1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265 
266   // We do not currently implement these libm ops for PowerPC.
267   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
268   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
269   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
273 
274   // PowerPC has no SREM/UREM instructions unless we are on P9
275   // On P9 we may use a hardware instruction to compute the remainder.
276   // When the result of both the remainder and the division is required it is
277   // more efficient to compute the remainder from the result of the division
278   // rather than use the remainder instruction. The instructions are legalized
279   // directly because the DivRemPairsPass performs the transformation at the IR
280   // level.
281   if (Subtarget.isISA3_0()) {
282     setOperationAction(ISD::SREM, MVT::i32, Legal);
283     setOperationAction(ISD::UREM, MVT::i32, Legal);
284     setOperationAction(ISD::SREM, MVT::i64, Legal);
285     setOperationAction(ISD::UREM, MVT::i64, Legal);
286   } else {
287     setOperationAction(ISD::SREM, MVT::i32, Expand);
288     setOperationAction(ISD::UREM, MVT::i32, Expand);
289     setOperationAction(ISD::SREM, MVT::i64, Expand);
290     setOperationAction(ISD::UREM, MVT::i64, Expand);
291   }
292 
293   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
294   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
295   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
296   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
298   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
299   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
302 
303   // Handle constrained floating-point operations of scalar.
304   // TODO: Handle SPE specific operation.
305   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
306   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
307   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
311 
312   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
313   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
314   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
317   if (Subtarget.hasVSX())
318     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
319 
320   if (Subtarget.hasFSQRT()) {
321     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
322     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
323   }
324 
325   if (Subtarget.hasFPRND()) {
326     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
327     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
328     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
329     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
330 
331     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
332     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
333     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
334     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
335   }
336 
337   // We don't support sin/cos/sqrt/fmod/pow
338   setOperationAction(ISD::FSIN , MVT::f64, Expand);
339   setOperationAction(ISD::FCOS , MVT::f64, Expand);
340   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
341   setOperationAction(ISD::FREM , MVT::f64, Expand);
342   setOperationAction(ISD::FPOW , MVT::f64, Expand);
343   setOperationAction(ISD::FSIN , MVT::f32, Expand);
344   setOperationAction(ISD::FCOS , MVT::f32, Expand);
345   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
346   setOperationAction(ISD::FREM , MVT::f32, Expand);
347   setOperationAction(ISD::FPOW , MVT::f32, Expand);
348   if (Subtarget.hasSPE()) {
349     setOperationAction(ISD::FMA  , MVT::f64, Expand);
350     setOperationAction(ISD::FMA  , MVT::f32, Expand);
351   } else {
352     setOperationAction(ISD::FMA  , MVT::f64, Legal);
353     setOperationAction(ISD::FMA  , MVT::f32, Legal);
354   }
355 
356   if (Subtarget.hasSPE())
357     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
358 
359   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
360 
361   // If we're enabling GP optimizations, use hardware square root
362   if (!Subtarget.hasFSQRT() &&
363       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
364         Subtarget.hasFRE()))
365     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
366 
367   if (!Subtarget.hasFSQRT() &&
368       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
369         Subtarget.hasFRES()))
370     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
371 
372   if (Subtarget.hasFCPSGN()) {
373     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
374     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
375   } else {
376     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
377     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
378   }
379 
380   if (Subtarget.hasFPRND()) {
381     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
382     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
383     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
384     setOperationAction(ISD::FROUND, MVT::f64, Legal);
385 
386     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
387     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
388     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
389     setOperationAction(ISD::FROUND, MVT::f32, Legal);
390   }
391 
392   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
393   // to speed up scalar BSWAP64.
394   // CTPOP or CTTZ were introduced in P8/P9 respectively
395   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
396   if (Subtarget.hasP9Vector())
397     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
398   else
399     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
400   if (Subtarget.isISA3_0()) {
401     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
402     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
403   } else {
404     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
405     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
406   }
407 
408   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
409     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
410     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
411   } else {
412     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
413     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
414   }
415 
416   // PowerPC does not have ROTR
417   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
418   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
419 
420   if (!Subtarget.useCRBits()) {
421     // PowerPC does not have Select
422     setOperationAction(ISD::SELECT, MVT::i32, Expand);
423     setOperationAction(ISD::SELECT, MVT::i64, Expand);
424     setOperationAction(ISD::SELECT, MVT::f32, Expand);
425     setOperationAction(ISD::SELECT, MVT::f64, Expand);
426   }
427 
428   // PowerPC wants to turn select_cc of FP into fsel when possible.
429   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
430   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
431 
432   // PowerPC wants to optimize integer setcc a bit
433   if (!Subtarget.useCRBits())
434     setOperationAction(ISD::SETCC, MVT::i32, Custom);
435 
436   if (Subtarget.hasFPU()) {
437     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
438     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
439     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
440 
441     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
442     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
443     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
444   }
445 
446   // PowerPC does not have BRCOND which requires SetCC
447   if (!Subtarget.useCRBits())
448     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
449 
450   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
451 
452   if (Subtarget.hasSPE()) {
453     // SPE has built-in conversions
454     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
455     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
456     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
457     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
458     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
459     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
460   } else {
461     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
462     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
463     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
464 
465     // PowerPC does not have [U|S]INT_TO_FP
466     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
467     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
468     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
469     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
470   }
471 
472   if (Subtarget.hasDirectMove() && isPPC64) {
473     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
474     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
475     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
476     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
477     if (TM.Options.UnsafeFPMath) {
478       setOperationAction(ISD::LRINT, MVT::f64, Legal);
479       setOperationAction(ISD::LRINT, MVT::f32, Legal);
480       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
481       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
482       setOperationAction(ISD::LROUND, MVT::f64, Legal);
483       setOperationAction(ISD::LROUND, MVT::f32, Legal);
484       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
485       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
486     }
487   } else {
488     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
489     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
490     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
491     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
492   }
493 
494   // We cannot sextinreg(i1).  Expand to shifts.
495   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
496 
497   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
498   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
499   // support continuation, user-level threading, and etc.. As a result, no
500   // other SjLj exception interfaces are implemented and please don't build
501   // your own exception handling based on them.
502   // LLVM/Clang supports zero-cost DWARF exception handling.
503   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
504   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
505 
506   // We want to legalize GlobalAddress and ConstantPool nodes into the
507   // appropriate instructions to materialize the address.
508   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
509   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
510   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
511   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
512   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
513   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
514   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
515   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
516   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
517   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
518 
519   // TRAP is legal.
520   setOperationAction(ISD::TRAP, MVT::Other, Legal);
521 
522   // TRAMPOLINE is custom lowered.
523   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
524   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
525 
526   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
527   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
528 
529   if (Subtarget.is64BitELFABI()) {
530     // VAARG always uses double-word chunks, so promote anything smaller.
531     setOperationAction(ISD::VAARG, MVT::i1, Promote);
532     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
533     setOperationAction(ISD::VAARG, MVT::i8, Promote);
534     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
535     setOperationAction(ISD::VAARG, MVT::i16, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i32, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::Other, Expand);
540   } else if (Subtarget.is32BitELFABI()) {
541     // VAARG is custom lowered with the 32-bit SVR4 ABI.
542     setOperationAction(ISD::VAARG, MVT::Other, Custom);
543     setOperationAction(ISD::VAARG, MVT::i64, Custom);
544   } else
545     setOperationAction(ISD::VAARG, MVT::Other, Expand);
546 
547   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
548   if (Subtarget.is32BitELFABI())
549     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
550   else
551     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
552 
553   // Use the default implementation.
554   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
555   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
556   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
557   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
558   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
559   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
560   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
561   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
562   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
563 
564   // We want to custom lower some of our intrinsics.
565   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
566 
567   // To handle counter-based loop conditions.
568   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
569 
570   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
571   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
572   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
573   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
574 
575   // Comparisons that require checking two conditions.
576   if (Subtarget.hasSPE()) {
577     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
578     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
579     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
580     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
581   }
582   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
583   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
584   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
585   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
586   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
594 
595   if (Subtarget.has64BitSupport()) {
596     // They also have instructions for converting between i64 and fp.
597     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
598     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
599     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
600     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
601     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
602     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
603     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
604     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
605     // This is just the low 32 bits of a (signed) fp->i64 conversion.
606     // We cannot do this with Promote because i64 is not a legal type.
607     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
608     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
609 
610     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
611       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
612       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
613     }
614   } else {
615     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
616     if (Subtarget.hasSPE()) {
617       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
618       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
619     } else {
620       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
621       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
622     }
623   }
624 
625   // With the instructions enabled under FPCVT, we can do everything.
626   if (Subtarget.hasFPCVT()) {
627     if (Subtarget.has64BitSupport()) {
628       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
629       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
630       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
631       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
632       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
633       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
634       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
635       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
636     }
637 
638     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
639     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
640     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
641     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
642     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
643     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
645     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
646   }
647 
648   if (Subtarget.use64BitRegs()) {
649     // 64-bit PowerPC implementations can support i64 types directly
650     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
651     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
652     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
653     // 64-bit PowerPC wants to expand i128 shifts itself.
654     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
655     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
656     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
657   } else {
658     // 32-bit PowerPC wants to expand i64 shifts itself.
659     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
660     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
661     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
662   }
663 
664   // PowerPC has better expansions for funnel shifts than the generic
665   // TargetLowering::expandFunnelShift.
666   if (Subtarget.has64BitSupport()) {
667     setOperationAction(ISD::FSHL, MVT::i64, Custom);
668     setOperationAction(ISD::FSHR, MVT::i64, Custom);
669   }
670   setOperationAction(ISD::FSHL, MVT::i32, Custom);
671   setOperationAction(ISD::FSHR, MVT::i32, Custom);
672 
673   if (Subtarget.hasVSX()) {
674     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
675     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
676     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
677     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
678   }
679 
680   if (Subtarget.hasAltivec()) {
681     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
682       setOperationAction(ISD::SADDSAT, VT, Legal);
683       setOperationAction(ISD::SSUBSAT, VT, Legal);
684       setOperationAction(ISD::UADDSAT, VT, Legal);
685       setOperationAction(ISD::USUBSAT, VT, Legal);
686     }
687     // First set operation action for all vector types to expand. Then we
688     // will selectively turn on ones that can be effectively codegen'd.
689     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
690       // add/sub are legal for all supported vector VT's.
691       setOperationAction(ISD::ADD, VT, Legal);
692       setOperationAction(ISD::SUB, VT, Legal);
693 
694       // For v2i64, these are only valid with P8Vector. This is corrected after
695       // the loop.
696       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
697         setOperationAction(ISD::SMAX, VT, Legal);
698         setOperationAction(ISD::SMIN, VT, Legal);
699         setOperationAction(ISD::UMAX, VT, Legal);
700         setOperationAction(ISD::UMIN, VT, Legal);
701       }
702       else {
703         setOperationAction(ISD::SMAX, VT, Expand);
704         setOperationAction(ISD::SMIN, VT, Expand);
705         setOperationAction(ISD::UMAX, VT, Expand);
706         setOperationAction(ISD::UMIN, VT, Expand);
707       }
708 
709       if (Subtarget.hasVSX()) {
710         setOperationAction(ISD::FMAXNUM, VT, Legal);
711         setOperationAction(ISD::FMINNUM, VT, Legal);
712       }
713 
714       // Vector instructions introduced in P8
715       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
716         setOperationAction(ISD::CTPOP, VT, Legal);
717         setOperationAction(ISD::CTLZ, VT, Legal);
718       }
719       else {
720         setOperationAction(ISD::CTPOP, VT, Expand);
721         setOperationAction(ISD::CTLZ, VT, Expand);
722       }
723 
724       // Vector instructions introduced in P9
725       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
726         setOperationAction(ISD::CTTZ, VT, Legal);
727       else
728         setOperationAction(ISD::CTTZ, VT, Expand);
729 
730       // We promote all shuffles to v16i8.
731       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
732       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
733 
734       // We promote all non-typed operations to v4i32.
735       setOperationAction(ISD::AND   , VT, Promote);
736       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
737       setOperationAction(ISD::OR    , VT, Promote);
738       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
739       setOperationAction(ISD::XOR   , VT, Promote);
740       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
741       setOperationAction(ISD::LOAD  , VT, Promote);
742       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
743       setOperationAction(ISD::SELECT, VT, Promote);
744       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
745       setOperationAction(ISD::VSELECT, VT, Legal);
746       setOperationAction(ISD::SELECT_CC, VT, Promote);
747       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
748       setOperationAction(ISD::STORE, VT, Promote);
749       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
750 
751       // No other operations are legal.
752       setOperationAction(ISD::MUL , VT, Expand);
753       setOperationAction(ISD::SDIV, VT, Expand);
754       setOperationAction(ISD::SREM, VT, Expand);
755       setOperationAction(ISD::UDIV, VT, Expand);
756       setOperationAction(ISD::UREM, VT, Expand);
757       setOperationAction(ISD::FDIV, VT, Expand);
758       setOperationAction(ISD::FREM, VT, Expand);
759       setOperationAction(ISD::FNEG, VT, Expand);
760       setOperationAction(ISD::FSQRT, VT, Expand);
761       setOperationAction(ISD::FLOG, VT, Expand);
762       setOperationAction(ISD::FLOG10, VT, Expand);
763       setOperationAction(ISD::FLOG2, VT, Expand);
764       setOperationAction(ISD::FEXP, VT, Expand);
765       setOperationAction(ISD::FEXP2, VT, Expand);
766       setOperationAction(ISD::FSIN, VT, Expand);
767       setOperationAction(ISD::FCOS, VT, Expand);
768       setOperationAction(ISD::FABS, VT, Expand);
769       setOperationAction(ISD::FFLOOR, VT, Expand);
770       setOperationAction(ISD::FCEIL,  VT, Expand);
771       setOperationAction(ISD::FTRUNC, VT, Expand);
772       setOperationAction(ISD::FRINT,  VT, Expand);
773       setOperationAction(ISD::FNEARBYINT, VT, Expand);
774       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
775       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
776       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
777       setOperationAction(ISD::MULHU, VT, Expand);
778       setOperationAction(ISD::MULHS, VT, Expand);
779       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
780       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
781       setOperationAction(ISD::UDIVREM, VT, Expand);
782       setOperationAction(ISD::SDIVREM, VT, Expand);
783       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
784       setOperationAction(ISD::FPOW, VT, Expand);
785       setOperationAction(ISD::BSWAP, VT, Expand);
786       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
787       setOperationAction(ISD::ROTL, VT, Expand);
788       setOperationAction(ISD::ROTR, VT, Expand);
789 
790       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
791         setTruncStoreAction(VT, InnerVT, Expand);
792         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
793         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
794         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
795       }
796     }
797     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
798     if (!Subtarget.hasP8Vector()) {
799       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
800       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
801       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
802       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
803     }
804 
805     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
806       setOperationAction(ISD::ABS, VT, Custom);
807 
808     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
809     // with merges, splats, etc.
810     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
811 
812     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
813     // are cheap, so handle them before they get expanded to scalar.
814     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
815     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
816     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
817     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
818     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
819 
820     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
821     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
822     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
823     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
824     setOperationAction(ISD::SELECT, MVT::v4i32,
825                        Subtarget.useCRBits() ? Legal : Expand);
826     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
827     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
828     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
829     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
830     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
831     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
832     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
833     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
834     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
835 
836     // Without hasP8Altivec set, v2i64 SMAX isn't available.
837     // But ABS custom lowering requires SMAX support.
838     if (!Subtarget.hasP8Altivec())
839       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
840 
841     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
842     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
843     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
844     if (Subtarget.hasAltivec())
845       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
846         setOperationAction(ISD::ROTL, VT, Legal);
847     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
848     if (Subtarget.hasP8Altivec())
849       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
850 
851     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
852     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
853     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
854     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
855 
856     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
857     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
858 
859     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
860       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
861       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
862     }
863 
864     if (Subtarget.hasP8Altivec())
865       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
866     else
867       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
868 
869     if (Subtarget.isISA3_1()) {
870       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
871       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
872       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
873       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
874       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
875       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
876       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
877       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
878       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
879       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
880       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
881       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
882       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
883     }
884 
885     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
886     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
887 
888     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
889     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
890 
891     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
892     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
893     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
894     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
895 
896     // Altivec does not contain unordered floating-point compare instructions
897     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
898     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
899     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
900     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
901 
902     if (Subtarget.hasVSX()) {
903       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
904       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
905       if (Subtarget.hasP8Vector()) {
906         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
907         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
908       }
909       if (Subtarget.hasDirectMove() && isPPC64) {
910         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
911         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
912         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
913         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
914         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
915         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
916         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
917         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
918       }
919       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
920 
921       // The nearbyint variants are not allowed to raise the inexact exception
922       // so we can only code-gen them with unsafe math.
923       if (TM.Options.UnsafeFPMath) {
924         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
925         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
926       }
927 
928       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
929       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
930       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
931       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
932       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
933       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
934       setOperationAction(ISD::FROUND, MVT::f64, Legal);
935       setOperationAction(ISD::FRINT, MVT::f64, Legal);
936 
937       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
938       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
939       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
940       setOperationAction(ISD::FROUND, MVT::f32, Legal);
941       setOperationAction(ISD::FRINT, MVT::f32, Legal);
942 
943       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
944       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
945 
946       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
947       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
948 
949       // Share the Altivec comparison restrictions.
950       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
951       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
952       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
953       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
954 
955       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
956       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
957 
958       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
959 
960       if (Subtarget.hasP8Vector())
961         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
962 
963       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
964 
965       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
966       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
967       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
968 
969       if (Subtarget.hasP8Altivec()) {
970         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
971         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
972         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
973 
974         // 128 bit shifts can be accomplished via 3 instructions for SHL and
975         // SRL, but not for SRA because of the instructions available:
976         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
977         // doing
978         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
979         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
980         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
981 
982         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
983       }
984       else {
985         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
986         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
987         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
988 
989         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
990 
991         // VSX v2i64 only supports non-arithmetic operations.
992         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
993         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
994       }
995 
996       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
997 
998       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
999       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1000       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1001       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1002 
1003       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1004 
1005       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1006       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1007       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1008       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1009 
1010       // Custom handling for partial vectors of integers converted to
1011       // floating point. We already have optimal handling for v2i32 through
1012       // the DAG combine, so those aren't necessary.
1013       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1014       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1015       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1016       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1017       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1018       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1019       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1020       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1021 
1022       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1023       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1024       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1025       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1026       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1027       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1028 
1029       if (Subtarget.hasDirectMove())
1030         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1031       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1032 
1033       // Handle constrained floating-point operations of vector.
1034       // The predictor is `hasVSX` because altivec instruction has
1035       // no exception but VSX vector instruction has.
1036       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1037       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1038       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1039       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1040       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1041       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1042       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1043       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1044       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
1045       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1046       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1047       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1048       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1049 
1050       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1051       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1052       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1053       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1054       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1055       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1056       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1057       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1058       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
1059       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1060       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1061       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1062       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1063 
1064       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1065     }
1066 
1067     if (Subtarget.hasP8Altivec()) {
1068       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1069       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1070     }
1071 
1072     if (Subtarget.hasP9Vector()) {
1073       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1074       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1075 
1076       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1077       // SRL, but not for SRA because of the instructions available:
1078       // VS{RL} and VS{RL}O.
1079       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1080       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1081       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1082 
1083       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1084       setOperationAction(ISD::FADD, MVT::f128, Legal);
1085       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1086       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1087       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1088       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1089       // No extending loads to f128 on PPC.
1090       for (MVT FPT : MVT::fp_valuetypes())
1091         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1092       setOperationAction(ISD::FMA, MVT::f128, Legal);
1093       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1094       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1095       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1096       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1097       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1098       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1099 
1100       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1101       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1102       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1103       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1104       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1105       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1106 
1107       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1108       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1109       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1110       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1111       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1112       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1113       // No implementation for these ops for PowerPC.
1114       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1115       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1116       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1117       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1118       setOperationAction(ISD::FREM, MVT::f128, Expand);
1119 
1120       // Handle constrained floating-point operations of fp128
1121       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1122       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1123       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1124       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1125       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1126       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1127       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1128       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1129       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1130       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1131       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1132       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1133       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1134       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1135       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1136       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1137       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1138       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1139       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1140       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1141     }
1142 
1143     if (Subtarget.hasP9Altivec()) {
1144       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1145       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1146 
1147       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1148       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1149       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1150       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1151       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1152       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1153       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1154     }
1155   }
1156 
1157   if (Subtarget.has64BitSupport())
1158     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1159 
1160   if (Subtarget.isISA3_1())
1161     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1162 
1163   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1164 
1165   if (!isPPC64) {
1166     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1167     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1168   }
1169 
1170   setBooleanContents(ZeroOrOneBooleanContent);
1171 
1172   if (Subtarget.hasAltivec()) {
1173     // Altivec instructions set fields to all zeros or all ones.
1174     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1175   }
1176 
1177   if (!isPPC64) {
1178     // These libcalls are not available in 32-bit.
1179     setLibcallName(RTLIB::SHL_I128, nullptr);
1180     setLibcallName(RTLIB::SRL_I128, nullptr);
1181     setLibcallName(RTLIB::SRA_I128, nullptr);
1182   }
1183 
1184   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1185 
1186   // We have target-specific dag combine patterns for the following nodes:
1187   setTargetDAGCombine(ISD::ADD);
1188   setTargetDAGCombine(ISD::SHL);
1189   setTargetDAGCombine(ISD::SRA);
1190   setTargetDAGCombine(ISD::SRL);
1191   setTargetDAGCombine(ISD::MUL);
1192   setTargetDAGCombine(ISD::FMA);
1193   setTargetDAGCombine(ISD::SINT_TO_FP);
1194   setTargetDAGCombine(ISD::BUILD_VECTOR);
1195   if (Subtarget.hasFPCVT())
1196     setTargetDAGCombine(ISD::UINT_TO_FP);
1197   setTargetDAGCombine(ISD::LOAD);
1198   setTargetDAGCombine(ISD::STORE);
1199   setTargetDAGCombine(ISD::BR_CC);
1200   if (Subtarget.useCRBits())
1201     setTargetDAGCombine(ISD::BRCOND);
1202   setTargetDAGCombine(ISD::BSWAP);
1203   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1204   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1205   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1206 
1207   setTargetDAGCombine(ISD::SIGN_EXTEND);
1208   setTargetDAGCombine(ISD::ZERO_EXTEND);
1209   setTargetDAGCombine(ISD::ANY_EXTEND);
1210 
1211   setTargetDAGCombine(ISD::TRUNCATE);
1212   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1213 
1214 
1215   if (Subtarget.useCRBits()) {
1216     setTargetDAGCombine(ISD::TRUNCATE);
1217     setTargetDAGCombine(ISD::SETCC);
1218     setTargetDAGCombine(ISD::SELECT_CC);
1219   }
1220 
1221   // Use reciprocal estimates.
1222   if (TM.Options.UnsafeFPMath) {
1223     setTargetDAGCombine(ISD::FDIV);
1224     setTargetDAGCombine(ISD::FSQRT);
1225   }
1226 
1227   if (Subtarget.hasP9Altivec()) {
1228     setTargetDAGCombine(ISD::ABS);
1229     setTargetDAGCombine(ISD::VSELECT);
1230   }
1231 
1232   setLibcallName(RTLIB::LOG_F128, "logf128");
1233   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1234   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1235   setLibcallName(RTLIB::EXP_F128, "expf128");
1236   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1237   setLibcallName(RTLIB::SIN_F128, "sinf128");
1238   setLibcallName(RTLIB::COS_F128, "cosf128");
1239   setLibcallName(RTLIB::POW_F128, "powf128");
1240   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1241   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1242   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1243   setLibcallName(RTLIB::REM_F128, "fmodf128");
1244 
1245   // With 32 condition bits, we don't need to sink (and duplicate) compares
1246   // aggressively in CodeGenPrep.
1247   if (Subtarget.useCRBits()) {
1248     setHasMultipleConditionRegisters();
1249     setJumpIsExpensive();
1250   }
1251 
1252   setMinFunctionAlignment(Align(4));
1253 
1254   switch (Subtarget.getCPUDirective()) {
1255   default: break;
1256   case PPC::DIR_970:
1257   case PPC::DIR_A2:
1258   case PPC::DIR_E500:
1259   case PPC::DIR_E500mc:
1260   case PPC::DIR_E5500:
1261   case PPC::DIR_PWR4:
1262   case PPC::DIR_PWR5:
1263   case PPC::DIR_PWR5X:
1264   case PPC::DIR_PWR6:
1265   case PPC::DIR_PWR6X:
1266   case PPC::DIR_PWR7:
1267   case PPC::DIR_PWR8:
1268   case PPC::DIR_PWR9:
1269   case PPC::DIR_PWR10:
1270   case PPC::DIR_PWR_FUTURE:
1271     setPrefLoopAlignment(Align(16));
1272     setPrefFunctionAlignment(Align(16));
1273     break;
1274   }
1275 
1276   if (Subtarget.enableMachineScheduler())
1277     setSchedulingPreference(Sched::Source);
1278   else
1279     setSchedulingPreference(Sched::Hybrid);
1280 
1281   computeRegisterProperties(STI.getRegisterInfo());
1282 
1283   // The Freescale cores do better with aggressive inlining of memcpy and
1284   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1285   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1286       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1287     MaxStoresPerMemset = 32;
1288     MaxStoresPerMemsetOptSize = 16;
1289     MaxStoresPerMemcpy = 32;
1290     MaxStoresPerMemcpyOptSize = 8;
1291     MaxStoresPerMemmove = 32;
1292     MaxStoresPerMemmoveOptSize = 8;
1293   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1294     // The A2 also benefits from (very) aggressive inlining of memcpy and
1295     // friends. The overhead of a the function call, even when warm, can be
1296     // over one hundred cycles.
1297     MaxStoresPerMemset = 128;
1298     MaxStoresPerMemcpy = 128;
1299     MaxStoresPerMemmove = 128;
1300     MaxLoadsPerMemcmp = 128;
1301   } else {
1302     MaxLoadsPerMemcmp = 8;
1303     MaxLoadsPerMemcmpOptSize = 4;
1304   }
1305 
1306   // Let the subtarget (CPU) decide if a predictable select is more expensive
1307   // than the corresponding branch. This information is used in CGP to decide
1308   // when to convert selects into branches.
1309   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1310 }
1311 
1312 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1313 /// the desired ByVal argument alignment.
1314 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1315   if (MaxAlign == MaxMaxAlign)
1316     return;
1317   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1318     if (MaxMaxAlign >= 32 &&
1319         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1320       MaxAlign = Align(32);
1321     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1322              MaxAlign < 16)
1323       MaxAlign = Align(16);
1324   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1325     Align EltAlign;
1326     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1327     if (EltAlign > MaxAlign)
1328       MaxAlign = EltAlign;
1329   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1330     for (auto *EltTy : STy->elements()) {
1331       Align EltAlign;
1332       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1333       if (EltAlign > MaxAlign)
1334         MaxAlign = EltAlign;
1335       if (MaxAlign == MaxMaxAlign)
1336         break;
1337     }
1338   }
1339 }
1340 
1341 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1342 /// function arguments in the caller parameter area.
1343 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1344                                                   const DataLayout &DL) const {
1345   // 16byte and wider vectors are passed on 16byte boundary.
1346   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1347   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1348   if (Subtarget.hasAltivec())
1349     getMaxByValAlign(Ty, Alignment, Align(16));
1350   return Alignment.value();
1351 }
1352 
1353 bool PPCTargetLowering::useSoftFloat() const {
1354   return Subtarget.useSoftFloat();
1355 }
1356 
1357 bool PPCTargetLowering::hasSPE() const {
1358   return Subtarget.hasSPE();
1359 }
1360 
1361 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1362   return VT.isScalarInteger();
1363 }
1364 
1365 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1366 /// type is cheaper than a multiply followed by a shift.
1367 /// This is true for words and doublewords on 64-bit PowerPC.
1368 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1369   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1370                               isOperationLegal(ISD::MULHU, Type)))
1371     return true;
1372   return TargetLowering::isMulhCheaperThanMulShift(Type);
1373 }
1374 
1375 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1376   switch ((PPCISD::NodeType)Opcode) {
1377   case PPCISD::FIRST_NUMBER:    break;
1378   case PPCISD::FSEL:            return "PPCISD::FSEL";
1379   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1380   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1381   case PPCISD::FCFID:           return "PPCISD::FCFID";
1382   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1383   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1384   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1385   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1386   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1387   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1388   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1389   case PPCISD::FP_TO_UINT_IN_VSR:
1390                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1391   case PPCISD::FP_TO_SINT_IN_VSR:
1392                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1393   case PPCISD::FRE:             return "PPCISD::FRE";
1394   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1395   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1396   case PPCISD::VPERM:           return "PPCISD::VPERM";
1397   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1398   case PPCISD::XXSPLTI_SP_TO_DP:
1399     return "PPCISD::XXSPLTI_SP_TO_DP";
1400   case PPCISD::XXSPLTI32DX:
1401     return "PPCISD::XXSPLTI32DX";
1402   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1403   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1404   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1405   case PPCISD::CMPB:            return "PPCISD::CMPB";
1406   case PPCISD::Hi:              return "PPCISD::Hi";
1407   case PPCISD::Lo:              return "PPCISD::Lo";
1408   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1409   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1410   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1411   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1412   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1413   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1414   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1415   case PPCISD::SRL:             return "PPCISD::SRL";
1416   case PPCISD::SRA:             return "PPCISD::SRA";
1417   case PPCISD::SHL:             return "PPCISD::SHL";
1418   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1419   case PPCISD::CALL:            return "PPCISD::CALL";
1420   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1421   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1422   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1423   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1424   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1425   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1426   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1427   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1428   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1429   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1430   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1431   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1432   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1433   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1434   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1435   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1436     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1437   case PPCISD::ANDI_rec_1_EQ_BIT:
1438     return "PPCISD::ANDI_rec_1_EQ_BIT";
1439   case PPCISD::ANDI_rec_1_GT_BIT:
1440     return "PPCISD::ANDI_rec_1_GT_BIT";
1441   case PPCISD::VCMP:            return "PPCISD::VCMP";
1442   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1443   case PPCISD::LBRX:            return "PPCISD::LBRX";
1444   case PPCISD::STBRX:           return "PPCISD::STBRX";
1445   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1446   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1447   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1448   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1449   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1450   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1451   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1452   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1453   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1454   case PPCISD::ST_VSR_SCAL_INT:
1455                                 return "PPCISD::ST_VSR_SCAL_INT";
1456   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1457   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1458   case PPCISD::BDZ:             return "PPCISD::BDZ";
1459   case PPCISD::MFFS:            return "PPCISD::MFFS";
1460   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1461   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1462   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1463   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1464   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1465   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1466   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1467   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1468   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1469   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1470   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1471   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1472   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1473   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1474   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1475   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1476   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1477   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1478   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1479   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1480   case PPCISD::SC:              return "PPCISD::SC";
1481   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1482   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1483   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1484   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1485   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1486   case PPCISD::VABSD:           return "PPCISD::VABSD";
1487   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1488   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1489   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1490   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1491   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1492   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1493   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1494   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1495     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1496   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1497   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1498   case PPCISD::STRICT_FCTIDZ:
1499     return "PPCISD::STRICT_FCTIDZ";
1500   case PPCISD::STRICT_FCTIWZ:
1501     return "PPCISD::STRICT_FCTIWZ";
1502   case PPCISD::STRICT_FCTIDUZ:
1503     return "PPCISD::STRICT_FCTIDUZ";
1504   case PPCISD::STRICT_FCTIWUZ:
1505     return "PPCISD::STRICT_FCTIWUZ";
1506   case PPCISD::STRICT_FCFID:
1507     return "PPCISD::STRICT_FCFID";
1508   case PPCISD::STRICT_FCFIDU:
1509     return "PPCISD::STRICT_FCFIDU";
1510   case PPCISD::STRICT_FCFIDS:
1511     return "PPCISD::STRICT_FCFIDS";
1512   case PPCISD::STRICT_FCFIDUS:
1513     return "PPCISD::STRICT_FCFIDUS";
1514   }
1515   return nullptr;
1516 }
1517 
1518 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1519                                           EVT VT) const {
1520   if (!VT.isVector())
1521     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1522 
1523   return VT.changeVectorElementTypeToInteger();
1524 }
1525 
1526 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1527   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1528   return true;
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 // Node matching predicates, for use by the tblgen matching code.
1533 //===----------------------------------------------------------------------===//
1534 
1535 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1536 static bool isFloatingPointZero(SDValue Op) {
1537   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1538     return CFP->getValueAPF().isZero();
1539   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1540     // Maybe this has already been legalized into the constant pool?
1541     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1542       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1543         return CFP->getValueAPF().isZero();
1544   }
1545   return false;
1546 }
1547 
1548 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1549 /// true if Op is undef or if it matches the specified value.
1550 static bool isConstantOrUndef(int Op, int Val) {
1551   return Op < 0 || Op == Val;
1552 }
1553 
1554 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1555 /// VPKUHUM instruction.
1556 /// The ShuffleKind distinguishes between big-endian operations with
1557 /// two different inputs (0), either-endian operations with two identical
1558 /// inputs (1), and little-endian operations with two different inputs (2).
1559 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1560 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1561                                SelectionDAG &DAG) {
1562   bool IsLE = DAG.getDataLayout().isLittleEndian();
1563   if (ShuffleKind == 0) {
1564     if (IsLE)
1565       return false;
1566     for (unsigned i = 0; i != 16; ++i)
1567       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1568         return false;
1569   } else if (ShuffleKind == 2) {
1570     if (!IsLE)
1571       return false;
1572     for (unsigned i = 0; i != 16; ++i)
1573       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1574         return false;
1575   } else if (ShuffleKind == 1) {
1576     unsigned j = IsLE ? 0 : 1;
1577     for (unsigned i = 0; i != 8; ++i)
1578       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1579           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1580         return false;
1581   }
1582   return true;
1583 }
1584 
1585 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1586 /// VPKUWUM instruction.
1587 /// The ShuffleKind distinguishes between big-endian operations with
1588 /// two different inputs (0), either-endian operations with two identical
1589 /// inputs (1), and little-endian operations with two different inputs (2).
1590 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1591 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1592                                SelectionDAG &DAG) {
1593   bool IsLE = DAG.getDataLayout().isLittleEndian();
1594   if (ShuffleKind == 0) {
1595     if (IsLE)
1596       return false;
1597     for (unsigned i = 0; i != 16; i += 2)
1598       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1599           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1600         return false;
1601   } else if (ShuffleKind == 2) {
1602     if (!IsLE)
1603       return false;
1604     for (unsigned i = 0; i != 16; i += 2)
1605       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1606           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1607         return false;
1608   } else if (ShuffleKind == 1) {
1609     unsigned j = IsLE ? 0 : 2;
1610     for (unsigned i = 0; i != 8; i += 2)
1611       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1612           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1613           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1614           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1615         return false;
1616   }
1617   return true;
1618 }
1619 
1620 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1621 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1622 /// current subtarget.
1623 ///
1624 /// The ShuffleKind distinguishes between big-endian operations with
1625 /// two different inputs (0), either-endian operations with two identical
1626 /// inputs (1), and little-endian operations with two different inputs (2).
1627 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1628 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1629                                SelectionDAG &DAG) {
1630   const PPCSubtarget& Subtarget =
1631       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1632   if (!Subtarget.hasP8Vector())
1633     return false;
1634 
1635   bool IsLE = DAG.getDataLayout().isLittleEndian();
1636   if (ShuffleKind == 0) {
1637     if (IsLE)
1638       return false;
1639     for (unsigned i = 0; i != 16; i += 4)
1640       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1641           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1642           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1643           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1644         return false;
1645   } else if (ShuffleKind == 2) {
1646     if (!IsLE)
1647       return false;
1648     for (unsigned i = 0; i != 16; i += 4)
1649       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1650           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1651           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1652           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1653         return false;
1654   } else if (ShuffleKind == 1) {
1655     unsigned j = IsLE ? 0 : 4;
1656     for (unsigned i = 0; i != 8; i += 4)
1657       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1658           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1659           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1660           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1661           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1662           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1663           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1664           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1665         return false;
1666   }
1667   return true;
1668 }
1669 
1670 /// isVMerge - Common function, used to match vmrg* shuffles.
1671 ///
1672 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1673                      unsigned LHSStart, unsigned RHSStart) {
1674   if (N->getValueType(0) != MVT::v16i8)
1675     return false;
1676   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1677          "Unsupported merge size!");
1678 
1679   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1680     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1681       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1682                              LHSStart+j+i*UnitSize) ||
1683           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1684                              RHSStart+j+i*UnitSize))
1685         return false;
1686     }
1687   return true;
1688 }
1689 
1690 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1691 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1692 /// The ShuffleKind distinguishes between big-endian merges with two
1693 /// different inputs (0), either-endian merges with two identical inputs (1),
1694 /// and little-endian merges with two different inputs (2).  For the latter,
1695 /// the input operands are swapped (see PPCInstrAltivec.td).
1696 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1697                              unsigned ShuffleKind, SelectionDAG &DAG) {
1698   if (DAG.getDataLayout().isLittleEndian()) {
1699     if (ShuffleKind == 1) // unary
1700       return isVMerge(N, UnitSize, 0, 0);
1701     else if (ShuffleKind == 2) // swapped
1702       return isVMerge(N, UnitSize, 0, 16);
1703     else
1704       return false;
1705   } else {
1706     if (ShuffleKind == 1) // unary
1707       return isVMerge(N, UnitSize, 8, 8);
1708     else if (ShuffleKind == 0) // normal
1709       return isVMerge(N, UnitSize, 8, 24);
1710     else
1711       return false;
1712   }
1713 }
1714 
1715 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1716 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1717 /// The ShuffleKind distinguishes between big-endian merges with two
1718 /// different inputs (0), either-endian merges with two identical inputs (1),
1719 /// and little-endian merges with two different inputs (2).  For the latter,
1720 /// the input operands are swapped (see PPCInstrAltivec.td).
1721 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1722                              unsigned ShuffleKind, SelectionDAG &DAG) {
1723   if (DAG.getDataLayout().isLittleEndian()) {
1724     if (ShuffleKind == 1) // unary
1725       return isVMerge(N, UnitSize, 8, 8);
1726     else if (ShuffleKind == 2) // swapped
1727       return isVMerge(N, UnitSize, 8, 24);
1728     else
1729       return false;
1730   } else {
1731     if (ShuffleKind == 1) // unary
1732       return isVMerge(N, UnitSize, 0, 0);
1733     else if (ShuffleKind == 0) // normal
1734       return isVMerge(N, UnitSize, 0, 16);
1735     else
1736       return false;
1737   }
1738 }
1739 
1740 /**
1741  * Common function used to match vmrgew and vmrgow shuffles
1742  *
1743  * The indexOffset determines whether to look for even or odd words in
1744  * the shuffle mask. This is based on the of the endianness of the target
1745  * machine.
1746  *   - Little Endian:
1747  *     - Use offset of 0 to check for odd elements
1748  *     - Use offset of 4 to check for even elements
1749  *   - Big Endian:
1750  *     - Use offset of 0 to check for even elements
1751  *     - Use offset of 4 to check for odd elements
1752  * A detailed description of the vector element ordering for little endian and
1753  * big endian can be found at
1754  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1755  * Targeting your applications - what little endian and big endian IBM XL C/C++
1756  * compiler differences mean to you
1757  *
1758  * The mask to the shuffle vector instruction specifies the indices of the
1759  * elements from the two input vectors to place in the result. The elements are
1760  * numbered in array-access order, starting with the first vector. These vectors
1761  * are always of type v16i8, thus each vector will contain 16 elements of size
1762  * 8. More info on the shuffle vector can be found in the
1763  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1764  * Language Reference.
1765  *
1766  * The RHSStartValue indicates whether the same input vectors are used (unary)
1767  * or two different input vectors are used, based on the following:
1768  *   - If the instruction uses the same vector for both inputs, the range of the
1769  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1770  *     be 0.
1771  *   - If the instruction has two different vectors then the range of the
1772  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1773  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1774  *     to 31 specify elements in the second vector).
1775  *
1776  * \param[in] N The shuffle vector SD Node to analyze
1777  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1778  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1779  * vector to the shuffle_vector instruction
1780  * \return true iff this shuffle vector represents an even or odd word merge
1781  */
1782 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1783                      unsigned RHSStartValue) {
1784   if (N->getValueType(0) != MVT::v16i8)
1785     return false;
1786 
1787   for (unsigned i = 0; i < 2; ++i)
1788     for (unsigned j = 0; j < 4; ++j)
1789       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1790                              i*RHSStartValue+j+IndexOffset) ||
1791           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1792                              i*RHSStartValue+j+IndexOffset+8))
1793         return false;
1794   return true;
1795 }
1796 
1797 /**
1798  * Determine if the specified shuffle mask is suitable for the vmrgew or
1799  * vmrgow instructions.
1800  *
1801  * \param[in] N The shuffle vector SD Node to analyze
1802  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1803  * \param[in] ShuffleKind Identify the type of merge:
1804  *   - 0 = big-endian merge with two different inputs;
1805  *   - 1 = either-endian merge with two identical inputs;
1806  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1807  *     little-endian merges).
1808  * \param[in] DAG The current SelectionDAG
1809  * \return true iff this shuffle mask
1810  */
1811 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1812                               unsigned ShuffleKind, SelectionDAG &DAG) {
1813   if (DAG.getDataLayout().isLittleEndian()) {
1814     unsigned indexOffset = CheckEven ? 4 : 0;
1815     if (ShuffleKind == 1) // Unary
1816       return isVMerge(N, indexOffset, 0);
1817     else if (ShuffleKind == 2) // swapped
1818       return isVMerge(N, indexOffset, 16);
1819     else
1820       return false;
1821   }
1822   else {
1823     unsigned indexOffset = CheckEven ? 0 : 4;
1824     if (ShuffleKind == 1) // Unary
1825       return isVMerge(N, indexOffset, 0);
1826     else if (ShuffleKind == 0) // Normal
1827       return isVMerge(N, indexOffset, 16);
1828     else
1829       return false;
1830   }
1831   return false;
1832 }
1833 
1834 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1835 /// amount, otherwise return -1.
1836 /// The ShuffleKind distinguishes between big-endian operations with two
1837 /// different inputs (0), either-endian operations with two identical inputs
1838 /// (1), and little-endian operations with two different inputs (2).  For the
1839 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1840 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1841                              SelectionDAG &DAG) {
1842   if (N->getValueType(0) != MVT::v16i8)
1843     return -1;
1844 
1845   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1846 
1847   // Find the first non-undef value in the shuffle mask.
1848   unsigned i;
1849   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1850     /*search*/;
1851 
1852   if (i == 16) return -1;  // all undef.
1853 
1854   // Otherwise, check to see if the rest of the elements are consecutively
1855   // numbered from this value.
1856   unsigned ShiftAmt = SVOp->getMaskElt(i);
1857   if (ShiftAmt < i) return -1;
1858 
1859   ShiftAmt -= i;
1860   bool isLE = DAG.getDataLayout().isLittleEndian();
1861 
1862   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1863     // Check the rest of the elements to see if they are consecutive.
1864     for (++i; i != 16; ++i)
1865       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1866         return -1;
1867   } else if (ShuffleKind == 1) {
1868     // Check the rest of the elements to see if they are consecutive.
1869     for (++i; i != 16; ++i)
1870       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1871         return -1;
1872   } else
1873     return -1;
1874 
1875   if (isLE)
1876     ShiftAmt = 16 - ShiftAmt;
1877 
1878   return ShiftAmt;
1879 }
1880 
1881 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1882 /// specifies a splat of a single element that is suitable for input to
1883 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1884 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1885   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1886          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1887 
1888   // The consecutive indices need to specify an element, not part of two
1889   // different elements.  So abandon ship early if this isn't the case.
1890   if (N->getMaskElt(0) % EltSize != 0)
1891     return false;
1892 
1893   // This is a splat operation if each element of the permute is the same, and
1894   // if the value doesn't reference the second vector.
1895   unsigned ElementBase = N->getMaskElt(0);
1896 
1897   // FIXME: Handle UNDEF elements too!
1898   if (ElementBase >= 16)
1899     return false;
1900 
1901   // Check that the indices are consecutive, in the case of a multi-byte element
1902   // splatted with a v16i8 mask.
1903   for (unsigned i = 1; i != EltSize; ++i)
1904     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1905       return false;
1906 
1907   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1908     if (N->getMaskElt(i) < 0) continue;
1909     for (unsigned j = 0; j != EltSize; ++j)
1910       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1911         return false;
1912   }
1913   return true;
1914 }
1915 
1916 /// Check that the mask is shuffling N byte elements. Within each N byte
1917 /// element of the mask, the indices could be either in increasing or
1918 /// decreasing order as long as they are consecutive.
1919 /// \param[in] N the shuffle vector SD Node to analyze
1920 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1921 /// Word/DoubleWord/QuadWord).
1922 /// \param[in] StepLen the delta indices number among the N byte element, if
1923 /// the mask is in increasing/decreasing order then it is 1/-1.
1924 /// \return true iff the mask is shuffling N byte elements.
1925 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1926                                    int StepLen) {
1927   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1928          "Unexpected element width.");
1929   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1930 
1931   unsigned NumOfElem = 16 / Width;
1932   unsigned MaskVal[16]; //  Width is never greater than 16
1933   for (unsigned i = 0; i < NumOfElem; ++i) {
1934     MaskVal[0] = N->getMaskElt(i * Width);
1935     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1936       return false;
1937     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1938       return false;
1939     }
1940 
1941     for (unsigned int j = 1; j < Width; ++j) {
1942       MaskVal[j] = N->getMaskElt(i * Width + j);
1943       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1944         return false;
1945       }
1946     }
1947   }
1948 
1949   return true;
1950 }
1951 
1952 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1953                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1954   if (!isNByteElemShuffleMask(N, 4, 1))
1955     return false;
1956 
1957   // Now we look at mask elements 0,4,8,12
1958   unsigned M0 = N->getMaskElt(0) / 4;
1959   unsigned M1 = N->getMaskElt(4) / 4;
1960   unsigned M2 = N->getMaskElt(8) / 4;
1961   unsigned M3 = N->getMaskElt(12) / 4;
1962   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1963   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1964 
1965   // Below, let H and L be arbitrary elements of the shuffle mask
1966   // where H is in the range [4,7] and L is in the range [0,3].
1967   // H, 1, 2, 3 or L, 5, 6, 7
1968   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1969       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1970     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1971     InsertAtByte = IsLE ? 12 : 0;
1972     Swap = M0 < 4;
1973     return true;
1974   }
1975   // 0, H, 2, 3 or 4, L, 6, 7
1976   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1977       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1978     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1979     InsertAtByte = IsLE ? 8 : 4;
1980     Swap = M1 < 4;
1981     return true;
1982   }
1983   // 0, 1, H, 3 or 4, 5, L, 7
1984   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1985       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1986     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1987     InsertAtByte = IsLE ? 4 : 8;
1988     Swap = M2 < 4;
1989     return true;
1990   }
1991   // 0, 1, 2, H or 4, 5, 6, L
1992   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1993       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1994     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1995     InsertAtByte = IsLE ? 0 : 12;
1996     Swap = M3 < 4;
1997     return true;
1998   }
1999 
2000   // If both vector operands for the shuffle are the same vector, the mask will
2001   // contain only elements from the first one and the second one will be undef.
2002   if (N->getOperand(1).isUndef()) {
2003     ShiftElts = 0;
2004     Swap = true;
2005     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2006     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2007       InsertAtByte = IsLE ? 12 : 0;
2008       return true;
2009     }
2010     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2011       InsertAtByte = IsLE ? 8 : 4;
2012       return true;
2013     }
2014     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2015       InsertAtByte = IsLE ? 4 : 8;
2016       return true;
2017     }
2018     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2019       InsertAtByte = IsLE ? 0 : 12;
2020       return true;
2021     }
2022   }
2023 
2024   return false;
2025 }
2026 
2027 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2028                                bool &Swap, bool IsLE) {
2029   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2030   // Ensure each byte index of the word is consecutive.
2031   if (!isNByteElemShuffleMask(N, 4, 1))
2032     return false;
2033 
2034   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2035   unsigned M0 = N->getMaskElt(0) / 4;
2036   unsigned M1 = N->getMaskElt(4) / 4;
2037   unsigned M2 = N->getMaskElt(8) / 4;
2038   unsigned M3 = N->getMaskElt(12) / 4;
2039 
2040   // If both vector operands for the shuffle are the same vector, the mask will
2041   // contain only elements from the first one and the second one will be undef.
2042   if (N->getOperand(1).isUndef()) {
2043     assert(M0 < 4 && "Indexing into an undef vector?");
2044     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2045       return false;
2046 
2047     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2048     Swap = false;
2049     return true;
2050   }
2051 
2052   // Ensure each word index of the ShuffleVector Mask is consecutive.
2053   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2054     return false;
2055 
2056   if (IsLE) {
2057     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2058       // Input vectors don't need to be swapped if the leading element
2059       // of the result is one of the 3 left elements of the second vector
2060       // (or if there is no shift to be done at all).
2061       Swap = false;
2062       ShiftElts = (8 - M0) % 8;
2063     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2064       // Input vectors need to be swapped if the leading element
2065       // of the result is one of the 3 left elements of the first vector
2066       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2067       Swap = true;
2068       ShiftElts = (4 - M0) % 4;
2069     }
2070 
2071     return true;
2072   } else {                                          // BE
2073     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2074       // Input vectors don't need to be swapped if the leading element
2075       // of the result is one of the 4 elements of the first vector.
2076       Swap = false;
2077       ShiftElts = M0;
2078     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2079       // Input vectors need to be swapped if the leading element
2080       // of the result is one of the 4 elements of the right vector.
2081       Swap = true;
2082       ShiftElts = M0 - 4;
2083     }
2084 
2085     return true;
2086   }
2087 }
2088 
2089 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2090   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2091 
2092   if (!isNByteElemShuffleMask(N, Width, -1))
2093     return false;
2094 
2095   for (int i = 0; i < 16; i += Width)
2096     if (N->getMaskElt(i) != i + Width - 1)
2097       return false;
2098 
2099   return true;
2100 }
2101 
2102 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2103   return isXXBRShuffleMaskHelper(N, 2);
2104 }
2105 
2106 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2107   return isXXBRShuffleMaskHelper(N, 4);
2108 }
2109 
2110 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2111   return isXXBRShuffleMaskHelper(N, 8);
2112 }
2113 
2114 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2115   return isXXBRShuffleMaskHelper(N, 16);
2116 }
2117 
2118 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2119 /// if the inputs to the instruction should be swapped and set \p DM to the
2120 /// value for the immediate.
2121 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2122 /// AND element 0 of the result comes from the first input (LE) or second input
2123 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2124 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2125 /// mask.
2126 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2127                                bool &Swap, bool IsLE) {
2128   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2129 
2130   // Ensure each byte index of the double word is consecutive.
2131   if (!isNByteElemShuffleMask(N, 8, 1))
2132     return false;
2133 
2134   unsigned M0 = N->getMaskElt(0) / 8;
2135   unsigned M1 = N->getMaskElt(8) / 8;
2136   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2137 
2138   // If both vector operands for the shuffle are the same vector, the mask will
2139   // contain only elements from the first one and the second one will be undef.
2140   if (N->getOperand(1).isUndef()) {
2141     if ((M0 | M1) < 2) {
2142       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2143       Swap = false;
2144       return true;
2145     } else
2146       return false;
2147   }
2148 
2149   if (IsLE) {
2150     if (M0 > 1 && M1 < 2) {
2151       Swap = false;
2152     } else if (M0 < 2 && M1 > 1) {
2153       M0 = (M0 + 2) % 4;
2154       M1 = (M1 + 2) % 4;
2155       Swap = true;
2156     } else
2157       return false;
2158 
2159     // Note: if control flow comes here that means Swap is already set above
2160     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2161     return true;
2162   } else { // BE
2163     if (M0 < 2 && M1 > 1) {
2164       Swap = false;
2165     } else if (M0 > 1 && M1 < 2) {
2166       M0 = (M0 + 2) % 4;
2167       M1 = (M1 + 2) % 4;
2168       Swap = true;
2169     } else
2170       return false;
2171 
2172     // Note: if control flow comes here that means Swap is already set above
2173     DM = (M0 << 1) + (M1 & 1);
2174     return true;
2175   }
2176 }
2177 
2178 
2179 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2180 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2181 /// elements are counted from the left of the vector register).
2182 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2183                                          SelectionDAG &DAG) {
2184   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2185   assert(isSplatShuffleMask(SVOp, EltSize));
2186   if (DAG.getDataLayout().isLittleEndian())
2187     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2188   else
2189     return SVOp->getMaskElt(0) / EltSize;
2190 }
2191 
2192 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2193 /// by using a vspltis[bhw] instruction of the specified element size, return
2194 /// the constant being splatted.  The ByteSize field indicates the number of
2195 /// bytes of each element [124] -> [bhw].
2196 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2197   SDValue OpVal(nullptr, 0);
2198 
2199   // If ByteSize of the splat is bigger than the element size of the
2200   // build_vector, then we have a case where we are checking for a splat where
2201   // multiple elements of the buildvector are folded together into a single
2202   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2203   unsigned EltSize = 16/N->getNumOperands();
2204   if (EltSize < ByteSize) {
2205     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2206     SDValue UniquedVals[4];
2207     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2208 
2209     // See if all of the elements in the buildvector agree across.
2210     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2211       if (N->getOperand(i).isUndef()) continue;
2212       // If the element isn't a constant, bail fully out.
2213       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2214 
2215       if (!UniquedVals[i&(Multiple-1)].getNode())
2216         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2217       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2218         return SDValue();  // no match.
2219     }
2220 
2221     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2222     // either constant or undef values that are identical for each chunk.  See
2223     // if these chunks can form into a larger vspltis*.
2224 
2225     // Check to see if all of the leading entries are either 0 or -1.  If
2226     // neither, then this won't fit into the immediate field.
2227     bool LeadingZero = true;
2228     bool LeadingOnes = true;
2229     for (unsigned i = 0; i != Multiple-1; ++i) {
2230       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2231 
2232       LeadingZero &= isNullConstant(UniquedVals[i]);
2233       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2234     }
2235     // Finally, check the least significant entry.
2236     if (LeadingZero) {
2237       if (!UniquedVals[Multiple-1].getNode())
2238         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2239       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2240       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2241         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2242     }
2243     if (LeadingOnes) {
2244       if (!UniquedVals[Multiple-1].getNode())
2245         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2246       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2247       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2248         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2249     }
2250 
2251     return SDValue();
2252   }
2253 
2254   // Check to see if this buildvec has a single non-undef value in its elements.
2255   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2256     if (N->getOperand(i).isUndef()) continue;
2257     if (!OpVal.getNode())
2258       OpVal = N->getOperand(i);
2259     else if (OpVal != N->getOperand(i))
2260       return SDValue();
2261   }
2262 
2263   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2264 
2265   unsigned ValSizeInBytes = EltSize;
2266   uint64_t Value = 0;
2267   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2268     Value = CN->getZExtValue();
2269   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2270     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2271     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2272   }
2273 
2274   // If the splat value is larger than the element value, then we can never do
2275   // this splat.  The only case that we could fit the replicated bits into our
2276   // immediate field for would be zero, and we prefer to use vxor for it.
2277   if (ValSizeInBytes < ByteSize) return SDValue();
2278 
2279   // If the element value is larger than the splat value, check if it consists
2280   // of a repeated bit pattern of size ByteSize.
2281   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2282     return SDValue();
2283 
2284   // Properly sign extend the value.
2285   int MaskVal = SignExtend32(Value, ByteSize * 8);
2286 
2287   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2288   if (MaskVal == 0) return SDValue();
2289 
2290   // Finally, if this value fits in a 5 bit sext field, return it
2291   if (SignExtend32<5>(MaskVal) == MaskVal)
2292     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2293   return SDValue();
2294 }
2295 
2296 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2297 /// amount, otherwise return -1.
2298 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2299   EVT VT = N->getValueType(0);
2300   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2301     return -1;
2302 
2303   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2304 
2305   // Find the first non-undef value in the shuffle mask.
2306   unsigned i;
2307   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2308     /*search*/;
2309 
2310   if (i == 4) return -1;  // all undef.
2311 
2312   // Otherwise, check to see if the rest of the elements are consecutively
2313   // numbered from this value.
2314   unsigned ShiftAmt = SVOp->getMaskElt(i);
2315   if (ShiftAmt < i) return -1;
2316   ShiftAmt -= i;
2317 
2318   // Check the rest of the elements to see if they are consecutive.
2319   for (++i; i != 4; ++i)
2320     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2321       return -1;
2322 
2323   return ShiftAmt;
2324 }
2325 
2326 //===----------------------------------------------------------------------===//
2327 //  Addressing Mode Selection
2328 //===----------------------------------------------------------------------===//
2329 
2330 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2331 /// or 64-bit immediate, and if the value can be accurately represented as a
2332 /// sign extension from a 16-bit value.  If so, this returns true and the
2333 /// immediate.
2334 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2335   if (!isa<ConstantSDNode>(N))
2336     return false;
2337 
2338   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2339   if (N->getValueType(0) == MVT::i32)
2340     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2341   else
2342     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2343 }
2344 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2345   return isIntS16Immediate(Op.getNode(), Imm);
2346 }
2347 
2348 
2349 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2350 /// be represented as an indexed [r+r] operation.
2351 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2352                                                SDValue &Index,
2353                                                SelectionDAG &DAG) const {
2354   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2355       UI != E; ++UI) {
2356     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2357       if (Memop->getMemoryVT() == MVT::f64) {
2358           Base = N.getOperand(0);
2359           Index = N.getOperand(1);
2360           return true;
2361       }
2362     }
2363   }
2364   return false;
2365 }
2366 
2367 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2368 /// can be represented as an indexed [r+r] operation.  Returns false if it
2369 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2370 /// non-zero and N can be represented by a base register plus a signed 16-bit
2371 /// displacement, make a more precise judgement by checking (displacement % \p
2372 /// EncodingAlignment).
2373 bool PPCTargetLowering::SelectAddressRegReg(
2374     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2375     MaybeAlign EncodingAlignment) const {
2376   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2377   // a [pc+imm].
2378   if (SelectAddressPCRel(N, Base))
2379     return false;
2380 
2381   int16_t Imm = 0;
2382   if (N.getOpcode() == ISD::ADD) {
2383     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2384     // SPE load/store can only handle 8-bit offsets.
2385     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2386         return true;
2387     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2388         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2389       return false; // r+i
2390     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2391       return false;    // r+i
2392 
2393     Base = N.getOperand(0);
2394     Index = N.getOperand(1);
2395     return true;
2396   } else if (N.getOpcode() == ISD::OR) {
2397     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2398         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2399       return false; // r+i can fold it if we can.
2400 
2401     // If this is an or of disjoint bitfields, we can codegen this as an add
2402     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2403     // disjoint.
2404     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2405 
2406     if (LHSKnown.Zero.getBoolValue()) {
2407       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2408       // If all of the bits are known zero on the LHS or RHS, the add won't
2409       // carry.
2410       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2411         Base = N.getOperand(0);
2412         Index = N.getOperand(1);
2413         return true;
2414       }
2415     }
2416   }
2417 
2418   return false;
2419 }
2420 
2421 // If we happen to be doing an i64 load or store into a stack slot that has
2422 // less than a 4-byte alignment, then the frame-index elimination may need to
2423 // use an indexed load or store instruction (because the offset may not be a
2424 // multiple of 4). The extra register needed to hold the offset comes from the
2425 // register scavenger, and it is possible that the scavenger will need to use
2426 // an emergency spill slot. As a result, we need to make sure that a spill slot
2427 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2428 // stack slot.
2429 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2430   // FIXME: This does not handle the LWA case.
2431   if (VT != MVT::i64)
2432     return;
2433 
2434   // NOTE: We'll exclude negative FIs here, which come from argument
2435   // lowering, because there are no known test cases triggering this problem
2436   // using packed structures (or similar). We can remove this exclusion if
2437   // we find such a test case. The reason why this is so test-case driven is
2438   // because this entire 'fixup' is only to prevent crashes (from the
2439   // register scavenger) on not-really-valid inputs. For example, if we have:
2440   //   %a = alloca i1
2441   //   %b = bitcast i1* %a to i64*
2442   //   store i64* a, i64 b
2443   // then the store should really be marked as 'align 1', but is not. If it
2444   // were marked as 'align 1' then the indexed form would have been
2445   // instruction-selected initially, and the problem this 'fixup' is preventing
2446   // won't happen regardless.
