1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 if (Subtarget.isISA3_0()) { 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 172 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 175 } else { 176 // No extending loads from f16 or HW conversions back and forth. 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 179 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 181 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 182 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 184 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 185 } 186 187 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 188 189 // PowerPC has pre-inc load and store's. 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 200 if (!Subtarget.hasSPE()) { 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 205 } 206 207 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 208 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 209 for (MVT VT : ScalarIntVTs) { 210 setOperationAction(ISD::ADDC, VT, Legal); 211 setOperationAction(ISD::ADDE, VT, Legal); 212 setOperationAction(ISD::SUBC, VT, Legal); 213 setOperationAction(ISD::SUBE, VT, Legal); 214 } 215 216 if (Subtarget.useCRBits()) { 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 218 219 if (isPPC64 || Subtarget.hasFPCVT()) { 220 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 221 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 222 isPPC64 ? MVT::i64 : MVT::i32); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 224 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 225 isPPC64 ? MVT::i64 : MVT::i32); 226 } else { 227 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 228 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 229 } 230 231 // PowerPC does not support direct load/store of condition registers. 232 setOperationAction(ISD::LOAD, MVT::i1, Custom); 233 setOperationAction(ISD::STORE, MVT::i1, Custom); 234 235 // FIXME: Remove this once the ANDI glue bug is fixed: 236 if (ANDIGlueBug) 237 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 238 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setTruncStoreAction(VT, MVT::i1, Expand); 243 } 244 245 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 246 } 247 248 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 249 // PPC (the libcall is not available). 250 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 251 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 252 253 // We do not currently implement these libm ops for PowerPC. 254 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 260 261 // PowerPC has no SREM/UREM instructions unless we are on P9 262 // On P9 we may use a hardware instruction to compute the remainder. 263 // The instructions are not legalized directly because in the cases where the 264 // result of both the remainder and the division is required it is more 265 // efficient to compute the remainder from the result of the division rather 266 // than use the remainder instruction. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Custom); 269 setOperationAction(ISD::UREM, MVT::i32, Custom); 270 setOperationAction(ISD::SREM, MVT::i64, Custom); 271 setOperationAction(ISD::UREM, MVT::i64, Custom); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // Handle constrained floating-point operations of scalar. 290 // TODO: Handle SPE specific operation. 291 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 295 296 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 297 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 298 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 300 301 // We don't support sin/cos/sqrt/fmod/pow 302 setOperationAction(ISD::FSIN , MVT::f64, Expand); 303 setOperationAction(ISD::FCOS , MVT::f64, Expand); 304 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 305 setOperationAction(ISD::FREM , MVT::f64, Expand); 306 setOperationAction(ISD::FPOW , MVT::f64, Expand); 307 setOperationAction(ISD::FSIN , MVT::f32, Expand); 308 setOperationAction(ISD::FCOS , MVT::f32, Expand); 309 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 310 setOperationAction(ISD::FREM , MVT::f32, Expand); 311 setOperationAction(ISD::FPOW , MVT::f32, Expand); 312 if (Subtarget.hasSPE()) { 313 setOperationAction(ISD::FMA , MVT::f64, Expand); 314 setOperationAction(ISD::FMA , MVT::f32, Expand); 315 } else { 316 setOperationAction(ISD::FMA , MVT::f64, Legal); 317 setOperationAction(ISD::FMA , MVT::f32, Legal); 318 } 319 320 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 321 322 // If we're enabling GP optimizations, use hardware square root 323 if (!Subtarget.hasFSQRT() && 324 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 325 Subtarget.hasFRE())) 326 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 327 328 if (!Subtarget.hasFSQRT() && 329 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 330 Subtarget.hasFRES())) 331 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 332 333 if (Subtarget.hasFCPSGN()) { 334 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 335 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 336 } else { 337 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 338 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 339 } 340 341 if (Subtarget.hasFPRND()) { 342 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 343 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 344 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 345 setOperationAction(ISD::FROUND, MVT::f64, Legal); 346 347 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 348 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 349 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 350 setOperationAction(ISD::FROUND, MVT::f32, Legal); 351 } 352 353 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 354 // to speed up scalar BSWAP64. 355 // CTPOP or CTTZ were introduced in P8/P9 respectively 356 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 357 if (Subtarget.hasP9Vector()) 358 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 359 else 360 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 361 if (Subtarget.isISA3_0()) { 362 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 363 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 364 } else { 365 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 366 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 367 } 368 369 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 370 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 371 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 372 } else { 373 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 374 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 375 } 376 377 // PowerPC does not have ROTR 378 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 379 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 380 381 if (!Subtarget.useCRBits()) { 382 // PowerPC does not have Select 383 setOperationAction(ISD::SELECT, MVT::i32, Expand); 384 setOperationAction(ISD::SELECT, MVT::i64, Expand); 385 setOperationAction(ISD::SELECT, MVT::f32, Expand); 386 setOperationAction(ISD::SELECT, MVT::f64, Expand); 387 } 388 389 // PowerPC wants to turn select_cc of FP into fsel when possible. 390 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 391 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 392 393 // PowerPC wants to optimize integer setcc a bit 394 if (!Subtarget.useCRBits()) 395 setOperationAction(ISD::SETCC, MVT::i32, Custom); 396 397 // PowerPC does not have BRCOND which requires SetCC 398 if (!Subtarget.useCRBits()) 399 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 400 401 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 402 403 if (Subtarget.hasSPE()) { 404 // SPE has built-in conversions 405 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 408 } else { 409 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 410 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 411 412 // PowerPC does not have [U|S]INT_TO_FP 413 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 414 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 415 } 416 417 if (Subtarget.hasDirectMove() && isPPC64) { 418 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 419 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 420 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 421 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 422 if (TM.Options.UnsafeFPMath) { 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LRINT, MVT::f32, Legal); 425 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 426 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 427 setOperationAction(ISD::LROUND, MVT::f64, Legal); 428 setOperationAction(ISD::LROUND, MVT::f32, Legal); 429 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 430 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 431 } 432 } else { 433 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 434 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 435 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 436 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 437 } 438 439 // We cannot sextinreg(i1). Expand to shifts. 440 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 441 442 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 443 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 444 // support continuation, user-level threading, and etc.. As a result, no 445 // other SjLj exception interfaces are implemented and please don't build 446 // your own exception handling based on them. 447 // LLVM/Clang supports zero-cost DWARF exception handling. 448 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 449 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 450 451 // We want to legalize GlobalAddress and ConstantPool nodes into the 452 // appropriate instructions to materialize the address. 453 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 454 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 455 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 456 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 457 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 458 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 459 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 460 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 461 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 462 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 463 464 // TRAP is legal. 465 setOperationAction(ISD::TRAP, MVT::Other, Legal); 466 467 // TRAMPOLINE is custom lowered. 468 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 469 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 470 471 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 472 setOperationAction(ISD::VASTART , MVT::Other, Custom); 473 474 if (Subtarget.is64BitELFABI()) { 475 // VAARG always uses double-word chunks, so promote anything smaller. 476 setOperationAction(ISD::VAARG, MVT::i1, Promote); 477 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 478 setOperationAction(ISD::VAARG, MVT::i8, Promote); 479 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 480 setOperationAction(ISD::VAARG, MVT::i16, Promote); 481 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 482 setOperationAction(ISD::VAARG, MVT::i32, Promote); 483 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 484 setOperationAction(ISD::VAARG, MVT::Other, Expand); 485 } else if (Subtarget.is32BitELFABI()) { 486 // VAARG is custom lowered with the 32-bit SVR4 ABI. 487 setOperationAction(ISD::VAARG, MVT::Other, Custom); 488 setOperationAction(ISD::VAARG, MVT::i64, Custom); 489 } else 490 setOperationAction(ISD::VAARG, MVT::Other, Expand); 491 492 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 493 if (Subtarget.is32BitELFABI()) 494 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 495 else 496 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 497 498 // Use the default implementation. 499 setOperationAction(ISD::VAEND , MVT::Other, Expand); 500 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 501 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 502 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 503 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 504 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 505 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 506 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 507 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 508 509 // We want to custom lower some of our intrinsics. 510 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 511 512 // To handle counter-based loop conditions. 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 514 515 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 516 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 517 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 518 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 519 520 // Comparisons that require checking two conditions. 521 if (Subtarget.hasSPE()) { 522 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 523 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 524 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 525 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 526 } 527 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 528 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 529 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 530 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 531 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 532 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 533 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 534 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 535 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 536 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 537 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 538 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 539 540 if (Subtarget.has64BitSupport()) { 541 // They also have instructions for converting between i64 and fp. 542 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 543 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 544 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 545 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 546 // This is just the low 32 bits of a (signed) fp->i64 conversion. 547 // We cannot do this with Promote because i64 is not a legal type. 548 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 549 550 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 551 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 552 } else { 553 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 554 if (Subtarget.hasSPE()) 555 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 556 else 557 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 558 } 559 560 // With the instructions enabled under FPCVT, we can do everything. 561 if (Subtarget.hasFPCVT()) { 562 if (Subtarget.has64BitSupport()) { 563 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 564 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 565 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 566 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 567 } 568 569 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 570 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 571 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 572 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 573 } 574 575 if (Subtarget.use64BitRegs()) { 576 // 64-bit PowerPC implementations can support i64 types directly 577 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 578 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 579 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 580 // 64-bit PowerPC wants to expand i128 shifts itself. 581 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 582 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 583 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 584 } else { 585 // 32-bit PowerPC wants to expand i64 shifts itself. 586 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 587 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 588 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 589 } 590 591 if (Subtarget.hasVSX()) { 592 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 593 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 594 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 595 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 596 } 597 598 if (Subtarget.hasAltivec()) { 599 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 600 setOperationAction(ISD::SADDSAT, VT, Legal); 601 setOperationAction(ISD::SSUBSAT, VT, Legal); 602 setOperationAction(ISD::UADDSAT, VT, Legal); 603 setOperationAction(ISD::USUBSAT, VT, Legal); 604 } 605 // First set operation action for all vector types to expand. Then we 606 // will selectively turn on ones that can be effectively codegen'd. 607 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 608 // add/sub are legal for all supported vector VT's. 609 setOperationAction(ISD::ADD, VT, Legal); 610 setOperationAction(ISD::SUB, VT, Legal); 611 612 // For v2i64, these are only valid with P8Vector. This is corrected after 613 // the loop. 614 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 615 setOperationAction(ISD::SMAX, VT, Legal); 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::UMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 } 620 else { 621 setOperationAction(ISD::SMAX, VT, Expand); 622 setOperationAction(ISD::SMIN, VT, Expand); 623 setOperationAction(ISD::UMAX, VT, Expand); 624 setOperationAction(ISD::UMIN, VT, Expand); 625 } 626 627 if (Subtarget.hasVSX()) { 628 setOperationAction(ISD::FMAXNUM, VT, Legal); 629 setOperationAction(ISD::FMINNUM, VT, Legal); 630 } 631 632 // Vector instructions introduced in P8 633 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 634 setOperationAction(ISD::CTPOP, VT, Legal); 635 setOperationAction(ISD::CTLZ, VT, Legal); 636 } 637 else { 638 setOperationAction(ISD::CTPOP, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 } 641 642 // Vector instructions introduced in P9 643 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 644 setOperationAction(ISD::CTTZ, VT, Legal); 645 else 646 setOperationAction(ISD::CTTZ, VT, Expand); 647 648 // We promote all shuffles to v16i8. 649 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 650 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 651 652 // We promote all non-typed operations to v4i32. 653 setOperationAction(ISD::AND , VT, Promote); 654 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 655 setOperationAction(ISD::OR , VT, Promote); 656 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 657 setOperationAction(ISD::XOR , VT, Promote); 658 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 659 setOperationAction(ISD::LOAD , VT, Promote); 660 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 661 setOperationAction(ISD::SELECT, VT, Promote); 662 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 663 setOperationAction(ISD::VSELECT, VT, Legal); 664 setOperationAction(ISD::SELECT_CC, VT, Promote); 665 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 666 setOperationAction(ISD::STORE, VT, Promote); 667 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 668 669 // No other operations are legal. 670 setOperationAction(ISD::MUL , VT, Expand); 671 setOperationAction(ISD::SDIV, VT, Expand); 672 setOperationAction(ISD::SREM, VT, Expand); 673 setOperationAction(ISD::UDIV, VT, Expand); 674 setOperationAction(ISD::UREM, VT, Expand); 675 setOperationAction(ISD::FDIV, VT, Expand); 676 setOperationAction(ISD::FREM, VT, Expand); 677 setOperationAction(ISD::FNEG, VT, Expand); 678 setOperationAction(ISD::FSQRT, VT, Expand); 679 setOperationAction(ISD::FLOG, VT, Expand); 680 setOperationAction(ISD::FLOG10, VT, Expand); 681 setOperationAction(ISD::FLOG2, VT, Expand); 682 setOperationAction(ISD::FEXP, VT, Expand); 683 setOperationAction(ISD::FEXP2, VT, Expand); 684 setOperationAction(ISD::FSIN, VT, Expand); 685 setOperationAction(ISD::FCOS, VT, Expand); 686 setOperationAction(ISD::FABS, VT, Expand); 687 setOperationAction(ISD::FFLOOR, VT, Expand); 688 setOperationAction(ISD::FCEIL, VT, Expand); 689 setOperationAction(ISD::FTRUNC, VT, Expand); 690 setOperationAction(ISD::FRINT, VT, Expand); 691 setOperationAction(ISD::FNEARBYINT, VT, Expand); 692 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 693 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 694 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 695 setOperationAction(ISD::MULHU, VT, Expand); 696 setOperationAction(ISD::MULHS, VT, Expand); 697 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 698 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 699 setOperationAction(ISD::UDIVREM, VT, Expand); 700 setOperationAction(ISD::SDIVREM, VT, Expand); 701 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 702 setOperationAction(ISD::FPOW, VT, Expand); 703 setOperationAction(ISD::BSWAP, VT, Expand); 704 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 705 setOperationAction(ISD::ROTL, VT, Expand); 706 setOperationAction(ISD::ROTR, VT, Expand); 707 708 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 709 setTruncStoreAction(VT, InnerVT, Expand); 710 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 711 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 712 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 713 } 714 } 715 if (!Subtarget.hasP8Vector()) { 716 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 717 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 718 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 719 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 720 } 721 722 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 723 setOperationAction(ISD::ABS, VT, Custom); 724 725 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 726 // with merges, splats, etc. 727 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 728 729 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 730 // are cheap, so handle them before they get expanded to scalar. 731 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 732 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 733 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 734 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 735 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 736 737 setOperationAction(ISD::AND , MVT::v4i32, Legal); 738 setOperationAction(ISD::OR , MVT::v4i32, Legal); 739 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 740 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 741 setOperationAction(ISD::SELECT, MVT::v4i32, 742 Subtarget.useCRBits() ? Legal : Expand); 743 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 744 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 745 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 746 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 747 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 748 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 749 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 750 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 751 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 752 753 // Without hasP8Altivec set, v2i64 SMAX isn't available. 754 // But ABS custom lowering requires SMAX support. 755 if (!Subtarget.hasP8Altivec()) 756 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 757 758 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 759 if (Subtarget.hasAltivec()) 760 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 761 setOperationAction(ISD::ROTL, VT, Legal); 762 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 763 if (Subtarget.hasP8Altivec()) 764 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 765 766 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 767 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 768 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 769 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 770 771 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 772 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 773 774 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 775 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 776 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 777 } 778 779 if (Subtarget.hasP8Altivec()) 780 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 781 else 782 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 783 784 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 785 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 786 787 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 789 790 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 791 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 792 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 793 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 794 795 // Altivec does not contain unordered floating-point compare instructions 796 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 797 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 798 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 799 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 800 801 if (Subtarget.hasVSX()) { 802 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 803 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 804 if (Subtarget.hasP8Vector()) { 805 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 806 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 807 } 808 if (Subtarget.hasDirectMove() && isPPC64) { 809 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 810 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 811 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 813 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 814 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 816 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 817 } 818 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 819 820 // The nearbyint variants are not allowed to raise the inexact exception 821 // so we can only code-gen them with unsafe math. 822 if (TM.Options.UnsafeFPMath) { 823 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 824 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 825 } 826 827 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 828 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 829 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 830 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 831 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 832 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 833 setOperationAction(ISD::FROUND, MVT::f64, Legal); 834 setOperationAction(ISD::FRINT, MVT::f64, Legal); 835 836 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 837 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 838 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 839 setOperationAction(ISD::FROUND, MVT::f32, Legal); 840 setOperationAction(ISD::FRINT, MVT::f32, Legal); 841 842 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 843 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 844 845 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 846 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 847 848 // Share the Altivec comparison restrictions. 849 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 850 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 851 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 852 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 853 854 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 855 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 856 857 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 858 859 if (Subtarget.hasP8Vector()) 860 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 861 862 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 863 864 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 865 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 866 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 867 868 if (Subtarget.hasP8Altivec()) { 869 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 870 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 871 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 872 873 // 128 bit shifts can be accomplished via 3 instructions for SHL and 874 // SRL, but not for SRA because of the instructions available: 875 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 876 // doing 877 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 878 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 879 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 880 881 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 882 } 883 else { 884 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 885 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 886 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 887 888 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 889 890 // VSX v2i64 only supports non-arithmetic operations. 891 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 892 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 893 } 894 895 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 896 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 897 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 898 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 899 900 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 901 902 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 903 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 904 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 905 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 906 907 // Custom handling for partial vectors of integers converted to 908 // floating point. We already have optimal handling for v2i32 through 909 // the DAG combine, so those aren't necessary. 910 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 911 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 912 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 913 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 914 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 915 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 916 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 917 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 918 919 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 920 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 921 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 922 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 923 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 924 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 925 926 if (Subtarget.hasDirectMove()) 927 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 928 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 929 930 // Handle constrained floating-point operations of vector. 931 // The predictor is `hasVSX` because altivec instruction has 932 // no exception but VSX vector instruction has. 933 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 934 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 935 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 936 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 937 938 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 939 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 940 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 941 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 942 943 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 944 } 945 946 if (Subtarget.hasP8Altivec()) { 947 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 948 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 949 } 950 951 if (Subtarget.hasP9Vector()) { 952 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 953 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 954 955 // 128 bit shifts can be accomplished via 3 instructions for SHL and 956 // SRL, but not for SRA because of the instructions available: 957 // VS{RL} and VS{RL}O. 958 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 959 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 960 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 961 962 if (EnableQuadPrecision) { 963 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 964 setOperationAction(ISD::FADD, MVT::f128, Legal); 965 setOperationAction(ISD::FSUB, MVT::f128, Legal); 966 setOperationAction(ISD::FDIV, MVT::f128, Legal); 967 setOperationAction(ISD::FMUL, MVT::f128, Legal); 968 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 969 // No extending loads to f128 on PPC. 970 for (MVT FPT : MVT::fp_valuetypes()) 971 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 972 setOperationAction(ISD::FMA, MVT::f128, Legal); 973 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 974 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 976 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 977 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 978 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 979 980 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 981 setOperationAction(ISD::FRINT, MVT::f128, Legal); 982 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 983 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 984 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 985 setOperationAction(ISD::FROUND, MVT::f128, Legal); 986 987 setOperationAction(ISD::SELECT, MVT::f128, Expand); 988 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 989 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 990 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 991 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 992 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 993 // No implementation for these ops for PowerPC. 