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10329 CompareOpc = 903; 10330 break; 10331 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10332 CompareOpc = 647; 10333 break; 10334 } 10335 isDot = true; 10336 break; 10337 } 10338 return true; 10339 } 10340 10341 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10342 /// lower, do it, otherwise return null. 10343 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10344 SelectionDAG &DAG) const { 10345 unsigned IntrinsicID = 10346 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10347 10348 SDLoc dl(Op); 10349 10350 switch (IntrinsicID) { 10351 case Intrinsic::thread_pointer: 10352 // Reads the thread pointer register, used for __builtin_thread_pointer. 10353 if (Subtarget.isPPC64()) 10354 return DAG.getRegister(PPC::X13, MVT::i64); 10355 return DAG.getRegister(PPC::R2, MVT::i32); 10356 10357 case Intrinsic::ppc_mma_disassemble_acc: 10358 case Intrinsic::ppc_vsx_disassemble_pair: { 10359 int NumVecs = 2; 10360 SDValue WideVec = Op.getOperand(1); 10361 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10362 NumVecs = 4; 10363 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10364 } 10365 SmallVector<SDValue, 4> RetOps; 10366 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10367 SDValue Extract = DAG.getNode( 10368 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10369 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10370 : VecNo, 10371 dl, getPointerTy(DAG.getDataLayout()))); 10372 RetOps.push_back(Extract); 10373 } 10374 return DAG.getMergeValues(RetOps, dl); 10375 } 10376 case Intrinsic::ppc_compare_exp_lt: 10377 case Intrinsic::ppc_compare_exp_gt: 10378 case Intrinsic::ppc_compare_exp_eq: 10379 case Intrinsic::ppc_compare_exp_uo: { 10380 unsigned Pred; 10381 switch (IntrinsicID) { 10382 case Intrinsic::ppc_compare_exp_lt: 10383 Pred = PPC::PRED_LT; 10384 break; 10385 case Intrinsic::ppc_compare_exp_gt: 10386 Pred = PPC::PRED_GT; 10387 break; 10388 case Intrinsic::ppc_compare_exp_eq: 10389 Pred = PPC::PRED_EQ; 10390 break; 10391 case Intrinsic::ppc_compare_exp_uo: 10392 Pred = PPC::PRED_UN; 10393 break; 10394 } 10395 return SDValue( 10396 DAG.getMachineNode( 10397 PPC::SELECT_CC_I4, dl, MVT::i32, 10398 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10399 Op.getOperand(1), Op.getOperand(2)), 10400 0), 10401 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10402 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10403 0); 10404 } 10405 case Intrinsic::ppc_test_data_class_d: 10406 case Intrinsic::ppc_test_data_class_f: { 10407 unsigned CmprOpc = PPC::XSTSTDCDP; 10408 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10409 CmprOpc = PPC::XSTSTDCSP; 10410 return SDValue( 10411 DAG.getMachineNode( 10412 PPC::SELECT_CC_I4, dl, MVT::i32, 10413 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10414 Op.getOperand(1)), 10415 0), 10416 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10417 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10418 0); 10419 } 10420 } 10421 10422 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10423 // opcode number of the comparison. 10424 int CompareOpc; 10425 bool isDot; 10426 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10427 return SDValue(); // Don't custom lower most intrinsics. 10428 10429 // If this is a non-dot comparison, make the VCMP node and we are done. 10430 if (!isDot) { 10431 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10432 Op.getOperand(1), Op.getOperand(2), 10433 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10434 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10435 } 10436 10437 // Create the PPCISD altivec 'dot' comparison node. 10438 SDValue Ops[] = { 10439 Op.getOperand(2), // LHS 10440 Op.getOperand(3), // RHS 10441 DAG.getConstant(CompareOpc, dl, MVT::i32) 10442 }; 10443 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10444 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10445 10446 // Now that we have the comparison, emit a copy from the CR to a GPR. 10447 // This is flagged to the above dot comparison. 10448 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10449 DAG.getRegister(PPC::CR6, MVT::i32), 10450 CompNode.getValue(1)); 10451 10452 // Unpack the result based on how the target uses it. 10453 unsigned BitNo; // Bit # of CR6. 10454 bool InvertBit; // Invert result? 10455 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10456 default: // Can't happen, don't crash on invalid number though. 10457 case 0: // Return the value of the EQ bit of CR6. 10458 BitNo = 0; InvertBit = false; 10459 break; 10460 case 1: // Return the inverted value of the EQ bit of CR6. 10461 BitNo = 0; InvertBit = true; 10462 break; 10463 case 2: // Return the value of the LT bit of CR6. 10464 BitNo = 2; InvertBit = false; 10465 break; 10466 case 3: // Return the inverted value of the LT bit of CR6. 10467 BitNo = 2; InvertBit = true; 10468 break; 10469 } 10470 10471 // Shift the bit into the low position. 10472 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10473 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10474 // Isolate the bit. 10475 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10476 DAG.getConstant(1, dl, MVT::i32)); 10477 10478 // If we are supposed to, toggle the bit. 10479 if (InvertBit) 10480 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10481 DAG.getConstant(1, dl, MVT::i32)); 10482 return Flags; 10483 } 10484 10485 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10486 SelectionDAG &DAG) const { 10487 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10488 // the beginning of the argument list. 10489 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10490 SDLoc DL(Op); 10491 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10492 case Intrinsic::ppc_cfence: { 10493 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10494 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10495 SDValue Val = Op.getOperand(ArgStart + 1); 10496 EVT Ty = Val.getValueType(); 10497 if (Ty == MVT::i128) { 10498 // FIXME: Testing one of two paired registers is sufficient to guarantee 10499 // ordering? 10500 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10501 } 10502 return SDValue( 10503 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10504 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10505 Op.getOperand(0)), 10506 0); 10507 } 10508 default: 10509 break; 10510 } 10511 return SDValue(); 10512 } 10513 10514 // Lower scalar BSWAP64 to xxbrd. 10515 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10516 SDLoc dl(Op); 10517 if (!Subtarget.isPPC64()) 10518 return Op; 10519 // MTVSRDD 10520 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10521 Op.getOperand(0)); 10522 // XXBRD 10523 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10524 // MFVSRD 10525 int VectorIndex = 0; 10526 if (Subtarget.isLittleEndian()) 10527 VectorIndex = 1; 10528 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10529 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10530 return Op; 10531 } 10532 10533 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10534 // compared to a value that is atomically loaded (atomic loads zero-extend). 10535 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10536 SelectionDAG &DAG) const { 10537 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10538 "Expecting an atomic compare-and-swap here."); 10539 SDLoc dl(Op); 10540 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10541 EVT MemVT = AtomicNode->getMemoryVT(); 10542 if (MemVT.getSizeInBits() >= 32) 10543 return Op; 10544 10545 SDValue CmpOp = Op.getOperand(2); 10546 // If this is already correctly zero-extended, leave it alone. 10547 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10548 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10549 return Op; 10550 10551 // Clear the high bits of the compare operand. 10552 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10553 SDValue NewCmpOp = 10554 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10555 DAG.getConstant(MaskVal, dl, MVT::i32)); 10556 10557 // Replace the existing compare operand with the properly zero-extended one. 10558 SmallVector<SDValue, 4> Ops; 10559 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10560 Ops.push_back(AtomicNode->getOperand(i)); 10561 Ops[2] = NewCmpOp; 10562 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10563 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10564 auto NodeTy = 10565 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10566 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10567 } 10568 10569 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10570 SelectionDAG &DAG) const { 10571 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10572 EVT MemVT = N->getMemoryVT(); 10573 assert(MemVT.getSimpleVT() == MVT::i128 && 10574 "Expect quadword atomic operations"); 10575 SDLoc dl(N); 10576 unsigned Opc = N->getOpcode(); 10577 switch (Opc) { 10578 case ISD::ATOMIC_LOAD: { 10579 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10580 // lowered to ppc instructions by pattern matching instruction selector. 10581 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10582 SmallVector<SDValue, 4> Ops{ 10583 N->getOperand(0), 10584 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10585 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10586 Ops.push_back(N->getOperand(I)); 10587 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10588 Ops, MemVT, N->getMemOperand()); 10589 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10590 SDValue ValHi = 10591 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10592 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10593 DAG.getConstant(64, dl, MVT::i32)); 10594 SDValue Val = 10595 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10596 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10597 {Val, LoadedVal.getValue(2)}); 10598 } 10599 case ISD::ATOMIC_STORE: { 10600 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10601 // lowered to ppc instructions by pattern matching instruction selector. 10602 SDVTList Tys = DAG.getVTList(MVT::Other); 10603 SmallVector<SDValue, 4> Ops{ 10604 N->getOperand(0), 10605 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10606 SDValue Val = N->getOperand(2); 10607 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10608 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10609 DAG.getConstant(64, dl, MVT::i32)); 10610 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10611 Ops.push_back(ValLo); 10612 Ops.push_back(ValHi); 10613 Ops.push_back(N->getOperand(1)); 10614 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10615 N->getMemOperand()); 10616 } 10617 default: 10618 llvm_unreachable("Unexpected atomic opcode"); 10619 } 10620 } 10621 10622 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10623 SelectionDAG &DAG) const { 10624 SDLoc dl(Op); 10625 // Create a stack slot that is 16-byte aligned. 10626 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10627 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10628 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10629 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10630 10631 // Store the input value into Value#0 of the stack slot. 10632 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10633 MachinePointerInfo()); 10634 // Load it out. 10635 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10636 } 10637 10638 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10639 SelectionDAG &DAG) const { 10640 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10641 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10642 10643 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10644 10645 EVT VT = Op.getValueType(); 10646 SDLoc dl(Op); 10647 SDValue V1 = Op.getOperand(0); 10648 SDValue V2 = Op.getOperand(1); 10649 SDValue V3 = Op.getOperand(2); 10650 10651 if (VT == MVT::v2f64 && C) 10652 return Op; 10653 10654 if (Subtarget.isISA3_1()) { 10655 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10656 return SDValue(); 10657 // On P10, we have legal lowering for constant and variable indices for 10658 // integer vectors. 10659 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10660 VT == MVT::v2i64) 10661 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10662 // For f32 and f64 vectors, we have legal lowering for variable indices. 10663 // For f32 we also have legal lowering when the element is loaded from 10664 // memory. 10665 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10666 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10667 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10668 return Op; 10669 } 10670 } 10671 10672 // Before P10, we have legal lowering for constant indices but not for 10673 // variable ones. 10674 if (!C) 10675 return SDValue(); 10676 10677 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10678 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10679 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10680 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10681 unsigned InsertAtElement = C->getZExtValue(); 10682 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10683 if (Subtarget.isLittleEndian()) { 10684 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10685 } 10686 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10687 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10688 } 10689 return Op; 10690 } 10691 10692 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10693 SelectionDAG &DAG) const { 10694 SDLoc dl(Op); 10695 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10696 SDValue LoadChain = LN->getChain(); 10697 SDValue BasePtr = LN->getBasePtr(); 10698 EVT VT = Op.getValueType(); 10699 10700 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10701 return Op; 10702 10703 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10704 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10705 // 2 or 4 vsx registers. 10706 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10707 "Type unsupported without MMA"); 10708 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10709 "Type unsupported without paired vector support"); 10710 Align Alignment = LN->getAlign(); 10711 SmallVector<SDValue, 4> Loads; 10712 SmallVector<SDValue, 4> LoadChains; 10713 unsigned NumVecs = VT.getSizeInBits() / 128; 10714 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10715 SDValue Load = 10716 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10717 LN->getPointerInfo().getWithOffset(Idx * 16), 10718 commonAlignment(Alignment, Idx * 16), 10719 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10720 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10721 DAG.getConstant(16, dl, BasePtr.getValueType())); 10722 Loads.push_back(Load); 10723 LoadChains.push_back(Load.getValue(1)); 10724 } 10725 if (Subtarget.isLittleEndian()) { 10726 std::reverse(Loads.begin(), Loads.end()); 10727 std::reverse(LoadChains.begin(), LoadChains.end()); 10728 } 10729 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10730 SDValue Value = 10731 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10732 dl, VT, Loads); 10733 SDValue RetOps[] = {Value, TF}; 10734 return DAG.getMergeValues(RetOps, dl); 10735 } 10736 10737 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10738 SelectionDAG &DAG) const { 10739 SDLoc dl(Op); 10740 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10741 SDValue StoreChain = SN->getChain(); 10742 SDValue BasePtr = SN->getBasePtr(); 10743 SDValue Value = SN->getValue(); 10744 EVT StoreVT = Value.getValueType(); 10745 10746 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10747 return Op; 10748 10749 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10750 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10751 // underlying registers individually. 10752 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10753 "Type unsupported without MMA"); 10754 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10755 "Type unsupported without paired vector support"); 10756 Align Alignment = SN->getAlign(); 10757 SmallVector<SDValue, 4> Stores; 10758 unsigned NumVecs = 2; 10759 if (StoreVT == MVT::v512i1) { 10760 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10761 NumVecs = 4; 10762 } 10763 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10764 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10765 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10766 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10767 SDValue Store = 10768 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10769 SN->getPointerInfo().getWithOffset(Idx * 16), 10770 commonAlignment(Alignment, Idx * 16), 10771 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10772 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10773 DAG.getConstant(16, dl, BasePtr.getValueType())); 10774 Stores.push_back(Store); 10775 } 10776 SDValue TF = DAG.getTokenFactor(dl, Stores); 10777 return TF; 10778 } 10779 10780 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10781 SDLoc dl(Op); 10782 if (Op.getValueType() == MVT::v4i32) { 10783 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10784 10785 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10786 // +16 as shift amt. 10787 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10788 SDValue RHSSwap = // = vrlw RHS, 16 10789 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10790 10791 // Shrinkify inputs to v8i16. 10792 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10793 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10794 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10795 10796 // Low parts multiplied together, generating 32-bit results (we ignore the 10797 // top parts). 10798 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10799 LHS, RHS, DAG, dl, MVT::v4i32); 10800 10801 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10802 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10803 // Shift the high parts up 16 bits. 10804 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10805 Neg16, DAG, dl); 10806 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10807 } else if (Op.getValueType() == MVT::v16i8) { 10808 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10809 bool isLittleEndian = Subtarget.isLittleEndian(); 10810 10811 // Multiply the even 8-bit parts, producing 16-bit sums. 10812 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10813 LHS, RHS, DAG, dl, MVT::v8i16); 10814 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10815 10816 // Multiply the odd 8-bit parts, producing 16-bit sums. 10817 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10818 LHS, RHS, DAG, dl, MVT::v8i16); 10819 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10820 10821 // Merge the results together. Because vmuleub and vmuloub are 10822 // instructions with a big-endian bias, we must reverse the 10823 // element numbering and reverse the meaning of "odd" and "even" 10824 // when generating little endian code. 10825 int Ops[16]; 10826 for (unsigned i = 0; i != 8; ++i) { 10827 if (isLittleEndian) { 10828 Ops[i*2 ] = 2*i; 10829 Ops[i*2+1] = 2*i+16; 10830 } else { 10831 Ops[i*2 ] = 2*i+1; 10832 Ops[i*2+1] = 2*i+1+16; 10833 } 10834 } 10835 if (isLittleEndian) 10836 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10837 else 10838 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10839 } else { 10840 llvm_unreachable("Unknown mul to lower!"); 10841 } 10842 } 10843 10844 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10845 bool IsStrict = Op->isStrictFPOpcode(); 10846 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10847 !Subtarget.hasP9Vector()) 10848 return SDValue(); 10849 10850 return Op; 10851 } 10852 10853 // Custom lowering for fpext vf32 to v2f64 10854 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10855 10856 assert(Op.getOpcode() == ISD::FP_EXTEND && 10857 "Should only be called for ISD::FP_EXTEND"); 10858 10859 // FIXME: handle extends from half precision float vectors on P9. 10860 // We only want to custom lower an extend from v2f32 to v2f64. 10861 if (Op.getValueType() != MVT::v2f64 || 10862 Op.getOperand(0).getValueType() != MVT::v2f32) 10863 return SDValue(); 10864 10865 SDLoc dl(Op); 10866 SDValue Op0 = Op.getOperand(0); 10867 10868 switch (Op0.getOpcode()) { 10869 default: 10870 return SDValue(); 10871 case ISD::EXTRACT_SUBVECTOR: { 10872 assert(Op0.getNumOperands() == 2 && 10873 isa<ConstantSDNode>(Op0->getOperand(1)) && 10874 "Node should have 2 operands with second one being a constant!"); 10875 10876 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10877 return SDValue(); 10878 10879 // Custom lower is only done for high or low doubleword. 10880 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10881 if (Idx % 2 != 0) 10882 return SDValue(); 10883 10884 // Since input is v4f32, at this point Idx is either 0 or 2. 10885 // Shift to get the doubleword position we want. 10886 int DWord = Idx >> 1; 10887 10888 // High and low word positions are different on little endian. 10889 if (Subtarget.isLittleEndian()) 10890 DWord ^= 0x1; 10891 10892 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10893 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10894 } 10895 case ISD::FADD: 10896 case ISD::FMUL: 10897 case ISD::FSUB: { 10898 SDValue NewLoad[2]; 10899 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10900 // Ensure both input are loads. 10901 SDValue LdOp = Op0.getOperand(i); 10902 if (LdOp.getOpcode() != ISD::LOAD) 10903 return SDValue(); 10904 // Generate new load node. 10905 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10906 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10907 NewLoad[i] = DAG.getMemIntrinsicNode( 10908 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10909 LD->getMemoryVT(), LD->getMemOperand()); 10910 } 10911 SDValue NewOp = 10912 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10913 NewLoad[1], Op0.getNode()->getFlags()); 10914 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10915 DAG.getConstant(0, dl, MVT::i32)); 10916 } 10917 case ISD::LOAD: { 10918 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10919 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10920 SDValue NewLd = DAG.getMemIntrinsicNode( 10921 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10922 LD->getMemoryVT(), LD->getMemOperand()); 10923 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10924 DAG.getConstant(0, dl, MVT::i32)); 10925 } 10926 } 10927 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10928 } 10929 10930 /// LowerOperation - Provide custom lowering hooks for some operations. 10931 /// 10932 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10933 switch (Op.getOpcode()) { 10934 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10935 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10936 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10937 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10938 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10939 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10940 case ISD::STRICT_FSETCC: 10941 case ISD::STRICT_FSETCCS: 10942 case ISD::SETCC: return LowerSETCC(Op, DAG); 10943 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10944 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10945 10946 case ISD::INLINEASM: 10947 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10948 // Variable argument lowering. 10949 case ISD::VASTART: return LowerVASTART(Op, DAG); 10950 case ISD::VAARG: return LowerVAARG(Op, DAG); 10951 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10952 10953 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10954 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10955 case ISD::GET_DYNAMIC_AREA_OFFSET: 10956 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10957 10958 // Exception handling lowering. 10959 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10960 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10961 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10962 10963 case ISD::LOAD: return LowerLOAD(Op, DAG); 10964 case ISD::STORE: return LowerSTORE(Op, DAG); 10965 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10966 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10967 case ISD::STRICT_FP_TO_UINT: 10968 case ISD::STRICT_FP_TO_SINT: 10969 case ISD::FP_TO_UINT: 10970 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10971 case ISD::STRICT_UINT_TO_FP: 10972 case ISD::STRICT_SINT_TO_FP: 10973 case ISD::UINT_TO_FP: 10974 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10975 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10976 10977 // Lower 64-bit shifts. 10978 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10979 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10980 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10981 10982 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10983 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10984 10985 // Vector-related lowering. 10986 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10987 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10988 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10989 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10990 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10991 case ISD::MUL: return LowerMUL(Op, DAG); 10992 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10993 case ISD::STRICT_FP_ROUND: 10994 case ISD::FP_ROUND: 10995 return LowerFP_ROUND(Op, DAG); 10996 case ISD::ROTL: return LowerROTL(Op, DAG); 10997 10998 // For counter-based loop handling. 10999 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11000 11001 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11002 11003 // Frame & Return address. 11004 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11005 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11006 11007 case ISD::INTRINSIC_VOID: 11008 return LowerINTRINSIC_VOID(Op, DAG); 11009 case ISD::BSWAP: 11010 return LowerBSWAP(Op, DAG); 11011 case ISD::ATOMIC_CMP_SWAP: 11012 return LowerATOMIC_CMP_SWAP(Op, DAG); 11013 case ISD::ATOMIC_STORE: 11014 return LowerATOMIC_LOAD_STORE(Op, DAG); 11015 } 11016 } 11017 11018 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11019 SmallVectorImpl<SDValue>&Results, 11020 SelectionDAG &DAG) const { 11021 SDLoc dl(N); 11022 switch (N->getOpcode()) { 11023 default: 11024 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11025 case ISD::ATOMIC_LOAD: { 11026 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11027 Results.push_back(Res); 11028 Results.push_back(Res.getValue(1)); 11029 break; 11030 } 11031 case ISD::READCYCLECOUNTER: { 11032 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11033 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11034 11035 Results.push_back( 11036 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11037 Results.push_back(RTB.getValue(2)); 11038 break; 11039 } 11040 case ISD::INTRINSIC_W_CHAIN: { 11041 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11042 Intrinsic::loop_decrement) 11043 break; 11044 11045 assert(N->getValueType(0) == MVT::i1 && 11046 "Unexpected result type for CTR decrement intrinsic"); 11047 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11048 N->getValueType(0)); 11049 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11050 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11051 N->getOperand(1)); 11052 11053 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11054 Results.push_back(NewInt.getValue(1)); 11055 break; 11056 } 11057 case ISD::VAARG: { 11058 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11059 return; 11060 11061 EVT VT = N->getValueType(0); 11062 11063 if (VT == MVT::i64) { 11064 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11065 11066 Results.push_back(NewNode); 11067 Results.push_back(NewNode.getValue(1)); 11068 } 11069 return; 11070 } 11071 case ISD::STRICT_FP_TO_SINT: 11072 case ISD::STRICT_FP_TO_UINT: 11073 case ISD::FP_TO_SINT: 11074 case ISD::FP_TO_UINT: 11075 // LowerFP_TO_INT() can only handle f32 and f64. 11076 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11077 MVT::ppcf128) 11078 return; 11079 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11080 return; 11081 case ISD::TRUNCATE: { 11082 if (!N->getValueType(0).isVector()) 11083 return; 11084 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11085 if (Lowered) 11086 Results.push_back(Lowered); 11087 return; 11088 } 11089 case ISD::FSHL: 11090 case ISD::FSHR: 11091 // Don't handle funnel shifts here. 11092 return; 11093 case ISD::BITCAST: 11094 // Don't handle bitcast here. 11095 return; 11096 case ISD::FP_EXTEND: 11097 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11098 if (Lowered) 11099 Results.push_back(Lowered); 11100 return; 11101 } 11102 } 11103 11104 //===----------------------------------------------------------------------===// 11105 // Other Lowering Code 11106 //===----------------------------------------------------------------------===// 11107 11108 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11109 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11110 Function *Func = Intrinsic::getDeclaration(M, Id); 11111 return Builder.CreateCall(Func, {}); 11112 } 11113 11114 // The mappings for emitLeading/TrailingFence is taken from 11115 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11116 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11117 Instruction *Inst, 11118 AtomicOrdering Ord) const { 11119 if (Ord == AtomicOrdering::SequentiallyConsistent) 11120 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11121 if (isReleaseOrStronger(Ord)) 11122 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11123 return nullptr; 11124 } 11125 11126 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11127 Instruction *Inst, 11128 AtomicOrdering Ord) const { 11129 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11130 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11131 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11132 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11133 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11134 return Builder.CreateCall( 11135 Intrinsic::getDeclaration( 11136 Builder.GetInsertBlock()->getParent()->getParent(), 11137 Intrinsic::ppc_cfence, {Inst->getType()}), 11138 {Inst}); 11139 // FIXME: Can use isync for rmw operation. 11140 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11141 } 11142 return nullptr; 11143 } 11144 11145 MachineBasicBlock * 11146 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11147 unsigned AtomicSize, 11148 unsigned BinOpcode, 11149 unsigned CmpOpcode, 11150 unsigned CmpPred) const { 11151 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11152 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11153 11154 auto LoadMnemonic = PPC::LDARX; 11155 auto StoreMnemonic = PPC::STDCX; 11156 switch (AtomicSize) { 11157 default: 11158 llvm_unreachable("Unexpected size of atomic entity"); 11159 case 1: 11160 LoadMnemonic = PPC::LBARX; 11161 StoreMnemonic = PPC::STBCX; 11162 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11163 break; 11164 case 2: 11165 LoadMnemonic = PPC::LHARX; 11166 StoreMnemonic = PPC::STHCX; 11167 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11168 break; 11169 case 4: 11170 LoadMnemonic = PPC::LWARX; 11171 StoreMnemonic = PPC::STWCX; 11172 break; 11173 case 8: 11174 LoadMnemonic = PPC::LDARX; 11175 StoreMnemonic = PPC::STDCX; 11176 break; 11177 } 11178 11179 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11180 MachineFunction *F = BB->getParent(); 11181 MachineFunction::iterator It = ++BB->getIterator(); 11182 11183 Register dest = MI.getOperand(0).getReg(); 11184 Register ptrA = MI.getOperand(1).getReg(); 11185 Register ptrB = MI.getOperand(2).getReg(); 11186 Register incr = MI.getOperand(3).getReg(); 11187 DebugLoc dl = MI.getDebugLoc(); 11188 11189 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11190 MachineBasicBlock *loop2MBB = 11191 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11192 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11193 F->insert(It, loopMBB); 11194 if (CmpOpcode) 11195 F->insert(It, loop2MBB); 11196 F->insert(It, exitMBB); 11197 exitMBB->splice(exitMBB->begin(), BB, 11198 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11199 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11200 11201 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11202 Register TmpReg = (!BinOpcode) ? incr : 11203 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11204 : &PPC::GPRCRegClass); 11205 11206 // thisMBB: 11207 // ... 11208 // fallthrough --> loopMBB 11209 BB->addSuccessor(loopMBB); 11210 11211 // loopMBB: 11212 // l[wd]arx dest, ptr 11213 // add r0, dest, incr 11214 // st[wd]cx. r0, ptr 11215 // bne- loopMBB 11216 // fallthrough --> exitMBB 11217 11218 // For max/min... 11219 // loopMBB: 11220 // l[wd]arx dest, ptr 11221 // cmpl?[wd] incr, dest 11222 // bgt exitMBB 11223 // loop2MBB: 11224 // st[wd]cx. dest, ptr 11225 // bne- loopMBB 11226 // fallthrough --> exitMBB 11227 11228 BB = loopMBB; 11229 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11230 .addReg(ptrA).addReg(ptrB); 11231 if (BinOpcode) 11232 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11233 if (CmpOpcode) { 11234 // Signed comparisons of byte or halfword values must be sign-extended. 11235 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11236 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11237 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11238 ExtReg).addReg(dest); 11239 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11240 .addReg(incr).addReg(ExtReg); 11241 } else 11242 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11243 .addReg(incr).addReg(dest); 11244 11245 BuildMI(BB, dl, TII->get(PPC::BCC)) 11246 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11247 BB->addSuccessor(loop2MBB); 11248 BB->addSuccessor(exitMBB); 11249 BB = loop2MBB; 11250 } 11251 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11252 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11253 BuildMI(BB, dl, TII->get(PPC::BCC)) 11254 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11255 BB->addSuccessor(loopMBB); 11256 BB->addSuccessor(exitMBB); 11257 11258 // exitMBB: 11259 // ... 