2447   if (FrameIdx < 0)
2448     return;
2449 
2450   MachineFunction &MF = DAG.getMachineFunction();
2451   MachineFrameInfo &MFI = MF.getFrameInfo();
2452 
2453   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2454     return;
2455 
2456   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2457   FuncInfo->setHasNonRISpills();
2458 }
2459 
2460 /// Returns true if the address N can be represented by a base register plus
2461 /// a signed 16-bit displacement [r+imm], and if it is not better
2462 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2463 /// displacements that are multiples of that value.
2464 bool PPCTargetLowering::SelectAddressRegImm(
2465     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2466     MaybeAlign EncodingAlignment) const {
2467   // FIXME dl should come from parent load or store, not from address
2468   SDLoc dl(N);
2469 
2470   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2471   // a [pc+imm].
2472   if (SelectAddressPCRel(N, Base))
2473     return false;
2474 
2475   // If this can be more profitably realized as r+r, fail.
2476   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2477     return false;
2478 
2479   if (N.getOpcode() == ISD::ADD) {
2480     int16_t imm = 0;
2481     if (isIntS16Immediate(N.getOperand(1), imm) &&
2482         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2483       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2484       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2485         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2486         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2487       } else {
2488         Base = N.getOperand(0);
2489       }
2490       return true; // [r+i]
2491     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2492       // Match LOAD (ADD (X, Lo(G))).
2493       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2494              && "Cannot handle constant offsets yet!");
2495       Disp = N.getOperand(1).getOperand(0);  // The global address.
2496       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2497              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2498              Disp.getOpcode() == ISD::TargetConstantPool ||
2499              Disp.getOpcode() == ISD::TargetJumpTable);
2500       Base = N.getOperand(0);
2501       return true;  // [&g+r]
2502     }
2503   } else if (N.getOpcode() == ISD::OR) {
2504     int16_t imm = 0;
2505     if (isIntS16Immediate(N.getOperand(1), imm) &&
2506         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2507       // If this is an or of disjoint bitfields, we can codegen this as an add
2508       // (for better address arithmetic) if the LHS and RHS of the OR are
2509       // provably disjoint.
2510       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2511 
2512       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2513         // If all of the bits are known zero on the LHS or RHS, the add won't
2514         // carry.
2515         if (FrameIndexSDNode *FI =
2516               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2517           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2518           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2519         } else {
2520           Base = N.getOperand(0);
2521         }
2522         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2523         return true;
2524       }
2525     }
2526   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2527     // Loading from a constant address.
2528 
2529     // If this address fits entirely in a 16-bit sext immediate field, codegen
2530     // this as "d, 0"
2531     int16_t Imm;
2532     if (isIntS16Immediate(CN, Imm) &&
2533         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2534       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2535       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2536                              CN->getValueType(0));
2537       return true;
2538     }
2539 
2540     // Handle 32-bit sext immediates with LIS + addr mode.
2541     if ((CN->getValueType(0) == MVT::i32 ||
2542          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2543         (!EncodingAlignment ||
2544          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2545       int Addr = (int)CN->getZExtValue();
2546 
2547       // Otherwise, break this down into an LIS + disp.
2548       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2549 
2550       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2551                                    MVT::i32);
2552       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2553       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2554       return true;
2555     }
2556   }
2557 
2558   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2559   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2560     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2561     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2562   } else
2563     Base = N;
2564   return true;      // [r+0]
2565 }
2566 
2567 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2568 /// represented as an indexed [r+r] operation.
2569 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2570                                                 SDValue &Index,
2571                                                 SelectionDAG &DAG) const {
2572   // Check to see if we can easily represent this as an [r+r] address.  This
2573   // will fail if it thinks that the address is more profitably represented as
2574   // reg+imm, e.g. where imm = 0.
2575   if (SelectAddressRegReg(N, Base, Index, DAG))
2576     return true;
2577 
2578   // If the address is the result of an add, we will utilize the fact that the
2579   // address calculation includes an implicit add.  However, we can reduce
2580   // register pressure if we do not materialize a constant just for use as the
2581   // index register.  We only get rid of the add if it is not an add of a
2582   // value and a 16-bit signed constant and both have a single use.
2583   int16_t imm = 0;
2584   if (N.getOpcode() == ISD::ADD &&
2585       (!isIntS16Immediate(N.getOperand(1), imm) ||
2586        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2587     Base = N.getOperand(0);
2588     Index = N.getOperand(1);
2589     return true;
2590   }
2591 
2592   // Otherwise, do it the hard way, using R0 as the base register.
2593   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2594                          N.getValueType());
2595   Index = N;
2596   return true;
2597 }
2598 
2599 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2600   Ty *PCRelCand = dyn_cast<Ty>(N);
2601   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2602 }
2603 
2604 /// Returns true if this address is a PC Relative address.
2605 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2606 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2607 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2608   // This is a materialize PC Relative node. Always select this as PC Relative.
2609   Base = N;
2610   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2611     return true;
2612   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2613       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2614       isValidPCRelNode<JumpTableSDNode>(N) ||
2615       isValidPCRelNode<BlockAddressSDNode>(N))
2616     return true;
2617   return false;
2618 }
2619 
2620 /// Returns true if we should use a direct load into vector instruction
2621 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2622 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2623 
2624   // If there are any other uses other than scalar to vector, then we should
2625   // keep it as a scalar load -> direct move pattern to prevent multiple
2626   // loads.
2627   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2628   if (!LD)
2629     return false;
2630 
2631   EVT MemVT = LD->getMemoryVT();
2632   if (!MemVT.isSimple())
2633     return false;
2634   switch(MemVT.getSimpleVT().SimpleTy) {
2635   case MVT::i64:
2636     break;
2637   case MVT::i32:
2638     if (!ST.hasP8Vector())
2639       return false;
2640     break;
2641   case MVT::i16:
2642   case MVT::i8:
2643     if (!ST.hasP9Vector())
2644       return false;
2645     break;
2646   default:
2647     return false;
2648   }
2649 
2650   SDValue LoadedVal(N, 0);
2651   if (!LoadedVal.hasOneUse())
2652     return false;
2653 
2654   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2655        UI != UE; ++UI)
2656     if (UI.getUse().get().getResNo() == 0 &&
2657         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2658         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2659       return false;
2660 
2661   return true;
2662 }
2663 
2664 /// getPreIndexedAddressParts - returns true by value, base pointer and
2665 /// offset pointer and addressing mode by reference if the node's address
2666 /// can be legally represented as pre-indexed load / store address.
2667 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2668                                                   SDValue &Offset,
2669                                                   ISD::MemIndexedMode &AM,
2670                                                   SelectionDAG &DAG) const {
2671   if (DisablePPCPreinc) return false;
2672 
2673   bool isLoad = true;
2674   SDValue Ptr;
2675   EVT VT;
2676   unsigned Alignment;
2677   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2678     Ptr = LD->getBasePtr();
2679     VT = LD->getMemoryVT();
2680     Alignment = LD->getAlignment();
2681   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2682     Ptr = ST->getBasePtr();
2683     VT  = ST->getMemoryVT();
2684     Alignment = ST->getAlignment();
2685     isLoad = false;
2686   } else
2687     return false;
2688 
2689   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2690   // instructions because we can fold these into a more efficient instruction
2691   // instead, (such as LXSD).
2692   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2693     return false;
2694   }
2695 
2696   // PowerPC doesn't have preinc load/store instructions for vectors
2697   if (VT.isVector())
2698     return false;
2699 
2700   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2701     // Common code will reject creating a pre-inc form if the base pointer
2702     // is a frame index, or if N is a store and the base pointer is either
2703     // the same as or a predecessor of the value being stored.  Check for
2704     // those situations here, and try with swapped Base/Offset instead.
2705     bool Swap = false;
2706 
2707     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2708       Swap = true;
2709     else if (!isLoad) {
2710       SDValue Val = cast<StoreSDNode>(N)->getValue();
2711       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2712         Swap = true;
2713     }
2714 
2715     if (Swap)
2716       std::swap(Base, Offset);
2717 
2718     AM = ISD::PRE_INC;
2719     return true;
2720   }
2721 
2722   // LDU/STU can only handle immediates that are a multiple of 4.
2723   if (VT != MVT::i64) {
2724     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2725       return false;
2726   } else {
2727     // LDU/STU need an address with at least 4-byte alignment.
2728     if (Alignment < 4)
2729       return false;
2730 
2731     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2732       return false;
2733   }
2734 
2735   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2736     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2737     // sext i32 to i64 when addr mode is r+i.
2738     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2739         LD->getExtensionType() == ISD::SEXTLOAD &&
2740         isa<ConstantSDNode>(Offset))
2741       return false;
2742   }
2743 
2744   AM = ISD::PRE_INC;
2745   return true;
2746 }
2747 
2748 //===----------------------------------------------------------------------===//
2749 //  LowerOperation implementation
2750 //===----------------------------------------------------------------------===//
2751 
2752 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2753 /// and LoOpFlags to the target MO flags.
2754 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2755                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2756                                const GlobalValue *GV = nullptr) {
2757   HiOpFlags = PPCII::MO_HA;
2758   LoOpFlags = PPCII::MO_LO;
2759 
2760   // Don't use the pic base if not in PIC relocation model.
2761   if (IsPIC) {
2762     HiOpFlags |= PPCII::MO_PIC_FLAG;
2763     LoOpFlags |= PPCII::MO_PIC_FLAG;
2764   }
2765 }
2766 
2767 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2768                              SelectionDAG &DAG) {
2769   SDLoc DL(HiPart);
2770   EVT PtrVT = HiPart.getValueType();
2771   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2772 
2773   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2774   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2775 
2776   // With PIC, the first instruction is actually "GR+hi(&G)".
2777   if (isPIC)
2778     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2779                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2780 
2781   // Generate non-pic code that has direct accesses to the constant pool.
2782   // The address of the global is just (hi(&g)+lo(&g)).
2783   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2784 }
2785 
2786 static void setUsesTOCBasePtr(MachineFunction &MF) {
2787   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2788   FuncInfo->setUsesTOCBasePtr();
2789 }
2790 
2791 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2792   setUsesTOCBasePtr(DAG.getMachineFunction());
2793 }
2794 
2795 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2796                                        SDValue GA) const {
2797   const bool Is64Bit = Subtarget.isPPC64();
2798   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2799   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2800                         : Subtarget.isAIXABI()
2801                               ? DAG.getRegister(PPC::R2, VT)
2802                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2803   SDValue Ops[] = { GA, Reg };
2804   return DAG.getMemIntrinsicNode(
2805       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2806       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2807       MachineMemOperand::MOLoad);
2808 }
2809 
2810 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2811                                              SelectionDAG &DAG) const {
2812   EVT PtrVT = Op.getValueType();
2813   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2814   const Constant *C = CP->getConstVal();
2815 
2816   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2817   // The actual address of the GlobalValue is stored in the TOC.
2818   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2819     if (Subtarget.isUsingPCRelativeCalls()) {
2820       SDLoc DL(CP);
2821       EVT Ty = getPointerTy(DAG.getDataLayout());
2822       SDValue ConstPool = DAG.getTargetConstantPool(
2823           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2824       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2825     }
2826     setUsesTOCBasePtr(DAG);
2827     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2828     return getTOCEntry(DAG, SDLoc(CP), GA);
2829   }
2830 
2831   unsigned MOHiFlag, MOLoFlag;
2832   bool IsPIC = isPositionIndependent();
2833   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2834 
2835   if (IsPIC && Subtarget.isSVR4ABI()) {
2836     SDValue GA =
2837         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2838     return getTOCEntry(DAG, SDLoc(CP), GA);
2839   }
2840 
2841   SDValue CPIHi =
2842       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2843   SDValue CPILo =
2844       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2845   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2846 }
2847 
2848 // For 64-bit PowerPC, prefer the more compact relative encodings.
2849 // This trades 32 bits per jump table entry for one or two instructions
2850 // on the jump site.
2851 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2852   if (isJumpTableRelative())
2853     return MachineJumpTableInfo::EK_LabelDifference32;
2854 
2855   return TargetLowering::getJumpTableEncoding();
2856 }
2857 
2858 bool PPCTargetLowering::isJumpTableRelative() const {
2859   if (UseAbsoluteJumpTables)
2860     return false;
2861   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2862     return true;
2863   return TargetLowering::isJumpTableRelative();
2864 }
2865 
2866 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2867                                                     SelectionDAG &DAG) const {
2868   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2869     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2870 
2871   switch (getTargetMachine().getCodeModel()) {
2872   case CodeModel::Small:
2873   case CodeModel::Medium:
2874     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2875   default:
2876     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2877                        getPointerTy(DAG.getDataLayout()));
2878   }
2879 }
2880 
2881 const MCExpr *
2882 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2883                                                 unsigned JTI,
2884                                                 MCContext &Ctx) const {
2885   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2886     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2887 
2888   switch (getTargetMachine().getCodeModel()) {
2889   case CodeModel::Small:
2890   case CodeModel::Medium:
2891     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2892   default:
2893     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2894   }
2895 }
2896 
2897 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2898   EVT PtrVT = Op.getValueType();
2899   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2900 
2901   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2902   if (Subtarget.isUsingPCRelativeCalls()) {
2903     SDLoc DL(JT);
2904     EVT Ty = getPointerTy(DAG.getDataLayout());
2905     SDValue GA =
2906         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2907     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2908     return MatAddr;
2909   }
2910 
2911   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2912   // The actual address of the GlobalValue is stored in the TOC.
2913   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2914     setUsesTOCBasePtr(DAG);
2915     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2916     return getTOCEntry(DAG, SDLoc(JT), GA);
2917   }
2918 
2919   unsigned MOHiFlag, MOLoFlag;
2920   bool IsPIC = isPositionIndependent();
2921   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2922 
2923   if (IsPIC && Subtarget.isSVR4ABI()) {
2924     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2925                                         PPCII::MO_PIC_FLAG);
2926     return getTOCEntry(DAG, SDLoc(GA), GA);
2927   }
2928 
2929   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2930   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2931   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2932 }
2933 
2934 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2935                                              SelectionDAG &DAG) const {
2936   EVT PtrVT = Op.getValueType();
2937   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2938   const BlockAddress *BA = BASDN->getBlockAddress();
2939 
2940   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2941   if (Subtarget.isUsingPCRelativeCalls()) {
2942     SDLoc DL(BASDN);
2943     EVT Ty = getPointerTy(DAG.getDataLayout());
2944     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2945                                            PPCII::MO_PCREL_FLAG);
2946     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2947     return MatAddr;
2948   }
2949 
2950   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2951   // The actual BlockAddress is stored in the TOC.
2952   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2953     setUsesTOCBasePtr(DAG);
2954     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2955     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2956   }
2957 
2958   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2959   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2960     return getTOCEntry(
2961         DAG, SDLoc(BASDN),
2962         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2963 
2964   unsigned MOHiFlag, MOLoFlag;
2965   bool IsPIC = isPositionIndependent();
2966   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2967   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2968   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2969   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2970 }
2971 
2972 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2973                                               SelectionDAG &DAG) const {
2974   // FIXME: TLS addresses currently use medium model code sequences,
2975   // which is the most useful form.  Eventually support for small and
2976   // large models could be added if users need it, at the cost of
2977   // additional complexity.
2978   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
2979     report_fatal_error("Thread local storage is not supported with pc-relative"
2980                        " addressing - please compile with -mno-pcrel");
2981   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2982   if (DAG.getTarget().useEmulatedTLS())
2983     return LowerToTLSEmulatedModel(GA, DAG);
2984 
2985   SDLoc dl(GA);
2986   const GlobalValue *GV = GA->getGlobal();
2987   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2988   bool is64bit = Subtarget.isPPC64();
2989   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2990   PICLevel::Level picLevel = M->getPICLevel();
2991 
2992   const TargetMachine &TM = getTargetMachine();
2993   TLSModel::Model Model = TM.getTLSModel(GV);
2994 
2995   if (Model == TLSModel::LocalExec) {
2996     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2997                                                PPCII::MO_TPREL_HA);
2998     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2999                                                PPCII::MO_TPREL_LO);
3000     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3001                              : DAG.getRegister(PPC::R2, MVT::i32);
3002 
3003     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3004     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3005   }
3006 
3007   if (Model == TLSModel::InitialExec) {
3008     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3009     SDValue TGA = DAG.getTargetGlobalAddress(
3010         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3011     SDValue TGATLS = DAG.getTargetGlobalAddress(
3012         GV, dl, PtrVT, 0,
3013         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3014     SDValue TPOffset;
3015     if (IsPCRel) {
3016       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3017       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3018                              MachinePointerInfo());
3019     } else {
3020       SDValue GOTPtr;
3021       if (is64bit) {
3022         setUsesTOCBasePtr(DAG);
3023         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3024         GOTPtr =
3025             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3026       } else {
3027         if (!TM.isPositionIndependent())
3028           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3029         else if (picLevel == PICLevel::SmallPIC)
3030           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3031         else
3032           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3033       }
3034       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3035     }
3036     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3037   }
3038 
3039   if (Model == TLSModel::GeneralDynamic) {
3040     if (Subtarget.isUsingPCRelativeCalls()) {
3041       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3042                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3043       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3044     }
3045 
3046     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3047     SDValue GOTPtr;
3048     if (is64bit) {
3049       setUsesTOCBasePtr(DAG);
3050       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3051       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3052                                    GOTReg, TGA);
3053     } else {
3054       if (picLevel == PICLevel::SmallPIC)
3055         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3056       else
3057         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3058     }
3059     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3060                        GOTPtr, TGA, TGA);
3061   }
3062 
3063   if (Model == TLSModel::LocalDynamic) {
3064     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3065     SDValue GOTPtr;
3066     if (is64bit) {
3067       setUsesTOCBasePtr(DAG);
3068       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3069       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3070                            GOTReg, TGA);
3071     } else {
3072       if (picLevel == PICLevel::SmallPIC)
3073         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3074       else
3075         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3076     }
3077     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3078                                   PtrVT, GOTPtr, TGA, TGA);
3079     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3080                                       PtrVT, TLSAddr, TGA);
3081     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3082   }
3083 
3084   llvm_unreachable("Unknown TLS model!");
3085 }
3086 
3087 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3088                                               SelectionDAG &DAG) const {
3089   EVT PtrVT = Op.getValueType();
3090   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3091   SDLoc DL(GSDN);
3092   const GlobalValue *GV = GSDN->getGlobal();
3093 
3094   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3095   // The actual address of the GlobalValue is stored in the TOC.
3096   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3097     if (Subtarget.isUsingPCRelativeCalls()) {
3098       EVT Ty = getPointerTy(DAG.getDataLayout());
3099       if (isAccessedAsGotIndirect(Op)) {
3100         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3101                                                 PPCII::MO_PCREL_FLAG |
3102                                                     PPCII::MO_GOT_FLAG);
3103         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3104         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3105                                    MachinePointerInfo());
3106         return Load;
3107       } else {
3108         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3109                                                 PPCII::MO_PCREL_FLAG);
3110         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3111       }
3112     }
3113     setUsesTOCBasePtr(DAG);
3114     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3115     return getTOCEntry(DAG, DL, GA);
3116   }
3117 
3118   unsigned MOHiFlag, MOLoFlag;
3119   bool IsPIC = isPositionIndependent();
3120   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3121 
3122   if (IsPIC && Subtarget.isSVR4ABI()) {
3123     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3124                                             GSDN->getOffset(),
3125                                             PPCII::MO_PIC_FLAG);
3126     return getTOCEntry(DAG, DL, GA);
3127   }
3128 
3129   SDValue GAHi =
3130     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3131   SDValue GALo =
3132     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3133 
3134   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3135 }
3136 
3137 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3138   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3139   SDLoc dl(Op);
3140 
3141   if (Op.getValueType() == MVT::v2i64) {
3142     // When the operands themselves are v2i64 values, we need to do something
3143     // special because VSX has no underlying comparison operations for these.
3144     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3145       // Equality can be handled by casting to the legal type for Altivec
3146       // comparisons, everything else needs to be expanded.
3147       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3148         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3149                  DAG.getSetCC(dl, MVT::v4i32,
3150                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3151                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3152                    CC));
3153       }
3154 
3155       return SDValue();
3156     }
3157 
3158     // We handle most of these in the usual way.
3159     return Op;
3160   }
3161 
3162   // If we're comparing for equality to zero, expose the fact that this is
3163   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3164   // fold the new nodes.
3165   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3166     return V;
3167 
3168   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3169     // Leave comparisons against 0 and -1 alone for now, since they're usually
3170     // optimized.  FIXME: revisit this when we can custom lower all setcc
3171     // optimizations.
3172     if (C->isAllOnesValue() || C->isNullValue())
3173       return SDValue();
3174   }
3175 
3176   // If we have an integer seteq/setne, turn it into a compare against zero
3177   // by xor'ing the rhs with the lhs, which is faster than setting a
3178   // condition register, reading it back out, and masking the correct bit.  The
3179   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3180   // the result to other bit-twiddling opportunities.
3181   EVT LHSVT = Op.getOperand(0).getValueType();
3182   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3183     EVT VT = Op.getValueType();
3184     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3185                                 Op.getOperand(1));
3186     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3187   }
3188   return SDValue();
3189 }
3190 
3191 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3192   SDNode *Node = Op.getNode();
3193   EVT VT = Node->getValueType(0);
3194   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3195   SDValue InChain = Node->getOperand(0);
3196   SDValue VAListPtr = Node->getOperand(1);
3197   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3198   SDLoc dl(Node);
3199 
3200   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3201 
3202   // gpr_index
3203   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3204                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3205   InChain = GprIndex.getValue(1);
3206 
3207   if (VT == MVT::i64) {
3208     // Check if GprIndex is even
3209     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3210                                  DAG.getConstant(1, dl, MVT::i32));
3211     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3212                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3213     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3214                                           DAG.getConstant(1, dl, MVT::i32));
3215     // Align GprIndex to be even if it isn't
3216     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3217                            GprIndex);
3218   }
3219 
3220   // fpr index is 1 byte after gpr
3221   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3222                                DAG.getConstant(1, dl, MVT::i32));
3223 
3224   // fpr
3225   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3226                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3227   InChain = FprIndex.getValue(1);
3228 
3229   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3230                                        DAG.getConstant(8, dl, MVT::i32));
3231 
3232   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3233                                         DAG.getConstant(4, dl, MVT::i32));
3234 
3235   // areas
3236   SDValue OverflowArea =
3237       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3238   InChain = OverflowArea.getValue(1);
3239 
3240   SDValue RegSaveArea =
3241       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3242   InChain = RegSaveArea.getValue(1);
3243 
3244   // select overflow_area if index > 8
3245   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3246                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3247 
3248   // adjustment constant gpr_index * 4/8
3249   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3250                                     VT.isInteger() ? GprIndex : FprIndex,
3251                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3252                                                     MVT::i32));
3253 
3254   // OurReg = RegSaveArea + RegConstant
3255   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3256                                RegConstant);
3257 
3258   // Floating types are 32 bytes into RegSaveArea
3259   if (VT.isFloatingPoint())
3260     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3261                          DAG.getConstant(32, dl, MVT::i32));
3262 
3263   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3264   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3265                                    VT.isInteger() ? GprIndex : FprIndex,
3266                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3267                                                    MVT::i32));
3268 
3269   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3270                               VT.isInteger() ? VAListPtr : FprPtr,
3271                               MachinePointerInfo(SV), MVT::i8);
3272 
3273   // determine if we should load from reg_save_area or overflow_area
3274   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3275 
3276   // increase overflow_area by 4/8 if gpr/fpr > 8
3277   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3278                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3279                                           dl, MVT::i32));
3280 
3281   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3282                              OverflowAreaPlusN);
3283 
3284   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3285                               MachinePointerInfo(), MVT::i32);
3286 
3287   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3288 }
3289 
3290 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3291   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3292 
3293   // We have to copy the entire va_list struct:
3294   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3295   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3296                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3297                        false, true, false, MachinePointerInfo(),
3298                        MachinePointerInfo());
3299 }
3300 
3301 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3302                                                   SelectionDAG &DAG) const {
3303   if (Subtarget.isAIXABI())
3304     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3305 
3306   return Op.getOperand(0);
3307 }
3308 
3309 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3310                                                 SelectionDAG &DAG) const {
3311   if (Subtarget.isAIXABI())
3312     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3313 
3314   SDValue Chain = Op.getOperand(0);
3315   SDValue Trmp = Op.getOperand(1); // trampoline
3316   SDValue FPtr = Op.getOperand(2); // nested function
3317   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3318   SDLoc dl(Op);
3319 
3320   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3321   bool isPPC64 = (PtrVT == MVT::i64);
3322   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3323 
3324   TargetLowering::ArgListTy Args;
3325   TargetLowering::ArgListEntry Entry;
3326 
3327   Entry.Ty = IntPtrTy;
3328   Entry.Node = Trmp; Args.push_back(Entry);
3329 
3330   // TrampSize == (isPPC64 ? 48 : 40);
3331   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3332                                isPPC64 ? MVT::i64 : MVT::i32);
3333   Args.push_back(Entry);
3334 
3335   Entry.Node = FPtr; Args.push_back(Entry);
3336   Entry.Node = Nest; Args.push_back(Entry);
3337 
3338   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3339   TargetLowering::CallLoweringInfo CLI(DAG);
3340   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3341       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3342       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3343 
3344   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3345   return CallResult.second;
3346 }
3347 
3348 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3349   MachineFunction &MF = DAG.getMachineFunction();
3350   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3351   EVT PtrVT = getPointerTy(MF.getDataLayout());
3352 
3353   SDLoc dl(Op);
3354 
3355   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3356     // vastart just stores the address of the VarArgsFrameIndex slot into the
3357     // memory location argument.
3358     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3359     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3360     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3361                         MachinePointerInfo(SV));
3362   }
3363 
3364   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3365   // We suppose the given va_list is already allocated.
3366   //
3367   // typedef struct {
3368   //  char gpr;     /* index into the array of 8 GPRs
3369   //                 * stored in the register save area
3370   //                 * gpr=0 corresponds to r3,
3371   //                 * gpr=1 to r4, etc.
3372   //                 */
3373   //  char fpr;     /* index into the array of 8 FPRs
3374   //                 * stored in the register save area
3375   //                 * fpr=0 corresponds to f1,
3376   //                 * fpr=1 to f2, etc.
3377   //                 */
3378   //  char *overflow_arg_area;
3379   //                /* location on stack that holds
3380   //                 * the next overflow argument
3381   //                 */
3382   //  char *reg_save_area;
3383   //               /* where r3:r10 and f1:f8 (if saved)
3384   //                * are stored
3385   //                */
3386   // } va_list[1];
3387 
3388   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3389   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3390   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3391                                             PtrVT);
3392   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3393                                  PtrVT);
3394 
3395   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3396   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3397 
3398   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3399   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3400 
3401   uint64_t FPROffset = 1;
3402   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3403 
3404   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3405 
3406   // Store first byte : number of int regs
3407   SDValue firstStore =
3408       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3409                         MachinePointerInfo(SV), MVT::i8);
3410   uint64_t nextOffset = FPROffset;
3411   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3412                                   ConstFPROffset);
3413 
3414   // Store second byte : number of float regs
3415   SDValue secondStore =
3416       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3417                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3418   nextOffset += StackOffset;
3419   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3420 
3421   // Store second word : arguments given on stack
3422   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3423                                     MachinePointerInfo(SV, nextOffset));
3424   nextOffset += FrameOffset;
3425   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3426 
3427   // Store third word : arguments given in registers
3428   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3429                       MachinePointerInfo(SV, nextOffset));
3430 }
3431 
3432 /// FPR - The set of FP registers that should be allocated for arguments
3433 /// on Darwin and AIX.
3434 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3435                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3436                                 PPC::F11, PPC::F12, PPC::F13};
3437 
3438 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3439 /// the stack.
3440 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3441                                        unsigned PtrByteSize) {
3442   unsigned ArgSize = ArgVT.getStoreSize();
3443   if (Flags.isByVal())
3444     ArgSize = Flags.getByValSize();
3445 
3446   // Round up to multiples of the pointer size, except for array members,
3447   // which are always packed.
3448   if (!Flags.isInConsecutiveRegs())
3449     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3450 
3451   return ArgSize;
3452 }
3453 
3454 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3455 /// on the stack.
3456 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3457                                          ISD::ArgFlagsTy Flags,
3458                                          unsigned PtrByteSize) {
3459   Align Alignment(PtrByteSize);
3460 
3461   // Altivec parameters are padded to a 16 byte boundary.
3462   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3463       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3464       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3465       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3466     Alignment = Align(16);
3467 
3468   // ByVal parameters are aligned as requested.
3469   if (Flags.isByVal()) {
3470     auto BVAlign = Flags.getNonZeroByValAlign();
3471     if (BVAlign > PtrByteSize) {
3472       if (BVAlign.value() % PtrByteSize != 0)
3473         llvm_unreachable(
3474             "ByVal alignment is not a multiple of the pointer size");
3475 
3476       Alignment = BVAlign;
3477     }
3478   }
3479 
3480   // Array members are always packed to their original alignment.
3481   if (Flags.isInConsecutiveRegs()) {
3482     // If the array member was split into multiple registers, the first
3483     // needs to be aligned to the size of the full type.  (Except for
3484     // ppcf128, which is only aligned as its f64 components.)
3485     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3486       Alignment = Align(OrigVT.getStoreSize());
3487     else
3488       Alignment = Align(ArgVT.getStoreSize());
3489   }
3490 
3491   return Alignment;
3492 }
3493 
3494 /// CalculateStackSlotUsed - Return whether this argument will use its
3495 /// stack slot (instead of being passed in registers).  ArgOffset,
3496 /// AvailableFPRs, and AvailableVRs must hold the current argument
3497 /// position, and will be updated to account for this argument.
3498 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3499                                    unsigned PtrByteSize, unsigned LinkageSize,
3500                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3501                                    unsigned &AvailableFPRs,
3502                                    unsigned &AvailableVRs) {
3503   bool UseMemory = false;
3504 
3505   // Respect alignment of argument on the stack.
3506   Align Alignment =
3507       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3508   ArgOffset = alignTo(ArgOffset, Alignment);
3509   // If there's no space left in the argument save area, we must
3510   // use memory (this check also catches zero-sized arguments).
3511   if (ArgOffset >= LinkageSize + ParamAreaSize)
3512     UseMemory = true;
3513 
3514   // Allocate argument on the stack.
3515   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3516   if (Flags.isInConsecutiveRegsLast())
3517     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3518   // If we overran the argument save area, we must use memory
3519   // (this check catches arguments passed partially in memory)
3520   if (ArgOffset > LinkageSize + ParamAreaSize)
3521     UseMemory = true;
3522 
3523   // However, if the argument is actually passed in an FPR or a VR,
3524   // we don't use memory after all.
3525   if (!Flags.isByVal()) {
3526     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3527       if (AvailableFPRs > 0) {
3528         --AvailableFPRs;
3529         return false;
3530       }
3531     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3532         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3533         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3534         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3535       if (AvailableVRs > 0) {
3536         --AvailableVRs;
3537         return false;
3538       }
3539   }
3540 
3541   return UseMemory;
3542 }
3543 
3544 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3545 /// ensure minimum alignment required for target.
3546 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3547                                      unsigned NumBytes) {
3548   return alignTo(NumBytes, Lowering->getStackAlign());
3549 }
3550 
3551 SDValue PPCTargetLowering::LowerFormalArguments(
3552     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3553     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3554     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3555   if (Subtarget.isAIXABI())
3556     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3557                                     InVals);
3558   if (Subtarget.is64BitELFABI())
3559     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3560                                        InVals);
3561   if (Subtarget.is32BitELFABI())
3562     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3563                                        InVals);
3564 
3565   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3566                                      InVals);
3567 }
3568 
3569 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3570     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3571     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3572     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3573 
3574   // 32-bit SVR4 ABI Stack Frame Layout:
3575   //              +-----------------------------------+
3576   //        +-->  |            Back chain             |
3577   //        |     +-----------------------------------+
3578   //        |     | Floating-point register save area |
3579   //        |     +-----------------------------------+
3580   //        |     |    General register save area     |
3581   //        |     +-----------------------------------+
3582   //        |     |          CR save word             |
3583   //        |     +-----------------------------------+
3584   //        |     |         VRSAVE save word          |
3585   //        |     +-----------------------------------+
3586   //        |     |         Alignment padding         |
3587   //        |     +-----------------------------------+
3588   //        |     |     Vector register save area     |
3589   //        |     +-----------------------------------+
3590   //        |     |       Local variable space        |
3591   //        |     +-----------------------------------+
3592   //        |     |        Parameter list area        |
3593   //        |     +-----------------------------------+
3594   //        |     |           LR save word            |
3595   //        |     +-----------------------------------+
3596   // SP-->  +---  |            Back chain             |
3597   //              +-----------------------------------+
3598   //
3599   // Specifications:
3600   //   System V Application Binary Interface PowerPC Processor Supplement
3601   //   AltiVec Technology Programming Interface Manual
3602 
3603   MachineFunction &MF = DAG.getMachineFunction();
3604   MachineFrameInfo &MFI = MF.getFrameInfo();
3605   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3606 
3607   EVT PtrVT = getPointerTy(MF.getDataLayout());
3608   // Potential tail calls could cause overwriting of argument stack slots.
3609   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3610                        (CallConv == CallingConv::Fast));
3611   const Align PtrAlign(4);
3612 
3613   // Assign locations to all of the incoming arguments.
3614   SmallVector<CCValAssign, 16> ArgLocs;
3615   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3616                  *DAG.getContext());
3617 
3618   // Reserve space for the linkage area on the stack.
3619   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3620   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3621   if (useSoftFloat())
3622     CCInfo.PreAnalyzeFormalArguments(Ins);
3623 
3624   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3625   CCInfo.clearWasPPCF128();
3626 
3627   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3628     CCValAssign &VA = ArgLocs[i];
3629 
3630     // Arguments stored in registers.
3631     if (VA.isRegLoc()) {
3632       const TargetRegisterClass *RC;
3633       EVT ValVT = VA.getValVT();
3634 
3635       switch (ValVT.getSimpleVT().SimpleTy) {
3636         default:
3637           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3638         case MVT::i1:
3639         case MVT::i32:
3640           RC = &PPC::GPRCRegClass;
3641           break;
3642         case MVT::f32:
3643           if (Subtarget.hasP8Vector())
3644             RC = &PPC::VSSRCRegClass;
3645           else if (Subtarget.hasSPE())
3646             RC = &PPC::GPRCRegClass;
3647           else
3648             RC = &PPC::F4RCRegClass;
3649           break;
3650         case MVT::f64:
3651           if (Subtarget.hasVSX())
3652             RC = &PPC::VSFRCRegClass;
3653           else if (Subtarget.hasSPE())
3654             // SPE passes doubles in GPR pairs.
3655             RC = &PPC::GPRCRegClass;
3656           else
3657             RC = &PPC::F8RCRegClass;
3658           break;
3659         case MVT::v16i8:
3660         case MVT::v8i16:
3661         case MVT::v4i32:
3662           RC = &PPC::VRRCRegClass;
3663           break;
3664         case MVT::v4f32:
3665           RC = &PPC::VRRCRegClass;
3666           break;
3667         case MVT::v2f64:
3668         case MVT::v2i64:
3669           RC = &PPC::VRRCRegClass;
3670           break;
3671       }
3672 
3673       SDValue ArgValue;
3674       // Transform the arguments stored in physical registers into
3675       // virtual ones.
3676       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3677         assert(i + 1 < e && "No second half of double precision argument");
3678         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3679         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3680         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3681         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3682         if (!Subtarget.isLittleEndian())
3683           std::swap (ArgValueLo, ArgValueHi);
3684         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3685                                ArgValueHi);
3686       } else {
3687         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3688         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3689                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3690         if (ValVT == MVT::i1)
3691           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3692       }
3693 
3694       InVals.push_back(ArgValue);
3695     } else {
3696       // Argument stored in memory.
3697       assert(VA.isMemLoc());
3698 
3699       // Get the extended size of the argument type in stack
3700       unsigned ArgSize = VA.getLocVT().getStoreSize();
3701       // Get the actual size of the argument type
3702       unsigned ObjSize = VA.getValVT().getStoreSize();
3703       unsigned ArgOffset = VA.getLocMemOffset();
3704       // Stack objects in PPC32 are right justified.
3705       ArgOffset += ArgSize - ObjSize;
3706       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3707 
3708       // Create load nodes to retrieve arguments from the stack.
3709       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3710       InVals.push_back(
3711           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3712     }
3713   }
3714 
3715   // Assign locations to all of the incoming aggregate by value arguments.
3716   // Aggregates passed by value are stored in the local variable space of the
3717   // caller's stack frame, right above the parameter list area.
3718   SmallVector<CCValAssign, 16> ByValArgLocs;
3719   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3720                       ByValArgLocs, *DAG.getContext());
3721 
3722   // Reserve stack space for the allocations in CCInfo.
3723   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3724 
3725   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3726 
3727   // Area that is at least reserved in the caller of this function.
3728   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3729   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3730 
3731   // Set the size that is at least reserved in caller of this function.  Tail
3732   // call optimized function's reserved stack space needs to be aligned so that
3733   // taking the difference between two stack areas will result in an aligned
3734   // stack.
3735   MinReservedArea =
3736       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3737   FuncInfo->setMinReservedArea(MinReservedArea);
3738 
3739   SmallVector<SDValue, 8> MemOps;
3740 
3741   // If the function takes variable number of arguments, make a frame index for
3742   // the start of the first vararg value... for expansion of llvm.va_start.
3743   if (isVarArg) {
3744     static const MCPhysReg GPArgRegs[] = {
3745       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3746       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3747     };
3748     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3749 
3750     static const MCPhysReg FPArgRegs[] = {
3751       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3752       PPC::F8
3753     };
3754     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3755 
3756     if (useSoftFloat() || hasSPE())
3757        NumFPArgRegs = 0;
3758 
3759     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3760     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3761 
3762     // Make room for NumGPArgRegs and NumFPArgRegs.
3763     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3764                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3765 
3766     FuncInfo->setVarArgsStackOffset(
3767       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3768                             CCInfo.getNextStackOffset(), true));
3769 
3770     FuncInfo->setVarArgsFrameIndex(
3771         MFI.CreateStackObject(Depth, Align(8), false));
3772     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3773 
3774     // The fixed integer arguments of a variadic function are stored to the
3775     // VarArgsFrameIndex on the stack so that they may be loaded by
3776     // dereferencing the result of va_next.
3777     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3778       // Get an existing live-in vreg, or add a new one.
3779       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3780       if (!VReg)
3781         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3782 
3783       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3784       SDValue Store =
3785           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3786       MemOps.push_back(Store);
3787       // Increment the address by four for the next argument to store
3788       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3789       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3790     }
3791 
3792     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3793     // is set.
3794     // The double arguments are stored to the VarArgsFrameIndex
3795     // on the stack.
3796     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3797       // Get an existing live-in vreg, or add a new one.
3798       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3799       if (!VReg)
3800         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3801 
3802       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3803       SDValue Store =
3804           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3805       MemOps.push_back(Store);
3806       // Increment the address by eight for the next argument to store
3807       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3808                                          PtrVT);
3809       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3810     }
3811   }
3812 
3813   if (!MemOps.empty())
3814     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3815 
3816   return Chain;
3817 }
3818 
3819 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3820 // value to MVT::i64 and then truncate to the correct register size.
3821 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3822                                              EVT ObjectVT, SelectionDAG &DAG,
3823                                              SDValue ArgVal,
3824                                              const SDLoc &dl) const {
3825   if (Flags.isSExt())
3826     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3827                          DAG.getValueType(ObjectVT));
3828   else if (Flags.isZExt())
3829     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3830                          DAG.getValueType(ObjectVT));
3831 
3832   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3833 }
3834 
3835 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3836     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3837     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3838     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3839   // TODO: add description of PPC stack frame format, or at least some docs.
3840   //
3841   bool isELFv2ABI = Subtarget.isELFv2ABI();
3842   bool isLittleEndian = Subtarget.isLittleEndian();
3843   MachineFunction &MF = DAG.getMachineFunction();
3844   MachineFrameInfo &MFI = MF.getFrameInfo();
3845   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3846 
3847   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3848          "fastcc not supported on varargs functions");
3849 
3850   EVT PtrVT = getPointerTy(MF.getDataLayout());
3851   // Potential tail calls could cause overwriting of argument stack slots.
3852   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3853                        (CallConv == CallingConv::Fast));
3854   unsigned PtrByteSize = 8;
3855   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3856 
3857   static const MCPhysReg GPR[] = {
3858     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3859     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3860   };
3861   static const MCPhysReg VR[] = {
3862     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3863     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3864   };
3865 
3866   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3867   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3868   const unsigned Num_VR_Regs  = array_lengthof(VR);
3869 
3870   // Do a first pass over the arguments to determine whether the ABI
3871   // guarantees that our caller has allocated the parameter save area
3872   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3873   // in the ELFv2 ABI, it is true if this is a vararg function or if
3874   // any parameter is located in a stack slot.
3875 
3876   bool HasParameterArea = !isELFv2ABI || isVarArg;
3877   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3878   unsigned NumBytes = LinkageSize;
3879   unsigned AvailableFPRs = Num_FPR_Regs;
3880   unsigned AvailableVRs = Num_VR_Regs;
3881   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3882     if (Ins[i].Flags.isNest())
3883       continue;
3884 
3885     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3886                                PtrByteSize, LinkageSize, ParamAreaSize,
3887                                NumBytes, AvailableFPRs, AvailableVRs))
3888       HasParameterArea = true;
3889   }
3890 
3891   // Add DAG nodes to load the arguments or copy them out of registers.  On
3892   // entry to a function on PPC, the arguments start after the linkage area,
3893   // although the first ones are often in registers.
3894 
3895   unsigned ArgOffset = LinkageSize;
3896   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3897   SmallVector<SDValue, 8> MemOps;
3898   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3899   unsigned CurArgIdx = 0;
3900   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3901     SDValue ArgVal;
3902     bool needsLoad = false;
3903     EVT ObjectVT = Ins[ArgNo].VT;
3904     EVT OrigVT = Ins[ArgNo].ArgVT;
3905     unsigned ObjSize = ObjectVT.getStoreSize();
3906     unsigned ArgSize = ObjSize;
3907     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3908     if (Ins[ArgNo].isOrigArg()) {
3909       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3910       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3911     }
3912     // We re-align the argument offset for each argument, except when using the
3913     // fast calling convention, when we need to make sure we do that only when
3914     // we'll actually use a stack slot.
3915     unsigned CurArgOffset;
3916     Align Alignment;
3917     auto ComputeArgOffset = [&]() {
3918       /* Respect alignment of argument on the stack.  */
3919       Alignment =
3920           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3921       ArgOffset = alignTo(ArgOffset, Alignment);
3922       CurArgOffset = ArgOffset;
3923     };
3924 
3925     if (CallConv != CallingConv::Fast) {
3926       ComputeArgOffset();
3927 
3928       /* Compute GPR index associated with argument offset.  */
3929       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3930       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3931     }
3932 
3933     // FIXME the codegen can be much improved in some cases.
3934     // We do not have to keep everything in memory.
3935     if (Flags.isByVal()) {
3936       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3937 
3938       if (CallConv == CallingConv::Fast)
3939         ComputeArgOffset();
3940 
3941       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3942       ObjSize = Flags.getByValSize();
3943       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3944       // Empty aggregate parameters do not take up registers.  Examples:
3945       //   struct { } a;
3946       //   union  { } b;
3947       //   int c[0];
3948       // etc.  However, we have to provide a place-holder in InVals, so
3949       // pretend we have an 8-byte item at the current address for that
3950       // purpose.
3951       if (!ObjSize) {
3952         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3953         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3954         InVals.push_back(FIN);
3955         continue;
3956       }
3957 
3958       // Create a stack object covering all stack doublewords occupied
3959       // by the argument.  If the argument is (fully or partially) on
3960       // the stack, or if the argument is fully in registers but the
3961       // caller has allocated the parameter save anyway, we can refer
3962       // directly to the caller's stack frame.  Otherwise, create a
3963       // local copy in our own frame.
3964       int FI;
3965       if (HasParameterArea ||
3966           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3967         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3968       else
3969         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3970       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3971 
3972       // Handle aggregates smaller than 8 bytes.
3973       if (ObjSize < PtrByteSize) {
3974         // The value of the object is its address, which differs from the
3975         // address of the enclosing doubleword on big-endian systems.
3976         SDValue Arg = FIN;
3977         if (!isLittleEndian) {
3978           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3979           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3980         }
3981         InVals.push_back(Arg);
3982 
3983         if (GPR_idx != Num_GPR_Regs) {
3984           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3985           FuncInfo->addLiveInAttr(VReg, Flags);
3986           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3987           SDValue Store;
3988 
3989           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3990             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3991                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3992             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3993                                       MachinePointerInfo(&*FuncArg), ObjType);
3994           } else {
3995             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3996             // store the whole register as-is to the parameter save area
3997             // slot.
3998             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3999                                  MachinePointerInfo(&*FuncArg));
4000           }
4001 
4002           MemOps.push_back(Store);
4003         }
4004         // Whether we copied from a register or not, advance the offset
4005         // into the parameter save area by a full doubleword.
4006         ArgOffset += PtrByteSize;
4007         continue;
4008       }
4009 
4010       // The value of the object is its address, which is the address of
4011       // its first stack doubleword.
4012       InVals.push_back(FIN);
4013 
4014       // Store whatever pieces of the object are in registers to memory.
4015       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4016         if (GPR_idx == Num_GPR_Regs)
4017           break;
4018 
4019         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4020         FuncInfo->addLiveInAttr(VReg, Flags);
4021         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4022         SDValue Addr = FIN;
4023         if (j) {
4024           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4025           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4026         }
4027         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4028                                      MachinePointerInfo(&*FuncArg, j));
4029         MemOps.push_back(Store);
4030         ++GPR_idx;
4031       }
4032       ArgOffset += ArgSize;
4033       continue;
4034     }
4035 
4036     switch (ObjectVT.getSimpleVT().SimpleTy) {
4037     default: llvm_unreachable("Unhandled argument type!");
4038     case MVT::i1:
4039     case MVT::i32:
4040     case MVT::i64:
4041       if (Flags.isNest()) {
4042         // The 'nest' parameter, if any, is passed in R11.
4043         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4044         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4045 
4046         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4047           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4048 
4049         break;
4050       }
4051 
4052       // These can be scalar arguments or elements of an integer array type
4053       // passed directly.  Clang may use those instead of "byval" aggregate
4054       // types to avoid forcing arguments to memory unnecessarily.
4055       if (GPR_idx != Num_GPR_Regs) {
4056         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4057         FuncInfo->addLiveInAttr(VReg, Flags);
4058         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4059 
4060         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4061           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4062           // value to MVT::i64 and then truncate to the correct register size.
4063           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4064       } else {
4065         if (CallConv == CallingConv::Fast)
4066           ComputeArgOffset();
4067 
4068         needsLoad = true;
4069         ArgSize = PtrByteSize;
4070       }
4071       if (CallConv != CallingConv::Fast || needsLoad)
4072         ArgOffset += 8;
4073       break;
4074 
4075     case MVT::f32:
4076     case MVT::f64:
4077       // These can be scalar arguments or elements of a float array type
4078       // passed directly.  The latter are used to implement ELFv2 homogenous
4079       // float aggregates.
4080       if (FPR_idx != Num_FPR_Regs) {
4081         unsigned VReg;
4082 
4083         if (ObjectVT == MVT::f32)
4084           VReg = MF.addLiveIn(FPR[FPR_idx],
4085                               Subtarget.hasP8Vector()
4086                                   ? &PPC::VSSRCRegClass
4087                                   : &PPC::F4RCRegClass);
4088         else
4089           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4090                                                 ? &PPC::VSFRCRegClass
4091                                                 : &PPC::F8RCRegClass);
4092 
4093         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4094         ++FPR_idx;
4095       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4096         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4097         // once we support fp <-> gpr moves.
4098 
4099         // This can only ever happen in the presence of f32 array types,
4100         // since otherwise we never run out of FPRs before running out
4101         // of GPRs.
4102         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4103         FuncInfo->addLiveInAttr(VReg, Flags);
4104         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4105 
4106         if (ObjectVT == MVT::f32) {
4107           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4108             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4109                                  DAG.getConstant(32, dl, MVT::i32));
4110           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4111         }
4112 
4113         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4114       } else {
4115         if (CallConv == CallingConv::Fast)
4116           ComputeArgOffset();
4117 
4118         needsLoad = true;
4119       }
4120 
4121       // When passing an array of floats, the array occupies consecutive
4122       // space in the argument area; only round up to the next doubleword
4123       // at the end of the array.  Otherwise, each float takes 8 bytes.
4124       if (CallConv != CallingConv::Fast || needsLoad) {
4125         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4126         ArgOffset += ArgSize;
4127         if (Flags.isInConsecutiveRegsLast())
4128           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4129       }
4130       break;
4131     case MVT::v4f32:
4132     case MVT::v4i32:
4133     case MVT::v8i16:
4134     case MVT::v16i8:
4135     case MVT::v2f64:
4136     case MVT::v2i64:
4137     case MVT::v1i128:
4138     case MVT::f128:
4139       // These can be scalar arguments or elements of a vector array type
4140       // passed directly.  The latter are used to implement ELFv2 homogenous
4141       // vector aggregates.
4142       if (VR_idx != Num_VR_Regs) {
4143         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4144         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4145         ++VR_idx;
4146       } else {
4147         if (CallConv == CallingConv::Fast)
4148           ComputeArgOffset();
4149         needsLoad = true;
4150       }
4151       if (CallConv != CallingConv::Fast || needsLoad)
4152         ArgOffset += 16;
4153       break;
4154     }
4155 
4156     // We need to load the argument to a virtual register if we determined
4157     // above that we ran out of physical registers of the appropriate type.
4158     if (needsLoad) {
4159       if (ObjSize < ArgSize && !isLittleEndian)
4160         CurArgOffset += ArgSize - ObjSize;
4161       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4162       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4163       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4164     }
4165 
4166     InVals.push_back(ArgVal);
4167   }
4168 
4169   // Area that is at least reserved in the caller of this function.
4170   unsigned MinReservedArea;
4171   if (HasParameterArea)
4172     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4173   else
4174     MinReservedArea = LinkageSize;
4175 
4176   // Set the size that is at least reserved in caller of this function.  Tail
4177   // call optimized functions' reserved stack space needs to be aligned so that
4178   // taking the difference between two stack areas will result in an aligned
4179   // stack.
4180   MinReservedArea =
4181       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4182   FuncInfo->setMinReservedArea(MinReservedArea);
4183 
4184   // If the function takes variable number of arguments, make a frame index for
4185   // the start of the first vararg value... for expansion of llvm.va_start.
4186   // On ELFv2ABI spec, it writes:
4187   // C programs that are intended to be *portable* across different compilers
4188   // and architectures must use the header file <stdarg.h> to deal with variable
4189   // argument lists.
4190   if (isVarArg && MFI.hasVAStart()) {
4191     int Depth = ArgOffset;
4192 
4193     FuncInfo->setVarArgsFrameIndex(
4194       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4195     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4196 
4197     // If this function is vararg, store any remaining integer argument regs
4198     // to their spots on the stack so that they may be loaded by dereferencing
4199     // the result of va_next.
4200     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4201          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4202       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4203       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4204       SDValue Store =
4205           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4206       MemOps.push_back(Store);
4207       // Increment the address by four for the next argument to store
4208       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4209       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4210     }
4211   }
4212 
4213   if (!MemOps.empty())
4214     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4215 
4216   return Chain;
4217 }
4218 
4219 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4220     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4221     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4222     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4223   // TODO: add description of PPC stack frame format, or at least some docs.
4224   //
4225   MachineFunction &MF = DAG.getMachineFunction();
4226   MachineFrameInfo &MFI = MF.getFrameInfo();
4227   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4228 
4229   EVT PtrVT = getPointerTy(MF.getDataLayout());
4230   bool isPPC64 = PtrVT == MVT::i64;
4231   // Potential tail calls could cause overwriting of argument stack slots.
4232   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4233                        (CallConv == CallingConv::Fast));
4234   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4235   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4236   unsigned ArgOffset = LinkageSize;
4237   // Area that is at least reserved in caller of this function.
4238   unsigned MinReservedArea = ArgOffset;
4239 
4240   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4241     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4242     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4243   };
4244   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4245     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4246     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4247   };
4248   static const MCPhysReg VR[] = {
4249     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4250     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4251   };
4252 
4253   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4254   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4255   const unsigned Num_VR_Regs  = array_lengthof( VR);
4256 
4257   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4258 
4259   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4260 
4261   // In 32-bit non-varargs functions, the stack space for vectors is after the
4262   // stack space for non-vectors.  We do not use this space unless we have
4263   // too many vectors to fit in registers, something that only occurs in
4264   // constructed examples:), but we have to walk the arglist to figure
4265   // that out...for the pathological case, compute VecArgOffset as the
4266   // start of the vector parameter area.  Computing VecArgOffset is the
4267   // entire point of the following loop.
4268   unsigned VecArgOffset = ArgOffset;
4269   if (!isVarArg && !isPPC64) {
4270     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4271          ++ArgNo) {
4272       EVT ObjectVT = Ins[ArgNo].VT;
4273       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4274 
4275       if (Flags.isByVal()) {
4276         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4277         unsigned ObjSize = Flags.getByValSize();
4278         unsigned ArgSize =
4279                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4280         VecArgOffset += ArgSize;
4281         continue;
4282       }
4283 
4284       switch(ObjectVT.getSimpleVT().SimpleTy) {
4285       default: llvm_unreachable("Unhandled argument type!");
4286       case MVT::i1:
4287       case MVT::i32:
4288       case MVT::f32:
4289         VecArgOffset += 4;
4290         break;
4291       case MVT::i64:  // PPC64
4292       case MVT::f64:
4293         // FIXME: We are guaranteed to be !isPPC64 at this point.
4294         // Does MVT::i64 apply?
4295         VecArgOffset += 8;
4296         break;
4297       case MVT::v4f32:
4298       case MVT::v4i32:
4299       case MVT::v8i16:
4300       case MVT::v16i8:
4301         // Nothing to do, we're only looking at Nonvector args here.
4302         break;
4303       }
4304     }
4305   }
4306   // We've found where the vector parameter area in memory is.  Skip the
4307   // first 12 parameters; these don't use that memory.
4308   VecArgOffset = ((VecArgOffset+15)/16)*16;
4309   VecArgOffset += 12*16;
4310 
4311   // Add DAG nodes to load the arguments or copy them out of registers.  On
4312   // entry to a function on PPC, the arguments start after the linkage area,
4313   // although the first ones are often in registers.
4314 
4315   SmallVector<SDValue, 8> MemOps;
4316   unsigned nAltivecParamsAtEnd = 0;
4317   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4318   unsigned CurArgIdx = 0;
4319   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4320     SDValue ArgVal;
4321     bool needsLoad = false;
4322     EVT ObjectVT = Ins[ArgNo].VT;
4323     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4324     unsigned ArgSize = ObjSize;
4325     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4326     if (Ins[ArgNo].isOrigArg()) {
4327       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4328       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4329     }
4330     unsigned CurArgOffset = ArgOffset;
4331 
4332     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4333     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4334         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4335       if (isVarArg || isPPC64) {
4336         MinReservedArea = ((MinReservedArea+15)/16)*16;
4337         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4338                                                   Flags,
4339                                                   PtrByteSize);
4340       } else  nAltivecParamsAtEnd++;
4341     } else
4342       // Calculate min reserved area.
4343       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4344                                                 Flags,
4345                                                 PtrByteSize);
4346 
4347     // FIXME the codegen can be much improved in some cases.
4348     // We do not have to keep everything in memory.
4349     if (Flags.isByVal()) {
4350       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4351 
4352       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4353       ObjSize = Flags.getByValSize();
4354       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4355       // Objects of size 1 and 2 are right justified, everything else is
4356       // left justified.  This means the memory address is adjusted forwards.
4357       if (ObjSize==1 || ObjSize==2) {
4358         CurArgOffset = CurArgOffset + (4 - ObjSize);
4359       }
4360       // The value of the object is its address.
4361       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4362       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4363       InVals.push_back(FIN);
4364       if (ObjSize==1 || ObjSize==2) {
4365         if (GPR_idx != Num_GPR_Regs) {
4366           unsigned VReg;
4367           if (isPPC64)
4368             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4369           else
4370             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4371           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4372           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4373           SDValue Store =
4374               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4375                                 MachinePointerInfo(&*FuncArg), ObjType);
4376           MemOps.push_back(Store);
4377           ++GPR_idx;
4378         }
4379 
4380         ArgOffset += PtrByteSize;
4381 
4382         continue;
4383       }
4384       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4385         // Store whatever pieces of the object are in registers
4386         // to memory.  ArgOffset will be the address of the beginning
4387         // of the object.
4388         if (GPR_idx != Num_GPR_Regs) {
4389           unsigned VReg;
4390           if (isPPC64)
4391             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4392           else
4393             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4394           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4395           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4396           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4397           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4398                                        MachinePointerInfo(&*FuncArg, j));
4399           MemOps.push_back(Store);
4400           ++GPR_idx;
4401           ArgOffset += PtrByteSize;
4402         } else {
4403           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4404           break;
4405         }
4406       }
4407       continue;
4408     }
4409 
4410     switch (ObjectVT.getSimpleVT().SimpleTy) {
4411     default: llvm_unreachable("Unhandled argument type!");
4412     case MVT::i1:
4413     case MVT::i32:
4414       if (!isPPC64) {
4415         if (GPR_idx != Num_GPR_Regs) {
4416           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4417           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4418 
4419           if (ObjectVT == MVT::i1)
4420             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4421 
4422           ++GPR_idx;
4423         } else {
4424           needsLoad = true;
4425           ArgSize = PtrByteSize;
4426         }
4427         // All int arguments reserve stack space in the Darwin ABI.
4428         ArgOffset += PtrByteSize;
4429         break;
4430       }
4431       LLVM_FALLTHROUGH;
4432     case MVT::i64:  // PPC64
4433       if (GPR_idx != Num_GPR_Regs) {
4434         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4435         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4436 
4437         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4438           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4439           // value to MVT::i64 and then truncate to the correct register size.
4440           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4441 
4442         ++GPR_idx;
4443       } else {
4444         needsLoad = true;
4445         ArgSize = PtrByteSize;
4446       }
4447       // All int arguments reserve stack space in the Darwin ABI.
4448       ArgOffset += 8;
4449       break;
4450 
4451     case MVT::f32:
4452     case MVT::f64:
4453       // Every 4 bytes of argument space consumes one of the GPRs available for
4454       // argument passing.
4455       if (GPR_idx != Num_GPR_Regs) {
4456         ++GPR_idx;
4457         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4458           ++GPR_idx;
4459       }
4460       if (FPR_idx != Num_FPR_Regs) {
4461         unsigned VReg;
4462 
4463         if (ObjectVT == MVT::f32)
4464           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4465         else
4466           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4467 
4468         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4469         ++FPR_idx;
4470       } else {
4471         needsLoad = true;
4472       }
4473 
4474       // All FP arguments reserve stack space in the Darwin ABI.
4475       ArgOffset += isPPC64 ? 8 : ObjSize;
4476       break;
4477     case MVT::v4f32:
4478     case MVT::v4i32:
4479     case MVT::v8i16:
4480     case MVT::v16i8:
4481       // Note that vector arguments in registers don't reserve stack space,
4482       // except in varargs functions.
4483       if (VR_idx != Num_VR_Regs) {
4484         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4485         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4486         if (isVarArg) {
4487           while ((ArgOffset % 16) != 0) {
4488             ArgOffset += PtrByteSize;
4489             if (GPR_idx != Num_GPR_Regs)
4490               GPR_idx++;
4491           }
4492           ArgOffset += 16;
4493           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4494         }
4495         ++VR_idx;
4496       } else {
4497         if (!isVarArg && !isPPC64) {
4498           // Vectors go after all the nonvectors.