994 setOperationAction(ISD::FSIN , MVT::f128, Expand); 995 setOperationAction(ISD::FCOS , MVT::f128, Expand); 996 setOperationAction(ISD::FPOW, MVT::f128, Expand); 997 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 998 setOperationAction(ISD::FREM, MVT::f128, Expand); 999 1000 // Handle constrained floating-point operations of fp128 1001 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1002 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1003 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1004 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1005 } 1006 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1007 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1008 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1009 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1010 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1011 } 1012 1013 if (Subtarget.hasP9Altivec()) { 1014 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1015 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1016 1017 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1018 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1019 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1020 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1021 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1022 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1023 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1024 } 1025 } 1026 1027 if (Subtarget.hasQPX()) { 1028 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1029 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1030 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1031 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1032 1033 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1034 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1035 1036 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1037 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1038 1039 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1040 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1041 1042 if (!Subtarget.useCRBits()) 1043 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1044 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1045 1046 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1047 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1048 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1049 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1050 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1051 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1052 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1053 1054 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1055 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1056 1057 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1058 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1059 1060 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1061 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1062 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1063 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1064 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1065 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1066 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1067 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1068 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1069 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1070 1071 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1072 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1073 1074 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1075 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1076 1077 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1078 1079 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1080 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1082 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1083 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1086 1087 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1088 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1089 1090 if (!Subtarget.useCRBits()) 1091 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1092 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1093 1094 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1095 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1096 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1097 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1098 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1099 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1100 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1101 1102 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1103 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1104 1105 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1106 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1107 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1108 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1109 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1110 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1111 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1112 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1113 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1114 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1115 1116 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1117 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1118 1119 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1120 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1121 1122 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1123 1124 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1125 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1126 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1127 1128 if (!Subtarget.useCRBits()) 1129 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1130 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1131 1132 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1133 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1134 1135 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1136 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1137 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1138 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1139 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1140 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1141 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1142 1143 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1144 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1145 1146 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1147 1148 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1149 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1150 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1151 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1152 1153 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1154 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1155 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1156 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1157 1158 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1159 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1160 1161 // These need to set FE_INEXACT, and so cannot be vectorized here. 1162 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1163 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1164 1165 if (TM.Options.UnsafeFPMath) { 1166 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1167 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1168 1169 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1170 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1171 } else { 1172 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1173 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1174 1175 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1176 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1177 } 1178 1179 // TODO: Handle constrained floating-point operations of v4f64 1180 } 1181 1182 if (Subtarget.has64BitSupport()) 1183 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1184 1185 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1186 1187 if (!isPPC64) { 1188 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1189 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1190 } 1191 1192 setBooleanContents(ZeroOrOneBooleanContent); 1193 1194 if (Subtarget.hasAltivec()) { 1195 // Altivec instructions set fields to all zeros or all ones. 1196 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1197 } 1198 1199 if (!isPPC64) { 1200 // These libcalls are not available in 32-bit. 1201 setLibcallName(RTLIB::SHL_I128, nullptr); 1202 setLibcallName(RTLIB::SRL_I128, nullptr); 1203 setLibcallName(RTLIB::SRA_I128, nullptr); 1204 } 1205 1206 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1207 1208 // We have target-specific dag combine patterns for the following nodes: 1209 setTargetDAGCombine(ISD::ADD); 1210 setTargetDAGCombine(ISD::SHL); 1211 setTargetDAGCombine(ISD::SRA); 1212 setTargetDAGCombine(ISD::SRL); 1213 setTargetDAGCombine(ISD::MUL); 1214 setTargetDAGCombine(ISD::SINT_TO_FP); 1215 setTargetDAGCombine(ISD::BUILD_VECTOR); 1216 if (Subtarget.hasFPCVT()) 1217 setTargetDAGCombine(ISD::UINT_TO_FP); 1218 setTargetDAGCombine(ISD::LOAD); 1219 setTargetDAGCombine(ISD::STORE); 1220 setTargetDAGCombine(ISD::BR_CC); 1221 if (Subtarget.useCRBits()) 1222 setTargetDAGCombine(ISD::BRCOND); 1223 setTargetDAGCombine(ISD::BSWAP); 1224 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1225 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1226 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1227 1228 setTargetDAGCombine(ISD::SIGN_EXTEND); 1229 setTargetDAGCombine(ISD::ZERO_EXTEND); 1230 setTargetDAGCombine(ISD::ANY_EXTEND); 1231 1232 setTargetDAGCombine(ISD::TRUNCATE); 1233 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1234 1235 1236 if (Subtarget.useCRBits()) { 1237 setTargetDAGCombine(ISD::TRUNCATE); 1238 setTargetDAGCombine(ISD::SETCC); 1239 setTargetDAGCombine(ISD::SELECT_CC); 1240 } 1241 1242 // Use reciprocal estimates. 1243 if (TM.Options.UnsafeFPMath) { 1244 setTargetDAGCombine(ISD::FDIV); 1245 setTargetDAGCombine(ISD::FSQRT); 1246 } 1247 1248 if (Subtarget.hasP9Altivec()) { 1249 setTargetDAGCombine(ISD::ABS); 1250 setTargetDAGCombine(ISD::VSELECT); 1251 } 1252 1253 if (EnableQuadPrecision) { 1254 setLibcallName(RTLIB::LOG_F128, "logf128"); 1255 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1256 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1257 setLibcallName(RTLIB::EXP_F128, "expf128"); 1258 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1259 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1260 setLibcallName(RTLIB::COS_F128, "cosf128"); 1261 setLibcallName(RTLIB::POW_F128, "powf128"); 1262 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1263 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1264 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1265 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1266 } 1267 1268 // With 32 condition bits, we don't need to sink (and duplicate) compares 1269 // aggressively in CodeGenPrep. 1270 if (Subtarget.useCRBits()) { 1271 setHasMultipleConditionRegisters(); 1272 setJumpIsExpensive(); 1273 } 1274 1275 setMinFunctionAlignment(Align(4)); 1276 1277 switch (Subtarget.getCPUDirective()) { 1278 default: break; 1279 case PPC::DIR_970: 1280 case PPC::DIR_A2: 1281 case PPC::DIR_E500: 1282 case PPC::DIR_E500mc: 1283 case PPC::DIR_E5500: 1284 case PPC::DIR_PWR4: 1285 case PPC::DIR_PWR5: 1286 case PPC::DIR_PWR5X: 1287 case PPC::DIR_PWR6: 1288 case PPC::DIR_PWR6X: 1289 case PPC::DIR_PWR7: 1290 case PPC::DIR_PWR8: 1291 case PPC::DIR_PWR9: 1292 case PPC::DIR_PWR_FUTURE: 1293 setPrefLoopAlignment(Align(16)); 1294 setPrefFunctionAlignment(Align(16)); 1295 break; 1296 } 1297 1298 if (Subtarget.enableMachineScheduler()) 1299 setSchedulingPreference(Sched::Source); 1300 else 1301 setSchedulingPreference(Sched::Hybrid); 1302 1303 computeRegisterProperties(STI.getRegisterInfo()); 1304 1305 // The Freescale cores do better with aggressive inlining of memcpy and 1306 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1307 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1308 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1309 MaxStoresPerMemset = 32; 1310 MaxStoresPerMemsetOptSize = 16; 1311 MaxStoresPerMemcpy = 32; 1312 MaxStoresPerMemcpyOptSize = 8; 1313 MaxStoresPerMemmove = 32; 1314 MaxStoresPerMemmoveOptSize = 8; 1315 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1316 // The A2 also benefits from (very) aggressive inlining of memcpy and 1317 // friends. The overhead of a the function call, even when warm, can be 1318 // over one hundred cycles. 1319 MaxStoresPerMemset = 128; 1320 MaxStoresPerMemcpy = 128; 1321 MaxStoresPerMemmove = 128; 1322 MaxLoadsPerMemcmp = 128; 1323 } else { 1324 MaxLoadsPerMemcmp = 8; 1325 MaxLoadsPerMemcmpOptSize = 4; 1326 } 1327 } 1328 1329 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1330 /// the desired ByVal argument alignment. 1331 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1332 unsigned MaxMaxAlign) { 1333 if (MaxAlign == MaxMaxAlign) 1334 return; 1335 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1336 if (MaxMaxAlign >= 32 && 1337 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1338 MaxAlign = 32; 1339 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1340 MaxAlign < 16) 1341 MaxAlign = 16; 1342 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1343 unsigned EltAlign = 0; 1344 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1345 if (EltAlign > MaxAlign) 1346 MaxAlign = EltAlign; 1347 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1348 for (auto *EltTy : STy->elements()) { 1349 unsigned EltAlign = 0; 1350 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1351 if (EltAlign > MaxAlign) 1352 MaxAlign = EltAlign; 1353 if (MaxAlign == MaxMaxAlign) 1354 break; 1355 } 1356 } 1357 } 1358 1359 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1360 /// function arguments in the caller parameter area. 1361 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1362 const DataLayout &DL) const { 1363 // 16byte and wider vectors are passed on 16byte boundary. 1364 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1365 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1366 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1367 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1368 return Align; 1369 } 1370 1371 bool PPCTargetLowering::useSoftFloat() const { 1372 return Subtarget.useSoftFloat(); 1373 } 1374 1375 bool PPCTargetLowering::hasSPE() const { 1376 return Subtarget.hasSPE(); 1377 } 1378 1379 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1380 return VT.isScalarInteger(); 1381 } 1382 1383 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1384 switch ((PPCISD::NodeType)Opcode) { 1385 case PPCISD::FIRST_NUMBER: break; 1386 case PPCISD::FSEL: return "PPCISD::FSEL"; 1387 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1388 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1389 case PPCISD::FCFID: return "PPCISD::FCFID"; 1390 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1391 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1392 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1393 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1394 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1395 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1396 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1397 case PPCISD::FP_TO_UINT_IN_VSR: 1398 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1399 case PPCISD::FP_TO_SINT_IN_VSR: 1400 return "PPCISD::FP_TO_SINT_IN_VSR"; 1401 case PPCISD::FRE: return "PPCISD::FRE"; 1402 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1403 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1404 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1405 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1406 case PPCISD::VPERM: return "PPCISD::VPERM"; 1407 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1408 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1409 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1410 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1411 case PPCISD::CMPB: return "PPCISD::CMPB"; 1412 case PPCISD::Hi: return "PPCISD::Hi"; 1413 case PPCISD::Lo: return "PPCISD::Lo"; 1414 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1415 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1416 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1417 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1418 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1419 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1420 case PPCISD::SRL: return "PPCISD::SRL"; 1421 case PPCISD::SRA: return "PPCISD::SRA"; 1422 case PPCISD::SHL: return "PPCISD::SHL"; 1423 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1424 case PPCISD::CALL: return "PPCISD::CALL"; 1425 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1426 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1427 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1428 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1429 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1430 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1431 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1432 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1433 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1434 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1435 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1436 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1437 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1438 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1439 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1440 case PPCISD::ANDI_rec_1_EQ_BIT: 1441 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1442 case PPCISD::ANDI_rec_1_GT_BIT: 1443 return "PPCISD::ANDI_rec_1_GT_BIT"; 1444 case PPCISD::VCMP: return "PPCISD::VCMP"; 1445 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1446 case PPCISD::LBRX: return "PPCISD::LBRX"; 1447 case PPCISD::STBRX: return "PPCISD::STBRX"; 1448 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1449 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1450 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1451 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1452 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1453 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1454 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1455 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1456 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1457 case PPCISD::ST_VSR_SCAL_INT: 1458 return "PPCISD::ST_VSR_SCAL_INT"; 1459 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1460 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1461 case PPCISD::BDZ: return "PPCISD::BDZ"; 1462 case PPCISD::MFFS: return "PPCISD::MFFS"; 1463 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1464 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1465 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1466 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1467 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1468 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1469 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1470 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1471 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1472 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1473 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1474 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1475 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1476 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1477 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1478 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1479 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1480 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1481 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1482 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1483 case PPCISD::SC: return "PPCISD::SC"; 1484 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1485 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1486 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1487 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1488 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1489 case PPCISD::VABSD: return "PPCISD::VABSD"; 1490 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1491 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1492 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1493 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1494 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1495 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1496 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1497 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1498 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1499 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1500 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1501 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1502 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1503 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1504 } 1505 return nullptr; 1506 } 1507 1508 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1509 EVT VT) const { 1510 if (!VT.isVector()) 1511 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1512 1513 if (Subtarget.hasQPX()) 1514 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1515 1516 return VT.changeVectorElementTypeToInteger(); 1517 } 1518 1519 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1520 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1521 return true; 1522 } 1523 1524 //===----------------------------------------------------------------------===// 1525 // Node matching predicates, for use by the tblgen matching code. 1526 //===----------------------------------------------------------------------===// 1527 1528 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1529 static bool isFloatingPointZero(SDValue Op) { 1530 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1531 return CFP->getValueAPF().isZero(); 1532 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1533 // Maybe this has already been legalized into the constant pool? 1534 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1535 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1536 return CFP->getValueAPF().isZero(); 1537 } 1538 return false; 1539 } 1540 1541 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1542 /// true if Op is undef or if it matches the specified value. 1543 static bool isConstantOrUndef(int Op, int Val) { 1544 return Op < 0 || Op == Val; 1545 } 1546 1547 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1548 /// VPKUHUM instruction. 1549 /// The ShuffleKind distinguishes between big-endian operations with 1550 /// two different inputs (0), either-endian operations with two identical 1551 /// inputs (1), and little-endian operations with two different inputs (2). 1552 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1553 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1554 SelectionDAG &DAG) { 1555 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1556 if (ShuffleKind == 0) { 1557 if (IsLE) 1558 return false; 1559 for (unsigned i = 0; i != 16; ++i) 1560 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1561 return false; 1562 } else if (ShuffleKind == 2) { 1563 if (!IsLE) 1564 return false; 1565 for (unsigned i = 0; i != 16; ++i) 1566 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1567 return false; 1568 } else if (ShuffleKind == 1) { 1569 unsigned j = IsLE ? 0 : 1; 1570 for (unsigned i = 0; i != 8; ++i) 1571 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1572 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1573 return false; 1574 } 1575 return true; 1576 } 1577 1578 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1579 /// VPKUWUM instruction. 1580 /// The ShuffleKind distinguishes between big-endian operations with 1581 /// two different inputs (0), either-endian operations with two identical 1582 /// inputs (1), and little-endian operations with two different inputs (2). 1583 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1584 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1585 SelectionDAG &DAG) { 1586 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1587 if (ShuffleKind == 0) { 1588 if (IsLE) 1589 return false; 1590 for (unsigned i = 0; i != 16; i += 2) 1591 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1592 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1593 return false; 1594 } else if (ShuffleKind == 2) { 1595 if (!IsLE) 1596 return false; 1597 for (unsigned i = 0; i != 16; i += 2) 1598 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1599 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1600 return false; 1601 } else if (ShuffleKind == 1) { 1602 unsigned j = IsLE ? 0 : 2; 1603 for (unsigned i = 0; i != 8; i += 2) 1604 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1605 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1606 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1607 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1608 return false; 1609 } 1610 return true; 1611 } 1612 1613 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1614 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1615 /// current subtarget. 1616 /// 1617 /// The ShuffleKind distinguishes between big-endian operations with 1618 /// two different inputs (0), either-endian operations with two identical 1619 /// inputs (1), and little-endian operations with two different inputs (2). 1620 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1621 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1622 SelectionDAG &DAG) { 1623 const PPCSubtarget& Subtarget = 1624 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1625 if (!Subtarget.hasP8Vector()) 1626 return false; 1627 1628 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1629 if (ShuffleKind == 0) { 1630 if (IsLE) 1631 return false; 1632 for (unsigned i = 0; i != 16; i += 4) 1633 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1634 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1635 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1636 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1637 return false; 1638 } else if (ShuffleKind == 2) { 1639 if (!IsLE) 1640 return false; 1641 for (unsigned i = 0; i != 16; i += 4) 1642 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1643 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1644 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1645 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1646 return false; 1647 } else if (ShuffleKind == 1) { 1648 unsigned j = IsLE ? 0 : 4; 1649 for (unsigned i = 0; i != 8; i += 4) 1650 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1651 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1652 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1653 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1654 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1655 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1656 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1657 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1658 return false; 1659 } 1660 return true; 1661 } 1662 1663 /// isVMerge - Common function, used to match vmrg* shuffles. 1664 /// 1665 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1666 unsigned LHSStart, unsigned RHSStart) { 1667 if (N->getValueType(0) != MVT::v16i8) 1668 return false; 1669 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1670 "Unsupported merge size!"); 1671 1672 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1673 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1674 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1675 LHSStart+j+i*UnitSize) || 1676 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1677 RHSStart+j+i*UnitSize)) 1678 return false; 1679 } 1680 return true; 1681 } 1682 1683 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1684 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1685 /// The ShuffleKind distinguishes between big-endian merges with two 1686 /// different inputs (0), either-endian merges with two identical inputs (1), 1687 /// and little-endian merges with two different inputs (2). For the latter, 1688 /// the input operands are swapped (see PPCInstrAltivec.td). 1689 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1690 unsigned ShuffleKind, SelectionDAG &DAG) { 1691 if (DAG.getDataLayout().isLittleEndian()) { 1692 if (ShuffleKind == 1) // unary 1693 return isVMerge(N, UnitSize, 0, 0); 1694 else if (ShuffleKind == 2) // swapped 1695 return isVMerge(N, UnitSize, 0, 16); 1696 else 1697 return false; 1698 } else { 1699 if (ShuffleKind == 1) // unary 1700 return isVMerge(N, UnitSize, 8, 8); 1701 else if (ShuffleKind == 0) // normal 1702 return isVMerge(N, UnitSize, 8, 24); 1703 else 1704 return false; 1705 } 1706 } 1707 1708 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1709 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1710 /// The ShuffleKind distinguishes between big-endian merges with two 1711 /// different inputs (0), either-endian merges with two identical inputs (1), 1712 /// and little-endian merges with two different inputs (2). For the latter, 1713 /// the input operands are swapped (see PPCInstrAltivec.td). 1714 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1715 unsigned ShuffleKind, SelectionDAG &DAG) { 1716 if (DAG.getDataLayout().isLittleEndian()) { 1717 if (ShuffleKind == 1) // unary 1718 return isVMerge(N, UnitSize, 8, 8); 1719 else if (ShuffleKind == 2) // swapped 1720 return isVMerge(N, UnitSize, 8, 24); 1721 else 1722 return false; 1723 } else { 1724 if (ShuffleKind == 1) // unary 1725 return isVMerge(N, UnitSize, 0, 0); 1726 else if (ShuffleKind == 0) // normal 1727 return isVMerge(N, UnitSize, 0, 16); 1728 else 1729 return false; 1730 } 1731 } 1732 1733 /** 1734 * Common function used to match vmrgew and vmrgow shuffles 1735 * 1736 * The indexOffset determines whether to look for even or odd words in 1737 * the shuffle mask. This is based on the of the endianness of the target 1738 * machine. 1739 * - Little Endian: 1740 * - Use offset of 0 to check for odd elements 1741 * - Use offset of 4 to check for even elements 1742 * - Big Endian: 1743 * - Use offset of 0 to check for even elements 1744 * - Use offset of 4 to check for odd elements 1745 * A detailed description of the vector element ordering for little endian and 1746 * big endian can be found at 1747 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1748 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1749 * compiler differences mean to you 1750 * 1751 * The mask to the shuffle vector instruction specifies the indices of the 1752 * elements from the two input vectors to place in the result. The elements are 1753 * numbered in array-access order, starting with the first vector. These vectors 1754 * are always of type v16i8, thus each vector will contain 16 elements of size 1755 * 8. More info on the shuffle vector can be found in the 1756 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1757 * Language Reference. 1758 * 1759 * The RHSStartValue indicates whether the same input vectors are used (unary) 1760 * or two different input vectors are used, based on the following: 1761 * - If the instruction uses the same vector for both inputs, the range of the 1762 * indices will be 0 to 15. In this case, the RHSStart value passed should 1763 * be 0. 1764 * - If the instruction has two different vectors then the range of the 1765 * indices will be 0 to 31. In this case, the RHSStart value passed should 1766 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1767 * to 31 specify elements in the second vector). 