11260 BB = exitMBB; 11261 return BB; 11262 } 11263 11264 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11265 switch(MI.getOpcode()) { 11266 default: 11267 return false; 11268 case PPC::COPY: 11269 return TII->isSignExtended(MI); 11270 case PPC::LHA: 11271 case PPC::LHA8: 11272 case PPC::LHAU: 11273 case PPC::LHAU8: 11274 case PPC::LHAUX: 11275 case PPC::LHAUX8: 11276 case PPC::LHAX: 11277 case PPC::LHAX8: 11278 case PPC::LWA: 11279 case PPC::LWAUX: 11280 case PPC::LWAX: 11281 case PPC::LWAX_32: 11282 case PPC::LWA_32: 11283 case PPC::PLHA: 11284 case PPC::PLHA8: 11285 case PPC::PLHA8pc: 11286 case PPC::PLHApc: 11287 case PPC::PLWA: 11288 case PPC::PLWA8: 11289 case PPC::PLWA8pc: 11290 case PPC::PLWApc: 11291 case PPC::EXTSB: 11292 case PPC::EXTSB8: 11293 case PPC::EXTSB8_32_64: 11294 case PPC::EXTSB8_rec: 11295 case PPC::EXTSB_rec: 11296 case PPC::EXTSH: 11297 case PPC::EXTSH8: 11298 case PPC::EXTSH8_32_64: 11299 case PPC::EXTSH8_rec: 11300 case PPC::EXTSH_rec: 11301 case PPC::EXTSW: 11302 case PPC::EXTSWSLI: 11303 case PPC::EXTSWSLI_32_64: 11304 case PPC::EXTSWSLI_32_64_rec: 11305 case PPC::EXTSWSLI_rec: 11306 case PPC::EXTSW_32: 11307 case PPC::EXTSW_32_64: 11308 case PPC::EXTSW_32_64_rec: 11309 case PPC::EXTSW_rec: 11310 case PPC::SRAW: 11311 case PPC::SRAWI: 11312 case PPC::SRAWI_rec: 11313 case PPC::SRAW_rec: 11314 return true; 11315 } 11316 return false; 11317 } 11318 11319 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11320 MachineInstr &MI, MachineBasicBlock *BB, 11321 bool is8bit, // operation 11322 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11323 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11324 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11325 11326 // If this is a signed comparison and the value being compared is not known 11327 // to be sign extended, sign extend it here. 11328 DebugLoc dl = MI.getDebugLoc(); 11329 MachineFunction *F = BB->getParent(); 11330 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11331 Register incr = MI.getOperand(3).getReg(); 11332 bool IsSignExtended = Register::isVirtualRegister(incr) && 11333 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11334 11335 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11336 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11337 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11338 .addReg(MI.getOperand(3).getReg()); 11339 MI.getOperand(3).setReg(ValueReg); 11340 } 11341 // If we support part-word atomic mnemonics, just use them 11342 if (Subtarget.hasPartwordAtomics()) 11343 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11344 CmpPred); 11345 11346 // In 64 bit mode we have to use 64 bits for addresses, even though the 11347 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11348 // registers without caring whether they're 32 or 64, but here we're 11349 // doing actual arithmetic on the addresses. 11350 bool is64bit = Subtarget.isPPC64(); 11351 bool isLittleEndian = Subtarget.isLittleEndian(); 11352 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11353 11354 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11355 MachineFunction::iterator It = ++BB->getIterator(); 11356 11357 Register dest = MI.getOperand(0).getReg(); 11358 Register ptrA = MI.getOperand(1).getReg(); 11359 Register ptrB = MI.getOperand(2).getReg(); 11360 11361 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11362 MachineBasicBlock *loop2MBB = 11363 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11364 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11365 F->insert(It, loopMBB); 11366 if (CmpOpcode) 11367 F->insert(It, loop2MBB); 11368 F->insert(It, exitMBB); 11369 exitMBB->splice(exitMBB->begin(), BB, 11370 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11371 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11372 11373 const TargetRegisterClass *RC = 11374 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11375 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11376 11377 Register PtrReg = RegInfo.createVirtualRegister(RC); 11378 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11379 Register ShiftReg = 11380 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11381 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11382 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11383 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11384 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11385 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11386 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11387 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11388 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11389 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11390 Register Ptr1Reg; 11391 Register TmpReg = 11392 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11393 11394 // thisMBB: 11395 // ... 11396 // fallthrough --> loopMBB 11397 BB->addSuccessor(loopMBB); 11398 11399 // The 4-byte load must be aligned, while a char or short may be 11400 // anywhere in the word. Hence all this nasty bookkeeping code. 11401 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11402 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11403 // xori shift, shift1, 24 [16] 11404 // rlwinm ptr, ptr1, 0, 0, 29 11405 // slw incr2, incr, shift 11406 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11407 // slw mask, mask2, shift 11408 // loopMBB: 11409 // lwarx tmpDest, ptr 11410 // add tmp, tmpDest, incr2 11411 // andc tmp2, tmpDest, mask 11412 // and tmp3, tmp, mask 11413 // or tmp4, tmp3, tmp2 11414 // stwcx. tmp4, ptr 11415 // bne- loopMBB 11416 // fallthrough --> exitMBB 11417 // srw SrwDest, tmpDest, shift 11418 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11419 if (ptrA != ZeroReg) { 11420 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11421 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11422 .addReg(ptrA) 11423 .addReg(ptrB); 11424 } else { 11425 Ptr1Reg = ptrB; 11426 } 11427 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11428 // mode. 11429 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11430 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11431 .addImm(3) 11432 .addImm(27) 11433 .addImm(is8bit ? 28 : 27); 11434 if (!isLittleEndian) 11435 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11436 .addReg(Shift1Reg) 11437 .addImm(is8bit ? 24 : 16); 11438 if (is64bit) 11439 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11440 .addReg(Ptr1Reg) 11441 .addImm(0) 11442 .addImm(61); 11443 else 11444 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11445 .addReg(Ptr1Reg) 11446 .addImm(0) 11447 .addImm(0) 11448 .addImm(29); 11449 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11450 if (is8bit) 11451 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11452 else { 11453 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11454 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11455 .addReg(Mask3Reg) 11456 .addImm(65535); 11457 } 11458 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11459 .addReg(Mask2Reg) 11460 .addReg(ShiftReg); 11461 11462 BB = loopMBB; 11463 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11464 .addReg(ZeroReg) 11465 .addReg(PtrReg); 11466 if (BinOpcode) 11467 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11468 .addReg(Incr2Reg) 11469 .addReg(TmpDestReg); 11470 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11471 .addReg(TmpDestReg) 11472 .addReg(MaskReg); 11473 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11474 if (CmpOpcode) { 11475 // For unsigned comparisons, we can directly compare the shifted values. 11476 // For signed comparisons we shift and sign extend. 11477 Register SReg = RegInfo.createVirtualRegister(GPRC); 11478 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11479 .addReg(TmpDestReg) 11480 .addReg(MaskReg); 11481 unsigned ValueReg = SReg; 11482 unsigned CmpReg = Incr2Reg; 11483 if (CmpOpcode == PPC::CMPW) { 11484 ValueReg = RegInfo.createVirtualRegister(GPRC); 11485 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11486 .addReg(SReg) 11487 .addReg(ShiftReg); 11488 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11489 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11490 .addReg(ValueReg); 11491 ValueReg = ValueSReg; 11492 CmpReg = incr; 11493 } 11494 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11495 .addReg(CmpReg) 11496 .addReg(ValueReg); 11497 BuildMI(BB, dl, TII->get(PPC::BCC)) 11498 .addImm(CmpPred) 11499 .addReg(PPC::CR0) 11500 .addMBB(exitMBB); 11501 BB->addSuccessor(loop2MBB); 11502 BB->addSuccessor(exitMBB); 11503 BB = loop2MBB; 11504 } 11505 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11506 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11507 .addReg(Tmp4Reg) 11508 .addReg(ZeroReg) 11509 .addReg(PtrReg); 11510 BuildMI(BB, dl, TII->get(PPC::BCC)) 11511 .addImm(PPC::PRED_NE) 11512 .addReg(PPC::CR0) 11513 .addMBB(loopMBB); 11514 BB->addSuccessor(loopMBB); 11515 BB->addSuccessor(exitMBB); 11516 11517 // exitMBB: 11518 // ... 11519 BB = exitMBB; 11520 // Since the shift amount is not a constant, we need to clear 11521 // the upper bits with a separate RLWINM. 11522 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11523 .addReg(SrwDestReg) 11524 .addImm(0) 11525 .addImm(is8bit ? 24 : 16) 11526 .addImm(31); 11527 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11528 .addReg(TmpDestReg) 11529 .addReg(ShiftReg); 11530 return BB; 11531 } 11532 11533 llvm::MachineBasicBlock * 11534 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11535 MachineBasicBlock *MBB) const { 11536 DebugLoc DL = MI.getDebugLoc(); 11537 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11538 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11539 11540 MachineFunction *MF = MBB->getParent(); 11541 MachineRegisterInfo &MRI = MF->getRegInfo(); 11542 11543 const BasicBlock *BB = MBB->getBasicBlock(); 11544 MachineFunction::iterator I = ++MBB->getIterator(); 11545 11546 Register DstReg = MI.getOperand(0).getReg(); 11547 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11548 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11549 Register mainDstReg = MRI.createVirtualRegister(RC); 11550 Register restoreDstReg = MRI.createVirtualRegister(RC); 11551 11552 MVT PVT = getPointerTy(MF->getDataLayout()); 11553 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11554 "Invalid Pointer Size!"); 11555 // For v = setjmp(buf), we generate 11556 // 11557 // thisMBB: 11558 // SjLjSetup mainMBB 11559 // bl mainMBB 11560 // v_restore = 1 11561 // b sinkMBB 11562 // 11563 // mainMBB: 11564 // buf[LabelOffset] = LR 11565 // v_main = 0 11566 // 11567 // sinkMBB: 11568 // v = phi(main, restore) 11569 // 11570 11571 MachineBasicBlock *thisMBB = MBB; 11572 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11573 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11574 MF->insert(I, mainMBB); 11575 MF->insert(I, sinkMBB); 11576 11577 MachineInstrBuilder MIB; 11578 11579 // Transfer the remainder of BB and its successor edges to sinkMBB. 11580 sinkMBB->splice(sinkMBB->begin(), MBB, 11581 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11582 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11583 11584 // Note that the structure of the jmp_buf used here is not compatible 11585 // with that used by libc, and is not designed to be. Specifically, it 11586 // stores only those 'reserved' registers that LLVM does not otherwise 11587 // understand how to spill. Also, by convention, by the time this 11588 // intrinsic is called, Clang has already stored the frame address in the 11589 // first slot of the buffer and stack address in the third. Following the 11590 // X86 target code, we'll store the jump address in the second slot. We also 11591 // need to save the TOC pointer (R2) to handle jumps between shared 11592 // libraries, and that will be stored in the fourth slot. The thread 11593 // identifier (R13) is not affected. 11594 11595 // thisMBB: 11596 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11597 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11598 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11599 11600 // Prepare IP either in reg. 11601 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11602 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11603 Register BufReg = MI.getOperand(1).getReg(); 11604 11605 if (Subtarget.is64BitELFABI()) { 11606 setUsesTOCBasePtr(*MBB->getParent()); 11607 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11608 .addReg(PPC::X2) 11609 .addImm(TOCOffset) 11610 .addReg(BufReg) 11611 .cloneMemRefs(MI); 11612 } 11613 11614 // Naked functions never have a base pointer, and so we use r1. For all 11615 // other functions, this decision must be delayed until during PEI. 11616 unsigned BaseReg; 11617 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11618 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11619 else 11620 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11621 11622 MIB = BuildMI(*thisMBB, MI, DL, 11623 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11624 .addReg(BaseReg) 11625 .addImm(BPOffset) 11626 .addReg(BufReg) 11627 .cloneMemRefs(MI); 11628 11629 // Setup 11630 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11631 MIB.addRegMask(TRI->getNoPreservedMask()); 11632 11633 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11634 11635 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11636 .addMBB(mainMBB); 11637 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11638 11639 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11640 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11641 11642 // mainMBB: 11643 // mainDstReg = 0 11644 MIB = 11645 BuildMI(mainMBB, DL, 11646 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11647 11648 // Store IP 11649 if (Subtarget.isPPC64()) { 11650 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11651 .addReg(LabelReg) 11652 .addImm(LabelOffset) 11653 .addReg(BufReg); 11654 } else { 11655 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11656 .addReg(LabelReg) 11657 .addImm(LabelOffset) 11658 .addReg(BufReg); 11659 } 11660 MIB.cloneMemRefs(MI); 11661 11662 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11663 mainMBB->addSuccessor(sinkMBB); 11664 11665 // sinkMBB: 11666 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11667 TII->get(PPC::PHI), DstReg) 11668 .addReg(mainDstReg).addMBB(mainMBB) 11669 .addReg(restoreDstReg).addMBB(thisMBB); 11670 11671 MI.eraseFromParent(); 11672 return sinkMBB; 11673 } 11674 11675 MachineBasicBlock * 11676 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11677 MachineBasicBlock *MBB) const { 11678 DebugLoc DL = MI.getDebugLoc(); 11679 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11680 11681 MachineFunction *MF = MBB->getParent(); 11682 MachineRegisterInfo &MRI = MF->getRegInfo(); 11683 11684 MVT PVT = getPointerTy(MF->getDataLayout()); 11685 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11686 "Invalid Pointer Size!"); 11687 11688 const TargetRegisterClass *RC = 11689 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11690 Register Tmp = MRI.createVirtualRegister(RC); 11691 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11692 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11693 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11694 unsigned BP = 11695 (PVT == MVT::i64) 11696 ? PPC::X30 11697 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11698 : PPC::R30); 11699 11700 MachineInstrBuilder MIB; 11701 11702 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11703 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11704 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11705 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11706 11707 Register BufReg = MI.getOperand(0).getReg(); 11708 11709 // Reload FP (the jumped-to function may not have had a 11710 // frame pointer, and if so, then its r31 will be restored 11711 // as necessary). 11712 if (PVT == MVT::i64) { 11713 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11714 .addImm(0) 11715 .addReg(BufReg); 11716 } else { 11717 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11718 .addImm(0) 11719 .addReg(BufReg); 11720 } 11721 MIB.cloneMemRefs(MI); 11722 11723 // Reload IP 11724 if (PVT == MVT::i64) { 11725 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11726 .addImm(LabelOffset) 11727 .addReg(BufReg); 11728 } else { 11729 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11730 .addImm(LabelOffset) 11731 .addReg(BufReg); 11732 } 11733 MIB.cloneMemRefs(MI); 11734 11735 // Reload SP 11736 if (PVT == MVT::i64) { 11737 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11738 .addImm(SPOffset) 11739 .addReg(BufReg); 11740 } else { 11741 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11742 .addImm(SPOffset) 11743 .addReg(BufReg); 11744 } 11745 MIB.cloneMemRefs(MI); 11746 11747 // Reload BP 11748 if (PVT == MVT::i64) { 11749 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11750 .addImm(BPOffset) 11751 .addReg(BufReg); 11752 } else { 11753 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11754 .addImm(BPOffset) 11755 .addReg(BufReg); 11756 } 11757 MIB.cloneMemRefs(MI); 11758 11759 // Reload TOC 11760 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11761 setUsesTOCBasePtr(*MBB->getParent()); 11762 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11763 .addImm(TOCOffset) 11764 .addReg(BufReg) 11765 .cloneMemRefs(MI); 11766 } 11767 11768 // Jump 11769 BuildMI(*MBB, MI, DL, 11770 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11771 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11772 11773 MI.eraseFromParent(); 11774 return MBB; 11775 } 11776 11777 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11778 // If the function specifically requests inline stack probes, emit them. 11779 if (MF.getFunction().hasFnAttribute("probe-stack")) 11780 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11781 "inline-asm"; 11782 return false; 11783 } 11784 11785 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11786 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11787 unsigned StackAlign = TFI->getStackAlignment(); 11788 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11789 "Unexpected stack alignment"); 11790 // The default stack probe size is 4096 if the function has no 11791 // stack-probe-size attribute. 11792 unsigned StackProbeSize = 4096; 11793 const Function &Fn = MF.getFunction(); 11794 if (Fn.hasFnAttribute("stack-probe-size")) 11795 Fn.getFnAttribute("stack-probe-size") 11796 .getValueAsString() 11797 .getAsInteger(0, StackProbeSize); 11798 // Round down to the stack alignment. 11799 StackProbeSize &= ~(StackAlign - 1); 11800 return StackProbeSize ? StackProbeSize : StackAlign; 11801 } 11802 11803 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11804 // into three phases. In the first phase, it uses pseudo instruction 11805 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11806 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11807 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11808 // MaxCallFrameSize so that it can calculate correct data area pointer. 11809 MachineBasicBlock * 11810 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11811 MachineBasicBlock *MBB) const { 11812 const bool isPPC64 = Subtarget.isPPC64(); 11813 MachineFunction *MF = MBB->getParent(); 11814 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11815 DebugLoc DL = MI.getDebugLoc(); 11816 const unsigned ProbeSize = getStackProbeSize(*MF); 11817 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11818 MachineRegisterInfo &MRI = MF->getRegInfo(); 11819 // The CFG of probing stack looks as 11820 // +-----+ 11821 // | MBB | 11822 // +--+--+ 11823 // | 11824 // +----v----+ 11825 // +--->+ TestMBB +---+ 11826 // | +----+----+ | 11827 // | | | 11828 // | +-----v----+ | 11829 // +---+ BlockMBB | | 11830 // +----------+ | 11831 // | 11832 // +---------+ | 11833 // | TailMBB +<--+ 11834 // +---------+ 11835 // In MBB, calculate previous frame pointer and final stack pointer. 11836 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11837 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11838 // TailMBB is spliced via \p MI. 11839 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11840 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11841 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11842 11843 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11844 MF->insert(MBBIter, TestMBB); 11845 MF->insert(MBBIter, BlockMBB); 11846 MF->insert(MBBIter, TailMBB); 11847 11848 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11849 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11850 11851 Register DstReg = MI.getOperand(0).getReg(); 11852 Register NegSizeReg = MI.getOperand(1).getReg(); 11853 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11854 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11855 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11856 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11857 11858 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11859 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11860 // NegSize. 11861 unsigned ProbeOpc; 11862 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11863 ProbeOpc = 11864 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11865 else 11866 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11867 // and NegSizeReg will be allocated in the same phyreg to avoid 11868 // redundant copy when NegSizeReg has only one use which is current MI and 11869 // will be replaced by PREPARE_PROBED_ALLOCA then. 11870 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11871 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11872 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11873 .addDef(ActualNegSizeReg) 11874 .addReg(NegSizeReg) 11875 .add(MI.getOperand(2)) 11876 .add(MI.getOperand(3)); 11877 11878 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11879 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11880 FinalStackPtr) 11881 .addReg(SPReg) 11882 .addReg(ActualNegSizeReg); 11883 11884 // Materialize a scratch register for update. 11885 int64_t NegProbeSize = -(int64_t)ProbeSize; 11886 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11887 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11888 if (!isInt<16>(NegProbeSize)) { 11889 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11890 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11891 .addImm(NegProbeSize >> 16); 11892 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11893 ScratchReg) 11894 .addReg(TempReg) 11895 .addImm(NegProbeSize & 0xFFFF); 11896 } else 11897 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11898 .addImm(NegProbeSize); 11899 11900 { 11901 // Probing leading residual part. 11902 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11903 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11904 .addReg(ActualNegSizeReg) 11905 .addReg(ScratchReg); 11906 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11907 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11908 .addReg(Div) 11909 .addReg(ScratchReg); 11910 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11911 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11912 .addReg(Mul) 11913 .addReg(ActualNegSizeReg); 11914 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11915 .addReg(FramePointer) 11916 .addReg(SPReg) 11917 .addReg(NegMod); 11918 } 11919 11920 { 11921 // Remaining part should be multiple of ProbeSize. 11922 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11923 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11924 .addReg(SPReg) 11925 .addReg(FinalStackPtr); 11926 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11927 .addImm(PPC::PRED_EQ) 11928 .addReg(CmpResult) 11929 .addMBB(TailMBB); 11930 TestMBB->addSuccessor(BlockMBB); 11931 TestMBB->addSuccessor(TailMBB); 11932 } 11933 11934 { 11935 // Touch the block. 11936 // |P...|P...|P... 11937 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11938 .addReg(FramePointer) 11939 .addReg(SPReg) 11940 .addReg(ScratchReg); 11941 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11942 BlockMBB->addSuccessor(TestMBB); 11943 } 11944 11945 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11946 // DYNAREAOFFSET pseudo instruction to get the future result. 11947 Register MaxCallFrameSizeReg = 11948 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11949 BuildMI(TailMBB, DL, 11950 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11951 MaxCallFrameSizeReg) 11952 .add(MI.getOperand(2)) 11953 .add(MI.getOperand(3)); 11954 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11955 .addReg(SPReg) 11956 .addReg(MaxCallFrameSizeReg); 11957 11958 // Splice instructions after MI to TailMBB. 11959 TailMBB->splice(TailMBB->end(), MBB, 11960 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11961 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11962 MBB->addSuccessor(TestMBB); 11963 11964 // Delete the pseudo instruction. 11965 MI.eraseFromParent(); 11966 11967 ++NumDynamicAllocaProbed; 11968 return TailMBB; 11969 } 11970 11971 MachineBasicBlock * 11972 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11973 MachineBasicBlock *BB) const { 11974 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11975 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11976 if (Subtarget.is64BitELFABI() && 11977 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11978 !Subtarget.isUsingPCRelativeCalls()) { 11979 // Call lowering should have added an r2 operand to indicate a dependence 11980 // on the TOC base pointer value. It can't however, because there is no 11981 // way to mark the dependence as implicit there, and so the stackmap code 11982 // will confuse it with a regular operand. Instead, add the dependence 11983 // here. 11984 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11985 } 11986 11987 return emitPatchPoint(MI, BB); 11988 } 11989 11990 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11991 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11992 return emitEHSjLjSetJmp(MI, BB); 11993 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11994 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11995 return emitEHSjLjLongJmp(MI, BB); 11996 } 11997 11998 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11999 12000 // To "insert" these instructions we actually have to insert their 12001 // control-flow patterns. 12002 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12003 MachineFunction::iterator It = ++BB->getIterator(); 12004 12005 MachineFunction *F = BB->getParent(); 12006 12007 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12008 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12009 MI.getOpcode() == PPC::SELECT_I8) { 12010 SmallVector<MachineOperand, 2> Cond; 12011 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12012 MI.getOpcode() == PPC::SELECT_CC_I8) 12013 Cond.push_back(MI.getOperand(4)); 12014 else 12015 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12016 Cond.push_back(MI.getOperand(1)); 12017 12018 DebugLoc dl = MI.getDebugLoc(); 12019 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12020 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12021 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12022 MI.getOpcode() == PPC::SELECT_CC_F8 || 12023 MI.getOpcode() == PPC::SELECT_CC_F16 || 12024 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12025 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12026 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12027 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12028 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12029 MI.getOpcode() == PPC::SELECT_CC_SPE || 12030 MI.getOpcode() == PPC::SELECT_F4 || 12031 MI.getOpcode() == PPC::SELECT_F8 || 12032 MI.getOpcode() == PPC::SELECT_F16 || 12033 MI.getOpcode() == PPC::SELECT_SPE || 12034 MI.getOpcode() == PPC::SELECT_SPE4 || 12035 MI.getOpcode() == PPC::SELECT_VRRC || 12036 MI.getOpcode() == PPC::SELECT_VSFRC || 12037 MI.getOpcode() == PPC::SELECT_VSSRC || 12038 MI.getOpcode() == PPC::SELECT_VSRC) { 12039 // The incoming instruction knows the destination vreg to set, the 12040 // condition code register to branch on, the true/false values to 12041 // select between, and a branch opcode to use. 12042 12043 // thisMBB: 12044 // ... 12045 // TrueVal = ... 12046 // cmpTY ccX, r1, r2 12047 // bCC copy1MBB 12048 // fallthrough --> copy0MBB 12049 MachineBasicBlock *thisMBB = BB; 12050 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12051 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12052 DebugLoc dl = MI.getDebugLoc(); 12053 F->insert(It, copy0MBB); 12054 F->insert(It, sinkMBB); 12055 12056 // Transfer the remainder of BB and its successor edges to sinkMBB. 12057 sinkMBB->splice(sinkMBB->begin(), BB, 12058 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12059 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12060 12061 // Next, add the true and fallthrough blocks as its successors. 12062 BB->addSuccessor(copy0MBB); 12063 BB->addSuccessor(sinkMBB); 12064 12065 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12066 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12067 MI.getOpcode() == PPC::SELECT_F16 || 12068 MI.getOpcode() == PPC::SELECT_SPE4 || 12069 MI.getOpcode() == PPC::SELECT_SPE || 12070 MI.getOpcode() == PPC::SELECT_VRRC || 12071 MI.getOpcode() == PPC::SELECT_VSFRC || 12072 MI.getOpcode() == PPC::SELECT_VSSRC || 12073 MI.getOpcode() == PPC::SELECT_VSRC) { 12074 BuildMI(BB, dl, TII->get(PPC::BC)) 12075 .addReg(MI.getOperand(1).getReg()) 12076 .addMBB(sinkMBB); 12077 } else { 12078 unsigned SelectPred = MI.getOperand(4).getImm(); 12079 BuildMI(BB, dl, TII->get(PPC::BCC)) 12080 .addImm(SelectPred) 12081 .addReg(MI.getOperand(1).getReg()) 12082 .addMBB(sinkMBB); 12083 } 12084 12085 // copy0MBB: 12086 // %FalseValue = ... 12087 // # fallthrough to sinkMBB 12088 BB = copy0MBB; 12089 12090 // Update machine-CFG edges 12091 BB->addSuccessor(sinkMBB); 12092 12093 // sinkMBB: 12094 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12095 // ... 12096 BB = sinkMBB; 12097 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12098 .addReg(MI.getOperand(3).getReg()) 12099 .addMBB(copy0MBB) 12100 .addReg(MI.getOperand(2).getReg()) 12101 .addMBB(thisMBB); 12102 } else if (MI.getOpcode() == PPC::ReadTB) { 12103 // To read the 64-bit time-base register on a 32-bit target, we read the 12104 // two halves. Should the counter have wrapped while it was being read, we 12105 // need to try again. 12106 // ... 12107 // readLoop: 12108 // mfspr Rx,TBU # load from TBU 12109 // mfspr Ry,TB # load from TB 12110 // mfspr Rz,TBU # load from TBU 12111 // cmpw crX,Rx,Rz # check if 'old'='new' 12112 // bne readLoop # branch if they're not equal 12113 // ... 12114 12115 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12116 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12117 DebugLoc dl = MI.getDebugLoc(); 12118 F->insert(It, readMBB); 12119 F->insert(It, sinkMBB); 12120 12121 // Transfer the remainder of BB and its successor edges to sinkMBB. 12122 sinkMBB->splice(sinkMBB->begin(), BB, 12123 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12124 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12125 12126 BB->addSuccessor(readMBB); 12127 BB = readMBB; 12128 12129 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12130 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12131 Register LoReg = MI.getOperand(0).getReg(); 12132 Register HiReg = MI.getOperand(1).getReg(); 12133 12134 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12135 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12136 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12137 12138 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12139 12140 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12141 .addReg(HiReg) 12142 .addReg(ReadAgainReg); 12143 BuildMI(BB, dl, TII->get(PPC::BCC)) 12144 .addImm(PPC::PRED_NE) 12145 .addReg(CmpReg) 12146 .addMBB(readMBB); 12147 12148 BB->addSuccessor(readMBB); 12149 BB->addSuccessor(sinkMBB); 12150 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12151 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12152 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12153 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12154 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12155 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12156 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12157 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12158 12159 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12160 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12161 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12162 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12163 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12164 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12165 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12166 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12167 12168 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12169 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12170 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12171 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12172 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12173 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12174 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12175 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12176 12177 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12178 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12179 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12180 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12181 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12182 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12183 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12184 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12185 12186 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12187 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12188 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12189 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12190 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12191 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12192 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12193 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12194 12195 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12196 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12197 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12198 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12199 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12200 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12201 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12202 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12203 12204 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12205 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12206 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12207 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12208 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12209 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12210 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12211 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12212 12213 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12214 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12215 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12216 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12217 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12218 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12219 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12220 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12221 12222 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12223 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12224 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12225 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12226 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12227 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12228 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12229 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12230 12231 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12232 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12233 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12234 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12235 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12236 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12237 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12238 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12239 12240 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12241 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12242 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12243 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12244 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12245 BB = EmitAtomicBinary(MI, BB, 4, 0); 12246 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12247 BB = EmitAtomicBinary(MI, BB, 8, 0); 12248 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12249 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12250 (Subtarget.hasPartwordAtomics() && 12251 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12252 (Subtarget.hasPartwordAtomics() && 12253 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12254 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12255 12256 auto LoadMnemonic = PPC::LDARX; 12257 auto StoreMnemonic = PPC::STDCX; 12258 switch (MI.getOpcode()) { 12259 default: 12260 llvm_unreachable("Compare and swap of unknown size"); 12261 case PPC::ATOMIC_CMP_SWAP_I8: 12262 LoadMnemonic = PPC::LBARX; 12263 StoreMnemonic = PPC::STBCX; 12264 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12265 break; 12266 case PPC::ATOMIC_CMP_SWAP_I16: 12267 LoadMnemonic = PPC::LHARX; 12268 StoreMnemonic = PPC::STHCX; 12269 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12270 break; 12271 case PPC::ATOMIC_CMP_SWAP_I32: 12272 LoadMnemonic = PPC::LWARX; 12273 StoreMnemonic = PPC::STWCX; 12274 break; 12275 case PPC::ATOMIC_CMP_SWAP_I64: 12276 LoadMnemonic = PPC::LDARX; 12277 StoreMnemonic = PPC::STDCX; 12278 break; 12279 } 12280 Register dest = MI.getOperand(0).getReg(); 12281 Register ptrA = MI.getOperand(1).getReg(); 12282 Register ptrB = MI.getOperand(2).getReg(); 12283 Register oldval = MI.getOperand(3).getReg(); 12284 Register newval = MI.getOperand(4).getReg(); 12285 DebugLoc dl = MI.getDebugLoc(); 12286 12287 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12288 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12289 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12290 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12291 F->insert(It, loop1MBB); 12292 F->insert(It, loop2MBB); 12293 F->insert(It, midMBB); 12294 F->insert(It, exitMBB); 12295 exitMBB->splice(exitMBB->begin(), BB, 12296 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12297 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12298 12299 // thisMBB: 12300 // ... 