4499           CurArgOffset = VecArgOffset;
4500           VecArgOffset += 16;
4501         } else {
4502           // Vectors are aligned.
4503           ArgOffset = ((ArgOffset+15)/16)*16;
4504           CurArgOffset = ArgOffset;
4505           ArgOffset += 16;
4506         }
4507         needsLoad = true;
4508       }
4509       break;
4510     }
4511 
4512     // We need to load the argument to a virtual register if we determined above
4513     // that we ran out of physical registers of the appropriate type.
4514     if (needsLoad) {
4515       int FI = MFI.CreateFixedObject(ObjSize,
4516                                      CurArgOffset + (ArgSize - ObjSize),
4517                                      isImmutable);
4518       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4519       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4520     }
4521 
4522     InVals.push_back(ArgVal);
4523   }
4524 
4525   // Allow for Altivec parameters at the end, if needed.
4526   if (nAltivecParamsAtEnd) {
4527     MinReservedArea = ((MinReservedArea+15)/16)*16;
4528     MinReservedArea += 16*nAltivecParamsAtEnd;
4529   }
4530 
4531   // Area that is at least reserved in the caller of this function.
4532   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4533 
4534   // Set the size that is at least reserved in caller of this function.  Tail
4535   // call optimized functions' reserved stack space needs to be aligned so that
4536   // taking the difference between two stack areas will result in an aligned
4537   // stack.
4538   MinReservedArea =
4539       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4540   FuncInfo->setMinReservedArea(MinReservedArea);
4541 
4542   // If the function takes variable number of arguments, make a frame index for
4543   // the start of the first vararg value... for expansion of llvm.va_start.
4544   if (isVarArg) {
4545     int Depth = ArgOffset;
4546 
4547     FuncInfo->setVarArgsFrameIndex(
4548       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4549                             Depth, true));
4550     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4551 
4552     // If this function is vararg, store any remaining integer argument regs
4553     // to their spots on the stack so that they may be loaded by dereferencing
4554     // the result of va_next.
4555     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4556       unsigned VReg;
4557 
4558       if (isPPC64)
4559         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4560       else
4561         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4562 
4563       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4564       SDValue Store =
4565           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4566       MemOps.push_back(Store);
4567       // Increment the address by four for the next argument to store
4568       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4569       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4570     }
4571   }
4572 
4573   if (!MemOps.empty())
4574     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4575 
4576   return Chain;
4577 }
4578 
4579 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4580 /// adjusted to accommodate the arguments for the tailcall.
4581 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4582                                    unsigned ParamSize) {
4583 
4584   if (!isTailCall) return 0;
4585 
4586   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4587   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4588   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4589   // Remember only if the new adjustment is bigger.
4590   if (SPDiff < FI->getTailCallSPDelta())
4591     FI->setTailCallSPDelta(SPDiff);
4592 
4593   return SPDiff;
4594 }
4595 
4596 static bool isFunctionGlobalAddress(SDValue Callee);
4597 
4598 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4599                               const TargetMachine &TM) {
4600   // It does not make sense to call callsShareTOCBase() with a caller that
4601   // is PC Relative since PC Relative callers do not have a TOC.
4602 #ifndef NDEBUG
4603   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4604   assert(!STICaller->isUsingPCRelativeCalls() &&
4605          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4606 #endif
4607 
4608   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4609   // don't have enough information to determine if the caller and callee share
4610   // the same  TOC base, so we have to pessimistically assume they don't for
4611   // correctness.
4612   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4613   if (!G)
4614     return false;
4615 
4616   const GlobalValue *GV = G->getGlobal();
4617 
4618   // If the callee is preemptable, then the static linker will use a plt-stub
4619   // which saves the toc to the stack, and needs a nop after the call
4620   // instruction to convert to a toc-restore.
4621   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4622     return false;
4623 
4624   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4625   // We may need a TOC restore in the situation where the caller requires a
4626   // valid TOC but the callee is PC Relative and does not.
4627   const Function *F = dyn_cast<Function>(GV);
4628   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4629 
4630   // If we have an Alias we can try to get the function from there.
4631   if (Alias) {
4632     const GlobalObject *GlobalObj = Alias->getBaseObject();
4633     F = dyn_cast<Function>(GlobalObj);
4634   }
4635 
4636   // If we still have no valid function pointer we do not have enough
4637   // information to determine if the callee uses PC Relative calls so we must
4638   // assume that it does.
4639   if (!F)
4640     return false;
4641 
4642   // If the callee uses PC Relative we cannot guarantee that the callee won't
4643   // clobber the TOC of the caller and so we must assume that the two
4644   // functions do not share a TOC base.
4645   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4646   if (STICallee->isUsingPCRelativeCalls())
4647     return false;
4648 
4649   // The medium and large code models are expected to provide a sufficiently
4650   // large TOC to provide all data addressing needs of a module with a
4651   // single TOC.
4652   if (CodeModel::Medium == TM.getCodeModel() ||
4653       CodeModel::Large == TM.getCodeModel())
4654     return true;
4655 
4656   // Otherwise we need to ensure callee and caller are in the same section,
4657   // since the linker may allocate multiple TOCs, and we don't know which
4658   // sections will belong to the same TOC base.
4659   if (!GV->isStrongDefinitionForLinker())
4660     return false;
4661 
4662   // Any explicitly-specified sections and section prefixes must also match.
4663   // Also, if we're using -ffunction-sections, then each function is always in
4664   // a different section (the same is true for COMDAT functions).
4665   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4666       GV->getSection() != Caller->getSection())
4667     return false;
4668   if (const auto *F = dyn_cast<Function>(GV)) {
4669     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4670       return false;
4671   }
4672 
4673   return true;
4674 }
4675 
4676 static bool
4677 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4678                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4679   assert(Subtarget.is64BitELFABI());
4680 
4681   const unsigned PtrByteSize = 8;
4682   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4683 
4684   static const MCPhysReg GPR[] = {
4685     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4686     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4687   };
4688   static const MCPhysReg VR[] = {
4689     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4690     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4691   };
4692 
4693   const unsigned NumGPRs = array_lengthof(GPR);
4694   const unsigned NumFPRs = 13;
4695   const unsigned NumVRs = array_lengthof(VR);
4696   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4697 
4698   unsigned NumBytes = LinkageSize;
4699   unsigned AvailableFPRs = NumFPRs;
4700   unsigned AvailableVRs = NumVRs;
4701 
4702   for (const ISD::OutputArg& Param : Outs) {
4703     if (Param.Flags.isNest()) continue;
4704 
4705     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4706                                LinkageSize, ParamAreaSize, NumBytes,
4707                                AvailableFPRs, AvailableVRs))
4708       return true;
4709   }
4710   return false;
4711 }
4712 
4713 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4714   if (CB.arg_size() != CallerFn->arg_size())
4715     return false;
4716 
4717   auto CalleeArgIter = CB.arg_begin();
4718   auto CalleeArgEnd = CB.arg_end();
4719   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4720 
4721   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4722     const Value* CalleeArg = *CalleeArgIter;
4723     const Value* CallerArg = &(*CallerArgIter);
4724     if (CalleeArg == CallerArg)
4725       continue;
4726 
4727     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4728     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4729     //      }
4730     // 1st argument of callee is undef and has the same type as caller.
4731     if (CalleeArg->getType() == CallerArg->getType() &&
4732         isa<UndefValue>(CalleeArg))
4733       continue;
4734 
4735     return false;
4736   }
4737 
4738   return true;
4739 }
4740 
4741 // Returns true if TCO is possible between the callers and callees
4742 // calling conventions.
4743 static bool
4744 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4745                                     CallingConv::ID CalleeCC) {
4746   // Tail calls are possible with fastcc and ccc.
4747   auto isTailCallableCC  = [] (CallingConv::ID CC){
4748       return  CC == CallingConv::C || CC == CallingConv::Fast;
4749   };
4750   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4751     return false;
4752 
4753   // We can safely tail call both fastcc and ccc callees from a c calling
4754   // convention caller. If the caller is fastcc, we may have less stack space
4755   // than a non-fastcc caller with the same signature so disable tail-calls in
4756   // that case.
4757   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4758 }
4759 
4760 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4761     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4762     const SmallVectorImpl<ISD::OutputArg> &Outs,
4763     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4764   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4765 
4766   if (DisableSCO && !TailCallOpt) return false;
4767 
4768   // Variadic argument functions are not supported.
4769   if (isVarArg) return false;
4770 
4771   auto &Caller = DAG.getMachineFunction().getFunction();
4772   // Check that the calling conventions are compatible for tco.
4773   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4774     return false;
4775 
4776   // Caller contains any byval parameter is not supported.
4777   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4778     return false;
4779 
4780   // Callee contains any byval parameter is not supported, too.
4781   // Note: This is a quick work around, because in some cases, e.g.
4782   // caller's stack size > callee's stack size, we are still able to apply
4783   // sibling call optimization. For example, gcc is able to do SCO for caller1
4784   // in the following example, but not for caller2.
4785   //   struct test {
4786   //     long int a;
4787   //     char ary[56];
4788   //   } gTest;
4789   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4790   //     b->a = v.a;
4791   //     return 0;
4792   //   }
4793   //   void caller1(struct test a, struct test c, struct test *b) {
4794   //     callee(gTest, b); }
4795   //   void caller2(struct test *b) { callee(gTest, b); }
4796   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4797     return false;
4798 
4799   // If callee and caller use different calling conventions, we cannot pass
4800   // parameters on stack since offsets for the parameter area may be different.
4801   if (Caller.getCallingConv() != CalleeCC &&
4802       needStackSlotPassParameters(Subtarget, Outs))
4803     return false;
4804 
4805   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4806   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4807   // callee potentially have different TOC bases then we cannot tail call since
4808   // we need to restore the TOC pointer after the call.
4809   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4810   // We cannot guarantee this for indirect calls or calls to external functions.
4811   // When PC-Relative addressing is used, the concept of the TOC is no longer
4812   // applicable so this check is not required.
4813   // Check first for indirect calls.
4814   if (!Subtarget.isUsingPCRelativeCalls() &&
4815       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4816     return false;
4817 
4818   // Check if we share the TOC base.
4819   if (!Subtarget.isUsingPCRelativeCalls() &&
4820       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4821     return false;
4822 
4823   // TCO allows altering callee ABI, so we don't have to check further.
4824   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4825     return true;
4826 
4827   if (DisableSCO) return false;
4828 
4829   // If callee use the same argument list that caller is using, then we can
4830   // apply SCO on this case. If it is not, then we need to check if callee needs
4831   // stack for passing arguments.
4832   // PC Relative tail calls may not have a CallBase.
4833   // If there is no CallBase we cannot verify if we have the same argument
4834   // list so assume that we don't have the same argument list.
4835   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4836       needStackSlotPassParameters(Subtarget, Outs))
4837     return false;
4838   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4839     return false;
4840 
4841   return true;
4842 }
4843 
4844 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4845 /// for tail call optimization. Targets which want to do tail call
4846 /// optimization should implement this function.
4847 bool
4848 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4849                                                      CallingConv::ID CalleeCC,
4850                                                      bool isVarArg,
4851                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4852                                                      SelectionDAG& DAG) const {
4853   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4854     return false;
4855 
4856   // Variable argument functions are not supported.
4857   if (isVarArg)
4858     return false;
4859 
4860   MachineFunction &MF = DAG.getMachineFunction();
4861   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4862   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4863     // Functions containing by val parameters are not supported.
4864     for (unsigned i = 0; i != Ins.size(); i++) {
4865        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4866        if (Flags.isByVal()) return false;
4867     }
4868 
4869     // Non-PIC/GOT tail calls are supported.
4870     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4871       return true;
4872 
4873     // At the moment we can only do local tail calls (in same module, hidden
4874     // or protected) if we are generating PIC.
4875     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4876       return G->getGlobal()->hasHiddenVisibility()
4877           || G->getGlobal()->hasProtectedVisibility();
4878   }
4879 
4880   return false;
4881 }
4882 
4883 /// isCallCompatibleAddress - Return the immediate to use if the specified
4884 /// 32-bit value is representable in the immediate field of a BxA instruction.
4885 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4886   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4887   if (!C) return nullptr;
4888 
4889   int Addr = C->getZExtValue();
4890   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4891       SignExtend32<26>(Addr) != Addr)
4892     return nullptr;  // Top 6 bits have to be sext of immediate.
4893 
4894   return DAG
4895       .getConstant(
4896           (int)C->getZExtValue() >> 2, SDLoc(Op),
4897           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4898       .getNode();
4899 }
4900 
4901 namespace {
4902 
4903 struct TailCallArgumentInfo {
4904   SDValue Arg;
4905   SDValue FrameIdxOp;
4906   int FrameIdx = 0;
4907 
4908   TailCallArgumentInfo() = default;
4909 };
4910 
4911 } // end anonymous namespace
4912 
4913 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4914 static void StoreTailCallArgumentsToStackSlot(
4915     SelectionDAG &DAG, SDValue Chain,
4916     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4917     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4918   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4919     SDValue Arg = TailCallArgs[i].Arg;
4920     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4921     int FI = TailCallArgs[i].FrameIdx;
4922     // Store relative to framepointer.
4923     MemOpChains.push_back(DAG.getStore(
4924         Chain, dl, Arg, FIN,
4925         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4926   }
4927 }
4928 
4929 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4930 /// the appropriate stack slot for the tail call optimized function call.
4931 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4932                                              SDValue OldRetAddr, SDValue OldFP,
4933                                              int SPDiff, const SDLoc &dl) {
4934   if (SPDiff) {
4935     // Calculate the new stack slot for the return address.
4936     MachineFunction &MF = DAG.getMachineFunction();
4937     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4938     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4939     bool isPPC64 = Subtarget.isPPC64();
4940     int SlotSize = isPPC64 ? 8 : 4;
4941     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4942     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4943                                                          NewRetAddrLoc, true);
4944     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4945     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4946     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4947                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4948   }
4949   return Chain;
4950 }
4951 
4952 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4953 /// the position of the argument.
4954 static void
4955 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4956                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4957                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4958   int Offset = ArgOffset + SPDiff;
4959   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4960   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4961   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4962   SDValue FIN = DAG.getFrameIndex(FI, VT);
4963   TailCallArgumentInfo Info;
4964   Info.Arg = Arg;
4965   Info.FrameIdxOp = FIN;
4966   Info.FrameIdx = FI;
4967   TailCallArguments.push_back(Info);
4968 }
4969 
4970 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4971 /// stack slot. Returns the chain as result and the loaded frame pointers in
4972 /// LROpOut/FPOpout. Used when tail calling.
4973 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4974     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4975     SDValue &FPOpOut, const SDLoc &dl) const {
4976   if (SPDiff) {
4977     // Load the LR and FP stack slot for later adjusting.
4978     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4979     LROpOut = getReturnAddrFrameIndex(DAG);
4980     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4981     Chain = SDValue(LROpOut.getNode(), 1);
4982   }
4983   return Chain;
4984 }
4985 
4986 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4987 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4988 /// specified by the specific parameter attribute. The copy will be passed as
4989 /// a byval function parameter.
4990 /// Sometimes what we are copying is the end of a larger object, the part that
4991 /// does not fit in registers.
4992 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4993                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4994                                          SelectionDAG &DAG, const SDLoc &dl) {
4995   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4996   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4997                        Flags.getNonZeroByValAlign(), false, false, false,
4998                        MachinePointerInfo(), MachinePointerInfo());
4999 }
5000 
5001 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5002 /// tail calls.
5003 static void LowerMemOpCallTo(
5004     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5005     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5006     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5007     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5008   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5009   if (!isTailCall) {
5010     if (isVector) {
5011       SDValue StackPtr;
5012       if (isPPC64)
5013         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5014       else
5015         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5016       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5017                            DAG.getConstant(ArgOffset, dl, PtrVT));
5018     }
5019     MemOpChains.push_back(
5020         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5021     // Calculate and remember argument location.
5022   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5023                                   TailCallArguments);
5024 }
5025 
5026 static void
5027 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5028                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5029                 SDValue FPOp,
5030                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5031   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5032   // might overwrite each other in case of tail call optimization.
5033   SmallVector<SDValue, 8> MemOpChains2;
5034   // Do not flag preceding copytoreg stuff together with the following stuff.
5035   InFlag = SDValue();
5036   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5037                                     MemOpChains2, dl);
5038   if (!MemOpChains2.empty())
5039     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5040 
5041   // Store the return address to the appropriate stack slot.
5042   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5043 
5044   // Emit callseq_end just before tailcall node.
5045   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5046                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5047   InFlag = Chain.getValue(1);
5048 }
5049 
5050 // Is this global address that of a function that can be called by name? (as
5051 // opposed to something that must hold a descriptor for an indirect call).
5052 static bool isFunctionGlobalAddress(SDValue Callee) {
5053   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5054     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5055         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5056       return false;
5057 
5058     return G->getGlobal()->getValueType()->isFunctionTy();
5059   }
5060 
5061   return false;
5062 }
5063 
5064 SDValue PPCTargetLowering::LowerCallResult(
5065     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5066     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5067     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5068   SmallVector<CCValAssign, 16> RVLocs;
5069   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5070                     *DAG.getContext());
5071 
5072   CCRetInfo.AnalyzeCallResult(
5073       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5074                ? RetCC_PPC_Cold
5075                : RetCC_PPC);
5076 
5077   // Copy all of the result registers out of their specified physreg.
5078   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5079     CCValAssign &VA = RVLocs[i];
5080     assert(VA.isRegLoc() && "Can only return in registers!");
5081 
5082     SDValue Val;
5083 
5084     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5085       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5086                                       InFlag);
5087       Chain = Lo.getValue(1);
5088       InFlag = Lo.getValue(2);
5089       VA = RVLocs[++i]; // skip ahead to next loc
5090       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5091                                       InFlag);
5092       Chain = Hi.getValue(1);
5093       InFlag = Hi.getValue(2);
5094       if (!Subtarget.isLittleEndian())
5095         std::swap (Lo, Hi);
5096       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5097     } else {
5098       Val = DAG.getCopyFromReg(Chain, dl,
5099                                VA.getLocReg(), VA.getLocVT(), InFlag);
5100       Chain = Val.getValue(1);
5101       InFlag = Val.getValue(2);
5102     }
5103 
5104     switch (VA.getLocInfo()) {
5105     default: llvm_unreachable("Unknown loc info!");
5106     case CCValAssign::Full: break;
5107     case CCValAssign::AExt:
5108       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5109       break;
5110     case CCValAssign::ZExt:
5111       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5112                         DAG.getValueType(VA.getValVT()));
5113       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5114       break;
5115     case CCValAssign::SExt:
5116       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5117                         DAG.getValueType(VA.getValVT()));
5118       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5119       break;
5120     }
5121 
5122     InVals.push_back(Val);
5123   }
5124 
5125   return Chain;
5126 }
5127 
5128 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5129                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5130   // PatchPoint calls are not indirect.
5131   if (isPatchPoint)
5132     return false;
5133 
5134   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5135     return false;
5136 
5137   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5138   // becuase the immediate function pointer points to a descriptor instead of
5139   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5140   // pointer immediate points to the global entry point, while the BLA would
5141   // need to jump to the local entry point (see rL211174).
5142   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5143       isBLACompatibleAddress(Callee, DAG))
5144     return false;
5145 
5146   return true;
5147 }
5148 
5149 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5150 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5151   return Subtarget.isAIXABI() ||
5152          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5153 }
5154 
5155 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5156                               const Function &Caller,
5157                               const SDValue &Callee,
5158                               const PPCSubtarget &Subtarget,
5159                               const TargetMachine &TM) {
5160   if (CFlags.IsTailCall)
5161     return PPCISD::TC_RETURN;
5162 
5163   // This is a call through a function pointer.
5164   if (CFlags.IsIndirect) {
5165     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5166     // indirect calls. The save of the caller's TOC pointer to the stack will be
5167     // inserted into the DAG as part of call lowering. The restore of the TOC
5168     // pointer is modeled by using a pseudo instruction for the call opcode that
5169     // represents the 2 instruction sequence of an indirect branch and link,
5170     // immediately followed by a load of the TOC pointer from the the stack save
5171     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5172     // as it is not saved or used.
5173     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5174                                                : PPCISD::BCTRL;
5175   }
5176 
5177   if (Subtarget.isUsingPCRelativeCalls()) {
5178     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5179     return PPCISD::CALL_NOTOC;
5180   }
5181 
5182   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5183   // immediately following the call instruction if the caller and callee may
5184   // have different TOC bases. At link time if the linker determines the calls
5185   // may not share a TOC base, the call is redirected to a trampoline inserted
5186   // by the linker. The trampoline will (among other things) save the callers
5187   // TOC pointer at an ABI designated offset in the linkage area and the linker
5188   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5189   // into gpr2.
5190   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5191     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5192                                                   : PPCISD::CALL_NOP;
5193 
5194   return PPCISD::CALL;
5195 }
5196 
5197 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5198                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5199   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5200     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5201       return SDValue(Dest, 0);
5202 
5203   // Returns true if the callee is local, and false otherwise.
5204   auto isLocalCallee = [&]() {
5205     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5206     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5207     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5208 
5209     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5210            !dyn_cast_or_null<GlobalIFunc>(GV);
5211   };
5212 
5213   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5214   // a static relocation model causes some versions of GNU LD (2.17.50, at
5215   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5216   // built with secure-PLT.
5217   bool UsePlt =
5218       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5219       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5220 
5221   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5222     const TargetMachine &TM = Subtarget.getTargetMachine();
5223     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5224     MCSymbolXCOFF *S =
5225         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5226 
5227     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5228     return DAG.getMCSymbol(S, PtrVT);
5229   };
5230 
5231   if (isFunctionGlobalAddress(Callee)) {
5232     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5233 
5234     if (Subtarget.isAIXABI()) {
5235       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5236       return getAIXFuncEntryPointSymbolSDNode(GV);
5237     }
5238     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5239                                       UsePlt ? PPCII::MO_PLT : 0);
5240   }
5241 
5242   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5243     const char *SymName = S->getSymbol();
5244     if (Subtarget.isAIXABI()) {
5245       // If there exists a user-declared function whose name is the same as the
5246       // ExternalSymbol's, then we pick up the user-declared version.
5247       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5248       if (const Function *F =
5249               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5250         return getAIXFuncEntryPointSymbolSDNode(F);
5251 
5252       // On AIX, direct function calls reference the symbol for the function's
5253       // entry point, which is named by prepending a "." before the function's
5254       // C-linkage name. A Qualname is returned here because an external
5255       // function entry point is a csect with XTY_ER property.
5256       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5257         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5258         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5259             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5260             SectionKind::getMetadata());
5261         return Sec->getQualNameSymbol();
5262       };
5263 
5264       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5265     }
5266     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5267                                        UsePlt ? PPCII::MO_PLT : 0);
5268   }
5269 
5270   // No transformation needed.
5271   assert(Callee.getNode() && "What no callee?");
5272   return Callee;
5273 }
5274 
5275 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5276   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5277          "Expected a CALLSEQ_STARTSDNode.");
5278 
5279   // The last operand is the chain, except when the node has glue. If the node
5280   // has glue, then the last operand is the glue, and the chain is the second
5281   // last operand.
5282   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5283   if (LastValue.getValueType() != MVT::Glue)
5284     return LastValue;
5285 
5286   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5287 }
5288 
5289 // Creates the node that moves a functions address into the count register
5290 // to prepare for an indirect call instruction.
5291 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5292                                 SDValue &Glue, SDValue &Chain,
5293                                 const SDLoc &dl) {
5294   SDValue MTCTROps[] = {Chain, Callee, Glue};
5295   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5296   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5297                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5298   // The glue is the second value produced.
5299   Glue = Chain.getValue(1);
5300 }
5301 
5302 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5303                                           SDValue &Glue, SDValue &Chain,
5304                                           SDValue CallSeqStart,
5305                                           const CallBase *CB, const SDLoc &dl,
5306                                           bool hasNest,
5307                                           const PPCSubtarget &Subtarget) {
5308   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5309   // entry point, but to the function descriptor (the function entry point
5310   // address is part of the function descriptor though).
5311   // The function descriptor is a three doubleword structure with the
5312   // following fields: function entry point, TOC base address and
5313   // environment pointer.
5314   // Thus for a call through a function pointer, the following actions need
5315   // to be performed:
5316   //   1. Save the TOC of the caller in the TOC save area of its stack
5317   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5318   //   2. Load the address of the function entry point from the function
5319   //      descriptor.
5320   //   3. Load the TOC of the callee from the function descriptor into r2.
5321   //   4. Load the environment pointer from the function descriptor into
5322   //      r11.
5323   //   5. Branch to the function entry point address.
5324   //   6. On return of the callee, the TOC of the caller needs to be
5325   //      restored (this is done in FinishCall()).
5326   //
5327   // The loads are scheduled at the beginning of the call sequence, and the
5328   // register copies are flagged together to ensure that no other
5329   // operations can be scheduled in between. E.g. without flagging the
5330   // copies together, a TOC access in the caller could be scheduled between
5331   // the assignment of the callee TOC and the branch to the callee, which leads
5332   // to incorrect code.
5333 
5334   // Start by loading the function address from the descriptor.
5335   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5336   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5337                       ? (MachineMemOperand::MODereferenceable |
5338                          MachineMemOperand::MOInvariant)
5339                       : MachineMemOperand::MONone;
5340 
5341   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5342 
5343   // Registers used in building the DAG.
5344   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5345   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5346 
5347   // Offsets of descriptor members.
5348   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5349   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5350 
5351   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5352   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5353 
5354   // One load for the functions entry point address.
5355   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5356                                     Alignment, MMOFlags);
5357 
5358   // One for loading the TOC anchor for the module that contains the called
5359   // function.
5360   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5361   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5362   SDValue TOCPtr =
5363       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5364                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5365 
5366   // One for loading the environment pointer.
5367   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5368   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5369   SDValue LoadEnvPtr =
5370       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5371                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5372 
5373 
5374   // Then copy the newly loaded TOC anchor to the TOC pointer.
5375   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5376   Chain = TOCVal.getValue(0);
5377   Glue = TOCVal.getValue(1);
5378 
5379   // If the function call has an explicit 'nest' parameter, it takes the
5380   // place of the environment pointer.
5381   assert((!hasNest || !Subtarget.isAIXABI()) &&
5382          "Nest parameter is not supported on AIX.");
5383   if (!hasNest) {
5384     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5385     Chain = EnvVal.getValue(0);
5386     Glue = EnvVal.getValue(1);
5387   }
5388 
5389   // The rest of the indirect call sequence is the same as the non-descriptor
5390   // DAG.
5391   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5392 }
5393 
5394 static void
5395 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5396                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5397                   SelectionDAG &DAG,
5398                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5399                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5400                   const PPCSubtarget &Subtarget) {
5401   const bool IsPPC64 = Subtarget.isPPC64();
5402   // MVT for a general purpose register.
5403   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5404 
5405   // First operand is always the chain.
5406   Ops.push_back(Chain);
5407 
5408   // If it's a direct call pass the callee as the second operand.
5409   if (!CFlags.IsIndirect)
5410     Ops.push_back(Callee);
5411   else {
5412     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5413 
5414     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5415     // on the stack (this would have been done in `LowerCall_64SVR4` or
5416     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5417     // represents both the indirect branch and a load that restores the TOC
5418     // pointer from the linkage area. The operand for the TOC restore is an add
5419     // of the TOC save offset to the stack pointer. This must be the second
5420     // operand: after the chain input but before any other variadic arguments.
5421     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5422     // saved or used.
5423     if (isTOCSaveRestoreRequired(Subtarget)) {
5424       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5425 
5426       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5427       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5428       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5429       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5430       Ops.push_back(AddTOC);
5431     }
5432 
5433     // Add the register used for the environment pointer.
5434     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5435       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5436                                     RegVT));
5437 
5438 
5439     // Add CTR register as callee so a bctr can be emitted later.
5440     if (CFlags.IsTailCall)
5441       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5442   }
5443 
5444   // If this is a tail call add stack pointer delta.
5445   if (CFlags.IsTailCall)
5446     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5447 
5448   // Add argument registers to the end of the list so that they are known live
5449   // into the call.
5450   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5451     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5452                                   RegsToPass[i].second.getValueType()));
5453 
5454   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5455   // no way to mark dependencies as implicit here.
5456   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5457   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5458        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5459     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5460 
5461   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5462   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5463     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5464 
5465   // Add a register mask operand representing the call-preserved registers.
5466   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5467   const uint32_t *Mask =
5468       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5469   assert(Mask && "Missing call preserved mask for calling convention");
5470   Ops.push_back(DAG.getRegisterMask(Mask));
5471 
5472   // If the glue is valid, it is the last operand.
5473   if (Glue.getNode())
5474     Ops.push_back(Glue);
5475 }
5476 
5477 SDValue PPCTargetLowering::FinishCall(
5478     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5479     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5480     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5481     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5482     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5483 
5484   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5485       Subtarget.isAIXABI())
5486     setUsesTOCBasePtr(DAG);
5487 
5488   unsigned CallOpc =
5489       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5490                     Subtarget, DAG.getTarget());
5491 
5492   if (!CFlags.IsIndirect)
5493     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5494   else if (Subtarget.usesFunctionDescriptors())
5495     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5496                                   dl, CFlags.HasNest, Subtarget);
5497   else
5498     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5499 
5500   // Build the operand list for the call instruction.
5501   SmallVector<SDValue, 8> Ops;
5502   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5503                     SPDiff, Subtarget);
5504 
5505   // Emit tail call.
5506   if (CFlags.IsTailCall) {
5507     // Indirect tail call when using PC Relative calls do not have the same
5508     // constraints.
5509     assert(((Callee.getOpcode() == ISD::Register &&
5510              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5511             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5512             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5513             isa<ConstantSDNode>(Callee) ||
5514             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5515            "Expecting a global address, external symbol, absolute value, "
5516            "register or an indirect tail call when PC Relative calls are "
5517            "used.");
5518     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5519     assert(CallOpc == PPCISD::TC_RETURN &&
5520            "Unexpected call opcode for a tail call.");
5521     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5522     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5523   }
5524 
5525   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5526   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5527   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5528   Glue = Chain.getValue(1);
5529 
5530   // When performing tail call optimization the callee pops its arguments off
5531   // the stack. Account for this here so these bytes can be pushed back on in
5532   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5533   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5534                          getTargetMachine().Options.GuaranteedTailCallOpt)
5535                             ? NumBytes
5536                             : 0;
5537 
5538   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5539                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5540                              Glue, dl);
5541   Glue = Chain.getValue(1);
5542 
5543   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5544                          DAG, InVals);
5545 }
5546 
5547 SDValue
5548 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5549                              SmallVectorImpl<SDValue> &InVals) const {
5550   SelectionDAG &DAG                     = CLI.DAG;
5551   SDLoc &dl                             = CLI.DL;
5552   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5553   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5554   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5555   SDValue Chain                         = CLI.Chain;
5556   SDValue Callee                        = CLI.Callee;
5557   bool &isTailCall                      = CLI.IsTailCall;
5558   CallingConv::ID CallConv              = CLI.CallConv;
5559   bool isVarArg                         = CLI.IsVarArg;
5560   bool isPatchPoint                     = CLI.IsPatchPoint;
5561   const CallBase *CB                    = CLI.CB;
5562 
5563   if (isTailCall) {
5564     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5565       isTailCall = false;
5566     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5567       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5568           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5569     else
5570       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5571                                                      Ins, DAG);
5572     if (isTailCall) {
5573       ++NumTailCalls;
5574       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5575         ++NumSiblingCalls;
5576 
5577       // PC Relative calls no longer guarantee that the callee is a Global
5578       // Address Node. The callee could be an indirect tail call in which
5579       // case the SDValue for the callee could be a load (to load the address
5580       // of a function pointer) or it may be a register copy (to move the
5581       // address of the callee from a function parameter into a virtual
5582       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5583       assert((Subtarget.isUsingPCRelativeCalls() ||
5584               isa<GlobalAddressSDNode>(Callee)) &&
5585              "Callee should be an llvm::Function object.");
5586 
5587       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5588                         << "\nTCO callee: ");
5589       LLVM_DEBUG(Callee.dump());
5590     }
5591   }
5592 
5593   if (!isTailCall && CB && CB->isMustTailCall())
5594     report_fatal_error("failed to perform tail call elimination on a call "
5595                        "site marked musttail");
5596 
5597   // When long calls (i.e. indirect calls) are always used, calls are always
5598   // made via function pointer. If we have a function name, first translate it
5599   // into a pointer.
5600   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5601       !isTailCall)
5602     Callee = LowerGlobalAddress(Callee, DAG);
5603 
5604   CallFlags CFlags(
5605       CallConv, isTailCall, isVarArg, isPatchPoint,
5606       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5607       // hasNest
5608       Subtarget.is64BitELFABI() &&
5609           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5610       CLI.NoMerge);
5611 
5612   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5613     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5614                             InVals, CB);
5615 
5616   if (Subtarget.isSVR4ABI())
5617     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5618                             InVals, CB);
5619 
5620   if (Subtarget.isAIXABI())
5621     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5622                          InVals, CB);
5623 
5624   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5625                           InVals, CB);
5626 }
5627 
5628 SDValue PPCTargetLowering::LowerCall_32SVR4(
5629     SDValue Chain, SDValue Callee, CallFlags CFlags,
5630     const SmallVectorImpl<ISD::OutputArg> &Outs,
5631     const SmallVectorImpl<SDValue> &OutVals,
5632     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5633     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5634     const CallBase *CB) const {
5635   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5636   // of the 32-bit SVR4 ABI stack frame layout.
5637 
5638   const CallingConv::ID CallConv = CFlags.CallConv;
5639   const bool IsVarArg = CFlags.IsVarArg;
5640   const bool IsTailCall = CFlags.IsTailCall;
5641 
5642   assert((CallConv == CallingConv::C ||
5643           CallConv == CallingConv::Cold ||
5644           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5645 
5646   const Align PtrAlign(4);
5647 
5648   MachineFunction &MF = DAG.getMachineFunction();
5649 
5650   // Mark this function as potentially containing a function that contains a
5651   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5652   // and restoring the callers stack pointer in this functions epilog. This is
5653   // done because by tail calling the called function might overwrite the value
5654   // in this function's (MF) stack pointer stack slot 0(SP).
5655   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5656       CallConv == CallingConv::Fast)
5657     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5658 
5659   // Count how many bytes are to be pushed on the stack, including the linkage
5660   // area, parameter list area and the part of the local variable space which
5661   // contains copies of aggregates which are passed by value.
5662 
5663   // Assign locations to all of the outgoing arguments.
5664   SmallVector<CCValAssign, 16> ArgLocs;
5665   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5666 
5667   // Reserve space for the linkage area on the stack.
5668   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5669                        PtrAlign);
5670   if (useSoftFloat())
5671     CCInfo.PreAnalyzeCallOperands(Outs);
5672 
5673   if (IsVarArg) {
5674     // Handle fixed and variable vector arguments differently.
5675     // Fixed vector arguments go into registers as long as registers are
5676     // available. Variable vector arguments always go into memory.
5677     unsigned NumArgs = Outs.size();
5678 
5679     for (unsigned i = 0; i != NumArgs; ++i) {
5680       MVT ArgVT = Outs[i].VT;
5681       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5682       bool Result;
5683 
5684       if (Outs[i].IsFixed) {
5685         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5686                                CCInfo);
5687       } else {
5688         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5689                                       ArgFlags, CCInfo);
5690       }
5691 
5692       if (Result) {
5693 #ifndef NDEBUG
5694         errs() << "Call operand #" << i << " has unhandled type "
5695              << EVT(ArgVT).getEVTString() << "\n";
5696 #endif
5697         llvm_unreachable(nullptr);
5698       }
5699     }
5700   } else {
5701     // All arguments are treated the same.
5702     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5703   }
5704   CCInfo.clearWasPPCF128();
5705 
5706   // Assign locations to all of the outgoing aggregate by value arguments.
5707   SmallVector<CCValAssign, 16> ByValArgLocs;
5708   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5709 
5710   // Reserve stack space for the allocations in CCInfo.
5711   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5712 
5713   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5714 
5715   // Size of the linkage area, parameter list area and the part of the local
5716   // space variable where copies of aggregates which are passed by value are
5717   // stored.
5718   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5719 
5720   // Calculate by how many bytes the stack has to be adjusted in case of tail
5721   // call optimization.
5722   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5723 
5724   // Adjust the stack pointer for the new arguments...
5725   // These operations are automatically eliminated by the prolog/epilog pass
5726   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5727   SDValue CallSeqStart = Chain;
5728 
5729   // Load the return address and frame pointer so it can be moved somewhere else
5730   // later.
5731   SDValue LROp, FPOp;
5732   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5733 
5734   // Set up a copy of the stack pointer for use loading and storing any
5735   // arguments that may not fit in the registers available for argument
5736   // passing.
5737   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5738 
5739   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5740   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5741   SmallVector<SDValue, 8> MemOpChains;
5742 
5743   bool seenFloatArg = false;
5744   // Walk the register/memloc assignments, inserting copies/loads.
5745   // i - Tracks the index into the list of registers allocated for the call
5746   // RealArgIdx - Tracks the index into the list of actual function arguments
5747   // j - Tracks the index into the list of byval arguments
5748   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5749        i != e;
5750        ++i, ++RealArgIdx) {
5751     CCValAssign &VA = ArgLocs[i];
5752     SDValue Arg = OutVals[RealArgIdx];
5753     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5754 
5755     if (Flags.isByVal()) {
5756       // Argument is an aggregate which is passed by value, thus we need to
5757       // create a copy of it in the local variable space of the current stack
5758       // frame (which is the stack frame of the caller) and pass the address of
5759       // this copy to the callee.
5760       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5761       CCValAssign &ByValVA = ByValArgLocs[j++];
5762       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5763 
5764       // Memory reserved in the local variable space of the callers stack frame.
5765       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5766 
5767       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5768       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5769                            StackPtr, PtrOff);
5770 
5771       // Create a copy of the argument in the local area of the current
5772       // stack frame.
5773       SDValue MemcpyCall =
5774         CreateCopyOfByValArgument(Arg, PtrOff,
5775                                   CallSeqStart.getNode()->getOperand(0),
5776                                   Flags, DAG, dl);
5777 
5778       // This must go outside the CALLSEQ_START..END.
5779       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5780                                                      SDLoc(MemcpyCall));
5781       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5782                              NewCallSeqStart.getNode());
5783       Chain = CallSeqStart = NewCallSeqStart;
5784 
5785       // Pass the address of the aggregate copy on the stack either in a
5786       // physical register or in the parameter list area of the current stack
5787       // frame to the callee.
5788       Arg = PtrOff;
5789     }
5790 
5791     // When useCRBits() is true, there can be i1 arguments.
5792     // It is because getRegisterType(MVT::i1) => MVT::i1,
5793     // and for other integer types getRegisterType() => MVT::i32.
5794     // Extend i1 and ensure callee will get i32.
5795     if (Arg.getValueType() == MVT::i1)
5796       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5797                         dl, MVT::i32, Arg);
5798 
5799     if (VA.isRegLoc()) {
5800       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5801       // Put argument in a physical register.
5802       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5803         bool IsLE = Subtarget.isLittleEndian();
5804         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5805                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5806         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5807         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5808                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5809         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5810                              SVal.getValue(0)));
5811       } else
5812         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5813     } else {
5814       // Put argument in the parameter list area of the current stack frame.
5815       assert(VA.isMemLoc());
5816       unsigned LocMemOffset = VA.getLocMemOffset();
5817 
5818       if (!IsTailCall) {
5819         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5820         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5821                              StackPtr, PtrOff);
5822 
5823         MemOpChains.push_back(
5824             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5825       } else {
5826         // Calculate and remember argument location.
5827         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5828                                  TailCallArguments);
5829       }
5830     }
5831   }
5832 
5833   if (!MemOpChains.empty())
5834     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5835 
5836   // Build a sequence of copy-to-reg nodes chained together with token chain
5837   // and flag operands which copy the outgoing args into the appropriate regs.
5838   SDValue InFlag;
5839   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5840     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5841                              RegsToPass[i].second, InFlag);
5842     InFlag = Chain.getValue(1);
5843   }
5844 
5845   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5846   // registers.
5847   if (IsVarArg) {
5848     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5849     SDValue Ops[] = { Chain, InFlag };
5850 
5851     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5852                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5853 
5854     InFlag = Chain.getValue(1);
5855   }
5856 
5857   if (IsTailCall)
5858     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5859                     TailCallArguments);
5860 
5861   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5862                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5863 }
5864 
5865 // Copy an argument into memory, being careful to do this outside the
5866 // call sequence for the call to which the argument belongs.
5867 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5868     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5869     SelectionDAG &DAG, const SDLoc &dl) const {
5870   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5871                         CallSeqStart.getNode()->getOperand(0),
5872                         Flags, DAG, dl);
5873   // The MEMCPY must go outside the CALLSEQ_START..END.
5874   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5875   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5876                                                  SDLoc(MemcpyCall));
5877   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5878                          NewCallSeqStart.getNode());
5879   return NewCallSeqStart;
5880 }
5881 
5882 SDValue PPCTargetLowering::LowerCall_64SVR4(
5883     SDValue Chain, SDValue Callee, CallFlags CFlags,
5884     const SmallVectorImpl<ISD::OutputArg> &Outs,
5885     const SmallVectorImpl<SDValue> &OutVals,
5886     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5887     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5888     const CallBase *CB) const {
5889   bool isELFv2ABI = Subtarget.isELFv2ABI();
5890   bool isLittleEndian = Subtarget.isLittleEndian();
5891   unsigned NumOps = Outs.size();
5892   bool IsSibCall = false;
5893   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5894 
5895   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5896   unsigned PtrByteSize = 8;
5897 
5898   MachineFunction &MF = DAG.getMachineFunction();
5899 
5900   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5901     IsSibCall = true;
5902 
5903   // Mark this function as potentially containing a function that contains a
5904   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5905   // and restoring the callers stack pointer in this functions epilog. This is
5906   // done because by tail calling the called function might overwrite the value
5907   // in this function's (MF) stack pointer stack slot 0(SP).
5908   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5909     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5910 
5911   assert(!(IsFastCall && CFlags.IsVarArg) &&
5912          "fastcc not supported on varargs functions");
5913 
5914   // Count how many bytes are to be pushed on the stack, including the linkage
5915   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5916   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5917   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5918   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5919   unsigned NumBytes = LinkageSize;
5920   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5921 
5922   static const MCPhysReg GPR[] = {
5923     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5924     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5925   };
5926   static const MCPhysReg VR[] = {
5927     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5928     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5929   };
5930 
5931   const unsigned NumGPRs = array_lengthof(GPR);
5932   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5933   const unsigned NumVRs  = array_lengthof(VR);
5934 
5935   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5936   // can be passed to the callee in registers.
5937   // For the fast calling convention, there is another check below.
5938   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5939   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5940   if (!HasParameterArea) {
5941     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5942     unsigned AvailableFPRs = NumFPRs;
5943     unsigned AvailableVRs = NumVRs;
5944     unsigned NumBytesTmp = NumBytes;
5945     for (unsigned i = 0; i != NumOps; ++i) {
5946       if (Outs[i].Flags.isNest()) continue;
5947       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5948                                  PtrByteSize, LinkageSize, ParamAreaSize,
5949                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5950         HasParameterArea = true;
5951     }
5952   }
5953 
5954   // When using the fast calling convention, we don't provide backing for
5955   // arguments that will be in registers.
5956   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5957 
5958   // Avoid allocating parameter area for fastcc functions if all the arguments
5959   // can be passed in the registers.
5960   if (IsFastCall)
5961     HasParameterArea = false;
5962 
5963   // Add up all the space actually used.
5964   for (unsigned i = 0; i != NumOps; ++i) {
5965     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5966     EVT ArgVT = Outs[i].VT;
5967     EVT OrigVT = Outs[i].ArgVT;
5968 
5969     if (Flags.isNest())
5970       continue;
5971 
5972     if (IsFastCall) {
5973       if (Flags.isByVal()) {
5974         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5975         if (NumGPRsUsed > NumGPRs)
5976           HasParameterArea = true;
5977       } else {
5978         switch (ArgVT.getSimpleVT().SimpleTy) {
5979         default: llvm_unreachable("Unexpected ValueType for argument!");
5980         case MVT::i1:
5981         case MVT::i32:
5982         case MVT::i64:
5983           if (++NumGPRsUsed <= NumGPRs)
5984             continue;
5985           break;
5986         case MVT::v4i32:
5987         case MVT::v8i16:
5988         case MVT::v16i8:
5989         case MVT::v2f64:
5990         case MVT::v2i64:
5991         case MVT::v1i128:
5992         case MVT::f128:
5993           if (++NumVRsUsed <= NumVRs)
5994             continue;
5995           break;
5996         case MVT::v4f32:
5997           if (++NumVRsUsed <= NumVRs)
5998             continue;
5999           break;
6000         case MVT::f32:
6001         case MVT::f64:
6002           if (++NumFPRsUsed <= NumFPRs)
6003             continue;
6004           break;
6005         }
6006         HasParameterArea = true;
6007       }
6008     }
6009 
6010     /* Respect alignment of argument on the stack.  */
6011     auto Alignement =
6012         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6013     NumBytes = alignTo(NumBytes, Alignement);
6014 
6015     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6016     if (Flags.isInConsecutiveRegsLast())
6017       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6018   }
6019 
6020   unsigned NumBytesActuallyUsed = NumBytes;
6021 
6022   // In the old ELFv1 ABI,
6023   // the prolog code of the callee may store up to 8 GPR argument registers to
6024   // the stack, allowing va_start to index over them in memory if its varargs.
6025   // Because we cannot tell if this is needed on the caller side, we have to
6026   // conservatively assume that it is needed.  As such, make sure we have at
6027   // least enough stack space for the caller to store the 8 GPRs.
6028   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6029   // really requires memory operands, e.g. a vararg function.
6030   if (HasParameterArea)
6031     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6032   else
6033     NumBytes = LinkageSize;
6034 
6035   // Tail call needs the stack to be aligned.
6036   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6037     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6038 
6039   int SPDiff = 0;
6040 
6041   // Calculate by how many bytes the stack has to be adjusted in case of tail
6042   // call optimization.
6043   if (!IsSibCall)
6044     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6045 
6046   // To protect arguments on the stack from being clobbered in a tail call,
6047   // force all the loads to happen before doing any other lowering.
6048   if (CFlags.IsTailCall)
6049     Chain = DAG.getStackArgumentTokenFactor(Chain);
6050 
6051   // Adjust the stack pointer for the new arguments...
6052   // These operations are automatically eliminated by the prolog/epilog pass
6053   if (!IsSibCall)
6054     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6055   SDValue CallSeqStart = Chain;
6056 
6057   // Load the return address and frame pointer so it can be move somewhere else
6058   // later.
6059   SDValue LROp, FPOp;
6060   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6061 
6062   // Set up a copy of the stack pointer for use loading and storing any
6063   // arguments that may not fit in the registers available for argument
6064   // passing.
6065   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6066 
6067   // Figure out which arguments are going to go in registers, and which in
6068   // memory.  Also, if this is a vararg function, floating point operations
6069   // must be stored to our stack, and loaded into integer regs as well, if
6070   // any integer regs are available for argument passing.
6071   unsigned ArgOffset = LinkageSize;
6072 
6073   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6074   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6075 
6076   SmallVector<SDValue, 8> MemOpChains;
6077   for (unsigned i = 0; i != NumOps; ++i) {
6078     SDValue Arg = OutVals[i];
6079     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6080     EVT ArgVT = Outs[i].VT;
6081     EVT OrigVT = Outs[i].ArgVT;
6082 
6083     // PtrOff will be used to store the current argument to the stack if a
6084     // register cannot be found for it.
6085     SDValue PtrOff;
6086 
6087     // We re-align the argument offset for each argument, except when using the
6088     // fast calling convention, when we need to make sure we do that only when
6089     // we'll actually use a stack slot.
6090     auto ComputePtrOff = [&]() {
6091       /* Respect alignment of argument on the stack.  */
6092       auto Alignment =
6093           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6094       ArgOffset = alignTo(ArgOffset, Alignment);
6095 
6096       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6097 
6098       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6099     };
6100 
6101     if (!IsFastCall) {
6102       ComputePtrOff();
6103 
6104       /* Compute GPR index associated with argument offset.  */
6105       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6106       GPR_idx = std::min(GPR_idx, NumGPRs);
6107     }
6108 
6109     // Promote integers to 64-bit values.
6110     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6111       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6112       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6113       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6114     }
6115 
6116     // FIXME memcpy is used way more than necessary.  Correctness first.
6117     // Note: "by value" is code for passing a structure by value, not
6118     // basic types.
6119     if (Flags.isByVal()) {
6120       // Note: Size includes alignment padding, so
6121       //   struct x { short a; char b; }
6122       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6123       // These are the proper values we need for right-justifying the
6124       // aggregate in a parameter register.
6125       unsigned Size = Flags.getByValSize();
6126 
6127       // An empty aggregate parameter takes up no storage and no
6128       // registers.
6129       if (Size == 0)
6130         continue;
6131 
6132       if (IsFastCall)
6133         ComputePtrOff();
6134 
6135       // All aggregates smaller than 8 bytes must be passed right-justified.
6136       if (Size==1 || Size==2 || Size==4) {
6137         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6138         if (GPR_idx != NumGPRs) {
6139           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6140                                         MachinePointerInfo(), VT);
6141           MemOpChains.push_back(Load.getValue(1));
6142           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6143 
6144           ArgOffset += PtrByteSize;
6145           continue;
6146         }
6147       }
6148 
6149       if (GPR_idx == NumGPRs && Size < 8) {
6150         SDValue AddPtr = PtrOff;
6151         if (!isLittleEndian) {
6152           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6153                                           PtrOff.getValueType());
6154           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6155         }
6156         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6157                                                           CallSeqStart,
6158                                                           Flags, DAG, dl);
6159         ArgOffset += PtrByteSize;
6160         continue;
6161       }
6162       // Copy entire object into memory.  There are cases where gcc-generated
6163       // code assumes it is there, even if it could be put entirely into
6164       // registers.  (This is not what the doc says.)
6165 
6166       // FIXME: The above statement is likely due to a misunderstanding of the
6167       // documents.  All arguments must be copied into the parameter area BY
6168       // THE CALLEE in the event that the callee takes the address of any
6169       // formal argument.  That has not yet been implemented.  However, it is
6170       // reasonable to use the stack area as a staging area for the register
6171       // load.
6172 
6173       // Skip this for small aggregates, as we will use the same slot for a
6174       // right-justified copy, below.
6175       if (Size >= 8)
6176         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6177                                                           CallSeqStart,
6178                                                           Flags, DAG, dl);
6179 
6180       // When a register is available, pass a small aggregate right-justified.
6181       if (Size < 8 && GPR_idx != NumGPRs) {
6182         // The easiest way to get this right-justified in a register
6183         // is to copy the structure into the rightmost portion of a
6184         // local variable slot, then load the whole slot into the
6185         // register.
6186         // FIXME: The memcpy seems to produce pretty awful code for
6187         // small aggregates, particularly for packed ones.
6188         // FIXME: It would be preferable to use the slot in the
6189         // parameter save area instead of a new local variable.
6190         SDValue AddPtr = PtrOff;
6191         if (!isLittleEndian) {
6192           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6193           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6194         }
6195         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6196                                                           CallSeqStart,
6197                                                           Flags, DAG, dl);
6198 
6199         // Load the slot into the register.
6200         SDValue Load =
6201             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6202         MemOpChains.push_back(Load.getValue(1));
6203         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6204 
6205         // Done with this argument.
6206         ArgOffset += PtrByteSize;
6207         continue;
6208       }
6209 
6210       // For aggregates larger than PtrByteSize, copy the pieces of the
6211       // object that fit into registers from the parameter save area.
6212       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6213         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6214         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6215         if (GPR_idx != NumGPRs) {
6216           SDValue Load =
6217               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6218           MemOpChains.push_back(Load.getValue(1));
6219           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6220           ArgOffset += PtrByteSize;
6221         } else {
6222           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6223           break;
6224         }
6225       }
6226       continue;
6227     }
6228 
6229     switch (Arg.getSimpleValueType().SimpleTy) {
6230     default: llvm_unreachable("Unexpected ValueType for argument!");
6231     case MVT::i1:
6232     case MVT::i32:
6233     case MVT::i64:
6234       if (Flags.isNest()) {
6235         // The 'nest' parameter, if any, is passed in R11.
6236         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6237         break;
6238       }
6239 
6240       // These can be scalar arguments or elements of an integer array type
6241       // passed directly.  Clang may use those instead of "byval" aggregate
6242       // types to avoid forcing arguments to memory unnecessarily.
6243       if (GPR_idx != NumGPRs) {
6244         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6245       } else {
6246         if (IsFastCall)
6247           ComputePtrOff();
6248 
6249         assert(HasParameterArea &&
6250                "Parameter area must exist to pass an argument in memory.");
6251         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6252                          true, CFlags.IsTailCall, false, MemOpChains,
6253                          TailCallArguments, dl);
6254         if (IsFastCall)
6255           ArgOffset += PtrByteSize;
6256       }
6257       if (!IsFastCall)
6258         ArgOffset += PtrByteSize;
6259       break;
6260     case MVT::f32:
6261     case MVT::f64: {
6262       // These can be scalar arguments or elements of a float array type
6263       // passed directly.  The latter are used to implement ELFv2 homogenous
6264       // float aggregates.
6265 
6266       // Named arguments go into FPRs first, and once they overflow, the
6267       // remaining arguments go into GPRs and then the parameter save area.
6268       // Unnamed arguments for vararg functions always go to GPRs and
6269       // then the parameter save area.  For now, put all arguments to vararg
6270       // routines always in both locations (FPR *and* GPR or stack slot).
6271       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6272       bool NeededLoad = false;
6273 
6274       // First load the argument into the next available FPR.
6275       if (FPR_idx != NumFPRs)
6276         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6277 
6278       // Next, load the argument into GPR or stack slot if needed.
6279       if (!NeedGPROrStack)
6280         ;
6281       else if (GPR_idx != NumGPRs && !IsFastCall) {
6282         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6283         // once we support fp <-> gpr moves.
6284 
6285         // In the non-vararg case, this can only ever happen in the
6286         // presence of f32 array types, since otherwise we never run
6287         // out of FPRs before running out of GPRs.
6288         SDValue ArgVal;
6289 
6290         // Double values are always passed in a single GPR.
6291         if (Arg.getValueType() != MVT::f32) {
6292           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6293 
6294         // Non-array float values are extended and passed in a GPR.
6295         } else if (!Flags.isInConsecutiveRegs()) {
6296           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6297           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6298 
6299         // If we have an array of floats, we collect every odd element
6300         // together with its predecessor into one GPR.
6301         } else if (ArgOffset % PtrByteSize != 0) {
6302           SDValue Lo, Hi;
6303           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6304           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6305           if (!isLittleEndian)
6306             std::swap(Lo, Hi);
6307           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6308 
6309         // The final element, if even, goes into the first half of a GPR.
6310         } else if (Flags.isInConsecutiveRegsLast()) {
6311           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6312           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6313           if (!isLittleEndian)
6314             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6315                                  DAG.getConstant(32, dl, MVT::i32));
6316 
6317         // Non-final even elements are skipped; they will be handled
6318         // together the with subsequent argument on the next go-around.
6319         } else
6320           ArgVal = SDValue();
6321 
6322         if (ArgVal.getNode())
6323           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6324       } else {
6325         if (IsFastCall)
6326           ComputePtrOff();
6327 
6328         // Single-precision floating-point values are mapped to the
6329         // second (rightmost) word of the stack doubleword.
6330         if (Arg.getValueType() == MVT::f32 &&
6331             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6332           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6333           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6334         }
6335 
6336         assert(HasParameterArea &&
6337                "Parameter area must exist to pass an argument in memory.");
6338         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6339                          true, CFlags.IsTailCall, false, MemOpChains,
6340                          TailCallArguments, dl);
6341 
6342         NeededLoad = true;
6343       }
6344       // When passing an array of floats, the array occupies consecutive
6345       // space in the argument area; only round up to the next doubleword
6346       // at the end of the array.  Otherwise, each float takes 8 bytes.
6347       if (!IsFastCall || NeededLoad) {
6348         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6349                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6350         if (Flags.isInConsecutiveRegsLast())
6351           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6352       }
6353       break;
6354     }
6355     case MVT::v4f32:
6356     case MVT::v4i32:
6357     case MVT::v8i16:
6358     case MVT::v16i8:
6359     case MVT::v2f64:
6360     case MVT::v2i64:
6361     case MVT::v1i128:
6362     case MVT::f128:
6363       // These can be scalar arguments or elements of a vector array type
6364       // passed directly.  The latter are used to implement ELFv2 homogenous
6365       // vector aggregates.
6366 
6367       // For a varargs call, named arguments go into VRs or on the stack as
6368       // usual; unnamed arguments always go to the stack or the corresponding
6369       // GPRs when within range.  For now, we always put the value in both
6370       // locations (or even all three).
6371       if (CFlags.IsVarArg) {
6372         assert(HasParameterArea &&
6373                "Parameter area must exist if we have a varargs call.");
6374         // We could elide this store in the case where the object fits
6375         // entirely in R registers.  Maybe later.
6376         SDValue Store =
6377             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6378         MemOpChains.push_back(Store);
6379         if (VR_idx != NumVRs) {
6380           SDValue Load =
6381               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6382           MemOpChains.push_back(Load.getValue(1));
6383           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6384         }
6385         ArgOffset += 16;
6386         for (unsigned i=0; i<16; i+=PtrByteSize) {
6387           if (GPR_idx == NumGPRs)
6388             break;
6389           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6390                                    DAG.getConstant(i, dl, PtrVT));
6391           SDValue Load =
6392               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6393           MemOpChains.push_back(Load.getValue(1));
6394           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6395         }
6396         break;
6397       }
6398 
6399       // Non-varargs Altivec params go into VRs or on the stack.
6400       if (VR_idx != NumVRs) {
6401         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6402       } else {
6403         if (IsFastCall)
6404           ComputePtrOff();
6405 
6406         assert(HasParameterArea &&
6407                "Parameter area must exist to pass an argument in memory.");
6408         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6409                          true, CFlags.IsTailCall, true, MemOpChains,
6410                          TailCallArguments, dl);
6411         if (IsFastCall)
6412           ArgOffset += 16;
6413       }
6414 
6415       if (!IsFastCall)
6416         ArgOffset += 16;
6417       break;
6418     }
6419   }
6420 
6421   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6422          "mismatch in size of parameter area");
6423   (void)NumBytesActuallyUsed;
6424 
6425   if (!MemOpChains.empty())
6426     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6427 
6428   // Check if this is an indirect call (MTCTR/BCTRL).
6429   // See prepareDescriptorIndirectCall and buildCallOperands for more
6430   // information about calls through function pointers in the 64-bit SVR4 ABI.
6431   if (CFlags.IsIndirect) {
6432     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6433     // caller in the TOC save area.
6434     if (isTOCSaveRestoreRequired(Subtarget)) {
6435       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6436       // Load r2 into a virtual register and store it to the TOC save area.
6437       setUsesTOCBasePtr(DAG);
6438       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6439       // TOC save area offset.
6440       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6441       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6442       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6443       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6444                            MachinePointerInfo::getStack(
6445                                DAG.getMachineFunction(), TOCSaveOffset));
6446     }
6447     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6448     // This does not mean the MTCTR instruction must use R12; it's easier
6449     // to model this as an extra parameter, so do that.
6450     if (isELFv2ABI && !CFlags.IsPatchPoint)
6451       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6452   }
6453 
6454   // Build a sequence of copy-to-reg nodes chained together with token chain
6455   // and flag operands which copy the outgoing args into the appropriate regs.