1768 * 1769 * \param[in] N The shuffle vector SD Node to analyze 1770 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1771 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1772 * vector to the shuffle_vector instruction 1773 * \return true iff this shuffle vector represents an even or odd word merge 1774 */ 1775 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1776 unsigned RHSStartValue) { 1777 if (N->getValueType(0) != MVT::v16i8) 1778 return false; 1779 1780 for (unsigned i = 0; i < 2; ++i) 1781 for (unsigned j = 0; j < 4; ++j) 1782 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1783 i*RHSStartValue+j+IndexOffset) || 1784 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1785 i*RHSStartValue+j+IndexOffset+8)) 1786 return false; 1787 return true; 1788 } 1789 1790 /** 1791 * Determine if the specified shuffle mask is suitable for the vmrgew or 1792 * vmrgow instructions. 1793 * 1794 * \param[in] N The shuffle vector SD Node to analyze 1795 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1796 * \param[in] ShuffleKind Identify the type of merge: 1797 * - 0 = big-endian merge with two different inputs; 1798 * - 1 = either-endian merge with two identical inputs; 1799 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1800 * little-endian merges). 1801 * \param[in] DAG The current SelectionDAG 1802 * \return true iff this shuffle mask 1803 */ 1804 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1805 unsigned ShuffleKind, SelectionDAG &DAG) { 1806 if (DAG.getDataLayout().isLittleEndian()) { 1807 unsigned indexOffset = CheckEven ? 4 : 0; 1808 if (ShuffleKind == 1) // Unary 1809 return isVMerge(N, indexOffset, 0); 1810 else if (ShuffleKind == 2) // swapped 1811 return isVMerge(N, indexOffset, 16); 1812 else 1813 return false; 1814 } 1815 else { 1816 unsigned indexOffset = CheckEven ? 0 : 4; 1817 if (ShuffleKind == 1) // Unary 1818 return isVMerge(N, indexOffset, 0); 1819 else if (ShuffleKind == 0) // Normal 1820 return isVMerge(N, indexOffset, 16); 1821 else 1822 return false; 1823 } 1824 return false; 1825 } 1826 1827 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1828 /// amount, otherwise return -1. 1829 /// The ShuffleKind distinguishes between big-endian operations with two 1830 /// different inputs (0), either-endian operations with two identical inputs 1831 /// (1), and little-endian operations with two different inputs (2). For the 1832 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1833 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1834 SelectionDAG &DAG) { 1835 if (N->getValueType(0) != MVT::v16i8) 1836 return -1; 1837 1838 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1839 1840 // Find the first non-undef value in the shuffle mask. 1841 unsigned i; 1842 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1843 /*search*/; 1844 1845 if (i == 16) return -1; // all undef. 1846 1847 // Otherwise, check to see if the rest of the elements are consecutively 1848 // numbered from this value. 1849 unsigned ShiftAmt = SVOp->getMaskElt(i); 1850 if (ShiftAmt < i) return -1; 1851 1852 ShiftAmt -= i; 1853 bool isLE = DAG.getDataLayout().isLittleEndian(); 1854 1855 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1856 // Check the rest of the elements to see if they are consecutive. 1857 for (++i; i != 16; ++i) 1858 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1859 return -1; 1860 } else if (ShuffleKind == 1) { 1861 // Check the rest of the elements to see if they are consecutive. 1862 for (++i; i != 16; ++i) 1863 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1864 return -1; 1865 } else 1866 return -1; 1867 1868 if (isLE) 1869 ShiftAmt = 16 - ShiftAmt; 1870 1871 return ShiftAmt; 1872 } 1873 1874 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1875 /// specifies a splat of a single element that is suitable for input to 1876 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1877 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1878 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1879 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1880 1881 // The consecutive indices need to specify an element, not part of two 1882 // different elements. So abandon ship early if this isn't the case. 1883 if (N->getMaskElt(0) % EltSize != 0) 1884 return false; 1885 1886 // This is a splat operation if each element of the permute is the same, and 1887 // if the value doesn't reference the second vector. 1888 unsigned ElementBase = N->getMaskElt(0); 1889 1890 // FIXME: Handle UNDEF elements too! 1891 if (ElementBase >= 16) 1892 return false; 1893 1894 // Check that the indices are consecutive, in the case of a multi-byte element 1895 // splatted with a v16i8 mask. 1896 for (unsigned i = 1; i != EltSize; ++i) 1897 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1898 return false; 1899 1900 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1901 if (N->getMaskElt(i) < 0) continue; 1902 for (unsigned j = 0; j != EltSize; ++j) 1903 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1904 return false; 1905 } 1906 return true; 1907 } 1908 1909 /// Check that the mask is shuffling N byte elements. Within each N byte 1910 /// element of the mask, the indices could be either in increasing or 1911 /// decreasing order as long as they are consecutive. 1912 /// \param[in] N the shuffle vector SD Node to analyze 1913 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1914 /// Word/DoubleWord/QuadWord). 1915 /// \param[in] StepLen the delta indices number among the N byte element, if 1916 /// the mask is in increasing/decreasing order then it is 1/-1. 1917 /// \return true iff the mask is shuffling N byte elements. 1918 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1919 int StepLen) { 1920 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1921 "Unexpected element width."); 1922 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1923 1924 unsigned NumOfElem = 16 / Width; 1925 unsigned MaskVal[16]; // Width is never greater than 16 1926 for (unsigned i = 0; i < NumOfElem; ++i) { 1927 MaskVal[0] = N->getMaskElt(i * Width); 1928 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1929 return false; 1930 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1931 return false; 1932 } 1933 1934 for (unsigned int j = 1; j < Width; ++j) { 1935 MaskVal[j] = N->getMaskElt(i * Width + j); 1936 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1937 return false; 1938 } 1939 } 1940 } 1941 1942 return true; 1943 } 1944 1945 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1946 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1947 if (!isNByteElemShuffleMask(N, 4, 1)) 1948 return false; 1949 1950 // Now we look at mask elements 0,4,8,12 1951 unsigned M0 = N->getMaskElt(0) / 4; 1952 unsigned M1 = N->getMaskElt(4) / 4; 1953 unsigned M2 = N->getMaskElt(8) / 4; 1954 unsigned M3 = N->getMaskElt(12) / 4; 1955 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1956 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1957 1958 // Below, let H and L be arbitrary elements of the shuffle mask 1959 // where H is in the range [4,7] and L is in the range [0,3]. 1960 // H, 1, 2, 3 or L, 5, 6, 7 1961 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1962 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1963 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1964 InsertAtByte = IsLE ? 12 : 0; 1965 Swap = M0 < 4; 1966 return true; 1967 } 1968 // 0, H, 2, 3 or 4, L, 6, 7 1969 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1970 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1971 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1972 InsertAtByte = IsLE ? 8 : 4; 1973 Swap = M1 < 4; 1974 return true; 1975 } 1976 // 0, 1, H, 3 or 4, 5, L, 7 1977 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1978 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1979 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1980 InsertAtByte = IsLE ? 4 : 8; 1981 Swap = M2 < 4; 1982 return true; 1983 } 1984 // 0, 1, 2, H or 4, 5, 6, L 1985 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1986 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1987 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1988 InsertAtByte = IsLE ? 0 : 12; 1989 Swap = M3 < 4; 1990 return true; 1991 } 1992 1993 // If both vector operands for the shuffle are the same vector, the mask will 1994 // contain only elements from the first one and the second one will be undef. 1995 if (N->getOperand(1).isUndef()) { 1996 ShiftElts = 0; 1997 Swap = true; 1998 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1999 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2000 InsertAtByte = IsLE ? 12 : 0; 2001 return true; 2002 } 2003 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2004 InsertAtByte = IsLE ? 8 : 4; 2005 return true; 2006 } 2007 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2008 InsertAtByte = IsLE ? 4 : 8; 2009 return true; 2010 } 2011 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2012 InsertAtByte = IsLE ? 0 : 12; 2013 return true; 2014 } 2015 } 2016 2017 return false; 2018 } 2019 2020 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2021 bool &Swap, bool IsLE) { 2022 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2023 // Ensure each byte index of the word is consecutive. 2024 if (!isNByteElemShuffleMask(N, 4, 1)) 2025 return false; 2026 2027 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2028 unsigned M0 = N->getMaskElt(0) / 4; 2029 unsigned M1 = N->getMaskElt(4) / 4; 2030 unsigned M2 = N->getMaskElt(8) / 4; 2031 unsigned M3 = N->getMaskElt(12) / 4; 2032 2033 // If both vector operands for the shuffle are the same vector, the mask will 2034 // contain only elements from the first one and the second one will be undef. 2035 if (N->getOperand(1).isUndef()) { 2036 assert(M0 < 4 && "Indexing into an undef vector?"); 2037 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2038 return false; 2039 2040 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2041 Swap = false; 2042 return true; 2043 } 2044 2045 // Ensure each word index of the ShuffleVector Mask is consecutive. 2046 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2047 return false; 2048 2049 if (IsLE) { 2050 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2051 // Input vectors don't need to be swapped if the leading element 2052 // of the result is one of the 3 left elements of the second vector 2053 // (or if there is no shift to be done at all). 2054 Swap = false; 2055 ShiftElts = (8 - M0) % 8; 2056 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2057 // Input vectors need to be swapped if the leading element 2058 // of the result is one of the 3 left elements of the first vector 2059 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2060 Swap = true; 2061 ShiftElts = (4 - M0) % 4; 2062 } 2063 2064 return true; 2065 } else { // BE 2066 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2067 // Input vectors don't need to be swapped if the leading element 2068 // of the result is one of the 4 elements of the first vector. 2069 Swap = false; 2070 ShiftElts = M0; 2071 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2072 // Input vectors need to be swapped if the leading element 2073 // of the result is one of the 4 elements of the right vector. 2074 Swap = true; 2075 ShiftElts = M0 - 4; 2076 } 2077 2078 return true; 2079 } 2080 } 2081 2082 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2083 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2084 2085 if (!isNByteElemShuffleMask(N, Width, -1)) 2086 return false; 2087 2088 for (int i = 0; i < 16; i += Width) 2089 if (N->getMaskElt(i) != i + Width - 1) 2090 return false; 2091 2092 return true; 2093 } 2094 2095 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2096 return isXXBRShuffleMaskHelper(N, 2); 2097 } 2098 2099 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2100 return isXXBRShuffleMaskHelper(N, 4); 2101 } 2102 2103 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2104 return isXXBRShuffleMaskHelper(N, 8); 2105 } 2106 2107 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2108 return isXXBRShuffleMaskHelper(N, 16); 2109 } 2110 2111 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2112 /// if the inputs to the instruction should be swapped and set \p DM to the 2113 /// value for the immediate. 2114 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2115 /// AND element 0 of the result comes from the first input (LE) or second input 2116 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2117 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2118 /// mask. 2119 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2120 bool &Swap, bool IsLE) { 2121 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2122 2123 // Ensure each byte index of the double word is consecutive. 2124 if (!isNByteElemShuffleMask(N, 8, 1)) 2125 return false; 2126 2127 unsigned M0 = N->getMaskElt(0) / 8; 2128 unsigned M1 = N->getMaskElt(8) / 8; 2129 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2130 2131 // If both vector operands for the shuffle are the same vector, the mask will 2132 // contain only elements from the first one and the second one will be undef. 2133 if (N->getOperand(1).isUndef()) { 2134 if ((M0 | M1) < 2) { 2135 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2136 Swap = false; 2137 return true; 2138 } else 2139 return false; 2140 } 2141 2142 if (IsLE) { 2143 if (M0 > 1 && M1 < 2) { 2144 Swap = false; 2145 } else if (M0 < 2 && M1 > 1) { 2146 M0 = (M0 + 2) % 4; 2147 M1 = (M1 + 2) % 4; 2148 Swap = true; 2149 } else 2150 return false; 2151 2152 // Note: if control flow comes here that means Swap is already set above 2153 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2154 return true; 2155 } else { // BE 2156 if (M0 < 2 && M1 > 1) { 2157 Swap = false; 2158 } else if (M0 > 1 && M1 < 2) { 2159 M0 = (M0 + 2) % 4; 2160 M1 = (M1 + 2) % 4; 2161 Swap = true; 2162 } else 2163 return false; 2164 2165 // Note: if control flow comes here that means Swap is already set above 2166 DM = (M0 << 1) + (M1 & 1); 2167 return true; 2168 } 2169 } 2170 2171 2172 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2173 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2174 /// elements are counted from the left of the vector register). 2175 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2176 SelectionDAG &DAG) { 2177 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2178 assert(isSplatShuffleMask(SVOp, EltSize)); 2179 if (DAG.getDataLayout().isLittleEndian()) 2180 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2181 else 2182 return SVOp->getMaskElt(0) / EltSize; 2183 } 2184 2185 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2186 /// by using a vspltis[bhw] instruction of the specified element size, return 2187 /// the constant being splatted. The ByteSize field indicates the number of 2188 /// bytes of each element [124] -> [bhw]. 2189 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2190 SDValue OpVal(nullptr, 0); 2191 2192 // If ByteSize of the splat is bigger than the element size of the 2193 // build_vector, then we have a case where we are checking for a splat where 2194 // multiple elements of the buildvector are folded together into a single 2195 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2196 unsigned EltSize = 16/N->getNumOperands(); 2197 if (EltSize < ByteSize) { 2198 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2199 SDValue UniquedVals[4]; 2200 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2201 2202 // See if all of the elements in the buildvector agree across. 2203 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2204 if (N->getOperand(i).isUndef()) continue; 2205 // If the element isn't a constant, bail fully out. 2206 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2207 2208 if (!UniquedVals[i&(Multiple-1)].getNode()) 2209 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2210 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2211 return SDValue(); // no match. 2212 } 2213 2214 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2215 // either constant or undef values that are identical for each chunk. See 2216 // if these chunks can form into a larger vspltis*. 2217 2218 // Check to see if all of the leading entries are either 0 or -1. If 2219 // neither, then this won't fit into the immediate field. 2220 bool LeadingZero = true; 2221 bool LeadingOnes = true; 2222 for (unsigned i = 0; i != Multiple-1; ++i) { 2223 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2224 2225 LeadingZero &= isNullConstant(UniquedVals[i]); 2226 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2227 } 2228 // Finally, check the least significant entry. 2229 if (LeadingZero) { 2230 if (!UniquedVals[Multiple-1].getNode()) 2231 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2232 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2233 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2234 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2235 } 2236 if (LeadingOnes) { 2237 if (!UniquedVals[Multiple-1].getNode()) 2238 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2239 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2240 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2241 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2242 } 2243 2244 return SDValue(); 2245 } 2246 2247 // Check to see if this buildvec has a single non-undef value in its elements. 2248 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2249 if (N->getOperand(i).isUndef()) continue; 2250 if (!OpVal.getNode()) 2251 OpVal = N->getOperand(i); 2252 else if (OpVal != N->getOperand(i)) 2253 return SDValue(); 2254 } 2255 2256 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2257 2258 unsigned ValSizeInBytes = EltSize; 2259 uint64_t Value = 0; 2260 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2261 Value = CN->getZExtValue(); 2262 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2263 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2264 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2265 } 2266 2267 // If the splat value is larger than the element value, then we can never do 2268 // this splat. The only case that we could fit the replicated bits into our 2269 // immediate field for would be zero, and we prefer to use vxor for it. 2270 if (ValSizeInBytes < ByteSize) return SDValue(); 2271 2272 // If the element value is larger than the splat value, check if it consists 2273 // of a repeated bit pattern of size ByteSize. 2274 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2275 return SDValue(); 2276 2277 // Properly sign extend the value. 2278 int MaskVal = SignExtend32(Value, ByteSize * 8); 2279 2280 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2281 if (MaskVal == 0) return SDValue(); 2282 2283 // Finally, if this value fits in a 5 bit sext field, return it 2284 if (SignExtend32<5>(MaskVal) == MaskVal) 2285 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2286 return SDValue(); 2287 } 2288 2289 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2290 /// amount, otherwise return -1. 2291 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2292 EVT VT = N->getValueType(0); 2293 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2294 return -1; 2295 2296 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2297 2298 // Find the first non-undef value in the shuffle mask. 2299 unsigned i; 2300 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2301 /*search*/; 2302 2303 if (i == 4) return -1; // all undef. 2304 2305 // Otherwise, check to see if the rest of the elements are consecutively 2306 // numbered from this value. 2307 unsigned ShiftAmt = SVOp->getMaskElt(i); 2308 if (ShiftAmt < i) return -1; 2309 ShiftAmt -= i; 2310 2311 // Check the rest of the elements to see if they are consecutive. 2312 for (++i; i != 4; ++i) 2313 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2314 return -1; 2315 2316 return ShiftAmt; 2317 } 2318 2319 //===----------------------------------------------------------------------===// 2320 // Addressing Mode Selection 2321 //===----------------------------------------------------------------------===// 2322 2323 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2324 /// or 64-bit immediate, and if the value can be accurately represented as a 2325 /// sign extension from a 16-bit value. If so, this returns true and the 2326 /// immediate. 2327 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2328 if (!isa<ConstantSDNode>(N)) 2329 return false; 2330 2331 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2332 if (N->getValueType(0) == MVT::i32) 2333 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2334 else 2335 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2336 } 2337 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2338 return isIntS16Immediate(Op.getNode(), Imm); 2339 } 2340 2341 2342 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2343 /// be represented as an indexed [r+r] operation. 2344 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2345 SDValue &Index, 2346 SelectionDAG &DAG) const { 2347 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2348 UI != E; ++UI) { 2349 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2350 if (Memop->getMemoryVT() == MVT::f64) { 2351 Base = N.getOperand(0); 2352 Index = N.getOperand(1); 2353 return true; 2354 } 2355 } 2356 } 2357 return false; 2358 } 2359 2360 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2361 /// can be represented as an indexed [r+r] operation. Returns false if it 2362 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2363 /// non-zero and N can be represented by a base register plus a signed 16-bit 2364 /// displacement, make a more precise judgement by checking (displacement % \p 2365 /// EncodingAlignment). 2366 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2367 SDValue &Index, SelectionDAG &DAG, 2368 unsigned EncodingAlignment) const { 2369 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2370 // a [pc+imm]. 2371 if (SelectAddressPCRel(N, Base)) 2372 return false; 2373 2374 int16_t imm = 0; 2375 if (N.getOpcode() == ISD::ADD) { 2376 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2377 // SPE load/store can only handle 8-bit offsets. 2378 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2379 return true; 2380 if (isIntS16Immediate(N.getOperand(1), imm) && 2381 (!EncodingAlignment || !(imm % EncodingAlignment))) 2382 return false; // r+i 2383 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2384 return false; // r+i 2385 2386 Base = N.getOperand(0); 2387 Index = N.getOperand(1); 2388 return true; 2389 } else if (N.getOpcode() == ISD::OR) { 2390 if (isIntS16Immediate(N.getOperand(1), imm) && 2391 (!EncodingAlignment || !(imm % EncodingAlignment))) 2392 return false; // r+i can fold it if we can. 2393 2394 // If this is an or of disjoint bitfields, we can codegen this as an add 2395 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2396 // disjoint. 2397 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2398 2399 if (LHSKnown.Zero.getBoolValue()) { 2400 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2401 // If all of the bits are known zero on the LHS or RHS, the add won't 2402 // carry. 2403 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2404 Base = N.getOperand(0); 2405 Index = N.getOperand(1); 2406 return true; 2407 } 2408 } 2409 } 2410 2411 return false; 2412 } 2413 2414 // If we happen to be doing an i64 load or store into a stack slot that has 2415 // less than a 4-byte alignment, then the frame-index elimination may need to 2416 // use an indexed load or store instruction (because the offset may not be a 2417 // multiple of 4). The extra register needed to hold the offset comes from the 2418 // register scavenger, and it is possible that the scavenger will need to use 2419 // an emergency spill slot. As a result, we need to make sure that a spill slot 2420 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2421 // stack slot. 2422 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2423 // FIXME: This does not handle the LWA case. 2424 if (VT != MVT::i64) 2425 return; 2426 2427 // NOTE: We'll exclude negative FIs here, which come from argument 2428 // lowering, because there are no known test cases triggering this problem 2429 // using packed structures (or similar). We can remove this exclusion if 2430 // we find such a test case. The reason why this is so test-case driven is 2431 // because this entire 'fixup' is only to prevent crashes (from the 2432 // register scavenger) on not-really-valid inputs. For example, if we have: 2433 // %a = alloca i1 2434 // %b = bitcast i1* %a to i64* 2435 // store i64* a, i64 b 2436 // then the store should really be marked as 'align 1', but is not. If it 2437 // were marked as 'align 1' then the indexed form would have been 2438 // instruction-selected initially, and the problem this 'fixup' is preventing 2439 // won't happen regardless. 2440 if (FrameIdx < 0) 2441 return; 2442 2443 MachineFunction &MF = DAG.getMachineFunction(); 2444 MachineFrameInfo &MFI = MF.getFrameInfo(); 2445 2446 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2447 return; 2448 2449 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2450 FuncInfo->setHasNonRISpills(); 2451 } 2452 2453 /// Returns true if the address N can be represented by a base register plus 2454 /// a signed 16-bit displacement [r+imm], and if it is not better 2455 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2456 /// displacements that are multiples of that value. 2457 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2458 SDValue &Base, 2459 SelectionDAG &DAG, 2460 unsigned EncodingAlignment) const { 2461 // FIXME dl should come from parent load or store, not from address 2462 SDLoc dl(N); 2463 2464 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2465 // a [pc+imm]. 2466 if (SelectAddressPCRel(N, Base)) 2467 return false; 2468 2469 // If this can be more profitably realized as r+r, fail. 2470 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2471 return false; 2472 2473 if (N.getOpcode() == ISD::ADD) { 2474 int16_t imm = 0; 2475 if (isIntS16Immediate(N.getOperand(1), imm) && 2476 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2477 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2478 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2479 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2480 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2481 } else { 2482 Base = N.getOperand(0); 2483 } 2484 return true; // [r+i] 2485 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2486 // Match LOAD (ADD (X, Lo(G))). 2487 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2488 && "Cannot handle constant offsets yet!"); 2489 Disp = N.getOperand(1).getOperand(0); // The global address. 2490 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2491 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2492 Disp.getOpcode() == ISD::TargetConstantPool || 2493 Disp.getOpcode() == ISD::TargetJumpTable); 2494 Base = N.getOperand(0); 2495 return true; // [&g+r] 2496 } 2497 } else if (N.getOpcode() == ISD::OR) { 2498 int16_t imm = 0; 2499 if (isIntS16Immediate(N.getOperand(1), imm) && 2500 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2501 // If this is an or of disjoint bitfields, we can codegen this as an add 2502 // (for better address arithmetic) if the LHS and RHS of the OR are 2503 // provably disjoint. 2504 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2505 2506 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2507 // If all of the bits are known zero on the LHS or RHS, the add won't 2508 // carry. 2509 if (FrameIndexSDNode *FI = 2510 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2511 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2512 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2513 } else { 2514 Base = N.getOperand(0); 2515 } 2516 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2517 return true; 2518 } 2519 } 2520 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2521 // Loading from a constant address. 2522 2523 // If this address fits entirely in a 16-bit sext immediate field, codegen 2524 // this as "d, 0" 2525 int16_t Imm; 2526 if (isIntS16Immediate(CN, Imm) && 2527 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2528 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2529 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2530 CN->getValueType(0)); 2531 return true; 2532 } 2533 2534 // Handle 32-bit sext immediates with LIS + addr mode. 2535 if ((CN->getValueType(0) == MVT::i32 || 2536 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2537 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2538 int Addr = (int)CN->getZExtValue(); 2539 2540 // Otherwise, break this down into an LIS + disp. 2541 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2542 2543 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2544 MVT::i32); 2545 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2546 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2547 return true; 2548 } 2549 } 2550 2551 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2552 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2553 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2554 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2555 } else 2556 Base = N; 2557 return true; // [r+0] 2558 } 2559 2560 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2561 /// represented as an indexed [r+r] operation. 2562 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2563 SDValue &Index, 2564 SelectionDAG &DAG) const { 2565 // Check to see if we can easily represent this as an [r+r] address. This 2566 // will fail if it thinks that the address is more profitably represented as 2567 // reg+imm, e.g. where imm = 0. 2568 if (SelectAddressRegReg(N, Base, Index, DAG)) 2569 return true; 2570 2571 // If the address is the result of an add, we will utilize the fact that the 2572 // address calculation includes an implicit add. However, we can reduce 2573 // register pressure if we do not materialize a constant just for use as the 2574 // index register. We only get rid of the add if it is not an add of a 2575 // value and a 16-bit signed constant and both have a single use. 2576 int16_t imm = 0; 2577 if (N.getOpcode() == ISD::ADD && 2578 (!isIntS16Immediate(N.getOperand(1), imm) || 2579 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2580 Base = N.getOperand(0); 2581 Index = N.getOperand(1); 2582 return true; 2583 } 2584 2585 // Otherwise, do it the hard way, using R0 as the base register. 2586 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2587 N.getValueType()); 2588 Index = N; 2589 return true; 2590 } 2591 2592 /// Returns true if this address is a PC Relative address. 2593 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2594 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2595 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2596 // This is a materialize PC Relative node. Always select this as PC Relative. 2597 Base = N; 2598 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2599 return true; 2600 if (ConstantPoolSDNode *CPN = dyn_cast<ConstantPoolSDNode>(N)) 2601 if (CPN->getTargetFlags() & PPCII::MO_PCREL_FLAG) 2602 return true; 2603 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(N)) 2604 if (GAN->getTargetFlags() & PPCII::MO_PCREL_FLAG) 2605 return true; 2606 return false; 2607 } 2608 2609 /// Returns true if we should use a direct load into vector instruction 2610 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2611 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2612 2613 // If there are any other uses other than scalar to vector, then we should 2614 // keep it as a scalar load -> direct move pattern to prevent multiple 2615 // loads. 2616 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2617 if (!LD) 2618 return false; 2619 2620 EVT MemVT = LD->getMemoryVT(); 2621 if (!MemVT.isSimple()) 2622 return false; 2623 switch(MemVT.getSimpleVT().SimpleTy) { 2624 case MVT::i64: 2625 break; 2626 case MVT::i32: 2627 if (!ST.hasP8Vector()) 2628 return false; 2629 break; 2630 case MVT::i16: 2631 case MVT::i8: 2632 if (!ST.hasP9Vector()) 2633 return false; 2634 break; 2635 default: 2636 return false; 2637 } 2638 2639 SDValue LoadedVal(N, 0); 2640 if (!LoadedVal.hasOneUse()) 2641 return false; 2642 2643 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2644 UI != UE; ++UI) 2645 if (UI.getUse().get().getResNo() == 0 && 2646 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2647 return false; 2648 2649 return true; 2650 } 2651 2652 /// getPreIndexedAddressParts - returns true by value, base pointer and 2653 /// offset pointer and addressing mode by reference if the node's address 2654 /// can be legally represented as pre-indexed load / store address. 