12301 // fallthrough --> loopMBB 12302 BB->addSuccessor(loop1MBB); 12303 12304 // loop1MBB: 12305 // l[bhwd]arx dest, ptr 12306 // cmp[wd] dest, oldval 12307 // bne- midMBB 12308 // loop2MBB: 12309 // st[bhwd]cx. newval, ptr 12310 // bne- loopMBB 12311 // b exitBB 12312 // midMBB: 12313 // st[bhwd]cx. dest, ptr 12314 // exitBB: 12315 BB = loop1MBB; 12316 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12317 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12318 .addReg(oldval) 12319 .addReg(dest); 12320 BuildMI(BB, dl, TII->get(PPC::BCC)) 12321 .addImm(PPC::PRED_NE) 12322 .addReg(PPC::CR0) 12323 .addMBB(midMBB); 12324 BB->addSuccessor(loop2MBB); 12325 BB->addSuccessor(midMBB); 12326 12327 BB = loop2MBB; 12328 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12329 .addReg(newval) 12330 .addReg(ptrA) 12331 .addReg(ptrB); 12332 BuildMI(BB, dl, TII->get(PPC::BCC)) 12333 .addImm(PPC::PRED_NE) 12334 .addReg(PPC::CR0) 12335 .addMBB(loop1MBB); 12336 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12337 BB->addSuccessor(loop1MBB); 12338 BB->addSuccessor(exitMBB); 12339 12340 BB = midMBB; 12341 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12342 .addReg(dest) 12343 .addReg(ptrA) 12344 .addReg(ptrB); 12345 BB->addSuccessor(exitMBB); 12346 12347 // exitMBB: 12348 // ... 12349 BB = exitMBB; 12350 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12351 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12352 // We must use 64-bit registers for addresses when targeting 64-bit, 12353 // since we're actually doing arithmetic on them. Other registers 12354 // can be 32-bit. 12355 bool is64bit = Subtarget.isPPC64(); 12356 bool isLittleEndian = Subtarget.isLittleEndian(); 12357 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12358 12359 Register dest = MI.getOperand(0).getReg(); 12360 Register ptrA = MI.getOperand(1).getReg(); 12361 Register ptrB = MI.getOperand(2).getReg(); 12362 Register oldval = MI.getOperand(3).getReg(); 12363 Register newval = MI.getOperand(4).getReg(); 12364 DebugLoc dl = MI.getDebugLoc(); 12365 12366 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12367 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12368 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12369 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12370 F->insert(It, loop1MBB); 12371 F->insert(It, loop2MBB); 12372 F->insert(It, midMBB); 12373 F->insert(It, exitMBB); 12374 exitMBB->splice(exitMBB->begin(), BB, 12375 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12376 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12377 12378 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12379 const TargetRegisterClass *RC = 12380 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12381 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12382 12383 Register PtrReg = RegInfo.createVirtualRegister(RC); 12384 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12385 Register ShiftReg = 12386 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12387 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12388 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12389 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12390 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12391 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12392 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12393 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12394 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12395 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12396 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12397 Register Ptr1Reg; 12398 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12399 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12400 // thisMBB: 12401 // ... 12402 // fallthrough --> loopMBB 12403 BB->addSuccessor(loop1MBB); 12404 12405 // The 4-byte load must be aligned, while a char or short may be 12406 // anywhere in the word. Hence all this nasty bookkeeping code. 12407 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12408 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12409 // xori shift, shift1, 24 [16] 12410 // rlwinm ptr, ptr1, 0, 0, 29 12411 // slw newval2, newval, shift 12412 // slw oldval2, oldval,shift 12413 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12414 // slw mask, mask2, shift 12415 // and newval3, newval2, mask 12416 // and oldval3, oldval2, mask 12417 // loop1MBB: 12418 // lwarx tmpDest, ptr 12419 // and tmp, tmpDest, mask 12420 // cmpw tmp, oldval3 12421 // bne- midMBB 12422 // loop2MBB: 12423 // andc tmp2, tmpDest, mask 12424 // or tmp4, tmp2, newval3 12425 // stwcx. tmp4, ptr 12426 // bne- loop1MBB 12427 // b exitBB 12428 // midMBB: 12429 // stwcx. tmpDest, ptr 12430 // exitBB: 12431 // srw dest, tmpDest, shift 12432 if (ptrA != ZeroReg) { 12433 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12434 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12435 .addReg(ptrA) 12436 .addReg(ptrB); 12437 } else { 12438 Ptr1Reg = ptrB; 12439 } 12440 12441 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12442 // mode. 12443 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12444 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12445 .addImm(3) 12446 .addImm(27) 12447 .addImm(is8bit ? 28 : 27); 12448 if (!isLittleEndian) 12449 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12450 .addReg(Shift1Reg) 12451 .addImm(is8bit ? 24 : 16); 12452 if (is64bit) 12453 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12454 .addReg(Ptr1Reg) 12455 .addImm(0) 12456 .addImm(61); 12457 else 12458 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12459 .addReg(Ptr1Reg) 12460 .addImm(0) 12461 .addImm(0) 12462 .addImm(29); 12463 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12464 .addReg(newval) 12465 .addReg(ShiftReg); 12466 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12467 .addReg(oldval) 12468 .addReg(ShiftReg); 12469 if (is8bit) 12470 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12471 else { 12472 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12473 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12474 .addReg(Mask3Reg) 12475 .addImm(65535); 12476 } 12477 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12478 .addReg(Mask2Reg) 12479 .addReg(ShiftReg); 12480 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12481 .addReg(NewVal2Reg) 12482 .addReg(MaskReg); 12483 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12484 .addReg(OldVal2Reg) 12485 .addReg(MaskReg); 12486 12487 BB = loop1MBB; 12488 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12489 .addReg(ZeroReg) 12490 .addReg(PtrReg); 12491 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12492 .addReg(TmpDestReg) 12493 .addReg(MaskReg); 12494 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12495 .addReg(TmpReg) 12496 .addReg(OldVal3Reg); 12497 BuildMI(BB, dl, TII->get(PPC::BCC)) 12498 .addImm(PPC::PRED_NE) 12499 .addReg(PPC::CR0) 12500 .addMBB(midMBB); 12501 BB->addSuccessor(loop2MBB); 12502 BB->addSuccessor(midMBB); 12503 12504 BB = loop2MBB; 12505 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12506 .addReg(TmpDestReg) 12507 .addReg(MaskReg); 12508 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12509 .addReg(Tmp2Reg) 12510 .addReg(NewVal3Reg); 12511 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12512 .addReg(Tmp4Reg) 12513 .addReg(ZeroReg) 12514 .addReg(PtrReg); 12515 BuildMI(BB, dl, TII->get(PPC::BCC)) 12516 .addImm(PPC::PRED_NE) 12517 .addReg(PPC::CR0) 12518 .addMBB(loop1MBB); 12519 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12520 BB->addSuccessor(loop1MBB); 12521 BB->addSuccessor(exitMBB); 12522 12523 BB = midMBB; 12524 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12525 .addReg(TmpDestReg) 12526 .addReg(ZeroReg) 12527 .addReg(PtrReg); 12528 BB->addSuccessor(exitMBB); 12529 12530 // exitMBB: 12531 // ... 12532 BB = exitMBB; 12533 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12534 .addReg(TmpReg) 12535 .addReg(ShiftReg); 12536 } else if (MI.getOpcode() == PPC::FADDrtz) { 12537 // This pseudo performs an FADD with rounding mode temporarily forced 12538 // to round-to-zero. We emit this via custom inserter since the FPSCR 12539 // is not modeled at the SelectionDAG level. 12540 Register Dest = MI.getOperand(0).getReg(); 12541 Register Src1 = MI.getOperand(1).getReg(); 12542 Register Src2 = MI.getOperand(2).getReg(); 12543 DebugLoc dl = MI.getDebugLoc(); 12544 12545 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12546 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12547 12548 // Save FPSCR value. 12549 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12550 12551 // Set rounding mode to round-to-zero. 12552 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12553 .addImm(31) 12554 .addReg(PPC::RM, RegState::ImplicitDefine); 12555 12556 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12557 .addImm(30) 12558 .addReg(PPC::RM, RegState::ImplicitDefine); 12559 12560 // Perform addition. 12561 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12562 .addReg(Src1) 12563 .addReg(Src2); 12564 if (MI.getFlag(MachineInstr::NoFPExcept)) 12565 MIB.setMIFlag(MachineInstr::NoFPExcept); 12566 12567 // Restore FPSCR value. 12568 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12569 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12570 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12571 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12572 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12573 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12574 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12575 ? PPC::ANDI8_rec 12576 : PPC::ANDI_rec; 12577 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12578 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12579 12580 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12581 Register Dest = RegInfo.createVirtualRegister( 12582 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12583 12584 DebugLoc Dl = MI.getDebugLoc(); 12585 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12586 .addReg(MI.getOperand(1).getReg()) 12587 .addImm(1); 12588 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12589 MI.getOperand(0).getReg()) 12590 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12591 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12592 DebugLoc Dl = MI.getDebugLoc(); 12593 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12594 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12595 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12596 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12597 MI.getOperand(0).getReg()) 12598 .addReg(CRReg); 12599 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12600 DebugLoc Dl = MI.getDebugLoc(); 12601 unsigned Imm = MI.getOperand(1).getImm(); 12602 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12603 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12604 MI.getOperand(0).getReg()) 12605 .addReg(PPC::CR0EQ); 12606 } else if (MI.getOpcode() == PPC::SETRNDi) { 12607 DebugLoc dl = MI.getDebugLoc(); 12608 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12609 12610 // Save FPSCR value. 12611 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12612 12613 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12614 // the following settings: 12615 // 00 Round to nearest 12616 // 01 Round to 0 12617 // 10 Round to +inf 12618 // 11 Round to -inf 12619 12620 // When the operand is immediate, using the two least significant bits of 12621 // the immediate to set the bits 62:63 of FPSCR. 12622 unsigned Mode = MI.getOperand(1).getImm(); 12623 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12624 .addImm(31) 12625 .addReg(PPC::RM, RegState::ImplicitDefine); 12626 12627 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12628 .addImm(30) 12629 .addReg(PPC::RM, RegState::ImplicitDefine); 12630 } else if (MI.getOpcode() == PPC::SETRND) { 12631 DebugLoc dl = MI.getDebugLoc(); 12632 12633 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12634 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12635 // If the target doesn't have DirectMove, we should use stack to do the 12636 // conversion, because the target doesn't have the instructions like mtvsrd 12637 // or mfvsrd to do this conversion directly. 12638 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12639 if (Subtarget.hasDirectMove()) { 12640 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12641 .addReg(SrcReg); 12642 } else { 12643 // Use stack to do the register copy. 12644 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12645 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12646 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12647 if (RC == &PPC::F8RCRegClass) { 12648 // Copy register from F8RCRegClass to G8RCRegclass. 12649 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12650 "Unsupported RegClass."); 12651 12652 StoreOp = PPC::STFD; 12653 LoadOp = PPC::LD; 12654 } else { 12655 // Copy register from G8RCRegClass to F8RCRegclass. 12656 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12657 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12658 "Unsupported RegClass."); 12659 } 12660 12661 MachineFrameInfo &MFI = F->getFrameInfo(); 12662 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12663 12664 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12665 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12666 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12667 MFI.getObjectAlign(FrameIdx)); 12668 12669 // Store the SrcReg into the stack. 12670 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12671 .addReg(SrcReg) 12672 .addImm(0) 12673 .addFrameIndex(FrameIdx) 12674 .addMemOperand(MMOStore); 12675 12676 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12677 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12678 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12679 MFI.getObjectAlign(FrameIdx)); 12680 12681 // Load from the stack where SrcReg is stored, and save to DestReg, 12682 // so we have done the RegClass conversion from RegClass::SrcReg to 12683 // RegClass::DestReg. 12684 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12685 .addImm(0) 12686 .addFrameIndex(FrameIdx) 12687 .addMemOperand(MMOLoad); 12688 } 12689 }; 12690 12691 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12692 12693 // Save FPSCR value. 12694 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12695 12696 // When the operand is gprc register, use two least significant bits of the 12697 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12698 // 12699 // copy OldFPSCRTmpReg, OldFPSCRReg 12700 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12701 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12702 // copy NewFPSCRReg, NewFPSCRTmpReg 12703 // mtfsf 255, NewFPSCRReg 12704 MachineOperand SrcOp = MI.getOperand(1); 12705 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12706 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12707 12708 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12709 12710 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12711 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12712 12713 // The first operand of INSERT_SUBREG should be a register which has 12714 // subregisters, we only care about its RegClass, so we should use an 12715 // IMPLICIT_DEF register. 12716 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12717 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12718 .addReg(ImDefReg) 12719 .add(SrcOp) 12720 .addImm(1); 12721 12722 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12723 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12724 .addReg(OldFPSCRTmpReg) 12725 .addReg(ExtSrcReg) 12726 .addImm(0) 12727 .addImm(62); 12728 12729 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12730 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12731 12732 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12733 // bits of FPSCR. 12734 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12735 .addImm(255) 12736 .addReg(NewFPSCRReg) 12737 .addImm(0) 12738 .addImm(0); 12739 } else if (MI.getOpcode() == PPC::SETFLM) { 12740 DebugLoc Dl = MI.getDebugLoc(); 12741 12742 // Result of setflm is previous FPSCR content, so we need to save it first. 12743 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12744 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12745 12746 // Put bits in 32:63 to FPSCR. 12747 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12748 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12749 .addImm(255) 12750 .addReg(NewFPSCRReg) 12751 .addImm(0) 12752 .addImm(0); 12753 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12754 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12755 return emitProbedAlloca(MI, BB); 12756 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12757 DebugLoc DL = MI.getDebugLoc(); 12758 Register Src = MI.getOperand(2).getReg(); 12759 Register Lo = MI.getOperand(0).getReg(); 12760 Register Hi = MI.getOperand(1).getReg(); 12761 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12762 .addDef(Lo) 12763 .addUse(Src, 0, PPC::sub_gp8_x1); 12764 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12765 .addDef(Hi) 12766 .addUse(Src, 0, PPC::sub_gp8_x0); 12767 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12768 MI.getOpcode() == PPC::STQX_PSEUDO) { 12769 DebugLoc DL = MI.getDebugLoc(); 12770 // Ptr is used as the ptr_rc_no_r0 part 12771 // of LQ/STQ's memory operand and adding result of RA and RB, 12772 // so it has to be g8rc_and_g8rc_nox0. 12773 Register Ptr = 12774 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12775 Register Val = MI.getOperand(0).getReg(); 12776 Register RA = MI.getOperand(1).getReg(); 12777 Register RB = MI.getOperand(2).getReg(); 12778 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12779 BuildMI(*BB, MI, DL, 12780 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12781 : TII->get(PPC::STQ)) 12782 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12783 .addImm(0) 12784 .addReg(Ptr); 12785 } else { 12786 llvm_unreachable("Unexpected instr type to insert"); 12787 } 12788 12789 MI.eraseFromParent(); // The pseudo instruction is gone now. 12790 return BB; 12791 } 12792 12793 //===----------------------------------------------------------------------===// 12794 // Target Optimization Hooks 12795 //===----------------------------------------------------------------------===// 12796 12797 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12798 // For the estimates, convergence is quadratic, so we essentially double the 12799 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12800 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12801 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12802 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12803 if (VT.getScalarType() == MVT::f64) 12804 RefinementSteps++; 12805 return RefinementSteps; 12806 } 12807 12808 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12809 const DenormalMode &Mode) const { 12810 // We only have VSX Vector Test for software Square Root. 12811 EVT VT = Op.getValueType(); 12812 if (!isTypeLegal(MVT::i1) || 12813 (VT != MVT::f64 && 12814 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12815 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12816 12817 SDLoc DL(Op); 12818 // The output register of FTSQRT is CR field. 12819 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12820 // ftsqrt BF,FRB 12821 // Let e_b be the unbiased exponent of the double-precision 12822 // floating-point operand in register FRB. 12823 // fe_flag is set to 1 if either of the following conditions occurs. 12824 // - The double-precision floating-point operand in register FRB is a zero, 12825 // a NaN, or an infinity, or a negative value. 12826 // - e_b is less than or equal to -970. 12827 // Otherwise fe_flag is set to 0. 12828 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12829 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12830 // exponent is less than -970) 12831 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12832 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12833 FTSQRT, SRIdxVal), 12834 0); 12835 } 12836 12837 SDValue 12838 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12839 SelectionDAG &DAG) const { 12840 // We only have VSX Vector Square Root. 12841 EVT VT = Op.getValueType(); 12842 if (VT != MVT::f64 && 12843 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12844 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12845 12846 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12847 } 12848 12849 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12850 int Enabled, int &RefinementSteps, 12851 bool &UseOneConstNR, 12852 bool Reciprocal) const { 12853 EVT VT = Operand.getValueType(); 12854 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12855 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12856 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12857 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12858 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12859 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12860 12861 // The Newton-Raphson computation with a single constant does not provide 12862 // enough accuracy on some CPUs. 12863 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12864 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12865 } 12866 return SDValue(); 12867 } 12868 12869 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12870 int Enabled, 12871 int &RefinementSteps) const { 12872 EVT VT = Operand.getValueType(); 12873 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12874 (VT == MVT::f64 && Subtarget.hasFRE()) || 12875 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12876 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12877 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12878 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12879 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12880 } 12881 return SDValue(); 12882 } 12883 12884 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12885 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12886 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12887 // enabled for division), this functionality is redundant with the default 12888 // combiner logic (once the division -> reciprocal/multiply transformation 12889 // has taken place). As a result, this matters more for older cores than for 12890 // newer ones. 12891 12892 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12893 // reciprocal if there are two or more FDIVs (for embedded cores with only 12894 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12895 switch (Subtarget.getCPUDirective()) { 12896 default: 12897 return 3; 12898 case PPC::DIR_440: 12899 case PPC::DIR_A2: 12900 case PPC::DIR_E500: 12901 case PPC::DIR_E500mc: 12902 case PPC::DIR_E5500: 12903 return 2; 12904 } 12905 } 12906 12907 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12908 // collapsed, and so we need to look through chains of them. 12909 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12910 int64_t& Offset, SelectionDAG &DAG) { 12911 if (DAG.isBaseWithConstantOffset(Loc)) { 12912 Base = Loc.getOperand(0); 12913 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12914 12915 // The base might itself be a base plus an offset, and if so, accumulate 12916 // that as well. 12917 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12918 } 12919 } 12920 12921 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12922 unsigned Bytes, int Dist, 12923 SelectionDAG &DAG) { 12924 if (VT.getSizeInBits() / 8 != Bytes) 12925 return false; 12926 12927 SDValue BaseLoc = Base->getBasePtr(); 12928 if (Loc.getOpcode() == ISD::FrameIndex) { 12929 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12930 return false; 12931 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12932 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12933 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12934 int FS = MFI.getObjectSize(FI); 12935 int BFS = MFI.getObjectSize(BFI); 12936 if (FS != BFS || FS != (int)Bytes) return false; 12937 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12938 } 12939 12940 SDValue Base1 = Loc, Base2 = BaseLoc; 12941 int64_t Offset1 = 0, Offset2 = 0; 12942 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12943 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12944 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12945 return true; 12946 12947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12948 const GlobalValue *GV1 = nullptr; 12949 const GlobalValue *GV2 = nullptr; 12950 Offset1 = 0; 12951 Offset2 = 0; 12952 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12953 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12954 if (isGA1 && isGA2 && GV1 == GV2) 12955 return Offset1 == (Offset2 + Dist*Bytes); 12956 return false; 12957 } 12958 12959 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12960 // not enforce equality of the chain operands. 12961 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12962 unsigned Bytes, int Dist, 12963 SelectionDAG &DAG) { 12964 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12965 EVT VT = LS->getMemoryVT(); 12966 SDValue Loc = LS->getBasePtr(); 12967 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12968 } 12969 12970 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12971 EVT VT; 12972 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12973 default: return false; 12974 case Intrinsic::ppc_altivec_lvx: 12975 case Intrinsic::ppc_altivec_lvxl: 12976 case Intrinsic::ppc_vsx_lxvw4x: 12977 case Intrinsic::ppc_vsx_lxvw4x_be: 12978 VT = MVT::v4i32; 12979 break; 12980 case Intrinsic::ppc_vsx_lxvd2x: 12981 case Intrinsic::ppc_vsx_lxvd2x_be: 12982 VT = MVT::v2f64; 12983 break; 12984 case Intrinsic::ppc_altivec_lvebx: 12985 VT = MVT::i8; 12986 break; 12987 case Intrinsic::ppc_altivec_lvehx: 12988 VT = MVT::i16; 12989 break; 12990 case Intrinsic::ppc_altivec_lvewx: 12991 VT = MVT::i32; 12992 break; 12993 } 12994 12995 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12996 } 12997 12998 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12999 EVT VT; 13000 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13001 default: return false; 13002 case Intrinsic::ppc_altivec_stvx: 13003 case Intrinsic::ppc_altivec_stvxl: 13004 case Intrinsic::ppc_vsx_stxvw4x: 13005 VT = MVT::v4i32; 13006 break; 13007 case Intrinsic::ppc_vsx_stxvd2x: 13008 VT = MVT::v2f64; 13009 break; 13010 case Intrinsic::ppc_vsx_stxvw4x_be: 13011 VT = MVT::v4i32; 13012 break; 13013 case Intrinsic::ppc_vsx_stxvd2x_be: 13014 VT = MVT::v2f64; 13015 break; 13016 case Intrinsic::ppc_altivec_stvebx: 13017 VT = MVT::i8; 13018 break; 13019 case Intrinsic::ppc_altivec_stvehx: 13020 VT = MVT::i16; 13021 break; 13022 case Intrinsic::ppc_altivec_stvewx: 13023 VT = MVT::i32; 13024 break; 13025 } 13026 13027 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13028 } 13029 13030 return false; 13031 } 13032 13033 // Return true is there is a nearyby consecutive load to the one provided 13034 // (regardless of alignment). We search up and down the chain, looking though 13035 // token factors and other loads (but nothing else). As a result, a true result 13036 // indicates that it is safe to create a new consecutive load adjacent to the 13037 // load provided. 13038 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13039 SDValue Chain = LD->getChain(); 13040 EVT VT = LD->getMemoryVT(); 13041 13042 SmallSet<SDNode *, 16> LoadRoots; 13043 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13044 SmallSet<SDNode *, 16> Visited; 13045 13046 // First, search up the chain, branching to follow all token-factor operands. 13047 // If we find a consecutive load, then we're done, otherwise, record all 13048 // nodes just above the top-level loads and token factors. 13049 while (!Queue.empty()) { 13050 SDNode *ChainNext = Queue.pop_back_val(); 13051 if (!Visited.insert(ChainNext).second) 13052 continue; 13053 13054 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13055 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13056 return true; 13057 13058 if (!Visited.count(ChainLD->getChain().getNode())) 13059 Queue.push_back(ChainLD->getChain().getNode()); 13060 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13061 for (const SDUse &O : ChainNext->ops()) 13062 if (!Visited.count(O.getNode())) 13063 Queue.push_back(O.getNode()); 13064 } else 13065 LoadRoots.insert(ChainNext); 13066 } 13067 13068 // Second, search down the chain, starting from the top-level nodes recorded 13069 // in the first phase. These top-level nodes are the nodes just above all 13070 // loads and token factors. Starting with their uses, recursively look though 13071 // all loads (just the chain uses) and token factors to find a consecutive 13072 // load. 13073 Visited.clear(); 13074 Queue.clear(); 13075 13076 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13077 IE = LoadRoots.end(); I != IE; ++I) { 13078 Queue.push_back(*I); 13079 13080 while (!Queue.empty()) { 13081 SDNode *LoadRoot = Queue.pop_back_val(); 13082 if (!Visited.insert(LoadRoot).second) 13083 continue; 13084 13085 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13086 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13087 return true; 13088 13089 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13090 UE = LoadRoot->use_end(); UI != UE; ++UI) 13091 if (((isa<MemSDNode>(*UI) && 13092 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13093 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13094 Queue.push_back(*UI); 13095 } 13096 } 13097 13098 return false; 13099 } 13100 13101 /// This function is called when we have proved that a SETCC node can be replaced 13102 /// by subtraction (and other supporting instructions) so that the result of 13103 /// comparison is kept in a GPR instead of CR. This function is purely for 13104 /// codegen purposes and has some flags to guide the codegen process. 13105 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13106 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13107 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13108 13109 // Zero extend the operands to the largest legal integer. Originally, they 13110 // must be of a strictly smaller size. 13111 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13112 DAG.getConstant(Size, DL, MVT::i32)); 13113 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13114 DAG.getConstant(Size, DL, MVT::i32)); 13115 13116 // Swap if needed. Depends on the condition code. 13117 if (Swap) 13118 std::swap(Op0, Op1); 13119 13120 // Subtract extended integers. 13121 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13122 13123 // Move the sign bit to the least significant position and zero out the rest. 13124 // Now the least significant bit carries the result of original comparison. 13125 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13126 DAG.getConstant(Size - 1, DL, MVT::i32)); 13127 auto Final = Shifted; 13128 13129 // Complement the result if needed. Based on the condition code. 13130 if (Complement) 13131 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13132 DAG.getConstant(1, DL, MVT::i64)); 13133 13134 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13135 } 13136 13137 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13138 DAGCombinerInfo &DCI) const { 13139 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13140 13141 SelectionDAG &DAG = DCI.DAG; 13142 SDLoc DL(N); 13143 13144 // Size of integers being compared has a critical role in the following 13145 // analysis, so we prefer to do this when all types are legal. 