6456   SDValue InFlag;
6457   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6458     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6459                              RegsToPass[i].second, InFlag);
6460     InFlag = Chain.getValue(1);
6461   }
6462 
6463   if (CFlags.IsTailCall && !IsSibCall)
6464     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6465                     TailCallArguments);
6466 
6467   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6468                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6469 }
6470 
6471 SDValue PPCTargetLowering::LowerCall_Darwin(
6472     SDValue Chain, SDValue Callee, CallFlags CFlags,
6473     const SmallVectorImpl<ISD::OutputArg> &Outs,
6474     const SmallVectorImpl<SDValue> &OutVals,
6475     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6476     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6477     const CallBase *CB) const {
6478   unsigned NumOps = Outs.size();
6479 
6480   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6481   bool isPPC64 = PtrVT == MVT::i64;
6482   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6483 
6484   MachineFunction &MF = DAG.getMachineFunction();
6485 
6486   // Mark this function as potentially containing a function that contains a
6487   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6488   // and restoring the callers stack pointer in this functions epilog. This is
6489   // done because by tail calling the called function might overwrite the value
6490   // in this function's (MF) stack pointer stack slot 0(SP).
6491   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6492       CFlags.CallConv == CallingConv::Fast)
6493     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6494 
6495   // Count how many bytes are to be pushed on the stack, including the linkage
6496   // area, and parameter passing area.  We start with 24/48 bytes, which is
6497   // prereserved space for [SP][CR][LR][3 x unused].
6498   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6499   unsigned NumBytes = LinkageSize;
6500 
6501   // Add up all the space actually used.
6502   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6503   // they all go in registers, but we must reserve stack space for them for
6504   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6505   // assigned stack space in order, with padding so Altivec parameters are
6506   // 16-byte aligned.
6507   unsigned nAltivecParamsAtEnd = 0;
6508   for (unsigned i = 0; i != NumOps; ++i) {
6509     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6510     EVT ArgVT = Outs[i].VT;
6511     // Varargs Altivec parameters are padded to a 16 byte boundary.
6512     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6513         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6514         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6515       if (!CFlags.IsVarArg && !isPPC64) {
6516         // Non-varargs Altivec parameters go after all the non-Altivec
6517         // parameters; handle those later so we know how much padding we need.
6518         nAltivecParamsAtEnd++;
6519         continue;
6520       }
6521       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6522       NumBytes = ((NumBytes+15)/16)*16;
6523     }
6524     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6525   }
6526 
6527   // Allow for Altivec parameters at the end, if needed.
6528   if (nAltivecParamsAtEnd) {
6529     NumBytes = ((NumBytes+15)/16)*16;
6530     NumBytes += 16*nAltivecParamsAtEnd;
6531   }
6532 
6533   // The prolog code of the callee may store up to 8 GPR argument registers to
6534   // the stack, allowing va_start to index over them in memory if its varargs.
6535   // Because we cannot tell if this is needed on the caller side, we have to
6536   // conservatively assume that it is needed.  As such, make sure we have at
6537   // least enough stack space for the caller to store the 8 GPRs.
6538   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6539 
6540   // Tail call needs the stack to be aligned.
6541   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6542       CFlags.CallConv == CallingConv::Fast)
6543     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6544 
6545   // Calculate by how many bytes the stack has to be adjusted in case of tail
6546   // call optimization.
6547   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6548 
6549   // To protect arguments on the stack from being clobbered in a tail call,
6550   // force all the loads to happen before doing any other lowering.
6551   if (CFlags.IsTailCall)
6552     Chain = DAG.getStackArgumentTokenFactor(Chain);
6553 
6554   // Adjust the stack pointer for the new arguments...
6555   // These operations are automatically eliminated by the prolog/epilog pass
6556   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6557   SDValue CallSeqStart = Chain;
6558 
6559   // Load the return address and frame pointer so it can be move somewhere else
6560   // later.
6561   SDValue LROp, FPOp;
6562   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6563 
6564   // Set up a copy of the stack pointer for use loading and storing any
6565   // arguments that may not fit in the registers available for argument
6566   // passing.
6567   SDValue StackPtr;
6568   if (isPPC64)
6569     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6570   else
6571     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6572 
6573   // Figure out which arguments are going to go in registers, and which in
6574   // memory.  Also, if this is a vararg function, floating point operations
6575   // must be stored to our stack, and loaded into integer regs as well, if
6576   // any integer regs are available for argument passing.
6577   unsigned ArgOffset = LinkageSize;
6578   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6579 
6580   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6581     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6582     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6583   };
6584   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6585     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6586     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6587   };
6588   static const MCPhysReg VR[] = {
6589     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6590     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6591   };
6592   const unsigned NumGPRs = array_lengthof(GPR_32);
6593   const unsigned NumFPRs = 13;
6594   const unsigned NumVRs  = array_lengthof(VR);
6595 
6596   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6597 
6598   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6599   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6600 
6601   SmallVector<SDValue, 8> MemOpChains;
6602   for (unsigned i = 0; i != NumOps; ++i) {
6603     SDValue Arg = OutVals[i];
6604     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6605 
6606     // PtrOff will be used to store the current argument to the stack if a
6607     // register cannot be found for it.
6608     SDValue PtrOff;
6609 
6610     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6611 
6612     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6613 
6614     // On PPC64, promote integers to 64-bit values.
6615     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6616       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6617       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6618       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6619     }
6620 
6621     // FIXME memcpy is used way more than necessary.  Correctness first.
6622     // Note: "by value" is code for passing a structure by value, not
6623     // basic types.
6624     if (Flags.isByVal()) {
6625       unsigned Size = Flags.getByValSize();
6626       // Very small objects are passed right-justified.  Everything else is
6627       // passed left-justified.
6628       if (Size==1 || Size==2) {
6629         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6630         if (GPR_idx != NumGPRs) {
6631           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6632                                         MachinePointerInfo(), VT);
6633           MemOpChains.push_back(Load.getValue(1));
6634           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6635 
6636           ArgOffset += PtrByteSize;
6637         } else {
6638           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6639                                           PtrOff.getValueType());
6640           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6641           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6642                                                             CallSeqStart,
6643                                                             Flags, DAG, dl);
6644           ArgOffset += PtrByteSize;
6645         }
6646         continue;
6647       }
6648       // Copy entire object into memory.  There are cases where gcc-generated
6649       // code assumes it is there, even if it could be put entirely into
6650       // registers.  (This is not what the doc says.)
6651       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6652                                                         CallSeqStart,
6653                                                         Flags, DAG, dl);
6654 
6655       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6656       // copy the pieces of the object that fit into registers from the
6657       // parameter save area.
6658       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6659         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6660         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6661         if (GPR_idx != NumGPRs) {
6662           SDValue Load =
6663               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6664           MemOpChains.push_back(Load.getValue(1));
6665           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6666           ArgOffset += PtrByteSize;
6667         } else {
6668           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6669           break;
6670         }
6671       }
6672       continue;
6673     }
6674 
6675     switch (Arg.getSimpleValueType().SimpleTy) {
6676     default: llvm_unreachable("Unexpected ValueType for argument!");
6677     case MVT::i1:
6678     case MVT::i32:
6679     case MVT::i64:
6680       if (GPR_idx != NumGPRs) {
6681         if (Arg.getValueType() == MVT::i1)
6682           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6683 
6684         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6685       } else {
6686         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6687                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6688                          TailCallArguments, dl);
6689       }
6690       ArgOffset += PtrByteSize;
6691       break;
6692     case MVT::f32:
6693     case MVT::f64:
6694       if (FPR_idx != NumFPRs) {
6695         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6696 
6697         if (CFlags.IsVarArg) {
6698           SDValue Store =
6699               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6700           MemOpChains.push_back(Store);
6701 
6702           // Float varargs are always shadowed in available integer registers
6703           if (GPR_idx != NumGPRs) {
6704             SDValue Load =
6705                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6706             MemOpChains.push_back(Load.getValue(1));
6707             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6708           }
6709           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6710             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6711             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6712             SDValue Load =
6713                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6714             MemOpChains.push_back(Load.getValue(1));
6715             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6716           }
6717         } else {
6718           // If we have any FPRs remaining, we may also have GPRs remaining.
6719           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6720           // GPRs.
6721           if (GPR_idx != NumGPRs)
6722             ++GPR_idx;
6723           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6724               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6725             ++GPR_idx;
6726         }
6727       } else
6728         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6729                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6730                          TailCallArguments, dl);
6731       if (isPPC64)
6732         ArgOffset += 8;
6733       else
6734         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6735       break;
6736     case MVT::v4f32:
6737     case MVT::v4i32:
6738     case MVT::v8i16:
6739     case MVT::v16i8:
6740       if (CFlags.IsVarArg) {
6741         // These go aligned on the stack, or in the corresponding R registers
6742         // when within range.  The Darwin PPC ABI doc claims they also go in
6743         // V registers; in fact gcc does this only for arguments that are
6744         // prototyped, not for those that match the ...  We do it for all
6745         // arguments, seems to work.
6746         while (ArgOffset % 16 !=0) {
6747           ArgOffset += PtrByteSize;
6748           if (GPR_idx != NumGPRs)
6749             GPR_idx++;
6750         }
6751         // We could elide this store in the case where the object fits
6752         // entirely in R registers.  Maybe later.
6753         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6754                              DAG.getConstant(ArgOffset, dl, PtrVT));
6755         SDValue Store =
6756             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6757         MemOpChains.push_back(Store);
6758         if (VR_idx != NumVRs) {
6759           SDValue Load =
6760               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6761           MemOpChains.push_back(Load.getValue(1));
6762           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6763         }
6764         ArgOffset += 16;
6765         for (unsigned i=0; i<16; i+=PtrByteSize) {
6766           if (GPR_idx == NumGPRs)
6767             break;
6768           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6769                                    DAG.getConstant(i, dl, PtrVT));
6770           SDValue Load =
6771               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6772           MemOpChains.push_back(Load.getValue(1));
6773           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6774         }
6775         break;
6776       }
6777 
6778       // Non-varargs Altivec params generally go in registers, but have
6779       // stack space allocated at the end.
6780       if (VR_idx != NumVRs) {
6781         // Doesn't have GPR space allocated.
6782         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6783       } else if (nAltivecParamsAtEnd==0) {
6784         // We are emitting Altivec params in order.
6785         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6786                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6787                          TailCallArguments, dl);
6788         ArgOffset += 16;
6789       }
6790       break;
6791     }
6792   }
6793   // If all Altivec parameters fit in registers, as they usually do,
6794   // they get stack space following the non-Altivec parameters.  We
6795   // don't track this here because nobody below needs it.
6796   // If there are more Altivec parameters than fit in registers emit
6797   // the stores here.
6798   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6799     unsigned j = 0;
6800     // Offset is aligned; skip 1st 12 params which go in V registers.
6801     ArgOffset = ((ArgOffset+15)/16)*16;
6802     ArgOffset += 12*16;
6803     for (unsigned i = 0; i != NumOps; ++i) {
6804       SDValue Arg = OutVals[i];
6805       EVT ArgType = Outs[i].VT;
6806       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6807           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6808         if (++j > NumVRs) {
6809           SDValue PtrOff;
6810           // We are emitting Altivec params in order.
6811           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6812                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6813                            TailCallArguments, dl);
6814           ArgOffset += 16;
6815         }
6816       }
6817     }
6818   }
6819 
6820   if (!MemOpChains.empty())
6821     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6822 
6823   // On Darwin, R12 must contain the address of an indirect callee.  This does
6824   // not mean the MTCTR instruction must use R12; it's easier to model this as
6825   // an extra parameter, so do that.
6826   if (CFlags.IsIndirect) {
6827     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6828     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6829                                                    PPC::R12), Callee));
6830   }
6831 
6832   // Build a sequence of copy-to-reg nodes chained together with token chain
6833   // and flag operands which copy the outgoing args into the appropriate regs.
6834   SDValue InFlag;
6835   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6836     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6837                              RegsToPass[i].second, InFlag);
6838     InFlag = Chain.getValue(1);
6839   }
6840 
6841   if (CFlags.IsTailCall)
6842     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6843                     TailCallArguments);
6844 
6845   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6846                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6847 }
6848 
6849 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6850                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6851                    CCState &State) {
6852 
6853   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6854       State.getMachineFunction().getSubtarget());
6855   const bool IsPPC64 = Subtarget.isPPC64();
6856   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6857   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6858 
6859   assert((!ValVT.isInteger() ||
6860           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6861          "Integer argument exceeds register size: should have been legalized");
6862 
6863   if (ValVT == MVT::f128)
6864     report_fatal_error("f128 is unimplemented on AIX.");
6865 
6866   if (ArgFlags.isNest())
6867     report_fatal_error("Nest arguments are unimplemented.");
6868 
6869   if (ValVT.isVector() || LocVT.isVector())
6870     report_fatal_error("Vector arguments are unimplemented on AIX.");
6871 
6872   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6873                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6874                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6875   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6876                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6877                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6878 
6879   if (ArgFlags.isByVal()) {
6880     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6881       report_fatal_error("Pass-by-value arguments with alignment greater than "
6882                          "register width are not supported.");
6883 
6884     const unsigned ByValSize = ArgFlags.getByValSize();
6885 
6886     // An empty aggregate parameter takes up no storage and no registers,
6887     // but needs a MemLoc for a stack slot for the formal arguments side.
6888     if (ByValSize == 0) {
6889       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6890                                        State.getNextStackOffset(), RegVT,
6891                                        LocInfo));
6892       return false;
6893     }
6894 
6895     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6896     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6897     for (const unsigned E = Offset + StackSize; Offset < E;
6898          Offset += PtrAlign.value()) {
6899       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6900         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6901       else {
6902         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6903                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6904                                          LocInfo));
6905         break;
6906       }
6907     }
6908     return false;
6909   }
6910 
6911   // Arguments always reserve parameter save area.
6912   switch (ValVT.SimpleTy) {
6913   default:
6914     report_fatal_error("Unhandled value type for argument.");
6915   case MVT::i64:
6916     // i64 arguments should have been split to i32 for PPC32.
6917     assert(IsPPC64 && "PPC32 should have split i64 values.");
6918     LLVM_FALLTHROUGH;
6919   case MVT::i1:
6920   case MVT::i32: {
6921     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6922     // AIX integer arguments are always passed in register width.
6923     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6924       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6925                                   : CCValAssign::LocInfo::ZExt;
6926     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6927       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6928     else
6929       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6930 
6931     return false;
6932   }
6933   case MVT::f32:
6934   case MVT::f64: {
6935     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6936     const unsigned StoreSize = LocVT.getStoreSize();
6937     // Floats are always 4-byte aligned in the PSA on AIX.
6938     // This includes f64 in 64-bit mode for ABI compatibility.
6939     const unsigned Offset =
6940         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6941     unsigned FReg = State.AllocateReg(FPR);
6942     if (FReg)
6943       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6944 
6945     // Reserve and initialize GPRs or initialize the PSA as required.
6946     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6947       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6948         assert(FReg && "An FPR should be available when a GPR is reserved.");
6949         if (State.isVarArg()) {
6950           // Successfully reserved GPRs are only initialized for vararg calls.
6951           // Custom handling is required for:
6952           //   f64 in PPC32 needs to be split into 2 GPRs.
6953           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6954           State.addLoc(
6955               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6956         }
6957       } else {
6958         // If there are insufficient GPRs, the PSA needs to be initialized.
6959         // Initialization occurs even if an FPR was initialized for
6960         // compatibility with the AIX XL compiler. The full memory for the
6961         // argument will be initialized even if a prior word is saved in GPR.
6962         // A custom memLoc is used when the argument also passes in FPR so
6963         // that the callee handling can skip over it easily.
6964         State.addLoc(
6965             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6966                                              LocInfo)
6967                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6968         break;
6969       }
6970     }
6971 
6972     return false;
6973   }
6974   }
6975   return true;
6976 }
6977 
6978 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6979                                                     bool IsPPC64) {
6980   assert((IsPPC64 || SVT != MVT::i64) &&
6981          "i64 should have been split for 32-bit codegen.");
6982 
6983   switch (SVT) {
6984   default:
6985     report_fatal_error("Unexpected value type for formal argument");
6986   case MVT::i1:
6987   case MVT::i32:
6988   case MVT::i64:
6989     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6990   case MVT::f32:
6991     return &PPC::F4RCRegClass;
6992   case MVT::f64:
6993     return &PPC::F8RCRegClass;
6994   }
6995 }
6996 
6997 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6998                                         SelectionDAG &DAG, SDValue ArgValue,
6999                                         MVT LocVT, const SDLoc &dl) {
7000   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7001   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7002 
7003   if (Flags.isSExt())
7004     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7005                            DAG.getValueType(ValVT));
7006   else if (Flags.isZExt())
7007     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7008                            DAG.getValueType(ValVT));
7009 
7010   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7011 }
7012 
7013 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7014   const unsigned LASize = FL->getLinkageSize();
7015 
7016   if (PPC::GPRCRegClass.contains(Reg)) {
7017     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7018            "Reg must be a valid argument register!");
7019     return LASize + 4 * (Reg - PPC::R3);
7020   }
7021 
7022   if (PPC::G8RCRegClass.contains(Reg)) {
7023     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7024            "Reg must be a valid argument register!");
7025     return LASize + 8 * (Reg - PPC::X3);
7026   }
7027 
7028   llvm_unreachable("Only general purpose registers expected.");
7029 }
7030 
7031 //   AIX ABI Stack Frame Layout:
7032 //
7033 //   Low Memory +--------------------------------------------+
7034 //   SP   +---> | Back chain                                 | ---+
7035 //        |     +--------------------------------------------+    |
7036 //        |     | Saved Condition Register                   |    |
7037 //        |     +--------------------------------------------+    |
7038 //        |     | Saved Linkage Register                     |    |
7039 //        |     +--------------------------------------------+    | Linkage Area
7040 //        |     | Reserved for compilers                     |    |
7041 //        |     +--------------------------------------------+    |
7042 //        |     | Reserved for binders                       |    |
7043 //        |     +--------------------------------------------+    |
7044 //        |     | Saved TOC pointer                          | ---+
7045 //        |     +--------------------------------------------+
7046 //        |     | Parameter save area                        |
7047 //        |     +--------------------------------------------+
7048 //        |     | Alloca space                               |
7049 //        |     +--------------------------------------------+
7050 //        |     | Local variable space                       |
7051 //        |     +--------------------------------------------+
7052 //        |     | Float/int conversion temporary             |
7053 //        |     +--------------------------------------------+
7054 //        |     | Save area for AltiVec registers            |
7055 //        |     +--------------------------------------------+
7056 //        |     | AltiVec alignment padding                  |
7057 //        |     +--------------------------------------------+
7058 //        |     | Save area for VRSAVE register              |
7059 //        |     +--------------------------------------------+
7060 //        |     | Save area for General Purpose registers    |
7061 //        |     +--------------------------------------------+
7062 //        |     | Save area for Floating Point registers     |
7063 //        |     +--------------------------------------------+
7064 //        +---- | Back chain                                 |
7065 // High Memory  +--------------------------------------------+
7066 //
7067 //  Specifications:
7068 //  AIX 7.2 Assembler Language Reference
7069 //  Subroutine linkage convention
7070 
7071 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7072     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7073     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7074     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7075 
7076   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7077           CallConv == CallingConv::Fast) &&
7078          "Unexpected calling convention!");
7079 
7080   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7081     report_fatal_error("Tail call support is unimplemented on AIX.");
7082 
7083   if (useSoftFloat())
7084     report_fatal_error("Soft float support is unimplemented on AIX.");
7085 
7086   const PPCSubtarget &Subtarget =
7087       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7088 
7089   const bool IsPPC64 = Subtarget.isPPC64();
7090   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7091 
7092   // Assign locations to all of the incoming arguments.
7093   SmallVector<CCValAssign, 16> ArgLocs;
7094   MachineFunction &MF = DAG.getMachineFunction();
7095   MachineFrameInfo &MFI = MF.getFrameInfo();
7096   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7097 
7098   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7099   // Reserve space for the linkage area on the stack.
7100   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7101   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7102   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7103 
7104   SmallVector<SDValue, 8> MemOps;
7105 
7106   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7107     CCValAssign &VA = ArgLocs[I++];
7108     MVT LocVT = VA.getLocVT();
7109     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7110 
7111     // For compatibility with the AIX XL compiler, the float args in the
7112     // parameter save area are initialized even if the argument is available
7113     // in register.  The caller is required to initialize both the register
7114     // and memory, however, the callee can choose to expect it in either.
7115     // The memloc is dismissed here because the argument is retrieved from
7116     // the register.
7117     if (VA.isMemLoc() && VA.needsCustom())
7118       continue;
7119 
7120     if (Flags.isByVal() && VA.isMemLoc()) {
7121       const unsigned Size =
7122           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7123                   PtrByteSize);
7124       const int FI = MF.getFrameInfo().CreateFixedObject(
7125           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7126           /* IsAliased */ true);
7127       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7128       InVals.push_back(FIN);
7129 
7130       continue;
7131     }
7132 
7133     if (Flags.isByVal()) {
7134       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7135 
7136       const MCPhysReg ArgReg = VA.getLocReg();
7137       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7138 
7139       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7140         report_fatal_error("Over aligned byvals not supported yet.");
7141 
7142       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7143       const int FI = MF.getFrameInfo().CreateFixedObject(
7144           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7145           /* IsAliased */ true);
7146       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7147       InVals.push_back(FIN);
7148 
7149       // Add live ins for all the RegLocs for the same ByVal.
7150       const TargetRegisterClass *RegClass =
7151           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7152 
7153       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7154                                                unsigned Offset) {
7155         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7156         // Since the callers side has left justified the aggregate in the
7157         // register, we can simply store the entire register into the stack
7158         // slot.
7159         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7160         // The store to the fixedstack object is needed becuase accessing a
7161         // field of the ByVal will use a gep and load. Ideally we will optimize
7162         // to extracting the value from the register directly, and elide the
7163         // stores when the arguments address is not taken, but that will need to
7164         // be future work.
7165         SDValue Store = DAG.getStore(
7166             CopyFrom.getValue(1), dl, CopyFrom,
7167             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7168             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7169 
7170         MemOps.push_back(Store);
7171       };
7172 
7173       unsigned Offset = 0;
7174       HandleRegLoc(VA.getLocReg(), Offset);
7175       Offset += PtrByteSize;
7176       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7177            Offset += PtrByteSize) {
7178         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7179                "RegLocs should be for ByVal argument.");
7180 
7181         const CCValAssign RL = ArgLocs[I++];
7182         HandleRegLoc(RL.getLocReg(), Offset);
7183       }
7184 
7185       if (Offset != StackSize) {
7186         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7187                "Expected MemLoc for remaining bytes.");
7188         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7189         // Consume the MemLoc.The InVal has already been emitted, so nothing
7190         // more needs to be done.
7191         ++I;
7192       }
7193 
7194       continue;
7195     }
7196 
7197     EVT ValVT = VA.getValVT();
7198     if (VA.isRegLoc() && !VA.needsCustom()) {
7199       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7200       unsigned VReg =
7201           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7202       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7203       if (ValVT.isScalarInteger() &&
7204           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7205         ArgValue =
7206             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7207       }
7208       InVals.push_back(ArgValue);
7209       continue;
7210     }
7211     if (VA.isMemLoc()) {
7212       const unsigned LocSize = LocVT.getStoreSize();
7213       const unsigned ValSize = ValVT.getStoreSize();
7214       assert((ValSize <= LocSize) &&
7215              "Object size is larger than size of MemLoc");
7216       int CurArgOffset = VA.getLocMemOffset();
7217       // Objects are right-justified because AIX is big-endian.
7218       if (LocSize > ValSize)
7219         CurArgOffset += LocSize - ValSize;
7220       // Potential tail calls could cause overwriting of argument stack slots.
7221       const bool IsImmutable =
7222           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7223             (CallConv == CallingConv::Fast));
7224       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7225       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7226       SDValue ArgValue =
7227           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7228       InVals.push_back(ArgValue);
7229       continue;
7230     }
7231   }
7232 
7233   // On AIX a minimum of 8 words is saved to the parameter save area.
7234   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7235   // Area that is at least reserved in the caller of this function.
7236   unsigned CallerReservedArea =
7237       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7238 
7239   // Set the size that is at least reserved in caller of this function. Tail
7240   // call optimized function's reserved stack space needs to be aligned so
7241   // that taking the difference between two stack areas will result in an
7242   // aligned stack.
7243   CallerReservedArea =
7244       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7245   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7246   FuncInfo->setMinReservedArea(CallerReservedArea);
7247 
7248   if (isVarArg) {
7249     FuncInfo->setVarArgsFrameIndex(
7250         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7251     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7252 
7253     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7254                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7255 
7256     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7257                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7258     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7259 
7260     // The fixed integer arguments of a variadic function are stored to the
7261     // VarArgsFrameIndex on the stack so that they may be loaded by
7262     // dereferencing the result of va_next.
7263     for (unsigned GPRIndex =
7264              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7265          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7266 
7267       const unsigned VReg =
7268           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7269                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7270 
7271       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7272       SDValue Store =
7273           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7274       MemOps.push_back(Store);
7275       // Increment the address for the next argument to store.
7276       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7277       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7278     }
7279   }
7280 
7281   if (!MemOps.empty())
7282     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7283 
7284   return Chain;
7285 }
7286 
7287 SDValue PPCTargetLowering::LowerCall_AIX(
7288     SDValue Chain, SDValue Callee, CallFlags CFlags,
7289     const SmallVectorImpl<ISD::OutputArg> &Outs,
7290     const SmallVectorImpl<SDValue> &OutVals,
7291     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7292     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7293     const CallBase *CB) const {
7294   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7295   // AIX ABI stack frame layout.
7296 
7297   assert((CFlags.CallConv == CallingConv::C ||
7298           CFlags.CallConv == CallingConv::Cold ||
7299           CFlags.CallConv == CallingConv::Fast) &&
7300          "Unexpected calling convention!");
7301 
7302   if (CFlags.IsPatchPoint)
7303     report_fatal_error("This call type is unimplemented on AIX.");
7304 
7305   const PPCSubtarget& Subtarget =
7306       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7307   if (Subtarget.hasAltivec())
7308     report_fatal_error("Altivec support is unimplemented on AIX.");
7309 
7310   MachineFunction &MF = DAG.getMachineFunction();
7311   SmallVector<CCValAssign, 16> ArgLocs;
7312   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7313                  *DAG.getContext());
7314 
7315   // Reserve space for the linkage save area (LSA) on the stack.
7316   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7317   //   [SP][CR][LR][2 x reserved][TOC].
7318   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7319   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7320   const bool IsPPC64 = Subtarget.isPPC64();
7321   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7322   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7323   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7324   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7325 
7326   // The prolog code of the callee may store up to 8 GPR argument registers to
7327   // the stack, allowing va_start to index over them in memory if the callee
7328   // is variadic.
7329   // Because we cannot tell if this is needed on the caller side, we have to
7330   // conservatively assume that it is needed.  As such, make sure we have at
7331   // least enough stack space for the caller to store the 8 GPRs.
7332   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7333   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7334                                      CCInfo.getNextStackOffset());
7335 
7336   // Adjust the stack pointer for the new arguments...
7337   // These operations are automatically eliminated by the prolog/epilog pass.
7338   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7339   SDValue CallSeqStart = Chain;
7340 
7341   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7342   SmallVector<SDValue, 8> MemOpChains;
7343 
7344   // Set up a copy of the stack pointer for loading and storing any
7345   // arguments that may not fit in the registers available for argument
7346   // passing.
7347   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7348                                    : DAG.getRegister(PPC::R1, MVT::i32);
7349 
7350   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7351     const unsigned ValNo = ArgLocs[I].getValNo();
7352     SDValue Arg = OutVals[ValNo];
7353     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7354 
7355     if (Flags.isByVal()) {
7356       const unsigned ByValSize = Flags.getByValSize();
7357 
7358       // Nothing to do for zero-sized ByVals on the caller side.
7359       if (!ByValSize) {
7360         ++I;
7361         continue;
7362       }
7363 
7364       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7365         return DAG.getExtLoad(
7366             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7367             (LoadOffset != 0)
7368                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7369                 : Arg,
7370             MachinePointerInfo(), VT);
7371       };
7372 
7373       unsigned LoadOffset = 0;
7374 
7375       // Initialize registers, which are fully occupied by the by-val argument.
7376       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7377         SDValue Load = GetLoad(PtrVT, LoadOffset);
7378         MemOpChains.push_back(Load.getValue(1));
7379         LoadOffset += PtrByteSize;
7380         const CCValAssign &ByValVA = ArgLocs[I++];
7381         assert(ByValVA.getValNo() == ValNo &&
7382                "Unexpected location for pass-by-value argument.");
7383         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7384       }
7385 
7386       if (LoadOffset == ByValSize)
7387         continue;
7388 
7389       // There must be one more loc to handle the remainder.
7390       assert(ArgLocs[I].getValNo() == ValNo &&
7391              "Expected additional location for by-value argument.");
7392 
7393       if (ArgLocs[I].isMemLoc()) {
7394         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7395         const CCValAssign &ByValVA = ArgLocs[I++];
7396         ISD::ArgFlagsTy MemcpyFlags = Flags;
7397         // Only memcpy the bytes that don't pass in register.
7398         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7399         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7400             (LoadOffset != 0)
7401                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7402                 : Arg,
7403             DAG.getObjectPtrOffset(dl, StackPtr,
7404                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7405             CallSeqStart, MemcpyFlags, DAG, dl);
7406         continue;
7407       }
7408 
7409       // Initialize the final register residue.
7410       // Any residue that occupies the final by-val arg register must be
7411       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7412       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7413       // 2 and 1 byte loads.
7414       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7415       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7416              "Unexpected register residue for by-value argument.");
7417       SDValue ResidueVal;
7418       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7419         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7420         const MVT VT =
7421             N == 1 ? MVT::i8
7422                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7423         SDValue Load = GetLoad(VT, LoadOffset);
7424         MemOpChains.push_back(Load.getValue(1));
7425         LoadOffset += N;
7426         Bytes += N;
7427 
7428         // By-val arguments are passed left-justfied in register.
7429         // Every load here needs to be shifted, otherwise a full register load
7430         // should have been used.
7431         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7432                "Unexpected load emitted during handling of pass-by-value "
7433                "argument.");
7434         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7435         EVT ShiftAmountTy =
7436             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7437         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7438         SDValue ShiftedLoad =
7439             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7440         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7441                                               ShiftedLoad)
7442                                 : ShiftedLoad;
7443       }
7444 
7445       const CCValAssign &ByValVA = ArgLocs[I++];
7446       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7447       continue;
7448     }
7449 
7450     CCValAssign &VA = ArgLocs[I++];
7451     const MVT LocVT = VA.getLocVT();
7452     const MVT ValVT = VA.getValVT();
7453 
7454     switch (VA.getLocInfo()) {
7455     default:
7456       report_fatal_error("Unexpected argument extension type.");
7457     case CCValAssign::Full:
7458       break;
7459     case CCValAssign::ZExt:
7460       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7461       break;
7462     case CCValAssign::SExt:
7463       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7464       break;
7465     }
7466 
7467     if (VA.isRegLoc() && !VA.needsCustom()) {
7468       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7469       continue;
7470     }
7471 
7472     if (VA.isMemLoc()) {
7473       SDValue PtrOff =
7474           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7475       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7476       MemOpChains.push_back(
7477           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7478 
7479       continue;
7480     }
7481 
7482     // Custom handling is used for GPR initializations for vararg float
7483     // arguments.
7484     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7485            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7486            "Unexpected register handling for calling convention.");
7487 
7488     SDValue ArgAsInt =
7489         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7490 
7491     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7492       // f32 in 32-bit GPR
7493       // f64 in 64-bit GPR
7494       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7495     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7496       // f32 in 64-bit GPR.
7497       RegsToPass.push_back(std::make_pair(
7498           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7499     else {
7500       // f64 in two 32-bit GPRs
7501       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7502       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7503              "Unexpected custom register for argument!");
7504       CCValAssign &GPR1 = VA;
7505       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7506                                      DAG.getConstant(32, dl, MVT::i8));
7507       RegsToPass.push_back(std::make_pair(
7508           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7509 
7510       if (I != E) {
7511         // If only 1 GPR was available, there will only be one custom GPR and
7512         // the argument will also pass in memory.
7513         CCValAssign &PeekArg = ArgLocs[I];
7514         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7515           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7516           CCValAssign &GPR2 = ArgLocs[I++];
7517           RegsToPass.push_back(std::make_pair(
7518               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7519         }
7520       }
7521     }
7522   }
7523 
7524   if (!MemOpChains.empty())
7525     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7526 
7527   // For indirect calls, we need to save the TOC base to the stack for
7528   // restoration after the call.
7529   if (CFlags.IsIndirect) {
7530     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7531     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7532     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7533     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7534     const unsigned TOCSaveOffset =
7535         Subtarget.getFrameLowering()->getTOCSaveOffset();
7536 
7537     setUsesTOCBasePtr(DAG);
7538     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7539     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7540     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7541     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7542     Chain = DAG.getStore(
7543         Val.getValue(1), dl, Val, AddPtr,
7544         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7545   }
7546 
7547   // Build a sequence of copy-to-reg nodes chained together with token chain
7548   // and flag operands which copy the outgoing args into the appropriate regs.
7549   SDValue InFlag;
7550   for (auto Reg : RegsToPass) {
7551     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7552     InFlag = Chain.getValue(1);
7553   }
7554 
7555   const int SPDiff = 0;
7556   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7557                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7558 }
7559 
7560 bool
7561 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7562                                   MachineFunction &MF, bool isVarArg,
7563                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7564                                   LLVMContext &Context) const {
7565   SmallVector<CCValAssign, 16> RVLocs;
7566   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7567   return CCInfo.CheckReturn(
7568       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7569                 ? RetCC_PPC_Cold
7570                 : RetCC_PPC);
7571 }
7572 
7573 SDValue
7574 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7575                                bool isVarArg,
7576                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7577                                const SmallVectorImpl<SDValue> &OutVals,
7578                                const SDLoc &dl, SelectionDAG &DAG) const {
7579   SmallVector<CCValAssign, 16> RVLocs;
7580   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7581                  *DAG.getContext());
7582   CCInfo.AnalyzeReturn(Outs,
7583                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7584                            ? RetCC_PPC_Cold
7585                            : RetCC_PPC);
7586 
7587   SDValue Flag;
7588   SmallVector<SDValue, 4> RetOps(1, Chain);
7589 
7590   // Copy the result values into the output registers.
7591   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7592     CCValAssign &VA = RVLocs[i];
7593     assert(VA.isRegLoc() && "Can only return in registers!");
7594 
7595     SDValue Arg = OutVals[RealResIdx];
7596 
7597     switch (VA.getLocInfo()) {
7598     default: llvm_unreachable("Unknown loc info!");
7599     case CCValAssign::Full: break;
7600     case CCValAssign::AExt:
7601       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7602       break;
7603     case CCValAssign::ZExt:
7604       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7605       break;
7606     case CCValAssign::SExt:
7607       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7608       break;
7609     }
7610     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7611       bool isLittleEndian = Subtarget.isLittleEndian();
7612       // Legalize ret f64 -> ret 2 x i32.
7613       SDValue SVal =
7614           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7615                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7616       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7617       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7618       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7619                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7620       Flag = Chain.getValue(1);
7621       VA = RVLocs[++i]; // skip ahead to next loc
7622       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7623     } else
7624       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7625     Flag = Chain.getValue(1);
7626     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7627   }
7628 
7629   RetOps[0] = Chain;  // Update chain.
7630 
7631   // Add the flag if we have it.
7632   if (Flag.getNode())
7633     RetOps.push_back(Flag);
7634 
7635   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7636 }
7637 
7638 SDValue
7639 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7640                                                 SelectionDAG &DAG) const {
7641   SDLoc dl(Op);
7642 
7643   // Get the correct type for integers.
7644   EVT IntVT = Op.getValueType();
7645 
7646   // Get the inputs.
7647   SDValue Chain = Op.getOperand(0);
7648   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7649   // Build a DYNAREAOFFSET node.
7650   SDValue Ops[2] = {Chain, FPSIdx};
7651   SDVTList VTs = DAG.getVTList(IntVT);
7652   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7653 }
7654 
7655 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7656                                              SelectionDAG &DAG) const {
7657   // When we pop the dynamic allocation we need to restore the SP link.
7658   SDLoc dl(Op);
7659 
7660   // Get the correct type for pointers.
7661   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7662 
7663   // Construct the stack pointer operand.
7664   bool isPPC64 = Subtarget.isPPC64();
7665   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7666   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7667 
7668   // Get the operands for the STACKRESTORE.
7669   SDValue Chain = Op.getOperand(0);
7670   SDValue SaveSP = Op.getOperand(1);
7671 
7672   // Load the old link SP.
7673   SDValue LoadLinkSP =
7674       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7675 
7676   // Restore the stack pointer.
7677   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7678 
7679   // Store the old link SP.
7680   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7681 }
7682 
7683 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7684   MachineFunction &MF = DAG.getMachineFunction();
7685   bool isPPC64 = Subtarget.isPPC64();
7686   EVT PtrVT = getPointerTy(MF.getDataLayout());
7687 
7688   // Get current frame pointer save index.  The users of this index will be
7689   // primarily DYNALLOC instructions.
7690   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7691   int RASI = FI->getReturnAddrSaveIndex();
7692 
7693   // If the frame pointer save index hasn't been defined yet.
7694   if (!RASI) {
7695     // Find out what the fix offset of the frame pointer save area.
7696     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7697     // Allocate the frame index for frame pointer save area.
7698     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7699     // Save the result.
7700     FI->setReturnAddrSaveIndex(RASI);
7701   }
7702   return DAG.getFrameIndex(RASI, PtrVT);
7703 }
7704 
7705 SDValue
7706 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7707   MachineFunction &MF = DAG.getMachineFunction();
7708   bool isPPC64 = Subtarget.isPPC64();
7709   EVT PtrVT = getPointerTy(MF.getDataLayout());
7710 
7711   // Get current frame pointer save index.  The users of this index will be
7712   // primarily DYNALLOC instructions.
7713   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7714   int FPSI = FI->getFramePointerSaveIndex();
7715 
7716   // If the frame pointer save index hasn't been defined yet.
7717   if (!FPSI) {
7718     // Find out what the fix offset of the frame pointer save area.
7719     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7720     // Allocate the frame index for frame pointer save area.
7721     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7722     // Save the result.
7723     FI->setFramePointerSaveIndex(FPSI);
7724   }
7725   return DAG.getFrameIndex(FPSI, PtrVT);
7726 }
7727 
7728 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7729                                                    SelectionDAG &DAG) const {
7730   MachineFunction &MF = DAG.getMachineFunction();
7731   // Get the inputs.
7732   SDValue Chain = Op.getOperand(0);
7733   SDValue Size  = Op.getOperand(1);
7734   SDLoc dl(Op);
7735 
7736   // Get the correct type for pointers.
7737   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7738   // Negate the size.
7739   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7740                                 DAG.getConstant(0, dl, PtrVT), Size);
7741   // Construct a node for the frame pointer save index.
7742   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7743   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7744   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7745   if (hasInlineStackProbe(MF))
7746     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7747   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7748 }
7749 
7750 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7751                                                      SelectionDAG &DAG) const {
7752   MachineFunction &MF = DAG.getMachineFunction();
7753 
7754   bool isPPC64 = Subtarget.isPPC64();
7755   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7756 
7757   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7758   return DAG.getFrameIndex(FI, PtrVT);
7759 }
7760 
7761 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7762                                                SelectionDAG &DAG) const {
7763   SDLoc DL(Op);
7764   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7765                      DAG.getVTList(MVT::i32, MVT::Other),
7766                      Op.getOperand(0), Op.getOperand(1));
7767 }
7768 
7769 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7770                                                 SelectionDAG &DAG) const {
7771   SDLoc DL(Op);
7772   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7773                      Op.getOperand(0), Op.getOperand(1));
7774 }
7775 
7776 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7777 
7778   assert(Op.getValueType() == MVT::i1 &&
7779          "Custom lowering only for i1 loads");
7780 
7781   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7782 
7783   SDLoc dl(Op);
7784   LoadSDNode *LD = cast<LoadSDNode>(Op);
7785 
7786   SDValue Chain = LD->getChain();
7787   SDValue BasePtr = LD->getBasePtr();
7788   MachineMemOperand *MMO = LD->getMemOperand();
7789 
7790   SDValue NewLD =
7791       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7792                      BasePtr, MVT::i8, MMO);
7793   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7794 
7795   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7796   return DAG.getMergeValues(Ops, dl);
7797 }
7798 
7799 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7800   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7801          "Custom lowering only for i1 stores");
7802 
7803   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7804 
7805   SDLoc dl(Op);
7806   StoreSDNode *ST = cast<StoreSDNode>(Op);
7807 
7808   SDValue Chain = ST->getChain();
7809   SDValue BasePtr = ST->getBasePtr();
7810   SDValue Value = ST->getValue();
7811   MachineMemOperand *MMO = ST->getMemOperand();
7812 
7813   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7814                       Value);
7815   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7816 }
7817 
7818 // FIXME: Remove this once the ANDI glue bug is fixed:
7819 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7820   assert(Op.getValueType() == MVT::i1 &&
7821          "Custom lowering only for i1 results");
7822 
7823   SDLoc DL(Op);
7824   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7825 }
7826 
7827 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7828                                                SelectionDAG &DAG) const {
7829 
7830   // Implements a vector truncate that fits in a vector register as a shuffle.
7831   // We want to legalize vector truncates down to where the source fits in
7832   // a vector register (and target is therefore smaller than vector register
7833   // size).  At that point legalization will try to custom lower the sub-legal
7834   // result and get here - where we can contain the truncate as a single target
7835   // operation.
7836 
7837   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7838   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7839   //
7840   // We will implement it for big-endian ordering as this (where x denotes
7841   // undefined):
7842   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7843   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7844   //
7845   // The same operation in little-endian ordering will be:
7846   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7847   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7848 
7849   assert(Op.getValueType().isVector() && "Vector type expected.");
7850 
7851   SDLoc DL(Op);
7852   SDValue N1 = Op.getOperand(0);
7853   unsigned SrcSize = N1.getValueType().getSizeInBits();
7854   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7855   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7856 
7857   EVT TrgVT = Op.getValueType();
7858   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7859   EVT EltVT = TrgVT.getVectorElementType();
7860   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7861   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7862 
7863   // First list the elements we want to keep.
7864   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7865   SmallVector<int, 16> ShuffV;
7866   if (Subtarget.isLittleEndian())
7867     for (unsigned i = 0; i < TrgNumElts; ++i)
7868       ShuffV.push_back(i * SizeMult);
7869   else
7870     for (unsigned i = 1; i <= TrgNumElts; ++i)
7871       ShuffV.push_back(i * SizeMult - 1);
7872 
7873   // Populate the remaining elements with undefs.
7874   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7875     // ShuffV.push_back(i + WideNumElts);
7876     ShuffV.push_back(WideNumElts + 1);
7877 
7878   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7879   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7880 }
7881 
7882 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7883 /// possible.
7884 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7885   // Not FP, or using SPE? Not a fsel.
7886   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7887       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7888     return Op;
7889 
7890   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7891 
7892   EVT ResVT = Op.getValueType();
7893   EVT CmpVT = Op.getOperand(0).getValueType();
7894   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7895   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7896   SDLoc dl(Op);
7897   SDNodeFlags Flags = Op.getNode()->getFlags();
7898 
7899   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7900   // presence of infinities.
7901   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7902     switch (CC) {
7903     default:
7904       break;
7905     case ISD::SETOGT:
7906     case ISD::SETGT:
7907       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7908     case ISD::SETOLT:
7909     case ISD::SETLT:
7910       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7911     }
7912   }
7913 
7914   // We might be able to do better than this under some circumstances, but in
7915   // general, fsel-based lowering of select is a finite-math-only optimization.
7916   // For more information, see section F.3 of the 2.06 ISA specification.
7917   // With ISA 3.0
7918   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7919       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7920     return Op;
7921 
7922   // If the RHS of the comparison is a 0.0, we don't need to do the
7923   // subtraction at all.
7924   SDValue Sel1;
7925   if (isFloatingPointZero(RHS))
7926     switch (CC) {
7927     default: break;       // SETUO etc aren't handled by fsel.
7928     case ISD::SETNE:
7929       std::swap(TV, FV);
7930       LLVM_FALLTHROUGH;
7931     case ISD::SETEQ:
7932       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7933         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7934       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7935       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7936         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7937       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7938                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7939     case ISD::SETULT:
7940     case ISD::SETLT:
7941       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7942       LLVM_FALLTHROUGH;
7943     case ISD::SETOGE:
7944     case ISD::SETGE:
7945       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7946         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7947       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7948     case ISD::SETUGT:
7949     case ISD::SETGT:
7950       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7951       LLVM_FALLTHROUGH;
7952     case ISD::SETOLE:
7953     case ISD::SETLE:
7954       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7955         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7956       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7957                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7958     }
7959 
7960   SDValue Cmp;
7961   switch (CC) {
7962   default: break;       // SETUO etc aren't handled by fsel.
7963   case ISD::SETNE:
7964     std::swap(TV, FV);
7965     LLVM_FALLTHROUGH;
7966   case ISD::SETEQ:
7967     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7968     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7969       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7970     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7971     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7972       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7973     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7974                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7975   case ISD::SETULT:
7976   case ISD::SETLT:
7977     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7978     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7979       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7980     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7981   case ISD::SETOGE:
7982   case ISD::SETGE:
7983     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7984     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7985       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7986     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7987   case ISD::SETUGT:
7988   case ISD::SETGT:
7989     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7990     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7991       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7992     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7993   case ISD::SETOLE:
7994   case ISD::SETLE:
7995     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7996     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7998     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7999   }
8000   return Op;
8001 }
8002 
8003 static unsigned getPPCStrictOpcode(unsigned Opc) {
8004   switch (Opc) {
8005   default:
8006     llvm_unreachable("No strict version of this opcode!");
8007   case PPCISD::FCTIDZ:
8008     return PPCISD::STRICT_FCTIDZ;
8009   case PPCISD::FCTIWZ:
8010     return PPCISD::STRICT_FCTIWZ;
8011   case PPCISD::FCTIDUZ:
8012     return PPCISD::STRICT_FCTIDUZ;
8013   case PPCISD::FCTIWUZ:
8014     return PPCISD::STRICT_FCTIWUZ;
8015   case PPCISD::FCFID:
8016     return PPCISD::STRICT_FCFID;
8017   case PPCISD::FCFIDU:
8018     return PPCISD::STRICT_FCFIDU;
8019   case PPCISD::FCFIDS:
8020     return PPCISD::STRICT_FCFIDS;
8021   case PPCISD::FCFIDUS:
8022     return PPCISD::STRICT_FCFIDUS;
8023   }
8024 }
8025 
8026 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8027                               const PPCSubtarget &Subtarget) {
8028   SDLoc dl(Op);
8029   bool IsStrict = Op->isStrictFPOpcode();
8030   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8031                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8032   // For strict nodes, source is the second operand.
8033   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8034   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8035   assert(Src.getValueType().isFloatingPoint());
8036   if (Src.getValueType() == MVT::f32) {
8037     if (IsStrict) {
8038       Src = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f64, MVT::Other},
8039                         {Chain, Src});
8040       Chain = Src.getValue(1);
8041     } else
8042       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8043   }
8044   SDValue Conv;
8045   unsigned Opc = ISD::DELETED_NODE;
8046   switch (Op.getSimpleValueType().SimpleTy) {
8047   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8048   case MVT::i32:
8049     Opc = IsSigned ? PPCISD::FCTIWZ
8050                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8051     break;
8052   case MVT::i64:
8053     assert((IsSigned || Subtarget.hasFPCVT()) &&
8054            "i64 FP_TO_UINT is supported only with FPCVT");
8055     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8056   }
8057   if (IsStrict) {
8058     Opc = getPPCStrictOpcode(Opc);
8059     Conv = DAG.getNode(Opc, dl, {MVT::f64, MVT::Other}, {Chain, Src});
8060   } else {
8061     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8062   }
8063   return Conv;
8064 }
8065 
8066 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8067                                                SelectionDAG &DAG,
8068                                                const SDLoc &dl) const {
8069   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8070   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8071                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8072   bool IsStrict = Op->isStrictFPOpcode();
8073 
8074   // Convert the FP value to an int value through memory.
8075   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8076                   (IsSigned || Subtarget.hasFPCVT());
8077   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8078   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8079   MachinePointerInfo MPI =
8080       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8081 
8082   // Emit a store to the stack slot.
8083   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8084   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8085   if (i32Stack) {
8086     MachineFunction &MF = DAG.getMachineFunction();
8087     Alignment = Align(4);
8088     MachineMemOperand *MMO =
8089         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8090     SDValue Ops[] = { Chain, Tmp, FIPtr };
8091     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8092               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8093   } else
8094     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8095 
8096   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8097   // add in a bias on big endian.
8098   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8099     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8100                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8101     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8102   }
8103 
8104   RLI.Chain = Chain;
8105   RLI.Ptr = FIPtr;
8106   RLI.MPI = MPI;
8107   RLI.Alignment = Alignment;
8108 }
8109 
8110 /// Custom lowers floating point to integer conversions to use
8111 /// the direct move instructions available in ISA 2.07 to avoid the
8112 /// need for load/store combinations.
8113 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8114                                                     SelectionDAG &DAG,
8115                                                     const SDLoc &dl) const {
8116   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8117   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8118   if (Op->isStrictFPOpcode())
8119     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8120   else
8121     return Mov;
8122 }
8123 
8124 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8125                                           const SDLoc &dl) const {
8126   bool IsStrict = Op->isStrictFPOpcode();
8127   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8128                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8129   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8130   // FP to INT conversions are legal for f128.
8131   if (Src.getValueType() == MVT::f128)
8132     return Op;
8133 
8134   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8135   // PPC (the libcall is not available).
8136   if (Src.getValueType() == MVT::ppcf128 && !IsStrict) {
8137     if (Op.getValueType() == MVT::i32) {
8138       if (IsSigned) {
8139         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8140                                  DAG.getIntPtrConstant(0, dl));
8141         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8142                                  DAG.getIntPtrConstant(1, dl));
8143 
8144         // Add the two halves of the long double in round-to-zero mode.
8145         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8146 
8147         // Now use a smaller FP_TO_SINT.
8148         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8149       } else {
8150         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8151         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8152         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8153         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8154         // FIXME: generated code sucks.
8155         // TODO: Are there fast-math-flags to propagate to this FSUB?
8156         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Tmp);
8157         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8158         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8159                            DAG.getConstant(0x80000000, dl, MVT::i32));
8160         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8161         return DAG.getSelectCC(dl, Src, Tmp, True, False, ISD::SETGE);
8162       }
8163     }
8164 
8165     return SDValue();
8166   }
8167 
8168   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8169     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8170 
8171   ReuseLoadInfo RLI;
8172   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8173 
8174   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8175                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8176 }
8177 
8178 // We're trying to insert a regular store, S, and then a load, L. If the
8179 // incoming value, O, is a load, we might just be able to have our load use the
8180 // address used by O. However, we don't know if anything else will store to
8181 // that address before we can load from it. To prevent this situation, we need
8182 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8183 // the same chain operand as O, we create a token factor from the chain results
8184 // of O and L, and we replace all uses of O's chain result with that token
8185 // factor (see spliceIntoChain below for this last part).
8186 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8187                                             ReuseLoadInfo &RLI,
8188                                             SelectionDAG &DAG,
8189                                             ISD::LoadExtType ET) const {
8190   // Conservatively skip reusing for constrained FP nodes.
8191   if (Op->isStrictFPOpcode())
8192     return false;
8193 
8194   SDLoc dl(Op);
8195   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8196                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8197   if (ET == ISD::NON_EXTLOAD &&
8198       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8199       isOperationLegalOrCustom(Op.getOpcode(),
8200                                Op.getOperand(0).getValueType())) {
8201 
8202     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8203     return true;
8204   }
8205 
8206   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8207   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8208       LD->isNonTemporal())
8209     return false;
8210   if (LD->getMemoryVT() != MemVT)
8211     return false;
8212 
8213   RLI.Ptr = LD->getBasePtr();
8214   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8215     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8216            "Non-pre-inc AM on PPC?");
8217     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8218                           LD->getOffset());
8219   }
8220 
8221   RLI.Chain = LD->getChain();
8222   RLI.MPI = LD->getPointerInfo();
8223   RLI.IsDereferenceable = LD->isDereferenceable();
8224   RLI.IsInvariant = LD->isInvariant();
8225   RLI.Alignment = LD->getAlign();
8226   RLI.AAInfo = LD->getAAInfo();
8227   RLI.Ranges = LD->getRanges();
8228 
8229   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8230   return true;
8231 }
8232 
8233 // Given the head of the old chain, ResChain, insert a token factor containing
8234 // it and NewResChain, and make users of ResChain now be users of that token
8235 // factor.
8236 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8237 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8238                                         SDValue NewResChain,
8239                                         SelectionDAG &DAG) const {
8240   if (!ResChain)
8241     return;
8242 
8243   SDLoc dl(NewResChain);
8244 
8245   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8246                            NewResChain, DAG.getUNDEF(MVT::Other));
8247   assert(TF.getNode() != NewResChain.getNode() &&
8248          "A new TF really is required here");
8249 
8250   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8251   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8252 }
8253 
8254 /// Analyze profitability of direct move
8255 /// prefer float load to int load plus direct move
8256 /// when there is no integer use of int load
8257 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8258   SDNode *Origin = Op.getOperand(0).getNode();
8259   if (Origin->getOpcode() != ISD::LOAD)
8260     return true;
8261 
8262   // If there is no LXSIBZX/LXSIHZX, like Power8,
8263   // prefer direct move if the memory size is 1 or 2 bytes.
8264   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8265   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8266     return true;
8267 
8268   for (SDNode::use_iterator UI = Origin->use_begin(),
8269                             UE = Origin->use_end();
8270        UI != UE; ++UI) {
8271 
8272     // Only look at the users of the loaded value.
8273     if (UI.getUse().get().getResNo() != 0)
8274       continue;
8275 
8276     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8277         UI->getOpcode() != ISD::UINT_TO_FP &&
8278         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8279         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8280       return true;
8281   }
8282 
8283   return false;
8284 }
8285 
8286 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8287                               const PPCSubtarget &Subtarget,
8288                               SDValue Chain = SDValue()) {
8289   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8290                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8291   SDLoc dl(Op);
8292   // If we have FCFIDS, then use it when converting to single-precision.
8293   // Otherwise, convert to double-precision and then round.
8294   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8295   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8296                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8297   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8298   if (Op->isStrictFPOpcode()) {
8299     if (!Chain)
8300       Chain = Op.getOperand(0);
8301     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, {ConvTy, MVT::Other},
8302                        {Chain, Src});
8303   } else
8304     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8305 }
8306 
8307 /// Custom lowers integer to floating point conversions to use
8308 /// the direct move instructions available in ISA 2.07 to avoid the
8309 /// need for load/store combinations.
8310 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8311                                                     SelectionDAG &DAG,
8312                                                     const SDLoc &dl) const {
8313   assert((Op.getValueType() == MVT::f32 ||
8314           Op.getValueType() == MVT::f64) &&
8315          "Invalid floating point type as target of conversion");
8316   assert(Subtarget.hasFPCVT() &&
8317          "Int to FP conversions with direct moves require FPCVT");
8318   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8319   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8320   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8321                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8322   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8323   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8324   return convertIntToFP(Op, Mov, DAG, Subtarget);
8325 }
8326 
8327 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8328 
8329   EVT VecVT = Vec.getValueType();
8330   assert(VecVT.isVector() && "Expected a vector type.");
8331   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8332 
8333   EVT EltVT = VecVT.getVectorElementType();
8334   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8335   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8336 
8337   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8338   SmallVector<SDValue, 16> Ops(NumConcat);
8339   Ops[0] = Vec;
8340   SDValue UndefVec = DAG.getUNDEF(VecVT);
8341   for (unsigned i = 1; i < NumConcat; ++i)
8342     Ops[i] = UndefVec;
8343 
8344   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8345 }
8346 
8347 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8348                                                 const SDLoc &dl) const {
8349 
8350   unsigned Opc = Op.getOpcode();
8351   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8352          "Unexpected conversion type");
8353   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8354          "Supports conversions to v2f64/v4f32 only.");
8355 
8356   bool SignedConv = Opc == ISD::SINT_TO_FP;
8357   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8358 
8359   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8360   EVT WideVT = Wide.getValueType();
8361   unsigned WideNumElts = WideVT.getVectorNumElements();
8362   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8363 
8364   SmallVector<int, 16> ShuffV;
8365   for (unsigned i = 0; i < WideNumElts; ++i)
8366     ShuffV.push_back(i + WideNumElts);
8367 
8368   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8369   int SaveElts = FourEltRes ? 4 : 2;
8370   if (Subtarget.isLittleEndian())
8371     for (int i = 0; i < SaveElts; i++)
8372       ShuffV[i * Stride] = i;
8373   else
8374     for (int i = 1; i <= SaveElts; i++)
8375       ShuffV[i * Stride - 1] = i - 1;
8376 
8377   SDValue ShuffleSrc2 =
8378       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8379   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8380 
8381   SDValue Extend;
8382   if (SignedConv) {
8383     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8384     EVT ExtVT = Op.getOperand(0).getValueType();
8385     if (Subtarget.hasP9Altivec())
8386       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8387                                IntermediateVT.getVectorNumElements());
8388 
8389     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8390                          DAG.getValueType(ExtVT));
8391   } else
8392     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8393 
8394   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8395 }
8396 
8397 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8398                                           SelectionDAG &DAG) const {
8399   SDLoc dl(Op);
8400   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8401                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8402   bool IsStrict = Op->isStrictFPOpcode();
8403   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8404   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8405 
8406   EVT InVT = Src.getValueType();
8407   EVT OutVT = Op.getValueType();
8408   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8409       isOperationCustom(Op.getOpcode(), InVT))
8410     return LowerINT_TO_FPVector(Op, DAG, dl);
8411 
8412   // Conversions to f128 are legal.
8413   if (Op.getValueType() == MVT::f128)
8414     return Op;
8415 
8416   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8417   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8418     return SDValue();
8419 
8420   if (Src.getValueType() == MVT::i1)
8421     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8422                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8423                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8424 
8425   // If we have direct moves, we can do all the conversion, skip the store/load
8426   // however, without FPCVT we can't do most conversions.
8427   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8428       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8429     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8430 
8431   assert((IsSigned || Subtarget.hasFPCVT()) &&
8432          "UINT_TO_FP is supported only with FPCVT");
8433 
8434   if (Src.getValueType() == MVT::i64) {
8435     SDValue SINT = Src;
8436     // When converting to single-precision, we actually need to convert
8437     // to double-precision first and then round to single-precision.
8438     // To avoid double-rounding effects during that operation, we have
8439     // to prepare the input operand.  Bits that might be truncated when
8440     // converting to double-precision are replaced by a bit that won't
8441     // be lost at this stage, but is below the single-precision rounding
8442     // position.
8443     //
8444     // However, if -enable-unsafe-fp-math is in effect, accept double
8445     // rounding to avoid the extra overhead.
8446     if (Op.getValueType() == MVT::f32 &&
8447         !Subtarget.hasFPCVT() &&
8448         !DAG.getTarget().Options.UnsafeFPMath) {
8449 
8450       // Twiddle input to make sure the low 11 bits are zero.  (If this
8451       // is the case, we are guaranteed the value will fit into the 53 bit
8452       // mantissa of an IEEE double-precision value without rounding.)
8453       // If any of those low 11 bits were not zero originally, make sure
8454       // bit 12 (value 2048) is set instead, so that the final rounding
8455       // to single-precision gets the correct result.
8456       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8457                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8458       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8459                           Round, DAG.getConstant(2047, dl, MVT::i64));
8460       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8461       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8462                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8463 
8464       // However, we cannot use that value unconditionally: if the magnitude
8465       // of the input value is small, the bit-twiddling we did above might
8466       // end up visibly changing the output.  Fortunately, in that case, we
8467       // don't need to twiddle bits since the original input will convert
8468       // exactly to double-precision floating-point already.  Therefore,
8469       // construct a conditional to use the original value if the top 11
8470       // bits are all sign-bit copies, and use the rounded value computed
8471       // above otherwise.