2655 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2656 SDValue &Offset, 2657 ISD::MemIndexedMode &AM, 2658 SelectionDAG &DAG) const { 2659 if (DisablePPCPreinc) return false; 2660 2661 bool isLoad = true; 2662 SDValue Ptr; 2663 EVT VT; 2664 unsigned Alignment; 2665 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2666 Ptr = LD->getBasePtr(); 2667 VT = LD->getMemoryVT(); 2668 Alignment = LD->getAlignment(); 2669 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2670 Ptr = ST->getBasePtr(); 2671 VT = ST->getMemoryVT(); 2672 Alignment = ST->getAlignment(); 2673 isLoad = false; 2674 } else 2675 return false; 2676 2677 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2678 // instructions because we can fold these into a more efficient instruction 2679 // instead, (such as LXSD). 2680 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2681 return false; 2682 } 2683 2684 // PowerPC doesn't have preinc load/store instructions for vectors (except 2685 // for QPX, which does have preinc r+r forms). 2686 if (VT.isVector()) { 2687 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2688 return false; 2689 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2690 AM = ISD::PRE_INC; 2691 return true; 2692 } 2693 } 2694 2695 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2696 // Common code will reject creating a pre-inc form if the base pointer 2697 // is a frame index, or if N is a store and the base pointer is either 2698 // the same as or a predecessor of the value being stored. Check for 2699 // those situations here, and try with swapped Base/Offset instead. 2700 bool Swap = false; 2701 2702 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2703 Swap = true; 2704 else if (!isLoad) { 2705 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2706 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2707 Swap = true; 2708 } 2709 2710 if (Swap) 2711 std::swap(Base, Offset); 2712 2713 AM = ISD::PRE_INC; 2714 return true; 2715 } 2716 2717 // LDU/STU can only handle immediates that are a multiple of 4. 2718 if (VT != MVT::i64) { 2719 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2720 return false; 2721 } else { 2722 // LDU/STU need an address with at least 4-byte alignment. 2723 if (Alignment < 4) 2724 return false; 2725 2726 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2727 return false; 2728 } 2729 2730 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2731 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2732 // sext i32 to i64 when addr mode is r+i. 2733 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2734 LD->getExtensionType() == ISD::SEXTLOAD && 2735 isa<ConstantSDNode>(Offset)) 2736 return false; 2737 } 2738 2739 AM = ISD::PRE_INC; 2740 return true; 2741 } 2742 2743 //===----------------------------------------------------------------------===// 2744 // LowerOperation implementation 2745 //===----------------------------------------------------------------------===// 2746 2747 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2748 /// and LoOpFlags to the target MO flags. 2749 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2750 unsigned &HiOpFlags, unsigned &LoOpFlags, 2751 const GlobalValue *GV = nullptr) { 2752 HiOpFlags = PPCII::MO_HA; 2753 LoOpFlags = PPCII::MO_LO; 2754 2755 // Don't use the pic base if not in PIC relocation model. 2756 if (IsPIC) { 2757 HiOpFlags |= PPCII::MO_PIC_FLAG; 2758 LoOpFlags |= PPCII::MO_PIC_FLAG; 2759 } 2760 } 2761 2762 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2763 SelectionDAG &DAG) { 2764 SDLoc DL(HiPart); 2765 EVT PtrVT = HiPart.getValueType(); 2766 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2767 2768 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2769 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2770 2771 // With PIC, the first instruction is actually "GR+hi(&G)". 2772 if (isPIC) 2773 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2774 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2775 2776 // Generate non-pic code that has direct accesses to the constant pool. 2777 // The address of the global is just (hi(&g)+lo(&g)). 2778 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2779 } 2780 2781 static void setUsesTOCBasePtr(MachineFunction &MF) { 2782 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2783 FuncInfo->setUsesTOCBasePtr(); 2784 } 2785 2786 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2787 setUsesTOCBasePtr(DAG.getMachineFunction()); 2788 } 2789 2790 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2791 SDValue GA) const { 2792 const bool Is64Bit = Subtarget.isPPC64(); 2793 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2794 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2795 : Subtarget.isAIXABI() 2796 ? DAG.getRegister(PPC::R2, VT) 2797 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2798 SDValue Ops[] = { GA, Reg }; 2799 return DAG.getMemIntrinsicNode( 2800 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2801 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2802 MachineMemOperand::MOLoad); 2803 } 2804 2805 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2806 SelectionDAG &DAG) const { 2807 EVT PtrVT = Op.getValueType(); 2808 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2809 const Constant *C = CP->getConstVal(); 2810 2811 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2812 // The actual address of the GlobalValue is stored in the TOC. 2813 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2814 if (Subtarget.hasPCRelativeMemops()) { 2815 SDLoc DL(CP); 2816 EVT Ty = getPointerTy(DAG.getDataLayout()); 2817 SDValue ConstPool = DAG.getTargetConstantPool(C, Ty, 2818 CP->getAlignment(), 2819 CP->getOffset(), 2820 PPCII::MO_PCREL_FLAG); 2821 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2822 } 2823 setUsesTOCBasePtr(DAG); 2824 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2825 return getTOCEntry(DAG, SDLoc(CP), GA); 2826 } 2827 2828 unsigned MOHiFlag, MOLoFlag; 2829 bool IsPIC = isPositionIndependent(); 2830 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2831 2832 if (IsPIC && Subtarget.isSVR4ABI()) { 2833 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2834 PPCII::MO_PIC_FLAG); 2835 return getTOCEntry(DAG, SDLoc(CP), GA); 2836 } 2837 2838 SDValue CPIHi = 2839 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2840 SDValue CPILo = 2841 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2842 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2843 } 2844 2845 // For 64-bit PowerPC, prefer the more compact relative encodings. 2846 // This trades 32 bits per jump table entry for one or two instructions 2847 // on the jump site. 2848 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2849 if (isJumpTableRelative()) 2850 return MachineJumpTableInfo::EK_LabelDifference32; 2851 2852 return TargetLowering::getJumpTableEncoding(); 2853 } 2854 2855 bool PPCTargetLowering::isJumpTableRelative() const { 2856 if (UseAbsoluteJumpTables) 2857 return false; 2858 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2859 return true; 2860 return TargetLowering::isJumpTableRelative(); 2861 } 2862 2863 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2864 SelectionDAG &DAG) const { 2865 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2866 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2867 2868 switch (getTargetMachine().getCodeModel()) { 2869 case CodeModel::Small: 2870 case CodeModel::Medium: 2871 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2872 default: 2873 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2874 getPointerTy(DAG.getDataLayout())); 2875 } 2876 } 2877 2878 const MCExpr * 2879 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2880 unsigned JTI, 2881 MCContext &Ctx) const { 2882 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2883 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2884 2885 switch (getTargetMachine().getCodeModel()) { 2886 case CodeModel::Small: 2887 case CodeModel::Medium: 2888 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2889 default: 2890 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2891 } 2892 } 2893 2894 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2895 EVT PtrVT = Op.getValueType(); 2896 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2897 2898 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2899 // The actual address of the GlobalValue is stored in the TOC. 2900 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2901 setUsesTOCBasePtr(DAG); 2902 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2903 return getTOCEntry(DAG, SDLoc(JT), GA); 2904 } 2905 2906 unsigned MOHiFlag, MOLoFlag; 2907 bool IsPIC = isPositionIndependent(); 2908 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2909 2910 if (IsPIC && Subtarget.isSVR4ABI()) { 2911 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2912 PPCII::MO_PIC_FLAG); 2913 return getTOCEntry(DAG, SDLoc(GA), GA); 2914 } 2915 2916 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2917 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2918 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2919 } 2920 2921 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2922 SelectionDAG &DAG) const { 2923 EVT PtrVT = Op.getValueType(); 2924 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2925 const BlockAddress *BA = BASDN->getBlockAddress(); 2926 2927 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2928 // The actual BlockAddress is stored in the TOC. 2929 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2930 setUsesTOCBasePtr(DAG); 2931 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2932 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2933 } 2934 2935 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2936 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2937 return getTOCEntry( 2938 DAG, SDLoc(BASDN), 2939 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2940 2941 unsigned MOHiFlag, MOLoFlag; 2942 bool IsPIC = isPositionIndependent(); 2943 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2944 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2945 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2946 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2947 } 2948 2949 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2950 SelectionDAG &DAG) const { 2951 // FIXME: TLS addresses currently use medium model code sequences, 2952 // which is the most useful form. Eventually support for small and 2953 // large models could be added if users need it, at the cost of 2954 // additional complexity. 2955 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2956 if (DAG.getTarget().useEmulatedTLS()) 2957 return LowerToTLSEmulatedModel(GA, DAG); 2958 2959 SDLoc dl(GA); 2960 const GlobalValue *GV = GA->getGlobal(); 2961 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2962 bool is64bit = Subtarget.isPPC64(); 2963 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2964 PICLevel::Level picLevel = M->getPICLevel(); 2965 2966 const TargetMachine &TM = getTargetMachine(); 2967 TLSModel::Model Model = TM.getTLSModel(GV); 2968 2969 if (Model == TLSModel::LocalExec) { 2970 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2971 PPCII::MO_TPREL_HA); 2972 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2973 PPCII::MO_TPREL_LO); 2974 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2975 : DAG.getRegister(PPC::R2, MVT::i32); 2976 2977 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2978 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2979 } 2980 2981 if (Model == TLSModel::InitialExec) { 2982 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2983 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2984 PPCII::MO_TLS); 2985 SDValue GOTPtr; 2986 if (is64bit) { 2987 setUsesTOCBasePtr(DAG); 2988 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2989 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2990 PtrVT, GOTReg, TGA); 2991 } else { 2992 if (!TM.isPositionIndependent()) 2993 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2994 else if (picLevel == PICLevel::SmallPIC) 2995 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2996 else 2997 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2998 } 2999 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3000 PtrVT, TGA, GOTPtr); 3001 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3002 } 3003 3004 if (Model == TLSModel::GeneralDynamic) { 3005 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3006 SDValue GOTPtr; 3007 if (is64bit) { 3008 setUsesTOCBasePtr(DAG); 3009 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3010 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3011 GOTReg, TGA); 3012 } else { 3013 if (picLevel == PICLevel::SmallPIC) 3014 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3015 else 3016 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3017 } 3018 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3019 GOTPtr, TGA, TGA); 3020 } 3021 3022 if (Model == TLSModel::LocalDynamic) { 3023 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3024 SDValue GOTPtr; 3025 if (is64bit) { 3026 setUsesTOCBasePtr(DAG); 3027 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3028 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3029 GOTReg, TGA); 3030 } else { 3031 if (picLevel == PICLevel::SmallPIC) 3032 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3033 else 3034 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3035 } 3036 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3037 PtrVT, GOTPtr, TGA, TGA); 3038 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3039 PtrVT, TLSAddr, TGA); 3040 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3041 } 3042 3043 llvm_unreachable("Unknown TLS model!"); 3044 } 3045 3046 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3047 SelectionDAG &DAG) const { 3048 EVT PtrVT = Op.getValueType(); 3049 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3050 SDLoc DL(GSDN); 3051 const GlobalValue *GV = GSDN->getGlobal(); 3052 3053 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3054 // The actual address of the GlobalValue is stored in the TOC. 3055 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3056 if (Subtarget.isUsingPCRelativeCalls()) { 3057 EVT Ty = getPointerTy(DAG.getDataLayout()); 3058 if (isAccessedAsGotIndirect(Op)) { 3059 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3060 PPCII::MO_PCREL_FLAG | 3061 PPCII::MO_GOT_FLAG); 3062 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3063 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3064 MachinePointerInfo()); 3065 return Load; 3066 } else { 3067 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3068 PPCII::MO_PCREL_FLAG); 3069 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3070 } 3071 } 3072 setUsesTOCBasePtr(DAG); 3073 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3074 return getTOCEntry(DAG, DL, GA); 3075 } 3076 3077 unsigned MOHiFlag, MOLoFlag; 3078 bool IsPIC = isPositionIndependent(); 3079 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3080 3081 if (IsPIC && Subtarget.isSVR4ABI()) { 3082 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3083 GSDN->getOffset(), 3084 PPCII::MO_PIC_FLAG); 3085 return getTOCEntry(DAG, DL, GA); 3086 } 3087 3088 SDValue GAHi = 3089 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3090 SDValue GALo = 3091 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3092 3093 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3094 } 3095 3096 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3097 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3098 SDLoc dl(Op); 3099 3100 if (Op.getValueType() == MVT::v2i64) { 3101 // When the operands themselves are v2i64 values, we need to do something 3102 // special because VSX has no underlying comparison operations for these. 3103 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3104 // Equality can be handled by casting to the legal type for Altivec 3105 // comparisons, everything else needs to be expanded. 3106 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3107 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3108 DAG.getSetCC(dl, MVT::v4i32, 3109 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3110 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3111 CC)); 3112 } 3113 3114 return SDValue(); 3115 } 3116 3117 // We handle most of these in the usual way. 3118 return Op; 3119 } 3120 3121 // If we're comparing for equality to zero, expose the fact that this is 3122 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3123 // fold the new nodes. 3124 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3125 return V; 3126 3127 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3128 // Leave comparisons against 0 and -1 alone for now, since they're usually 3129 // optimized. FIXME: revisit this when we can custom lower all setcc 3130 // optimizations. 3131 if (C->isAllOnesValue() || C->isNullValue()) 3132 return SDValue(); 3133 } 3134 3135 // If we have an integer seteq/setne, turn it into a compare against zero 3136 // by xor'ing the rhs with the lhs, which is faster than setting a 3137 // condition register, reading it back out, and masking the correct bit. The 3138 // normal approach here uses sub to do this instead of xor. Using xor exposes 3139 // the result to other bit-twiddling opportunities. 3140 EVT LHSVT = Op.getOperand(0).getValueType(); 3141 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3142 EVT VT = Op.getValueType(); 3143 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3144 Op.getOperand(1)); 3145 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3146 } 3147 return SDValue(); 3148 } 3149 3150 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3151 SDNode *Node = Op.getNode(); 3152 EVT VT = Node->getValueType(0); 3153 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3154 SDValue InChain = Node->getOperand(0); 3155 SDValue VAListPtr = Node->getOperand(1); 3156 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3157 SDLoc dl(Node); 3158 3159 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3160 3161 // gpr_index 3162 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3163 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3164 InChain = GprIndex.getValue(1); 3165 3166 if (VT == MVT::i64) { 3167 // Check if GprIndex is even 3168 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3169 DAG.getConstant(1, dl, MVT::i32)); 3170 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3171 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3172 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3173 DAG.getConstant(1, dl, MVT::i32)); 3174 // Align GprIndex to be even if it isn't 3175 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3176 GprIndex); 3177 } 3178 3179 // fpr index is 1 byte after gpr 3180 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3181 DAG.getConstant(1, dl, MVT::i32)); 3182 3183 // fpr 3184 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3185 FprPtr, MachinePointerInfo(SV), MVT::i8); 3186 InChain = FprIndex.getValue(1); 3187 3188 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3189 DAG.getConstant(8, dl, MVT::i32)); 3190 3191 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3192 DAG.getConstant(4, dl, MVT::i32)); 3193 3194 // areas 3195 SDValue OverflowArea = 3196 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3197 InChain = OverflowArea.getValue(1); 3198 3199 SDValue RegSaveArea = 3200 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3201 InChain = RegSaveArea.getValue(1); 3202 3203 // select overflow_area if index > 8 3204 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3205 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3206 3207 // adjustment constant gpr_index * 4/8 3208 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3209 VT.isInteger() ? GprIndex : FprIndex, 3210 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3211 MVT::i32)); 3212 3213 // OurReg = RegSaveArea + RegConstant 3214 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3215 RegConstant); 3216 3217 // Floating types are 32 bytes into RegSaveArea 3218 if (VT.isFloatingPoint()) 3219 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3220 DAG.getConstant(32, dl, MVT::i32)); 3221 3222 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3223 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3224 VT.isInteger() ? GprIndex : FprIndex, 3225 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3226 MVT::i32)); 3227 3228 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3229 VT.isInteger() ? VAListPtr : FprPtr, 3230 MachinePointerInfo(SV), MVT::i8); 3231 3232 // determine if we should load from reg_save_area or overflow_area 3233 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3234 3235 // increase overflow_area by 4/8 if gpr/fpr > 8 3236 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3237 DAG.getConstant(VT.isInteger() ? 4 : 8, 3238 dl, MVT::i32)); 3239 3240 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3241 OverflowAreaPlusN); 3242 3243 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3244 MachinePointerInfo(), MVT::i32); 3245 3246 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3247 } 3248 3249 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3250 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3251 3252 // We have to copy the entire va_list struct: 3253 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3254 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3255 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3256 false, true, false, MachinePointerInfo(), 3257 MachinePointerInfo()); 3258 } 3259 3260 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3261 SelectionDAG &DAG) const { 3262 if (Subtarget.isAIXABI()) 3263 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3264 3265 return Op.getOperand(0); 3266 } 3267 3268 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3269 SelectionDAG &DAG) const { 3270 if (Subtarget.isAIXABI()) 3271 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3272 3273 SDValue Chain = Op.getOperand(0); 3274 SDValue Trmp = Op.getOperand(1); // trampoline 3275 SDValue FPtr = Op.getOperand(2); // nested function 3276 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3277 SDLoc dl(Op); 3278 3279 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3280 bool isPPC64 = (PtrVT == MVT::i64); 3281 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3282 3283 TargetLowering::ArgListTy Args; 3284 TargetLowering::ArgListEntry Entry; 3285 3286 Entry.Ty = IntPtrTy; 3287 Entry.Node = Trmp; Args.push_back(Entry); 3288 3289 // TrampSize == (isPPC64 ? 48 : 40); 3290 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3291 isPPC64 ? MVT::i64 : MVT::i32); 3292 Args.push_back(Entry); 3293 3294 Entry.Node = FPtr; Args.push_back(Entry); 3295 Entry.Node = Nest; Args.push_back(Entry); 3296 3297 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3298 TargetLowering::CallLoweringInfo CLI(DAG); 3299 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3300 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3301 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3302 3303 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3304 return CallResult.second; 3305 } 3306 3307 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3308 MachineFunction &MF = DAG.getMachineFunction(); 3309 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3310 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3311 3312 SDLoc dl(Op); 3313 3314 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3315 // vastart just stores the address of the VarArgsFrameIndex slot into the 3316 // memory location argument. 3317 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3318 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3319 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3320 MachinePointerInfo(SV)); 3321 } 3322 3323 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3324 // We suppose the given va_list is already allocated. 3325 // 3326 // typedef struct { 3327 // char gpr; /* index into the array of 8 GPRs 3328 // * stored in the register save area 3329 // * gpr=0 corresponds to r3, 3330 // * gpr=1 to r4, etc. 3331 // */ 3332 // char fpr; /* index into the array of 8 FPRs 3333 // * stored in the register save area 3334 // * fpr=0 corresponds to f1, 3335 // * fpr=1 to f2, etc. 3336 // */ 3337 // char *overflow_arg_area; 3338 // /* location on stack that holds 3339 // * the next overflow argument 3340 // */ 3341 // char *reg_save_area; 3342 // /* where r3:r10 and f1:f8 (if saved) 3343 // * are stored 3344 // */ 3345 // } va_list[1]; 3346 3347 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3348 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3349 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3350 PtrVT); 3351 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3352 PtrVT); 3353 3354 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3355 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3356 3357 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3358 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3359 3360 uint64_t FPROffset = 1; 3361 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3362 3363 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3364 3365 // Store first byte : number of int regs 3366 SDValue firstStore = 3367 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3368 MachinePointerInfo(SV), MVT::i8); 3369 uint64_t nextOffset = FPROffset; 3370 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3371 ConstFPROffset); 3372 3373 // Store second byte : number of float regs 3374 SDValue secondStore = 3375 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3376 MachinePointerInfo(SV, nextOffset), MVT::i8); 3377 nextOffset += StackOffset; 3378 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3379 3380 // Store second word : arguments given on stack 3381 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3382 MachinePointerInfo(SV, nextOffset)); 3383 nextOffset += FrameOffset; 3384 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3385 3386 // Store third word : arguments given in registers 3387 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3388 MachinePointerInfo(SV, nextOffset)); 3389 } 3390 3391 /// FPR - The set of FP registers that should be allocated for arguments 3392 /// on Darwin and AIX. 3393 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3394 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3395 PPC::F11, PPC::F12, PPC::F13}; 3396 3397 /// QFPR - The set of QPX registers that should be allocated for arguments. 3398 static const MCPhysReg QFPR[] = { 3399 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3400 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3401 3402 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3403 /// the stack. 3404 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3405 unsigned PtrByteSize) { 3406 unsigned ArgSize = ArgVT.getStoreSize(); 3407 if (Flags.isByVal()) 3408 ArgSize = Flags.getByValSize(); 3409 3410 // Round up to multiples of the pointer size, except for array members, 3411 // which are always packed. 3412 if (!Flags.isInConsecutiveRegs()) 3413 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3414 3415 return ArgSize; 3416 } 3417 3418 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3419 /// on the stack. 3420 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3421 ISD::ArgFlagsTy Flags, 3422 unsigned PtrByteSize) { 3423 Align Alignment(PtrByteSize); 3424 3425 // Altivec parameters are padded to a 16 byte boundary. 3426 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3427 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3428 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3429 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3430 Alignment = Align(16); 3431 // QPX vector types stored in double-precision are padded to a 32 byte 3432 // boundary. 3433 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3434 Alignment = Align(32); 3435 3436 // ByVal parameters are aligned as requested. 3437 if (Flags.isByVal()) { 3438 auto BVAlign = Flags.getNonZeroByValAlign(); 3439 if (BVAlign > PtrByteSize) { 3440 if (BVAlign.value() % PtrByteSize != 0) 3441 llvm_unreachable( 3442 "ByVal alignment is not a multiple of the pointer size"); 3443 3444 Alignment = BVAlign; 3445 } 3446 } 3447 3448 // Array members are always packed to their original alignment. 3449 if (Flags.isInConsecutiveRegs()) { 3450 // If the array member was split into multiple registers, the first 3451 // needs to be aligned to the size of the full type. (Except for 3452 // ppcf128, which is only aligned as its f64 components.) 3453 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3454 Alignment = Align(OrigVT.getStoreSize()); 3455 else 3456 Alignment = Align(ArgVT.getStoreSize()); 3457 } 3458 3459 return Alignment; 3460 } 3461 3462 /// CalculateStackSlotUsed - Return whether this argument will use its 3463 /// stack slot (instead of being passed in registers). ArgOffset, 3464 /// AvailableFPRs, and AvailableVRs must hold the current argument 3465 /// position, and will be updated to account for this argument. 3466 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3467 ISD::ArgFlagsTy Flags, 3468 unsigned PtrByteSize, 3469 unsigned LinkageSize, 3470 unsigned ParamAreaSize, 3471 unsigned &ArgOffset, 3472 unsigned &AvailableFPRs, 3473 unsigned &AvailableVRs, bool HasQPX) { 3474 bool UseMemory = false; 3475 3476 // Respect alignment of argument on the stack. 3477 Align Alignment = 3478 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3479 ArgOffset = alignTo(ArgOffset, Alignment); 3480 // If there's no space left in the argument save area, we must 3481 // use memory (this check also catches zero-sized arguments). 3482 if (ArgOffset >= LinkageSize + ParamAreaSize) 3483 UseMemory = true; 3484 3485 // Allocate argument on the stack. 3486 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3487 if (Flags.isInConsecutiveRegsLast()) 3488 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3489 // If we overran the argument save area, we must use memory 3490 // (this check catches arguments passed partially in memory) 3491 if (ArgOffset > LinkageSize + ParamAreaSize) 3492 UseMemory = true; 3493 3494 // However, if the argument is actually passed in an FPR or a VR, 3495 // we don't use memory after all. 3496 if (!Flags.isByVal()) { 3497 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3498 // QPX registers overlap with the scalar FP registers. 3499 (HasQPX && (ArgVT == MVT::v4f32 || 3500 ArgVT == MVT::v4f64 || 3501 ArgVT == MVT::v4i1))) 3502 if (AvailableFPRs > 0) { 3503 --AvailableFPRs; 3504 return false; 3505 } 3506 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3507 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3508 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3509 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3510 if (AvailableVRs > 0) { 3511 --AvailableVRs; 3512 return false; 3513 } 3514 } 3515 3516 return UseMemory; 3517 } 3518 3519 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3520 /// ensure minimum alignment required for target. 3521 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3522 unsigned NumBytes) { 3523 return alignTo(NumBytes, Lowering->getStackAlign()); 3524 } 3525 3526 SDValue PPCTargetLowering::LowerFormalArguments( 3527 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3528 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3529 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3530 if (Subtarget.isAIXABI()) 3531 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3532 InVals); 3533 if (Subtarget.is64BitELFABI()) 3534 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3535 InVals); 3536 if (Subtarget.is32BitELFABI()) 3537 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3538 InVals); 3539 3540 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3541 InVals); 3542 } 3543 3544 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3545 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3546 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3547 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3548 3549 // 32-bit SVR4 ABI Stack Frame Layout: 3550 // +-----------------------------------+ 3551 // +--> | Back chain | 3552 // | +-----------------------------------+ 3553 // | | Floating-point register save area | 3554 // | +-----------------------------------+ 3555 // | | General register save area | 3556 // | +-----------------------------------+ 3557 // | | CR save word | 3558 // | +-----------------------------------+ 3559 // | | VRSAVE save word | 3560 // | +-----------------------------------+ 3561 // | | Alignment padding | 3562 // | +-----------------------------------+ 3563 // | | Vector register save area | 3564 // | +-----------------------------------+ 3565 // | | Local variable space | 3566 // | +-----------------------------------+ 3567 // | | Parameter list area | 3568 // | +-----------------------------------+ 3569 // | | LR save word | 3570 // | +-----------------------------------+ 3571 // SP--> +--- | Back chain | 3572 // +-----------------------------------+ 3573 // 3574 // Specifications: 3575 // System V Application Binary Interface PowerPC Processor Supplement 3576 // AltiVec Technology Programming Interface Manual 3577 3578 MachineFunction &MF = DAG.getMachineFunction(); 3579 MachineFrameInfo &MFI = MF.getFrameInfo(); 3580 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3581 3582 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3583 // Potential tail calls could cause overwriting of argument stack slots. 