13146 if (!DCI.isAfterLegalizeDAG()) 13147 return SDValue(); 13148 13149 // If all users of SETCC extend its value to a legal integer type 13150 // then we replace SETCC with a subtraction 13151 for (SDNode::use_iterator UI = N->use_begin(), 13152 UE = N->use_end(); UI != UE; ++UI) { 13153 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13154 return SDValue(); 13155 } 13156 13157 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13158 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13159 13160 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13161 13162 if (OpSize < Size) { 13163 switch (CC) { 13164 default: break; 13165 case ISD::SETULT: 13166 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13167 case ISD::SETULE: 13168 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13169 case ISD::SETUGT: 13170 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13171 case ISD::SETUGE: 13172 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13173 } 13174 } 13175 13176 return SDValue(); 13177 } 13178 13179 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13180 DAGCombinerInfo &DCI) const { 13181 SelectionDAG &DAG = DCI.DAG; 13182 SDLoc dl(N); 13183 13184 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13185 // If we're tracking CR bits, we need to be careful that we don't have: 13186 // trunc(binary-ops(zext(x), zext(y))) 13187 // or 13188 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13189 // such that we're unnecessarily moving things into GPRs when it would be 13190 // better to keep them in CR bits. 13191 13192 // Note that trunc here can be an actual i1 trunc, or can be the effective 13193 // truncation that comes from a setcc or select_cc. 13194 if (N->getOpcode() == ISD::TRUNCATE && 13195 N->getValueType(0) != MVT::i1) 13196 return SDValue(); 13197 13198 if (N->getOperand(0).getValueType() != MVT::i32 && 13199 N->getOperand(0).getValueType() != MVT::i64) 13200 return SDValue(); 13201 13202 if (N->getOpcode() == ISD::SETCC || 13203 N->getOpcode() == ISD::SELECT_CC) { 13204 // If we're looking at a comparison, then we need to make sure that the 13205 // high bits (all except for the first) don't matter the result. 13206 ISD::CondCode CC = 13207 cast<CondCodeSDNode>(N->getOperand( 13208 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13209 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13210 13211 if (ISD::isSignedIntSetCC(CC)) { 13212 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13213 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13214 return SDValue(); 13215 } else if (ISD::isUnsignedIntSetCC(CC)) { 13216 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13217 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13218 !DAG.MaskedValueIsZero(N->getOperand(1), 13219 APInt::getHighBitsSet(OpBits, OpBits-1))) 13220 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13221 : SDValue()); 13222 } else { 13223 // This is neither a signed nor an unsigned comparison, just make sure 13224 // that the high bits are equal. 13225 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13226 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13227 13228 // We don't really care about what is known about the first bit (if 13229 // anything), so pretend that it is known zero for both to ensure they can 13230 // be compared as constants. 13231 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13232 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13233 13234 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13235 Op1Known.getConstant() != Op2Known.getConstant()) 13236 return SDValue(); 13237 } 13238 } 13239 13240 // We now know that the higher-order bits are irrelevant, we just need to 13241 // make sure that all of the intermediate operations are bit operations, and 13242 // all inputs are extensions. 13243 if (N->getOperand(0).getOpcode() != ISD::AND && 13244 N->getOperand(0).getOpcode() != ISD::OR && 13245 N->getOperand(0).getOpcode() != ISD::XOR && 13246 N->getOperand(0).getOpcode() != ISD::SELECT && 13247 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13248 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13249 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13250 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13251 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13252 return SDValue(); 13253 13254 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13255 N->getOperand(1).getOpcode() != ISD::AND && 13256 N->getOperand(1).getOpcode() != ISD::OR && 13257 N->getOperand(1).getOpcode() != ISD::XOR && 13258 N->getOperand(1).getOpcode() != ISD::SELECT && 13259 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13260 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13261 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13262 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13263 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13264 return SDValue(); 13265 13266 SmallVector<SDValue, 4> Inputs; 13267 SmallVector<SDValue, 8> BinOps, PromOps; 13268 SmallPtrSet<SDNode *, 16> Visited; 13269 13270 for (unsigned i = 0; i < 2; ++i) { 13271 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13272 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13273 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13274 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13275 isa<ConstantSDNode>(N->getOperand(i))) 13276 Inputs.push_back(N->getOperand(i)); 13277 else 13278 BinOps.push_back(N->getOperand(i)); 13279 13280 if (N->getOpcode() == ISD::TRUNCATE) 13281 break; 13282 } 13283 13284 // Visit all inputs, collect all binary operations (and, or, xor and 13285 // select) that are all fed by extensions. 13286 while (!BinOps.empty()) { 13287 SDValue BinOp = BinOps.pop_back_val(); 13288 13289 if (!Visited.insert(BinOp.getNode()).second) 13290 continue; 13291 13292 PromOps.push_back(BinOp); 13293 13294 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13295 // The condition of the select is not promoted. 13296 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13297 continue; 13298 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13299 continue; 13300 13301 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13302 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13303 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13304 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13305 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13306 Inputs.push_back(BinOp.getOperand(i)); 13307 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13308 BinOp.getOperand(i).getOpcode() == ISD::OR || 13309 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13310 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13311 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13312 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13313 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13314 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13315 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13316 BinOps.push_back(BinOp.getOperand(i)); 13317 } else { 13318 // We have an input that is not an extension or another binary 13319 // operation; we'll abort this transformation. 13320 return SDValue(); 13321 } 13322 } 13323 } 13324 13325 // Make sure that this is a self-contained cluster of operations (which 13326 // is not quite the same thing as saying that everything has only one 13327 // use). 13328 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13329 if (isa<ConstantSDNode>(Inputs[i])) 13330 continue; 13331 13332 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13333 UE = Inputs[i].getNode()->use_end(); 13334 UI != UE; ++UI) { 13335 SDNode *User = *UI; 13336 if (User != N && !Visited.count(User)) 13337 return SDValue(); 13338 13339 // Make sure that we're not going to promote the non-output-value 13340 // operand(s) or SELECT or SELECT_CC. 13341 // FIXME: Although we could sometimes handle this, and it does occur in 13342 // practice that one of the condition inputs to the select is also one of 13343 // the outputs, we currently can't deal with this. 13344 if (User->getOpcode() == ISD::SELECT) { 13345 if (User->getOperand(0) == Inputs[i]) 13346 return SDValue(); 13347 } else if (User->getOpcode() == ISD::SELECT_CC) { 13348 if (User->getOperand(0) == Inputs[i] || 13349 User->getOperand(1) == Inputs[i]) 13350 return SDValue(); 13351 } 13352 } 13353 } 13354 13355 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13356 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13357 UE = PromOps[i].getNode()->use_end(); 13358 UI != UE; ++UI) { 13359 SDNode *User = *UI; 13360 if (User != N && !Visited.count(User)) 13361 return SDValue(); 13362 13363 // Make sure that we're not going to promote the non-output-value 13364 // operand(s) or SELECT or SELECT_CC. 13365 // FIXME: Although we could sometimes handle this, and it does occur in 13366 // practice that one of the condition inputs to the select is also one of 13367 // the outputs, we currently can't deal with this. 13368 if (User->getOpcode() == ISD::SELECT) { 13369 if (User->getOperand(0) == PromOps[i]) 13370 return SDValue(); 13371 } else if (User->getOpcode() == ISD::SELECT_CC) { 13372 if (User->getOperand(0) == PromOps[i] || 13373 User->getOperand(1) == PromOps[i]) 13374 return SDValue(); 13375 } 13376 } 13377 } 13378 13379 // Replace all inputs with the extension operand. 13380 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13381 // Constants may have users outside the cluster of to-be-promoted nodes, 13382 // and so we need to replace those as we do the promotions. 13383 if (isa<ConstantSDNode>(Inputs[i])) 13384 continue; 13385 else 13386 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13387 } 13388 13389 std::list<HandleSDNode> PromOpHandles; 13390 for (auto &PromOp : PromOps) 13391 PromOpHandles.emplace_back(PromOp); 13392 13393 // Replace all operations (these are all the same, but have a different 13394 // (i1) return type). DAG.getNode will validate that the types of 13395 // a binary operator match, so go through the list in reverse so that 13396 // we've likely promoted both operands first. Any intermediate truncations or 13397 // extensions disappear. 13398 while (!PromOpHandles.empty()) { 13399 SDValue PromOp = PromOpHandles.back().getValue(); 13400 PromOpHandles.pop_back(); 13401 13402 if (PromOp.getOpcode() == ISD::TRUNCATE || 13403 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13404 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13405 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13406 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13407 PromOp.getOperand(0).getValueType() != MVT::i1) { 13408 // The operand is not yet ready (see comment below). 13409 PromOpHandles.emplace_front(PromOp); 13410 continue; 13411 } 13412 13413 SDValue RepValue = PromOp.getOperand(0); 13414 if (isa<ConstantSDNode>(RepValue)) 13415 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13416 13417 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13418 continue; 13419 } 13420 13421 unsigned C; 13422 switch (PromOp.getOpcode()) { 13423 default: C = 0; break; 13424 case ISD::SELECT: C = 1; break; 13425 case ISD::SELECT_CC: C = 2; break; 13426 } 13427 13428 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13429 PromOp.getOperand(C).getValueType() != MVT::i1) || 13430 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13431 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13432 // The to-be-promoted operands of this node have not yet been 13433 // promoted (this should be rare because we're going through the 13434 // list backward, but if one of the operands has several users in 13435 // this cluster of to-be-promoted nodes, it is possible). 13436 PromOpHandles.emplace_front(PromOp); 13437 continue; 13438 } 13439 13440 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13441 PromOp.getNode()->op_end()); 13442 13443 // If there are any constant inputs, make sure they're replaced now. 13444 for (unsigned i = 0; i < 2; ++i) 13445 if (isa<ConstantSDNode>(Ops[C+i])) 13446 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13447 13448 DAG.ReplaceAllUsesOfValueWith(PromOp, 13449 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13450 } 13451 13452 // Now we're left with the initial truncation itself. 13453 if (N->getOpcode() == ISD::TRUNCATE) 13454 return N->getOperand(0); 13455 13456 // Otherwise, this is a comparison. The operands to be compared have just 13457 // changed type (to i1), but everything else is the same. 13458 return SDValue(N, 0); 13459 } 13460 13461 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13462 DAGCombinerInfo &DCI) const { 13463 SelectionDAG &DAG = DCI.DAG; 13464 SDLoc dl(N); 13465 13466 // If we're tracking CR bits, we need to be careful that we don't have: 13467 // zext(binary-ops(trunc(x), trunc(y))) 13468 // or 13469 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13470 // such that we're unnecessarily moving things into CR bits that can more 13471 // efficiently stay in GPRs. Note that if we're not certain that the high 13472 // bits are set as required by the final extension, we still may need to do 13473 // some masking to get the proper behavior. 13474 13475 // This same functionality is important on PPC64 when dealing with 13476 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13477 // the return values of functions. Because it is so similar, it is handled 13478 // here as well. 13479 13480 if (N->getValueType(0) != MVT::i32 && 13481 N->getValueType(0) != MVT::i64) 13482 return SDValue(); 13483 13484 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13485 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13486 return SDValue(); 13487 13488 if (N->getOperand(0).getOpcode() != ISD::AND && 13489 N->getOperand(0).getOpcode() != ISD::OR && 13490 N->getOperand(0).getOpcode() != ISD::XOR && 13491 N->getOperand(0).getOpcode() != ISD::SELECT && 13492 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13493 return SDValue(); 13494 13495 SmallVector<SDValue, 4> Inputs; 13496 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13497 SmallPtrSet<SDNode *, 16> Visited; 13498 13499 // Visit all inputs, collect all binary operations (and, or, xor and 13500 // select) that are all fed by truncations. 13501 while (!BinOps.empty()) { 13502 SDValue BinOp = BinOps.pop_back_val(); 13503 13504 if (!Visited.insert(BinOp.getNode()).second) 13505 continue; 13506 13507 PromOps.push_back(BinOp); 13508 13509 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13510 // The condition of the select is not promoted. 13511 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13512 continue; 13513 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13514 continue; 13515 13516 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13517 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13518 Inputs.push_back(BinOp.getOperand(i)); 13519 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13520 BinOp.getOperand(i).getOpcode() == ISD::OR || 13521 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13522 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13523 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13524 BinOps.push_back(BinOp.getOperand(i)); 13525 } else { 13526 // We have an input that is not a truncation or another binary 13527 // operation; we'll abort this transformation. 13528 return SDValue(); 13529 } 13530 } 13531 } 13532 13533 // The operands of a select that must be truncated when the select is 13534 // promoted because the operand is actually part of the to-be-promoted set. 13535 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13536 13537 // Make sure that this is a self-contained cluster of operations (which 13538 // is not quite the same thing as saying that everything has only one 13539 // use). 13540 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13541 if (isa<ConstantSDNode>(Inputs[i])) 13542 continue; 13543 13544 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13545 UE = Inputs[i].getNode()->use_end(); 13546 UI != UE; ++UI) { 13547 SDNode *User = *UI; 13548 if (User != N && !Visited.count(User)) 13549 return SDValue(); 13550 13551 // If we're going to promote the non-output-value operand(s) or SELECT or 13552 // SELECT_CC, record them for truncation. 13553 if (User->getOpcode() == ISD::SELECT) { 13554 if (User->getOperand(0) == Inputs[i]) 13555 SelectTruncOp[0].insert(std::make_pair(User, 13556 User->getOperand(0).getValueType())); 13557 } else if (User->getOpcode() == ISD::SELECT_CC) { 13558 if (User->getOperand(0) == Inputs[i]) 13559 SelectTruncOp[0].insert(std::make_pair(User, 13560 User->getOperand(0).getValueType())); 13561 if (User->getOperand(1) == Inputs[i]) 13562 SelectTruncOp[1].insert(std::make_pair(User, 13563 User->getOperand(1).getValueType())); 13564 } 13565 } 13566 } 13567 13568 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13569 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13570 UE = PromOps[i].getNode()->use_end(); 13571 UI != UE; ++UI) { 13572 SDNode *User = *UI; 13573 if (User != N && !Visited.count(User)) 13574 return SDValue(); 13575 13576 // If we're going to promote the non-output-value operand(s) or SELECT or 13577 // SELECT_CC, record them for truncation. 13578 if (User->getOpcode() == ISD::SELECT) { 13579 if (User->getOperand(0) == PromOps[i]) 13580 SelectTruncOp[0].insert(std::make_pair(User, 13581 User->getOperand(0).getValueType())); 13582 } else if (User->getOpcode() == ISD::SELECT_CC) { 13583 if (User->getOperand(0) == PromOps[i]) 13584 SelectTruncOp[0].insert(std::make_pair(User, 13585 User->getOperand(0).getValueType())); 13586 if (User->getOperand(1) == PromOps[i]) 13587 SelectTruncOp[1].insert(std::make_pair(User, 13588 User->getOperand(1).getValueType())); 13589 } 13590 } 13591 } 13592 13593 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13594 bool ReallyNeedsExt = false; 13595 if (N->getOpcode() != ISD::ANY_EXTEND) { 13596 // If all of the inputs are not already sign/zero extended, then 13597 // we'll still need to do that at the end. 13598 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13599 if (isa<ConstantSDNode>(Inputs[i])) 13600 continue; 13601 13602 unsigned OpBits = 13603 Inputs[i].getOperand(0).getValueSizeInBits(); 13604 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13605 13606 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13607 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13608 APInt::getHighBitsSet(OpBits, 13609 OpBits-PromBits))) || 13610 (N->getOpcode() == ISD::SIGN_EXTEND && 13611 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13612 (OpBits-(PromBits-1)))) { 13613 ReallyNeedsExt = true; 13614 break; 13615 } 13616 } 13617 } 13618 13619 // Replace all inputs, either with the truncation operand, or a 13620 // truncation or extension to the final output type. 13621 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13622 // Constant inputs need to be replaced with the to-be-promoted nodes that 13623 // use them because they might have users outside of the cluster of 13624 // promoted nodes. 13625 if (isa<ConstantSDNode>(Inputs[i])) 13626 continue; 13627 13628 SDValue InSrc = Inputs[i].getOperand(0); 13629 if (Inputs[i].getValueType() == N->getValueType(0)) 13630 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13631 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13632 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13633 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13634 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13635 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13636 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13637 else 13638 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13639 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13640 } 13641 13642 std::list<HandleSDNode> PromOpHandles; 13643 for (auto &PromOp : PromOps) 13644 PromOpHandles.emplace_back(PromOp); 13645 13646 // Replace all operations (these are all the same, but have a different 13647 // (promoted) return type). DAG.getNode will validate that the types of 13648 // a binary operator match, so go through the list in reverse so that 13649 // we've likely promoted both operands first. 13650 while (!PromOpHandles.empty()) { 13651 SDValue PromOp = PromOpHandles.back().getValue(); 13652 PromOpHandles.pop_back(); 13653 13654 unsigned C; 13655 switch (PromOp.getOpcode()) { 13656 default: C = 0; break; 13657 case ISD::SELECT: C = 1; break; 13658 case ISD::SELECT_CC: C = 2; break; 13659 } 13660 13661 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13662 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13663 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13664 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13665 // The to-be-promoted operands of this node have not yet been 13666 // promoted (this should be rare because we're going through the 13667 // list backward, but if one of the operands has several users in 13668 // this cluster of to-be-promoted nodes, it is possible). 13669 PromOpHandles.emplace_front(PromOp); 13670 continue; 13671 } 13672 13673 // For SELECT and SELECT_CC nodes, we do a similar check for any 13674 // to-be-promoted comparison inputs. 13675 if (PromOp.getOpcode() == ISD::SELECT || 13676 PromOp.getOpcode() == ISD::SELECT_CC) { 13677 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13678 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13679 (SelectTruncOp[1].count(PromOp.getNode()) && 13680 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13681 PromOpHandles.emplace_front(PromOp); 13682 continue; 13683 } 13684 } 13685 13686 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13687 PromOp.getNode()->op_end()); 13688 13689 // If this node has constant inputs, then they'll need to be promoted here. 13690 for (unsigned i = 0; i < 2; ++i) { 13691 if (!isa<ConstantSDNode>(Ops[C+i])) 13692 continue; 13693 if (Ops[C+i].getValueType() == N->getValueType(0)) 13694 continue; 13695 13696 if (N->getOpcode() == ISD::SIGN_EXTEND) 13697 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13698 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13699 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13700 else 13701 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13702 } 13703 13704 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13705 // truncate them again to the original value type. 13706 if (PromOp.getOpcode() == ISD::SELECT || 13707 PromOp.getOpcode() == ISD::SELECT_CC) { 13708 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13709 if (SI0 != SelectTruncOp[0].end()) 13710 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13711 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13712 if (SI1 != SelectTruncOp[1].end()) 13713 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13714 } 13715 13716 DAG.ReplaceAllUsesOfValueWith(PromOp, 13717 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13718 } 13719 13720 // Now we're left with the initial extension itself. 13721 if (!ReallyNeedsExt) 13722 return N->getOperand(0); 13723 13724 // To zero extend, just mask off everything except for the first bit (in the 13725 // i1 case). 13726 if (N->getOpcode() == ISD::ZERO_EXTEND) 13727 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13728 DAG.getConstant(APInt::getLowBitsSet( 13729 N->getValueSizeInBits(0), PromBits), 13730 dl, N->getValueType(0))); 13731 13732 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13733 "Invalid extension type"); 13734 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13735 SDValue ShiftCst = 13736 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13737 return DAG.getNode( 13738 ISD::SRA, dl, N->getValueType(0), 13739 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13740 ShiftCst); 13741 } 13742 13743 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13744 DAGCombinerInfo &DCI) const { 13745 assert(N->getOpcode() == ISD::SETCC && 13746 "Should be called with a SETCC node"); 13747 13748 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13749 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13750 SDValue LHS = N->getOperand(0); 13751 SDValue RHS = N->getOperand(1); 13752 13753 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13754 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13755 LHS.hasOneUse()) 13756 std::swap(LHS, RHS); 13757 13758 // x == 0-y --> x+y == 0 13759 // x != 0-y --> x+y != 0 13760 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13761 RHS.hasOneUse()) { 13762 SDLoc DL(N); 13763 SelectionDAG &DAG = DCI.DAG; 13764 EVT VT = N->getValueType(0); 13765 EVT OpVT = LHS.getValueType(); 13766 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13767 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13768 } 13769 } 13770 13771 return DAGCombineTruncBoolExt(N, DCI); 13772 } 13773 13774 // Is this an extending load from an f32 to an f64? 13775 static bool isFPExtLoad(SDValue Op) { 13776 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13777 return LD->getExtensionType() == ISD::EXTLOAD && 13778 Op.getValueType() == MVT::f64; 13779 return false; 13780 } 13781 13782 /// Reduces the number of fp-to-int conversion when building a vector. 13783 /// 13784 /// If this vector is built out of floating to integer conversions, 13785 /// transform it to a vector built out of floating point values followed by a 13786 /// single floating to integer conversion of the vector. 13787 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13788 /// becomes (fptosi (build_vector ($A, $B, ...))) 13789 SDValue PPCTargetLowering:: 13790 combineElementTruncationToVectorTruncation(SDNode *N, 13791 DAGCombinerInfo &DCI) const { 13792 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13793 "Should be called with a BUILD_VECTOR node"); 13794 13795 SelectionDAG &DAG = DCI.DAG; 13796 SDLoc dl(N); 13797 13798 SDValue FirstInput = N->getOperand(0); 13799 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13800 "The input operand must be an fp-to-int conversion."); 13801 13802 // This combine happens after legalization so the fp_to_[su]i nodes are 13803 // already converted to PPCSISD nodes. 13804 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13805 if (FirstConversion == PPCISD::FCTIDZ || 13806 FirstConversion == PPCISD::FCTIDUZ || 13807 FirstConversion == PPCISD::FCTIWZ || 13808 FirstConversion == PPCISD::FCTIWUZ) { 13809 bool IsSplat = true; 13810 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13811 FirstConversion == PPCISD::FCTIWUZ; 13812 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13813 SmallVector<SDValue, 4> Ops; 13814 EVT TargetVT = N->getValueType(0); 13815 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13816 SDValue NextOp = N->getOperand(i); 13817 if (NextOp.getOpcode() != PPCISD::MFVSR) 13818 return SDValue(); 13819 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13820 if (NextConversion != FirstConversion) 13821 return SDValue(); 13822 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13823 // This is not valid if the input was originally double precision. It is 13824 // also not profitable to do unless this is an extending load in which 13825 // case doing this combine will allow us to combine consecutive loads. 13826 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13827 return SDValue(); 13828 if (N->getOperand(i) != FirstInput) 13829 IsSplat = false; 13830 } 13831 13832 // If this is a splat, we leave it as-is since there will be only a single 13833 // fp-to-int conversion followed by a splat of the integer. This is better 13834 // for 32-bit and smaller ints and neutral for 64-bit ints. 13835 if (IsSplat) 13836 return SDValue(); 13837 13838 // Now that we know we have the right type of node, get its operands 13839 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13840 SDValue In = N->getOperand(i).getOperand(0); 13841 if (Is32Bit) { 13842 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13843 // here, we know that all inputs are extending loads so this is safe). 13844 if (In.isUndef()) 13845 Ops.push_back(DAG.getUNDEF(SrcVT)); 13846 else { 13847 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13848 MVT::f32, In.getOperand(0), 13849 DAG.getIntPtrConstant(1, dl)); 13850 Ops.push_back(Trunc); 13851 } 13852 } else 13853 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13854 } 13855 13856 unsigned Opcode; 13857 if (FirstConversion == PPCISD::FCTIDZ || 13858 FirstConversion == PPCISD::FCTIWZ) 13859 Opcode = ISD::FP_TO_SINT; 13860 else 13861 Opcode = ISD::FP_TO_UINT; 13862 13863 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13864 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13865 return DAG.getNode(Opcode, dl, TargetVT, BV); 13866 } 13867 return SDValue(); 13868 } 13869 13870 /// Reduce the number of loads when building a vector. 13871 /// 13872 /// Building a vector out of multiple loads can be converted to a load 13873 /// of the vector type if the loads are consecutive. If the loads are 13874 /// consecutive but in descending order, a shuffle is added at the end 13875 /// to reorder the vector. 13876 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13877 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13878 "Should be called with a BUILD_VECTOR node"); 13879 13880 SDLoc dl(N); 13881 13882 // Return early for non byte-sized type, as they can't be consecutive. 13883 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13884 return SDValue(); 13885 13886 bool InputsAreConsecutiveLoads = true; 13887 bool InputsAreReverseConsecutive = true; 13888 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13889 SDValue FirstInput = N->getOperand(0); 13890 bool IsRoundOfExtLoad = false; 13891 13892 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13893 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13894 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13895 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13896 } 13897 // Not a build vector of (possibly fp_rounded) loads. 13898 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13899 N->getNumOperands() == 1) 13900 return SDValue(); 13901 13902 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13903 // If any inputs are fp_round(extload), they all must be. 13904 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13905 return SDValue(); 13906 13907 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13908 N->getOperand(i); 13909 if (NextInput.getOpcode() != ISD::LOAD) 13910 return SDValue(); 13911 13912 SDValue PreviousInput = 13913 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13914 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13915 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13916 13917 // If any inputs are fp_round(extload), they all must be. 13918 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13919 return SDValue(); 13920 13921 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13922 InputsAreConsecutiveLoads = false; 13923 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13924 InputsAreReverseConsecutive = false; 13925 13926 // Exit early if the loads are neither consecutive nor reverse consecutive. 13927 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13928 return SDValue(); 13929 } 13930 13931 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13932 "The loads cannot be both consecutive and reverse consecutive."); 13933 13934 SDValue FirstLoadOp = 13935 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13936 SDValue LastLoadOp = 13937 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13938 N->getOperand(N->getNumOperands()-1); 13939 13940 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13941 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13942 if (InputsAreConsecutiveLoads) { 13943 assert(LD1 && "Input needs to be a LoadSDNode."); 13944 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13945 LD1->getBasePtr(), LD1->getPointerInfo(), 13946 LD1->getAlignment()); 13947 } 13948 if (InputsAreReverseConsecutive) { 13949 assert(LDL && "Input needs to be a LoadSDNode."); 13950 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13951 LDL->getBasePtr(), LDL->getPointerInfo(), 13952 LDL->getAlignment()); 13953 SmallVector<int, 16> Ops; 13954 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13955 Ops.push_back(i); 13956 13957 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13958 DAG.getUNDEF(N->getValueType(0)), Ops); 13959 } 13960 return SDValue(); 13961 } 13962 13963 // This function adds the required vector_shuffle needed to get 13964 // the elements of the vector extract in the correct position 13965 // as specified by the CorrectElems encoding. 13966 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13967 SDValue Input, uint64_t Elems, 13968 uint64_t CorrectElems) { 13969 SDLoc dl(N); 13970 13971 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13972 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13973 13974 // Knowing the element indices being extracted from the original 13975 // vector and the order in which they're being inserted, just put 13976 // them at element indices required for the instruction. 13977 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13978 if (DAG.getDataLayout().isLittleEndian()) 13979 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13980 else 13981 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13982 CorrectElems = CorrectElems >> 8; 13983 Elems = Elems >> 8; 13984 } 13985 13986 SDValue Shuffle = 13987 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13988 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13989 13990 EVT VT = N->getValueType(0); 13991 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13992 13993 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13994 Input.getValueType().getVectorElementType(), 13995 VT.getVectorNumElements()); 13996 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13997 DAG.getValueType(ExtVT)); 13998 } 13999 14000 // Look for build vector patterns where input operands come from sign 14001 // extended vector_extract elements of specific indices. If the correct indices 14002 // aren't used, add a vector shuffle to fix up the indices and create 14003 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14004 // during instruction selection. 14005 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14006 // This array encodes the indices that the vector sign extend instructions 14007 // extract from when extending from one type to another for both BE and LE. 14008 // The right nibble of each byte corresponds to the LE incides. 14009 // and the left nibble of each byte corresponds to the BE incides. 14010 // For example: 0x3074B8FC byte->word 14011 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14012 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14013 // For example: 0x000070F8 byte->double word 14014 // For LE: the allowed indices are: 0x0,0x8 14015 // For BE: the allowed indices are: 0x7,0xF 14016 uint64_t TargetElems[] = { 14017 0x3074B8FC, // b->w 14018 0x000070F8, // b->d 14019 0x10325476, // h->w 14020 0x00003074, // h->d 14021 0x00001032, // w->d 14022 }; 14023 14024 uint64_t Elems = 0; 14025 int Index; 14026 SDValue Input; 14027 14028 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14029 if (!Op) 14030 return false; 14031 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14032 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14033 return false; 14034 14035 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14036 // of the right width. 