8472       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8473                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8474       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8475                          Cond, DAG.getConstant(1, dl, MVT::i64));
8476       Cond = DAG.getSetCC(
8477           dl,
8478           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8479           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8480 
8481       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8482     }
8483 
8484     ReuseLoadInfo RLI;
8485     SDValue Bits;
8486 
8487     MachineFunction &MF = DAG.getMachineFunction();
8488     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8489       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8490                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8491       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8492     } else if (Subtarget.hasLFIWAX() &&
8493                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8494       MachineMemOperand *MMO =
8495         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8496                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8497       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8498       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8499                                      DAG.getVTList(MVT::f64, MVT::Other),
8500                                      Ops, MVT::i32, MMO);
8501       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8502     } else if (Subtarget.hasFPCVT() &&
8503                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8504       MachineMemOperand *MMO =
8505         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8506                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8507       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8508       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8509                                      DAG.getVTList(MVT::f64, MVT::Other),
8510                                      Ops, MVT::i32, MMO);
8511       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8512     } else if (((Subtarget.hasLFIWAX() &&
8513                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8514                 (Subtarget.hasFPCVT() &&
8515                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8516                SINT.getOperand(0).getValueType() == MVT::i32) {
8517       MachineFrameInfo &MFI = MF.getFrameInfo();
8518       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8519 
8520       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8521       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8522 
8523       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8524                                    MachinePointerInfo::getFixedStack(
8525                                        DAG.getMachineFunction(), FrameIdx));
8526       Chain = Store;
8527 
8528       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8529              "Expected an i32 store");
8530 
8531       RLI.Ptr = FIdx;
8532       RLI.Chain = Chain;
8533       RLI.MPI =
8534           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8535       RLI.Alignment = Align(4);
8536 
8537       MachineMemOperand *MMO =
8538         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8539                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8540       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8541       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8542                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8543                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8544                                      Ops, MVT::i32, MMO);
8545       Chain = Bits.getValue(1);
8546     } else
8547       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8548 
8549     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8550     if (IsStrict)
8551       Chain = FP.getValue(1);
8552 
8553     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8554       if (IsStrict)
8555         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8556                          {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8557       else
8558         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8559                          DAG.getIntPtrConstant(0, dl));
8560     }
8561     return FP;
8562   }
8563 
8564   assert(Src.getValueType() == MVT::i32 &&
8565          "Unhandled INT_TO_FP type in custom expander!");
8566   // Since we only generate this in 64-bit mode, we can take advantage of
8567   // 64-bit registers.  In particular, sign extend the input value into the
8568   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8569   // then lfd it and fcfid it.
8570   MachineFunction &MF = DAG.getMachineFunction();
8571   MachineFrameInfo &MFI = MF.getFrameInfo();
8572   EVT PtrVT = getPointerTy(MF.getDataLayout());
8573 
8574   SDValue Ld;
8575   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8576     ReuseLoadInfo RLI;
8577     bool ReusingLoad;
8578     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8579       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8580       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8581 
8582       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8583                                    MachinePointerInfo::getFixedStack(
8584                                        DAG.getMachineFunction(), FrameIdx));
8585       Chain = Store;
8586 
8587       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8588              "Expected an i32 store");
8589 
8590       RLI.Ptr = FIdx;
8591       RLI.Chain = Chain;
8592       RLI.MPI =
8593           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8594       RLI.Alignment = Align(4);
8595     }
8596 
8597     MachineMemOperand *MMO =
8598       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8599                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8600     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8601     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8602                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8603                                  MVT::i32, MMO);
8604     Chain = Ld.getValue(1);
8605     if (ReusingLoad)
8606       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8607   } else {
8608     assert(Subtarget.isPPC64() &&
8609            "i32->FP without LFIWAX supported only on PPC64");
8610 
8611     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8612     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8613 
8614     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8615 
8616     // STD the extended value into the stack slot.
8617     SDValue Store = DAG.getStore(
8618         Chain, dl, Ext64, FIdx,
8619         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8620     Chain = Store;
8621 
8622     // Load the value as a double.
8623     Ld = DAG.getLoad(
8624         MVT::f64, dl, Chain, FIdx,
8625         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8626     Chain = Ld.getValue(1);
8627   }
8628 
8629   // FCFID it and return it.
8630   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8631   if (IsStrict)
8632     Chain = FP.getValue(1);
8633   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8634     if (IsStrict)
8635       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8636                        {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8637     else
8638       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8639                        DAG.getIntPtrConstant(0, dl));
8640   }
8641   return FP;
8642 }
8643 
8644 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8645                                             SelectionDAG &DAG) const {
8646   SDLoc dl(Op);
8647   /*
8648    The rounding mode is in bits 30:31 of FPSR, and has the following
8649    settings:
8650      00 Round to nearest
8651      01 Round to 0
8652      10 Round to +inf
8653      11 Round to -inf
8654 
8655   FLT_ROUNDS, on the other hand, expects the following:
8656     -1 Undefined
8657      0 Round to 0
8658      1 Round to nearest
8659      2 Round to +inf
8660      3 Round to -inf
8661 
8662   To perform the conversion, we do:
8663     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8664   */
8665 
8666   MachineFunction &MF = DAG.getMachineFunction();
8667   EVT VT = Op.getValueType();
8668   EVT PtrVT = getPointerTy(MF.getDataLayout());
8669 
8670   // Save FP Control Word to register
8671   SDValue Chain = Op.getOperand(0);
8672   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8673   Chain = MFFS.getValue(1);
8674 
8675   // Save FP register to stack slot
8676   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8677   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8678   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8679 
8680   // Load FP Control Word from low 32 bits of stack slot.
8681   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8682   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8683   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8684   Chain = CWD.getValue(1);
8685 
8686   // Transform as necessary
8687   SDValue CWD1 =
8688     DAG.getNode(ISD::AND, dl, MVT::i32,
8689                 CWD, DAG.getConstant(3, dl, MVT::i32));
8690   SDValue CWD2 =
8691     DAG.getNode(ISD::SRL, dl, MVT::i32,
8692                 DAG.getNode(ISD::AND, dl, MVT::i32,
8693                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8694                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8695                             DAG.getConstant(3, dl, MVT::i32)),
8696                 DAG.getConstant(1, dl, MVT::i32));
8697 
8698   SDValue RetVal =
8699     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8700 
8701   RetVal =
8702       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8703                   dl, VT, RetVal);
8704 
8705   return DAG.getMergeValues({RetVal, Chain}, dl);
8706 }
8707 
8708 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8709   EVT VT = Op.getValueType();
8710   unsigned BitWidth = VT.getSizeInBits();
8711   SDLoc dl(Op);
8712   assert(Op.getNumOperands() == 3 &&
8713          VT == Op.getOperand(1).getValueType() &&
8714          "Unexpected SHL!");
8715 
8716   // Expand into a bunch of logical ops.  Note that these ops
8717   // depend on the PPC behavior for oversized shift amounts.
8718   SDValue Lo = Op.getOperand(0);
8719   SDValue Hi = Op.getOperand(1);
8720   SDValue Amt = Op.getOperand(2);
8721   EVT AmtVT = Amt.getValueType();
8722 
8723   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8724                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8725   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8726   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8727   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8728   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8729                              DAG.getConstant(-BitWidth, dl, AmtVT));
8730   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8731   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8732   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8733   SDValue OutOps[] = { OutLo, OutHi };
8734   return DAG.getMergeValues(OutOps, dl);
8735 }
8736 
8737 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8738   EVT VT = Op.getValueType();
8739   SDLoc dl(Op);
8740   unsigned BitWidth = VT.getSizeInBits();
8741   assert(Op.getNumOperands() == 3 &&
8742          VT == Op.getOperand(1).getValueType() &&
8743          "Unexpected SRL!");
8744 
8745   // Expand into a bunch of logical ops.  Note that these ops
8746   // depend on the PPC behavior for oversized shift amounts.
8747   SDValue Lo = Op.getOperand(0);
8748   SDValue Hi = Op.getOperand(1);
8749   SDValue Amt = Op.getOperand(2);
8750   EVT AmtVT = Amt.getValueType();
8751 
8752   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8753                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8754   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8755   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8756   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8757   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8758                              DAG.getConstant(-BitWidth, dl, AmtVT));
8759   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8760   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8761   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8762   SDValue OutOps[] = { OutLo, OutHi };
8763   return DAG.getMergeValues(OutOps, dl);
8764 }
8765 
8766 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8767   SDLoc dl(Op);
8768   EVT VT = Op.getValueType();
8769   unsigned BitWidth = VT.getSizeInBits();
8770   assert(Op.getNumOperands() == 3 &&
8771          VT == Op.getOperand(1).getValueType() &&
8772          "Unexpected SRA!");
8773 
8774   // Expand into a bunch of logical ops, followed by a select_cc.
8775   SDValue Lo = Op.getOperand(0);
8776   SDValue Hi = Op.getOperand(1);
8777   SDValue Amt = Op.getOperand(2);
8778   EVT AmtVT = Amt.getValueType();
8779 
8780   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8781                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8782   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8783   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8784   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8785   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8786                              DAG.getConstant(-BitWidth, dl, AmtVT));
8787   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8788   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8789   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8790                                   Tmp4, Tmp6, ISD::SETLE);
8791   SDValue OutOps[] = { OutLo, OutHi };
8792   return DAG.getMergeValues(OutOps, dl);
8793 }
8794 
8795 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8796                                             SelectionDAG &DAG) const {
8797   SDLoc dl(Op);
8798   EVT VT = Op.getValueType();
8799   unsigned BitWidth = VT.getSizeInBits();
8800 
8801   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8802   SDValue X = Op.getOperand(0);
8803   SDValue Y = Op.getOperand(1);
8804   SDValue Z = Op.getOperand(2);
8805   EVT AmtVT = Z.getValueType();
8806 
8807   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8808   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8809   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8810   // on PowerPC shift by BW being well defined.
8811   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8812                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8813   SDValue SubZ =
8814       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8815   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8816   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8817   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8818 }
8819 
8820 //===----------------------------------------------------------------------===//
8821 // Vector related lowering.
8822 //
8823 
8824 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8825 /// element size of SplatSize. Cast the result to VT.
8826 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8827                                       SelectionDAG &DAG, const SDLoc &dl) {
8828   static const MVT VTys[] = { // canonical VT to use for each size.
8829     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8830   };
8831 
8832   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8833 
8834   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8835   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8836     SplatSize = 1;
8837     Val = 0xFF;
8838   }
8839 
8840   EVT CanonicalVT = VTys[SplatSize-1];
8841 
8842   // Build a canonical splat for this value.
8843   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8844 }
8845 
8846 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8847 /// specified intrinsic ID.
8848 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8849                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8850   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8851   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8852                      DAG.getConstant(IID, dl, MVT::i32), Op);
8853 }
8854 
8855 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8856 /// specified intrinsic ID.
8857 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8858                                 SelectionDAG &DAG, const SDLoc &dl,
8859                                 EVT DestVT = MVT::Other) {
8860   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8861   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8862                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8863 }
8864 
8865 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8866 /// specified intrinsic ID.
8867 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8868                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8869                                 EVT DestVT = MVT::Other) {
8870   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8871   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8872                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8873 }
8874 
8875 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8876 /// amount.  The result has the specified value type.
8877 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8878                            SelectionDAG &DAG, const SDLoc &dl) {
8879   // Force LHS/RHS to be the right type.
8880   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8881   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8882 
8883   int Ops[16];
8884   for (unsigned i = 0; i != 16; ++i)
8885     Ops[i] = i + Amt;
8886   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8887   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8888 }
8889 
8890 /// Do we have an efficient pattern in a .td file for this node?
8891 ///
8892 /// \param V - pointer to the BuildVectorSDNode being matched
8893 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8894 ///
8895 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8896 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8897 /// the opposite is true (expansion is beneficial) are:
8898 /// - The node builds a vector out of integers that are not 32 or 64-bits
8899 /// - The node builds a vector out of constants
8900 /// - The node is a "load-and-splat"
8901 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8902 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8903                                             bool HasDirectMove,
8904                                             bool HasP8Vector) {
8905   EVT VecVT = V->getValueType(0);
8906   bool RightType = VecVT == MVT::v2f64 ||
8907     (HasP8Vector && VecVT == MVT::v4f32) ||
8908     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8909   if (!RightType)
8910     return false;
8911 
8912   bool IsSplat = true;
8913   bool IsLoad = false;
8914   SDValue Op0 = V->getOperand(0);
8915 
8916   // This function is called in a block that confirms the node is not a constant
8917   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8918   // different constants.
8919   if (V->isConstant())
8920     return false;
8921   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8922     if (V->getOperand(i).isUndef())
8923       return false;
8924     // We want to expand nodes that represent load-and-splat even if the
8925     // loaded value is a floating point truncation or conversion to int.
8926     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8927         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8928          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8929         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8930          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8931         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8932          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8933       IsLoad = true;
8934     // If the operands are different or the input is not a load and has more
8935     // uses than just this BV node, then it isn't a splat.
8936     if (V->getOperand(i) != Op0 ||
8937         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8938       IsSplat = false;
8939   }
8940   return !(IsSplat && IsLoad);
8941 }
8942 
8943 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8944 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8945 
8946   SDLoc dl(Op);
8947   SDValue Op0 = Op->getOperand(0);
8948 
8949   if ((Op.getValueType() != MVT::f128) ||
8950       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8951       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8952       (Op0.getOperand(1).getValueType() != MVT::i64))
8953     return SDValue();
8954 
8955   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8956                      Op0.getOperand(1));
8957 }
8958 
8959 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8960   const SDValue *InputLoad = &Op;
8961   if (InputLoad->getOpcode() == ISD::BITCAST)
8962     InputLoad = &InputLoad->getOperand(0);
8963   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8964       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8965     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8966     InputLoad = &InputLoad->getOperand(0);
8967   }
8968   if (InputLoad->getOpcode() != ISD::LOAD)
8969     return nullptr;
8970   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8971   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8972 }
8973 
8974 // Convert the argument APFloat to a single precision APFloat if there is no
8975 // loss in information during the conversion to single precision APFloat and the
8976 // resulting number is not a denormal number. Return true if successful.
8977 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8978   APFloat APFloatToConvert = ArgAPFloat;
8979   bool LosesInfo = true;
8980   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8981                            &LosesInfo);
8982   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8983   if (Success)
8984     ArgAPFloat = APFloatToConvert;
8985   return Success;
8986 }
8987 
8988 // Bitcast the argument APInt to a double and convert it to a single precision
8989 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8990 // argument if there is no loss in information during the conversion from
8991 // double to single precision APFloat and the resulting number is not a denormal
8992 // number. Return true if successful.
8993 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8994   double DpValue = ArgAPInt.bitsToDouble();
8995   APFloat APFloatDp(DpValue);
8996   bool Success = convertToNonDenormSingle(APFloatDp);
8997   if (Success)
8998     ArgAPInt = APFloatDp.bitcastToAPInt();
8999   return Success;
9000 }
9001 
9002 // If this is a case we can't handle, return null and let the default
9003 // expansion code take care of it.  If we CAN select this case, and if it
9004 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9005 // this case more efficiently than a constant pool load, lower it to the
9006 // sequence of ops that should be used.
9007 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9008                                              SelectionDAG &DAG) const {
9009   SDLoc dl(Op);
9010   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9011   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9012 
9013   // Check if this is a splat of a constant value.
9014   APInt APSplatBits, APSplatUndef;
9015   unsigned SplatBitSize;
9016   bool HasAnyUndefs;
9017   bool BVNIsConstantSplat =
9018       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9019                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9020 
9021   // If it is a splat of a double, check if we can shrink it to a 32 bit
9022   // non-denormal float which when converted back to double gives us the same
9023   // double. This is to exploit the XXSPLTIDP instruction.
9024   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9025       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9026       convertToNonDenormSingle(APSplatBits)) {
9027     SDValue SplatNode = DAG.getNode(
9028         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9029         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9030     return DAG.getBitcast(Op.getValueType(), SplatNode);
9031   }
9032 
9033   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9034 
9035     bool IsPermutedLoad = false;
9036     const SDValue *InputLoad =
9037         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9038     // Handle load-and-splat patterns as we have instructions that will do this
9039     // in one go.
9040     if (InputLoad && DAG.isSplatValue(Op, true)) {
9041       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9042 
9043       // We have handling for 4 and 8 byte elements.
9044       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9045 
9046       // Checking for a single use of this load, we have to check for vector
9047       // width (128 bits) / ElementSize uses (since each operand of the
9048       // BUILD_VECTOR is a separate use of the value.
9049       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9050           ((Subtarget.hasVSX() && ElementSize == 64) ||
9051            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9052         SDValue Ops[] = {
9053           LD->getChain(),    // Chain
9054           LD->getBasePtr(),  // Ptr
9055           DAG.getValueType(Op.getValueType()) // VT
9056         };
9057         return
9058           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9059                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9060                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9061       }
9062     }
9063 
9064     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9065     // lowered to VSX instructions under certain conditions.
9066     // Without VSX, there is no pattern more efficient than expanding the node.
9067     if (Subtarget.hasVSX() &&
9068         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9069                                         Subtarget.hasP8Vector()))
9070       return Op;
9071     return SDValue();
9072   }
9073 
9074   uint64_t SplatBits = APSplatBits.getZExtValue();
9075   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9076   unsigned SplatSize = SplatBitSize / 8;
9077 
9078   // First, handle single instruction cases.
9079 
9080   // All zeros?
9081   if (SplatBits == 0) {
9082     // Canonicalize all zero vectors to be v4i32.
9083     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9084       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9085       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9086     }
9087     return Op;
9088   }
9089 
9090   // We have XXSPLTIW for constant splats four bytes wide.
9091   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9092   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9093   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9094   // turned into a 4-byte splat of 0xABABABAB.
9095   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9096     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9097                                   Op.getValueType(), DAG, dl);
9098 
9099   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9100     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9101                                   dl);
9102 
9103   // We have XXSPLTIB for constant splats one byte wide.
9104   if (Subtarget.hasP9Vector() && SplatSize == 1)
9105     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9106                                   dl);
9107 
9108   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9109   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9110                     (32-SplatBitSize));
9111   if (SextVal >= -16 && SextVal <= 15)
9112     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9113                                   dl);
9114 
9115   // Two instruction sequences.
9116 
9117   // If this value is in the range [-32,30] and is even, use:
9118   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9119   // If this value is in the range [17,31] and is odd, use:
9120   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9121   // If this value is in the range [-31,-17] and is odd, use:
9122   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9123   // Note the last two are three-instruction sequences.
9124   if (SextVal >= -32 && SextVal <= 31) {
9125     // To avoid having these optimizations undone by constant folding,
9126     // we convert to a pseudo that will be expanded later into one of
9127     // the above forms.
9128     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9129     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9130               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9131     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9132     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9133     if (VT == Op.getValueType())
9134       return RetVal;
9135     else
9136       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9137   }
9138 
9139   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9140   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9141   // for fneg/fabs.
9142   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9143     // Make -1 and vspltisw -1:
9144     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9145 
9146     // Make the VSLW intrinsic, computing 0x8000_0000.
9147     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9148                                    OnesV, DAG, dl);
9149 
9150     // xor by OnesV to invert it.
9151     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9152     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9153   }
9154 
9155   // Check to see if this is a wide variety of vsplti*, binop self cases.
9156   static const signed char SplatCsts[] = {
9157     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9158     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9159   };
9160 
9161   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9162     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9163     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9164     int i = SplatCsts[idx];
9165 
9166     // Figure out what shift amount will be used by altivec if shifted by i in
9167     // this splat size.
9168     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9169 
9170     // vsplti + shl self.
9171     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9172       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9173       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9174         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9175         Intrinsic::ppc_altivec_vslw
9176       };
9177       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9178       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9179     }
9180 
9181     // vsplti + srl self.
9182     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9183       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9184       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9185         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9186         Intrinsic::ppc_altivec_vsrw
9187       };
9188       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9189       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9190     }
9191 
9192     // vsplti + sra self.
9193     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9194       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9195       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9196         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9197         Intrinsic::ppc_altivec_vsraw
9198       };
9199       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9200       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9201     }
9202 
9203     // vsplti + rol self.
9204     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9205                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9206       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9207       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9208         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9209         Intrinsic::ppc_altivec_vrlw
9210       };
9211       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9212       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9213     }
9214 
9215     // t = vsplti c, result = vsldoi t, t, 1
9216     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9217       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9218       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9219       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9220     }
9221     // t = vsplti c, result = vsldoi t, t, 2
9222     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9223       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9224       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9225       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9226     }
9227     // t = vsplti c, result = vsldoi t, t, 3
9228     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9229       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9230       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9231       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9232     }
9233   }
9234 
9235   return SDValue();
9236 }
9237 
9238 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9239 /// the specified operations to build the shuffle.
9240 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9241                                       SDValue RHS, SelectionDAG &DAG,
9242                                       const SDLoc &dl) {
9243   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9244   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9245   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9246 
9247   enum {
9248     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9249     OP_VMRGHW,
9250     OP_VMRGLW,
9251     OP_VSPLTISW0,
9252     OP_VSPLTISW1,
9253     OP_VSPLTISW2,
9254     OP_VSPLTISW3,
9255     OP_VSLDOI4,
9256     OP_VSLDOI8,
9257     OP_VSLDOI12
9258   };
9259 
9260   if (OpNum == OP_COPY) {
9261     if (LHSID == (1*9+2)*9+3) return LHS;
9262     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9263     return RHS;
9264   }
9265 
9266   SDValue OpLHS, OpRHS;
9267   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9268   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9269 
9270   int ShufIdxs[16];
9271   switch (OpNum) {
9272   default: llvm_unreachable("Unknown i32 permute!");
9273   case OP_VMRGHW:
9274     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9275     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9276     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9277     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9278     break;
9279   case OP_VMRGLW:
9280     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9281     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9282     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9283     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9284     break;
9285   case OP_VSPLTISW0:
9286     for (unsigned i = 0; i != 16; ++i)
9287       ShufIdxs[i] = (i&3)+0;
9288     break;
9289   case OP_VSPLTISW1:
9290     for (unsigned i = 0; i != 16; ++i)
9291       ShufIdxs[i] = (i&3)+4;
9292     break;
9293   case OP_VSPLTISW2:
9294     for (unsigned i = 0; i != 16; ++i)
9295       ShufIdxs[i] = (i&3)+8;
9296     break;
9297   case OP_VSPLTISW3:
9298     for (unsigned i = 0; i != 16; ++i)
9299       ShufIdxs[i] = (i&3)+12;
9300     break;
9301   case OP_VSLDOI4:
9302     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9303   case OP_VSLDOI8:
9304     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9305   case OP_VSLDOI12:
9306     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9307   }
9308   EVT VT = OpLHS.getValueType();
9309   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9310   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9311   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9312   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9313 }
9314 
9315 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9316 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9317 /// SDValue.
9318 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9319                                            SelectionDAG &DAG) const {
9320   const unsigned BytesInVector = 16;
9321   bool IsLE = Subtarget.isLittleEndian();
9322   SDLoc dl(N);
9323   SDValue V1 = N->getOperand(0);
9324   SDValue V2 = N->getOperand(1);
9325   unsigned ShiftElts = 0, InsertAtByte = 0;
9326   bool Swap = false;
9327 
9328   // Shifts required to get the byte we want at element 7.
9329   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9330                                    0, 15, 14, 13, 12, 11, 10, 9};
9331   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9332                                 1, 2,  3,  4,  5,  6,  7,  8};
9333 
9334   ArrayRef<int> Mask = N->getMask();
9335   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9336 
9337   // For each mask element, find out if we're just inserting something
9338   // from V2 into V1 or vice versa.
9339   // Possible permutations inserting an element from V2 into V1:
9340   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9341   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9342   //   ...
9343   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9344   // Inserting from V1 into V2 will be similar, except mask range will be
9345   // [16,31].
9346 
9347   bool FoundCandidate = false;
9348   // If both vector operands for the shuffle are the same vector, the mask
9349   // will contain only elements from the first one and the second one will be
9350   // undef.
9351   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9352   // Go through the mask of half-words to find an element that's being moved
9353   // from one vector to the other.
9354   for (unsigned i = 0; i < BytesInVector; ++i) {
9355     unsigned CurrentElement = Mask[i];
9356     // If 2nd operand is undefined, we should only look for element 7 in the
9357     // Mask.
9358     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9359       continue;
9360 
9361     bool OtherElementsInOrder = true;
9362     // Examine the other elements in the Mask to see if they're in original
9363     // order.
9364     for (unsigned j = 0; j < BytesInVector; ++j) {
9365       if (j == i)
9366         continue;
9367       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9368       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9369       // in which we always assume we're always picking from the 1st operand.
9370       int MaskOffset =
9371           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9372       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9373         OtherElementsInOrder = false;
9374         break;
9375       }
9376     }
9377     // If other elements are in original order, we record the number of shifts
9378     // we need to get the element we want into element 7. Also record which byte
9379     // in the vector we should insert into.
9380     if (OtherElementsInOrder) {
9381       // If 2nd operand is undefined, we assume no shifts and no swapping.
9382       if (V2.isUndef()) {
9383         ShiftElts = 0;
9384         Swap = false;
9385       } else {
9386         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9387         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9388                          : BigEndianShifts[CurrentElement & 0xF];
9389         Swap = CurrentElement < BytesInVector;
9390       }
9391       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9392       FoundCandidate = true;
9393       break;
9394     }
9395   }
9396 
9397   if (!FoundCandidate)
9398     return SDValue();
9399 
9400   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9401   // optionally with VECSHL if shift is required.
9402   if (Swap)
9403     std::swap(V1, V2);
9404   if (V2.isUndef())
9405     V2 = V1;
9406   if (ShiftElts) {
9407     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9408                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9409     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9410                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9411   }
9412   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9413                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9414 }
9415 
9416 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9417 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9418 /// SDValue.
9419 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9420                                            SelectionDAG &DAG) const {
9421   const unsigned NumHalfWords = 8;
9422   const unsigned BytesInVector = NumHalfWords * 2;
9423   // Check that the shuffle is on half-words.
9424   if (!isNByteElemShuffleMask(N, 2, 1))
9425     return SDValue();
9426 
9427   bool IsLE = Subtarget.isLittleEndian();
9428   SDLoc dl(N);
9429   SDValue V1 = N->getOperand(0);
9430   SDValue V2 = N->getOperand(1);
9431   unsigned ShiftElts = 0, InsertAtByte = 0;
9432   bool Swap = false;
9433 
9434   // Shifts required to get the half-word we want at element 3.
9435   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9436   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9437 
9438   uint32_t Mask = 0;
9439   uint32_t OriginalOrderLow = 0x1234567;
9440   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9441   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9442   // 32-bit space, only need 4-bit nibbles per element.
9443   for (unsigned i = 0; i < NumHalfWords; ++i) {
9444     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9445     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9446   }
9447 
9448   // For each mask element, find out if we're just inserting something
9449   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9450   // from V2 into V1:
9451   //   X, 1, 2, 3, 4, 5, 6, 7
9452   //   0, X, 2, 3, 4, 5, 6, 7
9453   //   0, 1, X, 3, 4, 5, 6, 7
9454   //   0, 1, 2, X, 4, 5, 6, 7
9455   //   0, 1, 2, 3, X, 5, 6, 7
9456   //   0, 1, 2, 3, 4, X, 6, 7
9457   //   0, 1, 2, 3, 4, 5, X, 7
9458   //   0, 1, 2, 3, 4, 5, 6, X
9459   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9460 
9461   bool FoundCandidate = false;
9462   // Go through the mask of half-words to find an element that's being moved
9463   // from one vector to the other.
9464   for (unsigned i = 0; i < NumHalfWords; ++i) {
9465     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9466     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9467     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9468     uint32_t TargetOrder = 0x0;
9469 
9470     // If both vector operands for the shuffle are the same vector, the mask
9471     // will contain only elements from the first one and the second one will be
9472     // undef.
9473     if (V2.isUndef()) {
9474       ShiftElts = 0;
9475       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9476       TargetOrder = OriginalOrderLow;
9477       Swap = false;
9478       // Skip if not the correct element or mask of other elements don't equal
9479       // to our expected order.
9480       if (MaskOneElt == VINSERTHSrcElem &&
9481           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9482         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9483         FoundCandidate = true;
9484         break;
9485       }
9486     } else { // If both operands are defined.
9487       // Target order is [8,15] if the current mask is between [0,7].
9488       TargetOrder =
9489           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9490       // Skip if mask of other elements don't equal our expected order.
9491       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9492         // We only need the last 3 bits for the number of shifts.
9493         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9494                          : BigEndianShifts[MaskOneElt & 0x7];
9495         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9496         Swap = MaskOneElt < NumHalfWords;
9497         FoundCandidate = true;
9498         break;
9499       }
9500     }
9501   }
9502 
9503   if (!FoundCandidate)
9504     return SDValue();
9505 
9506   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9507   // optionally with VECSHL if shift is required.
9508   if (Swap)
9509     std::swap(V1, V2);
9510   if (V2.isUndef())
9511     V2 = V1;
9512   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9513   if (ShiftElts) {
9514     // Double ShiftElts because we're left shifting on v16i8 type.
9515     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9516                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9517     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9518     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9519                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9520     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9521   }
9522   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9523   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9524                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9525   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9526 }
9527 
9528 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9529 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9530 /// return the default SDValue.
9531 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9532                                               SelectionDAG &DAG) const {
9533   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9534   // to v16i8. Peek through the bitcasts to get the actual operands.
9535   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9536   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9537 
9538   auto ShuffleMask = SVN->getMask();
9539   SDValue VecShuffle(SVN, 0);
9540   SDLoc DL(SVN);
9541 
9542   // Check that we have a four byte shuffle.
9543   if (!isNByteElemShuffleMask(SVN, 4, 1))
9544     return SDValue();
9545 
9546   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9547   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9548     std::swap(LHS, RHS);
9549     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9550     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9551   }
9552 
9553   // Ensure that the RHS is a vector of constants.
9554   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9555   if (!BVN)
9556     return SDValue();
9557 
9558   // Check if RHS is a splat of 4-bytes (or smaller).
9559   APInt APSplatValue, APSplatUndef;
9560   unsigned SplatBitSize;
9561   bool HasAnyUndefs;
9562   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9563                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9564       SplatBitSize > 32)
9565     return SDValue();
9566 
9567   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9568   // The instruction splats a constant C into two words of the source vector
9569   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9570   // Thus we check that the shuffle mask is the equivalent  of
9571   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9572   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9573   // within each word are consecutive, so we only need to check the first byte.
9574   SDValue Index;
9575   bool IsLE = Subtarget.isLittleEndian();
9576   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9577       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9578        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9579     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9580   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9581            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9582             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9583     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9584   else
9585     return SDValue();
9586 
9587   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9588   // for XXSPLTI32DX.
9589   unsigned SplatVal = APSplatValue.getZExtValue();
9590   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9591     SplatVal |= (SplatVal << SplatBitSize);
9592 
9593   SDValue SplatNode = DAG.getNode(
9594       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9595       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9596   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9597 }
9598 
9599 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9600 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9601 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9602 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9603 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9604   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9605   assert(Op.getValueType() == MVT::v1i128 &&
9606          "Only set v1i128 as custom, other type shouldn't reach here!");
9607   SDLoc dl(Op);
9608   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9609   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9610   unsigned SHLAmt = N1.getConstantOperandVal(0);
9611   if (SHLAmt % 8 == 0) {
9612     SmallVector<int, 16> Mask(16, 0);
9613     std::iota(Mask.begin(), Mask.end(), 0);
9614     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9615     if (SDValue Shuffle =
9616             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9617                                  DAG.getUNDEF(MVT::v16i8), Mask))
9618       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9619   }
9620   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9621   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9622                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9623   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9624                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9625   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9626   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9627 }
9628 
9629 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9630 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9631 /// return the code it can be lowered into.  Worst case, it can always be
9632 /// lowered into a vperm.
9633 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9634                                                SelectionDAG &DAG) const {
9635   SDLoc dl(Op);
9636   SDValue V1 = Op.getOperand(0);
9637   SDValue V2 = Op.getOperand(1);
9638   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9639 
9640   // Any nodes that were combined in the target-independent combiner prior
9641   // to vector legalization will not be sent to the target combine. Try to
9642   // combine it here.
9643   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9644     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9645       return NewShuffle;
9646     Op = NewShuffle;
9647     SVOp = cast<ShuffleVectorSDNode>(Op);
9648     V1 = Op.getOperand(0);
9649     V2 = Op.getOperand(1);
9650   }
9651   EVT VT = Op.getValueType();
9652   bool isLittleEndian = Subtarget.isLittleEndian();
9653 
9654   unsigned ShiftElts, InsertAtByte;
9655   bool Swap = false;
9656 
9657   // If this is a load-and-splat, we can do that with a single instruction
9658   // in some cases. However if the load has multiple uses, we don't want to
9659   // combine it because that will just produce multiple loads.
9660   bool IsPermutedLoad = false;
9661   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9662   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9663       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9664       InputLoad->hasOneUse()) {
9665     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9666     int SplatIdx =
9667       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9668 
9669     // The splat index for permuted loads will be in the left half of the vector
9670     // which is strictly wider than the loaded value by 8 bytes. So we need to
9671     // adjust the splat index to point to the correct address in memory.
9672     if (IsPermutedLoad) {
9673       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9674       SplatIdx += IsFourByte ? 2 : 1;
9675       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9676              "Splat of a value outside of the loaded memory");
9677     }
9678 
9679     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9680     // For 4-byte load-and-splat, we need Power9.
9681     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9682       uint64_t Offset = 0;
9683       if (IsFourByte)
9684         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9685       else
9686         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9687 
9688       SDValue BasePtr = LD->getBasePtr();
9689       if (Offset != 0)
9690         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9691                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9692       SDValue Ops[] = {
9693         LD->getChain(),    // Chain
9694         BasePtr,           // BasePtr
9695         DAG.getValueType(Op.getValueType()) // VT
9696       };
9697       SDVTList VTL =
9698         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9699       SDValue LdSplt =
9700         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9701                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9702       if (LdSplt.getValueType() != SVOp->getValueType(0))
9703         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9704       return LdSplt;
9705     }
9706   }
9707   if (Subtarget.hasP9Vector() &&
9708       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9709                            isLittleEndian)) {
9710     if (Swap)
9711       std::swap(V1, V2);
9712     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9713     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9714     if (ShiftElts) {
9715       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9716                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9717       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9718                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9719       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9720     }
9721     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9722                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9723     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9724   }
9725 
9726   if (Subtarget.hasPrefixInstrs()) {
9727     SDValue SplatInsertNode;
9728     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9729       return SplatInsertNode;
9730   }
9731 
9732   if (Subtarget.hasP9Altivec()) {
9733     SDValue NewISDNode;
9734     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9735       return NewISDNode;
9736 
9737     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9738       return NewISDNode;
9739   }
9740 
9741   if (Subtarget.hasVSX() &&
9742       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9743     if (Swap)
9744       std::swap(V1, V2);
9745     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9746     SDValue Conv2 =
9747         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9748 
9749     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9750                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9751     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9752   }
9753 
9754   if (Subtarget.hasVSX() &&
9755     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9756     if (Swap)
9757       std::swap(V1, V2);
9758     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9759     SDValue Conv2 =
9760         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9761 
9762     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9763                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9764     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9765   }
9766 
9767   if (Subtarget.hasP9Vector()) {
9768      if (PPC::isXXBRHShuffleMask(SVOp)) {
9769       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9770       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9771       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9772     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9773       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9774       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9775       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9776     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9777       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9778       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9779       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9780     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9781       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9782       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9783       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9784     }
9785   }
9786 
9787   if (Subtarget.hasVSX()) {
9788     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9789       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9790 
9791       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9792       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9793                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9794       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9795     }
9796 
9797     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9798     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9799       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9800       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9801       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9802     }
9803   }
9804 
9805   // Cases that are handled by instructions that take permute immediates
9806   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9807   // selected by the instruction selector.
9808   if (V2.isUndef()) {
9809     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9810         PPC::isSplatShuffleMask(SVOp, 2) ||
9811         PPC::isSplatShuffleMask(SVOp, 4) ||
9812         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9813         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9814         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9815         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9816         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9817         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9818         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9819         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9820         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9821         (Subtarget.hasP8Altivec() && (
9822          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9823          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9824          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9825       return Op;
9826     }
9827   }
9828 
9829   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9830   // and produce a fixed permutation.  If any of these match, do not lower to
9831   // VPERM.
9832   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9833   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9834       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9835       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9836       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9837       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9838       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9839       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9840       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9841       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9842       (Subtarget.hasP8Altivec() && (
9843        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9844        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9845        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9846     return Op;
9847 
9848   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9849   // perfect shuffle table to emit an optimal matching sequence.
9850   ArrayRef<int> PermMask = SVOp->getMask();
9851 
9852   unsigned PFIndexes[4];
9853   bool isFourElementShuffle = true;
9854   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9855     unsigned EltNo = 8;   // Start out undef.
9856     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9857       if (PermMask[i*4+j] < 0)
9858         continue;   // Undef, ignore it.
9859 
9860       unsigned ByteSource = PermMask[i*4+j];
9861       if ((ByteSource & 3) != j) {
9862         isFourElementShuffle = false;
9863         break;
9864       }
9865 
9866       if (EltNo == 8) {
9867         EltNo = ByteSource/4;
9868       } else if (EltNo != ByteSource/4) {
9869         isFourElementShuffle = false;
9870         break;
9871       }
9872     }
9873     PFIndexes[i] = EltNo;
9874   }
9875 
9876   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9877   // perfect shuffle vector to determine if it is cost effective to do this as
9878   // discrete instructions, or whether we should use a vperm.
9879   // For now, we skip this for little endian until such time as we have a
9880   // little-endian perfect shuffle table.
9881   if (isFourElementShuffle && !isLittleEndian) {
9882     // Compute the index in the perfect shuffle table.
9883     unsigned PFTableIndex =
9884       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9885 
9886     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9887     unsigned Cost  = (PFEntry >> 30);
9888 
9889     // Determining when to avoid vperm is tricky.  Many things affect the cost
9890     // of vperm, particularly how many times the perm mask needs to be computed.
9891     // For example, if the perm mask can be hoisted out of a loop or is already
9892     // used (perhaps because there are multiple permutes with the same shuffle
9893     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9894     // the loop requires an extra register.
9895     //
9896     // As a compromise, we only emit discrete instructions if the shuffle can be
9897     // generated in 3 or fewer operations.  When we have loop information
9898     // available, if this block is within a loop, we should avoid using vperm
9899     // for 3-operation perms and use a constant pool load instead.
9900     if (Cost < 3)
9901       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9902   }
9903 
9904   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9905   // vector that will get spilled to the constant pool.
9906   if (V2.isUndef()) V2 = V1;
9907 
9908   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9909   // that it is in input element units, not in bytes.  Convert now.
9910 
9911   // For little endian, the order of the input vectors is reversed, and
9912   // the permutation mask is complemented with respect to 31.  This is
9913   // necessary to produce proper semantics with the big-endian-biased vperm
9914   // instruction.
9915   EVT EltVT = V1.getValueType().getVectorElementType();
9916   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9917 
9918   SmallVector<SDValue, 16> ResultMask;
9919   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9920     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9921 
9922     for (unsigned j = 0; j != BytesPerElement; ++j)
9923       if (isLittleEndian)
9924         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9925                                              dl, MVT::i32));
9926       else
9927         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9928                                              MVT::i32));
9929   }
9930 
9931   ShufflesHandledWithVPERM++;
9932   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9933   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9934   LLVM_DEBUG(SVOp->dump());
9935   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9936   LLVM_DEBUG(VPermMask.dump());
9937 
9938   if (isLittleEndian)
9939     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9940                        V2, V1, VPermMask);
9941   else
9942     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9943                        V1, V2, VPermMask);
9944 }
9945 
9946 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9947 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9948 /// information about the intrinsic.
9949 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9950                                  bool &isDot, const PPCSubtarget &Subtarget) {
9951   unsigned IntrinsicID =
9952       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9953   CompareOpc = -1;
9954   isDot = false;
9955   switch (IntrinsicID) {
9956   default:
9957     return false;
9958   // Comparison predicates.
9959   case Intrinsic::ppc_altivec_vcmpbfp_p:
9960     CompareOpc = 966;
9961     isDot = true;
9962     break;
9963   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9964     CompareOpc = 198;
9965     isDot = true;
9966     break;
9967   case Intrinsic::ppc_altivec_vcmpequb_p:
9968     CompareOpc = 6;
9969     isDot = true;
9970     break;
9971   case Intrinsic::ppc_altivec_vcmpequh_p:
9972     CompareOpc = 70;
9973     isDot = true;
9974     break;
9975   case Intrinsic::ppc_altivec_vcmpequw_p:
9976     CompareOpc = 134;
9977     isDot = true;
9978     break;
9979   case Intrinsic::ppc_altivec_vcmpequd_p:
9980     if (Subtarget.hasP8Altivec()) {
9981       CompareOpc = 199;
9982       isDot = true;
9983     } else
9984       return false;
9985     break;
9986   case Intrinsic::ppc_altivec_vcmpneb_p:
9987   case Intrinsic::ppc_altivec_vcmpneh_p:
9988   case Intrinsic::ppc_altivec_vcmpnew_p:
9989   case Intrinsic::ppc_altivec_vcmpnezb_p:
9990   case Intrinsic::ppc_altivec_vcmpnezh_p:
9991   case Intrinsic::ppc_altivec_vcmpnezw_p:
9992     if (Subtarget.hasP9Altivec()) {
9993       switch (IntrinsicID) {
9994       default:
9995         llvm_unreachable("Unknown comparison intrinsic.");
9996       case Intrinsic::ppc_altivec_vcmpneb_p:
9997         CompareOpc = 7;
9998         break;
9999       case Intrinsic::ppc_altivec_vcmpneh_p:
10000         CompareOpc = 71;
10001         break;
10002       case Intrinsic::ppc_altivec_vcmpnew_p:
10003         CompareOpc = 135;
10004         break;
10005       case Intrinsic::ppc_altivec_vcmpnezb_p:
10006         CompareOpc = 263;
10007         break;
10008       case Intrinsic::ppc_altivec_vcmpnezh_p:
10009         CompareOpc = 327;
10010         break;
10011       case Intrinsic::ppc_altivec_vcmpnezw_p:
10012         CompareOpc = 391;
10013         break;
10014       }
10015       isDot = true;
10016     } else
10017       return false;
10018     break;
10019   case Intrinsic::ppc_altivec_vcmpgefp_p:
10020     CompareOpc = 454;
10021     isDot = true;
10022     break;
10023   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10024     CompareOpc = 710;
10025     isDot = true;
10026     break;
10027   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10028     CompareOpc = 774;
10029     isDot = true;
10030     break;
10031   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10032     CompareOpc = 838;
10033     isDot = true;
10034     break;
10035   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10036     CompareOpc = 902;
10037     isDot = true;
10038     break;
10039   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10040     if (Subtarget.hasP8Altivec()) {
10041       CompareOpc = 967;
10042       isDot = true;
10043     } else
10044       return false;
10045     break;
10046   case Intrinsic::ppc_altivec_vcmpgtub_p:
10047     CompareOpc = 518;
10048     isDot = true;
10049     break;
10050   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10051     CompareOpc = 582;
10052     isDot = true;
10053     break;
10054   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10055     CompareOpc = 646;
10056     isDot = true;
10057     break;
10058   case Intrinsic::ppc_altivec_vcmpgtud_p:
10059     if (Subtarget.hasP8Altivec()) {
10060       CompareOpc = 711;
10061       isDot = true;
10062     } else
10063       return false;
10064     break;
10065 
10066   // VSX predicate comparisons use the same infrastructure
10067   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10068   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10069   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10070   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10071   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10072   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10073     if (Subtarget.hasVSX()) {
10074       switch (IntrinsicID) {
10075       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10076         CompareOpc = 99;
10077         break;
10078       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10079         CompareOpc = 115;
10080         break;
10081       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10082         CompareOpc = 107;
10083         break;
10084       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10085         CompareOpc = 67;
10086         break;
10087       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10088         CompareOpc = 83;
10089         break;
10090       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10091         CompareOpc = 75;
10092         break;
10093       }
10094       isDot = true;
10095     } else
10096       return false;
10097     break;
10098 
10099   // Normal Comparisons.
10100   case Intrinsic::ppc_altivec_vcmpbfp:
10101     CompareOpc = 966;
10102     break;
10103   case Intrinsic::ppc_altivec_vcmpeqfp:
10104     CompareOpc = 198;
10105     break;
10106   case Intrinsic::ppc_altivec_vcmpequb:
10107     CompareOpc = 6;
10108     break;
10109   case Intrinsic::ppc_altivec_vcmpequh:
10110     CompareOpc = 70;
10111     break;
10112   case Intrinsic::ppc_altivec_vcmpequw:
10113     CompareOpc = 134;
10114     break;
10115   case Intrinsic::ppc_altivec_vcmpequd:
10116     if (Subtarget.hasP8Altivec())
10117       CompareOpc = 199;
10118     else
10119       return false;
10120     break;
10121   case Intrinsic::ppc_altivec_vcmpneb:
10122   case Intrinsic::ppc_altivec_vcmpneh:
10123   case Intrinsic::ppc_altivec_vcmpnew:
10124   case Intrinsic::ppc_altivec_vcmpnezb:
10125   case Intrinsic::ppc_altivec_vcmpnezh:
10126   case Intrinsic::ppc_altivec_vcmpnezw:
10127     if (Subtarget.hasP9Altivec())
10128       switch (IntrinsicID) {
10129       default:
10130         llvm_unreachable("Unknown comparison intrinsic.");
10131       case Intrinsic::ppc_altivec_vcmpneb:
10132         CompareOpc = 7;
10133         break;
10134       case Intrinsic::ppc_altivec_vcmpneh:
10135         CompareOpc = 71;
10136         break;
10137       case Intrinsic::ppc_altivec_vcmpnew:
10138         CompareOpc = 135;
10139         break;
10140       case Intrinsic::ppc_altivec_vcmpnezb:
10141         CompareOpc = 263;
10142         break;
10143       case Intrinsic::ppc_altivec_vcmpnezh:
10144         CompareOpc = 327;
10145         break;
10146       case Intrinsic::ppc_altivec_vcmpnezw:
10147         CompareOpc = 391;
10148         break;
10149       }
10150     else
10151       return false;
10152     break;
10153   case Intrinsic::ppc_altivec_vcmpgefp:
10154     CompareOpc = 454;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgtfp:
10157     CompareOpc = 710;
10158     break;
10159   case Intrinsic::ppc_altivec_vcmpgtsb:
10160     CompareOpc = 774;
10161     break;
10162   case Intrinsic::ppc_altivec_vcmpgtsh:
10163     CompareOpc = 838;
10164     break;
10165   case Intrinsic::ppc_altivec_vcmpgtsw:
10166     CompareOpc = 902;
10167     break;
10168   case Intrinsic::ppc_altivec_vcmpgtsd:
10169     if (Subtarget.hasP8Altivec())
10170       CompareOpc = 967;
10171     else
10172       return false;
10173     break;
10174   case Intrinsic::ppc_altivec_vcmpgtub:
10175     CompareOpc = 518;
10176     break;
10177   case Intrinsic::ppc_altivec_vcmpgtuh:
10178     CompareOpc = 582;
10179     break;
10180   case Intrinsic::ppc_altivec_vcmpgtuw:
10181     CompareOpc = 646;
10182     break;
10183   case Intrinsic::ppc_altivec_vcmpgtud:
10184     if (Subtarget.hasP8Altivec())
10185       CompareOpc = 711;
10186     else
10187       return false;
10188     break;
10189   }
10190   return true;
10191 }
10192 
10193 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10194 /// lower, do it, otherwise return null.
10195 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10196                                                    SelectionDAG &DAG) const {
10197   unsigned IntrinsicID =
10198     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10199 
10200   SDLoc dl(Op);
10201 
10202   if (IntrinsicID == Intrinsic::thread_pointer) {
10203     // Reads the thread pointer register, used for __builtin_thread_pointer.
10204     if (Subtarget.isPPC64())
10205       return DAG.getRegister(PPC::X13, MVT::i64);
10206     return DAG.getRegister(PPC::R2, MVT::i32);
10207   }
10208 
10209   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10210   // opcode number of the comparison.
10211   int CompareOpc;
10212   bool isDot;
10213   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10214     return SDValue();    // Don't custom lower most intrinsics.
10215 
10216   // If this is a non-dot comparison, make the VCMP node and we are done.
10217   if (!isDot) {
10218     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10219                               Op.getOperand(1), Op.getOperand(2),
10220                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10221     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10222   }
10223 
10224   // Create the PPCISD altivec 'dot' comparison node.
10225   SDValue Ops[] = {
10226     Op.getOperand(2),  // LHS
10227     Op.getOperand(3),  // RHS
10228     DAG.getConstant(CompareOpc, dl, MVT::i32)
10229   };
10230   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10231   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10232 
10233   // Now that we have the comparison, emit a copy from the CR to a GPR.
10234   // This is flagged to the above dot comparison.
10235   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10236                                 DAG.getRegister(PPC::CR6, MVT::i32),
10237                                 CompNode.getValue(1));
10238 
10239   // Unpack the result based on how the target uses it.
10240   unsigned BitNo;   // Bit # of CR6.
10241   bool InvertBit;   // Invert result?
10242   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10243   default:  // Can't happen, don't crash on invalid number though.
10244   case 0:   // Return the value of the EQ bit of CR6.
10245     BitNo = 0; InvertBit = false;
10246     break;
10247   case 1:   // Return the inverted value of the EQ bit of CR6.
10248     BitNo = 0; InvertBit = true;
10249     break;
10250   case 2:   // Return the value of the LT bit of CR6.
10251     BitNo = 2; InvertBit = false;
10252     break;
10253   case 3:   // Return the inverted value of the LT bit of CR6.
10254     BitNo = 2; InvertBit = true;
10255     break;
10256   }
10257 
10258   // Shift the bit into the low position.
10259   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10260                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10261   // Isolate the bit.
10262   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10263                       DAG.getConstant(1, dl, MVT::i32));
10264 
10265   // If we are supposed to, toggle the bit.
10266   if (InvertBit)
10267     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10268                         DAG.getConstant(1, dl, MVT::i32));
10269   return Flags;
10270 }
10271 
10272 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10273                                                SelectionDAG &DAG) const {
10274   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10275   // the beginning of the argument list.
10276   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10277   SDLoc DL(Op);
10278   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10279   case Intrinsic::ppc_cfence: {
10280     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10281     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10282     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10283                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10284                                                   Op.getOperand(ArgStart + 1)),
10285                                       Op.getOperand(0)),
10286                    0);
10287   }
10288   default:
10289     break;
10290   }
10291   return SDValue();
10292 }
10293 
10294 // Lower scalar BSWAP64 to xxbrd.
10295 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10296   SDLoc dl(Op);
10297   // MTVSRDD
10298   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10299                    Op.getOperand(0));
10300   // XXBRD
10301   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10302   // MFVSRD
10303   int VectorIndex = 0;
10304   if (Subtarget.isLittleEndian())
10305     VectorIndex = 1;
10306   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10307                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10308   return Op;
10309 }
10310 
10311 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10312 // compared to a value that is atomically loaded (atomic loads zero-extend).
10313 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10314                                                 SelectionDAG &DAG) const {
10315   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10316          "Expecting an atomic compare-and-swap here.");
10317   SDLoc dl(Op);
10318   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10319   EVT MemVT = AtomicNode->getMemoryVT();
10320   if (MemVT.getSizeInBits() >= 32)
10321     return Op;
10322 
10323   SDValue CmpOp = Op.getOperand(2);
10324   // If this is already correctly zero-extended, leave it alone.
10325   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10326   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10327     return Op;
10328 
10329   // Clear the high bits of the compare operand.
10330   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10331   SDValue NewCmpOp =
10332     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10333                 DAG.getConstant(MaskVal, dl, MVT::i32));
10334 
10335   // Replace the existing compare operand with the properly zero-extended one.
10336   SmallVector<SDValue, 4> Ops;
10337   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10338     Ops.push_back(AtomicNode->getOperand(i));
10339   Ops[2] = NewCmpOp;
10340   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10341   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10342   auto NodeTy =
10343     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10344   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10345 }
10346 
10347 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10348                                                  SelectionDAG &DAG) const {
10349   SDLoc dl(Op);
10350   // Create a stack slot that is 16-byte aligned.
10351   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10352   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10353   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10354   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10355 
10356   // Store the input value into Value#0 of the stack slot.
10357   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10358                                MachinePointerInfo());
10359   // Load it out.
10360   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10361 }
10362 
10363 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10364                                                   SelectionDAG &DAG) const {
10365   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10366          "Should only be called for ISD::INSERT_VECTOR_ELT");
10367 
10368   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10369   // We have legal lowering for constant indices but not for variable ones.
10370   if (!C)
10371     return SDValue();
10372 
10373   EVT VT = Op.getValueType();
10374   SDLoc dl(Op);
10375   SDValue V1 = Op.getOperand(0);
10376   SDValue V2 = Op.getOperand(1);
10377   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10378   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10379     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10380     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10381     unsigned InsertAtElement = C->getZExtValue();
10382     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10383     if (Subtarget.isLittleEndian()) {
10384       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10385     }
10386     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10387                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10388   }
10389   return Op;
10390 }
10391 
10392 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10393   SDLoc dl(Op);
10394   if (Op.getValueType() == MVT::v4i32) {
10395     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10396 
10397     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10398     // +16 as shift amt.
10399     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10400     SDValue RHSSwap =   // = vrlw RHS, 16
10401       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10402 
10403     // Shrinkify inputs to v8i16.
10404     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10405     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10406     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10407 
10408     // Low parts multiplied together, generating 32-bit results (we ignore the
10409     // top parts).
10410     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10411                                         LHS, RHS, DAG, dl, MVT::v4i32);
10412 
10413     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10414                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10415     // Shift the high parts up 16 bits.
10416     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10417                               Neg16, DAG, dl);
10418     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10419   } else if (Op.getValueType() == MVT::v16i8) {
10420     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10421     bool isLittleEndian = Subtarget.isLittleEndian();
10422 
10423     // Multiply the even 8-bit parts, producing 16-bit sums.
10424     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10425                                            LHS, RHS, DAG, dl, MVT::v8i16);
10426     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10427 
10428     // Multiply the odd 8-bit parts, producing 16-bit sums.
10429     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10430                                           LHS, RHS, DAG, dl, MVT::v8i16);
10431     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10432 
10433     // Merge the results together.  Because vmuleub and vmuloub are
10434     // instructions with a big-endian bias, we must reverse the
10435     // element numbering and reverse the meaning of "odd" and "even"
10436     // when generating little endian code.
10437     int Ops[16];
10438     for (unsigned i = 0; i != 8; ++i) {
10439       if (isLittleEndian) {
10440         Ops[i*2  ] = 2*i;
10441         Ops[i*2+1] = 2*i+16;
10442       } else {
10443         Ops[i*2  ] = 2*i+1;
10444         Ops[i*2+1] = 2*i+1+16;
10445       }
10446     }
10447     if (isLittleEndian)
10448       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10449     else
10450       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10451   } else {
10452     llvm_unreachable("Unknown mul to lower!");
10453   }
10454 }
10455 
10456 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10457 
10458   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10459 
10460   EVT VT = Op.getValueType();
10461   assert(VT.isVector() &&
10462          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10463   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10464           VT == MVT::v16i8) &&
10465          "Unexpected vector element type!");
10466   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10467          "Current subtarget doesn't support smax v2i64!");
10468 
10469   // For vector abs, it can be lowered to:
10470   // abs x
10471   // ==>
10472   // y = -x
10473   // smax(x, y)
10474 
10475   SDLoc dl(Op);
10476   SDValue X = Op.getOperand(0);
10477   SDValue Zero = DAG.getConstant(0, dl, VT);
10478   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10479 
10480   // SMAX patch https://reviews.llvm.org/D47332
10481   // hasn't landed yet, so use intrinsic first here.
10482   // TODO: Should use SMAX directly once SMAX patch landed
10483   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10484   if (VT == MVT::v2i64)
10485     BifID = Intrinsic::ppc_altivec_vmaxsd;
10486   else if (VT == MVT::v8i16)
10487     BifID = Intrinsic::ppc_altivec_vmaxsh;
10488   else if (VT == MVT::v16i8)
10489     BifID = Intrinsic::ppc_altivec_vmaxsb;
10490 
10491   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10492 }
10493 
10494 // Custom lowering for fpext vf32 to v2f64
10495 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10496 
10497   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10498          "Should only be called for ISD::FP_EXTEND");
10499 
10500   // FIXME: handle extends from half precision float vectors on P9.
10501   // We only want to custom lower an extend from v2f32 to v2f64.
10502   if (Op.getValueType() != MVT::v2f64 ||
10503       Op.getOperand(0).getValueType() != MVT::v2f32)
10504     return SDValue();
10505 
10506   SDLoc dl(Op);
10507   SDValue Op0 = Op.getOperand(0);
10508 
10509   switch (Op0.getOpcode()) {
10510   default:
10511     return SDValue();
10512   case ISD::EXTRACT_SUBVECTOR: {
10513     assert(Op0.getNumOperands() == 2 &&
10514            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10515            "Node should have 2 operands with second one being a constant!");
10516 
10517     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10518       return SDValue();
10519 
10520     // Custom lower is only done for high or low doubleword.
10521     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10522     if (Idx % 2 != 0)
10523       return SDValue();
10524 
10525     // Since input is v4f32, at this point Idx is either 0 or 2.
10526     // Shift to get the doubleword position we want.
10527     int DWord = Idx >> 1;
10528 
10529     // High and low word positions are different on little endian.
10530     if (Subtarget.isLittleEndian())
10531       DWord ^= 0x1;
10532 
10533     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10534                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10535   }
10536   case ISD::FADD:
10537   case ISD::FMUL:
10538   case ISD::FSUB: {
10539     SDValue NewLoad[2];
10540     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10541       // Ensure both input are loads.
10542       SDValue LdOp = Op0.getOperand(i);
10543       if (LdOp.getOpcode() != ISD::LOAD)
10544         return SDValue();
10545       // Generate new load node.
10546       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10547       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10548       NewLoad[i] = DAG.getMemIntrinsicNode(
10549           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10550           LD->getMemoryVT(), LD->getMemOperand());
10551     }
10552     SDValue NewOp =
10553         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10554                     NewLoad[1], Op0.getNode()->getFlags());
10555     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10556                        DAG.getConstant(0, dl, MVT::i32));
10557   }
10558   case ISD::LOAD: {
10559     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10560     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10561     SDValue NewLd = DAG.getMemIntrinsicNode(
10562         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10563         LD->getMemoryVT(), LD->getMemOperand());
10564     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10565                        DAG.getConstant(0, dl, MVT::i32));
10566   }
10567   }
10568   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10569 }
10570 
10571 /// LowerOperation - Provide custom lowering hooks for some operations.
10572 ///
10573 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10574   switch (Op.getOpcode()) {
10575   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10576   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10577   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10578   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10579   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10580   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10581   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10582   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10583   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10584 
10585   // Variable argument lowering.
10586   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10587   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10588   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10589 
10590   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10591   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10592   case ISD::GET_DYNAMIC_AREA_OFFSET:
10593     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10594 
10595   // Exception handling lowering.
10596   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10597   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10598   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10599 
10600   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10601   case ISD::STORE:              return LowerSTORE(Op, DAG);
10602   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10603   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10604   case ISD::STRICT_FP_TO_UINT:
10605   case ISD::STRICT_FP_TO_SINT:
10606   case ISD::FP_TO_UINT:
10607   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10608   case ISD::STRICT_UINT_TO_FP:
10609   case ISD::STRICT_SINT_TO_FP:
10610   case ISD::UINT_TO_FP:
10611   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10612   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10613 
10614   // Lower 64-bit shifts.
10615   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10616   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10617   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10618 
10619   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10620   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10621 
10622   // Vector-related lowering.
10623   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10624   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10625   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10626   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10627   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10628   case ISD::MUL:                return LowerMUL(Op, DAG);
10629   case ISD::ABS:                return LowerABS(Op, DAG);
10630   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10631   case ISD::ROTL:               return LowerROTL(Op, DAG);
10632 
10633   // For counter-based loop handling.
10634   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10635 
10636   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10637 
10638   // Frame & Return address.