3584 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3585 (CallConv == CallingConv::Fast)); 3586 unsigned PtrByteSize = 4; 3587 3588 // Assign locations to all of the incoming arguments. 3589 SmallVector<CCValAssign, 16> ArgLocs; 3590 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3591 *DAG.getContext()); 3592 3593 // Reserve space for the linkage area on the stack. 3594 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3595 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3596 if (useSoftFloat()) 3597 CCInfo.PreAnalyzeFormalArguments(Ins); 3598 3599 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3600 CCInfo.clearWasPPCF128(); 3601 3602 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3603 CCValAssign &VA = ArgLocs[i]; 3604 3605 // Arguments stored in registers. 3606 if (VA.isRegLoc()) { 3607 const TargetRegisterClass *RC; 3608 EVT ValVT = VA.getValVT(); 3609 3610 switch (ValVT.getSimpleVT().SimpleTy) { 3611 default: 3612 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3613 case MVT::i1: 3614 case MVT::i32: 3615 RC = &PPC::GPRCRegClass; 3616 break; 3617 case MVT::f32: 3618 if (Subtarget.hasP8Vector()) 3619 RC = &PPC::VSSRCRegClass; 3620 else if (Subtarget.hasSPE()) 3621 RC = &PPC::GPRCRegClass; 3622 else 3623 RC = &PPC::F4RCRegClass; 3624 break; 3625 case MVT::f64: 3626 if (Subtarget.hasVSX()) 3627 RC = &PPC::VSFRCRegClass; 3628 else if (Subtarget.hasSPE()) 3629 // SPE passes doubles in GPR pairs. 3630 RC = &PPC::GPRCRegClass; 3631 else 3632 RC = &PPC::F8RCRegClass; 3633 break; 3634 case MVT::v16i8: 3635 case MVT::v8i16: 3636 case MVT::v4i32: 3637 RC = &PPC::VRRCRegClass; 3638 break; 3639 case MVT::v4f32: 3640 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3641 break; 3642 case MVT::v2f64: 3643 case MVT::v2i64: 3644 RC = &PPC::VRRCRegClass; 3645 break; 3646 case MVT::v4f64: 3647 RC = &PPC::QFRCRegClass; 3648 break; 3649 case MVT::v4i1: 3650 RC = &PPC::QBRCRegClass; 3651 break; 3652 } 3653 3654 SDValue ArgValue; 3655 // Transform the arguments stored in physical registers into 3656 // virtual ones. 3657 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3658 assert(i + 1 < e && "No second half of double precision argument"); 3659 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3660 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3661 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3662 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3663 if (!Subtarget.isLittleEndian()) 3664 std::swap (ArgValueLo, ArgValueHi); 3665 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3666 ArgValueHi); 3667 } else { 3668 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3669 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3670 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3671 if (ValVT == MVT::i1) 3672 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3673 } 3674 3675 InVals.push_back(ArgValue); 3676 } else { 3677 // Argument stored in memory. 3678 assert(VA.isMemLoc()); 3679 3680 // Get the extended size of the argument type in stack 3681 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3682 // Get the actual size of the argument type 3683 unsigned ObjSize = VA.getValVT().getStoreSize(); 3684 unsigned ArgOffset = VA.getLocMemOffset(); 3685 // Stack objects in PPC32 are right justified. 3686 ArgOffset += ArgSize - ObjSize; 3687 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3688 3689 // Create load nodes to retrieve arguments from the stack. 3690 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3691 InVals.push_back( 3692 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3693 } 3694 } 3695 3696 // Assign locations to all of the incoming aggregate by value arguments. 3697 // Aggregates passed by value are stored in the local variable space of the 3698 // caller's stack frame, right above the parameter list area. 3699 SmallVector<CCValAssign, 16> ByValArgLocs; 3700 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3701 ByValArgLocs, *DAG.getContext()); 3702 3703 // Reserve stack space for the allocations in CCInfo. 3704 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3705 3706 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3707 3708 // Area that is at least reserved in the caller of this function. 3709 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3710 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3711 3712 // Set the size that is at least reserved in caller of this function. Tail 3713 // call optimized function's reserved stack space needs to be aligned so that 3714 // taking the difference between two stack areas will result in an aligned 3715 // stack. 3716 MinReservedArea = 3717 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3718 FuncInfo->setMinReservedArea(MinReservedArea); 3719 3720 SmallVector<SDValue, 8> MemOps; 3721 3722 // If the function takes variable number of arguments, make a frame index for 3723 // the start of the first vararg value... for expansion of llvm.va_start. 3724 if (isVarArg) { 3725 static const MCPhysReg GPArgRegs[] = { 3726 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3727 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3728 }; 3729 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3730 3731 static const MCPhysReg FPArgRegs[] = { 3732 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3733 PPC::F8 3734 }; 3735 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3736 3737 if (useSoftFloat() || hasSPE()) 3738 NumFPArgRegs = 0; 3739 3740 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3741 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3742 3743 // Make room for NumGPArgRegs and NumFPArgRegs. 3744 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3745 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3746 3747 FuncInfo->setVarArgsStackOffset( 3748 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3749 CCInfo.getNextStackOffset(), true)); 3750 3751 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3752 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3753 3754 // The fixed integer arguments of a variadic function are stored to the 3755 // VarArgsFrameIndex on the stack so that they may be loaded by 3756 // dereferencing the result of va_next. 3757 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3758 // Get an existing live-in vreg, or add a new one. 3759 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3760 if (!VReg) 3761 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3762 3763 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3764 SDValue Store = 3765 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3766 MemOps.push_back(Store); 3767 // Increment the address by four for the next argument to store 3768 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3769 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3770 } 3771 3772 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3773 // is set. 3774 // The double arguments are stored to the VarArgsFrameIndex 3775 // on the stack. 3776 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3777 // Get an existing live-in vreg, or add a new one. 3778 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3779 if (!VReg) 3780 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3781 3782 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3783 SDValue Store = 3784 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3785 MemOps.push_back(Store); 3786 // Increment the address by eight for the next argument to store 3787 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3788 PtrVT); 3789 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3790 } 3791 } 3792 3793 if (!MemOps.empty()) 3794 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3795 3796 return Chain; 3797 } 3798 3799 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3800 // value to MVT::i64 and then truncate to the correct register size. 3801 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3802 EVT ObjectVT, SelectionDAG &DAG, 3803 SDValue ArgVal, 3804 const SDLoc &dl) const { 3805 if (Flags.isSExt()) 3806 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3807 DAG.getValueType(ObjectVT)); 3808 else if (Flags.isZExt()) 3809 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3810 DAG.getValueType(ObjectVT)); 3811 3812 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3813 } 3814 3815 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3816 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3817 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3818 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3819 // TODO: add description of PPC stack frame format, or at least some docs. 3820 // 3821 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3822 bool isLittleEndian = Subtarget.isLittleEndian(); 3823 MachineFunction &MF = DAG.getMachineFunction(); 3824 MachineFrameInfo &MFI = MF.getFrameInfo(); 3825 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3826 3827 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3828 "fastcc not supported on varargs functions"); 3829 3830 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3831 // Potential tail calls could cause overwriting of argument stack slots. 3832 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3833 (CallConv == CallingConv::Fast)); 3834 unsigned PtrByteSize = 8; 3835 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3836 3837 static const MCPhysReg GPR[] = { 3838 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3839 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3840 }; 3841 static const MCPhysReg VR[] = { 3842 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3843 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3844 }; 3845 3846 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3847 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3848 const unsigned Num_VR_Regs = array_lengthof(VR); 3849 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3850 3851 // Do a first pass over the arguments to determine whether the ABI 3852 // guarantees that our caller has allocated the parameter save area 3853 // on its stack frame. In the ELFv1 ABI, this is always the case; 3854 // in the ELFv2 ABI, it is true if this is a vararg function or if 3855 // any parameter is located in a stack slot. 3856 3857 bool HasParameterArea = !isELFv2ABI || isVarArg; 3858 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3859 unsigned NumBytes = LinkageSize; 3860 unsigned AvailableFPRs = Num_FPR_Regs; 3861 unsigned AvailableVRs = Num_VR_Regs; 3862 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3863 if (Ins[i].Flags.isNest()) 3864 continue; 3865 3866 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3867 PtrByteSize, LinkageSize, ParamAreaSize, 3868 NumBytes, AvailableFPRs, AvailableVRs, 3869 Subtarget.hasQPX())) 3870 HasParameterArea = true; 3871 } 3872 3873 // Add DAG nodes to load the arguments or copy them out of registers. On 3874 // entry to a function on PPC, the arguments start after the linkage area, 3875 // although the first ones are often in registers. 3876 3877 unsigned ArgOffset = LinkageSize; 3878 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3879 unsigned &QFPR_idx = FPR_idx; 3880 SmallVector<SDValue, 8> MemOps; 3881 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3882 unsigned CurArgIdx = 0; 3883 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3884 SDValue ArgVal; 3885 bool needsLoad = false; 3886 EVT ObjectVT = Ins[ArgNo].VT; 3887 EVT OrigVT = Ins[ArgNo].ArgVT; 3888 unsigned ObjSize = ObjectVT.getStoreSize(); 3889 unsigned ArgSize = ObjSize; 3890 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3891 if (Ins[ArgNo].isOrigArg()) { 3892 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3893 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3894 } 3895 // We re-align the argument offset for each argument, except when using the 3896 // fast calling convention, when we need to make sure we do that only when 3897 // we'll actually use a stack slot. 3898 unsigned CurArgOffset; 3899 Align Alignment; 3900 auto ComputeArgOffset = [&]() { 3901 /* Respect alignment of argument on the stack. */ 3902 Alignment = 3903 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3904 ArgOffset = alignTo(ArgOffset, Alignment); 3905 CurArgOffset = ArgOffset; 3906 }; 3907 3908 if (CallConv != CallingConv::Fast) { 3909 ComputeArgOffset(); 3910 3911 /* Compute GPR index associated with argument offset. */ 3912 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3913 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3914 } 3915 3916 // FIXME the codegen can be much improved in some cases. 3917 // We do not have to keep everything in memory. 3918 if (Flags.isByVal()) { 3919 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3920 3921 if (CallConv == CallingConv::Fast) 3922 ComputeArgOffset(); 3923 3924 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3925 ObjSize = Flags.getByValSize(); 3926 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3927 // Empty aggregate parameters do not take up registers. Examples: 3928 // struct { } a; 3929 // union { } b; 3930 // int c[0]; 3931 // etc. However, we have to provide a place-holder in InVals, so 3932 // pretend we have an 8-byte item at the current address for that 3933 // purpose. 3934 if (!ObjSize) { 3935 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3936 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3937 InVals.push_back(FIN); 3938 continue; 3939 } 3940 3941 // Create a stack object covering all stack doublewords occupied 3942 // by the argument. If the argument is (fully or partially) on 3943 // the stack, or if the argument is fully in registers but the 3944 // caller has allocated the parameter save anyway, we can refer 3945 // directly to the caller's stack frame. Otherwise, create a 3946 // local copy in our own frame. 3947 int FI; 3948 if (HasParameterArea || 3949 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3950 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3951 else 3952 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3953 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3954 3955 // Handle aggregates smaller than 8 bytes. 3956 if (ObjSize < PtrByteSize) { 3957 // The value of the object is its address, which differs from the 3958 // address of the enclosing doubleword on big-endian systems. 3959 SDValue Arg = FIN; 3960 if (!isLittleEndian) { 3961 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3962 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3963 } 3964 InVals.push_back(Arg); 3965 3966 if (GPR_idx != Num_GPR_Regs) { 3967 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3968 FuncInfo->addLiveInAttr(VReg, Flags); 3969 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3970 SDValue Store; 3971 3972 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3973 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3974 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3975 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3976 MachinePointerInfo(&*FuncArg), ObjType); 3977 } else { 3978 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3979 // store the whole register as-is to the parameter save area 3980 // slot. 3981 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3982 MachinePointerInfo(&*FuncArg)); 3983 } 3984 3985 MemOps.push_back(Store); 3986 } 3987 // Whether we copied from a register or not, advance the offset 3988 // into the parameter save area by a full doubleword. 3989 ArgOffset += PtrByteSize; 3990 continue; 3991 } 3992 3993 // The value of the object is its address, which is the address of 3994 // its first stack doubleword. 3995 InVals.push_back(FIN); 3996 3997 // Store whatever pieces of the object are in registers to memory. 3998 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3999 if (GPR_idx == Num_GPR_Regs) 4000 break; 4001 4002 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4003 FuncInfo->addLiveInAttr(VReg, Flags); 4004 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4005 SDValue Addr = FIN; 4006 if (j) { 4007 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4008 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4009 } 4010 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4011 MachinePointerInfo(&*FuncArg, j)); 4012 MemOps.push_back(Store); 4013 ++GPR_idx; 4014 } 4015 ArgOffset += ArgSize; 4016 continue; 4017 } 4018 4019 switch (ObjectVT.getSimpleVT().SimpleTy) { 4020 default: llvm_unreachable("Unhandled argument type!"); 4021 case MVT::i1: 4022 case MVT::i32: 4023 case MVT::i64: 4024 if (Flags.isNest()) { 4025 // The 'nest' parameter, if any, is passed in R11. 4026 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4027 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4028 4029 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4030 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4031 4032 break; 4033 } 4034 4035 // These can be scalar arguments or elements of an integer array type 4036 // passed directly. Clang may use those instead of "byval" aggregate 4037 // types to avoid forcing arguments to memory unnecessarily. 4038 if (GPR_idx != Num_GPR_Regs) { 4039 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4040 FuncInfo->addLiveInAttr(VReg, Flags); 4041 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4042 4043 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4044 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4045 // value to MVT::i64 and then truncate to the correct register size. 4046 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4047 } else { 4048 if (CallConv == CallingConv::Fast) 4049 ComputeArgOffset(); 4050 4051 needsLoad = true; 4052 ArgSize = PtrByteSize; 4053 } 4054 if (CallConv != CallingConv::Fast || needsLoad) 4055 ArgOffset += 8; 4056 break; 4057 4058 case MVT::f32: 4059 case MVT::f64: 4060 // These can be scalar arguments or elements of a float array type 4061 // passed directly. The latter are used to implement ELFv2 homogenous 4062 // float aggregates. 4063 if (FPR_idx != Num_FPR_Regs) { 4064 unsigned VReg; 4065 4066 if (ObjectVT == MVT::f32) 4067 VReg = MF.addLiveIn(FPR[FPR_idx], 4068 Subtarget.hasP8Vector() 4069 ? &PPC::VSSRCRegClass 4070 : &PPC::F4RCRegClass); 4071 else 4072 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4073 ? &PPC::VSFRCRegClass 4074 : &PPC::F8RCRegClass); 4075 4076 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4077 ++FPR_idx; 4078 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4079 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4080 // once we support fp <-> gpr moves. 4081 4082 // This can only ever happen in the presence of f32 array types, 4083 // since otherwise we never run out of FPRs before running out 4084 // of GPRs. 4085 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4086 FuncInfo->addLiveInAttr(VReg, Flags); 4087 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4088 4089 if (ObjectVT == MVT::f32) { 4090 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4091 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4092 DAG.getConstant(32, dl, MVT::i32)); 4093 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4094 } 4095 4096 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4097 } else { 4098 if (CallConv == CallingConv::Fast) 4099 ComputeArgOffset(); 4100 4101 needsLoad = true; 4102 } 4103 4104 // When passing an array of floats, the array occupies consecutive 4105 // space in the argument area; only round up to the next doubleword 4106 // at the end of the array. Otherwise, each float takes 8 bytes. 4107 if (CallConv != CallingConv::Fast || needsLoad) { 4108 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4109 ArgOffset += ArgSize; 4110 if (Flags.isInConsecutiveRegsLast()) 4111 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4112 } 4113 break; 4114 case MVT::v4f32: 4115 case MVT::v4i32: 4116 case MVT::v8i16: 4117 case MVT::v16i8: 4118 case MVT::v2f64: 4119 case MVT::v2i64: 4120 case MVT::v1i128: 4121 case MVT::f128: 4122 if (!Subtarget.hasQPX()) { 4123 // These can be scalar arguments or elements of a vector array type 4124 // passed directly. The latter are used to implement ELFv2 homogenous 4125 // vector aggregates. 4126 if (VR_idx != Num_VR_Regs) { 4127 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4128 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4129 ++VR_idx; 4130 } else { 4131 if (CallConv == CallingConv::Fast) 4132 ComputeArgOffset(); 4133 needsLoad = true; 4134 } 4135 if (CallConv != CallingConv::Fast || needsLoad) 4136 ArgOffset += 16; 4137 break; 4138 } // not QPX 4139 4140 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4141 "Invalid QPX parameter type"); 4142 LLVM_FALLTHROUGH; 4143 4144 case MVT::v4f64: 4145 case MVT::v4i1: 4146 // QPX vectors are treated like their scalar floating-point subregisters 4147 // (except that they're larger). 4148 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4149 if (QFPR_idx != Num_QFPR_Regs) { 4150 const TargetRegisterClass *RC; 4151 switch (ObjectVT.getSimpleVT().SimpleTy) { 4152 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4153 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4154 default: RC = &PPC::QBRCRegClass; break; 4155 } 4156 4157 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4158 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4159 ++QFPR_idx; 4160 } else { 4161 if (CallConv == CallingConv::Fast) 4162 ComputeArgOffset(); 4163 needsLoad = true; 4164 } 4165 if (CallConv != CallingConv::Fast || needsLoad) 4166 ArgOffset += Sz; 4167 break; 4168 } 4169 4170 // We need to load the argument to a virtual register if we determined 4171 // above that we ran out of physical registers of the appropriate type. 4172 if (needsLoad) { 4173 if (ObjSize < ArgSize && !isLittleEndian) 4174 CurArgOffset += ArgSize - ObjSize; 4175 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4176 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4177 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4178 } 4179 4180 InVals.push_back(ArgVal); 4181 } 4182 4183 // Area that is at least reserved in the caller of this function. 4184 unsigned MinReservedArea; 4185 if (HasParameterArea) 4186 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4187 else 4188 MinReservedArea = LinkageSize; 4189 4190 // Set the size that is at least reserved in caller of this function. Tail 4191 // call optimized functions' reserved stack space needs to be aligned so that 4192 // taking the difference between two stack areas will result in an aligned 4193 // stack. 4194 MinReservedArea = 4195 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4196 FuncInfo->setMinReservedArea(MinReservedArea); 4197 4198 // If the function takes variable number of arguments, make a frame index for 4199 // the start of the first vararg value... for expansion of llvm.va_start. 4200 if (isVarArg) { 4201 int Depth = ArgOffset; 4202 4203 FuncInfo->setVarArgsFrameIndex( 4204 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4205 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4206 4207 // If this function is vararg, store any remaining integer argument regs 4208 // to their spots on the stack so that they may be loaded by dereferencing 4209 // the result of va_next. 4210 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4211 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4212 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4213 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4214 SDValue Store = 4215 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4216 MemOps.push_back(Store); 4217 // Increment the address by four for the next argument to store 4218 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4219 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4220 } 4221 } 4222 4223 if (!MemOps.empty()) 4224 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4225 4226 return Chain; 4227 } 4228 4229 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4230 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4231 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4232 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4233 // TODO: add description of PPC stack frame format, or at least some docs. 4234 // 4235 MachineFunction &MF = DAG.getMachineFunction(); 4236 MachineFrameInfo &MFI = MF.getFrameInfo(); 4237 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4238 4239 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4240 bool isPPC64 = PtrVT == MVT::i64; 4241 // Potential tail calls could cause overwriting of argument stack slots. 4242 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4243 (CallConv == CallingConv::Fast)); 4244 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4245 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4246 unsigned ArgOffset = LinkageSize; 4247 // Area that is at least reserved in caller of this function. 4248 unsigned MinReservedArea = ArgOffset; 4249 4250 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4251 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4252 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4253 }; 4254 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4255 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4256 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4257 }; 4258 static const MCPhysReg VR[] = { 4259 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4260 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4261 }; 4262 4263 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4264 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4265 const unsigned Num_VR_Regs = array_lengthof( VR); 4266 4267 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4268 4269 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4270 4271 // In 32-bit non-varargs functions, the stack space for vectors is after the 4272 // stack space for non-vectors. We do not use this space unless we have 4273 // too many vectors to fit in registers, something that only occurs in 4274 // constructed examples:), but we have to walk the arglist to figure 4275 // that out...for the pathological case, compute VecArgOffset as the 4276 // start of the vector parameter area. Computing VecArgOffset is the 4277 // entire point of the following loop. 4278 unsigned VecArgOffset = ArgOffset; 4279 if (!isVarArg && !isPPC64) { 4280 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4281 ++ArgNo) { 4282 EVT ObjectVT = Ins[ArgNo].VT; 4283 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4284 4285 if (Flags.isByVal()) { 4286 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4287 unsigned ObjSize = Flags.getByValSize(); 4288 unsigned ArgSize = 4289 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4290 VecArgOffset += ArgSize; 4291 continue; 4292 } 4293 4294 switch(ObjectVT.getSimpleVT().SimpleTy) { 4295 default: llvm_unreachable("Unhandled argument type!"); 4296 case MVT::i1: 4297 case MVT::i32: 4298 case MVT::f32: 4299 VecArgOffset += 4; 4300 break; 4301 case MVT::i64: // PPC64 4302 case MVT::f64: 4303 // FIXME: We are guaranteed to be !isPPC64 at this point. 4304 // Does MVT::i64 apply? 4305 VecArgOffset += 8; 4306 break; 4307 case MVT::v4f32: 4308 case MVT::v4i32: 4309 case MVT::v8i16: 4310 case MVT::v16i8: 4311 // Nothing to do, we're only looking at Nonvector args here. 4312 break; 4313 } 4314 } 4315 } 4316 // We've found where the vector parameter area in memory is. Skip the 4317 // first 12 parameters; these don't use that memory. 4318 VecArgOffset = ((VecArgOffset+15)/16)*16; 4319 VecArgOffset += 12*16; 4320 4321 // Add DAG nodes to load the arguments or copy them out of registers. On 4322 // entry to a function on PPC, the arguments start after the linkage area, 4323 // although the first ones are often in registers. 4324 4325 SmallVector<SDValue, 8> MemOps; 4326 unsigned nAltivecParamsAtEnd = 0; 4327 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4328 unsigned CurArgIdx = 0; 4329 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4330 SDValue ArgVal; 4331 bool needsLoad = false; 4332 EVT ObjectVT = Ins[ArgNo].VT; 4333 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4334 unsigned ArgSize = ObjSize; 4335 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4336 if (Ins[ArgNo].isOrigArg()) { 4337 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4338 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4339 } 4340 unsigned CurArgOffset = ArgOffset; 4341 4342 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4343 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4344 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4345 if (isVarArg || isPPC64) { 4346 MinReservedArea = ((MinReservedArea+15)/16)*16; 4347 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4348 Flags, 4349 PtrByteSize); 4350 } else nAltivecParamsAtEnd++; 4351 } else 4352 // Calculate min reserved area. 4353 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4354 Flags, 4355 PtrByteSize); 4356 4357 // FIXME the codegen can be much improved in some cases. 4358 // We do not have to keep everything in memory. 4359 if (Flags.isByVal()) { 4360 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4361 4362 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4363 ObjSize = Flags.getByValSize(); 4364 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4365 // Objects of size 1 and 2 are right justified, everything else is 4366 // left justified. This means the memory address is adjusted forwards. 4367 if (ObjSize==1 || ObjSize==2) { 4368 CurArgOffset = CurArgOffset + (4 - ObjSize); 4369 } 4370 // The value of the object is its address. 4371 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4372 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4373 InVals.push_back(FIN); 4374 if (ObjSize==1 || ObjSize==2) { 4375 if (GPR_idx != Num_GPR_Regs) { 4376 unsigned VReg; 4377 if (isPPC64) 4378 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4379 else 4380 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4381 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4382 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4383 SDValue Store = 4384 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4385 MachinePointerInfo(&*FuncArg), ObjType); 4386 MemOps.push_back(Store); 4387 ++GPR_idx; 4388 } 4389 4390 ArgOffset += PtrByteSize; 4391 4392 continue; 4393 } 4394 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4395 // Store whatever pieces of the object are in registers 4396 // to memory. ArgOffset will be the address of the beginning 4397 // of the object. 4398 if (GPR_idx != Num_GPR_Regs) { 4399 unsigned VReg; 4400 if (isPPC64) 4401 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4402 else 4403 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4404 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4405 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4406 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4407 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4408 MachinePointerInfo(&*FuncArg, j)); 4409 MemOps.push_back(Store); 4410 ++GPR_idx; 4411 ArgOffset += PtrByteSize; 4412 } else { 4413 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4414 break; 4415 } 4416 } 4417 continue; 4418 } 4419 4420 switch (ObjectVT.getSimpleVT().SimpleTy) { 4421 default: llvm_unreachable("Unhandled argument type!"); 4422 case MVT::i1: 4423 case MVT::i32: 4424 if (!isPPC64) { 4425 if (GPR_idx != Num_GPR_Regs) { 4426 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4427 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4428 4429 if (ObjectVT == MVT::i1) 4430 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4431 4432 ++GPR_idx; 4433 } else { 4434 needsLoad = true; 4435 ArgSize = PtrByteSize; 4436 } 4437 // All int arguments reserve stack space in the Darwin ABI. 4438 ArgOffset += PtrByteSize; 4439 break; 4440 } 4441 LLVM_FALLTHROUGH; 4442 case MVT::i64: // PPC64 4443 if (GPR_idx != Num_GPR_Regs) { 4444 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4445 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4446 4447 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4448 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4449 // value to MVT::i64 and then truncate to the correct register size. 4450 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4451 4452 ++GPR_idx; 4453 } else { 4454 needsLoad = true; 4455 ArgSize = PtrByteSize; 4456 } 4457 // All int arguments reserve stack space in the Darwin ABI. 4458 ArgOffset += 8; 4459 break; 4460 4461 case MVT::f32: 4462 case MVT::f64: 4463 // Every 4 bytes of argument space consumes one of the GPRs available for 4464 // argument passing. 