14037 SDValue Extract = Op.getOperand(0); 14038 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14039 Extract = Extract.getOperand(0); 14040 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14041 return false; 14042 14043 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14044 if (!ExtOp) 14045 return false; 14046 14047 Index = ExtOp->getZExtValue(); 14048 if (Input && Input != Extract.getOperand(0)) 14049 return false; 14050 14051 if (!Input) 14052 Input = Extract.getOperand(0); 14053 14054 Elems = Elems << 8; 14055 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14056 Elems |= Index; 14057 14058 return true; 14059 }; 14060 14061 // If the build vector operands aren't sign extended vector extracts, 14062 // of the same input vector, then return. 14063 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14064 if (!isSExtOfVecExtract(N->getOperand(i))) { 14065 return SDValue(); 14066 } 14067 } 14068 14069 // If the vector extract indicies are not correct, add the appropriate 14070 // vector_shuffle. 14071 int TgtElemArrayIdx; 14072 int InputSize = Input.getValueType().getScalarSizeInBits(); 14073 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14074 if (InputSize + OutputSize == 40) 14075 TgtElemArrayIdx = 0; 14076 else if (InputSize + OutputSize == 72) 14077 TgtElemArrayIdx = 1; 14078 else if (InputSize + OutputSize == 48) 14079 TgtElemArrayIdx = 2; 14080 else if (InputSize + OutputSize == 80) 14081 TgtElemArrayIdx = 3; 14082 else if (InputSize + OutputSize == 96) 14083 TgtElemArrayIdx = 4; 14084 else 14085 return SDValue(); 14086 14087 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14088 CorrectElems = DAG.getDataLayout().isLittleEndian() 14089 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14090 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14091 if (Elems != CorrectElems) { 14092 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14093 } 14094 14095 // Regular lowering will catch cases where a shuffle is not needed. 14096 return SDValue(); 14097 } 14098 14099 // Look for the pattern of a load from a narrow width to i128, feeding 14100 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14101 // (LXVRZX). This node represents a zero extending load that will be matched 14102 // to the Load VSX Vector Rightmost instructions. 14103 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14104 SDLoc DL(N); 14105 14106 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14107 if (N->getValueType(0) != MVT::v1i128) 14108 return SDValue(); 14109 14110 SDValue Operand = N->getOperand(0); 14111 // Proceed with the transformation if the operand to the BUILD_VECTOR 14112 // is a load instruction. 14113 if (Operand.getOpcode() != ISD::LOAD) 14114 return SDValue(); 14115 14116 auto *LD = cast<LoadSDNode>(Operand); 14117 EVT MemoryType = LD->getMemoryVT(); 14118 14119 // This transformation is only valid if the we are loading either a byte, 14120 // halfword, word, or doubleword. 14121 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14122 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14123 14124 // Ensure that the load from the narrow width is being zero extended to i128. 14125 if (!ValidLDType || 14126 (LD->getExtensionType() != ISD::ZEXTLOAD && 14127 LD->getExtensionType() != ISD::EXTLOAD)) 14128 return SDValue(); 14129 14130 SDValue LoadOps[] = { 14131 LD->getChain(), LD->getBasePtr(), 14132 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14133 14134 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14135 DAG.getVTList(MVT::v1i128, MVT::Other), 14136 LoadOps, MemoryType, LD->getMemOperand()); 14137 } 14138 14139 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14140 DAGCombinerInfo &DCI) const { 14141 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14142 "Should be called with a BUILD_VECTOR node"); 14143 14144 SelectionDAG &DAG = DCI.DAG; 14145 SDLoc dl(N); 14146 14147 if (!Subtarget.hasVSX()) 14148 return SDValue(); 14149 14150 // The target independent DAG combiner will leave a build_vector of 14151 // float-to-int conversions intact. We can generate MUCH better code for 14152 // a float-to-int conversion of a vector of floats. 14153 SDValue FirstInput = N->getOperand(0); 14154 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14155 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14156 if (Reduced) 14157 return Reduced; 14158 } 14159 14160 // If we're building a vector out of consecutive loads, just load that 14161 // vector type. 14162 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14163 if (Reduced) 14164 return Reduced; 14165 14166 // If we're building a vector out of extended elements from another vector 14167 // we have P9 vector integer extend instructions. The code assumes legal 14168 // input types (i.e. it can't handle things like v4i16) so do not run before 14169 // legalization. 14170 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14171 Reduced = combineBVOfVecSExt(N, DAG); 14172 if (Reduced) 14173 return Reduced; 14174 } 14175 14176 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14177 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14178 // is a load from <valid narrow width> to i128. 14179 if (Subtarget.isISA3_1()) { 14180 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14181 if (BVOfZLoad) 14182 return BVOfZLoad; 14183 } 14184 14185 if (N->getValueType(0) != MVT::v2f64) 14186 return SDValue(); 14187 14188 // Looking for: 14189 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14190 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14191 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14192 return SDValue(); 14193 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14194 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14195 return SDValue(); 14196 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14197 return SDValue(); 14198 14199 SDValue Ext1 = FirstInput.getOperand(0); 14200 SDValue Ext2 = N->getOperand(1).getOperand(0); 14201 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14202 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14203 return SDValue(); 14204 14205 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14206 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14207 if (!Ext1Op || !Ext2Op) 14208 return SDValue(); 14209 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14210 Ext1.getOperand(0) != Ext2.getOperand(0)) 14211 return SDValue(); 14212 14213 int FirstElem = Ext1Op->getZExtValue(); 14214 int SecondElem = Ext2Op->getZExtValue(); 14215 int SubvecIdx; 14216 if (FirstElem == 0 && SecondElem == 1) 14217 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14218 else if (FirstElem == 2 && SecondElem == 3) 14219 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14220 else 14221 return SDValue(); 14222 14223 SDValue SrcVec = Ext1.getOperand(0); 14224 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14225 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14226 return DAG.getNode(NodeType, dl, MVT::v2f64, 14227 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14228 } 14229 14230 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14231 DAGCombinerInfo &DCI) const { 14232 assert((N->getOpcode() == ISD::SINT_TO_FP || 14233 N->getOpcode() == ISD::UINT_TO_FP) && 14234 "Need an int -> FP conversion node here"); 14235 14236 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14237 return SDValue(); 14238 14239 SelectionDAG &DAG = DCI.DAG; 14240 SDLoc dl(N); 14241 SDValue Op(N, 0); 14242 14243 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14244 // from the hardware. 14245 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14246 return SDValue(); 14247 if (!Op.getOperand(0).getValueType().isSimple()) 14248 return SDValue(); 14249 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14250 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14251 return SDValue(); 14252 14253 SDValue FirstOperand(Op.getOperand(0)); 14254 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14255 (FirstOperand.getValueType() == MVT::i8 || 14256 FirstOperand.getValueType() == MVT::i16); 14257 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14258 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14259 bool DstDouble = Op.getValueType() == MVT::f64; 14260 unsigned ConvOp = Signed ? 14261 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14262 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14263 SDValue WidthConst = 14264 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14265 dl, false); 14266 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14267 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14268 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14269 DAG.getVTList(MVT::f64, MVT::Other), 14270 Ops, MVT::i8, LDN->getMemOperand()); 14271 14272 // For signed conversion, we need to sign-extend the value in the VSR 14273 if (Signed) { 14274 SDValue ExtOps[] = { Ld, WidthConst }; 14275 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14276 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14277 } else 14278 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14279 } 14280 14281 14282 // For i32 intermediate values, unfortunately, the conversion functions 14283 // leave the upper 32 bits of the value are undefined. Within the set of 14284 // scalar instructions, we have no method for zero- or sign-extending the 14285 // value. Thus, we cannot handle i32 intermediate values here. 14286 if (Op.getOperand(0).getValueType() == MVT::i32) 14287 return SDValue(); 14288 14289 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14290 "UINT_TO_FP is supported only with FPCVT"); 14291 14292 // If we have FCFIDS, then use it when converting to single-precision. 14293 // Otherwise, convert to double-precision and then round. 14294 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14295 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14296 : PPCISD::FCFIDS) 14297 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14298 : PPCISD::FCFID); 14299 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14300 ? MVT::f32 14301 : MVT::f64; 14302 14303 // If we're converting from a float, to an int, and back to a float again, 14304 // then we don't need the store/load pair at all. 14305 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14306 Subtarget.hasFPCVT()) || 14307 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14308 SDValue Src = Op.getOperand(0).getOperand(0); 14309 if (Src.getValueType() == MVT::f32) { 14310 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14311 DCI.AddToWorklist(Src.getNode()); 14312 } else if (Src.getValueType() != MVT::f64) { 14313 // Make sure that we don't pick up a ppc_fp128 source value. 14314 return SDValue(); 14315 } 14316 14317 unsigned FCTOp = 14318 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14319 PPCISD::FCTIDUZ; 14320 14321 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14322 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14323 14324 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14325 FP = DAG.getNode(ISD::FP_ROUND, dl, 14326 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14327 DCI.AddToWorklist(FP.getNode()); 14328 } 14329 14330 return FP; 14331 } 14332 14333 return SDValue(); 14334 } 14335 14336 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14337 // builtins) into loads with swaps. 14338 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14339 DAGCombinerInfo &DCI) const { 14340 SelectionDAG &DAG = DCI.DAG; 14341 SDLoc dl(N); 14342 SDValue Chain; 14343 SDValue Base; 14344 MachineMemOperand *MMO; 14345 14346 switch (N->getOpcode()) { 14347 default: 14348 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14349 case ISD::LOAD: { 14350 LoadSDNode *LD = cast<LoadSDNode>(N); 14351 Chain = LD->getChain(); 14352 Base = LD->getBasePtr(); 14353 MMO = LD->getMemOperand(); 14354 // If the MMO suggests this isn't a load of a full vector, leave 14355 // things alone. For a built-in, we have to make the change for 14356 // correctness, so if there is a size problem that will be a bug. 14357 if (MMO->getSize() < 16) 14358 return SDValue(); 14359 break; 14360 } 14361 case ISD::INTRINSIC_W_CHAIN: { 14362 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14363 Chain = Intrin->getChain(); 14364 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14365 // us what we want. Get operand 2 instead. 14366 Base = Intrin->getOperand(2); 14367 MMO = Intrin->getMemOperand(); 14368 break; 14369 } 14370 } 14371 14372 MVT VecTy = N->getValueType(0).getSimpleVT(); 14373 14374 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14375 // aligned and the type is a vector with elements up to 4 bytes 14376 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14377 VecTy.getScalarSizeInBits() <= 32) { 14378 return SDValue(); 14379 } 14380 14381 SDValue LoadOps[] = { Chain, Base }; 14382 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14383 DAG.getVTList(MVT::v2f64, MVT::Other), 14384 LoadOps, MVT::v2f64, MMO); 14385 14386 DCI.AddToWorklist(Load.getNode()); 14387 Chain = Load.getValue(1); 14388 SDValue Swap = DAG.getNode( 14389 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14390 DCI.AddToWorklist(Swap.getNode()); 14391 14392 // Add a bitcast if the resulting load type doesn't match v2f64. 14393 if (VecTy != MVT::v2f64) { 14394 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14395 DCI.AddToWorklist(N.getNode()); 14396 // Package {bitcast value, swap's chain} to match Load's shape. 14397 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14398 N, Swap.getValue(1)); 14399 } 14400 14401 return Swap; 14402 } 14403 14404 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14405 // builtins) into stores with swaps. 14406 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14407 DAGCombinerInfo &DCI) const { 14408 SelectionDAG &DAG = DCI.DAG; 14409 SDLoc dl(N); 14410 SDValue Chain; 14411 SDValue Base; 14412 unsigned SrcOpnd; 14413 MachineMemOperand *MMO; 14414 14415 switch (N->getOpcode()) { 14416 default: 14417 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14418 case ISD::STORE: { 14419 StoreSDNode *ST = cast<StoreSDNode>(N); 14420 Chain = ST->getChain(); 14421 Base = ST->getBasePtr(); 14422 MMO = ST->getMemOperand(); 14423 SrcOpnd = 1; 14424 // If the MMO suggests this isn't a store of a full vector, leave 14425 // things alone. For a built-in, we have to make the change for 14426 // correctness, so if there is a size problem that will be a bug. 14427 if (MMO->getSize() < 16) 14428 return SDValue(); 14429 break; 14430 } 14431 case ISD::INTRINSIC_VOID: { 14432 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14433 Chain = Intrin->getChain(); 14434 // Intrin->getBasePtr() oddly does not get what we want. 14435 Base = Intrin->getOperand(3); 14436 MMO = Intrin->getMemOperand(); 14437 SrcOpnd = 2; 14438 break; 14439 } 14440 } 14441 14442 SDValue Src = N->getOperand(SrcOpnd); 14443 MVT VecTy = Src.getValueType().getSimpleVT(); 14444 14445 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14446 // aligned and the type is a vector with elements up to 4 bytes 14447 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14448 VecTy.getScalarSizeInBits() <= 32) { 14449 return SDValue(); 14450 } 14451 14452 // All stores are done as v2f64 and possible bit cast. 14453 if (VecTy != MVT::v2f64) { 14454 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14455 DCI.AddToWorklist(Src.getNode()); 14456 } 14457 14458 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14459 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14460 DCI.AddToWorklist(Swap.getNode()); 14461 Chain = Swap.getValue(1); 14462 SDValue StoreOps[] = { Chain, Swap, Base }; 14463 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14464 DAG.getVTList(MVT::Other), 14465 StoreOps, VecTy, MMO); 14466 DCI.AddToWorklist(Store.getNode()); 14467 return Store; 14468 } 14469 14470 // Handle DAG combine for STORE (FP_TO_INT F). 14471 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14472 DAGCombinerInfo &DCI) const { 14473 14474 SelectionDAG &DAG = DCI.DAG; 14475 SDLoc dl(N); 14476 unsigned Opcode = N->getOperand(1).getOpcode(); 14477 14478 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14479 && "Not a FP_TO_INT Instruction!"); 14480 14481 SDValue Val = N->getOperand(1).getOperand(0); 14482 EVT Op1VT = N->getOperand(1).getValueType(); 14483 EVT ResVT = Val.getValueType(); 14484 14485 if (!isTypeLegal(ResVT)) 14486 return SDValue(); 14487 14488 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14489 bool ValidTypeForStoreFltAsInt = 14490 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14491 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14492 14493 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14494 return SDValue(); 14495 14496 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14497 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14498 return SDValue(); 14499 14500 // Extend f32 values to f64 14501 if (ResVT.getScalarSizeInBits() == 32) { 14502 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14503 DCI.AddToWorklist(Val.getNode()); 14504 } 14505 14506 // Set signed or unsigned conversion opcode. 14507 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14508 PPCISD::FP_TO_SINT_IN_VSR : 14509 PPCISD::FP_TO_UINT_IN_VSR; 14510 14511 Val = DAG.getNode(ConvOpcode, 14512 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14513 DCI.AddToWorklist(Val.getNode()); 14514 14515 // Set number of bytes being converted. 14516 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14517 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14518 DAG.getIntPtrConstant(ByteSize, dl, false), 14519 DAG.getValueType(Op1VT) }; 14520 14521 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14522 DAG.getVTList(MVT::Other), Ops, 14523 cast<StoreSDNode>(N)->getMemoryVT(), 14524 cast<StoreSDNode>(N)->getMemOperand()); 14525 14526 DCI.AddToWorklist(Val.getNode()); 14527 return Val; 14528 } 14529 14530 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14531 // Check that the source of the element keeps flipping 14532 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14533 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14534 for (int i = 1, e = Mask.size(); i < e; i++) { 14535 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14536 return false; 14537 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14538 return false; 14539 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14540 } 14541 return true; 14542 } 14543 14544 static bool isSplatBV(SDValue Op) { 14545 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14546 return false; 14547 SDValue FirstOp; 14548 14549 // Find first non-undef input. 14550 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14551 FirstOp = Op.getOperand(i); 14552 if (!FirstOp.isUndef()) 14553 break; 14554 } 14555 14556 // All inputs are undef or the same as the first non-undef input. 14557 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14558 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14559 return false; 14560 return true; 14561 } 14562 14563 static SDValue isScalarToVec(SDValue Op) { 14564 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14565 return Op; 14566 if (Op.getOpcode() != ISD::BITCAST) 14567 return SDValue(); 14568 Op = Op.getOperand(0); 14569 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14570 return Op; 14571 return SDValue(); 14572 } 14573 14574 // Fix up the shuffle mask to account for the fact that the result of 14575 // scalar_to_vector is not in lane zero. This just takes all values in 14576 // the ranges specified by the min/max indices and adds the number of 14577 // elements required to ensure each element comes from the respective 14578 // position in the valid lane. 14579 // On little endian, that's just the corresponding element in the other 14580 // half of the vector. On big endian, it is in the same half but right 14581 // justified rather than left justified in that half. 14582 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14583 int LHSMaxIdx, int RHSMinIdx, 14584 int RHSMaxIdx, int HalfVec, 14585 unsigned ValidLaneWidth, 14586 const PPCSubtarget &Subtarget) { 14587 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14588 int Idx = ShuffV[i]; 14589 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14590 ShuffV[i] += 14591 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14592 } 14593 } 14594 14595 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14596 // the original is: 14597 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14598 // In such a case, just change the shuffle mask to extract the element 14599 // from the permuted index. 14600 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14601 const PPCSubtarget &Subtarget) { 14602 SDLoc dl(OrigSToV); 14603 EVT VT = OrigSToV.getValueType(); 14604 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14605 "Expecting a SCALAR_TO_VECTOR here"); 14606 SDValue Input = OrigSToV.getOperand(0); 14607 14608 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14609 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14610 SDValue OrigVector = Input.getOperand(0); 14611 14612 // Can't handle non-const element indices or different vector types 14613 // for the input to the extract and the output of the scalar_to_vector. 14614 if (Idx && VT == OrigVector.getValueType()) { 14615 unsigned NumElts = VT.getVectorNumElements(); 14616 assert( 14617 NumElts > 1 && 14618 "Cannot produce a permuted scalar_to_vector for one element vector"); 14619 SmallVector<int, 16> NewMask(NumElts, -1); 14620 unsigned ResultInElt = NumElts / 2; 14621 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14622 NewMask[ResultInElt] = Idx->getZExtValue(); 14623 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14624 } 14625 } 14626 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14627 OrigSToV.getOperand(0)); 14628 } 14629 14630 // On little endian subtargets, combine shuffles such as: 14631 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14632 // into: 14633 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14634 // because the latter can be matched to a single instruction merge. 14635 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14636 // to put the value into element zero. Adjust the shuffle mask so that the 14637 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14638 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14639 // nodes with elements smaller than doubleword because all the ways 14640 // of getting scalar data into a vector register put the value in the 14641 // rightmost element of the left half of the vector. 14642 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14643 SelectionDAG &DAG) const { 14644 SDValue LHS = SVN->getOperand(0); 14645 SDValue RHS = SVN->getOperand(1); 14646 auto Mask = SVN->getMask(); 14647 int NumElts = LHS.getValueType().getVectorNumElements(); 14648 SDValue Res(SVN, 0); 14649 SDLoc dl(SVN); 14650 bool IsLittleEndian = Subtarget.isLittleEndian(); 14651 14652 // On big endian targets this is only useful for subtargets with direct moves. 14653 // On little endian targets it would be useful for all subtargets with VSX. 14654 // However adding special handling for LE subtargets without direct moves 14655 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14656 // which includes direct moves. 14657 if (!Subtarget.hasDirectMove()) 14658 return Res; 14659 14660 // If this is not a shuffle of a shuffle and the first element comes from 14661 // the second vector, canonicalize to the commuted form. This will make it 14662 // more likely to match one of the single instruction patterns. 14663 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14664 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14665 std::swap(LHS, RHS); 14666 Res = DAG.getCommutedVectorShuffle(*SVN); 14667 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14668 } 14669 14670 // Adjust the shuffle mask if either input vector comes from a 14671 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14672 // form (to prevent the need for a swap). 14673 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14674 SDValue SToVLHS = isScalarToVec(LHS); 14675 SDValue SToVRHS = isScalarToVec(RHS); 14676 if (SToVLHS || SToVRHS) { 14677 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14678 : SToVRHS.getValueType().getVectorNumElements(); 14679 int NumEltsOut = ShuffV.size(); 14680 // The width of the "valid lane" (i.e. the lane that contains the value that 14681 // is vectorized) needs to be expressed in terms of the number of elements 14682 // of the shuffle. It is thereby the ratio of the values before and after 14683 // any bitcast. 14684 unsigned ValidLaneWidth = 14685 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14686 LHS.getValueType().getScalarSizeInBits() 14687 : SToVRHS.getValueType().getScalarSizeInBits() / 14688 RHS.getValueType().getScalarSizeInBits(); 14689 14690 // Initially assume that neither input is permuted. These will be adjusted 14691 // accordingly if either input is. 14692 int LHSMaxIdx = -1; 14693 int RHSMinIdx = -1; 14694 int RHSMaxIdx = -1; 14695 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14696 14697 // Get the permuted scalar to vector nodes for the source(s) that come from 14698 // ISD::SCALAR_TO_VECTOR. 14699 // On big endian systems, this only makes sense for element sizes smaller 14700 // than 64 bits since for 64-bit elements, all instructions already put 14701 // the value into element zero. Since scalar size of LHS and RHS may differ 14702 // after isScalarToVec, this should be checked using their own sizes. 14703 if (SToVLHS) { 14704 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14705 return Res; 14706 // Set up the values for the shuffle vector fixup. 14707 LHSMaxIdx = NumEltsOut / NumEltsIn; 14708 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14709 if (SToVLHS.getValueType() != LHS.getValueType()) 14710 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14711 LHS = SToVLHS; 14712 } 14713 if (SToVRHS) { 14714 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14715 return Res; 14716 RHSMinIdx = NumEltsOut; 14717 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14718 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14719 if (SToVRHS.getValueType() != RHS.getValueType()) 14720 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14721 RHS = SToVRHS; 14722 } 14723 14724 // Fix up the shuffle mask to reflect where the desired element actually is. 14725 // The minimum and maximum indices that correspond to element zero for both 14726 // the LHS and RHS are computed and will control which shuffle mask entries 14727 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14728 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14729 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14730 HalfVec, ValidLaneWidth, Subtarget); 14731 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14732 14733 // We may have simplified away the shuffle. We won't be able to do anything 14734 // further with it here. 14735 if (!isa<ShuffleVectorSDNode>(Res)) 14736 return Res; 14737 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14738 } 14739 14740 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14741 // The common case after we commuted the shuffle is that the RHS is a splat 14742 // and we have elements coming in from the splat at indices that are not 14743 // conducive to using a merge. 14744 // Example: 14745 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14746 if (!isSplatBV(TheSplat)) 14747 return Res; 14748 14749 // We are looking for a mask such that all even elements are from 14750 // one vector and all odd elements from the other. 14751 if (!isAlternatingShuffMask(Mask, NumElts)) 14752 return Res; 14753 14754 // Adjust the mask so we are pulling in the same index from the splat 14755 // as the index from the interesting vector in consecutive elements. 14756 if (IsLittleEndian) { 14757 // Example (even elements from first vector): 14758 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14759 if (Mask[0] < NumElts) 14760 for (int i = 1, e = Mask.size(); i < e; i += 2) 14761 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14762 // Example (odd elements from first vector): 14763 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14764 else 14765 for (int i = 0, e = Mask.size(); i < e; i += 2) 14766 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14767 } else { 14768 // Example (even elements from first vector): 14769 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14770 if (Mask[0] < NumElts) 14771 for (int i = 0, e = Mask.size(); i < e; i += 2) 14772 ShuffV[i] = ShuffV[i + 1] - NumElts; 14773 // Example (odd elements from first vector): 14774 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14775 else 14776 for (int i = 1, e = Mask.size(); i < e; i += 2) 14777 ShuffV[i] = ShuffV[i - 1] - NumElts; 14778 } 14779 14780 // If the RHS has undefs, we need to remove them since we may have created 14781 // a shuffle that adds those instead of the splat value. 14782 SDValue SplatVal = 14783 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14784 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14785 14786 if (IsLittleEndian) 14787 RHS = TheSplat; 14788 else 14789 LHS = TheSplat; 14790 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14791 } 14792 14793 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14794 LSBaseSDNode *LSBase, 14795 DAGCombinerInfo &DCI) const { 14796 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14797 "Not a reverse memop pattern!"); 14798 14799 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14800 auto Mask = SVN->getMask(); 14801 int i = 0; 14802 auto I = Mask.rbegin(); 14803 auto E = Mask.rend(); 14804 14805 for (; I != E; ++I) { 14806 if (*I != i) 14807 return false; 14808 i++; 14809 } 14810 return true; 14811 }; 14812 14813 SelectionDAG &DAG = DCI.DAG; 14814 EVT VT = SVN->getValueType(0); 14815 14816 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14817 return SDValue(); 14818 14819 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14820 // See comment in PPCVSXSwapRemoval.cpp. 14821 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14822 if (!Subtarget.hasP9Vector()) 14823 return SDValue(); 14824 14825 if(!IsElementReverse(SVN)) 14826 return SDValue(); 14827 14828 if (LSBase->getOpcode() == ISD::LOAD) { 14829 // If the load return value 0 has more than one user except the 14830 // shufflevector instruction, it is not profitable to replace the 14831 // shufflevector with a reverse load. 14832 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14833 UI != UE; ++UI) 14834 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14835 return SDValue(); 14836 14837 SDLoc dl(LSBase); 14838 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14839 return DAG.getMemIntrinsicNode( 14840 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14841 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14842 } 14843 14844 if (LSBase->getOpcode() == ISD::STORE) { 14845 // If there are other uses of the shuffle, the swap cannot be avoided. 14846 // Forcing the use of an X-Form (since swapped stores only have 14847 // X-Forms) without removing the swap is unprofitable. 14848 if (!SVN->hasOneUse()) 14849 return SDValue(); 14850 14851 SDLoc dl(LSBase); 14852 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14853 LSBase->getBasePtr()}; 14854 return DAG.getMemIntrinsicNode( 14855 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14856 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14857 } 14858 14859 llvm_unreachable("Expected a load or store node here"); 14860 } 14861 14862 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14863 DAGCombinerInfo &DCI) const { 14864 SelectionDAG &DAG = DCI.DAG; 14865 SDLoc dl(N); 14866 switch (N->getOpcode()) { 14867 default: break; 14868 case ISD::ADD: 14869 return combineADD(N, DCI); 14870 case ISD::SHL: 14871 return combineSHL(N, DCI); 14872 case ISD::SRA: 14873 return combineSRA(N, DCI); 14874 case ISD::SRL: 14875 return combineSRL(N, DCI); 14876 case ISD::MUL: 14877 return combineMUL(N, DCI); 14878 case ISD::FMA: 14879 case PPCISD::FNMSUB: 14880 return combineFMALike(N, DCI); 14881 case PPCISD::SHL: 14882 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14883 return N->getOperand(0); 14884 break; 14885 case PPCISD::SRL: 14886 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14887 return N->getOperand(0); 14888 break; 14889 case PPCISD::SRA: 14890 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14891 if (C->isZero() || // 0 >>s V -> 0. 14892 C->isAllOnes()) // -1 >>s V -> -1. 14893 return N->getOperand(0); 14894 } 14895 break; 14896 case ISD::SIGN_EXTEND: 14897 case ISD::ZERO_EXTEND: 14898 case ISD::ANY_EXTEND: 14899 return DAGCombineExtBoolTrunc(N, DCI); 14900 case ISD::TRUNCATE: 14901 return combineTRUNCATE(N, DCI); 14902 case ISD::SETCC: 14903 if (SDValue CSCC = combineSetCC(N, DCI)) 14904 return CSCC; 14905 LLVM_FALLTHROUGH; 14906 case ISD::SELECT_CC: 14907 return DAGCombineTruncBoolExt(N, DCI); 14908 case ISD::SINT_TO_FP: 14909 case ISD::UINT_TO_FP: 14910 return combineFPToIntToFP(N, DCI); 14911 case ISD::VECTOR_SHUFFLE: 14912 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14913 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14914 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14915 } 14916 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14917 case ISD::STORE: { 14918 14919 EVT Op1VT = N->getOperand(1).getValueType(); 14920 unsigned Opcode = N->getOperand(1).getOpcode(); 14921 14922 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14923 SDValue Val= combineStoreFPToInt(N, DCI); 14924 if (Val) 14925 return Val; 14926 } 14927 14928 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14929 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14930 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14931 if (Val) 14932 return Val; 14933 } 14934 14935 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14936 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14937 N->getOperand(1).getNode()->hasOneUse() && 14938 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14939 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14940 14941 // STBRX can only handle simple types and it makes no sense to store less 14942 // two bytes in byte-reversed order. 14943 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14944 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14945 break; 14946 14947 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14948 // Do an any-extend to 32-bits if this is a half-word input. 14949 if (BSwapOp.getValueType() == MVT::i16) 14950 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14951 14952 // If the type of BSWAP operand is wider than stored memory width 14953 // it need to be shifted to the right side before STBRX. 14954 if (Op1VT.bitsGT(mVT)) { 14955 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14956 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14957 DAG.getConstant(Shift, dl, MVT::i32)); 14958 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14959 if (Op1VT == MVT::i64) 14960 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14961 } 14962 14963 SDValue Ops[] = { 14964 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14965 }; 14966 return 14967 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14968 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14969 cast<StoreSDNode>(N)->getMemOperand()); 14970 } 14971 14972 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14973 // So it can increase the chance of CSE constant construction. 