10639   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10640   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10641 
10642   case ISD::INTRINSIC_VOID:
10643     return LowerINTRINSIC_VOID(Op, DAG);
10644   case ISD::BSWAP:
10645     return LowerBSWAP(Op, DAG);
10646   case ISD::ATOMIC_CMP_SWAP:
10647     return LowerATOMIC_CMP_SWAP(Op, DAG);
10648   }
10649 }
10650 
10651 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10652                                            SmallVectorImpl<SDValue>&Results,
10653                                            SelectionDAG &DAG) const {
10654   SDLoc dl(N);
10655   switch (N->getOpcode()) {
10656   default:
10657     llvm_unreachable("Do not know how to custom type legalize this operation!");
10658   case ISD::READCYCLECOUNTER: {
10659     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10660     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10661 
10662     Results.push_back(
10663         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10664     Results.push_back(RTB.getValue(2));
10665     break;
10666   }
10667   case ISD::INTRINSIC_W_CHAIN: {
10668     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10669         Intrinsic::loop_decrement)
10670       break;
10671 
10672     assert(N->getValueType(0) == MVT::i1 &&
10673            "Unexpected result type for CTR decrement intrinsic");
10674     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10675                                  N->getValueType(0));
10676     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10677     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10678                                  N->getOperand(1));
10679 
10680     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10681     Results.push_back(NewInt.getValue(1));
10682     break;
10683   }
10684   case ISD::VAARG: {
10685     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10686       return;
10687 
10688     EVT VT = N->getValueType(0);
10689 
10690     if (VT == MVT::i64) {
10691       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10692 
10693       Results.push_back(NewNode);
10694       Results.push_back(NewNode.getValue(1));
10695     }
10696     return;
10697   }
10698   case ISD::STRICT_FP_TO_SINT:
10699   case ISD::STRICT_FP_TO_UINT:
10700   case ISD::FP_TO_SINT:
10701   case ISD::FP_TO_UINT:
10702     // LowerFP_TO_INT() can only handle f32 and f64.
10703     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10704         MVT::ppcf128)
10705       return;
10706     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10707     return;
10708   case ISD::TRUNCATE: {
10709     EVT TrgVT = N->getValueType(0);
10710     EVT OpVT = N->getOperand(0).getValueType();
10711     if (TrgVT.isVector() &&
10712         isOperationCustom(N->getOpcode(), TrgVT) &&
10713         OpVT.getSizeInBits() <= 128 &&
10714         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10715       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10716     return;
10717   }
10718   case ISD::BITCAST:
10719     // Don't handle bitcast here.
10720     return;
10721   case ISD::FP_EXTEND:
10722     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10723     if (Lowered)
10724       Results.push_back(Lowered);
10725     return;
10726   }
10727 }
10728 
10729 //===----------------------------------------------------------------------===//
10730 //  Other Lowering Code
10731 //===----------------------------------------------------------------------===//
10732 
10733 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10734   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10735   Function *Func = Intrinsic::getDeclaration(M, Id);
10736   return Builder.CreateCall(Func, {});
10737 }
10738 
10739 // The mappings for emitLeading/TrailingFence is taken from
10740 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10741 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10742                                                  Instruction *Inst,
10743                                                  AtomicOrdering Ord) const {
10744   if (Ord == AtomicOrdering::SequentiallyConsistent)
10745     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10746   if (isReleaseOrStronger(Ord))
10747     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10748   return nullptr;
10749 }
10750 
10751 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10752                                                   Instruction *Inst,
10753                                                   AtomicOrdering Ord) const {
10754   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10755     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10756     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10757     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10758     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10759       return Builder.CreateCall(
10760           Intrinsic::getDeclaration(
10761               Builder.GetInsertBlock()->getParent()->getParent(),
10762               Intrinsic::ppc_cfence, {Inst->getType()}),
10763           {Inst});
10764     // FIXME: Can use isync for rmw operation.
10765     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10766   }
10767   return nullptr;
10768 }
10769 
10770 MachineBasicBlock *
10771 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10772                                     unsigned AtomicSize,
10773                                     unsigned BinOpcode,
10774                                     unsigned CmpOpcode,
10775                                     unsigned CmpPred) const {
10776   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10777   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10778 
10779   auto LoadMnemonic = PPC::LDARX;
10780   auto StoreMnemonic = PPC::STDCX;
10781   switch (AtomicSize) {
10782   default:
10783     llvm_unreachable("Unexpected size of atomic entity");
10784   case 1:
10785     LoadMnemonic = PPC::LBARX;
10786     StoreMnemonic = PPC::STBCX;
10787     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10788     break;
10789   case 2:
10790     LoadMnemonic = PPC::LHARX;
10791     StoreMnemonic = PPC::STHCX;
10792     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10793     break;
10794   case 4:
10795     LoadMnemonic = PPC::LWARX;
10796     StoreMnemonic = PPC::STWCX;
10797     break;
10798   case 8:
10799     LoadMnemonic = PPC::LDARX;
10800     StoreMnemonic = PPC::STDCX;
10801     break;
10802   }
10803 
10804   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10805   MachineFunction *F = BB->getParent();
10806   MachineFunction::iterator It = ++BB->getIterator();
10807 
10808   Register dest = MI.getOperand(0).getReg();
10809   Register ptrA = MI.getOperand(1).getReg();
10810   Register ptrB = MI.getOperand(2).getReg();
10811   Register incr = MI.getOperand(3).getReg();
10812   DebugLoc dl = MI.getDebugLoc();
10813 
10814   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10815   MachineBasicBlock *loop2MBB =
10816     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10817   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10818   F->insert(It, loopMBB);
10819   if (CmpOpcode)
10820     F->insert(It, loop2MBB);
10821   F->insert(It, exitMBB);
10822   exitMBB->splice(exitMBB->begin(), BB,
10823                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10824   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10825 
10826   MachineRegisterInfo &RegInfo = F->getRegInfo();
10827   Register TmpReg = (!BinOpcode) ? incr :
10828     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10829                                            : &PPC::GPRCRegClass);
10830 
10831   //  thisMBB:
10832   //   ...
10833   //   fallthrough --> loopMBB
10834   BB->addSuccessor(loopMBB);
10835 
10836   //  loopMBB:
10837   //   l[wd]arx dest, ptr
10838   //   add r0, dest, incr
10839   //   st[wd]cx. r0, ptr
10840   //   bne- loopMBB
10841   //   fallthrough --> exitMBB
10842 
10843   // For max/min...
10844   //  loopMBB:
10845   //   l[wd]arx dest, ptr
10846   //   cmpl?[wd] incr, dest
10847   //   bgt exitMBB
10848   //  loop2MBB:
10849   //   st[wd]cx. dest, ptr
10850   //   bne- loopMBB
10851   //   fallthrough --> exitMBB
10852 
10853   BB = loopMBB;
10854   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10855     .addReg(ptrA).addReg(ptrB);
10856   if (BinOpcode)
10857     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10858   if (CmpOpcode) {
10859     // Signed comparisons of byte or halfword values must be sign-extended.
10860     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10861       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10862       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10863               ExtReg).addReg(dest);
10864       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10865         .addReg(incr).addReg(ExtReg);
10866     } else
10867       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10868         .addReg(incr).addReg(dest);
10869 
10870     BuildMI(BB, dl, TII->get(PPC::BCC))
10871       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10872     BB->addSuccessor(loop2MBB);
10873     BB->addSuccessor(exitMBB);
10874     BB = loop2MBB;
10875   }
10876   BuildMI(BB, dl, TII->get(StoreMnemonic))
10877     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10878   BuildMI(BB, dl, TII->get(PPC::BCC))
10879     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10880   BB->addSuccessor(loopMBB);
10881   BB->addSuccessor(exitMBB);
10882 
10883   //  exitMBB:
10884   //   ...
10885   BB = exitMBB;
10886   return BB;
10887 }
10888 
10889 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10890     MachineInstr &MI, MachineBasicBlock *BB,
10891     bool is8bit, // operation
10892     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10893   // If we support part-word atomic mnemonics, just use them
10894   if (Subtarget.hasPartwordAtomics())
10895     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10896                             CmpPred);
10897 
10898   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10899   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10900   // In 64 bit mode we have to use 64 bits for addresses, even though the
10901   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10902   // registers without caring whether they're 32 or 64, but here we're
10903   // doing actual arithmetic on the addresses.
10904   bool is64bit = Subtarget.isPPC64();
10905   bool isLittleEndian = Subtarget.isLittleEndian();
10906   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10907 
10908   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10909   MachineFunction *F = BB->getParent();
10910   MachineFunction::iterator It = ++BB->getIterator();
10911 
10912   Register dest = MI.getOperand(0).getReg();
10913   Register ptrA = MI.getOperand(1).getReg();
10914   Register ptrB = MI.getOperand(2).getReg();
10915   Register incr = MI.getOperand(3).getReg();
10916   DebugLoc dl = MI.getDebugLoc();
10917 
10918   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10919   MachineBasicBlock *loop2MBB =
10920       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10921   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10922   F->insert(It, loopMBB);
10923   if (CmpOpcode)
10924     F->insert(It, loop2MBB);
10925   F->insert(It, exitMBB);
10926   exitMBB->splice(exitMBB->begin(), BB,
10927                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10928   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10929 
10930   MachineRegisterInfo &RegInfo = F->getRegInfo();
10931   const TargetRegisterClass *RC =
10932       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10933   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10934 
10935   Register PtrReg = RegInfo.createVirtualRegister(RC);
10936   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10937   Register ShiftReg =
10938       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10939   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10940   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10941   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10942   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10943   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10944   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10945   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10946   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10947   Register Ptr1Reg;
10948   Register TmpReg =
10949       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10950 
10951   //  thisMBB:
10952   //   ...
10953   //   fallthrough --> loopMBB
10954   BB->addSuccessor(loopMBB);
10955 
10956   // The 4-byte load must be aligned, while a char or short may be
10957   // anywhere in the word.  Hence all this nasty bookkeeping code.
10958   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10959   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10960   //   xori shift, shift1, 24 [16]
10961   //   rlwinm ptr, ptr1, 0, 0, 29
10962   //   slw incr2, incr, shift
10963   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10964   //   slw mask, mask2, shift
10965   //  loopMBB:
10966   //   lwarx tmpDest, ptr
10967   //   add tmp, tmpDest, incr2
10968   //   andc tmp2, tmpDest, mask
10969   //   and tmp3, tmp, mask
10970   //   or tmp4, tmp3, tmp2
10971   //   stwcx. tmp4, ptr
10972   //   bne- loopMBB
10973   //   fallthrough --> exitMBB
10974   //   srw dest, tmpDest, shift
10975   if (ptrA != ZeroReg) {
10976     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10977     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10978         .addReg(ptrA)
10979         .addReg(ptrB);
10980   } else {
10981     Ptr1Reg = ptrB;
10982   }
10983   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10984   // mode.
10985   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10986       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10987       .addImm(3)
10988       .addImm(27)
10989       .addImm(is8bit ? 28 : 27);
10990   if (!isLittleEndian)
10991     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10992         .addReg(Shift1Reg)
10993         .addImm(is8bit ? 24 : 16);
10994   if (is64bit)
10995     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10996         .addReg(Ptr1Reg)
10997         .addImm(0)
10998         .addImm(61);
10999   else
11000     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11001         .addReg(Ptr1Reg)
11002         .addImm(0)
11003         .addImm(0)
11004         .addImm(29);
11005   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11006   if (is8bit)
11007     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11008   else {
11009     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11010     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11011         .addReg(Mask3Reg)
11012         .addImm(65535);
11013   }
11014   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11015       .addReg(Mask2Reg)
11016       .addReg(ShiftReg);
11017 
11018   BB = loopMBB;
11019   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11020       .addReg(ZeroReg)
11021       .addReg(PtrReg);
11022   if (BinOpcode)
11023     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11024         .addReg(Incr2Reg)
11025         .addReg(TmpDestReg);
11026   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11027       .addReg(TmpDestReg)
11028       .addReg(MaskReg);
11029   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11030   if (CmpOpcode) {
11031     // For unsigned comparisons, we can directly compare the shifted values.
11032     // For signed comparisons we shift and sign extend.
11033     Register SReg = RegInfo.createVirtualRegister(GPRC);
11034     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11035         .addReg(TmpDestReg)
11036         .addReg(MaskReg);
11037     unsigned ValueReg = SReg;
11038     unsigned CmpReg = Incr2Reg;
11039     if (CmpOpcode == PPC::CMPW) {
11040       ValueReg = RegInfo.createVirtualRegister(GPRC);
11041       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11042           .addReg(SReg)
11043           .addReg(ShiftReg);
11044       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11045       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11046           .addReg(ValueReg);
11047       ValueReg = ValueSReg;
11048       CmpReg = incr;
11049     }
11050     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11051         .addReg(CmpReg)
11052         .addReg(ValueReg);
11053     BuildMI(BB, dl, TII->get(PPC::BCC))
11054         .addImm(CmpPred)
11055         .addReg(PPC::CR0)
11056         .addMBB(exitMBB);
11057     BB->addSuccessor(loop2MBB);
11058     BB->addSuccessor(exitMBB);
11059     BB = loop2MBB;
11060   }
11061   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11062   BuildMI(BB, dl, TII->get(PPC::STWCX))
11063       .addReg(Tmp4Reg)
11064       .addReg(ZeroReg)
11065       .addReg(PtrReg);
11066   BuildMI(BB, dl, TII->get(PPC::BCC))
11067       .addImm(PPC::PRED_NE)
11068       .addReg(PPC::CR0)
11069       .addMBB(loopMBB);
11070   BB->addSuccessor(loopMBB);
11071   BB->addSuccessor(exitMBB);
11072 
11073   //  exitMBB:
11074   //   ...
11075   BB = exitMBB;
11076   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11077       .addReg(TmpDestReg)
11078       .addReg(ShiftReg);
11079   return BB;
11080 }
11081 
11082 llvm::MachineBasicBlock *
11083 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11084                                     MachineBasicBlock *MBB) const {
11085   DebugLoc DL = MI.getDebugLoc();
11086   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11087   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11088 
11089   MachineFunction *MF = MBB->getParent();
11090   MachineRegisterInfo &MRI = MF->getRegInfo();
11091 
11092   const BasicBlock *BB = MBB->getBasicBlock();
11093   MachineFunction::iterator I = ++MBB->getIterator();
11094 
11095   Register DstReg = MI.getOperand(0).getReg();
11096   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11097   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11098   Register mainDstReg = MRI.createVirtualRegister(RC);
11099   Register restoreDstReg = MRI.createVirtualRegister(RC);
11100 
11101   MVT PVT = getPointerTy(MF->getDataLayout());
11102   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11103          "Invalid Pointer Size!");
11104   // For v = setjmp(buf), we generate
11105   //
11106   // thisMBB:
11107   //  SjLjSetup mainMBB
11108   //  bl mainMBB
11109   //  v_restore = 1
11110   //  b sinkMBB
11111   //
11112   // mainMBB:
11113   //  buf[LabelOffset] = LR
11114   //  v_main = 0
11115   //
11116   // sinkMBB:
11117   //  v = phi(main, restore)
11118   //
11119 
11120   MachineBasicBlock *thisMBB = MBB;
11121   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11122   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11123   MF->insert(I, mainMBB);
11124   MF->insert(I, sinkMBB);
11125 
11126   MachineInstrBuilder MIB;
11127 
11128   // Transfer the remainder of BB and its successor edges to sinkMBB.
11129   sinkMBB->splice(sinkMBB->begin(), MBB,
11130                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11131   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11132 
11133   // Note that the structure of the jmp_buf used here is not compatible
11134   // with that used by libc, and is not designed to be. Specifically, it
11135   // stores only those 'reserved' registers that LLVM does not otherwise
11136   // understand how to spill. Also, by convention, by the time this
11137   // intrinsic is called, Clang has already stored the frame address in the
11138   // first slot of the buffer and stack address in the third. Following the
11139   // X86 target code, we'll store the jump address in the second slot. We also
11140   // need to save the TOC pointer (R2) to handle jumps between shared
11141   // libraries, and that will be stored in the fourth slot. The thread
11142   // identifier (R13) is not affected.
11143 
11144   // thisMBB:
11145   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11146   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11147   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11148 
11149   // Prepare IP either in reg.
11150   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11151   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11152   Register BufReg = MI.getOperand(1).getReg();
11153 
11154   if (Subtarget.is64BitELFABI()) {
11155     setUsesTOCBasePtr(*MBB->getParent());
11156     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11157               .addReg(PPC::X2)
11158               .addImm(TOCOffset)
11159               .addReg(BufReg)
11160               .cloneMemRefs(MI);
11161   }
11162 
11163   // Naked functions never have a base pointer, and so we use r1. For all
11164   // other functions, this decision must be delayed until during PEI.
11165   unsigned BaseReg;
11166   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11167     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11168   else
11169     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11170 
11171   MIB = BuildMI(*thisMBB, MI, DL,
11172                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11173             .addReg(BaseReg)
11174             .addImm(BPOffset)
11175             .addReg(BufReg)
11176             .cloneMemRefs(MI);
11177 
11178   // Setup
11179   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11180   MIB.addRegMask(TRI->getNoPreservedMask());
11181 
11182   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11183 
11184   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11185           .addMBB(mainMBB);
11186   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11187 
11188   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11189   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11190 
11191   // mainMBB:
11192   //  mainDstReg = 0
11193   MIB =
11194       BuildMI(mainMBB, DL,
11195               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11196 
11197   // Store IP
11198   if (Subtarget.isPPC64()) {
11199     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11200             .addReg(LabelReg)
11201             .addImm(LabelOffset)
11202             .addReg(BufReg);
11203   } else {
11204     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11205             .addReg(LabelReg)
11206             .addImm(LabelOffset)
11207             .addReg(BufReg);
11208   }
11209   MIB.cloneMemRefs(MI);
11210 
11211   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11212   mainMBB->addSuccessor(sinkMBB);
11213 
11214   // sinkMBB:
11215   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11216           TII->get(PPC::PHI), DstReg)
11217     .addReg(mainDstReg).addMBB(mainMBB)
11218     .addReg(restoreDstReg).addMBB(thisMBB);
11219 
11220   MI.eraseFromParent();
11221   return sinkMBB;
11222 }
11223 
11224 MachineBasicBlock *
11225 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11226                                      MachineBasicBlock *MBB) const {
11227   DebugLoc DL = MI.getDebugLoc();
11228   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11229 
11230   MachineFunction *MF = MBB->getParent();
11231   MachineRegisterInfo &MRI = MF->getRegInfo();
11232 
11233   MVT PVT = getPointerTy(MF->getDataLayout());
11234   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11235          "Invalid Pointer Size!");
11236 
11237   const TargetRegisterClass *RC =
11238     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11239   Register Tmp = MRI.createVirtualRegister(RC);
11240   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11241   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11242   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11243   unsigned BP =
11244       (PVT == MVT::i64)
11245           ? PPC::X30
11246           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11247                                                               : PPC::R30);
11248 
11249   MachineInstrBuilder MIB;
11250 
11251   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11252   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11253   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11254   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11255 
11256   Register BufReg = MI.getOperand(0).getReg();
11257 
11258   // Reload FP (the jumped-to function may not have had a
11259   // frame pointer, and if so, then its r31 will be restored
11260   // as necessary).
11261   if (PVT == MVT::i64) {
11262     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11263             .addImm(0)
11264             .addReg(BufReg);
11265   } else {
11266     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11267             .addImm(0)
11268             .addReg(BufReg);
11269   }
11270   MIB.cloneMemRefs(MI);
11271 
11272   // Reload IP
11273   if (PVT == MVT::i64) {
11274     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11275             .addImm(LabelOffset)
11276             .addReg(BufReg);
11277   } else {
11278     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11279             .addImm(LabelOffset)
11280             .addReg(BufReg);
11281   }
11282   MIB.cloneMemRefs(MI);
11283 
11284   // Reload SP
11285   if (PVT == MVT::i64) {
11286     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11287             .addImm(SPOffset)
11288             .addReg(BufReg);
11289   } else {
11290     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11291             .addImm(SPOffset)
11292             .addReg(BufReg);
11293   }
11294   MIB.cloneMemRefs(MI);
11295 
11296   // Reload BP
11297   if (PVT == MVT::i64) {
11298     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11299             .addImm(BPOffset)
11300             .addReg(BufReg);
11301   } else {
11302     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11303             .addImm(BPOffset)
11304             .addReg(BufReg);
11305   }
11306   MIB.cloneMemRefs(MI);
11307 
11308   // Reload TOC
11309   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11310     setUsesTOCBasePtr(*MBB->getParent());
11311     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11312               .addImm(TOCOffset)
11313               .addReg(BufReg)
11314               .cloneMemRefs(MI);
11315   }
11316 
11317   // Jump
11318   BuildMI(*MBB, MI, DL,
11319           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11320   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11321 
11322   MI.eraseFromParent();
11323   return MBB;
11324 }
11325 
11326 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11327   // If the function specifically requests inline stack probes, emit them.
11328   if (MF.getFunction().hasFnAttribute("probe-stack"))
11329     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11330            "inline-asm";
11331   return false;
11332 }
11333 
11334 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11335   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11336   unsigned StackAlign = TFI->getStackAlignment();
11337   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11338          "Unexpected stack alignment");
11339   // The default stack probe size is 4096 if the function has no
11340   // stack-probe-size attribute.
11341   unsigned StackProbeSize = 4096;
11342   const Function &Fn = MF.getFunction();
11343   if (Fn.hasFnAttribute("stack-probe-size"))
11344     Fn.getFnAttribute("stack-probe-size")
11345         .getValueAsString()
11346         .getAsInteger(0, StackProbeSize);
11347   // Round down to the stack alignment.
11348   StackProbeSize &= ~(StackAlign - 1);
11349   return StackProbeSize ? StackProbeSize : StackAlign;
11350 }
11351 
11352 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11353 // into three phases. In the first phase, it uses pseudo instruction
11354 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11355 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11356 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11357 // MaxCallFrameSize so that it can calculate correct data area pointer.
11358 MachineBasicBlock *
11359 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11360                                     MachineBasicBlock *MBB) const {
11361   const bool isPPC64 = Subtarget.isPPC64();
11362   MachineFunction *MF = MBB->getParent();
11363   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11364   DebugLoc DL = MI.getDebugLoc();
11365   const unsigned ProbeSize = getStackProbeSize(*MF);
11366   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11367   MachineRegisterInfo &MRI = MF->getRegInfo();
11368   // The CFG of probing stack looks as
11369   //         +-----+
11370   //         | MBB |
11371   //         +--+--+
11372   //            |
11373   //       +----v----+
11374   //  +--->+ TestMBB +---+
11375   //  |    +----+----+   |
11376   //  |         |        |
11377   //  |   +-----v----+   |
11378   //  +---+ BlockMBB |   |
11379   //      +----------+   |
11380   //                     |
11381   //       +---------+   |
11382   //       | TailMBB +<--+
11383   //       +---------+
11384   // In MBB, calculate previous frame pointer and final stack pointer.
11385   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11386   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11387   // TailMBB is spliced via \p MI.
11388   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11389   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11390   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11391 
11392   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11393   MF->insert(MBBIter, TestMBB);
11394   MF->insert(MBBIter, BlockMBB);
11395   MF->insert(MBBIter, TailMBB);
11396 
11397   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11398   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11399 
11400   Register DstReg = MI.getOperand(0).getReg();
11401   Register NegSizeReg = MI.getOperand(1).getReg();
11402   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11403   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11404   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11405   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11406 
11407   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11408   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11409   // NegSize.
11410   unsigned ProbeOpc;
11411   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11412     ProbeOpc =
11413         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11414   else
11415     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11416     // and NegSizeReg will be allocated in the same phyreg to avoid
11417     // redundant copy when NegSizeReg has only one use which is current MI and
11418     // will be replaced by PREPARE_PROBED_ALLOCA then.
11419     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11420                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11421   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11422       .addDef(ActualNegSizeReg)
11423       .addReg(NegSizeReg)
11424       .add(MI.getOperand(2))
11425       .add(MI.getOperand(3));
11426 
11427   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11428   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11429           FinalStackPtr)
11430       .addReg(SPReg)
11431       .addReg(ActualNegSizeReg);
11432 
11433   // Materialize a scratch register for update.
11434   int64_t NegProbeSize = -(int64_t)ProbeSize;
11435   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11436   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11437   if (!isInt<16>(NegProbeSize)) {
11438     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11439     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11440         .addImm(NegProbeSize >> 16);
11441     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11442             ScratchReg)
11443         .addReg(TempReg)
11444         .addImm(NegProbeSize & 0xFFFF);
11445   } else
11446     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11447         .addImm(NegProbeSize);
11448 
11449   {
11450     // Probing leading residual part.
11451     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11452     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11453         .addReg(ActualNegSizeReg)
11454         .addReg(ScratchReg);
11455     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11456     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11457         .addReg(Div)
11458         .addReg(ScratchReg);
11459     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11460     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11461         .addReg(Mul)
11462         .addReg(ActualNegSizeReg);
11463     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11464         .addReg(FramePointer)
11465         .addReg(SPReg)
11466         .addReg(NegMod);
11467   }
11468 
11469   {
11470     // Remaining part should be multiple of ProbeSize.
11471     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11472     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11473         .addReg(SPReg)
11474         .addReg(FinalStackPtr);
11475     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11476         .addImm(PPC::PRED_EQ)
11477         .addReg(CmpResult)
11478         .addMBB(TailMBB);
11479     TestMBB->addSuccessor(BlockMBB);
11480     TestMBB->addSuccessor(TailMBB);
11481   }
11482 
11483   {
11484     // Touch the block.
11485     // |P...|P...|P...
11486     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11487         .addReg(FramePointer)
11488         .addReg(SPReg)
11489         .addReg(ScratchReg);
11490     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11491     BlockMBB->addSuccessor(TestMBB);
11492   }
11493 
11494   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11495   // DYNAREAOFFSET pseudo instruction to get the future result.
11496   Register MaxCallFrameSizeReg =
11497       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11498   BuildMI(TailMBB, DL,
11499           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11500           MaxCallFrameSizeReg)
11501       .add(MI.getOperand(2))
11502       .add(MI.getOperand(3));
11503   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11504       .addReg(SPReg)
11505       .addReg(MaxCallFrameSizeReg);
11506 
11507   // Splice instructions after MI to TailMBB.
11508   TailMBB->splice(TailMBB->end(), MBB,
11509                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11510   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11511   MBB->addSuccessor(TestMBB);
11512 
11513   // Delete the pseudo instruction.
11514   MI.eraseFromParent();
11515 
11516   ++NumDynamicAllocaProbed;
11517   return TailMBB;
11518 }
11519 
11520 MachineBasicBlock *
11521 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11522                                                MachineBasicBlock *BB) const {
11523   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11524       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11525     if (Subtarget.is64BitELFABI() &&
11526         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11527         !Subtarget.isUsingPCRelativeCalls()) {
11528       // Call lowering should have added an r2 operand to indicate a dependence
11529       // on the TOC base pointer value. It can't however, because there is no
11530       // way to mark the dependence as implicit there, and so the stackmap code
11531       // will confuse it with a regular operand. Instead, add the dependence
11532       // here.
11533       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11534     }
11535 
11536     return emitPatchPoint(MI, BB);
11537   }
11538 
11539   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11540       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11541     return emitEHSjLjSetJmp(MI, BB);
11542   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11543              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11544     return emitEHSjLjLongJmp(MI, BB);
11545   }
11546 
11547   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11548 
11549   // To "insert" these instructions we actually have to insert their
11550   // control-flow patterns.
11551   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11552   MachineFunction::iterator It = ++BB->getIterator();
11553 
11554   MachineFunction *F = BB->getParent();
11555 
11556   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11557       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11558       MI.getOpcode() == PPC::SELECT_I8) {
11559     SmallVector<MachineOperand, 2> Cond;
11560     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11561         MI.getOpcode() == PPC::SELECT_CC_I8)
11562       Cond.push_back(MI.getOperand(4));
11563     else
11564       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11565     Cond.push_back(MI.getOperand(1));
11566 
11567     DebugLoc dl = MI.getDebugLoc();
11568     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11569                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11570   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11571              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11572              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11573              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11574              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11575              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11576              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11577              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11578              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11579              MI.getOpcode() == PPC::SELECT_F4 ||
11580              MI.getOpcode() == PPC::SELECT_F8 ||
11581              MI.getOpcode() == PPC::SELECT_F16 ||
11582              MI.getOpcode() == PPC::SELECT_SPE ||
11583              MI.getOpcode() == PPC::SELECT_SPE4 ||
11584              MI.getOpcode() == PPC::SELECT_VRRC ||
11585              MI.getOpcode() == PPC::SELECT_VSFRC ||
11586              MI.getOpcode() == PPC::SELECT_VSSRC ||
11587              MI.getOpcode() == PPC::SELECT_VSRC) {
11588     // The incoming instruction knows the destination vreg to set, the
11589     // condition code register to branch on, the true/false values to
11590     // select between, and a branch opcode to use.
11591 
11592     //  thisMBB:
11593     //  ...
11594     //   TrueVal = ...
11595     //   cmpTY ccX, r1, r2
11596     //   bCC copy1MBB
11597     //   fallthrough --> copy0MBB
11598     MachineBasicBlock *thisMBB = BB;
11599     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11600     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11601     DebugLoc dl = MI.getDebugLoc();
11602     F->insert(It, copy0MBB);
11603     F->insert(It, sinkMBB);
11604 
11605     // Transfer the remainder of BB and its successor edges to sinkMBB.
11606     sinkMBB->splice(sinkMBB->begin(), BB,
11607                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11608     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11609 
11610     // Next, add the true and fallthrough blocks as its successors.
11611     BB->addSuccessor(copy0MBB);
11612     BB->addSuccessor(sinkMBB);
11613 
11614     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11615         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11616         MI.getOpcode() == PPC::SELECT_F16 ||
11617         MI.getOpcode() == PPC::SELECT_SPE4 ||
11618         MI.getOpcode() == PPC::SELECT_SPE ||
11619         MI.getOpcode() == PPC::SELECT_VRRC ||
11620         MI.getOpcode() == PPC::SELECT_VSFRC ||
11621         MI.getOpcode() == PPC::SELECT_VSSRC ||
11622         MI.getOpcode() == PPC::SELECT_VSRC) {
11623       BuildMI(BB, dl, TII->get(PPC::BC))
11624           .addReg(MI.getOperand(1).getReg())
11625           .addMBB(sinkMBB);
11626     } else {
11627       unsigned SelectPred = MI.getOperand(4).getImm();
11628       BuildMI(BB, dl, TII->get(PPC::BCC))
11629           .addImm(SelectPred)
11630           .addReg(MI.getOperand(1).getReg())
11631           .addMBB(sinkMBB);
11632     }
11633 
11634     //  copy0MBB:
11635     //   %FalseValue = ...
11636     //   # fallthrough to sinkMBB
11637     BB = copy0MBB;
11638 
11639     // Update machine-CFG edges
11640     BB->addSuccessor(sinkMBB);
11641 
11642     //  sinkMBB:
11643     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11644     //  ...
11645     BB = sinkMBB;
11646     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11647         .addReg(MI.getOperand(3).getReg())
11648         .addMBB(copy0MBB)
11649         .addReg(MI.getOperand(2).getReg())
11650         .addMBB(thisMBB);
11651   } else if (MI.getOpcode() == PPC::ReadTB) {
11652     // To read the 64-bit time-base register on a 32-bit target, we read the
11653     // two halves. Should the counter have wrapped while it was being read, we
11654     // need to try again.
11655     // ...
11656     // readLoop:
11657     // mfspr Rx,TBU # load from TBU
11658     // mfspr Ry,TB  # load from TB
11659     // mfspr Rz,TBU # load from TBU
11660     // cmpw crX,Rx,Rz # check if 'old'='new'
11661     // bne readLoop   # branch if they're not equal
11662     // ...
11663 
11664     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11665     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11666     DebugLoc dl = MI.getDebugLoc();
11667     F->insert(It, readMBB);
11668     F->insert(It, sinkMBB);
11669 
11670     // Transfer the remainder of BB and its successor edges to sinkMBB.
11671     sinkMBB->splice(sinkMBB->begin(), BB,
11672                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11673     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11674 
11675     BB->addSuccessor(readMBB);
11676     BB = readMBB;
11677 
11678     MachineRegisterInfo &RegInfo = F->getRegInfo();
11679     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11680     Register LoReg = MI.getOperand(0).getReg();
11681     Register HiReg = MI.getOperand(1).getReg();
11682 
11683     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11684     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11685     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11686 
11687     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11688 
11689     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11690         .addReg(HiReg)
11691         .addReg(ReadAgainReg);
11692     BuildMI(BB, dl, TII->get(PPC::BCC))
11693         .addImm(PPC::PRED_NE)
11694         .addReg(CmpReg)
11695         .addMBB(readMBB);
11696 
11697     BB->addSuccessor(readMBB);
11698     BB->addSuccessor(sinkMBB);
11699   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11700     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11701   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11702     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11703   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11704     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11705   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11706     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11707 
11708   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11709     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11710   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11711     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11712   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11713     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11714   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11715     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11716 
11717   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11718     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11719   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11720     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11721   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11722     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11723   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11724     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11725 
11726   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11727     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11728   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11729     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11730   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11731     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11732   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11733     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11734 
11735   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11736     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11737   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11738     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11739   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11740     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11741   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11742     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11743 
11744   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11745     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11746   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11747     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11748   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11749     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11750   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11751     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11752 
11753   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11754     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11755   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11756     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11757   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11758     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11759   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11760     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11761 
11762   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11763     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11764   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11765     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11766   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11767     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11768   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11769     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11770 
11771   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11772     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11773   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11774     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11775   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11776     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11777   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11778     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11779 
11780   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11781     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11782   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11783     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11784   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11785     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11786   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11787     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11788 
11789   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11790     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11791   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11792     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11793   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11794     BB = EmitAtomicBinary(MI, BB, 4, 0);
11795   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11796     BB = EmitAtomicBinary(MI, BB, 8, 0);
11797   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11798            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11799            (Subtarget.hasPartwordAtomics() &&
11800             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11801            (Subtarget.hasPartwordAtomics() &&
11802             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11803     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11804 
11805     auto LoadMnemonic = PPC::LDARX;
11806     auto StoreMnemonic = PPC::STDCX;
11807     switch (MI.getOpcode()) {
11808     default:
11809       llvm_unreachable("Compare and swap of unknown size");
11810     case PPC::ATOMIC_CMP_SWAP_I8:
11811       LoadMnemonic = PPC::LBARX;
11812       StoreMnemonic = PPC::STBCX;
11813       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11814       break;
11815     case PPC::ATOMIC_CMP_SWAP_I16:
11816       LoadMnemonic = PPC::LHARX;
11817       StoreMnemonic = PPC::STHCX;
11818       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11819       break;
11820     case PPC::ATOMIC_CMP_SWAP_I32:
11821       LoadMnemonic = PPC::LWARX;
11822       StoreMnemonic = PPC::STWCX;
11823       break;
11824     case PPC::ATOMIC_CMP_SWAP_I64:
11825       LoadMnemonic = PPC::LDARX;
11826       StoreMnemonic = PPC::STDCX;
11827       break;
11828     }
11829     Register dest = MI.getOperand(0).getReg();
11830     Register ptrA = MI.getOperand(1).getReg();
11831     Register ptrB = MI.getOperand(2).getReg();
11832     Register oldval = MI.getOperand(3).getReg();
11833     Register newval = MI.getOperand(4).getReg();
11834     DebugLoc dl = MI.getDebugLoc();
11835 
11836     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11837     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11838     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11839     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11840     F->insert(It, loop1MBB);
11841     F->insert(It, loop2MBB);
11842     F->insert(It, midMBB);
11843     F->insert(It, exitMBB);
11844     exitMBB->splice(exitMBB->begin(), BB,
11845                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11846     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11847 
11848     //  thisMBB:
11849     //   ...
11850     //   fallthrough --> loopMBB
11851     BB->addSuccessor(loop1MBB);
11852 
11853     // loop1MBB:
11854     //   l[bhwd]arx dest, ptr
11855     //   cmp[wd] dest, oldval
11856     //   bne- midMBB
11857     // loop2MBB:
11858     //   st[bhwd]cx. newval, ptr
11859     //   bne- loopMBB
11860     //   b exitBB
11861     // midMBB:
11862     //   st[bhwd]cx. dest, ptr
11863     // exitBB:
11864     BB = loop1MBB;
11865     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11866     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11867         .addReg(oldval)
11868         .addReg(dest);
11869     BuildMI(BB, dl, TII->get(PPC::BCC))
11870         .addImm(PPC::PRED_NE)
11871         .addReg(PPC::CR0)
11872         .addMBB(midMBB);
11873     BB->addSuccessor(loop2MBB);
11874     BB->addSuccessor(midMBB);
11875 
11876     BB = loop2MBB;
11877     BuildMI(BB, dl, TII->get(StoreMnemonic))
11878         .addReg(newval)
11879         .addReg(ptrA)
11880         .addReg(ptrB);
11881     BuildMI(BB, dl, TII->get(PPC::BCC))
11882         .addImm(PPC::PRED_NE)
11883         .addReg(PPC::CR0)
11884         .addMBB(loop1MBB);
11885     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11886     BB->addSuccessor(loop1MBB);
11887     BB->addSuccessor(exitMBB);
11888 
11889     BB = midMBB;
11890     BuildMI(BB, dl, TII->get(StoreMnemonic))
11891         .addReg(dest)
11892         .addReg(ptrA)
11893         .addReg(ptrB);
11894     BB->addSuccessor(exitMBB);
11895 
11896     //  exitMBB:
11897     //   ...
11898     BB = exitMBB;
11899   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11900              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11901     // We must use 64-bit registers for addresses when targeting 64-bit,
11902     // since we're actually doing arithmetic on them.  Other registers
11903     // can be 32-bit.
11904     bool is64bit = Subtarget.isPPC64();
11905     bool isLittleEndian = Subtarget.isLittleEndian();
11906     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11907 
11908     Register dest = MI.getOperand(0).getReg();
11909     Register ptrA = MI.getOperand(1).getReg();
11910     Register ptrB = MI.getOperand(2).getReg();
11911     Register oldval = MI.getOperand(3).getReg();
11912     Register newval = MI.getOperand(4).getReg();
11913     DebugLoc dl = MI.getDebugLoc();
11914 
11915     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11916     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11917     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11918     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11919     F->insert(It, loop1MBB);
11920     F->insert(It, loop2MBB);
11921     F->insert(It, midMBB);
11922     F->insert(It, exitMBB);
11923     exitMBB->splice(exitMBB->begin(), BB,
11924                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11925     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11926 
11927     MachineRegisterInfo &RegInfo = F->getRegInfo();
11928     const TargetRegisterClass *RC =
11929         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11930     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11931 
11932     Register PtrReg = RegInfo.createVirtualRegister(RC);
11933     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11934     Register ShiftReg =
11935         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11936     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11937     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11938     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11939     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11940     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11941     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11942     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11943     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11944     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11945     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11946     Register Ptr1Reg;
11947     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11948     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11949     //  thisMBB:
11950     //   ...
11951     //   fallthrough --> loopMBB
11952     BB->addSuccessor(loop1MBB);
11953 
11954     // The 4-byte load must be aligned, while a char or short may be
11955     // anywhere in the word.  Hence all this nasty bookkeeping code.
11956     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11957     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11958     //   xori shift, shift1, 24 [16]
11959     //   rlwinm ptr, ptr1, 0, 0, 29
11960     //   slw newval2, newval, shift
11961     //   slw oldval2, oldval,shift
11962     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11963     //   slw mask, mask2, shift
11964     //   and newval3, newval2, mask
11965     //   and oldval3, oldval2, mask
11966     // loop1MBB:
11967     //   lwarx tmpDest, ptr
11968     //   and tmp, tmpDest, mask
11969     //   cmpw tmp, oldval3
11970     //   bne- midMBB
11971     // loop2MBB:
11972     //   andc tmp2, tmpDest, mask
11973     //   or tmp4, tmp2, newval3
11974     //   stwcx. tmp4, ptr
11975     //   bne- loop1MBB
11976     //   b exitBB
11977     // midMBB:
11978     //   stwcx. tmpDest, ptr
11979     // exitBB:
11980     //   srw dest, tmpDest, shift
11981     if (ptrA != ZeroReg) {
11982       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11983       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11984           .addReg(ptrA)
11985           .addReg(ptrB);
11986     } else {
11987       Ptr1Reg = ptrB;
11988     }
11989 
11990     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11991     // mode.
11992     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11993         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11994         .addImm(3)
11995         .addImm(27)
11996         .addImm(is8bit ? 28 : 27);
11997     if (!isLittleEndian)
11998       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11999           .addReg(Shift1Reg)
12000           .addImm(is8bit ? 24 : 16);
12001     if (is64bit)
12002       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12003           .addReg(Ptr1Reg)
12004           .addImm(0)
12005           .addImm(61);
12006     else
12007       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12008           .addReg(Ptr1Reg)
12009           .addImm(0)
12010           .addImm(0)
12011           .addImm(29);
12012     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12013         .addReg(newval)
12014         .addReg(ShiftReg);
12015     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12016         .addReg(oldval)
12017         .addReg(ShiftReg);
12018     if (is8bit)
12019       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12020     else {
12021       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12022       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12023           .addReg(Mask3Reg)
12024           .addImm(65535);
12025     }
12026     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12027         .addReg(Mask2Reg)
12028         .addReg(ShiftReg);
12029     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12030         .addReg(NewVal2Reg)
12031         .addReg(MaskReg);
12032     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12033         .addReg(OldVal2Reg)
12034         .addReg(MaskReg);
12035 
12036     BB = loop1MBB;
12037     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12038         .addReg(ZeroReg)
12039         .addReg(PtrReg);
12040     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12041         .addReg(TmpDestReg)
12042         .addReg(MaskReg);
12043     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12044         .addReg(TmpReg)
12045         .addReg(OldVal3Reg);
12046     BuildMI(BB, dl, TII->get(PPC::BCC))
12047         .addImm(PPC::PRED_NE)
12048         .addReg(PPC::CR0)
12049         .addMBB(midMBB);
12050     BB->addSuccessor(loop2MBB);
12051     BB->addSuccessor(midMBB);
12052 
12053     BB = loop2MBB;
12054     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12055         .addReg(TmpDestReg)
12056         .addReg(MaskReg);
12057     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12058         .addReg(Tmp2Reg)
12059         .addReg(NewVal3Reg);
12060     BuildMI(BB, dl, TII->get(PPC::STWCX))
12061         .addReg(Tmp4Reg)
12062         .addReg(ZeroReg)
12063         .addReg(PtrReg);
12064     BuildMI(BB, dl, TII->get(PPC::BCC))
12065         .addImm(PPC::PRED_NE)
12066         .addReg(PPC::CR0)
12067         .addMBB(loop1MBB);
12068     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12069     BB->addSuccessor(loop1MBB);
12070     BB->addSuccessor(exitMBB);
12071 
12072     BB = midMBB;
12073     BuildMI(BB, dl, TII->get(PPC::STWCX))
12074         .addReg(TmpDestReg)
12075         .addReg(ZeroReg)
12076         .addReg(PtrReg);
12077     BB->addSuccessor(exitMBB);
12078 
12079     //  exitMBB:
12080     //   ...
12081     BB = exitMBB;
12082     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12083         .addReg(TmpReg)
12084         .addReg(ShiftReg);
12085   } else if (MI.getOpcode() == PPC::FADDrtz) {
12086     // This pseudo performs an FADD with rounding mode temporarily forced
12087     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12088     // is not modeled at the SelectionDAG level.
12089     Register Dest = MI.getOperand(0).getReg();
12090     Register Src1 = MI.getOperand(1).getReg();
12091     Register Src2 = MI.getOperand(2).getReg();
12092     DebugLoc dl = MI.getDebugLoc();
12093 
12094     MachineRegisterInfo &RegInfo = F->getRegInfo();
12095     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12096 
12097     // Save FPSCR value.
12098     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12099 
12100     // Set rounding mode to round-to-zero.
12101     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12102         .addImm(31)
12103         .addReg(PPC::RM, RegState::ImplicitDefine);
12104 
12105     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12106         .addImm(30)
12107         .addReg(PPC::RM, RegState::ImplicitDefine);
12108 
12109     // Perform addition.
12110     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12111 
12112     // Restore FPSCR value.
12113     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12114   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12115              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12116              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12117              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12118     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12119                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12120                           ? PPC::ANDI8_rec
12121                           : PPC::ANDI_rec;
12122     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12123                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12124 
12125     MachineRegisterInfo &RegInfo = F->getRegInfo();
12126     Register Dest = RegInfo.createVirtualRegister(
12127         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12128 
12129     DebugLoc Dl = MI.getDebugLoc();
12130     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12131         .addReg(MI.getOperand(1).getReg())
12132         .addImm(1);
12133     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12134             MI.getOperand(0).getReg())
12135         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12136   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12137     DebugLoc Dl = MI.getDebugLoc();
12138     MachineRegisterInfo &RegInfo = F->getRegInfo();
12139     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12140     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12141     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12142             MI.getOperand(0).getReg())
12143         .addReg(CRReg);
12144   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12145     DebugLoc Dl = MI.getDebugLoc();
12146     unsigned Imm = MI.getOperand(1).getImm();
12147     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12148     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12149             MI.getOperand(0).getReg())
12150         .addReg(PPC::CR0EQ);
12151   } else if (MI.getOpcode() == PPC::SETRNDi) {
12152     DebugLoc dl = MI.getDebugLoc();
12153     Register OldFPSCRReg = MI.getOperand(0).getReg();
12154 
12155     // Save FPSCR value.
12156     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12157 
12158     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12159     // the following settings:
12160     //   00 Round to nearest
12161     //   01 Round to 0
12162     //   10 Round to +inf
12163     //   11 Round to -inf
12164 
12165     // When the operand is immediate, using the two least significant bits of
12166     // the immediate to set the bits 62:63 of FPSCR.
12167     unsigned Mode = MI.getOperand(1).getImm();
12168     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12169         .addImm(31)
12170         .addReg(PPC::RM, RegState::ImplicitDefine);
12171 
12172     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12173         .addImm(30)
12174         .addReg(PPC::RM, RegState::ImplicitDefine);
12175   } else if (MI.getOpcode() == PPC::SETRND) {
12176     DebugLoc dl = MI.getDebugLoc();
12177 
12178     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12179     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12180     // If the target doesn't have DirectMove, we should use stack to do the
12181     // conversion, because the target doesn't have the instructions like mtvsrd
12182     // or mfvsrd to do this conversion directly.
12183     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12184       if (Subtarget.hasDirectMove()) {
12185         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12186           .addReg(SrcReg);
12187       } else {
12188         // Use stack to do the register copy.
12189         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12190         MachineRegisterInfo &RegInfo = F->getRegInfo();
12191         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12192         if (RC == &PPC::F8RCRegClass) {
12193           // Copy register from F8RCRegClass to G8RCRegclass.
12194           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12195                  "Unsupported RegClass.");
12196 
12197           StoreOp = PPC::STFD;
12198           LoadOp = PPC::LD;
12199         } else {
12200           // Copy register from G8RCRegClass to F8RCRegclass.
12201           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12202                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12203                  "Unsupported RegClass.");
12204         }
12205 
12206         MachineFrameInfo &MFI = F->getFrameInfo();
12207         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12208 
12209         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12210             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12211             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12212             MFI.getObjectAlign(FrameIdx));
12213 
12214         // Store the SrcReg into the stack.
12215         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12216           .addReg(SrcReg)
12217           .addImm(0)
12218           .addFrameIndex(FrameIdx)
12219           .addMemOperand(MMOStore);
12220 
12221         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12222             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12223             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12224             MFI.getObjectAlign(FrameIdx));
12225 
12226         // Load from the stack where SrcReg is stored, and save to DestReg,
12227         // so we have done the RegClass conversion from RegClass::SrcReg to
12228         // RegClass::DestReg.
12229         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12230           .addImm(0)
12231           .addFrameIndex(FrameIdx)
12232           .addMemOperand(MMOLoad);
12233       }
12234     };
12235 
12236     Register OldFPSCRReg = MI.getOperand(0).getReg();
12237 
12238     // Save FPSCR value.
12239     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12240 
12241     // When the operand is gprc register, use two least significant bits of the
12242     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12243     //
12244     // copy OldFPSCRTmpReg, OldFPSCRReg
12245     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12246     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12247     // copy NewFPSCRReg, NewFPSCRTmpReg
12248     // mtfsf 255, NewFPSCRReg
12249     MachineOperand SrcOp = MI.getOperand(1);
12250     MachineRegisterInfo &RegInfo = F->getRegInfo();
12251     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12252 
12253     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12254 
12255     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12256     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12257 
12258     // The first operand of INSERT_SUBREG should be a register which has
12259     // subregisters, we only care about its RegClass, so we should use an
12260     // IMPLICIT_DEF register.
12261     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12262     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12263       .addReg(ImDefReg)
12264       .add(SrcOp)
12265       .addImm(1);
12266 
12267     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12268     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12269       .addReg(OldFPSCRTmpReg)
12270       .addReg(ExtSrcReg)
12271       .addImm(0)
12272       .addImm(62);
12273 
12274     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12275     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12276 
12277     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12278     // bits of FPSCR.
12279     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12280       .addImm(255)
12281       .addReg(NewFPSCRReg)
12282       .addImm(0)
12283       .addImm(0);
12284   } else if (MI.getOpcode() == PPC::SETFLM) {
12285     DebugLoc Dl = MI.getDebugLoc();
12286 
12287     // Result of setflm is previous FPSCR content, so we need to save it first.
12288     Register OldFPSCRReg = MI.getOperand(0).getReg();
12289     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12290 
12291     // Put bits in 32:63 to FPSCR.
12292     Register NewFPSCRReg = MI.getOperand(1).getReg();
12293     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12294         .addImm(255)
12295         .addReg(NewFPSCRReg)
12296         .addImm(0)
12297         .addImm(0);
12298   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12299              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12300     return emitProbedAlloca(MI, BB);
12301   } else {
12302     llvm_unreachable("Unexpected instr type to insert");
12303   }
12304 
12305   MI.eraseFromParent(); // The pseudo instruction is gone now.
12306   return BB;
12307 }
12308 
12309 //===----------------------------------------------------------------------===//
12310 // Target Optimization Hooks
12311 //===----------------------------------------------------------------------===//
12312 
12313 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12314   // For the estimates, convergence is quadratic, so we essentially double the
12315   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12316   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12317   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12318   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12319   if (VT.getScalarType() == MVT::f64)
12320     RefinementSteps++;
12321   return RefinementSteps;
12322 }
12323 
12324 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12325                                            int Enabled, int &RefinementSteps,
12326                                            bool &UseOneConstNR,
12327                                            bool Reciprocal) const {
12328   EVT VT = Operand.getValueType();
12329   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12330       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12331       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12332       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12333     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12334       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12335 
12336     // The Newton-Raphson computation with a single constant does not provide
12337     // enough accuracy on some CPUs.
12338     UseOneConstNR = !Subtarget.needsTwoConstNR();
12339     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12340   }
12341   return SDValue();
12342 }
12343 
12344 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12345                                             int Enabled,
12346                                             int &RefinementSteps) const {
12347   EVT VT = Operand.getValueType();
12348   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12349       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12350       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12351       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12352     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12353       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12354     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12355   }
12356   return SDValue();
12357 }
12358 
12359 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12360   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12361   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12362   // enabled for division), this functionality is redundant with the default
12363   // combiner logic (once the division -> reciprocal/multiply transformation
12364   // has taken place). As a result, this matters more for older cores than for
12365   // newer ones.
12366 
12367   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12368   // reciprocal if there are two or more FDIVs (for embedded cores with only
12369   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12370   switch (Subtarget.getCPUDirective()) {
12371   default:
12372     return 3;
12373   case PPC::DIR_440:
12374   case PPC::DIR_A2:
12375   case PPC::DIR_E500:
12376   case PPC::DIR_E500mc:
12377   case PPC::DIR_E5500:
12378     return 2;
12379   }
12380 }
12381 
12382 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12383 // collapsed, and so we need to look through chains of them.
12384 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12385                                      int64_t& Offset, SelectionDAG &DAG) {
12386   if (DAG.isBaseWithConstantOffset(Loc)) {
12387     Base = Loc.getOperand(0);
12388     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12389 
12390     // The base might itself be a base plus an offset, and if so, accumulate
12391     // that as well.
12392     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12393   }
12394 }
12395 
12396 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12397                             unsigned Bytes, int Dist,
12398                             SelectionDAG &DAG) {
12399   if (VT.getSizeInBits() / 8 != Bytes)
12400     return false;
12401 
12402   SDValue BaseLoc = Base->getBasePtr();
12403   if (Loc.getOpcode() == ISD::FrameIndex) {
12404     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12405       return false;
12406     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12407     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12408     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12409     int FS  = MFI.getObjectSize(FI);
12410     int BFS = MFI.getObjectSize(BFI);
12411     if (FS != BFS || FS != (int)Bytes) return false;
12412     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12413   }
12414 
12415   SDValue Base1 = Loc, Base2 = BaseLoc;
12416   int64_t Offset1 = 0, Offset2 = 0;
12417   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12418   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12419   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12420     return true;
12421 
12422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12423   const GlobalValue *GV1 = nullptr;
12424   const GlobalValue *GV2 = nullptr;
12425   Offset1 = 0;
12426   Offset2 = 0;
12427   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12428   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12429   if (isGA1 && isGA2 && GV1 == GV2)
12430     return Offset1 == (Offset2 + Dist*Bytes);
12431   return false;
12432 }
12433 
12434 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12435 // not enforce equality of the chain operands.
12436 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12437                             unsigned Bytes, int Dist,
12438                             SelectionDAG &DAG) {
12439   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12440     EVT VT = LS->getMemoryVT();
12441     SDValue Loc = LS->getBasePtr();
12442     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12443   }
12444 
12445   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12446     EVT VT;
12447     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12448     default: return false;
12449     case Intrinsic::ppc_altivec_lvx:
12450     case Intrinsic::ppc_altivec_lvxl:
12451     case Intrinsic::ppc_vsx_lxvw4x:
12452     case Intrinsic::ppc_vsx_lxvw4x_be:
12453       VT = MVT::v4i32;
12454       break;
12455     case Intrinsic::ppc_vsx_lxvd2x:
12456     case Intrinsic::ppc_vsx_lxvd2x_be:
12457       VT = MVT::v2f64;
12458       break;
12459     case Intrinsic::ppc_altivec_lvebx:
12460       VT = MVT::i8;
12461       break;
12462     case Intrinsic::ppc_altivec_lvehx:
12463       VT = MVT::i16;
12464       break;
12465     case Intrinsic::ppc_altivec_lvewx:
12466       VT = MVT::i32;
12467       break;
12468     }
12469 
12470     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12471   }
12472 
12473   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12474     EVT VT;
12475     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12476     default: return false;
12477     case Intrinsic::ppc_altivec_stvx:
12478     case Intrinsic::ppc_altivec_stvxl:
12479     case Intrinsic::ppc_vsx_stxvw4x:
12480       VT = MVT::v4i32;
12481       break;
12482     case Intrinsic::ppc_vsx_stxvd2x:
12483       VT = MVT::v2f64;
12484       break;
12485     case Intrinsic::ppc_vsx_stxvw4x_be:
12486       VT = MVT::v4i32;
12487       break;
12488     case Intrinsic::ppc_vsx_stxvd2x_be:
12489       VT = MVT::v2f64;
12490       break;
12491     case Intrinsic::ppc_altivec_stvebx:
12492       VT = MVT::i8;
12493       break;
12494     case Intrinsic::ppc_altivec_stvehx:
12495       VT = MVT::i16;
12496       break;
12497     case Intrinsic::ppc_altivec_stvewx:
12498       VT = MVT::i32;
12499       break;
12500     }
12501 
12502     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12503   }
12504 
12505   return false;
12506 }
12507 
12508 // Return true is there is a nearyby consecutive load to the one provided
12509 // (regardless of alignment). We search up and down the chain, looking though
12510 // token factors and other loads (but nothing else). As a result, a true result
12511 // indicates that it is safe to create a new consecutive load adjacent to the
12512 // load provided.
12513 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12514   SDValue Chain = LD->getChain();
12515   EVT VT = LD->getMemoryVT();
12516 
12517   SmallSet<SDNode *, 16> LoadRoots;
12518   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12519   SmallSet<SDNode *, 16> Visited;
12520 
12521   // First, search up the chain, branching to follow all token-factor operands.
12522   // If we find a consecutive load, then we're done, otherwise, record all
12523   // nodes just above the top-level loads and token factors.
12524   while (!Queue.empty()) {
12525     SDNode *ChainNext = Queue.pop_back_val();
12526     if (!Visited.insert(ChainNext).second)
12527       continue;
12528 
12529     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12530       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12531         return true;
12532 
12533       if (!Visited.count(ChainLD->getChain().getNode()))
12534         Queue.push_back(ChainLD->getChain().getNode());
12535     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12536       for (const SDUse &O : ChainNext->ops())
12537         if (!Visited.count(O.getNode()))
12538           Queue.push_back(O.getNode());
12539     } else
12540       LoadRoots.insert(ChainNext);
12541   }
12542 
12543   // Second, search down the chain, starting from the top-level nodes recorded
12544   // in the first phase. These top-level nodes are the nodes just above all
12545   // loads and token factors. Starting with their uses, recursively look though
12546   // all loads (just the chain uses) and token factors to find a consecutive
12547   // load.
12548   Visited.clear();
12549   Queue.clear();
12550 
12551   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12552        IE = LoadRoots.end(); I != IE; ++I) {
12553     Queue.push_back(*I);
12554 
12555     while (!Queue.empty()) {
12556       SDNode *LoadRoot = Queue.pop_back_val();
12557       if (!Visited.insert(LoadRoot).second)
12558         continue;
12559 
12560       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12561         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12562           return true;
12563 
12564       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12565            UE = LoadRoot->use_end(); UI != UE; ++UI)
12566         if (((isa<MemSDNode>(*UI) &&
12567             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12568             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12569           Queue.push_back(*UI);
12570     }
12571   }
12572 
12573   return false;
12574 }
12575 
12576 /// This function is called when we have proved that a SETCC node can be replaced
12577 /// by subtraction (and other supporting instructions) so that the result of
12578 /// comparison is kept in a GPR instead of CR. This function is purely for
12579 /// codegen purposes and has some flags to guide the codegen process.
12580 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12581                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12582   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12583 
12584   // Zero extend the operands to the largest legal integer. Originally, they
12585   // must be of a strictly smaller size.
12586   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12587                          DAG.getConstant(Size, DL, MVT::i32));
12588   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12589                          DAG.getConstant(Size, DL, MVT::i32));
12590 
12591   // Swap if needed. Depends on the condition code.
12592   if (Swap)
12593     std::swap(Op0, Op1);
12594 
12595   // Subtract extended integers.
12596   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12597 
12598   // Move the sign bit to the least significant position and zero out the rest.
12599   // Now the least significant bit carries the result of original comparison.
12600   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12601                              DAG.getConstant(Size - 1, DL, MVT::i32));
12602   auto Final = Shifted;
12603 
12604   // Complement the result if needed. Based on the condition code.
12605   if (Complement)
12606     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12607                         DAG.getConstant(1, DL, MVT::i64));
12608 
12609   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12610 }
12611 
12612 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12613                                                   DAGCombinerInfo &DCI) const {
12614   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12615 
12616   SelectionDAG &DAG = DCI.DAG;
12617   SDLoc DL(N);
12618 
12619   // Size of integers being compared has a critical role in the following
12620   // analysis, so we prefer to do this when all types are legal.
12621   if (!DCI.isAfterLegalizeDAG())
12622     return SDValue();
12623 
12624   // If all users of SETCC extend its value to a legal integer type
12625   // then we replace SETCC with a subtraction
12626   for (SDNode::use_iterator UI = N->use_begin(),
12627        UE = N->use_end(); UI != UE; ++UI) {
12628     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12629       return SDValue();
12630   }
12631 
12632   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12633   auto OpSize = N->getOperand(0).getValueSizeInBits();
12634 
12635   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12636 
12637   if (OpSize < Size) {
12638     switch (CC) {
12639     default: break;
12640     case ISD::SETULT:
12641       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12642     case ISD::SETULE:
12643       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12644     case ISD::SETUGT:
12645       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12646     case ISD::SETUGE:
12647       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12648     }
12649   }
12650 
12651   return SDValue();
12652 }
12653 
12654 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12655                                                   DAGCombinerInfo &DCI) const {
12656   SelectionDAG &DAG = DCI.DAG;
12657   SDLoc dl(N);
12658 
12659   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12660   // If we're tracking CR bits, we need to be careful that we don't have:
12661   //   trunc(binary-ops(zext(x), zext(y)))
12662   // or
12663   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12664   // such that we're unnecessarily moving things into GPRs when it would be
12665   // better to keep them in CR bits.