4465 if (GPR_idx != Num_GPR_Regs) { 4466 ++GPR_idx; 4467 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4468 ++GPR_idx; 4469 } 4470 if (FPR_idx != Num_FPR_Regs) { 4471 unsigned VReg; 4472 4473 if (ObjectVT == MVT::f32) 4474 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4475 else 4476 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4477 4478 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4479 ++FPR_idx; 4480 } else { 4481 needsLoad = true; 4482 } 4483 4484 // All FP arguments reserve stack space in the Darwin ABI. 4485 ArgOffset += isPPC64 ? 8 : ObjSize; 4486 break; 4487 case MVT::v4f32: 4488 case MVT::v4i32: 4489 case MVT::v8i16: 4490 case MVT::v16i8: 4491 // Note that vector arguments in registers don't reserve stack space, 4492 // except in varargs functions. 4493 if (VR_idx != Num_VR_Regs) { 4494 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4495 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4496 if (isVarArg) { 4497 while ((ArgOffset % 16) != 0) { 4498 ArgOffset += PtrByteSize; 4499 if (GPR_idx != Num_GPR_Regs) 4500 GPR_idx++; 4501 } 4502 ArgOffset += 16; 4503 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4504 } 4505 ++VR_idx; 4506 } else { 4507 if (!isVarArg && !isPPC64) { 4508 // Vectors go after all the nonvectors. 4509 CurArgOffset = VecArgOffset; 4510 VecArgOffset += 16; 4511 } else { 4512 // Vectors are aligned. 4513 ArgOffset = ((ArgOffset+15)/16)*16; 4514 CurArgOffset = ArgOffset; 4515 ArgOffset += 16; 4516 } 4517 needsLoad = true; 4518 } 4519 break; 4520 } 4521 4522 // We need to load the argument to a virtual register if we determined above 4523 // that we ran out of physical registers of the appropriate type. 4524 if (needsLoad) { 4525 int FI = MFI.CreateFixedObject(ObjSize, 4526 CurArgOffset + (ArgSize - ObjSize), 4527 isImmutable); 4528 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4529 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4530 } 4531 4532 InVals.push_back(ArgVal); 4533 } 4534 4535 // Allow for Altivec parameters at the end, if needed. 4536 if (nAltivecParamsAtEnd) { 4537 MinReservedArea = ((MinReservedArea+15)/16)*16; 4538 MinReservedArea += 16*nAltivecParamsAtEnd; 4539 } 4540 4541 // Area that is at least reserved in the caller of this function. 4542 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4543 4544 // Set the size that is at least reserved in caller of this function. Tail 4545 // call optimized functions' reserved stack space needs to be aligned so that 4546 // taking the difference between two stack areas will result in an aligned 4547 // stack. 4548 MinReservedArea = 4549 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4550 FuncInfo->setMinReservedArea(MinReservedArea); 4551 4552 // If the function takes variable number of arguments, make a frame index for 4553 // the start of the first vararg value... for expansion of llvm.va_start. 4554 if (isVarArg) { 4555 int Depth = ArgOffset; 4556 4557 FuncInfo->setVarArgsFrameIndex( 4558 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4559 Depth, true)); 4560 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4561 4562 // If this function is vararg, store any remaining integer argument regs 4563 // to their spots on the stack so that they may be loaded by dereferencing 4564 // the result of va_next. 4565 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4566 unsigned VReg; 4567 4568 if (isPPC64) 4569 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4570 else 4571 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4572 4573 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4574 SDValue Store = 4575 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4576 MemOps.push_back(Store); 4577 // Increment the address by four for the next argument to store 4578 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4579 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4580 } 4581 } 4582 4583 if (!MemOps.empty()) 4584 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4585 4586 return Chain; 4587 } 4588 4589 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4590 /// adjusted to accommodate the arguments for the tailcall. 4591 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4592 unsigned ParamSize) { 4593 4594 if (!isTailCall) return 0; 4595 4596 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4597 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4598 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4599 // Remember only if the new adjustment is bigger. 4600 if (SPDiff < FI->getTailCallSPDelta()) 4601 FI->setTailCallSPDelta(SPDiff); 4602 4603 return SPDiff; 4604 } 4605 4606 static bool isFunctionGlobalAddress(SDValue Callee); 4607 4608 static bool 4609 callsShareTOCBase(const Function *Caller, SDValue Callee, 4610 const TargetMachine &TM) { 4611 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4612 // don't have enough information to determine if the caller and calle share 4613 // the same TOC base, so we have to pessimistically assume they don't for 4614 // correctness. 4615 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4616 if (!G) 4617 return false; 4618 4619 const GlobalValue *GV = G->getGlobal(); 4620 // The medium and large code models are expected to provide a sufficiently 4621 // large TOC to provide all data addressing needs of a module with a 4622 // single TOC. Since each module will be addressed with a single TOC then we 4623 // only need to check that caller and callee don't cross dso boundaries. 4624 if (CodeModel::Medium == TM.getCodeModel() || 4625 CodeModel::Large == TM.getCodeModel()) 4626 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4627 4628 // Otherwise we need to ensure callee and caller are in the same section, 4629 // since the linker may allocate multiple TOCs, and we don't know which 4630 // sections will belong to the same TOC base. 4631 4632 if (!GV->isStrongDefinitionForLinker()) 4633 return false; 4634 4635 // Any explicitly-specified sections and section prefixes must also match. 4636 // Also, if we're using -ffunction-sections, then each function is always in 4637 // a different section (the same is true for COMDAT functions). 4638 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4639 GV->getSection() != Caller->getSection()) 4640 return false; 4641 if (const auto *F = dyn_cast<Function>(GV)) { 4642 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4643 return false; 4644 } 4645 4646 // If the callee might be interposed, then we can't assume the ultimate call 4647 // target will be in the same section. Even in cases where we can assume that 4648 // interposition won't happen, in any case where the linker might insert a 4649 // stub to allow for interposition, we must generate code as though 4650 // interposition might occur. To understand why this matters, consider a 4651 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4652 // in the same section, but a is in a different module (i.e. has a different 4653 // TOC base pointer). If the linker allows for interposition between b and c, 4654 // then it will generate a stub for the call edge between b and c which will 4655 // save the TOC pointer into the designated stack slot allocated by b. If we 4656 // return true here, and therefore allow a tail call between b and c, that 4657 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4658 // pointer into the stack slot allocated by a (where the a -> b stub saved 4659 // a's TOC base pointer). If we're not considering a tail call, but rather, 4660 // whether a nop is needed after the call instruction in b, because the linker 4661 // will insert a stub, it might complain about a missing nop if we omit it 4662 // (although many don't complain in this case). 4663 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4664 return false; 4665 4666 return true; 4667 } 4668 4669 static bool 4670 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4671 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4672 assert(Subtarget.is64BitELFABI()); 4673 4674 const unsigned PtrByteSize = 8; 4675 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4676 4677 static const MCPhysReg GPR[] = { 4678 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4679 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4680 }; 4681 static const MCPhysReg VR[] = { 4682 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4683 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4684 }; 4685 4686 const unsigned NumGPRs = array_lengthof(GPR); 4687 const unsigned NumFPRs = 13; 4688 const unsigned NumVRs = array_lengthof(VR); 4689 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4690 4691 unsigned NumBytes = LinkageSize; 4692 unsigned AvailableFPRs = NumFPRs; 4693 unsigned AvailableVRs = NumVRs; 4694 4695 for (const ISD::OutputArg& Param : Outs) { 4696 if (Param.Flags.isNest()) continue; 4697 4698 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4699 PtrByteSize, LinkageSize, ParamAreaSize, 4700 NumBytes, AvailableFPRs, AvailableVRs, 4701 Subtarget.hasQPX())) 4702 return true; 4703 } 4704 return false; 4705 } 4706 4707 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4708 if (CB.arg_size() != CallerFn->arg_size()) 4709 return false; 4710 4711 auto CalleeArgIter = CB.arg_begin(); 4712 auto CalleeArgEnd = CB.arg_end(); 4713 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4714 4715 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4716 const Value* CalleeArg = *CalleeArgIter; 4717 const Value* CallerArg = &(*CallerArgIter); 4718 if (CalleeArg == CallerArg) 4719 continue; 4720 4721 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4722 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4723 // } 4724 // 1st argument of callee is undef and has the same type as caller. 4725 if (CalleeArg->getType() == CallerArg->getType() && 4726 isa<UndefValue>(CalleeArg)) 4727 continue; 4728 4729 return false; 4730 } 4731 4732 return true; 4733 } 4734 4735 // Returns true if TCO is possible between the callers and callees 4736 // calling conventions. 4737 static bool 4738 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4739 CallingConv::ID CalleeCC) { 4740 // Tail calls are possible with fastcc and ccc. 4741 auto isTailCallableCC = [] (CallingConv::ID CC){ 4742 return CC == CallingConv::C || CC == CallingConv::Fast; 4743 }; 4744 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4745 return false; 4746 4747 // We can safely tail call both fastcc and ccc callees from a c calling 4748 // convention caller. If the caller is fastcc, we may have less stack space 4749 // than a non-fastcc caller with the same signature so disable tail-calls in 4750 // that case. 4751 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4752 } 4753 4754 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4755 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4756 const SmallVectorImpl<ISD::OutputArg> &Outs, 4757 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4758 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4759 4760 // FIXME: Tail calls are currently disabled when using PC Relative addressing. 4761 // The issue is that PC Relative is only partially implemented and so there 4762 // is currently a mix of functions that require the TOC and functions that do 4763 // not require it. If we have A calls B calls C and both A and B require the 4764 // TOC and C does not and is marked as clobbering R2 then it is not safe for 4765 // B to tail call C. Since we do not have the information of whether or not 4766 // a funciton needs to use the TOC here in this function we need to be 4767 // conservatively safe and disable all tail calls for now. 4768 if (Subtarget.isUsingPCRelativeCalls()) return false; 4769 4770 if (DisableSCO && !TailCallOpt) return false; 4771 4772 // Variadic argument functions are not supported. 4773 if (isVarArg) return false; 4774 4775 auto &Caller = DAG.getMachineFunction().getFunction(); 4776 // Check that the calling conventions are compatible for tco. 4777 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4778 return false; 4779 4780 // Caller contains any byval parameter is not supported. 4781 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4782 return false; 4783 4784 // Callee contains any byval parameter is not supported, too. 4785 // Note: This is a quick work around, because in some cases, e.g. 4786 // caller's stack size > callee's stack size, we are still able to apply 4787 // sibling call optimization. For example, gcc is able to do SCO for caller1 4788 // in the following example, but not for caller2. 4789 // struct test { 4790 // long int a; 4791 // char ary[56]; 4792 // } gTest; 4793 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4794 // b->a = v.a; 4795 // return 0; 4796 // } 4797 // void caller1(struct test a, struct test c, struct test *b) { 4798 // callee(gTest, b); } 4799 // void caller2(struct test *b) { callee(gTest, b); } 4800 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4801 return false; 4802 4803 // If callee and caller use different calling conventions, we cannot pass 4804 // parameters on stack since offsets for the parameter area may be different. 4805 if (Caller.getCallingConv() != CalleeCC && 4806 needStackSlotPassParameters(Subtarget, Outs)) 4807 return false; 4808 4809 // No TCO/SCO on indirect call because Caller have to restore its TOC 4810 if (!isFunctionGlobalAddress(Callee) && 4811 !isa<ExternalSymbolSDNode>(Callee)) 4812 return false; 4813 4814 // If the caller and callee potentially have different TOC bases then we 4815 // cannot tail call since we need to restore the TOC pointer after the call. 4816 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4817 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4818 return false; 4819 4820 // TCO allows altering callee ABI, so we don't have to check further. 4821 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4822 return true; 4823 4824 if (DisableSCO) return false; 4825 4826 // If callee use the same argument list that caller is using, then we can 4827 // apply SCO on this case. If it is not, then we need to check if callee needs 4828 // stack for passing arguments. 4829 assert(CB && "Expected to have a CallBase!"); 4830 if (!hasSameArgumentList(&Caller, *CB) && 4831 needStackSlotPassParameters(Subtarget, Outs)) { 4832 return false; 4833 } 4834 4835 return true; 4836 } 4837 4838 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4839 /// for tail call optimization. Targets which want to do tail call 4840 /// optimization should implement this function. 4841 bool 4842 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4843 CallingConv::ID CalleeCC, 4844 bool isVarArg, 4845 const SmallVectorImpl<ISD::InputArg> &Ins, 4846 SelectionDAG& DAG) const { 4847 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4848 return false; 4849 4850 // Variable argument functions are not supported. 4851 if (isVarArg) 4852 return false; 4853 4854 MachineFunction &MF = DAG.getMachineFunction(); 4855 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4856 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4857 // Functions containing by val parameters are not supported. 4858 for (unsigned i = 0; i != Ins.size(); i++) { 4859 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4860 if (Flags.isByVal()) return false; 4861 } 4862 4863 // Non-PIC/GOT tail calls are supported. 4864 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4865 return true; 4866 4867 // At the moment we can only do local tail calls (in same module, hidden 4868 // or protected) if we are generating PIC. 4869 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4870 return G->getGlobal()->hasHiddenVisibility() 4871 || G->getGlobal()->hasProtectedVisibility(); 4872 } 4873 4874 return false; 4875 } 4876 4877 /// isCallCompatibleAddress - Return the immediate to use if the specified 4878 /// 32-bit value is representable in the immediate field of a BxA instruction. 4879 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4880 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4881 if (!C) return nullptr; 4882 4883 int Addr = C->getZExtValue(); 4884 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4885 SignExtend32<26>(Addr) != Addr) 4886 return nullptr; // Top 6 bits have to be sext of immediate. 4887 4888 return DAG 4889 .getConstant( 4890 (int)C->getZExtValue() >> 2, SDLoc(Op), 4891 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4892 .getNode(); 4893 } 4894 4895 namespace { 4896 4897 struct TailCallArgumentInfo { 4898 SDValue Arg; 4899 SDValue FrameIdxOp; 4900 int FrameIdx = 0; 4901 4902 TailCallArgumentInfo() = default; 4903 }; 4904 4905 } // end anonymous namespace 4906 4907 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4908 static void StoreTailCallArgumentsToStackSlot( 4909 SelectionDAG &DAG, SDValue Chain, 4910 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4911 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4912 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4913 SDValue Arg = TailCallArgs[i].Arg; 4914 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4915 int FI = TailCallArgs[i].FrameIdx; 4916 // Store relative to framepointer. 4917 MemOpChains.push_back(DAG.getStore( 4918 Chain, dl, Arg, FIN, 4919 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4920 } 4921 } 4922 4923 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4924 /// the appropriate stack slot for the tail call optimized function call. 4925 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4926 SDValue OldRetAddr, SDValue OldFP, 4927 int SPDiff, const SDLoc &dl) { 4928 if (SPDiff) { 4929 // Calculate the new stack slot for the return address. 4930 MachineFunction &MF = DAG.getMachineFunction(); 4931 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4932 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4933 bool isPPC64 = Subtarget.isPPC64(); 4934 int SlotSize = isPPC64 ? 8 : 4; 4935 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4936 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4937 NewRetAddrLoc, true); 4938 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4939 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4940 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4941 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4942 } 4943 return Chain; 4944 } 4945 4946 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4947 /// the position of the argument. 4948 static void 4949 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4950 SDValue Arg, int SPDiff, unsigned ArgOffset, 4951 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4952 int Offset = ArgOffset + SPDiff; 4953 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4954 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4955 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4956 SDValue FIN = DAG.getFrameIndex(FI, VT); 4957 TailCallArgumentInfo Info; 4958 Info.Arg = Arg; 4959 Info.FrameIdxOp = FIN; 4960 Info.FrameIdx = FI; 4961 TailCallArguments.push_back(Info); 4962 } 4963 4964 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4965 /// stack slot. Returns the chain as result and the loaded frame pointers in 4966 /// LROpOut/FPOpout. Used when tail calling. 4967 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4968 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4969 SDValue &FPOpOut, const SDLoc &dl) const { 4970 if (SPDiff) { 4971 // Load the LR and FP stack slot for later adjusting. 4972 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4973 LROpOut = getReturnAddrFrameIndex(DAG); 4974 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4975 Chain = SDValue(LROpOut.getNode(), 1); 4976 } 4977 return Chain; 4978 } 4979 4980 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4981 /// by "Src" to address "Dst" of size "Size". Alignment information is 4982 /// specified by the specific parameter attribute. The copy will be passed as 4983 /// a byval function parameter. 4984 /// Sometimes what we are copying is the end of a larger object, the part that 4985 /// does not fit in registers. 4986 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4987 SDValue Chain, ISD::ArgFlagsTy Flags, 4988 SelectionDAG &DAG, const SDLoc &dl) { 4989 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4990 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4991 Flags.getNonZeroByValAlign(), false, false, false, 4992 MachinePointerInfo(), MachinePointerInfo()); 4993 } 4994 4995 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4996 /// tail calls. 4997 static void LowerMemOpCallTo( 4998 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4999 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5000 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5001 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5002 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5003 if (!isTailCall) { 5004 if (isVector) { 5005 SDValue StackPtr; 5006 if (isPPC64) 5007 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5008 else 5009 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5010 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5011 DAG.getConstant(ArgOffset, dl, PtrVT)); 5012 } 5013 MemOpChains.push_back( 5014 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5015 // Calculate and remember argument location. 5016 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5017 TailCallArguments); 5018 } 5019 5020 static void 5021 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5022 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5023 SDValue FPOp, 5024 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5025 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5026 // might overwrite each other in case of tail call optimization. 5027 SmallVector<SDValue, 8> MemOpChains2; 5028 // Do not flag preceding copytoreg stuff together with the following stuff. 5029 InFlag = SDValue(); 5030 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5031 MemOpChains2, dl); 5032 if (!MemOpChains2.empty()) 5033 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5034 5035 // Store the return address to the appropriate stack slot. 5036 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5037 5038 // Emit callseq_end just before tailcall node. 5039 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5040 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5041 InFlag = Chain.getValue(1); 5042 } 5043 5044 // Is this global address that of a function that can be called by name? (as 5045 // opposed to something that must hold a descriptor for an indirect call). 5046 static bool isFunctionGlobalAddress(SDValue Callee) { 5047 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5048 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5049 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5050 return false; 5051 5052 return G->getGlobal()->getValueType()->isFunctionTy(); 5053 } 5054 5055 return false; 5056 } 5057 5058 SDValue PPCTargetLowering::LowerCallResult( 5059 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5060 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5061 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5062 SmallVector<CCValAssign, 16> RVLocs; 5063 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5064 *DAG.getContext()); 5065 5066 CCRetInfo.AnalyzeCallResult( 5067 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5068 ? RetCC_PPC_Cold 5069 : RetCC_PPC); 5070 5071 // Copy all of the result registers out of their specified physreg. 5072 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5073 CCValAssign &VA = RVLocs[i]; 5074 assert(VA.isRegLoc() && "Can only return in registers!"); 5075 5076 SDValue Val; 5077 5078 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5079 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5080 InFlag); 5081 Chain = Lo.getValue(1); 5082 InFlag = Lo.getValue(2); 5083 VA = RVLocs[++i]; // skip ahead to next loc 5084 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5085 InFlag); 5086 Chain = Hi.getValue(1); 5087 InFlag = Hi.getValue(2); 5088 if (!Subtarget.isLittleEndian()) 5089 std::swap (Lo, Hi); 5090 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5091 } else { 5092 Val = DAG.getCopyFromReg(Chain, dl, 5093 VA.getLocReg(), VA.getLocVT(), InFlag); 5094 Chain = Val.getValue(1); 5095 InFlag = Val.getValue(2); 5096 } 5097 5098 switch (VA.getLocInfo()) { 5099 default: llvm_unreachable("Unknown loc info!"); 5100 case CCValAssign::Full: break; 5101 case CCValAssign::AExt: 5102 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5103 break; 5104 case CCValAssign::ZExt: 5105 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5106 DAG.getValueType(VA.getValVT())); 5107 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5108 break; 5109 case CCValAssign::SExt: 5110 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5111 DAG.getValueType(VA.getValVT())); 5112 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5113 break; 5114 } 5115 5116 InVals.push_back(Val); 5117 } 5118 5119 return Chain; 5120 } 5121 5122 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5123 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5124 // PatchPoint calls are not indirect. 5125 if (isPatchPoint) 5126 return false; 5127 5128 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5129 return false; 5130 5131 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5132 // becuase the immediate function pointer points to a descriptor instead of 5133 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5134 // pointer immediate points to the global entry point, while the BLA would 5135 // need to jump to the local entry point (see rL211174). 5136 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5137 isBLACompatibleAddress(Callee, DAG)) 5138 return false; 5139 5140 return true; 5141 } 5142 5143 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5144 const Function &Caller, 5145 const SDValue &Callee, 5146 const PPCSubtarget &Subtarget, 5147 const TargetMachine &TM) { 5148 if (CFlags.IsTailCall) 5149 return PPCISD::TC_RETURN; 5150 5151 // This is a call through a function pointer. 5152 if (CFlags.IsIndirect) { 5153 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5154 // indirect calls. The save of the caller's TOC pointer to the stack will be 5155 // inserted into the DAG as part of call lowering. The restore of the TOC 5156 // pointer is modeled by using a pseudo instruction for the call opcode that 5157 // represents the 2 instruction sequence of an indirect branch and link, 5158 // immediately followed by a load of the TOC pointer from the the stack save 5159 // slot into gpr2. 5160 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5161 return PPCISD::BCTRL_LOAD_TOC; 5162 5163 // An indirect call that does not need a TOC restore. 5164 return PPCISD::BCTRL; 5165 } 5166 5167 // FIXME: At this moment indirect calls are treated ahead of the 5168 // PC Relative condition because binaries can still contain a possible 5169 // mix of functions that use a TOC and functions that do not use a TOC. 5170 // Once the PC Relative feature is complete this condition should be moved 5171 // up ahead of the indirect calls and should return a PPCISD::BCTRL for 5172 // that case. 5173 if (Subtarget.isUsingPCRelativeCalls()) { 5174 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5175 return PPCISD::CALL_NOTOC; 5176 } 5177 5178 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5179 // immediately following the call instruction if the caller and callee may 5180 // have different TOC bases. At link time if the linker determines the calls 5181 // may not share a TOC base, the call is redirected to a trampoline inserted 5182 // by the linker. The trampoline will (among other things) save the callers 5183 // TOC pointer at an ABI designated offset in the linkage area and the linker 5184 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5185 // into gpr2. 5186 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5187 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5188 : PPCISD::CALL_NOP; 5189 5190 return PPCISD::CALL; 5191 } 5192 5193 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5194 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5195 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5196 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5197 return SDValue(Dest, 0); 5198 5199 // Returns true if the callee is local, and false otherwise. 5200 auto isLocalCallee = [&]() { 5201 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5202 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5203 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5204 5205 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5206 !dyn_cast_or_null<GlobalIFunc>(GV); 5207 }; 5208 5209 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5210 // a static relocation model causes some versions of GNU LD (2.17.50, at 5211 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5212 // built with secure-PLT. 5213 bool UsePlt = 5214 Subtarget.is32BitELFABI() && !isLocalCallee() && 5215 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5216 5217 // On AIX, direct function calls reference the symbol for the function's 5218 // entry point, which is named by prepending a "." before the function's 5219 // C-linkage name. 5220 const auto getAIXFuncEntryPointSymbolSDNode = 5221 [&](StringRef FuncName, bool IsDeclaration, 5222 const XCOFF::StorageClass &SC) { 5223 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5224 5225 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5226 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5227 5228 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5229 // On AIX, an undefined symbol needs to be associated with a 5230 // MCSectionXCOFF to get the correct storage mapping class. 5231 // In this case, XCOFF::XMC_PR. 5232 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5233 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5234 SectionKind::getMetadata()); 5235 S->setRepresentedCsect(Sec); 5236 } 5237 5238 MVT PtrVT = 5239 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5240 return DAG.getMCSymbol(S, PtrVT); 5241 }; 5242 5243 if (isFunctionGlobalAddress(Callee)) { 5244 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5245 const GlobalValue *GV = G->getGlobal(); 5246 5247 if (!Subtarget.isAIXABI()) 5248 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5249 UsePlt ? PPCII::MO_PLT : 0); 5250 5251 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5252 const GlobalObject *GO = cast<GlobalObject>(GV); 5253 const XCOFF::StorageClass SC = 5254 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5255 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5256 SC); 5257 } 5258 5259 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5260 const char *SymName = S->getSymbol(); 5261 if (!Subtarget.isAIXABI()) 5262 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5263 UsePlt ? PPCII::MO_PLT : 0); 5264 5265 // If there exists a user-declared function whose name is the same as the 5266 // ExternalSymbol's, then we pick up the user-declared version. 5267 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5268 if (const Function *F = 5269 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5270 const XCOFF::StorageClass SC = 5271 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5272 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5273 SC); 5274 } 5275 5276 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5277 } 5278 5279 // No transformation needed. 5280 assert(Callee.getNode() && "What no callee?"); 5281 return Callee; 5282 } 5283 5284 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5285 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5286 "Expected a CALLSEQ_STARTSDNode."); 5287 5288 // The last operand is the chain, except when the node has glue. If the node 5289 // has glue, then the last operand is the glue, and the chain is the second 5290 // last operand. 5291 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5292 if (LastValue.getValueType() != MVT::Glue) 5293 return LastValue; 5294 5295 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5296 } 5297 5298 // Creates the node that moves a functions address into the count register 5299 // to prepare for an indirect call instruction. 5300 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5301 SDValue &Glue, SDValue &Chain, 5302 const SDLoc &dl) { 5303 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5304 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5305 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5306 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5307 // The glue is the second value produced. 5308 Glue = Chain.getValue(1); 5309 } 5310 5311 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5312 SDValue &Glue, SDValue &Chain, 5313 SDValue CallSeqStart, 5314 const CallBase *CB, const SDLoc &dl, 5315 bool hasNest, 5316 const PPCSubtarget &Subtarget) { 5317 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5318 // entry point, but to the function descriptor (the function entry point 5319 // address is part of the function descriptor though). 5320 // The function descriptor is a three doubleword structure with the 5321 // following fields: function entry point, TOC base address and 5322 // environment pointer. 