14974 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14975 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14976 // Need to sign-extended to 64-bits to handle negative values. 14977 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14978 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14979 MemVT.getSizeInBits()); 14980 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14981 14982 // DAG.getTruncStore() can't be used here because it doesn't accept 14983 // the general (base + offset) addressing mode. 14984 // So we use UpdateNodeOperands and setTruncatingStore instead. 14985 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14986 N->getOperand(3)); 14987 cast<StoreSDNode>(N)->setTruncatingStore(true); 14988 return SDValue(N, 0); 14989 } 14990 14991 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14992 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14993 if (Op1VT.isSimple()) { 14994 MVT StoreVT = Op1VT.getSimpleVT(); 14995 if (Subtarget.needsSwapsForVSXMemOps() && 14996 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14997 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14998 return expandVSXStoreForLE(N, DCI); 14999 } 15000 break; 15001 } 15002 case ISD::LOAD: { 15003 LoadSDNode *LD = cast<LoadSDNode>(N); 15004 EVT VT = LD->getValueType(0); 15005 15006 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15007 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15008 if (VT.isSimple()) { 15009 MVT LoadVT = VT.getSimpleVT(); 15010 if (Subtarget.needsSwapsForVSXMemOps() && 15011 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15012 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15013 return expandVSXLoadForLE(N, DCI); 15014 } 15015 15016 // We sometimes end up with a 64-bit integer load, from which we extract 15017 // two single-precision floating-point numbers. This happens with 15018 // std::complex<float>, and other similar structures, because of the way we 15019 // canonicalize structure copies. However, if we lack direct moves, 15020 // then the final bitcasts from the extracted integer values to the 15021 // floating-point numbers turn into store/load pairs. Even with direct moves, 15022 // just loading the two floating-point numbers is likely better. 15023 auto ReplaceTwoFloatLoad = [&]() { 15024 if (VT != MVT::i64) 15025 return false; 15026 15027 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15028 LD->isVolatile()) 15029 return false; 15030 15031 // We're looking for a sequence like this: 15032 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15033 // t16: i64 = srl t13, Constant:i32<32> 15034 // t17: i32 = truncate t16 15035 // t18: f32 = bitcast t17 15036 // t19: i32 = truncate t13 15037 // t20: f32 = bitcast t19 15038 15039 if (!LD->hasNUsesOfValue(2, 0)) 15040 return false; 15041 15042 auto UI = LD->use_begin(); 15043 while (UI.getUse().getResNo() != 0) ++UI; 15044 SDNode *Trunc = *UI++; 15045 while (UI.getUse().getResNo() != 0) ++UI; 15046 SDNode *RightShift = *UI; 15047 if (Trunc->getOpcode() != ISD::TRUNCATE) 15048 std::swap(Trunc, RightShift); 15049 15050 if (Trunc->getOpcode() != ISD::TRUNCATE || 15051 Trunc->getValueType(0) != MVT::i32 || 15052 !Trunc->hasOneUse()) 15053 return false; 15054 if (RightShift->getOpcode() != ISD::SRL || 15055 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15056 RightShift->getConstantOperandVal(1) != 32 || 15057 !RightShift->hasOneUse()) 15058 return false; 15059 15060 SDNode *Trunc2 = *RightShift->use_begin(); 15061 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15062 Trunc2->getValueType(0) != MVT::i32 || 15063 !Trunc2->hasOneUse()) 15064 return false; 15065 15066 SDNode *Bitcast = *Trunc->use_begin(); 15067 SDNode *Bitcast2 = *Trunc2->use_begin(); 15068 15069 if (Bitcast->getOpcode() != ISD::BITCAST || 15070 Bitcast->getValueType(0) != MVT::f32) 15071 return false; 15072 if (Bitcast2->getOpcode() != ISD::BITCAST || 15073 Bitcast2->getValueType(0) != MVT::f32) 15074 return false; 15075 15076 if (Subtarget.isLittleEndian()) 15077 std::swap(Bitcast, Bitcast2); 15078 15079 // Bitcast has the second float (in memory-layout order) and Bitcast2 15080 // has the first one. 15081 15082 SDValue BasePtr = LD->getBasePtr(); 15083 if (LD->isIndexed()) { 15084 assert(LD->getAddressingMode() == ISD::PRE_INC && 15085 "Non-pre-inc AM on PPC?"); 15086 BasePtr = 15087 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15088 LD->getOffset()); 15089 } 15090 15091 auto MMOFlags = 15092 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15093 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15094 LD->getPointerInfo(), LD->getAlignment(), 15095 MMOFlags, LD->getAAInfo()); 15096 SDValue AddPtr = 15097 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15098 BasePtr, DAG.getIntPtrConstant(4, dl)); 15099 SDValue FloatLoad2 = DAG.getLoad( 15100 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15101 LD->getPointerInfo().getWithOffset(4), 15102 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15103 15104 if (LD->isIndexed()) { 15105 // Note that DAGCombine should re-form any pre-increment load(s) from 15106 // what is produced here if that makes sense. 15107 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15108 } 15109 15110 DCI.CombineTo(Bitcast2, FloatLoad); 15111 DCI.CombineTo(Bitcast, FloatLoad2); 15112 15113 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15114 SDValue(FloatLoad2.getNode(), 1)); 15115 return true; 15116 }; 15117 15118 if (ReplaceTwoFloatLoad()) 15119 return SDValue(N, 0); 15120 15121 EVT MemVT = LD->getMemoryVT(); 15122 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15123 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15124 if (LD->isUnindexed() && VT.isVector() && 15125 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15126 // P8 and later hardware should just use LOAD. 15127 !Subtarget.hasP8Vector() && 15128 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15129 VT == MVT::v4f32))) && 15130 LD->getAlign() < ABIAlignment) { 15131 // This is a type-legal unaligned Altivec load. 15132 SDValue Chain = LD->getChain(); 15133 SDValue Ptr = LD->getBasePtr(); 15134 bool isLittleEndian = Subtarget.isLittleEndian(); 15135 15136 // This implements the loading of unaligned vectors as described in 15137 // the venerable Apple Velocity Engine overview. Specifically: 15138 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15139 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15140 // 15141 // The general idea is to expand a sequence of one or more unaligned 15142 // loads into an alignment-based permutation-control instruction (lvsl 15143 // or lvsr), a series of regular vector loads (which always truncate 15144 // their input address to an aligned address), and a series of 15145 // permutations. The results of these permutations are the requested 15146 // loaded values. The trick is that the last "extra" load is not taken 15147 // from the address you might suspect (sizeof(vector) bytes after the 15148 // last requested load), but rather sizeof(vector) - 1 bytes after the 15149 // last requested vector. The point of this is to avoid a page fault if 15150 // the base address happened to be aligned. This works because if the 15151 // base address is aligned, then adding less than a full vector length 15152 // will cause the last vector in the sequence to be (re)loaded. 15153 // Otherwise, the next vector will be fetched as you might suspect was 15154 // necessary. 15155 15156 // We might be able to reuse the permutation generation from 15157 // a different base address offset from this one by an aligned amount. 15158 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15159 // optimization later. 15160 Intrinsic::ID Intr, IntrLD, IntrPerm; 15161 MVT PermCntlTy, PermTy, LDTy; 15162 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15163 : Intrinsic::ppc_altivec_lvsl; 15164 IntrLD = Intrinsic::ppc_altivec_lvx; 15165 IntrPerm = Intrinsic::ppc_altivec_vperm; 15166 PermCntlTy = MVT::v16i8; 15167 PermTy = MVT::v4i32; 15168 LDTy = MVT::v4i32; 15169 15170 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15171 15172 // Create the new MMO for the new base load. It is like the original MMO, 15173 // but represents an area in memory almost twice the vector size centered 15174 // on the original address. If the address is unaligned, we might start 15175 // reading up to (sizeof(vector)-1) bytes below the address of the 15176 // original unaligned load. 15177 MachineFunction &MF = DAG.getMachineFunction(); 15178 MachineMemOperand *BaseMMO = 15179 MF.getMachineMemOperand(LD->getMemOperand(), 15180 -(long)MemVT.getStoreSize()+1, 15181 2*MemVT.getStoreSize()-1); 15182 15183 // Create the new base load. 15184 SDValue LDXIntID = 15185 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15186 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15187 SDValue BaseLoad = 15188 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15189 DAG.getVTList(PermTy, MVT::Other), 15190 BaseLoadOps, LDTy, BaseMMO); 15191 15192 // Note that the value of IncOffset (which is provided to the next 15193 // load's pointer info offset value, and thus used to calculate the 15194 // alignment), and the value of IncValue (which is actually used to 15195 // increment the pointer value) are different! This is because we 15196 // require the next load to appear to be aligned, even though it 15197 // is actually offset from the base pointer by a lesser amount. 15198 int IncOffset = VT.getSizeInBits() / 8; 15199 int IncValue = IncOffset; 15200 15201 // Walk (both up and down) the chain looking for another load at the real 15202 // (aligned) offset (the alignment of the other load does not matter in 15203 // this case). If found, then do not use the offset reduction trick, as 15204 // that will prevent the loads from being later combined (as they would 15205 // otherwise be duplicates). 15206 if (!findConsecutiveLoad(LD, DAG)) 15207 --IncValue; 15208 15209 SDValue Increment = 15210 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15211 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15212 15213 MachineMemOperand *ExtraMMO = 15214 MF.getMachineMemOperand(LD->getMemOperand(), 15215 1, 2*MemVT.getStoreSize()-1); 15216 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15217 SDValue ExtraLoad = 15218 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15219 DAG.getVTList(PermTy, MVT::Other), 15220 ExtraLoadOps, LDTy, ExtraMMO); 15221 15222 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15223 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15224 15225 // Because vperm has a big-endian bias, we must reverse the order 15226 // of the input vectors and complement the permute control vector 15227 // when generating little endian code. We have already handled the 15228 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15229 // and ExtraLoad here. 15230 SDValue Perm; 15231 if (isLittleEndian) 15232 Perm = BuildIntrinsicOp(IntrPerm, 15233 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15234 else 15235 Perm = BuildIntrinsicOp(IntrPerm, 15236 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15237 15238 if (VT != PermTy) 15239 Perm = Subtarget.hasAltivec() 15240 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15241 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15242 DAG.getTargetConstant(1, dl, MVT::i64)); 15243 // second argument is 1 because this rounding 15244 // is always exact. 15245 15246 // The output of the permutation is our loaded result, the TokenFactor is 15247 // our new chain. 15248 DCI.CombineTo(N, Perm, TF); 15249 return SDValue(N, 0); 15250 } 15251 } 15252 break; 15253 case ISD::INTRINSIC_WO_CHAIN: { 15254 bool isLittleEndian = Subtarget.isLittleEndian(); 15255 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15256 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15257 : Intrinsic::ppc_altivec_lvsl); 15258 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15259 SDValue Add = N->getOperand(1); 15260 15261 int Bits = 4 /* 16 byte alignment */; 15262 15263 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15264 APInt::getAllOnes(Bits /* alignment */) 15265 .zext(Add.getScalarValueSizeInBits()))) { 15266 SDNode *BasePtr = Add->getOperand(0).getNode(); 15267 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15268 UE = BasePtr->use_end(); 15269 UI != UE; ++UI) { 15270 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15271 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15272 IID) { 15273 // We've found another LVSL/LVSR, and this address is an aligned 15274 // multiple of that one. The results will be the same, so use the 15275 // one we've just found instead. 15276 15277 return SDValue(*UI, 0); 15278 } 15279 } 15280 } 15281 15282 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15283 SDNode *BasePtr = Add->getOperand(0).getNode(); 15284 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15285 UE = BasePtr->use_end(); UI != UE; ++UI) { 15286 if (UI->getOpcode() == ISD::ADD && 15287 isa<ConstantSDNode>(UI->getOperand(1)) && 15288 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15289 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15290 (1ULL << Bits) == 0) { 15291 SDNode *OtherAdd = *UI; 15292 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15293 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15294 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15295 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15296 return SDValue(*VI, 0); 15297 } 15298 } 15299 } 15300 } 15301 } 15302 } 15303 15304 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15305 // Expose the vabsduw/h/b opportunity for down stream 15306 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15307 (IID == Intrinsic::ppc_altivec_vmaxsw || 15308 IID == Intrinsic::ppc_altivec_vmaxsh || 15309 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15310 SDValue V1 = N->getOperand(1); 15311 SDValue V2 = N->getOperand(2); 15312 if ((V1.getSimpleValueType() == MVT::v4i32 || 15313 V1.getSimpleValueType() == MVT::v8i16 || 15314 V1.getSimpleValueType() == MVT::v16i8) && 15315 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15316 // (0-a, a) 15317 if (V1.getOpcode() == ISD::SUB && 15318 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15319 V1.getOperand(1) == V2) { 15320 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15321 } 15322 // (a, 0-a) 15323 if (V2.getOpcode() == ISD::SUB && 15324 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15325 V2.getOperand(1) == V1) { 15326 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15327 } 15328 // (x-y, y-x) 15329 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15330 V1.getOperand(0) == V2.getOperand(1) && 15331 V1.getOperand(1) == V2.getOperand(0)) { 15332 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15333 } 15334 } 15335 } 15336 } 15337 15338 break; 15339 case ISD::INTRINSIC_W_CHAIN: 15340 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15341 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15342 if (Subtarget.needsSwapsForVSXMemOps()) { 15343 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15344 default: 15345 break; 15346 case Intrinsic::ppc_vsx_lxvw4x: 15347 case Intrinsic::ppc_vsx_lxvd2x: 15348 return expandVSXLoadForLE(N, DCI); 15349 } 15350 } 15351 break; 15352 case ISD::INTRINSIC_VOID: 15353 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15354 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15355 if (Subtarget.needsSwapsForVSXMemOps()) { 15356 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15357 default: 15358 break; 15359 case Intrinsic::ppc_vsx_stxvw4x: 15360 case Intrinsic::ppc_vsx_stxvd2x: 15361 return expandVSXStoreForLE(N, DCI); 15362 } 15363 } 15364 break; 15365 case ISD::BSWAP: { 15366 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15367 // For subtargets without LDBRX, we can still do better than the default 15368 // expansion even for 64-bit BSWAP (LOAD). 15369 bool Is64BitBswapOn64BitTgt = 15370 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15371 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15372 N->getOperand(0).hasOneUse(); 15373 if (IsSingleUseNormalLd && 15374 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15375 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15376 SDValue Load = N->getOperand(0); 15377 LoadSDNode *LD = cast<LoadSDNode>(Load); 15378 // Create the byte-swapping load. 15379 SDValue Ops[] = { 15380 LD->getChain(), // Chain 15381 LD->getBasePtr(), // Ptr 15382 DAG.getValueType(N->getValueType(0)) // VT 15383 }; 15384 SDValue BSLoad = 15385 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15386 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15387 MVT::i64 : MVT::i32, MVT::Other), 15388 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15389 15390 // If this is an i16 load, insert the truncate. 15391 SDValue ResVal = BSLoad; 15392 if (N->getValueType(0) == MVT::i16) 15393 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15394 15395 // First, combine the bswap away. This makes the value produced by the 15396 // load dead. 15397 DCI.CombineTo(N, ResVal); 15398 15399 // Next, combine the load away, we give it a bogus result value but a real 15400 // chain result. The result value is dead because the bswap is dead. 15401 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15402 15403 // Return N so it doesn't get rechecked! 15404 return SDValue(N, 0); 15405 } 15406 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15407 // before legalization so that the BUILD_PAIR is handled correctly. 15408 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15409 !IsSingleUseNormalLd) 15410 return SDValue(); 15411 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15412 15413 // Can't split volatile or atomic loads. 15414 if (!LD->isSimple()) 15415 return SDValue(); 15416 SDValue BasePtr = LD->getBasePtr(); 15417 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15418 LD->getPointerInfo(), LD->getAlignment()); 15419 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15420 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15421 DAG.getIntPtrConstant(4, dl)); 15422 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15423 LD->getMemOperand(), 4, 4); 15424 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15425 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15426 SDValue Res; 15427 if (Subtarget.isLittleEndian()) 15428 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15429 else 15430 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15431 SDValue TF = 15432 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15433 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15434 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15435 return Res; 15436 } 15437 case PPCISD::VCMP: 15438 // If a VCMP_rec node already exists with exactly the same operands as this 15439 // node, use its result instead of this node (VCMP_rec computes both a CR6 15440 // and a normal output). 15441 // 15442 if (!N->getOperand(0).hasOneUse() && 15443 !N->getOperand(1).hasOneUse() && 15444 !N->getOperand(2).hasOneUse()) { 15445 15446 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15447 SDNode *VCMPrecNode = nullptr; 15448 15449 SDNode *LHSN = N->getOperand(0).getNode(); 15450 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15451 UI != E; ++UI) 15452 if (UI->getOpcode() == PPCISD::VCMP_rec && 15453 UI->getOperand(1) == N->getOperand(1) && 15454 UI->getOperand(2) == N->getOperand(2) && 15455 UI->getOperand(0) == N->getOperand(0)) { 15456 VCMPrecNode = *UI; 15457 break; 15458 } 15459 15460 // If there is no VCMP_rec node, or if the flag value has a single use, 15461 // don't transform this. 15462 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15463 break; 15464 15465 // Look at the (necessarily single) use of the flag value. If it has a 15466 // chain, this transformation is more complex. Note that multiple things 15467 // could use the value result, which we should ignore. 15468 SDNode *FlagUser = nullptr; 15469 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15470 FlagUser == nullptr; ++UI) { 15471 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15472 SDNode *User = *UI; 15473 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15474 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15475 FlagUser = User; 15476 break; 15477 } 15478 } 15479 } 15480 15481 // If the user is a MFOCRF instruction, we know this is safe. 15482 // Otherwise we give up for right now. 15483 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15484 return SDValue(VCMPrecNode, 0); 15485 } 15486 break; 15487 case ISD::BRCOND: { 15488 SDValue Cond = N->getOperand(1); 15489 SDValue Target = N->getOperand(2); 15490 15491 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15492 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15493 Intrinsic::loop_decrement) { 15494 15495 // We now need to make the intrinsic dead (it cannot be instruction 15496 // selected). 15497 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15498 assert(Cond.getNode()->hasOneUse() && 15499 "Counter decrement has more than one use"); 15500 15501 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15502 N->getOperand(0), Target); 15503 } 15504 } 15505 break; 15506 case ISD::BR_CC: { 15507 // If this is a branch on an altivec predicate comparison, lower this so 15508 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15509 // lowering is done pre-legalize, because the legalizer lowers the predicate 15510 // compare down to code that is difficult to reassemble. 15511 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15512 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15513 15514 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15515 // value. If so, pass-through the AND to get to the intrinsic. 15516 if (LHS.getOpcode() == ISD::AND && 15517 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15518 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15519 Intrinsic::loop_decrement && 15520 isa<ConstantSDNode>(LHS.getOperand(1)) && 15521 !isNullConstant(LHS.getOperand(1))) 15522 LHS = LHS.getOperand(0); 15523 15524 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15525 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15526 Intrinsic::loop_decrement && 15527 isa<ConstantSDNode>(RHS)) { 15528 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15529 "Counter decrement comparison is not EQ or NE"); 15530 15531 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15532 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15533 (CC == ISD::SETNE && !Val); 15534 15535 // We now need to make the intrinsic dead (it cannot be instruction 15536 // selected). 15537 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15538 assert(LHS.getNode()->hasOneUse() && 15539 "Counter decrement has more than one use"); 15540 15541 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15542 N->getOperand(0), N->getOperand(4)); 15543 } 15544 15545 int CompareOpc; 15546 bool isDot; 15547 15548 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15549 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15550 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15551 assert(isDot && "Can't compare against a vector result!"); 15552 15553 // If this is a comparison against something other than 0/1, then we know 15554 // that the condition is never/always true. 15555 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15556 if (Val != 0 && Val != 1) { 15557 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15558 return N->getOperand(0); 15559 // Always !=, turn it into an unconditional branch. 15560 return DAG.getNode(ISD::BR, dl, MVT::Other, 15561 N->getOperand(0), N->getOperand(4)); 15562 } 15563 15564 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15565 15566 // Create the PPCISD altivec 'dot' comparison node. 15567 SDValue Ops[] = { 15568 LHS.getOperand(2), // LHS of compare 15569 LHS.getOperand(3), // RHS of compare 15570 DAG.getConstant(CompareOpc, dl, MVT::i32) 15571 }; 15572 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15573 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15574 15575 // Unpack the result based on how the target uses it. 15576 PPC::Predicate CompOpc; 15577 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15578 default: // Can't happen, don't crash on invalid number though. 15579 case 0: // Branch on the value of the EQ bit of CR6. 15580 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15581 break; 15582 case 1: // Branch on the inverted value of the EQ bit of CR6. 15583 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15584 break; 15585 case 2: // Branch on the value of the LT bit of CR6. 15586 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15587 break; 15588 case 3: // Branch on the inverted value of the LT bit of CR6. 15589 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15590 break; 15591 } 15592 15593 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15594 DAG.getConstant(CompOpc, dl, MVT::i32), 15595 DAG.getRegister(PPC::CR6, MVT::i32), 15596 N->getOperand(4), CompNode.getValue(1)); 15597 } 15598 break; 15599 } 15600 case ISD::BUILD_VECTOR: 15601 return DAGCombineBuildVector(N, DCI); 15602 case ISD::ABS: 15603 return combineABS(N, DCI); 15604 case ISD::VSELECT: 15605 return combineVSelect(N, DCI); 15606 } 15607 15608 return SDValue(); 15609 } 15610 15611 SDValue 15612 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15613 SelectionDAG &DAG, 15614 SmallVectorImpl<SDNode *> &Created) const { 15615 // fold (sdiv X, pow2) 15616 EVT VT = N->getValueType(0); 15617 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15618 return SDValue(); 15619 if ((VT != MVT::i32 && VT != MVT::i64) || 15620 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15621 return SDValue(); 15622 15623 SDLoc DL(N); 15624 SDValue N0 = N->getOperand(0); 15625 15626 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15627 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15628 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15629 15630 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15631 Created.push_back(Op.getNode()); 15632 15633 if (IsNegPow2) { 15634 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15635 Created.push_back(Op.getNode()); 15636 } 15637 15638 return Op; 15639 } 15640 15641 //===----------------------------------------------------------------------===// 15642 // Inline Assembly Support 15643 //===----------------------------------------------------------------------===// 15644 15645 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15646 KnownBits &Known, 15647 const APInt &DemandedElts, 15648 const SelectionDAG &DAG, 15649 unsigned Depth) const { 15650 Known.resetAll(); 15651 switch (Op.getOpcode()) { 15652 default: break; 15653 case PPCISD::LBRX: { 15654 // lhbrx is known to have the top bits cleared out. 15655 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15656 Known.Zero = 0xFFFF0000; 15657 break; 15658 } 15659 case ISD::INTRINSIC_WO_CHAIN: { 15660 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15661 default: break; 15662 case Intrinsic::ppc_altivec_vcmpbfp_p: 15663 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15664 case Intrinsic::ppc_altivec_vcmpequb_p: 15665 case Intrinsic::ppc_altivec_vcmpequh_p: 15666 case Intrinsic::ppc_altivec_vcmpequw_p: 15667 case Intrinsic::ppc_altivec_vcmpequd_p: 15668 case Intrinsic::ppc_altivec_vcmpequq_p: 15669 case Intrinsic::ppc_altivec_vcmpgefp_p: 15670 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15671 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15672 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15673 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15674 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15675 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15676 case Intrinsic::ppc_altivec_vcmpgtub_p: 15677 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15678 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15679 case Intrinsic::ppc_altivec_vcmpgtud_p: 15680 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15681 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15682 break; 15683 } 15684 } 15685 } 15686 } 15687 15688 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15689 switch (Subtarget.getCPUDirective()) { 15690 default: break; 15691 case PPC::DIR_970: 15692 case PPC::DIR_PWR4: 15693 case PPC::DIR_PWR5: 15694 case PPC::DIR_PWR5X: 15695 case PPC::DIR_PWR6: 15696 case PPC::DIR_PWR6X: 15697 case PPC::DIR_PWR7: 15698 case PPC::DIR_PWR8: 15699 case PPC::DIR_PWR9: 15700 case PPC::DIR_PWR10: 15701 case PPC::DIR_PWR_FUTURE: { 15702 if (!ML) 15703 break; 15704 15705 if (!DisableInnermostLoopAlign32) { 15706 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15707 // so that we can decrease cache misses and branch-prediction misses. 15708 // Actual alignment of the loop will depend on the hotness check and other 15709 // logic in alignBlocks. 15710 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15711 return Align(32); 15712 } 15713 15714 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15715 15716 // For small loops (between 5 and 8 instructions), align to a 32-byte 15717 // boundary so that the entire loop fits in one instruction-cache line. 15718 uint64_t LoopSize = 0; 15719 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15720 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15721 LoopSize += TII->getInstSizeInBytes(*J); 15722 if (LoopSize > 32) 15723 break; 15724 } 15725 15726 if (LoopSize > 16 && LoopSize <= 32) 15727 return Align(32); 15728 15729 break; 15730 } 15731 } 15732 15733 return TargetLowering::getPrefLoopAlignment(ML); 15734 } 15735 15736 /// getConstraintType - Given a constraint, return the type of 15737 /// constraint it is for this target. 15738 PPCTargetLowering::ConstraintType 15739 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15740 if (Constraint.size() == 1) { 15741 switch (Constraint[0]) { 15742 default: break; 15743 case 'b': 15744 case 'r': 15745 case 'f': 15746 case 'd': 15747 case 'v': 15748 case 'y': 15749 return C_RegisterClass; 15750 case 'Z': 15751 // FIXME: While Z does indicate a memory constraint, it specifically 15752 // indicates an r+r address (used in conjunction with the 'y' modifier 15753 // in the replacement string). Currently, we're forcing the base 15754 // register to be r0 in the asm printer (which is interpreted as zero) 15755 // and forming the complete address in the second register. This is 15756 // suboptimal. 15757 return C_Memory; 15758 } 15759 } else if (Constraint == "wc") { // individual CR bits. 15760 return C_RegisterClass; 15761 } else if (Constraint == "wa" || Constraint == "wd" || 15762 Constraint == "wf" || Constraint == "ws" || 15763 Constraint == "wi" || Constraint == "ww") { 15764 return C_RegisterClass; // VSX registers. 15765 } 15766 return TargetLowering::getConstraintType(Constraint); 15767 } 15768 15769 /// Examine constraint type and operand type and determine a weight value. 15770 /// This object must already have been set up with the operand type 15771 /// and the current alternative constraint selected. 15772 TargetLowering::ConstraintWeight 15773 PPCTargetLowering::getSingleConstraintMatchWeight( 15774 AsmOperandInfo &info, const char *constraint) const { 15775 ConstraintWeight weight = CW_Invalid; 15776 Value *CallOperandVal = info.CallOperandVal; 15777 // If we don't have a value, we can't do a match, 15778 // but allow it at the lowest weight. 15779 if (!CallOperandVal) 15780 return CW_Default; 15781 Type *type = CallOperandVal->getType(); 15782 15783 // Look at the constraint type. 15784 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15785 return CW_Register; // an individual CR bit. 15786 else if ((StringRef(constraint) == "wa" || 15787 StringRef(constraint) == "wd" || 15788 StringRef(constraint) == "wf") && 15789 type->isVectorTy()) 15790 return CW_Register; 15791 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15792 return CW_Register; // just hold 64-bit integers data. 15793 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15794 return CW_Register; 15795 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15796 return CW_Register; 15797 15798 switch (*constraint) { 15799 default: 15800 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15801 break; 15802 case 'b': 15803 if (type->isIntegerTy()) 15804 weight = CW_Register; 15805 break; 15806 case 'f': 15807 if (type->isFloatTy()) 15808 weight = CW_Register; 15809 break; 15810 case 'd': 15811 if (type->isDoubleTy()) 15812 weight = CW_Register; 15813 break; 15814 case 'v': 15815 if (type->isVectorTy()) 15816 weight = CW_Register; 15817 break; 15818 case 'y': 15819 weight = CW_Register; 15820 break; 15821 case 'Z': 15822 weight = CW_Memory; 15823 break; 15824 } 15825 return weight; 15826 } 15827 15828 std::pair<unsigned, const TargetRegisterClass *> 15829 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15830 StringRef Constraint, 15831 MVT VT) const { 15832 if (Constraint.size() == 1) { 15833 // GCC RS6000 Constraint Letters 15834 switch (Constraint[0]) { 15835 case 'b': // R1-R31 15836 if (VT == MVT::i64 && Subtarget.isPPC64()) 15837 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15838 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15839 case 'r': // R0-R31 15840 if (VT == MVT::i64 && Subtarget.isPPC64()) 15841 return std::make_pair(0U, &PPC::G8RCRegClass); 15842 return std::make_pair(0U, &PPC::GPRCRegClass); 15843 // 'd' and 'f' constraints are both defined to be "the floating point 15844 // registers", where one is for 32-bit and the other for 64-bit. We don't 15845 // really care overly much here so just give them all the same reg classes. 15846 case 'd': 15847 case 'f': 15848 if (Subtarget.hasSPE()) { 15849 if (VT == MVT::f32 || VT == MVT::i32) 15850 return std::make_pair(0U, &PPC::GPRCRegClass); 15851 if (VT == MVT::f64 || VT == MVT::i64) 15852 return std::make_pair(0U, &PPC::SPERCRegClass); 15853 } else { 15854 if (VT == MVT::f32 || VT == MVT::i32) 15855 return std::make_pair(0U, &PPC::F4RCRegClass); 15856 if (VT == MVT::f64 || VT == MVT::i64) 15857 return std::make_pair(0U, &PPC::F8RCRegClass); 15858 } 15859 break; 15860 case 'v': 15861 if (Subtarget.hasAltivec()) 15862 return std::make_pair(0U, &PPC::VRRCRegClass); 15863 break; 15864 case 'y': // crrc 15865 return std::make_pair(0U, &PPC::CRRCRegClass); 15866 } 15867 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15868 // An individual CR bit. 15869 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15870 } else if ((Constraint == "wa" || Constraint == "wd" || 15871 Constraint == "wf" || Constraint == "wi") && 15872 Subtarget.hasVSX()) { 15873 // A VSX register for either a scalar (FP) or vector. There is no 15874 // support for single precision scalars on subtargets prior to Power8. 