12666 
12667   // Note that trunc here can be an actual i1 trunc, or can be the effective
12668   // truncation that comes from a setcc or select_cc.
12669   if (N->getOpcode() == ISD::TRUNCATE &&
12670       N->getValueType(0) != MVT::i1)
12671     return SDValue();
12672 
12673   if (N->getOperand(0).getValueType() != MVT::i32 &&
12674       N->getOperand(0).getValueType() != MVT::i64)
12675     return SDValue();
12676 
12677   if (N->getOpcode() == ISD::SETCC ||
12678       N->getOpcode() == ISD::SELECT_CC) {
12679     // If we're looking at a comparison, then we need to make sure that the
12680     // high bits (all except for the first) don't matter the result.
12681     ISD::CondCode CC =
12682       cast<CondCodeSDNode>(N->getOperand(
12683         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12684     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12685 
12686     if (ISD::isSignedIntSetCC(CC)) {
12687       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12688           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12689         return SDValue();
12690     } else if (ISD::isUnsignedIntSetCC(CC)) {
12691       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12692                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12693           !DAG.MaskedValueIsZero(N->getOperand(1),
12694                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12695         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12696                                              : SDValue());
12697     } else {
12698       // This is neither a signed nor an unsigned comparison, just make sure
12699       // that the high bits are equal.
12700       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12701       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12702 
12703       // We don't really care about what is known about the first bit (if
12704       // anything), so clear it in all masks prior to comparing them.
12705       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12706       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12707 
12708       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12709         return SDValue();
12710     }
12711   }
12712 
12713   // We now know that the higher-order bits are irrelevant, we just need to
12714   // make sure that all of the intermediate operations are bit operations, and
12715   // all inputs are extensions.
12716   if (N->getOperand(0).getOpcode() != ISD::AND &&
12717       N->getOperand(0).getOpcode() != ISD::OR  &&
12718       N->getOperand(0).getOpcode() != ISD::XOR &&
12719       N->getOperand(0).getOpcode() != ISD::SELECT &&
12720       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12721       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12722       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12723       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12724       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12725     return SDValue();
12726 
12727   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12728       N->getOperand(1).getOpcode() != ISD::AND &&
12729       N->getOperand(1).getOpcode() != ISD::OR  &&
12730       N->getOperand(1).getOpcode() != ISD::XOR &&
12731       N->getOperand(1).getOpcode() != ISD::SELECT &&
12732       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12733       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12734       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12735       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12736       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12737     return SDValue();
12738 
12739   SmallVector<SDValue, 4> Inputs;
12740   SmallVector<SDValue, 8> BinOps, PromOps;
12741   SmallPtrSet<SDNode *, 16> Visited;
12742 
12743   for (unsigned i = 0; i < 2; ++i) {
12744     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12745           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12746           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12747           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12748         isa<ConstantSDNode>(N->getOperand(i)))
12749       Inputs.push_back(N->getOperand(i));
12750     else
12751       BinOps.push_back(N->getOperand(i));
12752 
12753     if (N->getOpcode() == ISD::TRUNCATE)
12754       break;
12755   }
12756 
12757   // Visit all inputs, collect all binary operations (and, or, xor and
12758   // select) that are all fed by extensions.
12759   while (!BinOps.empty()) {
12760     SDValue BinOp = BinOps.back();
12761     BinOps.pop_back();
12762 
12763     if (!Visited.insert(BinOp.getNode()).second)
12764       continue;
12765 
12766     PromOps.push_back(BinOp);
12767 
12768     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12769       // The condition of the select is not promoted.
12770       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12771         continue;
12772       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12773         continue;
12774 
12775       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12776             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12777             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12778            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12779           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12780         Inputs.push_back(BinOp.getOperand(i));
12781       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12782                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12783                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12784                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12785                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12786                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12787                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12788                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12789                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12790         BinOps.push_back(BinOp.getOperand(i));
12791       } else {
12792         // We have an input that is not an extension or another binary
12793         // operation; we'll abort this transformation.
12794         return SDValue();
12795       }
12796     }
12797   }
12798 
12799   // Make sure that this is a self-contained cluster of operations (which
12800   // is not quite the same thing as saying that everything has only one
12801   // use).
12802   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12803     if (isa<ConstantSDNode>(Inputs[i]))
12804       continue;
12805 
12806     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12807                               UE = Inputs[i].getNode()->use_end();
12808          UI != UE; ++UI) {
12809       SDNode *User = *UI;
12810       if (User != N && !Visited.count(User))
12811         return SDValue();
12812 
12813       // Make sure that we're not going to promote the non-output-value
12814       // operand(s) or SELECT or SELECT_CC.
12815       // FIXME: Although we could sometimes handle this, and it does occur in
12816       // practice that one of the condition inputs to the select is also one of
12817       // the outputs, we currently can't deal with this.
12818       if (User->getOpcode() == ISD::SELECT) {
12819         if (User->getOperand(0) == Inputs[i])
12820           return SDValue();
12821       } else if (User->getOpcode() == ISD::SELECT_CC) {
12822         if (User->getOperand(0) == Inputs[i] ||
12823             User->getOperand(1) == Inputs[i])
12824           return SDValue();
12825       }
12826     }
12827   }
12828 
12829   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12830     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12831                               UE = PromOps[i].getNode()->use_end();
12832          UI != UE; ++UI) {
12833       SDNode *User = *UI;
12834       if (User != N && !Visited.count(User))
12835         return SDValue();
12836 
12837       // Make sure that we're not going to promote the non-output-value
12838       // operand(s) or SELECT or SELECT_CC.
12839       // FIXME: Although we could sometimes handle this, and it does occur in
12840       // practice that one of the condition inputs to the select is also one of
12841       // the outputs, we currently can't deal with this.
12842       if (User->getOpcode() == ISD::SELECT) {
12843         if (User->getOperand(0) == PromOps[i])
12844           return SDValue();
12845       } else if (User->getOpcode() == ISD::SELECT_CC) {
12846         if (User->getOperand(0) == PromOps[i] ||
12847             User->getOperand(1) == PromOps[i])
12848           return SDValue();
12849       }
12850     }
12851   }
12852 
12853   // Replace all inputs with the extension operand.
12854   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12855     // Constants may have users outside the cluster of to-be-promoted nodes,
12856     // and so we need to replace those as we do the promotions.
12857     if (isa<ConstantSDNode>(Inputs[i]))
12858       continue;
12859     else
12860       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12861   }
12862 
12863   std::list<HandleSDNode> PromOpHandles;
12864   for (auto &PromOp : PromOps)
12865     PromOpHandles.emplace_back(PromOp);
12866 
12867   // Replace all operations (these are all the same, but have a different
12868   // (i1) return type). DAG.getNode will validate that the types of
12869   // a binary operator match, so go through the list in reverse so that
12870   // we've likely promoted both operands first. Any intermediate truncations or
12871   // extensions disappear.
12872   while (!PromOpHandles.empty()) {
12873     SDValue PromOp = PromOpHandles.back().getValue();
12874     PromOpHandles.pop_back();
12875 
12876     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12877         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12878         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12879         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12880       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12881           PromOp.getOperand(0).getValueType() != MVT::i1) {
12882         // The operand is not yet ready (see comment below).
12883         PromOpHandles.emplace_front(PromOp);
12884         continue;
12885       }
12886 
12887       SDValue RepValue = PromOp.getOperand(0);
12888       if (isa<ConstantSDNode>(RepValue))
12889         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12890 
12891       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12892       continue;
12893     }
12894 
12895     unsigned C;
12896     switch (PromOp.getOpcode()) {
12897     default:             C = 0; break;
12898     case ISD::SELECT:    C = 1; break;
12899     case ISD::SELECT_CC: C = 2; break;
12900     }
12901 
12902     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12903          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12904         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12905          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12906       // The to-be-promoted operands of this node have not yet been
12907       // promoted (this should be rare because we're going through the
12908       // list backward, but if one of the operands has several users in
12909       // this cluster of to-be-promoted nodes, it is possible).
12910       PromOpHandles.emplace_front(PromOp);
12911       continue;
12912     }
12913 
12914     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12915                                 PromOp.getNode()->op_end());
12916 
12917     // If there are any constant inputs, make sure they're replaced now.
12918     for (unsigned i = 0; i < 2; ++i)
12919       if (isa<ConstantSDNode>(Ops[C+i]))
12920         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12921 
12922     DAG.ReplaceAllUsesOfValueWith(PromOp,
12923       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12924   }
12925 
12926   // Now we're left with the initial truncation itself.
12927   if (N->getOpcode() == ISD::TRUNCATE)
12928     return N->getOperand(0);
12929 
12930   // Otherwise, this is a comparison. The operands to be compared have just
12931   // changed type (to i1), but everything else is the same.
12932   return SDValue(N, 0);
12933 }
12934 
12935 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12936                                                   DAGCombinerInfo &DCI) const {
12937   SelectionDAG &DAG = DCI.DAG;
12938   SDLoc dl(N);
12939 
12940   // If we're tracking CR bits, we need to be careful that we don't have:
12941   //   zext(binary-ops(trunc(x), trunc(y)))
12942   // or
12943   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12944   // such that we're unnecessarily moving things into CR bits that can more
12945   // efficiently stay in GPRs. Note that if we're not certain that the high
12946   // bits are set as required by the final extension, we still may need to do
12947   // some masking to get the proper behavior.
12948 
12949   // This same functionality is important on PPC64 when dealing with
12950   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12951   // the return values of functions. Because it is so similar, it is handled
12952   // here as well.
12953 
12954   if (N->getValueType(0) != MVT::i32 &&
12955       N->getValueType(0) != MVT::i64)
12956     return SDValue();
12957 
12958   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12959         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12960     return SDValue();
12961 
12962   if (N->getOperand(0).getOpcode() != ISD::AND &&
12963       N->getOperand(0).getOpcode() != ISD::OR  &&
12964       N->getOperand(0).getOpcode() != ISD::XOR &&
12965       N->getOperand(0).getOpcode() != ISD::SELECT &&
12966       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12967     return SDValue();
12968 
12969   SmallVector<SDValue, 4> Inputs;
12970   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12971   SmallPtrSet<SDNode *, 16> Visited;
12972 
12973   // Visit all inputs, collect all binary operations (and, or, xor and
12974   // select) that are all fed by truncations.
12975   while (!BinOps.empty()) {
12976     SDValue BinOp = BinOps.back();
12977     BinOps.pop_back();
12978 
12979     if (!Visited.insert(BinOp.getNode()).second)
12980       continue;
12981 
12982     PromOps.push_back(BinOp);
12983 
12984     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12985       // The condition of the select is not promoted.
12986       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12987         continue;
12988       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12989         continue;
12990 
12991       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12992           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12993         Inputs.push_back(BinOp.getOperand(i));
12994       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12995                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12996                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12997                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12998                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12999         BinOps.push_back(BinOp.getOperand(i));
13000       } else {
13001         // We have an input that is not a truncation or another binary
13002         // operation; we'll abort this transformation.
13003         return SDValue();
13004       }
13005     }
13006   }
13007 
13008   // The operands of a select that must be truncated when the select is
13009   // promoted because the operand is actually part of the to-be-promoted set.
13010   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13011 
13012   // Make sure that this is a self-contained cluster of operations (which
13013   // is not quite the same thing as saying that everything has only one
13014   // use).
13015   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13016     if (isa<ConstantSDNode>(Inputs[i]))
13017       continue;
13018 
13019     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13020                               UE = Inputs[i].getNode()->use_end();
13021          UI != UE; ++UI) {
13022       SDNode *User = *UI;
13023       if (User != N && !Visited.count(User))
13024         return SDValue();
13025 
13026       // If we're going to promote the non-output-value operand(s) or SELECT or
13027       // SELECT_CC, record them for truncation.
13028       if (User->getOpcode() == ISD::SELECT) {
13029         if (User->getOperand(0) == Inputs[i])
13030           SelectTruncOp[0].insert(std::make_pair(User,
13031                                     User->getOperand(0).getValueType()));
13032       } else if (User->getOpcode() == ISD::SELECT_CC) {
13033         if (User->getOperand(0) == Inputs[i])
13034           SelectTruncOp[0].insert(std::make_pair(User,
13035                                     User->getOperand(0).getValueType()));
13036         if (User->getOperand(1) == Inputs[i])
13037           SelectTruncOp[1].insert(std::make_pair(User,
13038                                     User->getOperand(1).getValueType()));
13039       }
13040     }
13041   }
13042 
13043   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13044     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13045                               UE = PromOps[i].getNode()->use_end();
13046          UI != UE; ++UI) {
13047       SDNode *User = *UI;
13048       if (User != N && !Visited.count(User))
13049         return SDValue();
13050 
13051       // If we're going to promote the non-output-value operand(s) or SELECT or
13052       // SELECT_CC, record them for truncation.
13053       if (User->getOpcode() == ISD::SELECT) {
13054         if (User->getOperand(0) == PromOps[i])
13055           SelectTruncOp[0].insert(std::make_pair(User,
13056                                     User->getOperand(0).getValueType()));
13057       } else if (User->getOpcode() == ISD::SELECT_CC) {
13058         if (User->getOperand(0) == PromOps[i])
13059           SelectTruncOp[0].insert(std::make_pair(User,
13060                                     User->getOperand(0).getValueType()));
13061         if (User->getOperand(1) == PromOps[i])
13062           SelectTruncOp[1].insert(std::make_pair(User,
13063                                     User->getOperand(1).getValueType()));
13064       }
13065     }
13066   }
13067 
13068   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13069   bool ReallyNeedsExt = false;
13070   if (N->getOpcode() != ISD::ANY_EXTEND) {
13071     // If all of the inputs are not already sign/zero extended, then
13072     // we'll still need to do that at the end.
13073     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13074       if (isa<ConstantSDNode>(Inputs[i]))
13075         continue;
13076 
13077       unsigned OpBits =
13078         Inputs[i].getOperand(0).getValueSizeInBits();
13079       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13080 
13081       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13082            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13083                                   APInt::getHighBitsSet(OpBits,
13084                                                         OpBits-PromBits))) ||
13085           (N->getOpcode() == ISD::SIGN_EXTEND &&
13086            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13087              (OpBits-(PromBits-1)))) {
13088         ReallyNeedsExt = true;
13089         break;
13090       }
13091     }
13092   }
13093 
13094   // Replace all inputs, either with the truncation operand, or a
13095   // truncation or extension to the final output type.
13096   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13097     // Constant inputs need to be replaced with the to-be-promoted nodes that
13098     // use them because they might have users outside of the cluster of
13099     // promoted nodes.
13100     if (isa<ConstantSDNode>(Inputs[i]))
13101       continue;
13102 
13103     SDValue InSrc = Inputs[i].getOperand(0);
13104     if (Inputs[i].getValueType() == N->getValueType(0))
13105       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13106     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13107       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13108         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13109     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13110       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13111         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13112     else
13113       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13114         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13115   }
13116 
13117   std::list<HandleSDNode> PromOpHandles;
13118   for (auto &PromOp : PromOps)
13119     PromOpHandles.emplace_back(PromOp);
13120 
13121   // Replace all operations (these are all the same, but have a different
13122   // (promoted) return type). DAG.getNode will validate that the types of
13123   // a binary operator match, so go through the list in reverse so that
13124   // we've likely promoted both operands first.
13125   while (!PromOpHandles.empty()) {
13126     SDValue PromOp = PromOpHandles.back().getValue();
13127     PromOpHandles.pop_back();
13128 
13129     unsigned C;
13130     switch (PromOp.getOpcode()) {
13131     default:             C = 0; break;
13132     case ISD::SELECT:    C = 1; break;
13133     case ISD::SELECT_CC: C = 2; break;
13134     }
13135 
13136     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13137          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13138         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13139          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13140       // The to-be-promoted operands of this node have not yet been
13141       // promoted (this should be rare because we're going through the
13142       // list backward, but if one of the operands has several users in
13143       // this cluster of to-be-promoted nodes, it is possible).
13144       PromOpHandles.emplace_front(PromOp);
13145       continue;
13146     }
13147 
13148     // For SELECT and SELECT_CC nodes, we do a similar check for any
13149     // to-be-promoted comparison inputs.
13150     if (PromOp.getOpcode() == ISD::SELECT ||
13151         PromOp.getOpcode() == ISD::SELECT_CC) {
13152       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13153            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13154           (SelectTruncOp[1].count(PromOp.getNode()) &&
13155            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13156         PromOpHandles.emplace_front(PromOp);
13157         continue;
13158       }
13159     }
13160 
13161     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13162                                 PromOp.getNode()->op_end());
13163 
13164     // If this node has constant inputs, then they'll need to be promoted here.
13165     for (unsigned i = 0; i < 2; ++i) {
13166       if (!isa<ConstantSDNode>(Ops[C+i]))
13167         continue;
13168       if (Ops[C+i].getValueType() == N->getValueType(0))
13169         continue;
13170 
13171       if (N->getOpcode() == ISD::SIGN_EXTEND)
13172         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13173       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13174         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13175       else
13176         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13177     }
13178 
13179     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13180     // truncate them again to the original value type.
13181     if (PromOp.getOpcode() == ISD::SELECT ||
13182         PromOp.getOpcode() == ISD::SELECT_CC) {
13183       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13184       if (SI0 != SelectTruncOp[0].end())
13185         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13186       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13187       if (SI1 != SelectTruncOp[1].end())
13188         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13189     }
13190 
13191     DAG.ReplaceAllUsesOfValueWith(PromOp,
13192       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13193   }
13194 
13195   // Now we're left with the initial extension itself.
13196   if (!ReallyNeedsExt)
13197     return N->getOperand(0);
13198 
13199   // To zero extend, just mask off everything except for the first bit (in the
13200   // i1 case).
13201   if (N->getOpcode() == ISD::ZERO_EXTEND)
13202     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13203                        DAG.getConstant(APInt::getLowBitsSet(
13204                                          N->getValueSizeInBits(0), PromBits),
13205                                        dl, N->getValueType(0)));
13206 
13207   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13208          "Invalid extension type");
13209   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13210   SDValue ShiftCst =
13211       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13212   return DAG.getNode(
13213       ISD::SRA, dl, N->getValueType(0),
13214       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13215       ShiftCst);
13216 }
13217 
13218 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13219                                         DAGCombinerInfo &DCI) const {
13220   assert(N->getOpcode() == ISD::SETCC &&
13221          "Should be called with a SETCC node");
13222 
13223   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13224   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13225     SDValue LHS = N->getOperand(0);
13226     SDValue RHS = N->getOperand(1);
13227 
13228     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13229     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13230         LHS.hasOneUse())
13231       std::swap(LHS, RHS);
13232 
13233     // x == 0-y --> x+y == 0
13234     // x != 0-y --> x+y != 0
13235     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13236         RHS.hasOneUse()) {
13237       SDLoc DL(N);
13238       SelectionDAG &DAG = DCI.DAG;
13239       EVT VT = N->getValueType(0);
13240       EVT OpVT = LHS.getValueType();
13241       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13242       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13243     }
13244   }
13245 
13246   return DAGCombineTruncBoolExt(N, DCI);
13247 }
13248 
13249 // Is this an extending load from an f32 to an f64?
13250 static bool isFPExtLoad(SDValue Op) {
13251   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13252     return LD->getExtensionType() == ISD::EXTLOAD &&
13253       Op.getValueType() == MVT::f64;
13254   return false;
13255 }
13256 
13257 /// Reduces the number of fp-to-int conversion when building a vector.
13258 ///
13259 /// If this vector is built out of floating to integer conversions,
13260 /// transform it to a vector built out of floating point values followed by a
13261 /// single floating to integer conversion of the vector.
13262 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13263 /// becomes (fptosi (build_vector ($A, $B, ...)))
13264 SDValue PPCTargetLowering::
13265 combineElementTruncationToVectorTruncation(SDNode *N,
13266                                            DAGCombinerInfo &DCI) const {
13267   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13268          "Should be called with a BUILD_VECTOR node");
13269 
13270   SelectionDAG &DAG = DCI.DAG;
13271   SDLoc dl(N);
13272 
13273   SDValue FirstInput = N->getOperand(0);
13274   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13275          "The input operand must be an fp-to-int conversion.");
13276 
13277   // This combine happens after legalization so the fp_to_[su]i nodes are
13278   // already converted to PPCSISD nodes.
13279   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13280   if (FirstConversion == PPCISD::FCTIDZ ||
13281       FirstConversion == PPCISD::FCTIDUZ ||
13282       FirstConversion == PPCISD::FCTIWZ ||
13283       FirstConversion == PPCISD::FCTIWUZ) {
13284     bool IsSplat = true;
13285     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13286       FirstConversion == PPCISD::FCTIWUZ;
13287     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13288     SmallVector<SDValue, 4> Ops;
13289     EVT TargetVT = N->getValueType(0);
13290     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13291       SDValue NextOp = N->getOperand(i);
13292       if (NextOp.getOpcode() != PPCISD::MFVSR)
13293         return SDValue();
13294       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13295       if (NextConversion != FirstConversion)
13296         return SDValue();
13297       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13298       // This is not valid if the input was originally double precision. It is
13299       // also not profitable to do unless this is an extending load in which
13300       // case doing this combine will allow us to combine consecutive loads.
13301       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13302         return SDValue();
13303       if (N->getOperand(i) != FirstInput)
13304         IsSplat = false;
13305     }
13306 
13307     // If this is a splat, we leave it as-is since there will be only a single
13308     // fp-to-int conversion followed by a splat of the integer. This is better
13309     // for 32-bit and smaller ints and neutral for 64-bit ints.
13310     if (IsSplat)
13311       return SDValue();
13312 
13313     // Now that we know we have the right type of node, get its operands
13314     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13315       SDValue In = N->getOperand(i).getOperand(0);
13316       if (Is32Bit) {
13317         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13318         // here, we know that all inputs are extending loads so this is safe).
13319         if (In.isUndef())
13320           Ops.push_back(DAG.getUNDEF(SrcVT));
13321         else {
13322           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13323                                       MVT::f32, In.getOperand(0),
13324                                       DAG.getIntPtrConstant(1, dl));
13325           Ops.push_back(Trunc);
13326         }
13327       } else
13328         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13329     }
13330 
13331     unsigned Opcode;
13332     if (FirstConversion == PPCISD::FCTIDZ ||
13333         FirstConversion == PPCISD::FCTIWZ)
13334       Opcode = ISD::FP_TO_SINT;
13335     else
13336       Opcode = ISD::FP_TO_UINT;
13337 
13338     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13339     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13340     return DAG.getNode(Opcode, dl, TargetVT, BV);
13341   }
13342   return SDValue();
13343 }
13344 
13345 /// Reduce the number of loads when building a vector.
13346 ///
13347 /// Building a vector out of multiple loads can be converted to a load
13348 /// of the vector type if the loads are consecutive. If the loads are
13349 /// consecutive but in descending order, a shuffle is added at the end
13350 /// to reorder the vector.
13351 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13352   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13353          "Should be called with a BUILD_VECTOR node");
13354 
13355   SDLoc dl(N);
13356 
13357   // Return early for non byte-sized type, as they can't be consecutive.
13358   if (!N->getValueType(0).getVectorElementType().isByteSized())
13359     return SDValue();
13360 
13361   bool InputsAreConsecutiveLoads = true;
13362   bool InputsAreReverseConsecutive = true;
13363   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13364   SDValue FirstInput = N->getOperand(0);
13365   bool IsRoundOfExtLoad = false;
13366 
13367   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13368       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13369     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13370     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13371   }
13372   // Not a build vector of (possibly fp_rounded) loads.
13373   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13374       N->getNumOperands() == 1)
13375     return SDValue();
13376 
13377   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13378     // If any inputs are fp_round(extload), they all must be.
13379     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13380       return SDValue();
13381 
13382     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13383       N->getOperand(i);
13384     if (NextInput.getOpcode() != ISD::LOAD)
13385       return SDValue();
13386 
13387     SDValue PreviousInput =
13388       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13389     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13390     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13391 
13392     // If any inputs are fp_round(extload), they all must be.
13393     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13394       return SDValue();
13395 
13396     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13397       InputsAreConsecutiveLoads = false;
13398     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13399       InputsAreReverseConsecutive = false;
13400 
13401     // Exit early if the loads are neither consecutive nor reverse consecutive.
13402     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13403       return SDValue();
13404   }
13405 
13406   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13407          "The loads cannot be both consecutive and reverse consecutive.");
13408 
13409   SDValue FirstLoadOp =
13410     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13411   SDValue LastLoadOp =
13412     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13413                        N->getOperand(N->getNumOperands()-1);
13414 
13415   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13416   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13417   if (InputsAreConsecutiveLoads) {
13418     assert(LD1 && "Input needs to be a LoadSDNode.");
13419     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13420                        LD1->getBasePtr(), LD1->getPointerInfo(),
13421                        LD1->getAlignment());
13422   }
13423   if (InputsAreReverseConsecutive) {
13424     assert(LDL && "Input needs to be a LoadSDNode.");
13425     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13426                                LDL->getBasePtr(), LDL->getPointerInfo(),
13427                                LDL->getAlignment());
13428     SmallVector<int, 16> Ops;
13429     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13430       Ops.push_back(i);
13431 
13432     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13433                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13434   }
13435   return SDValue();
13436 }
13437 
13438 // This function adds the required vector_shuffle needed to get
13439 // the elements of the vector extract in the correct position
13440 // as specified by the CorrectElems encoding.
13441 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13442                                       SDValue Input, uint64_t Elems,
13443                                       uint64_t CorrectElems) {
13444   SDLoc dl(N);
13445 
13446   unsigned NumElems = Input.getValueType().getVectorNumElements();
13447   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13448 
13449   // Knowing the element indices being extracted from the original
13450   // vector and the order in which they're being inserted, just put
13451   // them at element indices required for the instruction.
13452   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13453     if (DAG.getDataLayout().isLittleEndian())
13454       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13455     else
13456       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13457     CorrectElems = CorrectElems >> 8;
13458     Elems = Elems >> 8;
13459   }
13460 
13461   SDValue Shuffle =
13462       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13463                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13464 
13465   EVT VT = N->getValueType(0);
13466   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13467 
13468   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13469                                Input.getValueType().getVectorElementType(),
13470                                VT.getVectorNumElements());
13471   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13472                      DAG.getValueType(ExtVT));
13473 }
13474 
13475 // Look for build vector patterns where input operands come from sign
13476 // extended vector_extract elements of specific indices. If the correct indices
13477 // aren't used, add a vector shuffle to fix up the indices and create
13478 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13479 // during instruction selection.
13480 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13481   // This array encodes the indices that the vector sign extend instructions
13482   // extract from when extending from one type to another for both BE and LE.
13483   // The right nibble of each byte corresponds to the LE incides.
13484   // and the left nibble of each byte corresponds to the BE incides.
13485   // For example: 0x3074B8FC  byte->word
13486   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13487   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13488   // For example: 0x000070F8  byte->double word
13489   // For LE: the allowed indices are: 0x0,0x8
13490   // For BE: the allowed indices are: 0x7,0xF
13491   uint64_t TargetElems[] = {
13492       0x3074B8FC, // b->w
13493       0x000070F8, // b->d
13494       0x10325476, // h->w
13495       0x00003074, // h->d
13496       0x00001032, // w->d
13497   };
13498 
13499   uint64_t Elems = 0;
13500   int Index;
13501   SDValue Input;
13502 
13503   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13504     if (!Op)
13505       return false;
13506     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13507         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13508       return false;
13509 
13510     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13511     // of the right width.
13512     SDValue Extract = Op.getOperand(0);
13513     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13514       Extract = Extract.getOperand(0);
13515     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13516       return false;
13517 
13518     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13519     if (!ExtOp)
13520       return false;
13521 
13522     Index = ExtOp->getZExtValue();
13523     if (Input && Input != Extract.getOperand(0))
13524       return false;
13525 
13526     if (!Input)
13527       Input = Extract.getOperand(0);
13528 
13529     Elems = Elems << 8;
13530     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13531     Elems |= Index;
13532 
13533     return true;
13534   };
13535 
13536   // If the build vector operands aren't sign extended vector extracts,
13537   // of the same input vector, then return.
13538   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13539     if (!isSExtOfVecExtract(N->getOperand(i))) {
13540       return SDValue();
13541     }
13542   }
13543 
13544   // If the vector extract indicies are not correct, add the appropriate
13545   // vector_shuffle.
13546   int TgtElemArrayIdx;
13547   int InputSize = Input.getValueType().getScalarSizeInBits();
13548   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13549   if (InputSize + OutputSize == 40)
13550     TgtElemArrayIdx = 0;
13551   else if (InputSize + OutputSize == 72)
13552     TgtElemArrayIdx = 1;
13553   else if (InputSize + OutputSize == 48)
13554     TgtElemArrayIdx = 2;
13555   else if (InputSize + OutputSize == 80)
13556     TgtElemArrayIdx = 3;
13557   else if (InputSize + OutputSize == 96)
13558     TgtElemArrayIdx = 4;
13559   else
13560     return SDValue();
13561 
13562   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13563   CorrectElems = DAG.getDataLayout().isLittleEndian()
13564                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13565                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13566   if (Elems != CorrectElems) {
13567     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13568   }
13569 
13570   // Regular lowering will catch cases where a shuffle is not needed.
13571   return SDValue();
13572 }
13573 
13574 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13575                                                  DAGCombinerInfo &DCI) const {
13576   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13577          "Should be called with a BUILD_VECTOR node");
13578 
13579   SelectionDAG &DAG = DCI.DAG;
13580   SDLoc dl(N);
13581 
13582   if (!Subtarget.hasVSX())
13583     return SDValue();
13584 
13585   // The target independent DAG combiner will leave a build_vector of
13586   // float-to-int conversions intact. We can generate MUCH better code for
13587   // a float-to-int conversion of a vector of floats.
13588   SDValue FirstInput = N->getOperand(0);
13589   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13590     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13591     if (Reduced)
13592       return Reduced;
13593   }
13594 
13595   // If we're building a vector out of consecutive loads, just load that
13596   // vector type.
13597   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13598   if (Reduced)
13599     return Reduced;
13600 
13601   // If we're building a vector out of extended elements from another vector
13602   // we have P9 vector integer extend instructions. The code assumes legal
13603   // input types (i.e. it can't handle things like v4i16) so do not run before
13604   // legalization.
13605   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13606     Reduced = combineBVOfVecSExt(N, DAG);
13607     if (Reduced)
13608       return Reduced;
13609   }
13610 
13611 
13612   if (N->getValueType(0) != MVT::v2f64)
13613     return SDValue();
13614 
13615   // Looking for:
13616   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13617   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13618       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13619     return SDValue();
13620   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13621       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13622     return SDValue();
13623   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13624     return SDValue();
13625 
13626   SDValue Ext1 = FirstInput.getOperand(0);
13627   SDValue Ext2 = N->getOperand(1).getOperand(0);
13628   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13629      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13630     return SDValue();
13631 
13632   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13633   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13634   if (!Ext1Op || !Ext2Op)
13635     return SDValue();
13636   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13637       Ext1.getOperand(0) != Ext2.getOperand(0))
13638     return SDValue();
13639 
13640   int FirstElem = Ext1Op->getZExtValue();
13641   int SecondElem = Ext2Op->getZExtValue();
13642   int SubvecIdx;
13643   if (FirstElem == 0 && SecondElem == 1)
13644     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13645   else if (FirstElem == 2 && SecondElem == 3)
13646     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13647   else
13648     return SDValue();
13649 
13650   SDValue SrcVec = Ext1.getOperand(0);
13651   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13652     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13653   return DAG.getNode(NodeType, dl, MVT::v2f64,
13654                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13655 }
13656 
13657 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13658                                               DAGCombinerInfo &DCI) const {
13659   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13660           N->getOpcode() == ISD::UINT_TO_FP) &&
13661          "Need an int -> FP conversion node here");
13662 
13663   if (useSoftFloat() || !Subtarget.has64BitSupport())
13664     return SDValue();
13665 
13666   SelectionDAG &DAG = DCI.DAG;
13667   SDLoc dl(N);
13668   SDValue Op(N, 0);
13669 
13670   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13671   // from the hardware.
13672   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13673     return SDValue();
13674   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13675       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13676     return SDValue();
13677 
13678   SDValue FirstOperand(Op.getOperand(0));
13679   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13680     (FirstOperand.getValueType() == MVT::i8 ||
13681      FirstOperand.getValueType() == MVT::i16);
13682   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13683     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13684     bool DstDouble = Op.getValueType() == MVT::f64;
13685     unsigned ConvOp = Signed ?
13686       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13687       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13688     SDValue WidthConst =
13689       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13690                             dl, false);
13691     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13692     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13693     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13694                                          DAG.getVTList(MVT::f64, MVT::Other),
13695                                          Ops, MVT::i8, LDN->getMemOperand());
13696 
13697     // For signed conversion, we need to sign-extend the value in the VSR
13698     if (Signed) {
13699       SDValue ExtOps[] = { Ld, WidthConst };
13700       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13701       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13702     } else
13703       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13704   }
13705 
13706 
13707   // For i32 intermediate values, unfortunately, the conversion functions
13708   // leave the upper 32 bits of the value are undefined. Within the set of
13709   // scalar instructions, we have no method for zero- or sign-extending the
13710   // value. Thus, we cannot handle i32 intermediate values here.
13711   if (Op.getOperand(0).getValueType() == MVT::i32)
13712     return SDValue();
13713 
13714   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13715          "UINT_TO_FP is supported only with FPCVT");
13716 
13717   // If we have FCFIDS, then use it when converting to single-precision.
13718   // Otherwise, convert to double-precision and then round.
13719   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13720                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13721                                                             : PPCISD::FCFIDS)
13722                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13723                                                             : PPCISD::FCFID);
13724   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13725                   ? MVT::f32
13726                   : MVT::f64;
13727 
13728   // If we're converting from a float, to an int, and back to a float again,
13729   // then we don't need the store/load pair at all.
13730   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13731        Subtarget.hasFPCVT()) ||
13732       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13733     SDValue Src = Op.getOperand(0).getOperand(0);
13734     if (Src.getValueType() == MVT::f32) {
13735       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13736       DCI.AddToWorklist(Src.getNode());
13737     } else if (Src.getValueType() != MVT::f64) {
13738       // Make sure that we don't pick up a ppc_fp128 source value.
13739       return SDValue();
13740     }
13741 
13742     unsigned FCTOp =
13743       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13744                                                         PPCISD::FCTIDUZ;
13745 
13746     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13747     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13748 
13749     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13750       FP = DAG.getNode(ISD::FP_ROUND, dl,
13751                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13752       DCI.AddToWorklist(FP.getNode());
13753     }
13754 
13755     return FP;
13756   }
13757 
13758   return SDValue();
13759 }
13760 
13761 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13762 // builtins) into loads with swaps.
13763 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13764                                               DAGCombinerInfo &DCI) const {
13765   SelectionDAG &DAG = DCI.DAG;
13766   SDLoc dl(N);
13767   SDValue Chain;
13768   SDValue Base;
13769   MachineMemOperand *MMO;
13770 
13771   switch (N->getOpcode()) {
13772   default:
13773     llvm_unreachable("Unexpected opcode for little endian VSX load");
13774   case ISD::LOAD: {
13775     LoadSDNode *LD = cast<LoadSDNode>(N);
13776     Chain = LD->getChain();
13777     Base = LD->getBasePtr();
13778     MMO = LD->getMemOperand();
13779     // If the MMO suggests this isn't a load of a full vector, leave
13780     // things alone.  For a built-in, we have to make the change for
13781     // correctness, so if there is a size problem that will be a bug.
13782     if (MMO->getSize() < 16)
13783       return SDValue();
13784     break;
13785   }
13786   case ISD::INTRINSIC_W_CHAIN: {
13787     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13788     Chain = Intrin->getChain();
13789     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13790     // us what we want. Get operand 2 instead.
13791     Base = Intrin->getOperand(2);
13792     MMO = Intrin->getMemOperand();
13793     break;
13794   }
13795   }
13796 
13797   MVT VecTy = N->getValueType(0).getSimpleVT();
13798 
13799   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13800   // aligned and the type is a vector with elements up to 4 bytes
13801   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13802       VecTy.getScalarSizeInBits() <= 32) {
13803     return SDValue();
13804   }
13805 
13806   SDValue LoadOps[] = { Chain, Base };
13807   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13808                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13809                                          LoadOps, MVT::v2f64, MMO);
13810 
13811   DCI.AddToWorklist(Load.getNode());
13812   Chain = Load.getValue(1);
13813   SDValue Swap = DAG.getNode(
13814       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13815   DCI.AddToWorklist(Swap.getNode());
13816 
13817   // Add a bitcast if the resulting load type doesn't match v2f64.
13818   if (VecTy != MVT::v2f64) {
13819     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13820     DCI.AddToWorklist(N.getNode());
13821     // Package {bitcast value, swap's chain} to match Load's shape.
13822     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13823                        N, Swap.getValue(1));
13824   }
13825 
13826   return Swap;
13827 }
13828 
13829 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13830 // builtins) into stores with swaps.
13831 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13832                                                DAGCombinerInfo &DCI) const {
13833   SelectionDAG &DAG = DCI.DAG;
13834   SDLoc dl(N);
13835   SDValue Chain;
13836   SDValue Base;
13837   unsigned SrcOpnd;
13838   MachineMemOperand *MMO;
13839 
13840   switch (N->getOpcode()) {
13841   default:
13842     llvm_unreachable("Unexpected opcode for little endian VSX store");
13843   case ISD::STORE: {
13844     StoreSDNode *ST = cast<StoreSDNode>(N);
13845     Chain = ST->getChain();
13846     Base = ST->getBasePtr();
13847     MMO = ST->getMemOperand();
13848     SrcOpnd = 1;
13849     // If the MMO suggests this isn't a store of a full vector, leave
13850     // things alone.  For a built-in, we have to make the change for
13851     // correctness, so if there is a size problem that will be a bug.
13852     if (MMO->getSize() < 16)
13853       return SDValue();
13854     break;
13855   }
13856   case ISD::INTRINSIC_VOID: {
13857     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13858     Chain = Intrin->getChain();
13859     // Intrin->getBasePtr() oddly does not get what we want.
13860     Base = Intrin->getOperand(3);
13861     MMO = Intrin->getMemOperand();
13862     SrcOpnd = 2;
13863     break;
13864   }
13865   }
13866 
13867   SDValue Src = N->getOperand(SrcOpnd);
13868   MVT VecTy = Src.getValueType().getSimpleVT();
13869 
13870   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13871   // aligned and the type is a vector with elements up to 4 bytes
13872   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13873       VecTy.getScalarSizeInBits() <= 32) {
13874     return SDValue();
13875   }
13876 
13877   // All stores are done as v2f64 and possible bit cast.
13878   if (VecTy != MVT::v2f64) {
13879     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13880     DCI.AddToWorklist(Src.getNode());
13881   }
13882 
13883   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13884                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13885   DCI.AddToWorklist(Swap.getNode());
13886   Chain = Swap.getValue(1);
13887   SDValue StoreOps[] = { Chain, Swap, Base };
13888   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13889                                           DAG.getVTList(MVT::Other),
13890                                           StoreOps, VecTy, MMO);
13891   DCI.AddToWorklist(Store.getNode());
13892   return Store;
13893 }
13894 
13895 // Handle DAG combine for STORE (FP_TO_INT F).
13896 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13897                                                DAGCombinerInfo &DCI) const {
13898 
13899   SelectionDAG &DAG = DCI.DAG;
13900   SDLoc dl(N);
13901   unsigned Opcode = N->getOperand(1).getOpcode();
13902 
13903   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13904          && "Not a FP_TO_INT Instruction!");
13905 
13906   SDValue Val = N->getOperand(1).getOperand(0);
13907   EVT Op1VT = N->getOperand(1).getValueType();
13908   EVT ResVT = Val.getValueType();
13909 
13910   // Floating point types smaller than 32 bits are not legal on Power.
13911   if (ResVT.getScalarSizeInBits() < 32)
13912     return SDValue();
13913 
13914   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13915   bool ValidTypeForStoreFltAsInt =
13916         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13917          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13918 
13919   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13920       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13921     return SDValue();
13922 
13923   // Extend f32 values to f64
13924   if (ResVT.getScalarSizeInBits() == 32) {
13925     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13926     DCI.AddToWorklist(Val.getNode());
13927   }
13928 
13929   // Set signed or unsigned conversion opcode.
13930   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13931                           PPCISD::FP_TO_SINT_IN_VSR :
13932                           PPCISD::FP_TO_UINT_IN_VSR;
13933 
13934   Val = DAG.getNode(ConvOpcode,
13935                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13936   DCI.AddToWorklist(Val.getNode());
13937 
13938   // Set number of bytes being converted.
13939   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13940   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13941                     DAG.getIntPtrConstant(ByteSize, dl, false),
13942                     DAG.getValueType(Op1VT) };
13943 
13944   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13945           DAG.getVTList(MVT::Other), Ops,
13946           cast<StoreSDNode>(N)->getMemoryVT(),
13947           cast<StoreSDNode>(N)->getMemOperand());
13948 
13949   DCI.AddToWorklist(Val.getNode());
13950   return Val;
13951 }
13952 
13953 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
13954   // Check that the source of the element keeps flipping
13955   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
13956   bool PrevElemFromFirstVec = Mask[0] < NumElts;
13957   for (int i = 1, e = Mask.size(); i < e; i++) {
13958     if (PrevElemFromFirstVec && Mask[i] < NumElts)
13959       return false;
13960     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
13961       return false;
13962     PrevElemFromFirstVec = !PrevElemFromFirstVec;
13963   }
13964   return true;
13965 }
13966 
13967 static bool isSplatBV(SDValue Op) {
13968   if (Op.getOpcode() != ISD::BUILD_VECTOR)
13969     return false;
13970   SDValue FirstOp;
13971 
13972   // Find first non-undef input.
13973   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
13974     FirstOp = Op.getOperand(i);
13975     if (!FirstOp.isUndef())
13976       break;
13977   }
13978 
13979   // All inputs are undef or the same as the first non-undef input.
13980   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
13981     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
13982       return false;
13983   return true;
13984 }
13985 
13986 static SDValue isScalarToVec(SDValue Op) {
13987   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13988     return Op;
13989   if (Op.getOpcode() != ISD::BITCAST)
13990     return SDValue();
13991   Op = Op.getOperand(0);
13992   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13993     return Op;
13994   return SDValue();
13995 }
13996 
13997 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
13998                                             int LHSMaxIdx, int RHSMinIdx,
13999                                             int RHSMaxIdx, int HalfVec) {
14000   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14001     int Idx = ShuffV[i];
14002     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14003       ShuffV[i] += HalfVec;
14004   }
14005   return;
14006 }
14007 
14008 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14009 // the original is:
14010 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14011 // In such a case, just change the shuffle mask to extract the element
14012 // from the permuted index.
14013 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14014   SDLoc dl(OrigSToV);
14015   EVT VT = OrigSToV.getValueType();
14016   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14017          "Expecting a SCALAR_TO_VECTOR here");
14018   SDValue Input = OrigSToV.getOperand(0);
14019 
14020   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14021     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14022     SDValue OrigVector = Input.getOperand(0);
14023 
14024     // Can't handle non-const element indices or different vector types
14025     // for the input to the extract and the output of the scalar_to_vector.
14026     if (Idx && VT == OrigVector.getValueType()) {
14027       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14028       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14029       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14030     }
14031   }
14032   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14033                      OrigSToV.getOperand(0));
14034 }
14035 
14036 // On little endian subtargets, combine shuffles such as:
14037 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14038 // into:
14039 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14040 // because the latter can be matched to a single instruction merge.
14041 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14042 // to put the value into element zero. Adjust the shuffle mask so that the
14043 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14044 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14045                                                 SelectionDAG &DAG) const {
14046   SDValue LHS = SVN->getOperand(0);
14047   SDValue RHS = SVN->getOperand(1);
14048   auto Mask = SVN->getMask();
14049   int NumElts = LHS.getValueType().getVectorNumElements();
14050   SDValue Res(SVN, 0);
14051   SDLoc dl(SVN);
14052 
14053   // None of these combines are useful on big endian systems since the ISA
14054   // already has a big endian bias.
14055   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14056     return Res;
14057 
14058   // If this is not a shuffle of a shuffle and the first element comes from
14059   // the second vector, canonicalize to the commuted form. This will make it
14060   // more likely to match one of the single instruction patterns.
14061   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14062       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14063     std::swap(LHS, RHS);
14064     Res = DAG.getCommutedVectorShuffle(*SVN);
14065     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14066   }
14067 
14068   // Adjust the shuffle mask if either input vector comes from a
14069   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14070   // form (to prevent the need for a swap).
14071   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14072   SDValue SToVLHS = isScalarToVec(LHS);
14073   SDValue SToVRHS = isScalarToVec(RHS);
14074   if (SToVLHS || SToVRHS) {
14075     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14076                             : SToVRHS.getValueType().getVectorNumElements();
14077     int NumEltsOut = ShuffV.size();
14078 
14079     // Initially assume that neither input is permuted. These will be adjusted
14080     // accordingly if either input is.
14081     int LHSMaxIdx = -1;
14082     int RHSMinIdx = -1;
14083     int RHSMaxIdx = -1;
14084     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14085 
14086     // Get the permuted scalar to vector nodes for the source(s) that come from
14087     // ISD::SCALAR_TO_VECTOR.
14088     if (SToVLHS) {
14089       // Set up the values for the shuffle vector fixup.
14090       LHSMaxIdx = NumEltsOut / NumEltsIn;
14091       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14092       if (SToVLHS.getValueType() != LHS.getValueType())
14093         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14094       LHS = SToVLHS;
14095     }
14096     if (SToVRHS) {
14097       RHSMinIdx = NumEltsOut;
14098       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14099       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14100       if (SToVRHS.getValueType() != RHS.getValueType())
14101         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14102       RHS = SToVRHS;
14103     }
14104 
14105     // Fix up the shuffle mask to reflect where the desired element actually is.
14106     // The minimum and maximum indices that correspond to element zero for both
14107     // the LHS and RHS are computed and will control which shuffle mask entries
14108     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14109     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14110     // HalfVec to refer to the corresponding element in the permuted vector.
14111     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14112                                     HalfVec);
14113     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14114 
14115     // We may have simplified away the shuffle. We won't be able to do anything
14116     // further with it here.
14117     if (!isa<ShuffleVectorSDNode>(Res))
14118       return Res;
14119     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14120   }
14121 
14122   // The common case after we commuted the shuffle is that the RHS is a splat
14123   // and we have elements coming in from the splat at indices that are not
14124   // conducive to using a merge.
14125   // Example:
14126   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14127   if (!isSplatBV(RHS))
14128     return Res;
14129 
14130   // We are looking for a mask such that all even elements are from
14131   // one vector and all odd elements from the other.
14132   if (!isAlternatingShuffMask(Mask, NumElts))
14133     return Res;
14134 
14135   // Adjust the mask so we are pulling in the same index from the splat
14136   // as the index from the interesting vector in consecutive elements.
14137   // Example (even elements from first vector):
14138   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14139   if (Mask[0] < NumElts)
14140     for (int i = 1, e = Mask.size(); i < e; i += 2)
14141       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14142   // Example (odd elements from first vector):
14143   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14144   else
14145     for (int i = 0, e = Mask.size(); i < e; i += 2)
14146       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14147 
14148   // If the RHS has undefs, we need to remove them since we may have created
14149   // a shuffle that adds those instead of the splat value.
14150   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14151   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14152 
14153   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14154   return Res;
14155 }
14156 
14157 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14158                                                 LSBaseSDNode *LSBase,
14159                                                 DAGCombinerInfo &DCI) const {
14160   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14161         "Not a reverse memop pattern!");
14162 
14163   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14164     auto Mask = SVN->getMask();
14165     int i = 0;
14166     auto I = Mask.rbegin();
14167     auto E = Mask.rend();
14168 
14169     for (; I != E; ++I) {
14170       if (*I != i)
14171         return false;
14172       i++;
14173     }
14174     return true;
14175   };
14176 
14177   SelectionDAG &DAG = DCI.DAG;
14178   EVT VT = SVN->getValueType(0);
14179 
14180   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14181     return SDValue();
14182 
14183   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14184   // See comment in PPCVSXSwapRemoval.cpp.
14185   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14186   if (!Subtarget.hasP9Vector())
14187     return SDValue();
14188 
14189   if(!IsElementReverse(SVN))
14190     return SDValue();
14191 
14192   if (LSBase->getOpcode() == ISD::LOAD) {
14193     SDLoc dl(SVN);
14194     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14195     return DAG.getMemIntrinsicNode(
14196         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14197         LSBase->getMemoryVT(), LSBase->getMemOperand());
14198   }
14199 
14200   if (LSBase->getOpcode() == ISD::STORE) {
14201     SDLoc dl(LSBase);
14202     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14203                           LSBase->getBasePtr()};
14204     return DAG.getMemIntrinsicNode(
14205         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14206         LSBase->getMemoryVT(), LSBase->getMemOperand());
14207   }
14208 
14209   llvm_unreachable("Expected a load or store node here");
14210 }
14211 
14212 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14213                                              DAGCombinerInfo &DCI) const {
14214   SelectionDAG &DAG = DCI.DAG;
14215   SDLoc dl(N);
14216   switch (N->getOpcode()) {
14217   default: break;
14218   case ISD::ADD:
14219     return combineADD(N, DCI);
14220   case ISD::SHL:
14221     return combineSHL(N, DCI);
14222   case ISD::SRA:
14223     return combineSRA(N, DCI);
14224   case ISD::SRL:
14225     return combineSRL(N, DCI);
14226   case ISD::MUL:
14227     return combineMUL(N, DCI);
14228   case ISD::FMA:
14229   case PPCISD::FNMSUB:
14230     return combineFMALike(N, DCI);
14231   case PPCISD::SHL:
14232     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14233         return N->getOperand(0);
14234     break;
14235   case PPCISD::SRL:
14236     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14237         return N->getOperand(0);
14238     break;
14239   case PPCISD::SRA:
14240     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14241       if (C->isNullValue() ||   //  0 >>s V -> 0.
14242           C->isAllOnesValue())    // -1 >>s V -> -1.
14243         return N->getOperand(0);
14244     }
14245     break;
14246   case ISD::SIGN_EXTEND:
14247   case ISD::ZERO_EXTEND:
14248   case ISD::ANY_EXTEND:
14249     return DAGCombineExtBoolTrunc(N, DCI);
14250   case ISD::TRUNCATE:
14251     return combineTRUNCATE(N, DCI);
14252   case ISD::SETCC:
14253     if (SDValue CSCC = combineSetCC(N, DCI))
14254       return CSCC;
14255     LLVM_FALLTHROUGH;
14256   case ISD::SELECT_CC:
14257     return DAGCombineTruncBoolExt(N, DCI);
14258   case ISD::SINT_TO_FP:
14259   case ISD::UINT_TO_FP:
14260     return combineFPToIntToFP(N, DCI);
14261   case ISD::VECTOR_SHUFFLE:
14262     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14263       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14264       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14265     }
14266     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14267   case ISD::STORE: {
14268 
14269     EVT Op1VT = N->getOperand(1).getValueType();
14270     unsigned Opcode = N->getOperand(1).getOpcode();
14271 
14272     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14273       SDValue Val= combineStoreFPToInt(N, DCI);
14274       if (Val)
14275         return Val;
14276     }
14277 
14278     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14279       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14280       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14281       if (Val)
14282         return Val;
14283     }
14284 
14285     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14286     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14287         N->getOperand(1).getNode()->hasOneUse() &&
14288         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14289          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14290 
14291       // STBRX can only handle simple types and it makes no sense to store less
14292       // two bytes in byte-reversed order.
14293       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14294       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14295         break;
14296 
14297       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14298       // Do an any-extend to 32-bits if this is a half-word input.
14299       if (BSwapOp.getValueType() == MVT::i16)
14300         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14301 
14302       // If the type of BSWAP operand is wider than stored memory width
14303       // it need to be shifted to the right side before STBRX.
14304       if (Op1VT.bitsGT(mVT)) {
14305         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14306         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14307                               DAG.getConstant(Shift, dl, MVT::i32));
14308         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14309         if (Op1VT == MVT::i64)
14310           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14311       }
14312 
14313       SDValue Ops[] = {
14314         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14315       };
14316       return
14317         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14318                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14319                                 cast<StoreSDNode>(N)->getMemOperand());
14320     }
14321 
14322     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14323     // So it can increase the chance of CSE constant construction.
14324     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14325         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14326       // Need to sign-extended to 64-bits to handle negative values.
14327       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14328       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14329                                     MemVT.getSizeInBits());
14330       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14331 
14332       // DAG.getTruncStore() can't be used here because it doesn't accept
14333       // the general (base + offset) addressing mode.
14334       // So we use UpdateNodeOperands and setTruncatingStore instead.
14335       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14336                              N->getOperand(3));
14337       cast<StoreSDNode>(N)->setTruncatingStore(true);
14338       return SDValue(N, 0);
14339     }
14340 
14341     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14342     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14343     if (Op1VT.isSimple()) {
14344       MVT StoreVT = Op1VT.getSimpleVT();
14345       if (Subtarget.needsSwapsForVSXMemOps() &&
14346           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14347            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14348         return expandVSXStoreForLE(N, DCI);
14349     }
14350     break;
14351   }
14352   case ISD::LOAD: {
14353     LoadSDNode *LD = cast<LoadSDNode>(N);
14354     EVT VT = LD->getValueType(0);
14355 
14356     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14357     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14358     if (VT.isSimple()) {
14359       MVT LoadVT = VT.getSimpleVT();
14360       if (Subtarget.needsSwapsForVSXMemOps() &&
14361           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14362            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14363         return expandVSXLoadForLE(N, DCI);
14364     }
14365 
14366     // We sometimes end up with a 64-bit integer load, from which we extract
14367     // two single-precision floating-point numbers. This happens with
14368     // std::complex<float>, and other similar structures, because of the way we
14369     // canonicalize structure copies. However, if we lack direct moves,
14370     // then the final bitcasts from the extracted integer values to the
14371     // floating-point numbers turn into store/load pairs. Even with direct moves,
14372     // just loading the two floating-point numbers is likely better.
14373     auto ReplaceTwoFloatLoad = [&]() {
14374       if (VT != MVT::i64)
14375         return false;
14376 
14377       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14378           LD->isVolatile())
14379         return false;
14380 
14381       //  We're looking for a sequence like this:
14382       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14383       //      t16: i64 = srl t13, Constant:i32<32>
14384       //    t17: i32 = truncate t16
14385       //  t18: f32 = bitcast t17
14386       //    t19: i32 = truncate t13
14387       //  t20: f32 = bitcast t19
14388 
14389       if (!LD->hasNUsesOfValue(2, 0))
14390         return false;
14391 
14392       auto UI = LD->use_begin();
14393       while (UI.getUse().getResNo() != 0) ++UI;
14394       SDNode *Trunc = *UI++;
14395       while (UI.getUse().getResNo() != 0) ++UI;
14396       SDNode *RightShift = *UI;
14397       if (Trunc->getOpcode() != ISD::TRUNCATE)
14398         std::swap(Trunc, RightShift);
14399 
14400       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14401           Trunc->getValueType(0) != MVT::i32 ||
14402           !Trunc->hasOneUse())
14403         return false;
14404       if (RightShift->getOpcode() != ISD::SRL ||
14405           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14406           RightShift->getConstantOperandVal(1) != 32 ||
14407           !RightShift->hasOneUse())
14408         return false;
14409 
14410       SDNode *Trunc2 = *RightShift->use_begin();
14411       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14412           Trunc2->getValueType(0) != MVT::i32 ||
14413           !Trunc2->hasOneUse())
14414         return false;
14415 
14416       SDNode *Bitcast = *Trunc->use_begin();
14417       SDNode *Bitcast2 = *Trunc2->use_begin();
14418 
14419       if (Bitcast->getOpcode() != ISD::BITCAST ||
14420           Bitcast->getValueType(0) != MVT::f32)
14421         return false;
14422       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14423           Bitcast2->getValueType(0) != MVT::f32)
14424         return false;
14425 
14426       if (Subtarget.isLittleEndian())
14427         std::swap(Bitcast, Bitcast2);
14428 
14429       // Bitcast has the second float (in memory-layout order) and Bitcast2
14430       // has the first one.
14431 
14432       SDValue BasePtr = LD->getBasePtr();
14433       if (LD->isIndexed()) {
14434         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14435                "Non-pre-inc AM on PPC?");
14436         BasePtr =
14437           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14438                       LD->getOffset());
14439       }
14440 
14441       auto MMOFlags =
14442           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14443       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14444                                       LD->getPointerInfo(), LD->getAlignment(),
14445                                       MMOFlags, LD->getAAInfo());
14446       SDValue AddPtr =
14447         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14448                     BasePtr, DAG.getIntPtrConstant(4, dl));
14449       SDValue FloatLoad2 = DAG.getLoad(
14450           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14451           LD->getPointerInfo().getWithOffset(4),
14452           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14453 
14454       if (LD->isIndexed()) {
14455         // Note that DAGCombine should re-form any pre-increment load(s) from
14456         // what is produced here if that makes sense.
14457         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14458       }
14459 
14460       DCI.CombineTo(Bitcast2, FloatLoad);
14461       DCI.CombineTo(Bitcast, FloatLoad2);
14462 
14463       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14464                                     SDValue(FloatLoad2.getNode(), 1));
14465       return true;
14466     };
14467 
14468     if (ReplaceTwoFloatLoad())
14469       return SDValue(N, 0);
14470 
14471     EVT MemVT = LD->getMemoryVT();
14472     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14473     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14474     if (LD->isUnindexed() && VT.isVector() &&
14475         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14476           // P8 and later hardware should just use LOAD.
14477           !Subtarget.hasP8Vector() &&
14478           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14479            VT == MVT::v4f32))) &&
14480         LD->getAlign() < ABIAlignment) {
14481       // This is a type-legal unaligned Altivec load.
14482       SDValue Chain = LD->getChain();
14483       SDValue Ptr = LD->getBasePtr();
14484       bool isLittleEndian = Subtarget.isLittleEndian();
14485 
14486       // This implements the loading of unaligned vectors as described in
14487       // the venerable Apple Velocity Engine overview. Specifically:
14488       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14489       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14490       //
14491       // The general idea is to expand a sequence of one or more unaligned
14492       // loads into an alignment-based permutation-control instruction (lvsl
14493       // or lvsr), a series of regular vector loads (which always truncate
14494       // their input address to an aligned address), and a series of
14495       // permutations.  The results of these permutations are the requested
14496       // loaded values.  The trick is that the last "extra" load is not taken
14497       // from the address you might suspect (sizeof(vector) bytes after the
14498       // last requested load), but rather sizeof(vector) - 1 bytes after the
14499       // last requested vector. The point of this is to avoid a page fault if
14500       // the base address happened to be aligned. This works because if the
14501       // base address is aligned, then adding less than a full vector length
14502       // will cause the last vector in the sequence to be (re)loaded.
14503       // Otherwise, the next vector will be fetched as you might suspect was
14504       // necessary.
14505 
14506       // We might be able to reuse the permutation generation from
14507       // a different base address offset from this one by an aligned amount.
14508       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14509       // optimization later.
14510       Intrinsic::ID Intr, IntrLD, IntrPerm;
14511       MVT PermCntlTy, PermTy, LDTy;
14512       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14513                             : Intrinsic::ppc_altivec_lvsl;
14514       IntrLD = Intrinsic::ppc_altivec_lvx;
14515       IntrPerm = Intrinsic::ppc_altivec_vperm;
14516       PermCntlTy = MVT::v16i8;
14517       PermTy = MVT::v4i32;
14518       LDTy = MVT::v4i32;
14519 
14520       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14521 
14522       // Create the new MMO for the new base load. It is like the original MMO,
14523       // but represents an area in memory almost twice the vector size centered
14524       // on the original address. If the address is unaligned, we might start
14525       // reading up to (sizeof(vector)-1) bytes below the address of the
14526       // original unaligned load.