5323 // Thus for a call through a function pointer, the following actions need 5324 // to be performed: 5325 // 1. Save the TOC of the caller in the TOC save area of its stack 5326 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5327 // 2. Load the address of the function entry point from the function 5328 // descriptor. 5329 // 3. Load the TOC of the callee from the function descriptor into r2. 5330 // 4. Load the environment pointer from the function descriptor into 5331 // r11. 5332 // 5. Branch to the function entry point address. 5333 // 6. On return of the callee, the TOC of the caller needs to be 5334 // restored (this is done in FinishCall()). 5335 // 5336 // The loads are scheduled at the beginning of the call sequence, and the 5337 // register copies are flagged together to ensure that no other 5338 // operations can be scheduled in between. E.g. without flagging the 5339 // copies together, a TOC access in the caller could be scheduled between 5340 // the assignment of the callee TOC and the branch to the callee, which leads 5341 // to incorrect code. 5342 5343 // Start by loading the function address from the descriptor. 5344 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5345 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5346 ? (MachineMemOperand::MODereferenceable | 5347 MachineMemOperand::MOInvariant) 5348 : MachineMemOperand::MONone; 5349 5350 MachinePointerInfo MPI(CB ? CB->getCalledValue() : nullptr); 5351 5352 // Registers used in building the DAG. 5353 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5354 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5355 5356 // Offsets of descriptor members. 5357 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5358 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5359 5360 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5361 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5362 5363 // One load for the functions entry point address. 5364 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5365 Alignment, MMOFlags); 5366 5367 // One for loading the TOC anchor for the module that contains the called 5368 // function. 5369 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5370 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5371 SDValue TOCPtr = 5372 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5373 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5374 5375 // One for loading the environment pointer. 5376 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5377 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5378 SDValue LoadEnvPtr = 5379 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5380 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5381 5382 5383 // Then copy the newly loaded TOC anchor to the TOC pointer. 5384 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5385 Chain = TOCVal.getValue(0); 5386 Glue = TOCVal.getValue(1); 5387 5388 // If the function call has an explicit 'nest' parameter, it takes the 5389 // place of the environment pointer. 5390 assert((!hasNest || !Subtarget.isAIXABI()) && 5391 "Nest parameter is not supported on AIX."); 5392 if (!hasNest) { 5393 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5394 Chain = EnvVal.getValue(0); 5395 Glue = EnvVal.getValue(1); 5396 } 5397 5398 // The rest of the indirect call sequence is the same as the non-descriptor 5399 // DAG. 5400 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5401 } 5402 5403 static void 5404 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5405 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5406 SelectionDAG &DAG, 5407 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5408 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5409 const PPCSubtarget &Subtarget) { 5410 const bool IsPPC64 = Subtarget.isPPC64(); 5411 // MVT for a general purpose register. 5412 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5413 5414 // First operand is always the chain. 5415 Ops.push_back(Chain); 5416 5417 // If it's a direct call pass the callee as the second operand. 5418 if (!CFlags.IsIndirect) 5419 Ops.push_back(Callee); 5420 else { 5421 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5422 5423 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5424 // on the stack (this would have been done in `LowerCall_64SVR4` or 5425 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5426 // represents both the indirect branch and a load that restores the TOC 5427 // pointer from the linkage area. The operand for the TOC restore is an add 5428 // of the TOC save offset to the stack pointer. This must be the second 5429 // operand: after the chain input but before any other variadic arguments. 5430 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5431 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5432 5433 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5434 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5435 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5436 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5437 Ops.push_back(AddTOC); 5438 } 5439 5440 // Add the register used for the environment pointer. 5441 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5442 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5443 RegVT)); 5444 5445 5446 // Add CTR register as callee so a bctr can be emitted later. 5447 if (CFlags.IsTailCall) 5448 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5449 } 5450 5451 // If this is a tail call add stack pointer delta. 5452 if (CFlags.IsTailCall) 5453 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5454 5455 // Add argument registers to the end of the list so that they are known live 5456 // into the call. 5457 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5458 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5459 RegsToPass[i].second.getValueType())); 5460 5461 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5462 // no way to mark dependencies as implicit here. 5463 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5464 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5465 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5466 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5467 5468 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5469 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5470 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5471 5472 // Add a register mask operand representing the call-preserved registers. 5473 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5474 const uint32_t *Mask = 5475 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5476 assert(Mask && "Missing call preserved mask for calling convention"); 5477 Ops.push_back(DAG.getRegisterMask(Mask)); 5478 5479 // If the glue is valid, it is the last operand. 5480 if (Glue.getNode()) 5481 Ops.push_back(Glue); 5482 } 5483 5484 SDValue PPCTargetLowering::FinishCall( 5485 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5486 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5487 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5488 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5489 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5490 5491 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5492 Subtarget.isAIXABI()) 5493 setUsesTOCBasePtr(DAG); 5494 5495 unsigned CallOpc = 5496 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5497 Subtarget, DAG.getTarget()); 5498 5499 if (!CFlags.IsIndirect) 5500 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5501 else if (Subtarget.usesFunctionDescriptors()) 5502 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5503 dl, CFlags.HasNest, Subtarget); 5504 else 5505 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5506 5507 // Build the operand list for the call instruction. 5508 SmallVector<SDValue, 8> Ops; 5509 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5510 SPDiff, Subtarget); 5511 5512 // Emit tail call. 5513 if (CFlags.IsTailCall) { 5514 assert(((Callee.getOpcode() == ISD::Register && 5515 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5516 Callee.getOpcode() == ISD::TargetExternalSymbol || 5517 Callee.getOpcode() == ISD::TargetGlobalAddress || 5518 isa<ConstantSDNode>(Callee)) && 5519 "Expecting a global address, external symbol, absolute value or " 5520 "register"); 5521 assert(CallOpc == PPCISD::TC_RETURN && 5522 "Unexpected call opcode for a tail call."); 5523 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5524 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5525 } 5526 5527 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5528 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5529 Glue = Chain.getValue(1); 5530 5531 // When performing tail call optimization the callee pops its arguments off 5532 // the stack. Account for this here so these bytes can be pushed back on in 5533 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5534 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5535 getTargetMachine().Options.GuaranteedTailCallOpt) 5536 ? NumBytes 5537 : 0; 5538 5539 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5540 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5541 Glue, dl); 5542 Glue = Chain.getValue(1); 5543 5544 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5545 DAG, InVals); 5546 } 5547 5548 SDValue 5549 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5550 SmallVectorImpl<SDValue> &InVals) const { 5551 SelectionDAG &DAG = CLI.DAG; 5552 SDLoc &dl = CLI.DL; 5553 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5554 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5555 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5556 SDValue Chain = CLI.Chain; 5557 SDValue Callee = CLI.Callee; 5558 bool &isTailCall = CLI.IsTailCall; 5559 CallingConv::ID CallConv = CLI.CallConv; 5560 bool isVarArg = CLI.IsVarArg; 5561 bool isPatchPoint = CLI.IsPatchPoint; 5562 const CallBase *CB = CLI.CB; 5563 5564 if (isTailCall) { 5565 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5566 isTailCall = false; 5567 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5568 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5569 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5570 else 5571 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5572 Ins, DAG); 5573 if (isTailCall) { 5574 ++NumTailCalls; 5575 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5576 ++NumSiblingCalls; 5577 5578 assert(isa<GlobalAddressSDNode>(Callee) && 5579 "Callee should be an llvm::Function object."); 5580 LLVM_DEBUG( 5581 const GlobalValue *GV = 5582 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5583 const unsigned Width = 5584 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5585 dbgs() << "TCO caller: " 5586 << left_justify(DAG.getMachineFunction().getName(), Width) 5587 << ", callee linkage: " << GV->getVisibility() << ", " 5588 << GV->getLinkage() << "\n"); 5589 } 5590 } 5591 5592 if (!isTailCall && CB && CB->isMustTailCall()) 5593 report_fatal_error("failed to perform tail call elimination on a call " 5594 "site marked musttail"); 5595 5596 // When long calls (i.e. indirect calls) are always used, calls are always 5597 // made via function pointer. If we have a function name, first translate it 5598 // into a pointer. 5599 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5600 !isTailCall) 5601 Callee = LowerGlobalAddress(Callee, DAG); 5602 5603 CallFlags CFlags( 5604 CallConv, isTailCall, isVarArg, isPatchPoint, 5605 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5606 // hasNest 5607 Subtarget.is64BitELFABI() && 5608 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); })); 5609 5610 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5611 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5612 InVals, CB); 5613 5614 if (Subtarget.isSVR4ABI()) 5615 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5616 InVals, CB); 5617 5618 if (Subtarget.isAIXABI()) 5619 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5620 InVals, CB); 5621 5622 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5623 InVals, CB); 5624 } 5625 5626 SDValue PPCTargetLowering::LowerCall_32SVR4( 5627 SDValue Chain, SDValue Callee, CallFlags CFlags, 5628 const SmallVectorImpl<ISD::OutputArg> &Outs, 5629 const SmallVectorImpl<SDValue> &OutVals, 5630 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5631 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5632 const CallBase *CB) const { 5633 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5634 // of the 32-bit SVR4 ABI stack frame layout. 5635 5636 const CallingConv::ID CallConv = CFlags.CallConv; 5637 const bool IsVarArg = CFlags.IsVarArg; 5638 const bool IsTailCall = CFlags.IsTailCall; 5639 5640 assert((CallConv == CallingConv::C || 5641 CallConv == CallingConv::Cold || 5642 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5643 5644 unsigned PtrByteSize = 4; 5645 5646 MachineFunction &MF = DAG.getMachineFunction(); 5647 5648 // Mark this function as potentially containing a function that contains a 5649 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5650 // and restoring the callers stack pointer in this functions epilog. This is 5651 // done because by tail calling the called function might overwrite the value 5652 // in this function's (MF) stack pointer stack slot 0(SP). 5653 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5654 CallConv == CallingConv::Fast) 5655 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5656 5657 // Count how many bytes are to be pushed on the stack, including the linkage 5658 // area, parameter list area and the part of the local variable space which 5659 // contains copies of aggregates which are passed by value. 5660 5661 // Assign locations to all of the outgoing arguments. 5662 SmallVector<CCValAssign, 16> ArgLocs; 5663 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5664 5665 // Reserve space for the linkage area on the stack. 5666 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5667 PtrByteSize); 5668 if (useSoftFloat()) 5669 CCInfo.PreAnalyzeCallOperands(Outs); 5670 5671 if (IsVarArg) { 5672 // Handle fixed and variable vector arguments differently. 5673 // Fixed vector arguments go into registers as long as registers are 5674 // available. Variable vector arguments always go into memory. 5675 unsigned NumArgs = Outs.size(); 5676 5677 for (unsigned i = 0; i != NumArgs; ++i) { 5678 MVT ArgVT = Outs[i].VT; 5679 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5680 bool Result; 5681 5682 if (Outs[i].IsFixed) { 5683 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5684 CCInfo); 5685 } else { 5686 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5687 ArgFlags, CCInfo); 5688 } 5689 5690 if (Result) { 5691 #ifndef NDEBUG 5692 errs() << "Call operand #" << i << " has unhandled type " 5693 << EVT(ArgVT).getEVTString() << "\n"; 5694 #endif 5695 llvm_unreachable(nullptr); 5696 } 5697 } 5698 } else { 5699 // All arguments are treated the same. 5700 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5701 } 5702 CCInfo.clearWasPPCF128(); 5703 5704 // Assign locations to all of the outgoing aggregate by value arguments. 5705 SmallVector<CCValAssign, 16> ByValArgLocs; 5706 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5707 5708 // Reserve stack space for the allocations in CCInfo. 5709 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5710 5711 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5712 5713 // Size of the linkage area, parameter list area and the part of the local 5714 // space variable where copies of aggregates which are passed by value are 5715 // stored. 5716 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5717 5718 // Calculate by how many bytes the stack has to be adjusted in case of tail 5719 // call optimization. 5720 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5721 5722 // Adjust the stack pointer for the new arguments... 5723 // These operations are automatically eliminated by the prolog/epilog pass 5724 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5725 SDValue CallSeqStart = Chain; 5726 5727 // Load the return address and frame pointer so it can be moved somewhere else 5728 // later. 5729 SDValue LROp, FPOp; 5730 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5731 5732 // Set up a copy of the stack pointer for use loading and storing any 5733 // arguments that may not fit in the registers available for argument 5734 // passing. 5735 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5736 5737 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5738 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5739 SmallVector<SDValue, 8> MemOpChains; 5740 5741 bool seenFloatArg = false; 5742 // Walk the register/memloc assignments, inserting copies/loads. 5743 // i - Tracks the index into the list of registers allocated for the call 5744 // RealArgIdx - Tracks the index into the list of actual function arguments 5745 // j - Tracks the index into the list of byval arguments 5746 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5747 i != e; 5748 ++i, ++RealArgIdx) { 5749 CCValAssign &VA = ArgLocs[i]; 5750 SDValue Arg = OutVals[RealArgIdx]; 5751 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5752 5753 if (Flags.isByVal()) { 5754 // Argument is an aggregate which is passed by value, thus we need to 5755 // create a copy of it in the local variable space of the current stack 5756 // frame (which is the stack frame of the caller) and pass the address of 5757 // this copy to the callee. 5758 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5759 CCValAssign &ByValVA = ByValArgLocs[j++]; 5760 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5761 5762 // Memory reserved in the local variable space of the callers stack frame. 5763 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5764 5765 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5766 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5767 StackPtr, PtrOff); 5768 5769 // Create a copy of the argument in the local area of the current 5770 // stack frame. 5771 SDValue MemcpyCall = 5772 CreateCopyOfByValArgument(Arg, PtrOff, 5773 CallSeqStart.getNode()->getOperand(0), 5774 Flags, DAG, dl); 5775 5776 // This must go outside the CALLSEQ_START..END. 5777 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5778 SDLoc(MemcpyCall)); 5779 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5780 NewCallSeqStart.getNode()); 5781 Chain = CallSeqStart = NewCallSeqStart; 5782 5783 // Pass the address of the aggregate copy on the stack either in a 5784 // physical register or in the parameter list area of the current stack 5785 // frame to the callee. 5786 Arg = PtrOff; 5787 } 5788 5789 // When useCRBits() is true, there can be i1 arguments. 5790 // It is because getRegisterType(MVT::i1) => MVT::i1, 5791 // and for other integer types getRegisterType() => MVT::i32. 5792 // Extend i1 and ensure callee will get i32. 5793 if (Arg.getValueType() == MVT::i1) 5794 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5795 dl, MVT::i32, Arg); 5796 5797 if (VA.isRegLoc()) { 5798 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5799 // Put argument in a physical register. 5800 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5801 bool IsLE = Subtarget.isLittleEndian(); 5802 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5803 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5804 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5805 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5806 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5807 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5808 SVal.getValue(0))); 5809 } else 5810 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5811 } else { 5812 // Put argument in the parameter list area of the current stack frame. 5813 assert(VA.isMemLoc()); 5814 unsigned LocMemOffset = VA.getLocMemOffset(); 5815 5816 if (!IsTailCall) { 5817 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5818 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5819 StackPtr, PtrOff); 5820 5821 MemOpChains.push_back( 5822 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5823 } else { 5824 // Calculate and remember argument location. 5825 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5826 TailCallArguments); 5827 } 5828 } 5829 } 5830 5831 if (!MemOpChains.empty()) 5832 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5833 5834 // Build a sequence of copy-to-reg nodes chained together with token chain 5835 // and flag operands which copy the outgoing args into the appropriate regs. 5836 SDValue InFlag; 5837 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5838 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5839 RegsToPass[i].second, InFlag); 5840 InFlag = Chain.getValue(1); 5841 } 5842 5843 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5844 // registers. 5845 if (IsVarArg) { 5846 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5847 SDValue Ops[] = { Chain, InFlag }; 5848 5849 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5850 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5851 5852 InFlag = Chain.getValue(1); 5853 } 5854 5855 if (IsTailCall) 5856 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5857 TailCallArguments); 5858 5859 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5860 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5861 } 5862 5863 // Copy an argument into memory, being careful to do this outside the 5864 // call sequence for the call to which the argument belongs. 5865 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5866 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5867 SelectionDAG &DAG, const SDLoc &dl) const { 5868 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5869 CallSeqStart.getNode()->getOperand(0), 5870 Flags, DAG, dl); 5871 // The MEMCPY must go outside the CALLSEQ_START..END. 5872 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5873 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5874 SDLoc(MemcpyCall)); 5875 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5876 NewCallSeqStart.getNode()); 5877 return NewCallSeqStart; 5878 } 5879 5880 SDValue PPCTargetLowering::LowerCall_64SVR4( 5881 SDValue Chain, SDValue Callee, CallFlags CFlags, 5882 const SmallVectorImpl<ISD::OutputArg> &Outs, 5883 const SmallVectorImpl<SDValue> &OutVals, 5884 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5885 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5886 const CallBase *CB) const { 5887 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5888 bool isLittleEndian = Subtarget.isLittleEndian(); 5889 unsigned NumOps = Outs.size(); 5890 bool IsSibCall = false; 5891 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5892 5893 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5894 unsigned PtrByteSize = 8; 5895 5896 MachineFunction &MF = DAG.getMachineFunction(); 5897 5898 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5899 IsSibCall = true; 5900 5901 // Mark this function as potentially containing a function that contains a 5902 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5903 // and restoring the callers stack pointer in this functions epilog. This is 5904 // done because by tail calling the called function might overwrite the value 5905 // in this function's (MF) stack pointer stack slot 0(SP). 5906 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5907 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5908 5909 assert(!(IsFastCall && CFlags.IsVarArg) && 5910 "fastcc not supported on varargs functions"); 5911 5912 // Count how many bytes are to be pushed on the stack, including the linkage 5913 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5914 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5915 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5916 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5917 unsigned NumBytes = LinkageSize; 5918 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5919 unsigned &QFPR_idx = FPR_idx; 5920 5921 static const MCPhysReg GPR[] = { 5922 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5923 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5924 }; 5925 static const MCPhysReg VR[] = { 5926 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5927 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5928 }; 5929 5930 const unsigned NumGPRs = array_lengthof(GPR); 5931 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5932 const unsigned NumVRs = array_lengthof(VR); 5933 const unsigned NumQFPRs = NumFPRs; 5934 5935 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5936 // can be passed to the callee in registers. 5937 // For the fast calling convention, there is another check below. 5938 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5939 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5940 if (!HasParameterArea) { 5941 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5942 unsigned AvailableFPRs = NumFPRs; 5943 unsigned AvailableVRs = NumVRs; 5944 unsigned NumBytesTmp = NumBytes; 5945 for (unsigned i = 0; i != NumOps; ++i) { 5946 if (Outs[i].Flags.isNest()) continue; 5947 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5948 PtrByteSize, LinkageSize, ParamAreaSize, 5949 NumBytesTmp, AvailableFPRs, AvailableVRs, 5950 Subtarget.hasQPX())) 5951 HasParameterArea = true; 5952 } 5953 } 5954 5955 // When using the fast calling convention, we don't provide backing for 5956 // arguments that will be in registers. 5957 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5958 5959 // Avoid allocating parameter area for fastcc functions if all the arguments 5960 // can be passed in the registers. 5961 if (IsFastCall) 5962 HasParameterArea = false; 5963 5964 // Add up all the space actually used. 5965 for (unsigned i = 0; i != NumOps; ++i) { 5966 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5967 EVT ArgVT = Outs[i].VT; 5968 EVT OrigVT = Outs[i].ArgVT; 5969 5970 if (Flags.isNest()) 5971 continue; 5972 5973 if (IsFastCall) { 5974 if (Flags.isByVal()) { 5975 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5976 if (NumGPRsUsed > NumGPRs) 5977 HasParameterArea = true; 5978 } else { 5979 switch (ArgVT.getSimpleVT().SimpleTy) { 5980 default: llvm_unreachable("Unexpected ValueType for argument!"); 5981 case MVT::i1: 5982 case MVT::i32: 5983 case MVT::i64: 5984 if (++NumGPRsUsed <= NumGPRs) 5985 continue; 5986 break; 5987 case MVT::v4i32: 5988 case MVT::v8i16: 5989 case MVT::v16i8: 5990 case MVT::v2f64: 5991 case MVT::v2i64: 5992 case MVT::v1i128: 5993 case MVT::f128: 5994 if (++NumVRsUsed <= NumVRs) 5995 continue; 5996 break; 5997 case MVT::v4f32: 5998 // When using QPX, this is handled like a FP register, otherwise, it 5999 // is an Altivec register. 6000 if (Subtarget.hasQPX()) { 6001 if (++NumFPRsUsed <= NumFPRs) 6002 continue; 6003 } else { 6004 if (++NumVRsUsed <= NumVRs) 6005 continue; 6006 } 6007 break; 6008 case MVT::f32: 6009 case MVT::f64: 6010 case MVT::v4f64: // QPX 6011 case MVT::v4i1: // QPX 6012 if (++NumFPRsUsed <= NumFPRs) 6013 continue; 6014 break; 6015 } 6016 HasParameterArea = true; 6017 } 6018 } 6019 6020 /* Respect alignment of argument on the stack. */ 6021 auto Alignement = 6022 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6023 NumBytes = alignTo(NumBytes, Alignement); 6024 6025 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6026 if (Flags.isInConsecutiveRegsLast()) 6027 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6028 } 6029 6030 unsigned NumBytesActuallyUsed = NumBytes; 6031 6032 // In the old ELFv1 ABI, 6033 // the prolog code of the callee may store up to 8 GPR argument registers to 6034 // the stack, allowing va_start to index over them in memory if its varargs. 6035 // Because we cannot tell if this is needed on the caller side, we have to 6036 // conservatively assume that it is needed. As such, make sure we have at 6037 // least enough stack space for the caller to store the 8 GPRs. 6038 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6039 // really requires memory operands, e.g. a vararg function. 6040 if (HasParameterArea) 6041 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6042 else 6043 NumBytes = LinkageSize; 6044 6045 // Tail call needs the stack to be aligned. 6046 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6047 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6048 6049 int SPDiff = 0; 6050 6051 // Calculate by how many bytes the stack has to be adjusted in case of tail 6052 // call optimization. 6053 if (!IsSibCall) 6054 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6055 6056 // To protect arguments on the stack from being clobbered in a tail call, 6057 // force all the loads to happen before doing any other lowering. 6058 if (CFlags.IsTailCall) 6059 Chain = DAG.getStackArgumentTokenFactor(Chain); 6060 6061 // Adjust the stack pointer for the new arguments... 6062 // These operations are automatically eliminated by the prolog/epilog pass 6063 if (!IsSibCall) 6064 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6065 SDValue CallSeqStart = Chain; 6066 6067 // Load the return address and frame pointer so it can be move somewhere else 6068 // later. 6069 SDValue LROp, FPOp; 6070 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6071 6072 // Set up a copy of the stack pointer for use loading and storing any 6073 // arguments that may not fit in the registers available for argument 6074 // passing. 6075 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6076 6077 // Figure out which arguments are going to go in registers, and which in 6078 // memory. Also, if this is a vararg function, floating point operations 6079 // must be stored to our stack, and loaded into integer regs as well, if 6080 // any integer regs are available for argument passing. 6081 unsigned ArgOffset = LinkageSize; 6082 6083 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6084 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6085 6086 SmallVector<SDValue, 8> MemOpChains; 6087 for (unsigned i = 0; i != NumOps; ++i) { 6088 SDValue Arg = OutVals[i]; 6089 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6090 EVT ArgVT = Outs[i].VT; 6091 EVT OrigVT = Outs[i].ArgVT; 6092 6093 // PtrOff will be used to store the current argument to the stack if a 6094 // register cannot be found for it. 6095 SDValue PtrOff; 6096 6097 // We re-align the argument offset for each argument, except when using the 6098 // fast calling convention, when we need to make sure we do that only when 6099 // we'll actually use a stack slot. 6100 auto ComputePtrOff = [&]() { 6101 /* Respect alignment of argument on the stack. */ 6102 auto Alignment = 6103 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6104 ArgOffset = alignTo(ArgOffset, Alignment); 6105 6106 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6107 6108 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6109 }; 6110 6111 if (!IsFastCall) { 6112 ComputePtrOff(); 6113 6114 /* Compute GPR index associated with argument offset. */ 6115 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6116 GPR_idx = std::min(GPR_idx, NumGPRs); 6117 } 6118 6119 // Promote integers to 64-bit values. 6120 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6121 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6122 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6123 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6124 } 6125 6126 // FIXME memcpy is used way more than necessary. Correctness first. 6127 // Note: "by value" is code for passing a structure by value, not 6128 // basic types. 6129 if (Flags.isByVal()) { 6130 // Note: Size includes alignment padding, so 6131 // struct x { short a; char b; } 6132 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6133 // These are the proper values we need for right-justifying the 6134 // aggregate in a parameter register. 6135 unsigned Size = Flags.getByValSize(); 6136 6137 // An empty aggregate parameter takes up no storage and no 6138 // registers. 6139 if (Size == 0) 6140 continue; 6141 6142 if (IsFastCall) 6143 ComputePtrOff(); 6144 6145 // All aggregates smaller than 8 bytes must be passed right-justified. 6146 if (Size==1 || Size==2 || Size==4) { 6147 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6148 if (GPR_idx != NumGPRs) { 6149 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6150 MachinePointerInfo(), VT); 6151 MemOpChains.push_back(Load.getValue(1)); 6152 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6153 6154 ArgOffset += PtrByteSize; 6155 continue; 6156 } 6157 } 6158 6159 if (GPR_idx == NumGPRs && Size < 8) { 6160 SDValue AddPtr = PtrOff; 6161 if (!isLittleEndian) { 6162 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6163 PtrOff.getValueType()); 6164 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6165 } 6166 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6167 CallSeqStart, 6168 Flags, DAG, dl); 6169 ArgOffset += PtrByteSize; 6170 continue; 6171 } 6172 // Copy entire object into memory. There are cases where gcc-generated 6173 // code assumes it is there, even if it could be put entirely into 6174 // registers. (This is not what the doc says.) 6175 6176 // FIXME: The above statement is likely due to a misunderstanding of the 6177 // documents. All arguments must be copied into the parameter area BY 6178 // THE CALLEE in the event that the callee takes the address of any 6179 // formal argument. That has not yet been implemented. However, it is 6180 // reasonable to use the stack area as a staging area for the register 6181 // load. 6182 6183 // Skip this for small aggregates, as we will use the same slot for a 6184 // right-justified copy, below. 