15875 if (VT.isVector()) 15876 return std::make_pair(0U, &PPC::VSRCRegClass); 15877 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15878 return std::make_pair(0U, &PPC::VSSRCRegClass); 15879 return std::make_pair(0U, &PPC::VSFRCRegClass); 15880 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15881 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15882 return std::make_pair(0U, &PPC::VSSRCRegClass); 15883 else 15884 return std::make_pair(0U, &PPC::VSFRCRegClass); 15885 } else if (Constraint == "lr") { 15886 if (VT == MVT::i64) 15887 return std::make_pair(0U, &PPC::LR8RCRegClass); 15888 else 15889 return std::make_pair(0U, &PPC::LRRCRegClass); 15890 } 15891 15892 // Handle special cases of physical registers that are not properly handled 15893 // by the base class. 15894 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15895 // If we name a VSX register, we can't defer to the base class because it 15896 // will not recognize the correct register (their names will be VSL{0-31} 15897 // and V{0-31} so they won't match). So we match them here. 15898 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15899 int VSNum = atoi(Constraint.data() + 3); 15900 assert(VSNum >= 0 && VSNum <= 63 && 15901 "Attempted to access a vsr out of range"); 15902 if (VSNum < 32) 15903 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15904 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15905 } 15906 15907 // For float registers, we can't defer to the base class as it will match 15908 // the SPILLTOVSRRC class. 15909 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15910 int RegNum = atoi(Constraint.data() + 2); 15911 if (RegNum > 31 || RegNum < 0) 15912 report_fatal_error("Invalid floating point register number"); 15913 if (VT == MVT::f32 || VT == MVT::i32) 15914 return Subtarget.hasSPE() 15915 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15916 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15917 if (VT == MVT::f64 || VT == MVT::i64) 15918 return Subtarget.hasSPE() 15919 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15920 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15921 } 15922 } 15923 15924 std::pair<unsigned, const TargetRegisterClass *> R = 15925 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15926 15927 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15928 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15929 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15930 // register. 15931 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15932 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15933 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15934 PPC::GPRCRegClass.contains(R.first)) 15935 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15936 PPC::sub_32, &PPC::G8RCRegClass), 15937 &PPC::G8RCRegClass); 15938 15939 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15940 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 15941 R.first = PPC::CR0; 15942 R.second = &PPC::CRRCRegClass; 15943 } 15944 // FIXME: This warning should ideally be emitted in the front end. 15945 const auto &TM = getTargetMachine(); 15946 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15947 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15948 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15949 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15950 errs() << "warning: vector registers 20 to 32 are reserved in the " 15951 "default AIX AltiVec ABI and cannot be used\n"; 15952 } 15953 15954 return R; 15955 } 15956 15957 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15958 /// vector. If it is invalid, don't add anything to Ops. 15959 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15960 std::string &Constraint, 15961 std::vector<SDValue>&Ops, 15962 SelectionDAG &DAG) const { 15963 SDValue Result; 15964 15965 // Only support length 1 constraints. 15966 if (Constraint.length() > 1) return; 15967 15968 char Letter = Constraint[0]; 15969 switch (Letter) { 15970 default: break; 15971 case 'I': 15972 case 'J': 15973 case 'K': 15974 case 'L': 15975 case 'M': 15976 case 'N': 15977 case 'O': 15978 case 'P': { 15979 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15980 if (!CST) return; // Must be an immediate to match. 15981 SDLoc dl(Op); 15982 int64_t Value = CST->getSExtValue(); 15983 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15984 // numbers are printed as such. 15985 switch (Letter) { 15986 default: llvm_unreachable("Unknown constraint letter!"); 15987 case 'I': // "I" is a signed 16-bit constant. 15988 if (isInt<16>(Value)) 15989 Result = DAG.getTargetConstant(Value, dl, TCVT); 15990 break; 15991 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15992 if (isShiftedUInt<16, 16>(Value)) 15993 Result = DAG.getTargetConstant(Value, dl, TCVT); 15994 break; 15995 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15996 if (isShiftedInt<16, 16>(Value)) 15997 Result = DAG.getTargetConstant(Value, dl, TCVT); 15998 break; 15999 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16000 if (isUInt<16>(Value)) 16001 Result = DAG.getTargetConstant(Value, dl, TCVT); 16002 break; 16003 case 'M': // "M" is a constant that is greater than 31. 16004 if (Value > 31) 16005 Result = DAG.getTargetConstant(Value, dl, TCVT); 16006 break; 16007 case 'N': // "N" is a positive constant that is an exact power of two. 16008 if (Value > 0 && isPowerOf2_64(Value)) 16009 Result = DAG.getTargetConstant(Value, dl, TCVT); 16010 break; 16011 case 'O': // "O" is the constant zero. 16012 if (Value == 0) 16013 Result = DAG.getTargetConstant(Value, dl, TCVT); 16014 break; 16015 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16016 if (isInt<16>(-Value)) 16017 Result = DAG.getTargetConstant(Value, dl, TCVT); 16018 break; 16019 } 16020 break; 16021 } 16022 } 16023 16024 if (Result.getNode()) { 16025 Ops.push_back(Result); 16026 return; 16027 } 16028 16029 // Handle standard constraint letters. 16030 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16031 } 16032 16033 // isLegalAddressingMode - Return true if the addressing mode represented 16034 // by AM is legal for this target, for a load/store of the specified type. 16035 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16036 const AddrMode &AM, Type *Ty, 16037 unsigned AS, 16038 Instruction *I) const { 16039 // Vector type r+i form is supported since power9 as DQ form. We don't check 16040 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16041 // imm form is preferred and the offset can be adjusted to use imm form later 16042 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16043 // max offset to check legal addressing mode, we should be a little aggressive 16044 // to contain other offsets for that LSRUse. 16045 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16046 return false; 16047 16048 // PPC allows a sign-extended 16-bit immediate field. 16049 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16050 return false; 16051 16052 // No global is ever allowed as a base. 16053 if (AM.BaseGV) 16054 return false; 16055 16056 // PPC only support r+r, 16057 switch (AM.Scale) { 16058 case 0: // "r+i" or just "i", depending on HasBaseReg. 16059 break; 16060 case 1: 16061 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16062 return false; 16063 // Otherwise we have r+r or r+i. 16064 break; 16065 case 2: 16066 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16067 return false; 16068 // Allow 2*r as r+r. 16069 break; 16070 default: 16071 // No other scales are supported. 16072 return false; 16073 } 16074 16075 return true; 16076 } 16077 16078 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16079 SelectionDAG &DAG) const { 16080 MachineFunction &MF = DAG.getMachineFunction(); 16081 MachineFrameInfo &MFI = MF.getFrameInfo(); 16082 MFI.setReturnAddressIsTaken(true); 16083 16084 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16085 return SDValue(); 16086 16087 SDLoc dl(Op); 16088 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16089 16090 // Make sure the function does not optimize away the store of the RA to 16091 // the stack. 16092 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16093 FuncInfo->setLRStoreRequired(); 16094 bool isPPC64 = Subtarget.isPPC64(); 16095 auto PtrVT = getPointerTy(MF.getDataLayout()); 16096 16097 if (Depth > 0) { 16098 // The link register (return address) is saved in the caller's frame 16099 // not the callee's stack frame. So we must get the caller's frame 16100 // address and load the return address at the LR offset from there. 16101 SDValue FrameAddr = 16102 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16103 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16104 SDValue Offset = 16105 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16106 isPPC64 ? MVT::i64 : MVT::i32); 16107 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16108 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16109 MachinePointerInfo()); 16110 } 16111 16112 // Just load the return address off the stack. 16113 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16114 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16115 MachinePointerInfo()); 16116 } 16117 16118 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16119 SelectionDAG &DAG) const { 16120 SDLoc dl(Op); 16121 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16122 16123 MachineFunction &MF = DAG.getMachineFunction(); 16124 MachineFrameInfo &MFI = MF.getFrameInfo(); 16125 MFI.setFrameAddressIsTaken(true); 16126 16127 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16128 bool isPPC64 = PtrVT == MVT::i64; 16129 16130 // Naked functions never have a frame pointer, and so we use r1. For all 16131 // other functions, this decision must be delayed until during PEI. 16132 unsigned FrameReg; 16133 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16134 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16135 else 16136 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16137 16138 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16139 PtrVT); 16140 while (Depth--) 16141 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16142 FrameAddr, MachinePointerInfo()); 16143 return FrameAddr; 16144 } 16145 16146 // FIXME? Maybe this could be a TableGen attribute on some registers and 16147 // this table could be generated automatically from RegInfo. 16148 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16149 const MachineFunction &MF) const { 16150 bool isPPC64 = Subtarget.isPPC64(); 16151 16152 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16153 if (!is64Bit && VT != LLT::scalar(32)) 16154 report_fatal_error("Invalid register global variable type"); 16155 16156 Register Reg = StringSwitch<Register>(RegName) 16157 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16158 .Case("r2", isPPC64 ? Register() : PPC::R2) 16159 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16160 .Default(Register()); 16161 16162 if (Reg) 16163 return Reg; 16164 report_fatal_error("Invalid register name global variable"); 16165 } 16166 16167 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16168 // 32-bit SVR4 ABI access everything as got-indirect. 16169 if (Subtarget.is32BitELFABI()) 16170 return true; 16171 16172 // AIX accesses everything indirectly through the TOC, which is similar to 16173 // the GOT. 16174 if (Subtarget.isAIXABI()) 16175 return true; 16176 16177 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16178 // If it is small or large code model, module locals are accessed 16179 // indirectly by loading their address from .toc/.got. 16180 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16181 return true; 16182 16183 // JumpTable and BlockAddress are accessed as got-indirect. 16184 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16185 return true; 16186 16187 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16188 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16189 16190 return false; 16191 } 16192 16193 bool 16194 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16195 // The PowerPC target isn't yet aware of offsets. 16196 return false; 16197 } 16198 16199 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16200 const CallInst &I, 16201 MachineFunction &MF, 16202 unsigned Intrinsic) const { 16203 switch (Intrinsic) { 16204 case Intrinsic::ppc_atomicrmw_xchg_i128: 16205 case Intrinsic::ppc_atomicrmw_add_i128: 16206 case Intrinsic::ppc_atomicrmw_sub_i128: 16207 case Intrinsic::ppc_atomicrmw_nand_i128: 16208 case Intrinsic::ppc_atomicrmw_and_i128: 16209 case Intrinsic::ppc_atomicrmw_or_i128: 16210 case Intrinsic::ppc_atomicrmw_xor_i128: 16211 case Intrinsic::ppc_cmpxchg_i128: 16212 Info.opc = ISD::INTRINSIC_W_CHAIN; 16213 Info.memVT = MVT::i128; 16214 Info.ptrVal = I.getArgOperand(0); 16215 Info.offset = 0; 16216 Info.align = Align(16); 16217 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16218 MachineMemOperand::MOVolatile; 16219 return true; 16220 case Intrinsic::ppc_atomic_load_i128: 16221 Info.opc = ISD::INTRINSIC_W_CHAIN; 16222 Info.memVT = MVT::i128; 16223 Info.ptrVal = I.getArgOperand(0); 16224 Info.offset = 0; 16225 Info.align = Align(16); 16226 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16227 return true; 16228 case Intrinsic::ppc_atomic_store_i128: 16229 Info.opc = ISD::INTRINSIC_VOID; 16230 Info.memVT = MVT::i128; 16231 Info.ptrVal = I.getArgOperand(2); 16232 Info.offset = 0; 16233 Info.align = Align(16); 16234 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16235 return true; 16236 case Intrinsic::ppc_altivec_lvx: 16237 case Intrinsic::ppc_altivec_lvxl: 16238 case Intrinsic::ppc_altivec_lvebx: 16239 case Intrinsic::ppc_altivec_lvehx: 16240 case Intrinsic::ppc_altivec_lvewx: 16241 case Intrinsic::ppc_vsx_lxvd2x: 16242 case Intrinsic::ppc_vsx_lxvw4x: 16243 case Intrinsic::ppc_vsx_lxvd2x_be: 16244 case Intrinsic::ppc_vsx_lxvw4x_be: 16245 case Intrinsic::ppc_vsx_lxvl: 16246 case Intrinsic::ppc_vsx_lxvll: { 16247 EVT VT; 16248 switch (Intrinsic) { 16249 case Intrinsic::ppc_altivec_lvebx: 16250 VT = MVT::i8; 16251 break; 16252 case Intrinsic::ppc_altivec_lvehx: 16253 VT = MVT::i16; 16254 break; 16255 case Intrinsic::ppc_altivec_lvewx: 16256 VT = MVT::i32; 16257 break; 16258 case Intrinsic::ppc_vsx_lxvd2x: 16259 case Intrinsic::ppc_vsx_lxvd2x_be: 16260 VT = MVT::v2f64; 16261 break; 16262 default: 16263 VT = MVT::v4i32; 16264 break; 16265 } 16266 16267 Info.opc = ISD::INTRINSIC_W_CHAIN; 16268 Info.memVT = VT; 16269 Info.ptrVal = I.getArgOperand(0); 16270 Info.offset = -VT.getStoreSize()+1; 16271 Info.size = 2*VT.getStoreSize()-1; 16272 Info.align = Align(1); 16273 Info.flags = MachineMemOperand::MOLoad; 16274 return true; 16275 } 16276 case Intrinsic::ppc_altivec_stvx: 16277 case Intrinsic::ppc_altivec_stvxl: 16278 case Intrinsic::ppc_altivec_stvebx: 16279 case Intrinsic::ppc_altivec_stvehx: 16280 case Intrinsic::ppc_altivec_stvewx: 16281 case Intrinsic::ppc_vsx_stxvd2x: 16282 case Intrinsic::ppc_vsx_stxvw4x: 16283 case Intrinsic::ppc_vsx_stxvd2x_be: 16284 case Intrinsic::ppc_vsx_stxvw4x_be: 16285 case Intrinsic::ppc_vsx_stxvl: 16286 case Intrinsic::ppc_vsx_stxvll: { 16287 EVT VT; 16288 switch (Intrinsic) { 16289 case Intrinsic::ppc_altivec_stvebx: 16290 VT = MVT::i8; 16291 break; 16292 case Intrinsic::ppc_altivec_stvehx: 16293 VT = MVT::i16; 16294 break; 16295 case Intrinsic::ppc_altivec_stvewx: 16296 VT = MVT::i32; 16297 break; 16298 case Intrinsic::ppc_vsx_stxvd2x: 16299 case Intrinsic::ppc_vsx_stxvd2x_be: 16300 VT = MVT::v2f64; 16301 break; 16302 default: 16303 VT = MVT::v4i32; 16304 break; 16305 } 16306 16307 Info.opc = ISD::INTRINSIC_VOID; 16308 Info.memVT = VT; 16309 Info.ptrVal = I.getArgOperand(1); 16310 Info.offset = -VT.getStoreSize()+1; 16311 Info.size = 2*VT.getStoreSize()-1; 16312 Info.align = Align(1); 16313 Info.flags = MachineMemOperand::MOStore; 16314 return true; 16315 } 16316 default: 16317 break; 16318 } 16319 16320 return false; 16321 } 16322 16323 /// It returns EVT::Other if the type should be determined using generic 16324 /// target-independent logic. 16325 EVT PPCTargetLowering::getOptimalMemOpType( 16326 const MemOp &Op, const AttributeList &FuncAttributes) const { 16327 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16328 // We should use Altivec/VSX loads and stores when available. For unaligned 16329 // addresses, unaligned VSX loads are only fast starting with the P8. 16330 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16331 (Op.isAligned(Align(16)) || 16332 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16333 return MVT::v4i32; 16334 } 16335 16336 if (Subtarget.isPPC64()) { 16337 return MVT::i64; 16338 } 16339 16340 return MVT::i32; 16341 } 16342 16343 /// Returns true if it is beneficial to convert a load of a constant 16344 /// to just the constant itself. 16345 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16346 Type *Ty) const { 16347 assert(Ty->isIntegerTy()); 16348 16349 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16350 return !(BitSize == 0 || BitSize > 64); 16351 } 16352 16353 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16354 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16355 return false; 16356 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16357 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16358 return NumBits1 == 64 && NumBits2 == 32; 16359 } 16360 16361 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16362 if (!VT1.isInteger() || !VT2.isInteger()) 16363 return false; 16364 unsigned NumBits1 = VT1.getSizeInBits(); 16365 unsigned NumBits2 = VT2.getSizeInBits(); 16366 return NumBits1 == 64 && NumBits2 == 32; 16367 } 16368 16369 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16370 // Generally speaking, zexts are not free, but they are free when they can be 16371 // folded with other operations. 16372 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16373 EVT MemVT = LD->getMemoryVT(); 16374 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16375 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16376 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16377 LD->getExtensionType() == ISD::ZEXTLOAD)) 16378 return true; 16379 } 16380 16381 // FIXME: Add other cases... 16382 // - 32-bit shifts with a zext to i64 16383 // - zext after ctlz, bswap, etc. 16384 // - zext after and by a constant mask 16385 16386 return TargetLowering::isZExtFree(Val, VT2); 16387 } 16388 16389 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16390 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16391 "invalid fpext types"); 16392 // Extending to float128 is not free. 16393 if (DestVT == MVT::f128) 16394 return false; 16395 return true; 16396 } 16397 16398 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16399 return isInt<16>(Imm) || isUInt<16>(Imm); 16400 } 16401 16402 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16403 return isInt<16>(Imm) || isUInt<16>(Imm); 16404 } 16405 16406 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16407 MachineMemOperand::Flags, 16408 bool *Fast) const { 16409 if (DisablePPCUnaligned) 16410 return false; 16411 16412 // PowerPC supports unaligned memory access for simple non-vector types. 16413 // Although accessing unaligned addresses is not as efficient as accessing 16414 // aligned addresses, it is generally more efficient than manual expansion, 16415 // and generally only traps for software emulation when crossing page 16416 // boundaries. 16417 16418 if (!VT.isSimple()) 16419 return false; 16420 16421 if (VT.isFloatingPoint() && !VT.isVector() && 16422 !Subtarget.allowsUnalignedFPAccess()) 16423 return false; 16424 16425 if (VT.getSimpleVT().isVector()) { 16426 if (Subtarget.hasVSX()) { 16427 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16428 VT != MVT::v4f32 && VT != MVT::v4i32) 16429 return false; 16430 } else { 16431 return false; 16432 } 16433 } 16434 16435 if (VT == MVT::ppcf128) 16436 return false; 16437 16438 if (Fast) 16439 *Fast = true; 16440 16441 return true; 16442 } 16443 16444 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16445 SDValue C) const { 16446 // Check integral scalar types. 16447 if (!VT.isScalarInteger()) 16448 return false; 16449 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16450 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16451 return false; 16452 // This transformation will generate >= 2 operations. But the following 16453 // cases will generate <= 2 instructions during ISEL. So exclude them. 16454 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16455 // HW instruction, ie. MULLI 16456 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16457 // instruction is needed than case 1, ie. MULLI and RLDICR 16458 int64_t Imm = ConstNode->getSExtValue(); 16459 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16460 Imm >>= Shift; 16461 if (isInt<16>(Imm)) 16462 return false; 16463 uint64_t UImm = static_cast<uint64_t>(Imm); 16464 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16465 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16466 return true; 16467 } 16468 return false; 16469 } 16470 16471 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16472 EVT VT) const { 16473 return isFMAFasterThanFMulAndFAdd( 16474 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16475 } 16476 16477 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16478 Type *Ty) const { 16479 switch (Ty->getScalarType()->getTypeID()) { 16480 case Type::FloatTyID: 16481 case Type::DoubleTyID: 16482 return true; 16483 case Type::FP128TyID: 16484 return Subtarget.hasP9Vector(); 16485 default: 16486 return false; 16487 } 16488 } 16489 16490 // FIXME: add more patterns which are not profitable to hoist. 16491 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16492 if (!I->hasOneUse()) 16493 return true; 16494 16495 Instruction *User = I->user_back(); 16496 assert(User && "A single use instruction with no uses."); 16497 16498 switch (I->getOpcode()) { 16499 case Instruction::FMul: { 16500 // Don't break FMA, PowerPC prefers FMA. 16501 if (User->getOpcode() != Instruction::FSub && 16502 User->getOpcode() != Instruction::FAdd) 16503 return true; 16504 16505 const TargetOptions &Options = getTargetMachine().Options; 16506 const Function *F = I->getFunction(); 16507 const DataLayout &DL = F->getParent()->getDataLayout(); 16508 Type *Ty = User->getOperand(0)->getType(); 16509 16510 return !( 16511 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16512 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16513 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16514 } 16515 case Instruction::Load: { 16516 // Don't break "store (load float*)" pattern, this pattern will be combined 16517 // to "store (load int32)" in later InstCombine pass. See function 16518 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16519 // cycles than loading a 32 bit integer. 16520 LoadInst *LI = cast<LoadInst>(I); 16521 // For the loads that combineLoadToOperationType does nothing, like 16522 // ordered load, it should be profitable to hoist them. 16523 // For swifterror load, it can only be used for pointer to pointer type, so 16524 // later type check should get rid of this case. 16525 if (!LI->isUnordered()) 16526 return true; 16527 16528 if (User->getOpcode() != Instruction::Store) 16529 return true; 16530 16531 if (I->getType()->getTypeID() != Type::FloatTyID) 16532 return true; 16533 16534 return false; 16535 } 16536 default: 16537 return true; 16538 } 16539 return true; 16540 } 16541 16542 const MCPhysReg * 16543 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16544 // LR is a callee-save register, but we must treat it as clobbered by any call 16545 // site. Hence we include LR in the scratch registers, which are in turn added 16546 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16547 // to CTR, which is used by any indirect call. 16548 static const MCPhysReg ScratchRegs[] = { 16549 PPC::X12, PPC::LR8, PPC::CTR8, 0 16550 }; 16551 16552 return ScratchRegs; 16553 } 16554 16555 Register PPCTargetLowering::getExceptionPointerRegister( 16556 const Constant *PersonalityFn) const { 16557 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16558 } 16559 16560 Register PPCTargetLowering::getExceptionSelectorRegister( 16561 const Constant *PersonalityFn) const { 16562 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16563 } 16564 16565 bool 16566 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16567 EVT VT , unsigned DefinedValues) const { 16568 if (VT == MVT::v2i64) 16569 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16570 16571 if (Subtarget.hasVSX()) 16572 return true; 16573 16574 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16575 } 16576 16577 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16578 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16579 return TargetLowering::getSchedulingPreference(N); 16580 16581 return Sched::ILP; 16582 } 16583 16584 // Create a fast isel object. 16585 FastISel * 16586 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16587 const TargetLibraryInfo *LibInfo) const { 16588 return PPC::createFastISel(FuncInfo, LibInfo); 16589 } 16590 16591 // 'Inverted' means the FMA opcode after negating one multiplicand. 16592 // For example, (fma -a b c) = (fnmsub a b c) 16593 static unsigned invertFMAOpcode(unsigned Opc) { 16594 switch (Opc) { 16595 default: 16596 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16597 case ISD::FMA: 16598 return PPCISD::FNMSUB; 16599 case PPCISD::FNMSUB: 16600 return ISD::FMA; 16601 } 16602 } 16603 16604 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16605 bool LegalOps, bool OptForSize, 16606 NegatibleCost &Cost, 16607 unsigned Depth) const { 16608 if (Depth > SelectionDAG::MaxRecursionDepth) 16609 return SDValue(); 16610 16611 unsigned Opc = Op.getOpcode(); 16612 EVT VT = Op.getValueType(); 16613 SDNodeFlags Flags = Op.getNode()->getFlags(); 16614 16615 switch (Opc) { 16616 case PPCISD::FNMSUB: 16617 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16618 break; 16619 16620 const TargetOptions &Options = getTargetMachine().Options; 16621 SDValue N0 = Op.getOperand(0); 16622 SDValue N1 = Op.getOperand(1); 16623 SDValue N2 = Op.getOperand(2); 16624 SDLoc Loc(Op); 16625 16626 NegatibleCost N2Cost = NegatibleCost::Expensive; 16627 SDValue NegN2 = 16628 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16629 16630 if (!NegN2) 16631 return SDValue(); 16632 16633 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16634 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16635 // These transformations may change sign of zeroes. For example, 16636 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16637 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16638 // Try and choose the cheaper one to negate. 16639 NegatibleCost N0Cost = NegatibleCost::Expensive; 16640 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16641 N0Cost, Depth + 1); 16642 16643 NegatibleCost N1Cost = NegatibleCost::Expensive; 16644 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16645 N1Cost, Depth + 1); 16646 16647 if (NegN0 && N0Cost <= N1Cost) { 16648 Cost = std::min(N0Cost, N2Cost); 16649 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16650 } else if (NegN1) { 16651 Cost = std::min(N1Cost, N2Cost); 16652 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16653 } 16654 } 16655 16656 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16657 if (isOperationLegal(ISD::FMA, VT)) { 16658 Cost = N2Cost; 16659 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16660 } 16661 16662 break; 16663 } 16664 16665 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16666 Cost, Depth); 16667 } 16668 16669 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16670 bool PPCTargetLowering::useLoadStackGuardNode() const { 16671 if (!Subtarget.isTargetLinux()) 16672 return TargetLowering::useLoadStackGuardNode(); 16673 return true; 16674 } 16675 16676 // Override to disable global variable loading on Linux and insert AIX canary 16677 // word declaration. 16678 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16679 if (Subtarget.isAIXABI()) { 16680 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16681 Type::getInt8PtrTy(M.getContext())); 16682 return; 16683 } 16684 if (!Subtarget.isTargetLinux()) 16685 return TargetLowering::insertSSPDeclarations(M); 16686 } 16687 16688 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16689 if (Subtarget.isAIXABI()) 16690 return M.getGlobalVariable(AIXSSPCanaryWordName); 16691 return TargetLowering::getSDagStackGuard(M); 16692 } 16693 16694 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16695 bool ForCodeSize) const { 16696 if (!VT.isSimple() || !Subtarget.hasVSX()) 16697 return false; 16698 16699 switch(VT.getSimpleVT().SimpleTy) { 16700 default: 16701 // For FP types that are currently not supported by PPC backend, return 16702 // false. Examples: f16, f80. 16703 return false; 16704 case MVT::f32: 16705 case MVT::f64: 16706 if (Subtarget.hasPrefixInstrs()) { 16707 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16708 return true; 16709 } 16710 LLVM_FALLTHROUGH; 16711 case MVT::ppcf128: 16712 return Imm.isPosZero(); 16713 } 16714 } 16715 16716 // For vector shift operation op, fold 16717 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16718 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16719 SelectionDAG &DAG) { 16720 SDValue N0 = N->getOperand(0); 16721 SDValue N1 = N->getOperand(1); 16722 EVT VT = N0.getValueType(); 16723 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16724 unsigned Opcode = N->getOpcode(); 16725 unsigned TargetOpcode; 16726 16727 switch (Opcode) { 16728 default: 16729 llvm_unreachable("Unexpected shift operation"); 16730 case ISD::SHL: 16731 TargetOpcode = PPCISD::SHL; 16732 break; 16733 case ISD::SRL: 16734 TargetOpcode = PPCISD::SRL; 16735 break; 16736 case ISD::SRA: 16737 TargetOpcode = PPCISD::SRA; 16738 break; 16739 } 16740 16741 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16742 N1->getOpcode() == ISD::AND) 16743 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16744 if (Mask->getZExtValue() == OpSizeInBits - 1) 16745 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16746 16747 return SDValue(); 16748 } 16749 16750 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16751 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16752 return Value; 16753 16754 SDValue N0 = N->getOperand(0); 16755 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16756 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16757 N0.getOpcode() != ISD::SIGN_EXTEND || 16758 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16759 N->getValueType(0) != MVT::i64) 16760 return SDValue(); 16761 16762 // We can't save an operation here if the value is already extended, and 16763 // the existing shift is easier to combine. 16764 SDValue ExtsSrc = N0.getOperand(0); 16765 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16766 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16767 return SDValue(); 16768 16769 SDLoc DL(N0); 16770 SDValue ShiftBy = SDValue(CN1, 0); 16771 // We want the shift amount to be i32 on the extswli, but the shift could 16772 // have an i64. 16773 if (ShiftBy.getValueType() == MVT::i64) 16774 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16775 16776 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16777 ShiftBy); 16778 } 16779 16780 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16781 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16782 return Value; 16783 16784 return SDValue(); 16785 } 16786 16787 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16788 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16789 return Value; 16790 16791 return SDValue(); 16792 } 16793 16794 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16795 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16796 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16797 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16798 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16799 const PPCSubtarget &Subtarget) { 16800 if (!Subtarget.isPPC64()) 16801 return SDValue(); 16802 16803 SDValue LHS = N->getOperand(0); 16804 SDValue RHS = N->getOperand(1); 16805 16806 auto isZextOfCompareWithConstant = [](SDValue Op) { 16807 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16808 Op.getValueType() != MVT::i64) 16809 return false; 16810 16811 SDValue Cmp = Op.getOperand(0); 16812 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16813 Cmp.getOperand(0).getValueType() != MVT::i64) 16814 return false; 16815 16816 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16817 int64_t NegConstant = 0 - Constant->getSExtValue(); 16818 // Due to the limitations of the addi instruction, 16819 // -C is required to be [-32768, 32767]. 16820 return isInt<16>(NegConstant); 16821 } 16822 16823 return false; 16824 }; 16825 16826 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16827 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16828 16829 // If there is a pattern, canonicalize a zext operand to the RHS. 16830 if (LHSHasPattern && !RHSHasPattern) 16831 std::swap(LHS, RHS); 16832 else if (!LHSHasPattern && !RHSHasPattern) 16833 return SDValue(); 16834 16835 SDLoc DL(N); 16836 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16837 SDValue Cmp = RHS.getOperand(0); 16838 SDValue Z = Cmp.getOperand(0); 16839 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16840 int64_t NegConstant = 0 - Constant->getSExtValue(); 16841 16842 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16843 default: break; 16844 case ISD::SETNE: { 16845 // when C == 0 16846 // --> addze X, (addic Z, -1).carry 16847 // / 16848 // add X, (zext(setne Z, C))-- 16849 // \ when -32768 <= -C <= 32767 && C != 0 16850 // --> addze X, (addic (addi Z, -C), -1).carry 16851 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16852 DAG.getConstant(NegConstant, DL, MVT::i64)); 16853 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16854 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16855 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16856 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16857 SDValue(Addc.getNode(), 1)); 16858 } 16859 case ISD::SETEQ: { 16860 // when C == 0 16861 // --> addze X, (subfic Z, 0).carry 16862 // / 16863 // add X, (zext(sete Z, C))-- 16864 // \ when -32768 <= -C <= 32767 && C != 0 16865 // --> addze X, (subfic (addi Z, -C), 0).carry 16866 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16867 DAG.getConstant(NegConstant, DL, MVT::i64)); 16868 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16869 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16870 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16871 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16872 SDValue(Subc.getNode(), 1)); 16873 } 16874 } 16875 16876 return SDValue(); 16877 } 16878 16879 // Transform 16880 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16881 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16882 // In this case both C1 and C2 must be known constants. 16883 // C1+C2 must fit into a 34 bit signed integer. 16884 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16885 const PPCSubtarget &Subtarget) { 16886 if (!Subtarget.isUsingPCRelativeCalls()) 16887 return SDValue(); 16888 16889 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16890 // If we find that node try to cast the Global Address and the Constant. 