14527       MachineFunction &MF = DAG.getMachineFunction();
14528       MachineMemOperand *BaseMMO =
14529         MF.getMachineMemOperand(LD->getMemOperand(),
14530                                 -(long)MemVT.getStoreSize()+1,
14531                                 2*MemVT.getStoreSize()-1);
14532 
14533       // Create the new base load.
14534       SDValue LDXIntID =
14535           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14536       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14537       SDValue BaseLoad =
14538         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14539                                 DAG.getVTList(PermTy, MVT::Other),
14540                                 BaseLoadOps, LDTy, BaseMMO);
14541 
14542       // Note that the value of IncOffset (which is provided to the next
14543       // load's pointer info offset value, and thus used to calculate the
14544       // alignment), and the value of IncValue (which is actually used to
14545       // increment the pointer value) are different! This is because we
14546       // require the next load to appear to be aligned, even though it
14547       // is actually offset from the base pointer by a lesser amount.
14548       int IncOffset = VT.getSizeInBits() / 8;
14549       int IncValue = IncOffset;
14550 
14551       // Walk (both up and down) the chain looking for another load at the real
14552       // (aligned) offset (the alignment of the other load does not matter in
14553       // this case). If found, then do not use the offset reduction trick, as
14554       // that will prevent the loads from being later combined (as they would
14555       // otherwise be duplicates).
14556       if (!findConsecutiveLoad(LD, DAG))
14557         --IncValue;
14558 
14559       SDValue Increment =
14560           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14561       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14562 
14563       MachineMemOperand *ExtraMMO =
14564         MF.getMachineMemOperand(LD->getMemOperand(),
14565                                 1, 2*MemVT.getStoreSize()-1);
14566       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14567       SDValue ExtraLoad =
14568         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14569                                 DAG.getVTList(PermTy, MVT::Other),
14570                                 ExtraLoadOps, LDTy, ExtraMMO);
14571 
14572       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14573         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14574 
14575       // Because vperm has a big-endian bias, we must reverse the order
14576       // of the input vectors and complement the permute control vector
14577       // when generating little endian code.  We have already handled the
14578       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14579       // and ExtraLoad here.
14580       SDValue Perm;
14581       if (isLittleEndian)
14582         Perm = BuildIntrinsicOp(IntrPerm,
14583                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14584       else
14585         Perm = BuildIntrinsicOp(IntrPerm,
14586                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14587 
14588       if (VT != PermTy)
14589         Perm = Subtarget.hasAltivec()
14590                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14591                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14592                                  DAG.getTargetConstant(1, dl, MVT::i64));
14593                                // second argument is 1 because this rounding
14594                                // is always exact.
14595 
14596       // The output of the permutation is our loaded result, the TokenFactor is
14597       // our new chain.
14598       DCI.CombineTo(N, Perm, TF);
14599       return SDValue(N, 0);
14600     }
14601     }
14602     break;
14603     case ISD::INTRINSIC_WO_CHAIN: {
14604       bool isLittleEndian = Subtarget.isLittleEndian();
14605       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14606       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14607                                            : Intrinsic::ppc_altivec_lvsl);
14608       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14609         SDValue Add = N->getOperand(1);
14610 
14611         int Bits = 4 /* 16 byte alignment */;
14612 
14613         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14614                                   APInt::getAllOnesValue(Bits /* alignment */)
14615                                       .zext(Add.getScalarValueSizeInBits()))) {
14616           SDNode *BasePtr = Add->getOperand(0).getNode();
14617           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14618                                     UE = BasePtr->use_end();
14619                UI != UE; ++UI) {
14620             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14621                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14622                     IID) {
14623               // We've found another LVSL/LVSR, and this address is an aligned
14624               // multiple of that one. The results will be the same, so use the
14625               // one we've just found instead.
14626 
14627               return SDValue(*UI, 0);
14628             }
14629           }
14630         }
14631 
14632         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14633           SDNode *BasePtr = Add->getOperand(0).getNode();
14634           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14635                UE = BasePtr->use_end(); UI != UE; ++UI) {
14636             if (UI->getOpcode() == ISD::ADD &&
14637                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14638                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14639                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14640                 (1ULL << Bits) == 0) {
14641               SDNode *OtherAdd = *UI;
14642               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14643                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14644                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14645                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14646                   return SDValue(*VI, 0);
14647                 }
14648               }
14649             }
14650           }
14651         }
14652       }
14653 
14654       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14655       // Expose the vabsduw/h/b opportunity for down stream
14656       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14657           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14658            IID == Intrinsic::ppc_altivec_vmaxsh ||
14659            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14660         SDValue V1 = N->getOperand(1);
14661         SDValue V2 = N->getOperand(2);
14662         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14663              V1.getSimpleValueType() == MVT::v8i16 ||
14664              V1.getSimpleValueType() == MVT::v16i8) &&
14665             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14666           // (0-a, a)
14667           if (V1.getOpcode() == ISD::SUB &&
14668               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14669               V1.getOperand(1) == V2) {
14670             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14671           }
14672           // (a, 0-a)
14673           if (V2.getOpcode() == ISD::SUB &&
14674               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14675               V2.getOperand(1) == V1) {
14676             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14677           }
14678           // (x-y, y-x)
14679           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14680               V1.getOperand(0) == V2.getOperand(1) &&
14681               V1.getOperand(1) == V2.getOperand(0)) {
14682             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14683           }
14684         }
14685       }
14686     }
14687 
14688     break;
14689   case ISD::INTRINSIC_W_CHAIN:
14690     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14691     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14692     if (Subtarget.needsSwapsForVSXMemOps()) {
14693       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14694       default:
14695         break;
14696       case Intrinsic::ppc_vsx_lxvw4x:
14697       case Intrinsic::ppc_vsx_lxvd2x:
14698         return expandVSXLoadForLE(N, DCI);
14699       }
14700     }
14701     break;
14702   case ISD::INTRINSIC_VOID:
14703     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14704     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14705     if (Subtarget.needsSwapsForVSXMemOps()) {
14706       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14707       default:
14708         break;
14709       case Intrinsic::ppc_vsx_stxvw4x:
14710       case Intrinsic::ppc_vsx_stxvd2x:
14711         return expandVSXStoreForLE(N, DCI);
14712       }
14713     }
14714     break;
14715   case ISD::BSWAP:
14716     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14717     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14718         N->getOperand(0).hasOneUse() &&
14719         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14720          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14721           N->getValueType(0) == MVT::i64))) {
14722       SDValue Load = N->getOperand(0);
14723       LoadSDNode *LD = cast<LoadSDNode>(Load);
14724       // Create the byte-swapping load.
14725       SDValue Ops[] = {
14726         LD->getChain(),    // Chain
14727         LD->getBasePtr(),  // Ptr
14728         DAG.getValueType(N->getValueType(0)) // VT
14729       };
14730       SDValue BSLoad =
14731         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14732                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14733                                               MVT::i64 : MVT::i32, MVT::Other),
14734                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14735 
14736       // If this is an i16 load, insert the truncate.
14737       SDValue ResVal = BSLoad;
14738       if (N->getValueType(0) == MVT::i16)
14739         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14740 
14741       // First, combine the bswap away.  This makes the value produced by the
14742       // load dead.
14743       DCI.CombineTo(N, ResVal);
14744 
14745       // Next, combine the load away, we give it a bogus result value but a real
14746       // chain result.  The result value is dead because the bswap is dead.
14747       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14748 
14749       // Return N so it doesn't get rechecked!
14750       return SDValue(N, 0);
14751     }
14752     break;
14753   case PPCISD::VCMP:
14754     // If a VCMPo node already exists with exactly the same operands as this
14755     // node, use its result instead of this node (VCMPo computes both a CR6 and
14756     // a normal output).
14757     //
14758     if (!N->getOperand(0).hasOneUse() &&
14759         !N->getOperand(1).hasOneUse() &&
14760         !N->getOperand(2).hasOneUse()) {
14761 
14762       // Scan all of the users of the LHS, looking for VCMPo's that match.
14763       SDNode *VCMPoNode = nullptr;
14764 
14765       SDNode *LHSN = N->getOperand(0).getNode();
14766       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14767            UI != E; ++UI)
14768         if (UI->getOpcode() == PPCISD::VCMPo &&
14769             UI->getOperand(1) == N->getOperand(1) &&
14770             UI->getOperand(2) == N->getOperand(2) &&
14771             UI->getOperand(0) == N->getOperand(0)) {
14772           VCMPoNode = *UI;
14773           break;
14774         }
14775 
14776       // If there is no VCMPo node, or if the flag value has a single use, don't
14777       // transform this.
14778       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14779         break;
14780 
14781       // Look at the (necessarily single) use of the flag value.  If it has a
14782       // chain, this transformation is more complex.  Note that multiple things
14783       // could use the value result, which we should ignore.
14784       SDNode *FlagUser = nullptr;
14785       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14786            FlagUser == nullptr; ++UI) {
14787         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14788         SDNode *User = *UI;
14789         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14790           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14791             FlagUser = User;
14792             break;
14793           }
14794         }
14795       }
14796 
14797       // If the user is a MFOCRF instruction, we know this is safe.
14798       // Otherwise we give up for right now.
14799       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14800         return SDValue(VCMPoNode, 0);
14801     }
14802     break;
14803   case ISD::BRCOND: {
14804     SDValue Cond = N->getOperand(1);
14805     SDValue Target = N->getOperand(2);
14806 
14807     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14808         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14809           Intrinsic::loop_decrement) {
14810 
14811       // We now need to make the intrinsic dead (it cannot be instruction
14812       // selected).
14813       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14814       assert(Cond.getNode()->hasOneUse() &&
14815              "Counter decrement has more than one use");
14816 
14817       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14818                          N->getOperand(0), Target);
14819     }
14820   }
14821   break;
14822   case ISD::BR_CC: {
14823     // If this is a branch on an altivec predicate comparison, lower this so
14824     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14825     // lowering is done pre-legalize, because the legalizer lowers the predicate
14826     // compare down to code that is difficult to reassemble.
14827     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14828     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14829 
14830     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14831     // value. If so, pass-through the AND to get to the intrinsic.
14832     if (LHS.getOpcode() == ISD::AND &&
14833         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14834         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14835           Intrinsic::loop_decrement &&
14836         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14837         !isNullConstant(LHS.getOperand(1)))
14838       LHS = LHS.getOperand(0);
14839 
14840     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14841         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14842           Intrinsic::loop_decrement &&
14843         isa<ConstantSDNode>(RHS)) {
14844       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14845              "Counter decrement comparison is not EQ or NE");
14846 
14847       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14848       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14849                     (CC == ISD::SETNE && !Val);
14850 
14851       // We now need to make the intrinsic dead (it cannot be instruction
14852       // selected).
14853       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14854       assert(LHS.getNode()->hasOneUse() &&
14855              "Counter decrement has more than one use");
14856 
14857       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14858                          N->getOperand(0), N->getOperand(4));
14859     }
14860 
14861     int CompareOpc;
14862     bool isDot;
14863 
14864     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14865         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14866         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14867       assert(isDot && "Can't compare against a vector result!");
14868 
14869       // If this is a comparison against something other than 0/1, then we know
14870       // that the condition is never/always true.
14871       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14872       if (Val != 0 && Val != 1) {
14873         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14874           return N->getOperand(0);
14875         // Always !=, turn it into an unconditional branch.
14876         return DAG.getNode(ISD::BR, dl, MVT::Other,
14877                            N->getOperand(0), N->getOperand(4));
14878       }
14879 
14880       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14881 
14882       // Create the PPCISD altivec 'dot' comparison node.
14883       SDValue Ops[] = {
14884         LHS.getOperand(2),  // LHS of compare
14885         LHS.getOperand(3),  // RHS of compare
14886         DAG.getConstant(CompareOpc, dl, MVT::i32)
14887       };
14888       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14889       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14890 
14891       // Unpack the result based on how the target uses it.
14892       PPC::Predicate CompOpc;
14893       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14894       default:  // Can't happen, don't crash on invalid number though.
14895       case 0:   // Branch on the value of the EQ bit of CR6.
14896         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14897         break;
14898       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14899         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14900         break;
14901       case 2:   // Branch on the value of the LT bit of CR6.
14902         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14903         break;
14904       case 3:   // Branch on the inverted value of the LT bit of CR6.
14905         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14906         break;
14907       }
14908 
14909       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14910                          DAG.getConstant(CompOpc, dl, MVT::i32),
14911                          DAG.getRegister(PPC::CR6, MVT::i32),
14912                          N->getOperand(4), CompNode.getValue(1));
14913     }
14914     break;
14915   }
14916   case ISD::BUILD_VECTOR:
14917     return DAGCombineBuildVector(N, DCI);
14918   case ISD::ABS:
14919     return combineABS(N, DCI);
14920   case ISD::VSELECT:
14921     return combineVSelect(N, DCI);
14922   }
14923 
14924   return SDValue();
14925 }
14926 
14927 SDValue
14928 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14929                                  SelectionDAG &DAG,
14930                                  SmallVectorImpl<SDNode *> &Created) const {
14931   // fold (sdiv X, pow2)
14932   EVT VT = N->getValueType(0);
14933   if (VT == MVT::i64 && !Subtarget.isPPC64())
14934     return SDValue();
14935   if ((VT != MVT::i32 && VT != MVT::i64) ||
14936       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14937     return SDValue();
14938 
14939   SDLoc DL(N);
14940   SDValue N0 = N->getOperand(0);
14941 
14942   bool IsNegPow2 = (-Divisor).isPowerOf2();
14943   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14944   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14945 
14946   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14947   Created.push_back(Op.getNode());
14948 
14949   if (IsNegPow2) {
14950     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14951     Created.push_back(Op.getNode());
14952   }
14953 
14954   return Op;
14955 }
14956 
14957 //===----------------------------------------------------------------------===//
14958 // Inline Assembly Support
14959 //===----------------------------------------------------------------------===//
14960 
14961 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14962                                                       KnownBits &Known,
14963                                                       const APInt &DemandedElts,
14964                                                       const SelectionDAG &DAG,
14965                                                       unsigned Depth) const {
14966   Known.resetAll();
14967   switch (Op.getOpcode()) {
14968   default: break;
14969   case PPCISD::LBRX: {
14970     // lhbrx is known to have the top bits cleared out.
14971     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14972       Known.Zero = 0xFFFF0000;
14973     break;
14974   }
14975   case ISD::INTRINSIC_WO_CHAIN: {
14976     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14977     default: break;
14978     case Intrinsic::ppc_altivec_vcmpbfp_p:
14979     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14980     case Intrinsic::ppc_altivec_vcmpequb_p:
14981     case Intrinsic::ppc_altivec_vcmpequh_p:
14982     case Intrinsic::ppc_altivec_vcmpequw_p:
14983     case Intrinsic::ppc_altivec_vcmpequd_p:
14984     case Intrinsic::ppc_altivec_vcmpgefp_p:
14985     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14986     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14987     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14988     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14989     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14990     case Intrinsic::ppc_altivec_vcmpgtub_p:
14991     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14992     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14993     case Intrinsic::ppc_altivec_vcmpgtud_p:
14994       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14995       break;
14996     }
14997   }
14998   }
14999 }
15000 
15001 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15002   switch (Subtarget.getCPUDirective()) {
15003   default: break;
15004   case PPC::DIR_970:
15005   case PPC::DIR_PWR4:
15006   case PPC::DIR_PWR5:
15007   case PPC::DIR_PWR5X:
15008   case PPC::DIR_PWR6:
15009   case PPC::DIR_PWR6X:
15010   case PPC::DIR_PWR7:
15011   case PPC::DIR_PWR8:
15012   case PPC::DIR_PWR9:
15013   case PPC::DIR_PWR10:
15014   case PPC::DIR_PWR_FUTURE: {
15015     if (!ML)
15016       break;
15017 
15018     if (!DisableInnermostLoopAlign32) {
15019       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15020       // so that we can decrease cache misses and branch-prediction misses.
15021       // Actual alignment of the loop will depend on the hotness check and other
15022       // logic in alignBlocks.
15023       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15024         return Align(32);
15025     }
15026 
15027     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15028 
15029     // For small loops (between 5 and 8 instructions), align to a 32-byte
15030     // boundary so that the entire loop fits in one instruction-cache line.
15031     uint64_t LoopSize = 0;
15032     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15033       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15034         LoopSize += TII->getInstSizeInBytes(*J);
15035         if (LoopSize > 32)
15036           break;
15037       }
15038 
15039     if (LoopSize > 16 && LoopSize <= 32)
15040       return Align(32);
15041 
15042     break;
15043   }
15044   }
15045 
15046   return TargetLowering::getPrefLoopAlignment(ML);
15047 }
15048 
15049 /// getConstraintType - Given a constraint, return the type of
15050 /// constraint it is for this target.
15051 PPCTargetLowering::ConstraintType
15052 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15053   if (Constraint.size() == 1) {
15054     switch (Constraint[0]) {
15055     default: break;
15056     case 'b':
15057     case 'r':
15058     case 'f':
15059     case 'd':
15060     case 'v':
15061     case 'y':
15062       return C_RegisterClass;
15063     case 'Z':
15064       // FIXME: While Z does indicate a memory constraint, it specifically
15065       // indicates an r+r address (used in conjunction with the 'y' modifier
15066       // in the replacement string). Currently, we're forcing the base
15067       // register to be r0 in the asm printer (which is interpreted as zero)
15068       // and forming the complete address in the second register. This is
15069       // suboptimal.
15070       return C_Memory;
15071     }
15072   } else if (Constraint == "wc") { // individual CR bits.
15073     return C_RegisterClass;
15074   } else if (Constraint == "wa" || Constraint == "wd" ||
15075              Constraint == "wf" || Constraint == "ws" ||
15076              Constraint == "wi" || Constraint == "ww") {
15077     return C_RegisterClass; // VSX registers.
15078   }
15079   return TargetLowering::getConstraintType(Constraint);
15080 }
15081 
15082 /// Examine constraint type and operand type and determine a weight value.
15083 /// This object must already have been set up with the operand type
15084 /// and the current alternative constraint selected.
15085 TargetLowering::ConstraintWeight
15086 PPCTargetLowering::getSingleConstraintMatchWeight(
15087     AsmOperandInfo &info, const char *constraint) const {
15088   ConstraintWeight weight = CW_Invalid;
15089   Value *CallOperandVal = info.CallOperandVal;
15090     // If we don't have a value, we can't do a match,
15091     // but allow it at the lowest weight.
15092   if (!CallOperandVal)
15093     return CW_Default;
15094   Type *type = CallOperandVal->getType();
15095 
15096   // Look at the constraint type.
15097   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15098     return CW_Register; // an individual CR bit.
15099   else if ((StringRef(constraint) == "wa" ||
15100             StringRef(constraint) == "wd" ||
15101             StringRef(constraint) == "wf") &&
15102            type->isVectorTy())
15103     return CW_Register;
15104   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15105     return CW_Register; // just hold 64-bit integers data.
15106   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15107     return CW_Register;
15108   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15109     return CW_Register;
15110 
15111   switch (*constraint) {
15112   default:
15113     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15114     break;
15115   case 'b':
15116     if (type->isIntegerTy())
15117       weight = CW_Register;
15118     break;
15119   case 'f':
15120     if (type->isFloatTy())
15121       weight = CW_Register;
15122     break;
15123   case 'd':
15124     if (type->isDoubleTy())
15125       weight = CW_Register;
15126     break;
15127   case 'v':
15128     if (type->isVectorTy())
15129       weight = CW_Register;
15130     break;
15131   case 'y':
15132     weight = CW_Register;
15133     break;
15134   case 'Z':
15135     weight = CW_Memory;
15136     break;
15137   }
15138   return weight;
15139 }
15140 
15141 std::pair<unsigned, const TargetRegisterClass *>
15142 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15143                                                 StringRef Constraint,
15144                                                 MVT VT) const {
15145   if (Constraint.size() == 1) {
15146     // GCC RS6000 Constraint Letters
15147     switch (Constraint[0]) {
15148     case 'b':   // R1-R31
15149       if (VT == MVT::i64 && Subtarget.isPPC64())
15150         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15151       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15152     case 'r':   // R0-R31
15153       if (VT == MVT::i64 && Subtarget.isPPC64())
15154         return std::make_pair(0U, &PPC::G8RCRegClass);
15155       return std::make_pair(0U, &PPC::GPRCRegClass);
15156     // 'd' and 'f' constraints are both defined to be "the floating point
15157     // registers", where one is for 32-bit and the other for 64-bit. We don't
15158     // really care overly much here so just give them all the same reg classes.
15159     case 'd':
15160     case 'f':
15161       if (Subtarget.hasSPE()) {
15162         if (VT == MVT::f32 || VT == MVT::i32)
15163           return std::make_pair(0U, &PPC::GPRCRegClass);
15164         if (VT == MVT::f64 || VT == MVT::i64)
15165           return std::make_pair(0U, &PPC::SPERCRegClass);
15166       } else {
15167         if (VT == MVT::f32 || VT == MVT::i32)
15168           return std::make_pair(0U, &PPC::F4RCRegClass);
15169         if (VT == MVT::f64 || VT == MVT::i64)
15170           return std::make_pair(0U, &PPC::F8RCRegClass);
15171       }
15172       break;
15173     case 'v':
15174       if (Subtarget.hasAltivec())
15175         return std::make_pair(0U, &PPC::VRRCRegClass);
15176       break;
15177     case 'y':   // crrc
15178       return std::make_pair(0U, &PPC::CRRCRegClass);
15179     }
15180   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15181     // An individual CR bit.
15182     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15183   } else if ((Constraint == "wa" || Constraint == "wd" ||
15184              Constraint == "wf" || Constraint == "wi") &&
15185              Subtarget.hasVSX()) {
15186     return std::make_pair(0U, &PPC::VSRCRegClass);
15187   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15188     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15189       return std::make_pair(0U, &PPC::VSSRCRegClass);
15190     else
15191       return std::make_pair(0U, &PPC::VSFRCRegClass);
15192   }
15193 
15194   // If we name a VSX register, we can't defer to the base class because it
15195   // will not recognize the correct register (their names will be VSL{0-31}
15196   // and V{0-31} so they won't match). So we match them here.
15197   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15198     int VSNum = atoi(Constraint.data() + 3);
15199     assert(VSNum >= 0 && VSNum <= 63 &&
15200            "Attempted to access a vsr out of range");
15201     if (VSNum < 32)
15202       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15203     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15204   }
15205   std::pair<unsigned, const TargetRegisterClass *> R =
15206       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15207 
15208   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15209   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15210   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15211   // register.
15212   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15213   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15214   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15215       PPC::GPRCRegClass.contains(R.first))
15216     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15217                             PPC::sub_32, &PPC::G8RCRegClass),
15218                           &PPC::G8RCRegClass);
15219 
15220   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15221   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15222     R.first = PPC::CR0;
15223     R.second = &PPC::CRRCRegClass;
15224   }
15225 
15226   return R;
15227 }
15228 
15229 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15230 /// vector.  If it is invalid, don't add anything to Ops.
15231 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15232                                                      std::string &Constraint,
15233                                                      std::vector<SDValue>&Ops,
15234                                                      SelectionDAG &DAG) const {
15235   SDValue Result;
15236 
15237   // Only support length 1 constraints.
15238   if (Constraint.length() > 1) return;
15239 
15240   char Letter = Constraint[0];
15241   switch (Letter) {
15242   default: break;
15243   case 'I':
15244   case 'J':
15245   case 'K':
15246   case 'L':
15247   case 'M':
15248   case 'N':
15249   case 'O':
15250   case 'P': {
15251     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15252     if (!CST) return; // Must be an immediate to match.
15253     SDLoc dl(Op);
15254     int64_t Value = CST->getSExtValue();
15255     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15256                          // numbers are printed as such.
15257     switch (Letter) {
15258     default: llvm_unreachable("Unknown constraint letter!");
15259     case 'I':  // "I" is a signed 16-bit constant.
15260       if (isInt<16>(Value))
15261         Result = DAG.getTargetConstant(Value, dl, TCVT);
15262       break;
15263     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15264       if (isShiftedUInt<16, 16>(Value))
15265         Result = DAG.getTargetConstant(Value, dl, TCVT);
15266       break;
15267     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15268       if (isShiftedInt<16, 16>(Value))
15269         Result = DAG.getTargetConstant(Value, dl, TCVT);
15270       break;
15271     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15272       if (isUInt<16>(Value))
15273         Result = DAG.getTargetConstant(Value, dl, TCVT);
15274       break;
15275     case 'M':  // "M" is a constant that is greater than 31.
15276       if (Value > 31)
15277         Result = DAG.getTargetConstant(Value, dl, TCVT);
15278       break;
15279     case 'N':  // "N" is a positive constant that is an exact power of two.
15280       if (Value > 0 && isPowerOf2_64(Value))
15281         Result = DAG.getTargetConstant(Value, dl, TCVT);
15282       break;
15283     case 'O':  // "O" is the constant zero.
15284       if (Value == 0)
15285         Result = DAG.getTargetConstant(Value, dl, TCVT);
15286       break;
15287     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15288       if (isInt<16>(-Value))
15289         Result = DAG.getTargetConstant(Value, dl, TCVT);
15290       break;
15291     }
15292     break;
15293   }
15294   }
15295 
15296   if (Result.getNode()) {
15297     Ops.push_back(Result);
15298     return;
15299   }
15300 
15301   // Handle standard constraint letters.
15302   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15303 }
15304 
15305 // isLegalAddressingMode - Return true if the addressing mode represented
15306 // by AM is legal for this target, for a load/store of the specified type.
15307 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15308                                               const AddrMode &AM, Type *Ty,
15309                                               unsigned AS,
15310                                               Instruction *I) const {
15311   // Vector type r+i form is supported since power9 as DQ form. We don't check
15312   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15313   // imm form is preferred and the offset can be adjusted to use imm form later
15314   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15315   // max offset to check legal addressing mode, we should be a little aggressive
15316   // to contain other offsets for that LSRUse.
15317   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15318     return false;
15319 
15320   // PPC allows a sign-extended 16-bit immediate field.
15321   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15322     return false;
15323 
15324   // No global is ever allowed as a base.
15325   if (AM.BaseGV)
15326     return false;
15327 
15328   // PPC only support r+r,
15329   switch (AM.Scale) {
15330   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15331     break;
15332   case 1:
15333     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15334       return false;
15335     // Otherwise we have r+r or r+i.
15336     break;
15337   case 2:
15338     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15339       return false;
15340     // Allow 2*r as r+r.
15341     break;
15342   default:
15343     // No other scales are supported.
15344     return false;
15345   }
15346 
15347   return true;
15348 }
15349 
15350 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15351                                            SelectionDAG &DAG) const {
15352   MachineFunction &MF = DAG.getMachineFunction();
15353   MachineFrameInfo &MFI = MF.getFrameInfo();
15354   MFI.setReturnAddressIsTaken(true);
15355 
15356   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15357     return SDValue();
15358 
15359   SDLoc dl(Op);
15360   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15361 
15362   // Make sure the function does not optimize away the store of the RA to
15363   // the stack.
15364   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15365   FuncInfo->setLRStoreRequired();
15366   bool isPPC64 = Subtarget.isPPC64();
15367   auto PtrVT = getPointerTy(MF.getDataLayout());
15368 
15369   if (Depth > 0) {
15370     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15371     SDValue Offset =
15372         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15373                         isPPC64 ? MVT::i64 : MVT::i32);
15374     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15375                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15376                        MachinePointerInfo());
15377   }
15378 
15379   // Just load the return address off the stack.
15380   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15381   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15382                      MachinePointerInfo());
15383 }
15384 
15385 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15386                                           SelectionDAG &DAG) const {
15387   SDLoc dl(Op);
15388   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15389 
15390   MachineFunction &MF = DAG.getMachineFunction();
15391   MachineFrameInfo &MFI = MF.getFrameInfo();
15392   MFI.setFrameAddressIsTaken(true);
15393 
15394   EVT PtrVT = getPointerTy(MF.getDataLayout());
15395   bool isPPC64 = PtrVT == MVT::i64;
15396 
15397   // Naked functions never have a frame pointer, and so we use r1. For all
15398   // other functions, this decision must be delayed until during PEI.
15399   unsigned FrameReg;
15400   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15401     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15402   else
15403     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15404 
15405   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15406                                          PtrVT);
15407   while (Depth--)
15408     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15409                             FrameAddr, MachinePointerInfo());
15410   return FrameAddr;
15411 }
15412 
15413 // FIXME? Maybe this could be a TableGen attribute on some registers and
15414 // this table could be generated automatically from RegInfo.
15415 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15416                                               const MachineFunction &MF) const {
15417   bool isPPC64 = Subtarget.isPPC64();
15418 
15419   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15420   if (!is64Bit && VT != LLT::scalar(32))
15421     report_fatal_error("Invalid register global variable type");
15422 
15423   Register Reg = StringSwitch<Register>(RegName)
15424                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15425                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15426                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15427                      .Default(Register());
15428 
15429   if (Reg)
15430     return Reg;
15431   report_fatal_error("Invalid register name global variable");
15432 }
15433 
15434 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15435   // 32-bit SVR4 ABI access everything as got-indirect.
15436   if (Subtarget.is32BitELFABI())
15437     return true;
15438 
15439   // AIX accesses everything indirectly through the TOC, which is similar to
15440   // the GOT.
15441   if (Subtarget.isAIXABI())
15442     return true;
15443 
15444   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15445   // If it is small or large code model, module locals are accessed
15446   // indirectly by loading their address from .toc/.got.
15447   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15448     return true;
15449 
15450   // JumpTable and BlockAddress are accessed as got-indirect.
15451   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15452     return true;
15453 
15454   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15455     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15456 
15457   return false;
15458 }
15459 
15460 bool
15461 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15462   // The PowerPC target isn't yet aware of offsets.
15463   return false;
15464 }
15465 
15466 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15467                                            const CallInst &I,
15468                                            MachineFunction &MF,
15469                                            unsigned Intrinsic) const {
15470   switch (Intrinsic) {
15471   case Intrinsic::ppc_altivec_lvx:
15472   case Intrinsic::ppc_altivec_lvxl:
15473   case Intrinsic::ppc_altivec_lvebx:
15474   case Intrinsic::ppc_altivec_lvehx:
15475   case Intrinsic::ppc_altivec_lvewx:
15476   case Intrinsic::ppc_vsx_lxvd2x:
15477   case Intrinsic::ppc_vsx_lxvw4x: {
15478     EVT VT;
15479     switch (Intrinsic) {
15480     case Intrinsic::ppc_altivec_lvebx:
15481       VT = MVT::i8;
15482       break;
15483     case Intrinsic::ppc_altivec_lvehx:
15484       VT = MVT::i16;
15485       break;
15486     case Intrinsic::ppc_altivec_lvewx:
15487       VT = MVT::i32;
15488       break;
15489     case Intrinsic::ppc_vsx_lxvd2x:
15490       VT = MVT::v2f64;
15491       break;
15492     default:
15493       VT = MVT::v4i32;
15494       break;
15495     }
15496 
15497     Info.opc = ISD::INTRINSIC_W_CHAIN;
15498     Info.memVT = VT;
15499     Info.ptrVal = I.getArgOperand(0);
15500     Info.offset = -VT.getStoreSize()+1;
15501     Info.size = 2*VT.getStoreSize()-1;
15502     Info.align = Align(1);
15503     Info.flags = MachineMemOperand::MOLoad;
15504     return true;
15505   }
15506   case Intrinsic::ppc_altivec_stvx:
15507   case Intrinsic::ppc_altivec_stvxl:
15508   case Intrinsic::ppc_altivec_stvebx:
15509   case Intrinsic::ppc_altivec_stvehx:
15510   case Intrinsic::ppc_altivec_stvewx:
15511   case Intrinsic::ppc_vsx_stxvd2x:
15512   case Intrinsic::ppc_vsx_stxvw4x: {
15513     EVT VT;
15514     switch (Intrinsic) {
15515     case Intrinsic::ppc_altivec_stvebx:
15516       VT = MVT::i8;
15517       break;
15518     case Intrinsic::ppc_altivec_stvehx:
15519       VT = MVT::i16;
15520       break;
15521     case Intrinsic::ppc_altivec_stvewx:
15522       VT = MVT::i32;
15523       break;
15524     case Intrinsic::ppc_vsx_stxvd2x:
15525       VT = MVT::v2f64;
15526       break;
15527     default:
15528       VT = MVT::v4i32;
15529       break;
15530     }
15531 
15532     Info.opc = ISD::INTRINSIC_VOID;
15533     Info.memVT = VT;
15534     Info.ptrVal = I.getArgOperand(1);
15535     Info.offset = -VT.getStoreSize()+1;
15536     Info.size = 2*VT.getStoreSize()-1;
15537     Info.align = Align(1);
15538     Info.flags = MachineMemOperand::MOStore;
15539     return true;
15540   }
15541   default:
15542     break;
15543   }
15544 
15545   return false;
15546 }
15547 
15548 /// It returns EVT::Other if the type should be determined using generic
15549 /// target-independent logic.
15550 EVT PPCTargetLowering::getOptimalMemOpType(
15551     const MemOp &Op, const AttributeList &FuncAttributes) const {
15552   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15553     // We should use Altivec/VSX loads and stores when available. For unaligned
15554     // addresses, unaligned VSX loads are only fast starting with the P8.
15555     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15556         (Op.isAligned(Align(16)) ||
15557          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15558       return MVT::v4i32;
15559   }
15560 
15561   if (Subtarget.isPPC64()) {
15562     return MVT::i64;
15563   }
15564 
15565   return MVT::i32;
15566 }
15567 
15568 /// Returns true if it is beneficial to convert a load of a constant
15569 /// to just the constant itself.
15570 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15571                                                           Type *Ty) const {
15572   assert(Ty->isIntegerTy());
15573 
15574   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15575   return !(BitSize == 0 || BitSize > 64);
15576 }
15577 
15578 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15579   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15580     return false;
15581   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15582   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15583   return NumBits1 == 64 && NumBits2 == 32;
15584 }
15585 
15586 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15587   if (!VT1.isInteger() || !VT2.isInteger())
15588     return false;
15589   unsigned NumBits1 = VT1.getSizeInBits();
15590   unsigned NumBits2 = VT2.getSizeInBits();
15591   return NumBits1 == 64 && NumBits2 == 32;
15592 }
15593 
15594 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15595   // Generally speaking, zexts are not free, but they are free when they can be
15596   // folded with other operations.
15597   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15598     EVT MemVT = LD->getMemoryVT();
15599     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15600          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15601         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15602          LD->getExtensionType() == ISD::ZEXTLOAD))
15603       return true;
15604   }
15605 
15606   // FIXME: Add other cases...
15607   //  - 32-bit shifts with a zext to i64
15608   //  - zext after ctlz, bswap, etc.
15609   //  - zext after and by a constant mask
15610 
15611   return TargetLowering::isZExtFree(Val, VT2);
15612 }
15613 
15614 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15615   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15616          "invalid fpext types");
15617   // Extending to float128 is not free.
15618   if (DestVT == MVT::f128)
15619     return false;
15620   return true;
15621 }
15622 
15623 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15624   return isInt<16>(Imm) || isUInt<16>(Imm);
15625 }
15626 
15627 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15628   return isInt<16>(Imm) || isUInt<16>(Imm);
15629 }
15630 
15631 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15632                                                        unsigned,
15633                                                        unsigned,
15634                                                        MachineMemOperand::Flags,
15635                                                        bool *Fast) const {
15636   if (DisablePPCUnaligned)
15637     return false;
15638 
15639   // PowerPC supports unaligned memory access for simple non-vector types.
15640   // Although accessing unaligned addresses is not as efficient as accessing
15641   // aligned addresses, it is generally more efficient than manual expansion,
15642   // and generally only traps for software emulation when crossing page
15643   // boundaries.
15644 
15645   if (!VT.isSimple())
15646     return false;
15647 
15648   if (VT.isFloatingPoint() && !VT.isVector() &&
15649       !Subtarget.allowsUnalignedFPAccess())
15650     return false;
15651 
15652   if (VT.getSimpleVT().isVector()) {
15653     if (Subtarget.hasVSX()) {
15654       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15655           VT != MVT::v4f32 && VT != MVT::v4i32)
15656         return false;
15657     } else {
15658       return false;
15659     }
15660   }
15661 
15662   if (VT == MVT::ppcf128)
15663     return false;
15664 
15665   if (Fast)
15666     *Fast = true;
15667 
15668   return true;
15669 }
15670 
15671 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15672                                                    EVT VT) const {
15673   return isFMAFasterThanFMulAndFAdd(
15674       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15675 }
15676 
15677 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15678                                                    Type *Ty) const {
15679   switch (Ty->getScalarType()->getTypeID()) {
15680   case Type::FloatTyID:
15681   case Type::DoubleTyID:
15682     return true;
15683   case Type::FP128TyID:
15684     return Subtarget.hasP9Vector();
15685   default:
15686     return false;
15687   }
15688 }
15689 
15690 // FIXME: add more patterns which are not profitable to hoist.
15691 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15692   if (!I->hasOneUse())
15693     return true;
15694 
15695   Instruction *User = I->user_back();
15696   assert(User && "A single use instruction with no uses.");
15697 
15698   switch (I->getOpcode()) {
15699   case Instruction::FMul: {
15700     // Don't break FMA, PowerPC prefers FMA.
15701     if (User->getOpcode() != Instruction::FSub &&
15702         User->getOpcode() != Instruction::FAdd)
15703       return true;
15704 
15705     const TargetOptions &Options = getTargetMachine().Options;
15706     const Function *F = I->getFunction();
15707     const DataLayout &DL = F->getParent()->getDataLayout();
15708     Type *Ty = User->getOperand(0)->getType();
15709 
15710     return !(
15711         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15712         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15713         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15714   }
15715   case Instruction::Load: {
15716     // Don't break "store (load float*)" pattern, this pattern will be combined
15717     // to "store (load int32)" in later InstCombine pass. See function
15718     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15719     // cycles than loading a 32 bit integer.
15720     LoadInst *LI = cast<LoadInst>(I);
15721     // For the loads that combineLoadToOperationType does nothing, like
15722     // ordered load, it should be profitable to hoist them.
15723     // For swifterror load, it can only be used for pointer to pointer type, so
15724     // later type check should get rid of this case.
15725     if (!LI->isUnordered())
15726       return true;
15727 
15728     if (User->getOpcode() != Instruction::Store)
15729       return true;
15730 
15731     if (I->getType()->getTypeID() != Type::FloatTyID)
15732       return true;
15733 
15734     return false;
15735   }
15736   default:
15737     return true;
15738   }
15739   return true;
15740 }
15741 
15742 const MCPhysReg *
15743 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15744   // LR is a callee-save register, but we must treat it as clobbered by any call
15745   // site. Hence we include LR in the scratch registers, which are in turn added
15746   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15747   // to CTR, which is used by any indirect call.
15748   static const MCPhysReg ScratchRegs[] = {
15749     PPC::X12, PPC::LR8, PPC::CTR8, 0
15750   };
15751 
15752   return ScratchRegs;
15753 }
15754 
15755 Register PPCTargetLowering::getExceptionPointerRegister(
15756     const Constant *PersonalityFn) const {
15757   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15758 }
15759 
15760 Register PPCTargetLowering::getExceptionSelectorRegister(
15761     const Constant *PersonalityFn) const {
15762   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15763 }
15764 
15765 bool
15766 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15767                      EVT VT , unsigned DefinedValues) const {
15768   if (VT == MVT::v2i64)
15769     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15770 
15771   if (Subtarget.hasVSX())
15772     return true;
15773 
15774   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15775 }
15776 
15777 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15778   if (DisableILPPref || Subtarget.enableMachineScheduler())
15779     return TargetLowering::getSchedulingPreference(N);
15780 
15781   return Sched::ILP;
15782 }
15783 
15784 // Create a fast isel object.
15785 FastISel *
15786 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15787                                   const TargetLibraryInfo *LibInfo) const {
15788   return PPC::createFastISel(FuncInfo, LibInfo);
15789 }
15790 
15791 // 'Inverted' means the FMA opcode after negating one multiplicand.
15792 // For example, (fma -a b c) = (fnmsub a b c)
15793 static unsigned invertFMAOpcode(unsigned Opc) {
15794   switch (Opc) {
15795   default:
15796     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15797   case ISD::FMA:
15798     return PPCISD::FNMSUB;
15799   case PPCISD::FNMSUB:
15800     return ISD::FMA;
15801   }
15802 }
15803 
15804 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15805                                                 bool LegalOps, bool OptForSize,
15806                                                 NegatibleCost &Cost,
15807                                                 unsigned Depth) const {
15808   if (Depth > SelectionDAG::MaxRecursionDepth)
15809     return SDValue();
15810 
15811   unsigned Opc = Op.getOpcode();
15812   EVT VT = Op.getValueType();
15813   SDNodeFlags Flags = Op.getNode()->getFlags();
15814 
15815   switch (Opc) {
15816   case PPCISD::FNMSUB:
15817     if (!Op.hasOneUse() || !isTypeLegal(VT))
15818       break;
15819 
15820     const TargetOptions &Options = getTargetMachine().Options;
15821     SDValue N0 = Op.getOperand(0);
15822     SDValue N1 = Op.getOperand(1);
15823     SDValue N2 = Op.getOperand(2);
15824     SDLoc Loc(Op);
15825 
15826     NegatibleCost N2Cost = NegatibleCost::Expensive;
15827     SDValue NegN2 =
15828         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15829 
15830     if (!NegN2)
15831       return SDValue();
15832 
15833     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15834     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15835     // These transformations may change sign of zeroes. For example,
15836     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15837     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15838       // Try and choose the cheaper one to negate.
15839       NegatibleCost N0Cost = NegatibleCost::Expensive;
15840       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15841                                            N0Cost, Depth + 1);
15842 
15843       NegatibleCost N1Cost = NegatibleCost::Expensive;
15844       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15845                                            N1Cost, Depth + 1);
15846 
15847       if (NegN0 && N0Cost <= N1Cost) {
15848         Cost = std::min(N0Cost, N2Cost);
15849         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15850       } else if (NegN1) {
15851         Cost = std::min(N1Cost, N2Cost);
15852         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15853       }
15854     }
15855 
15856     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15857     if (isOperationLegal(ISD::FMA, VT)) {
15858       Cost = N2Cost;
15859       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15860     }
15861 
15862     break;
15863   }
15864 
15865   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15866                                               Cost, Depth);
15867 }
15868 
15869 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15870 bool PPCTargetLowering::useLoadStackGuardNode() const {
15871   if (!Subtarget.isTargetLinux())
15872     return TargetLowering::useLoadStackGuardNode();
15873   return true;
15874 }
15875 
15876 // Override to disable global variable loading on Linux.
15877 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15878   if (!Subtarget.isTargetLinux())
15879     return TargetLowering::insertSSPDeclarations(M);
15880 }
15881 
15882 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15883                                      bool ForCodeSize) const {
15884   if (!VT.isSimple() || !Subtarget.hasVSX())
15885     return false;
15886 
15887   switch(VT.getSimpleVT().SimpleTy) {
15888   default:
15889     // For FP types that are currently not supported by PPC backend, return
15890     // false. Examples: f16, f80.
15891     return false;
15892   case MVT::f32:
15893   case MVT::f64:
15894     if (Subtarget.hasPrefixInstrs()) {
15895       // With prefixed instructions, we can materialize anything that can be
15896       // represented with a 32-bit immediate, not just positive zero.
15897       APFloat APFloatOfImm = Imm;
15898       return convertToNonDenormSingle(APFloatOfImm);
15899     }
15900     LLVM_FALLTHROUGH;
15901   case MVT::ppcf128:
15902     return Imm.isPosZero();
15903   }
15904 }
15905 
15906 // For vector shift operation op, fold
15907 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15908 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15909                                   SelectionDAG &DAG) {
15910   SDValue N0 = N->getOperand(0);
15911   SDValue N1 = N->getOperand(1);
15912   EVT VT = N0.getValueType();
15913   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15914   unsigned Opcode = N->getOpcode();
15915   unsigned TargetOpcode;
15916 
15917   switch (Opcode) {
15918   default:
15919     llvm_unreachable("Unexpected shift operation");
15920   case ISD::SHL:
15921     TargetOpcode = PPCISD::SHL;
15922     break;
15923   case ISD::SRL:
15924     TargetOpcode = PPCISD::SRL;
15925     break;
15926   case ISD::SRA:
15927     TargetOpcode = PPCISD::SRA;
15928     break;
15929   }
15930 
15931   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15932       N1->getOpcode() == ISD::AND)
15933     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15934       if (Mask->getZExtValue() == OpSizeInBits - 1)
15935         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15936 
15937   return SDValue();
15938 }
15939 
15940 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15941   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15942     return Value;
15943 
15944   SDValue N0 = N->getOperand(0);
15945   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15946   if (!Subtarget.isISA3_0() ||
15947       N0.getOpcode() != ISD::SIGN_EXTEND ||
15948       N0.getOperand(0).getValueType() != MVT::i32 ||
15949       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15950     return SDValue();
15951 
15952   // We can't save an operation here if the value is already extended, and
15953   // the existing shift is easier to combine.
15954   SDValue ExtsSrc = N0.getOperand(0);
15955   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15956       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15957     return SDValue();
15958 
15959   SDLoc DL(N0);
15960   SDValue ShiftBy = SDValue(CN1, 0);
15961   // We want the shift amount to be i32 on the extswli, but the shift could
15962   // have an i64.
15963   if (ShiftBy.getValueType() == MVT::i64)
15964     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15965 
15966   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15967                          ShiftBy);
15968 }
15969 
15970 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15971   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15972     return Value;
15973 
15974   return SDValue();
15975 }
15976 
15977 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15978   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15979     return Value;
15980 
15981   return SDValue();
15982 }
15983 
15984 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15985 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15986 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15987 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15988 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15989                                  const PPCSubtarget &Subtarget) {
15990   if (!Subtarget.isPPC64())
15991     return SDValue();
15992 
15993   SDValue LHS = N->getOperand(0);
15994   SDValue RHS = N->getOperand(1);
15995 
15996   auto isZextOfCompareWithConstant = [](SDValue Op) {
15997     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15998         Op.getValueType() != MVT::i64)
15999       return false;
16000 
16001     SDValue Cmp = Op.getOperand(0);
16002     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16003         Cmp.getOperand(0).getValueType() != MVT::i64)
16004       return false;
16005 
16006     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16007       int64_t NegConstant = 0 - Constant->getSExtValue();
16008       // Due to the limitations of the addi instruction,
16009       // -C is required to be [-32768, 32767].
16010       return isInt<16>(NegConstant);
16011     }
16012 
16013     return false;
16014   };
16015 
16016   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16017   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16018 
16019   // If there is a pattern, canonicalize a zext operand to the RHS.
16020   if (LHSHasPattern && !RHSHasPattern)
16021     std::swap(LHS, RHS);
16022   else if (!LHSHasPattern && !RHSHasPattern)
16023     return SDValue();
16024 
16025   SDLoc DL(N);
16026   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16027   SDValue Cmp = RHS.getOperand(0);
16028   SDValue Z = Cmp.getOperand(0);
16029   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16030 
16031   assert(Constant && "Constant Should not be a null pointer.");
16032   int64_t NegConstant = 0 - Constant->getSExtValue();
16033 
16034   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16035   default: break;
16036   case ISD::SETNE: {
16037     //                                 when C == 0
16038     //                             --> addze X, (addic Z, -1).carry
16039     //                            /
16040     // add X, (zext(setne Z, C))--
16041     //                            \    when -32768 <= -C <= 32767 && C != 0
16042     //                             --> addze X, (addic (addi Z, -C), -1).carry
16043     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16044                               DAG.getConstant(NegConstant, DL, MVT::i64));
16045     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16046     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16047                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16048     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16049                        SDValue(Addc.getNode(), 1));
16050     }
16051   case ISD::SETEQ: {
16052     //                                 when C == 0
16053     //                             --> addze X, (subfic Z, 0).carry
16054     //                            /
16055     // add X, (zext(sete  Z, C))--
16056     //                            \    when -32768 <= -C <= 32767 && C != 0
16057     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16058     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16059                               DAG.getConstant(NegConstant, DL, MVT::i64));
16060     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16061     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16062                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16063     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16064                        SDValue(Subc.getNode(), 1));
16065     }
16066   }
16067 
16068   return SDValue();
16069 }
16070 
16071 // Transform
16072 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16073 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16074 // In this case both C1 and C2 must be known constants.
16075 // C1+C2 must fit into a 34 bit signed integer.
16076 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16077                                           const PPCSubtarget &Subtarget) {
16078   if (!Subtarget.isUsingPCRelativeCalls())
16079     return SDValue();
16080 
16081   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16082   // If we find that node try to cast the Global Address and the Constant.
16083   SDValue LHS = N->getOperand(0);
16084   SDValue RHS = N->getOperand(1);
16085 
16086   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16087     std::swap(LHS, RHS);
16088 
16089   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16090     return SDValue();
16091 
16092   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16093   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16094   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16095 
16096   // Check that both casts succeeded.
16097   if (!GSDN || !ConstNode)
16098     return SDValue();
16099 
16100   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16101   SDLoc DL(GSDN);
16102 
16103   // The signed int offset needs to fit in 34 bits.
16104   if (!isInt<34>(NewOffset))
16105     return SDValue();
16106 
16107   // The new global address is a copy of the old global address except
16108   // that it has the updated Offset.
16109   SDValue GA =
16110       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16111                                  NewOffset, GSDN->getTargetFlags());
16112   SDValue MatPCRel =
16113       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16114   return MatPCRel;
16115 }
16116 
16117 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16118   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16119     return Value;
16120 
16121   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16122     return Value;
16123 
16124   return SDValue();
16125 }
16126 
16127 // Detect TRUNCATE operations on bitcasts of float128 values.
16128 // What we are looking for here is the situtation where we extract a subset
16129 // of bits from a 128 bit float.
16130 // This can be of two forms:
16131 // 1) BITCAST of f128 feeding TRUNCATE
16132 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16133 // The reason this is required is because we do not have a legal i128 type
16134 // and so we want to prevent having to store the f128 and then reload part
16135 // of it.
16136 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16137                                            DAGCombinerInfo &DCI) const {
16138   // If we are using CRBits then try that first.
16139   if (Subtarget.useCRBits()) {
16140     // Check if CRBits did anything and return that if it did.
16141     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16142       return CRTruncValue;
16143   }
16144 
16145   SDLoc dl(N);
16146   SDValue Op0 = N->getOperand(0);
16147 
16148   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16149   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16150     EVT VT = N->getValueType(0);
16151     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16152       return SDValue();
16153     SDValue Sub = Op0.getOperand(0);
16154     if (Sub.getOpcode() == ISD::SUB) {
16155       SDValue SubOp0 = Sub.getOperand(0);
16156       SDValue SubOp1 = Sub.getOperand(1);
16157       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16158           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16159         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16160                                SubOp1.getOperand(0),
16161                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16162       }
16163     }
16164   }
16165 
16166   // Looking for a truncate of i128 to i64.
16167   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16168     return SDValue();
16169 
16170   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16171 
16172   // SRL feeding TRUNCATE.
16173   if (Op0.getOpcode() == ISD::SRL) {
16174     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16175     // The right shift has to be by 64 bits.
16176     if (!ConstNode || ConstNode->getZExtValue() != 64)
16177       return SDValue();
16178 
16179     // Switch the element number to extract.
16180     EltToExtract = EltToExtract ? 0 : 1;
16181     // Update Op0 past the SRL.
16182     Op0 = Op0.getOperand(0);
16183   }
16184 
16185   // BITCAST feeding a TRUNCATE possibly via SRL.
16186   if (Op0.getOpcode() == ISD::BITCAST &&
16187       Op0.getValueType() == MVT::i128 &&
16188       Op0.getOperand(0).getValueType() == MVT::f128) {
16189     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16190     return DCI.DAG.getNode(
16191         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16192         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16193   }
16194   return SDValue();
16195 }
16196 
16197 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16198   SelectionDAG &DAG = DCI.DAG;
16199 
16200   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16201   if (!ConstOpOrElement)
16202     return SDValue();
16203 
16204   // An imul is usually smaller than the alternative sequence for legal type.
16205   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16206       isOperationLegal(ISD::MUL, N->getValueType(0)))
16207     return SDValue();
16208 
16209   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16210     switch (this->Subtarget.getCPUDirective()) {
16211     default:
16212       // TODO: enhance the condition for subtarget before pwr8
16213       return false;
16214     case PPC::DIR_PWR8:
16215       //  type        mul     add    shl
16216       // scalar        4       1      1
16217       // vector        7       2      2
16218       return true;
16219     case PPC::DIR_PWR9:
16220     case PPC::DIR_PWR10:
16221     case PPC::DIR_PWR_FUTURE:
16222       //  type        mul     add    shl
16223       // scalar        5       2      2
16224       // vector        7       2      2
16225 
16226       // The cycle RATIO of related operations are showed as a table above.
16227       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16228       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16229       // are 4, it is always profitable; but for 3 instrs patterns
16230       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16231       // So we should only do it for vector type.
16232       return IsAddOne && IsNeg ? VT.isVector() : true;
16233     }
16234   };
16235 
16236   EVT VT = N->getValueType(0);
16237   SDLoc DL(N);
16238 
16239   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16240   bool IsNeg = MulAmt.isNegative();
16241   APInt MulAmtAbs = MulAmt.abs();
16242 
16243   if ((MulAmtAbs - 1).isPowerOf2()) {
16244     // (mul x, 2^N + 1) => (add (shl x, N), x)
16245     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16246 
16247     if (!IsProfitable(IsNeg, true, VT))
16248       return SDValue();
16249 
16250     SDValue Op0 = N->getOperand(0);
16251     SDValue Op1 =
16252         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16253                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16254     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16255 
16256     if (!IsNeg)
16257       return Res;
16258 
16259     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16260   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16261     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16262     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16263 
16264     if (!IsProfitable(IsNeg, false, VT))
16265       return SDValue();
16266 
16267     SDValue Op0 = N->getOperand(0);
16268     SDValue Op1 =
16269         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16270                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16271 
16272     if (!IsNeg)
16273       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16274     else
16275       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16276 
16277   } else {
16278     return SDValue();
16279   }
16280 }
16281 
16282 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16283 // in combiner since we need to check SD flags and other subtarget features.
16284 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16285                                           DAGCombinerInfo &DCI) const {
16286   SDValue N0 = N->getOperand(0);
16287   SDValue N1 = N->getOperand(1);
16288   SDValue N2 = N->getOperand(2);
16289   SDNodeFlags Flags = N->getFlags();
16290   EVT VT = N->getValueType(0);
16291   SelectionDAG &DAG = DCI.DAG;
16292   const TargetOptions &Options = getTargetMachine().Options;
16293   unsigned Opc = N->getOpcode();
16294   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16295   bool LegalOps = !DCI.isBeforeLegalizeOps();
16296   SDLoc Loc(N);
16297 
16298   if (!isOperationLegal(ISD::FMA, VT))
16299     return SDValue();
16300 
16301   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16302   // since (fnmsub a b c)=-0 while c-ab=+0.
16303   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16304     return SDValue();
16305 
16306   // (fma (fneg a) b c) => (fnmsub a b c)
16307   // (fnmsub (fneg a) b c) => (fma a b c)
16308   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16309     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16310 
16311   // (fma a (fneg b) c) => (fnmsub a b c)
16312   // (fnmsub a (fneg b) c) => (fma a b c)
16313   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16314     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16315 
16316   return SDValue();
16317 }
16318 
16319 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16320   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16321   if (!Subtarget.is64BitELFABI())
16322     return false;
16323 
16324   // If not a tail call then no need to proceed.
16325   if (!CI->isTailCall())
16326     return false;
16327 
16328   // If sibling calls have been disabled and tail-calls aren't guaranteed
16329   // there is no reason to duplicate.
16330   auto &TM = getTargetMachine();
16331   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16332     return false;
16333 
16334   // Can't tail call a function called indirectly, or if it has variadic args.
16335   const Function *Callee = CI->getCalledFunction();
16336   if (!Callee || Callee->isVarArg())
16337     return false;
16338 
16339   // Make sure the callee and caller calling conventions are eligible for tco.
16340   const Function *Caller = CI->getParent()->getParent();
16341   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16342                                            CI->getCallingConv()))
16343       return false;
16344 
16345   // If the function is local then we have a good chance at tail-calling it
16346   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16347 }
16348 
16349 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16350   if (!Subtarget.hasVSX())
16351     return false;
16352   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16353     return true;
16354   return VT == MVT::f32 || VT == MVT::f64 ||
16355     VT == MVT::v4f32 || VT == MVT::v2f64;
16356 }
16357 
16358 bool PPCTargetLowering::
16359 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16360   const Value *Mask = AndI.getOperand(1);
16361   // If the mask is suitable for andi. or andis. we should sink the and.
16362   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16363     // Can't handle constants wider than 64-bits.
16364     if (CI->getBitWidth() > 64)
16365       return false;
16366     int64_t ConstVal = CI->getZExtValue();
16367     return isUInt<16>(ConstVal) ||
16368       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16369   }
16370 
16371   // For non-constant masks, we can always use the record-form and.
16372   return true;
16373 }
16374 
16375 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16376 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16377 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16378 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16379 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16380 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16381   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16382   assert(Subtarget.hasP9Altivec() &&
16383          "Only combine this when P9 altivec supported!");
16384   EVT VT = N->getValueType(0);
16385   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16386     return SDValue();
16387 
16388   SelectionDAG &DAG = DCI.DAG;
16389   SDLoc dl(N);
16390   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16391     // Even for signed integers, if it's known to be positive (as signed
16392     // integer) due to zero-extended inputs.
16393     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16394     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16395     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16396          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16397         (SubOpcd1 == ISD::ZERO_EXTEND ||
16398          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16399       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16400                          N->getOperand(0)->getOperand(0),
16401                          N->getOperand(0)->getOperand(1),
16402                          DAG.getTargetConstant(0, dl, MVT::i32));
16403     }
16404 
16405     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16406     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16407         N->getOperand(0).hasOneUse()) {
16408       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16409                          N->getOperand(0)->getOperand(0),
16410                          N->getOperand(0)->getOperand(1),
16411                          DAG.getTargetConstant(1, dl, MVT::i32));
16412     }
16413   }
16414 
16415   return SDValue();
16416 }
16417 
16418 // For type v4i32/v8ii16/v16i8, transform
16419 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16420 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16421 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16422 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16423 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16424                                           DAGCombinerInfo &DCI) const {
16425   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16426   assert(Subtarget.hasP9Altivec() &&
16427          "Only combine this when P9 altivec supported!");
16428 
16429   SelectionDAG &DAG = DCI.DAG;
16430   SDLoc dl(N);
16431   SDValue Cond = N->getOperand(0);
16432   SDValue TrueOpnd = N->getOperand(1);
16433   SDValue FalseOpnd = N->getOperand(2);
16434   EVT VT = N->getOperand(1).getValueType();
16435 
16436   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16437       FalseOpnd.getOpcode() != ISD::SUB)
16438     return SDValue();
16439 
16440   // ABSD only available for type v4i32/v8i16/v16i8
16441   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16442     return SDValue();
16443 
16444   // At least to save one more dependent computation
16445   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16446     return SDValue();
16447 
16448   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16449 
16450   // Can only handle unsigned comparison here
16451   switch (CC) {
16452   default:
16453     return SDValue();
16454   case ISD::SETUGT:
16455   case ISD::SETUGE:
16456     break;
16457   case ISD::SETULT:
16458   case ISD::SETULE:
16459     std::swap(TrueOpnd, FalseOpnd);
16460     break;
16461   }
16462 
16463   SDValue CmpOpnd1 = Cond.getOperand(0);
16464   SDValue CmpOpnd2 = Cond.getOperand(1);
16465 
16466   // SETCC CmpOpnd1 CmpOpnd2 cond
16467   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16468   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16469   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16470       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16471       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16472       FalseOpnd.getOperand(1) == CmpOpnd1) {
16473     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16474                        CmpOpnd1, CmpOpnd2,
16475                        DAG.getTargetConstant(0, dl, MVT::i32));
16476   }
16477 
16478   return SDValue();
16479 }
16480