16891 SDValue LHS = N->getOperand(0); 16892 SDValue RHS = N->getOperand(1); 16893 16894 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16895 std::swap(LHS, RHS); 16896 16897 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16898 return SDValue(); 16899 16900 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16901 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16902 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16903 16904 // Check that both casts succeeded. 16905 if (!GSDN || !ConstNode) 16906 return SDValue(); 16907 16908 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16909 SDLoc DL(GSDN); 16910 16911 // The signed int offset needs to fit in 34 bits. 16912 if (!isInt<34>(NewOffset)) 16913 return SDValue(); 16914 16915 // The new global address is a copy of the old global address except 16916 // that it has the updated Offset. 16917 SDValue GA = 16918 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16919 NewOffset, GSDN->getTargetFlags()); 16920 SDValue MatPCRel = 16921 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16922 return MatPCRel; 16923 } 16924 16925 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16926 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16927 return Value; 16928 16929 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16930 return Value; 16931 16932 return SDValue(); 16933 } 16934 16935 // Detect TRUNCATE operations on bitcasts of float128 values. 16936 // What we are looking for here is the situtation where we extract a subset 16937 // of bits from a 128 bit float. 16938 // This can be of two forms: 16939 // 1) BITCAST of f128 feeding TRUNCATE 16940 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16941 // The reason this is required is because we do not have a legal i128 type 16942 // and so we want to prevent having to store the f128 and then reload part 16943 // of it. 16944 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16945 DAGCombinerInfo &DCI) const { 16946 // If we are using CRBits then try that first. 16947 if (Subtarget.useCRBits()) { 16948 // Check if CRBits did anything and return that if it did. 16949 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16950 return CRTruncValue; 16951 } 16952 16953 SDLoc dl(N); 16954 SDValue Op0 = N->getOperand(0); 16955 16956 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16957 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16958 EVT VT = N->getValueType(0); 16959 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16960 return SDValue(); 16961 SDValue Sub = Op0.getOperand(0); 16962 if (Sub.getOpcode() == ISD::SUB) { 16963 SDValue SubOp0 = Sub.getOperand(0); 16964 SDValue SubOp1 = Sub.getOperand(1); 16965 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16966 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16967 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16968 SubOp1.getOperand(0), 16969 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16970 } 16971 } 16972 } 16973 16974 // Looking for a truncate of i128 to i64. 16975 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16976 return SDValue(); 16977 16978 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16979 16980 // SRL feeding TRUNCATE. 16981 if (Op0.getOpcode() == ISD::SRL) { 16982 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16983 // The right shift has to be by 64 bits. 16984 if (!ConstNode || ConstNode->getZExtValue() != 64) 16985 return SDValue(); 16986 16987 // Switch the element number to extract. 16988 EltToExtract = EltToExtract ? 0 : 1; 16989 // Update Op0 past the SRL. 16990 Op0 = Op0.getOperand(0); 16991 } 16992 16993 // BITCAST feeding a TRUNCATE possibly via SRL. 16994 if (Op0.getOpcode() == ISD::BITCAST && 16995 Op0.getValueType() == MVT::i128 && 16996 Op0.getOperand(0).getValueType() == MVT::f128) { 16997 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16998 return DCI.DAG.getNode( 16999 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17000 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17001 } 17002 return SDValue(); 17003 } 17004 17005 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17006 SelectionDAG &DAG = DCI.DAG; 17007 17008 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17009 if (!ConstOpOrElement) 17010 return SDValue(); 17011 17012 // An imul is usually smaller than the alternative sequence for legal type. 17013 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17014 isOperationLegal(ISD::MUL, N->getValueType(0))) 17015 return SDValue(); 17016 17017 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17018 switch (this->Subtarget.getCPUDirective()) { 17019 default: 17020 // TODO: enhance the condition for subtarget before pwr8 17021 return false; 17022 case PPC::DIR_PWR8: 17023 // type mul add shl 17024 // scalar 4 1 1 17025 // vector 7 2 2 17026 return true; 17027 case PPC::DIR_PWR9: 17028 case PPC::DIR_PWR10: 17029 case PPC::DIR_PWR_FUTURE: 17030 // type mul add shl 17031 // scalar 5 2 2 17032 // vector 7 2 2 17033 17034 // The cycle RATIO of related operations are showed as a table above. 17035 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17036 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17037 // are 4, it is always profitable; but for 3 instrs patterns 17038 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17039 // So we should only do it for vector type. 17040 return IsAddOne && IsNeg ? VT.isVector() : true; 17041 } 17042 }; 17043 17044 EVT VT = N->getValueType(0); 17045 SDLoc DL(N); 17046 17047 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17048 bool IsNeg = MulAmt.isNegative(); 17049 APInt MulAmtAbs = MulAmt.abs(); 17050 17051 if ((MulAmtAbs - 1).isPowerOf2()) { 17052 // (mul x, 2^N + 1) => (add (shl x, N), x) 17053 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17054 17055 if (!IsProfitable(IsNeg, true, VT)) 17056 return SDValue(); 17057 17058 SDValue Op0 = N->getOperand(0); 17059 SDValue Op1 = 17060 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17061 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17062 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17063 17064 if (!IsNeg) 17065 return Res; 17066 17067 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17068 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17069 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17070 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17071 17072 if (!IsProfitable(IsNeg, false, VT)) 17073 return SDValue(); 17074 17075 SDValue Op0 = N->getOperand(0); 17076 SDValue Op1 = 17077 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17078 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17079 17080 if (!IsNeg) 17081 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17082 else 17083 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17084 17085 } else { 17086 return SDValue(); 17087 } 17088 } 17089 17090 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17091 // in combiner since we need to check SD flags and other subtarget features. 17092 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17093 DAGCombinerInfo &DCI) const { 17094 SDValue N0 = N->getOperand(0); 17095 SDValue N1 = N->getOperand(1); 17096 SDValue N2 = N->getOperand(2); 17097 SDNodeFlags Flags = N->getFlags(); 17098 EVT VT = N->getValueType(0); 17099 SelectionDAG &DAG = DCI.DAG; 17100 const TargetOptions &Options = getTargetMachine().Options; 17101 unsigned Opc = N->getOpcode(); 17102 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17103 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17104 SDLoc Loc(N); 17105 17106 if (!isOperationLegal(ISD::FMA, VT)) 17107 return SDValue(); 17108 17109 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17110 // since (fnmsub a b c)=-0 while c-ab=+0. 17111 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17112 return SDValue(); 17113 17114 // (fma (fneg a) b c) => (fnmsub a b c) 17115 // (fnmsub (fneg a) b c) => (fma a b c) 17116 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17117 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17118 17119 // (fma a (fneg b) c) => (fnmsub a b c) 17120 // (fnmsub a (fneg b) c) => (fma a b c) 17121 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17122 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17123 17124 return SDValue(); 17125 } 17126 17127 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17128 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17129 if (!Subtarget.is64BitELFABI()) 17130 return false; 17131 17132 // If not a tail call then no need to proceed. 17133 if (!CI->isTailCall()) 17134 return false; 17135 17136 // If sibling calls have been disabled and tail-calls aren't guaranteed 17137 // there is no reason to duplicate. 17138 auto &TM = getTargetMachine(); 17139 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17140 return false; 17141 17142 // Can't tail call a function called indirectly, or if it has variadic args. 17143 const Function *Callee = CI->getCalledFunction(); 17144 if (!Callee || Callee->isVarArg()) 17145 return false; 17146 17147 // Make sure the callee and caller calling conventions are eligible for tco. 17148 const Function *Caller = CI->getParent()->getParent(); 17149 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17150 CI->getCallingConv())) 17151 return false; 17152 17153 // If the function is local then we have a good chance at tail-calling it 17154 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17155 } 17156 17157 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17158 if (!Subtarget.hasVSX()) 17159 return false; 17160 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17161 return true; 17162 return VT == MVT::f32 || VT == MVT::f64 || 17163 VT == MVT::v4f32 || VT == MVT::v2f64; 17164 } 17165 17166 bool PPCTargetLowering:: 17167 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17168 const Value *Mask = AndI.getOperand(1); 17169 // If the mask is suitable for andi. or andis. we should sink the and. 17170 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17171 // Can't handle constants wider than 64-bits. 17172 if (CI->getBitWidth() > 64) 17173 return false; 17174 int64_t ConstVal = CI->getZExtValue(); 17175 return isUInt<16>(ConstVal) || 17176 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17177 } 17178 17179 // For non-constant masks, we can always use the record-form and. 17180 return true; 17181 } 17182 17183 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17184 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17185 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17186 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17187 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17188 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17189 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17190 assert(Subtarget.hasP9Altivec() && 17191 "Only combine this when P9 altivec supported!"); 17192 EVT VT = N->getValueType(0); 17193 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17194 return SDValue(); 17195 17196 SelectionDAG &DAG = DCI.DAG; 17197 SDLoc dl(N); 17198 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17199 // Even for signed integers, if it's known to be positive (as signed 17200 // integer) due to zero-extended inputs. 17201 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17202 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17203 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17204 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17205 (SubOpcd1 == ISD::ZERO_EXTEND || 17206 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17207 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17208 N->getOperand(0)->getOperand(0), 17209 N->getOperand(0)->getOperand(1), 17210 DAG.getTargetConstant(0, dl, MVT::i32)); 17211 } 17212 17213 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17214 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17215 N->getOperand(0).hasOneUse()) { 17216 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17217 N->getOperand(0)->getOperand(0), 17218 N->getOperand(0)->getOperand(1), 17219 DAG.getTargetConstant(1, dl, MVT::i32)); 17220 } 17221 } 17222 17223 return SDValue(); 17224 } 17225 17226 // For type v4i32/v8ii16/v16i8, transform 17227 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17228 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17229 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17230 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17231 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17232 DAGCombinerInfo &DCI) const { 17233 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17234 assert(Subtarget.hasP9Altivec() && 17235 "Only combine this when P9 altivec supported!"); 17236 17237 SelectionDAG &DAG = DCI.DAG; 17238 SDLoc dl(N); 17239 SDValue Cond = N->getOperand(0); 17240 SDValue TrueOpnd = N->getOperand(1); 17241 SDValue FalseOpnd = N->getOperand(2); 17242 EVT VT = N->getOperand(1).getValueType(); 17243 17244 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17245 FalseOpnd.getOpcode() != ISD::SUB) 17246 return SDValue(); 17247 17248 // ABSD only available for type v4i32/v8i16/v16i8 17249 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17250 return SDValue(); 17251 17252 // At least to save one more dependent computation 17253 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17254 return SDValue(); 17255 17256 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17257 17258 // Can only handle unsigned comparison here 17259 switch (CC) { 17260 default: 17261 return SDValue(); 17262 case ISD::SETUGT: 17263 case ISD::SETUGE: 17264 break; 17265 case ISD::SETULT: 17266 case ISD::SETULE: 17267 std::swap(TrueOpnd, FalseOpnd); 17268 break; 17269 } 17270 17271 SDValue CmpOpnd1 = Cond.getOperand(0); 17272 SDValue CmpOpnd2 = Cond.getOperand(1); 17273 17274 // SETCC CmpOpnd1 CmpOpnd2 cond 17275 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17276 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17277 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17278 TrueOpnd.getOperand(1) == CmpOpnd2 && 17279 FalseOpnd.getOperand(0) == CmpOpnd2 && 17280 FalseOpnd.getOperand(1) == CmpOpnd1) { 17281 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17282 CmpOpnd1, CmpOpnd2, 17283 DAG.getTargetConstant(0, dl, MVT::i32)); 17284 } 17285 17286 return SDValue(); 17287 } 17288 17289 /// getAddrModeForFlags - Based on the set of address flags, select the most 17290 /// optimal instruction format to match by. 17291 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17292 // This is not a node we should be handling here. 17293 if (Flags == PPC::MOF_None) 17294 return PPC::AM_None; 17295 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17296 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17297 if ((Flags & FlagSet) == FlagSet) 17298 return PPC::AM_DForm; 17299 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17300 if ((Flags & FlagSet) == FlagSet) 17301 return PPC::AM_DSForm; 17302 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17303 if ((Flags & FlagSet) == FlagSet) 17304 return PPC::AM_DQForm; 17305 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17306 if ((Flags & FlagSet) == FlagSet) 17307 return PPC::AM_PrefixDForm; 17308 // If no other forms are selected, return an X-Form as it is the most 17309 // general addressing mode. 17310 return PPC::AM_XForm; 17311 } 17312 17313 /// Set alignment flags based on whether or not the Frame Index is aligned. 17314 /// Utilized when computing flags for address computation when selecting 17315 /// load and store instructions. 17316 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17317 SelectionDAG &DAG) { 17318 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17319 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17320 if (!FI) 17321 return; 17322 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17323 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17324 // If this is (add $FI, $S16Imm), the alignment flags are already set 17325 // based on the immediate. We just need to clear the alignment flags 17326 // if the FI alignment is weaker. 17327 if ((FrameIndexAlign % 4) != 0) 17328 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17329 if ((FrameIndexAlign % 16) != 0) 17330 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17331 // If the address is a plain FrameIndex, set alignment flags based on 17332 // FI alignment. 17333 if (!IsAdd) { 17334 if ((FrameIndexAlign % 4) == 0) 17335 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17336 if ((FrameIndexAlign % 16) == 0) 17337 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17338 } 17339 } 17340 17341 /// Given a node, compute flags that are used for address computation when 17342 /// selecting load and store instructions. The flags computed are stored in 17343 /// FlagSet. This function takes into account whether the node is a constant, 17344 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17345 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17346 SelectionDAG &DAG) { 17347 // Set the alignment flags for the node depending on if the node is 17348 // 4-byte or 16-byte aligned. 17349 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17350 if ((Imm & 0x3) == 0) 17351 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17352 if ((Imm & 0xf) == 0) 17353 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17354 }; 17355 17356 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17357 // All 32-bit constants can be computed as LIS + Disp. 17358 const APInt &ConstImm = CN->getAPIntValue(); 17359 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17360 FlagSet |= PPC::MOF_AddrIsSImm32; 17361 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17362 setAlignFlagsForFI(N, FlagSet, DAG); 17363 } 17364 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17365 FlagSet |= PPC::MOF_RPlusSImm34; 17366 else // Let constant materialization handle large constants. 17367 FlagSet |= PPC::MOF_NotAddNorCst; 17368 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17369 // This address can be represented as an addition of: 17370 // - Register + Imm16 (possibly a multiple of 4/16) 17371 // - Register + Imm34 17372 // - Register + PPCISD::Lo 17373 // - Register + Register 17374 // In any case, we won't have to match this as Base + Zero. 17375 SDValue RHS = N.getOperand(1); 17376 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17377 const APInt &ConstImm = CN->getAPIntValue(); 17378 if (ConstImm.isSignedIntN(16)) { 17379 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17380 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17381 setAlignFlagsForFI(N, FlagSet, DAG); 17382 } 17383 if (ConstImm.isSignedIntN(34)) 17384 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17385 else 17386 FlagSet |= PPC::MOF_RPlusR; // Register. 17387 } else if (RHS.getOpcode() == PPCISD::Lo && 17388 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17389 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17390 else 17391 FlagSet |= PPC::MOF_RPlusR; 17392 } else { // The address computation is not a constant or an addition. 17393 setAlignFlagsForFI(N, FlagSet, DAG); 17394 FlagSet |= PPC::MOF_NotAddNorCst; 17395 } 17396 } 17397 17398 static bool isPCRelNode(SDValue N) { 17399 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17400 isValidPCRelNode<ConstantPoolSDNode>(N) || 17401 isValidPCRelNode<GlobalAddressSDNode>(N) || 17402 isValidPCRelNode<JumpTableSDNode>(N) || 17403 isValidPCRelNode<BlockAddressSDNode>(N)); 17404 } 17405 17406 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17407 /// the address flags of the load/store instruction that is to be matched. 17408 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17409 SelectionDAG &DAG) const { 17410 unsigned FlagSet = PPC::MOF_None; 17411 17412 // Compute subtarget flags. 17413 if (!Subtarget.hasP9Vector()) 17414 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17415 else { 17416 FlagSet |= PPC::MOF_SubtargetP9; 17417 if (Subtarget.hasPrefixInstrs()) 17418 FlagSet |= PPC::MOF_SubtargetP10; 17419 } 17420 if (Subtarget.hasSPE()) 17421 FlagSet |= PPC::MOF_SubtargetSPE; 17422 17423 // Check if we have a PCRel node and return early. 17424 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17425 return FlagSet; 17426 17427 // If the node is the paired load/store intrinsics, compute flags for 17428 // address computation and return early. 17429 unsigned ParentOp = Parent->getOpcode(); 17430 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17431 (ParentOp == ISD::INTRINSIC_VOID))) { 17432 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17433 assert( 17434 ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) && 17435 "Only the paired load and store (lxvp/stxvp) intrinsics are valid."); 17436 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) ? Parent->getOperand(2) 17437 : Parent->getOperand(3); 17438 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17439 FlagSet |= PPC::MOF_Vector; 17440 return FlagSet; 17441 } 17442 17443 // Mark this as something we don't want to handle here if it is atomic 17444 // or pre-increment instruction. 17445 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17446 if (LSB->isIndexed()) 17447 return PPC::MOF_None; 17448 17449 // Compute in-memory type flags. This is based on if there are scalars, 17450 // floats or vectors. 17451 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17452 assert(MN && "Parent should be a MemSDNode!"); 17453 EVT MemVT = MN->getMemoryVT(); 17454 unsigned Size = MemVT.getSizeInBits(); 17455 if (MemVT.isScalarInteger()) { 17456 assert(Size <= 128 && 17457 "Not expecting scalar integers larger than 16 bytes!"); 17458 if (Size < 32) 17459 FlagSet |= PPC::MOF_SubWordInt; 17460 else if (Size == 32) 17461 FlagSet |= PPC::MOF_WordInt; 17462 else 17463 FlagSet |= PPC::MOF_DoubleWordInt; 17464 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17465 if (Size == 128) 17466 FlagSet |= PPC::MOF_Vector; 17467 else if (Size == 256) { 17468 assert(Subtarget.pairedVectorMemops() && 17469 "256-bit vectors are only available when paired vector memops is " 17470 "enabled!"); 17471 FlagSet |= PPC::MOF_Vector; 17472 } else 17473 llvm_unreachable("Not expecting illegal vectors!"); 17474 } else { // Floating point type: can be scalar, f128 or vector types. 17475 if (Size == 32 || Size == 64) 17476 FlagSet |= PPC::MOF_ScalarFloat; 17477 else if (MemVT == MVT::f128 || MemVT.isVector()) 17478 FlagSet |= PPC::MOF_Vector; 17479 else 17480 llvm_unreachable("Not expecting illegal scalar floats!"); 17481 } 17482 17483 // Compute flags for address computation. 17484 computeFlagsForAddressComputation(N, FlagSet, DAG); 17485 17486 // Compute type extension flags. 17487 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17488 switch (LN->getExtensionType()) { 17489 case ISD::SEXTLOAD: 17490 FlagSet |= PPC::MOF_SExt; 17491 break; 17492 case ISD::EXTLOAD: 17493 case ISD::ZEXTLOAD: 17494 FlagSet |= PPC::MOF_ZExt; 17495 break; 17496 case ISD::NON_EXTLOAD: 17497 FlagSet |= PPC::MOF_NoExt; 17498 break; 17499 } 17500 } else 17501 FlagSet |= PPC::MOF_NoExt; 17502 17503 // For integers, no extension is the same as zero extension. 17504 // We set the extension mode to zero extension so we don't have 17505 // to add separate entries in AddrModesMap for loads and stores. 17506 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17507 FlagSet |= PPC::MOF_ZExt; 17508 FlagSet &= ~PPC::MOF_NoExt; 17509 } 17510 17511 // If we don't have prefixed instructions, 34-bit constants should be 17512 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17513 bool IsNonP1034BitConst = 17514 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17515 FlagSet) == PPC::MOF_RPlusSImm34; 17516 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17517 IsNonP1034BitConst) 17518 FlagSet |= PPC::MOF_NotAddNorCst; 17519 17520 return FlagSet; 17521 } 17522 17523 /// SelectForceXFormMode - Given the specified address, force it to be 17524 /// represented as an indexed [r+r] operation (an XForm instruction). 17525 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17526 SDValue &Base, 17527 SelectionDAG &DAG) const { 17528 17529 PPC::AddrMode Mode = PPC::AM_XForm; 17530 int16_t ForceXFormImm = 0; 17531 if (provablyDisjointOr(DAG, N) && 17532 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17533 Disp = N.getOperand(0); 17534 Base = N.getOperand(1); 17535 return Mode; 17536 } 17537 17538 // If the address is the result of an add, we will utilize the fact that the 17539 // address calculation includes an implicit add. However, we can reduce 17540 // register pressure if we do not materialize a constant just for use as the 17541 // index register. We only get rid of the add if it is not an add of a 17542 // value and a 16-bit signed constant and both have a single use. 17543 if (N.getOpcode() == ISD::ADD && 17544 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17545 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17546 Disp = N.getOperand(0); 17547 Base = N.getOperand(1); 17548 return Mode; 17549 } 17550 17551 // Otherwise, use R0 as the base register. 17552 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17553 N.getValueType()); 17554 Base = N; 17555 17556 return Mode; 17557 } 17558 17559 // If we happen to match to an aligned D-Form, check if the Frame Index is 17560 // adequately aligned. If it is not, reset the mode to match to X-Form. 17561 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17562 PPC::AddrMode &Mode) { 17563 if (!isa<FrameIndexSDNode>(N)) 17564 return; 17565 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17566 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17567 Mode = PPC::AM_XForm; 17568 } 17569 17570 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17571 /// compute the address flags of the node, get the optimal address mode based 17572 /// on the flags, and set the Base and Disp based on the address mode. 17573 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17574 SDValue N, SDValue &Disp, 17575 SDValue &Base, 17576 SelectionDAG &DAG, 17577 MaybeAlign Align) const { 17578 SDLoc DL(Parent); 17579 17580 // Compute the address flags. 17581 unsigned Flags = computeMOFlags(Parent, N, DAG); 17582 17583 // Get the optimal address mode based on the Flags. 17584 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17585 17586 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17587 // Select an X-Form load if it is not. 17588 setXFormForUnalignedFI(N, Flags, Mode); 17589 17590 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17591 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17592 assert(Subtarget.isUsingPCRelativeCalls() && 17593 "Must be using PC-Relative calls when a valid PC-Relative node is " 17594 "present!"); 17595 Mode = PPC::AM_PCRel; 17596 } 17597 17598 // Set Base and Disp accordingly depending on the address mode. 17599 switch (Mode) { 17600 case PPC::AM_DForm: 17601 case PPC::AM_DSForm: 17602 case PPC::AM_DQForm: { 17603 // This is a register plus a 16-bit immediate. The base will be the 17604 // register and the displacement will be the immediate unless it 17605 // isn't sufficiently aligned. 17606 if (Flags & PPC::MOF_RPlusSImm16) { 17607 SDValue Op0 = N.getOperand(0); 17608 SDValue Op1 = N.getOperand(1); 17609 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17610 if (!Align || isAligned(*Align, Imm)) { 17611 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17612 Base = Op0; 17613 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17614 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17615 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17616 } 17617 break; 17618 } 17619 } 17620 // This is a register plus the @lo relocation. The base is the register 17621 // and the displacement is the global address. 17622 else if (Flags & PPC::MOF_RPlusLo) { 17623 Disp = N.getOperand(1).getOperand(0); // The global address. 17624 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17625 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17626 Disp.getOpcode() == ISD::TargetConstantPool || 17627 Disp.getOpcode() == ISD::TargetJumpTable); 17628 Base = N.getOperand(0); 17629 break; 17630 } 17631 // This is a constant address at most 32 bits. The base will be 17632 // zero or load-immediate-shifted and the displacement will be 17633 // the low 16 bits of the address. 17634 else if (Flags & PPC::MOF_AddrIsSImm32) { 17635 auto *CN = cast<ConstantSDNode>(N); 17636 EVT CNType = CN->getValueType(0); 17637 uint64_t CNImm = CN->getZExtValue(); 17638 // If this address fits entirely in a 16-bit sext immediate field, codegen 17639 // this as "d, 0". 17640 int16_t Imm; 17641 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17642 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17643 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17644 CNType); 17645 break; 17646 } 17647 // Handle 32-bit sext immediate with LIS + Addr mode. 17648 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17649 (!Align || isAligned(*Align, CNImm))) { 17650 int32_t Addr = (int32_t)CNImm; 17651 // Otherwise, break this down into LIS + Disp. 17652 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17653 Base = 17654 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17655 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17656 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17657 break; 17658 } 17659 } 17660 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17661 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17662 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17663 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17664 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17665 } else 17666 Base = N; 17667 break; 17668 } 17669 case PPC::AM_PrefixDForm: { 17670 int64_t Imm34 = 0; 17671 unsigned Opcode = N.getOpcode(); 17672 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17673 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17674 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17675 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17676 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17677 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17678 else 17679 Base = N.getOperand(0); 17680 } else if (isIntS34Immediate(N, Imm34)) { 17681 // The address is a 34-bit signed immediate. 17682 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17683 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 17684 } 17685 break; 17686 } 17687 case PPC::AM_PCRel: { 17688 // When selecting PC-Relative instructions, "Base" is not utilized as 17689 // we select the address as [PC+imm]. 17690 Disp = N; 17691 break; 17692 } 17693 case PPC::AM_None: 17694 break; 17695 default: { // By default, X-Form is always available to be selected. 17696 // When a frame index is not aligned, we also match by XForm. 17697 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17698 Base = FI ? N : N.getOperand(1); 17699 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17700 N.getValueType()) 17701 : N.getOperand(0); 17702 break; 17703 } 17704 } 17705 return Mode; 17706 } 17707 17708 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17709 bool Return, 17710 bool IsVarArg) const { 17711 switch (CC) { 17712 case CallingConv::Cold: 17713 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17714 default: 17715 return CC_PPC64_ELF_FIS; 17716 } 17717 } 17718 17719 TargetLowering::AtomicExpansionKind 17720 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17721 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17722 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17723 return AtomicExpansionKind::MaskedIntrinsic; 17724 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17725 } 17726 17727 TargetLowering::AtomicExpansionKind 17728 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17729 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 17730 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17731 return AtomicExpansionKind::MaskedIntrinsic; 17732 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17733 } 17734 17735 static Intrinsic::ID 17736 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17737 switch (BinOp) { 17738 default: 17739 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17740 case AtomicRMWInst::Xchg: 17741 return Intrinsic::ppc_atomicrmw_xchg_i128; 17742 case AtomicRMWInst::Add: 17743 return Intrinsic::ppc_atomicrmw_add_i128; 17744 case AtomicRMWInst::Sub: 17745 return Intrinsic::ppc_atomicrmw_sub_i128; 17746 case AtomicRMWInst::And: 17747 return Intrinsic::ppc_atomicrmw_and_i128; 17748 case AtomicRMWInst::Or: 17749 return Intrinsic::ppc_atomicrmw_or_i128; 17750 case AtomicRMWInst::Xor: 17751 return Intrinsic::ppc_atomicrmw_xor_i128; 17752 case AtomicRMWInst::Nand: 17753 return Intrinsic::ppc_atomicrmw_nand_i128; 17754 } 17755 } 17756 17757 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17758 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17759 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17760 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17761 "Only support quadword now"); 17762 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17763 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17764 assert(ValTy->getPrimitiveSizeInBits() == 128); 17765 Function *RMW = Intrinsic::getDeclaration( 17766 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17767 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17768 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17769 Value *IncrHi = 17770 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17771 Value *Addr = 17772 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17773 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17774 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17775 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17776 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17777 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17778 return Builder.CreateOr( 17779 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17780 } 17781 17782 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17783 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17784 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17785 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17786 "Only support quadword now"); 17787 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17788 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17789 assert(ValTy->getPrimitiveSizeInBits() == 128); 17790 Function *IntCmpXchg = 17791 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17792 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17793 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17794 Value *CmpHi = 17795 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17796 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17797 Value *NewHi = 17798 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17799 Value *Addr = 17800 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17801 emitLeadingFence(Builder, CI, Ord); 17802 Value *LoHi = 17803 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17804 emitTrailingFence(Builder, CI, Ord); 17805 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17806 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17807 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17808 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17809 return Builder.CreateOr( 17810 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17811 } 17812