6185 if (Size >= 8) 6186 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6187 CallSeqStart, 6188 Flags, DAG, dl); 6189 6190 // When a register is available, pass a small aggregate right-justified. 6191 if (Size < 8 && GPR_idx != NumGPRs) { 6192 // The easiest way to get this right-justified in a register 6193 // is to copy the structure into the rightmost portion of a 6194 // local variable slot, then load the whole slot into the 6195 // register. 6196 // FIXME: The memcpy seems to produce pretty awful code for 6197 // small aggregates, particularly for packed ones. 6198 // FIXME: It would be preferable to use the slot in the 6199 // parameter save area instead of a new local variable. 6200 SDValue AddPtr = PtrOff; 6201 if (!isLittleEndian) { 6202 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6203 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6204 } 6205 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6206 CallSeqStart, 6207 Flags, DAG, dl); 6208 6209 // Load the slot into the register. 6210 SDValue Load = 6211 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6212 MemOpChains.push_back(Load.getValue(1)); 6213 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6214 6215 // Done with this argument. 6216 ArgOffset += PtrByteSize; 6217 continue; 6218 } 6219 6220 // For aggregates larger than PtrByteSize, copy the pieces of the 6221 // object that fit into registers from the parameter save area. 6222 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6223 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6224 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6225 if (GPR_idx != NumGPRs) { 6226 SDValue Load = 6227 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6228 MemOpChains.push_back(Load.getValue(1)); 6229 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6230 ArgOffset += PtrByteSize; 6231 } else { 6232 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6233 break; 6234 } 6235 } 6236 continue; 6237 } 6238 6239 switch (Arg.getSimpleValueType().SimpleTy) { 6240 default: llvm_unreachable("Unexpected ValueType for argument!"); 6241 case MVT::i1: 6242 case MVT::i32: 6243 case MVT::i64: 6244 if (Flags.isNest()) { 6245 // The 'nest' parameter, if any, is passed in R11. 6246 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6247 break; 6248 } 6249 6250 // These can be scalar arguments or elements of an integer array type 6251 // passed directly. Clang may use those instead of "byval" aggregate 6252 // types to avoid forcing arguments to memory unnecessarily. 6253 if (GPR_idx != NumGPRs) { 6254 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6255 } else { 6256 if (IsFastCall) 6257 ComputePtrOff(); 6258 6259 assert(HasParameterArea && 6260 "Parameter area must exist to pass an argument in memory."); 6261 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6262 true, CFlags.IsTailCall, false, MemOpChains, 6263 TailCallArguments, dl); 6264 if (IsFastCall) 6265 ArgOffset += PtrByteSize; 6266 } 6267 if (!IsFastCall) 6268 ArgOffset += PtrByteSize; 6269 break; 6270 case MVT::f32: 6271 case MVT::f64: { 6272 // These can be scalar arguments or elements of a float array type 6273 // passed directly. The latter are used to implement ELFv2 homogenous 6274 // float aggregates. 6275 6276 // Named arguments go into FPRs first, and once they overflow, the 6277 // remaining arguments go into GPRs and then the parameter save area. 6278 // Unnamed arguments for vararg functions always go to GPRs and 6279 // then the parameter save area. For now, put all arguments to vararg 6280 // routines always in both locations (FPR *and* GPR or stack slot). 6281 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6282 bool NeededLoad = false; 6283 6284 // First load the argument into the next available FPR. 6285 if (FPR_idx != NumFPRs) 6286 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6287 6288 // Next, load the argument into GPR or stack slot if needed. 6289 if (!NeedGPROrStack) 6290 ; 6291 else if (GPR_idx != NumGPRs && !IsFastCall) { 6292 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6293 // once we support fp <-> gpr moves. 6294 6295 // In the non-vararg case, this can only ever happen in the 6296 // presence of f32 array types, since otherwise we never run 6297 // out of FPRs before running out of GPRs. 6298 SDValue ArgVal; 6299 6300 // Double values are always passed in a single GPR. 6301 if (Arg.getValueType() != MVT::f32) { 6302 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6303 6304 // Non-array float values are extended and passed in a GPR. 6305 } else if (!Flags.isInConsecutiveRegs()) { 6306 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6307 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6308 6309 // If we have an array of floats, we collect every odd element 6310 // together with its predecessor into one GPR. 6311 } else if (ArgOffset % PtrByteSize != 0) { 6312 SDValue Lo, Hi; 6313 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6314 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6315 if (!isLittleEndian) 6316 std::swap(Lo, Hi); 6317 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6318 6319 // The final element, if even, goes into the first half of a GPR. 6320 } else if (Flags.isInConsecutiveRegsLast()) { 6321 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6322 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6323 if (!isLittleEndian) 6324 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6325 DAG.getConstant(32, dl, MVT::i32)); 6326 6327 // Non-final even elements are skipped; they will be handled 6328 // together the with subsequent argument on the next go-around. 6329 } else 6330 ArgVal = SDValue(); 6331 6332 if (ArgVal.getNode()) 6333 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6334 } else { 6335 if (IsFastCall) 6336 ComputePtrOff(); 6337 6338 // Single-precision floating-point values are mapped to the 6339 // second (rightmost) word of the stack doubleword. 6340 if (Arg.getValueType() == MVT::f32 && 6341 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6342 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6343 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6344 } 6345 6346 assert(HasParameterArea && 6347 "Parameter area must exist to pass an argument in memory."); 6348 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6349 true, CFlags.IsTailCall, false, MemOpChains, 6350 TailCallArguments, dl); 6351 6352 NeededLoad = true; 6353 } 6354 // When passing an array of floats, the array occupies consecutive 6355 // space in the argument area; only round up to the next doubleword 6356 // at the end of the array. Otherwise, each float takes 8 bytes. 6357 if (!IsFastCall || NeededLoad) { 6358 ArgOffset += (Arg.getValueType() == MVT::f32 && 6359 Flags.isInConsecutiveRegs()) ? 4 : 8; 6360 if (Flags.isInConsecutiveRegsLast()) 6361 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6362 } 6363 break; 6364 } 6365 case MVT::v4f32: 6366 case MVT::v4i32: 6367 case MVT::v8i16: 6368 case MVT::v16i8: 6369 case MVT::v2f64: 6370 case MVT::v2i64: 6371 case MVT::v1i128: 6372 case MVT::f128: 6373 if (!Subtarget.hasQPX()) { 6374 // These can be scalar arguments or elements of a vector array type 6375 // passed directly. The latter are used to implement ELFv2 homogenous 6376 // vector aggregates. 6377 6378 // For a varargs call, named arguments go into VRs or on the stack as 6379 // usual; unnamed arguments always go to the stack or the corresponding 6380 // GPRs when within range. For now, we always put the value in both 6381 // locations (or even all three). 6382 if (CFlags.IsVarArg) { 6383 assert(HasParameterArea && 6384 "Parameter area must exist if we have a varargs call."); 6385 // We could elide this store in the case where the object fits 6386 // entirely in R registers. Maybe later. 6387 SDValue Store = 6388 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6389 MemOpChains.push_back(Store); 6390 if (VR_idx != NumVRs) { 6391 SDValue Load = 6392 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6393 MemOpChains.push_back(Load.getValue(1)); 6394 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6395 } 6396 ArgOffset += 16; 6397 for (unsigned i=0; i<16; i+=PtrByteSize) { 6398 if (GPR_idx == NumGPRs) 6399 break; 6400 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6401 DAG.getConstant(i, dl, PtrVT)); 6402 SDValue Load = 6403 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6404 MemOpChains.push_back(Load.getValue(1)); 6405 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6406 } 6407 break; 6408 } 6409 6410 // Non-varargs Altivec params go into VRs or on the stack. 6411 if (VR_idx != NumVRs) { 6412 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6413 } else { 6414 if (IsFastCall) 6415 ComputePtrOff(); 6416 6417 assert(HasParameterArea && 6418 "Parameter area must exist to pass an argument in memory."); 6419 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6420 true, CFlags.IsTailCall, true, MemOpChains, 6421 TailCallArguments, dl); 6422 if (IsFastCall) 6423 ArgOffset += 16; 6424 } 6425 6426 if (!IsFastCall) 6427 ArgOffset += 16; 6428 break; 6429 } // not QPX 6430 6431 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6432 "Invalid QPX parameter type"); 6433 6434 LLVM_FALLTHROUGH; 6435 case MVT::v4f64: 6436 case MVT::v4i1: { 6437 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6438 if (CFlags.IsVarArg) { 6439 assert(HasParameterArea && 6440 "Parameter area must exist if we have a varargs call."); 6441 // We could elide this store in the case where the object fits 6442 // entirely in R registers. Maybe later. 6443 SDValue Store = 6444 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6445 MemOpChains.push_back(Store); 6446 if (QFPR_idx != NumQFPRs) { 6447 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6448 PtrOff, MachinePointerInfo()); 6449 MemOpChains.push_back(Load.getValue(1)); 6450 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6451 } 6452 ArgOffset += (IsF32 ? 16 : 32); 6453 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6454 if (GPR_idx == NumGPRs) 6455 break; 6456 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6457 DAG.getConstant(i, dl, PtrVT)); 6458 SDValue Load = 6459 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6460 MemOpChains.push_back(Load.getValue(1)); 6461 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6462 } 6463 break; 6464 } 6465 6466 // Non-varargs QPX params go into registers or on the stack. 6467 if (QFPR_idx != NumQFPRs) { 6468 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6469 } else { 6470 if (IsFastCall) 6471 ComputePtrOff(); 6472 6473 assert(HasParameterArea && 6474 "Parameter area must exist to pass an argument in memory."); 6475 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6476 true, CFlags.IsTailCall, true, MemOpChains, 6477 TailCallArguments, dl); 6478 if (IsFastCall) 6479 ArgOffset += (IsF32 ? 16 : 32); 6480 } 6481 6482 if (!IsFastCall) 6483 ArgOffset += (IsF32 ? 16 : 32); 6484 break; 6485 } 6486 } 6487 } 6488 6489 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6490 "mismatch in size of parameter area"); 6491 (void)NumBytesActuallyUsed; 6492 6493 if (!MemOpChains.empty()) 6494 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6495 6496 // Check if this is an indirect call (MTCTR/BCTRL). 6497 // See prepareDescriptorIndirectCall and buildCallOperands for more 6498 // information about calls through function pointers in the 64-bit SVR4 ABI. 6499 if (CFlags.IsIndirect) { 6500 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6501 // Load r2 into a virtual register and store it to the TOC save area. 6502 setUsesTOCBasePtr(DAG); 6503 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6504 // TOC save area offset. 6505 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6506 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6507 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6508 Chain = DAG.getStore( 6509 Val.getValue(1), dl, Val, AddPtr, 6510 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6511 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6512 // This does not mean the MTCTR instruction must use R12; it's easier 6513 // to model this as an extra parameter, so do that. 6514 if (isELFv2ABI && !CFlags.IsPatchPoint) 6515 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6516 } 6517 6518 // Build a sequence of copy-to-reg nodes chained together with token chain 6519 // and flag operands which copy the outgoing args into the appropriate regs. 6520 SDValue InFlag; 6521 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6522 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6523 RegsToPass[i].second, InFlag); 6524 InFlag = Chain.getValue(1); 6525 } 6526 6527 if (CFlags.IsTailCall && !IsSibCall) 6528 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6529 TailCallArguments); 6530 6531 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6532 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6533 } 6534 6535 SDValue PPCTargetLowering::LowerCall_Darwin( 6536 SDValue Chain, SDValue Callee, CallFlags CFlags, 6537 const SmallVectorImpl<ISD::OutputArg> &Outs, 6538 const SmallVectorImpl<SDValue> &OutVals, 6539 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6540 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6541 const CallBase *CB) const { 6542 unsigned NumOps = Outs.size(); 6543 6544 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6545 bool isPPC64 = PtrVT == MVT::i64; 6546 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6547 6548 MachineFunction &MF = DAG.getMachineFunction(); 6549 6550 // Mark this function as potentially containing a function that contains a 6551 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6552 // and restoring the callers stack pointer in this functions epilog. This is 6553 // done because by tail calling the called function might overwrite the value 6554 // in this function's (MF) stack pointer stack slot 0(SP). 6555 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6556 CFlags.CallConv == CallingConv::Fast) 6557 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6558 6559 // Count how many bytes are to be pushed on the stack, including the linkage 6560 // area, and parameter passing area. We start with 24/48 bytes, which is 6561 // prereserved space for [SP][CR][LR][3 x unused]. 6562 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6563 unsigned NumBytes = LinkageSize; 6564 6565 // Add up all the space actually used. 6566 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6567 // they all go in registers, but we must reserve stack space for them for 6568 // possible use by the caller. In varargs or 64-bit calls, parameters are 6569 // assigned stack space in order, with padding so Altivec parameters are 6570 // 16-byte aligned. 6571 unsigned nAltivecParamsAtEnd = 0; 6572 for (unsigned i = 0; i != NumOps; ++i) { 6573 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6574 EVT ArgVT = Outs[i].VT; 6575 // Varargs Altivec parameters are padded to a 16 byte boundary. 6576 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6577 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6578 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6579 if (!CFlags.IsVarArg && !isPPC64) { 6580 // Non-varargs Altivec parameters go after all the non-Altivec 6581 // parameters; handle those later so we know how much padding we need. 6582 nAltivecParamsAtEnd++; 6583 continue; 6584 } 6585 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6586 NumBytes = ((NumBytes+15)/16)*16; 6587 } 6588 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6589 } 6590 6591 // Allow for Altivec parameters at the end, if needed. 6592 if (nAltivecParamsAtEnd) { 6593 NumBytes = ((NumBytes+15)/16)*16; 6594 NumBytes += 16*nAltivecParamsAtEnd; 6595 } 6596 6597 // The prolog code of the callee may store up to 8 GPR argument registers to 6598 // the stack, allowing va_start to index over them in memory if its varargs. 6599 // Because we cannot tell if this is needed on the caller side, we have to 6600 // conservatively assume that it is needed. As such, make sure we have at 6601 // least enough stack space for the caller to store the 8 GPRs. 6602 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6603 6604 // Tail call needs the stack to be aligned. 6605 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6606 CFlags.CallConv == CallingConv::Fast) 6607 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6608 6609 // Calculate by how many bytes the stack has to be adjusted in case of tail 6610 // call optimization. 6611 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6612 6613 // To protect arguments on the stack from being clobbered in a tail call, 6614 // force all the loads to happen before doing any other lowering. 6615 if (CFlags.IsTailCall) 6616 Chain = DAG.getStackArgumentTokenFactor(Chain); 6617 6618 // Adjust the stack pointer for the new arguments... 6619 // These operations are automatically eliminated by the prolog/epilog pass 6620 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6621 SDValue CallSeqStart = Chain; 6622 6623 // Load the return address and frame pointer so it can be move somewhere else 6624 // later. 6625 SDValue LROp, FPOp; 6626 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6627 6628 // Set up a copy of the stack pointer for use loading and storing any 6629 // arguments that may not fit in the registers available for argument 6630 // passing. 6631 SDValue StackPtr; 6632 if (isPPC64) 6633 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6634 else 6635 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6636 6637 // Figure out which arguments are going to go in registers, and which in 6638 // memory. Also, if this is a vararg function, floating point operations 6639 // must be stored to our stack, and loaded into integer regs as well, if 6640 // any integer regs are available for argument passing. 6641 unsigned ArgOffset = LinkageSize; 6642 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6643 6644 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6645 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6646 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6647 }; 6648 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6649 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6650 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6651 }; 6652 static const MCPhysReg VR[] = { 6653 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6654 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6655 }; 6656 const unsigned NumGPRs = array_lengthof(GPR_32); 6657 const unsigned NumFPRs = 13; 6658 const unsigned NumVRs = array_lengthof(VR); 6659 6660 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6661 6662 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6663 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6664 6665 SmallVector<SDValue, 8> MemOpChains; 6666 for (unsigned i = 0; i != NumOps; ++i) { 6667 SDValue Arg = OutVals[i]; 6668 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6669 6670 // PtrOff will be used to store the current argument to the stack if a 6671 // register cannot be found for it. 6672 SDValue PtrOff; 6673 6674 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6675 6676 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6677 6678 // On PPC64, promote integers to 64-bit values. 6679 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6680 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6681 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6682 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6683 } 6684 6685 // FIXME memcpy is used way more than necessary. Correctness first. 6686 // Note: "by value" is code for passing a structure by value, not 6687 // basic types. 6688 if (Flags.isByVal()) { 6689 unsigned Size = Flags.getByValSize(); 6690 // Very small objects are passed right-justified. Everything else is 6691 // passed left-justified. 6692 if (Size==1 || Size==2) { 6693 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6694 if (GPR_idx != NumGPRs) { 6695 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6696 MachinePointerInfo(), VT); 6697 MemOpChains.push_back(Load.getValue(1)); 6698 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6699 6700 ArgOffset += PtrByteSize; 6701 } else { 6702 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6703 PtrOff.getValueType()); 6704 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6705 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6706 CallSeqStart, 6707 Flags, DAG, dl); 6708 ArgOffset += PtrByteSize; 6709 } 6710 continue; 6711 } 6712 // Copy entire object into memory. There are cases where gcc-generated 6713 // code assumes it is there, even if it could be put entirely into 6714 // registers. (This is not what the doc says.) 6715 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6716 CallSeqStart, 6717 Flags, DAG, dl); 6718 6719 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6720 // copy the pieces of the object that fit into registers from the 6721 // parameter save area. 6722 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6723 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6724 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6725 if (GPR_idx != NumGPRs) { 6726 SDValue Load = 6727 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6728 MemOpChains.push_back(Load.getValue(1)); 6729 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6730 ArgOffset += PtrByteSize; 6731 } else { 6732 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6733 break; 6734 } 6735 } 6736 continue; 6737 } 6738 6739 switch (Arg.getSimpleValueType().SimpleTy) { 6740 default: llvm_unreachable("Unexpected ValueType for argument!"); 6741 case MVT::i1: 6742 case MVT::i32: 6743 case MVT::i64: 6744 if (GPR_idx != NumGPRs) { 6745 if (Arg.getValueType() == MVT::i1) 6746 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6747 6748 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6749 } else { 6750 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6751 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6752 TailCallArguments, dl); 6753 } 6754 ArgOffset += PtrByteSize; 6755 break; 6756 case MVT::f32: 6757 case MVT::f64: 6758 if (FPR_idx != NumFPRs) { 6759 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6760 6761 if (CFlags.IsVarArg) { 6762 SDValue Store = 6763 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6764 MemOpChains.push_back(Store); 6765 6766 // Float varargs are always shadowed in available integer registers 6767 if (GPR_idx != NumGPRs) { 6768 SDValue Load = 6769 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6770 MemOpChains.push_back(Load.getValue(1)); 6771 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6772 } 6773 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6774 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6775 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6776 SDValue Load = 6777 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6778 MemOpChains.push_back(Load.getValue(1)); 6779 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6780 } 6781 } else { 6782 // If we have any FPRs remaining, we may also have GPRs remaining. 6783 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6784 // GPRs. 6785 if (GPR_idx != NumGPRs) 6786 ++GPR_idx; 6787 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6788 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6789 ++GPR_idx; 6790 } 6791 } else 6792 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6793 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6794 TailCallArguments, dl); 6795 if (isPPC64) 6796 ArgOffset += 8; 6797 else 6798 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6799 break; 6800 case MVT::v4f32: 6801 case MVT::v4i32: 6802 case MVT::v8i16: 6803 case MVT::v16i8: 6804 if (CFlags.IsVarArg) { 6805 // These go aligned on the stack, or in the corresponding R registers 6806 // when within range. The Darwin PPC ABI doc claims they also go in 6807 // V registers; in fact gcc does this only for arguments that are 6808 // prototyped, not for those that match the ... We do it for all 6809 // arguments, seems to work. 6810 while (ArgOffset % 16 !=0) { 6811 ArgOffset += PtrByteSize; 6812 if (GPR_idx != NumGPRs) 6813 GPR_idx++; 6814 } 6815 // We could elide this store in the case where the object fits 6816 // entirely in R registers. Maybe later. 6817 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6818 DAG.getConstant(ArgOffset, dl, PtrVT)); 6819 SDValue Store = 6820 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6821 MemOpChains.push_back(Store); 6822 if (VR_idx != NumVRs) { 6823 SDValue Load = 6824 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6825 MemOpChains.push_back(Load.getValue(1)); 6826 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6827 } 6828 ArgOffset += 16; 6829 for (unsigned i=0; i<16; i+=PtrByteSize) { 6830 if (GPR_idx == NumGPRs) 6831 break; 6832 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6833 DAG.getConstant(i, dl, PtrVT)); 6834 SDValue Load = 6835 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6836 MemOpChains.push_back(Load.getValue(1)); 6837 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6838 } 6839 break; 6840 } 6841 6842 // Non-varargs Altivec params generally go in registers, but have 6843 // stack space allocated at the end. 6844 if (VR_idx != NumVRs) { 6845 // Doesn't have GPR space allocated. 6846 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6847 } else if (nAltivecParamsAtEnd==0) { 6848 // We are emitting Altivec params in order. 6849 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6850 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6851 TailCallArguments, dl); 6852 ArgOffset += 16; 6853 } 6854 break; 6855 } 6856 } 6857 // If all Altivec parameters fit in registers, as they usually do, 6858 // they get stack space following the non-Altivec parameters. We 6859 // don't track this here because nobody below needs it. 6860 // If there are more Altivec parameters than fit in registers emit 6861 // the stores here. 6862 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6863 unsigned j = 0; 6864 // Offset is aligned; skip 1st 12 params which go in V registers. 6865 ArgOffset = ((ArgOffset+15)/16)*16; 6866 ArgOffset += 12*16; 6867 for (unsigned i = 0; i != NumOps; ++i) { 6868 SDValue Arg = OutVals[i]; 6869 EVT ArgType = Outs[i].VT; 6870 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6871 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6872 if (++j > NumVRs) { 6873 SDValue PtrOff; 6874 // We are emitting Altivec params in order. 6875 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6876 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6877 TailCallArguments, dl); 6878 ArgOffset += 16; 6879 } 6880 } 6881 } 6882 } 6883 6884 if (!MemOpChains.empty()) 6885 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6886 6887 // On Darwin, R12 must contain the address of an indirect callee. This does 6888 // not mean the MTCTR instruction must use R12; it's easier to model this as 6889 // an extra parameter, so do that. 6890 if (CFlags.IsIndirect) { 6891 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6892 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6893 PPC::R12), Callee)); 6894 } 6895 6896 // Build a sequence of copy-to-reg nodes chained together with token chain 6897 // and flag operands which copy the outgoing args into the appropriate regs. 6898 SDValue InFlag; 6899 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6900 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6901 RegsToPass[i].second, InFlag); 6902 InFlag = Chain.getValue(1); 6903 } 6904 6905 if (CFlags.IsTailCall) 6906 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6907 TailCallArguments); 6908 6909 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6910 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6911 } 6912 6913 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6914 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6915 CCState &State) { 6916 6917 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6918 State.getMachineFunction().getSubtarget()); 6919 const bool IsPPC64 = Subtarget.isPPC64(); 6920 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6921 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6922 6923 assert((!ValVT.isInteger() || 6924 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6925 "Integer argument exceeds register size: should have been legalized"); 6926 6927 if (ValVT == MVT::f128) 6928 report_fatal_error("f128 is unimplemented on AIX."); 6929 6930 if (ArgFlags.isNest()) 6931 report_fatal_error("Nest arguments are unimplemented."); 6932 6933 if (ValVT.isVector() || LocVT.isVector()) 6934 report_fatal_error("Vector arguments are unimplemented on AIX."); 6935 6936 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6937 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6938 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6939 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6940 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6941 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6942 6943 if (ArgFlags.isByVal()) { 6944 if (ArgFlags.getNonZeroByValAlign() > PtrByteSize) 6945 report_fatal_error("Pass-by-value arguments with alignment greater than " 6946 "register width are not supported."); 6947 6948 const unsigned ByValSize = ArgFlags.getByValSize(); 6949 6950 // An empty aggregate parameter takes up no storage and no registers, 6951 // but needs a MemLoc for a stack slot for the formal arguments side. 6952 if (ByValSize == 0) { 6953 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6954 State.getNextStackOffset(), RegVT, 6955 LocInfo)); 6956 return false; 6957 } 6958 6959 const unsigned StackSize = alignTo(ByValSize, PtrByteSize); 6960 unsigned Offset = State.AllocateStack(StackSize, PtrByteSize); 6961 for (const unsigned E = Offset + StackSize; Offset < E; 6962 Offset += PtrByteSize) { 6963 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6964 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6965 else { 6966 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6967 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6968 LocInfo)); 6969 break; 6970 } 6971 } 6972 return false; 6973 } 6974 6975 // Arguments always reserve parameter save area. 6976 switch (ValVT.SimpleTy) { 6977 default: 6978 report_fatal_error("Unhandled value type for argument."); 6979 case MVT::i64: 6980 // i64 arguments should have been split to i32 for PPC32. 6981 assert(IsPPC64 && "PPC32 should have split i64 values."); 6982 LLVM_FALLTHROUGH; 6983 case MVT::i1: 6984 case MVT::i32: { 6985 const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize); 6986 // AIX integer arguments are always passed in register width. 6987 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6988 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6989 : CCValAssign::LocInfo::ZExt; 6990 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6991 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6992 else 6993 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6994 6995 return false; 6996 } 6997 case MVT::f32: 6998 case MVT::f64: { 6999 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7000 const unsigned StoreSize = LocVT.getStoreSize(); 7001 // Floats are always 4-byte aligned in the PSA on AIX. 7002 // This includes f64 in 64-bit mode for ABI compatibility. 7003 const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 7004 unsigned FReg = State.AllocateReg(FPR); 7005 if (FReg) 7006 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7007 7008 // Reserve and initialize GPRs or initialize the PSA as required. 7009 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 7010 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7011 assert(FReg && "An FPR should be available when a GPR is reserved."); 7012 if (State.isVarArg()) { 7013 // Successfully reserved GPRs are only initialized for vararg calls. 7014 // Custom handling is required for: 7015 // f64 in PPC32 needs to be split into 2 GPRs. 7016 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7017 State.addLoc( 7018 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7019 } 7020 } else { 7021 // If there are insufficient GPRs, the PSA needs to be initialized. 7022 // Initialization occurs even if an FPR was initialized for 7023 // compatibility with the AIX XL compiler. The full memory for the 7024 // argument will be initialized even if a prior word is saved in GPR. 7025 // A custom memLoc is used when the argument also passes in FPR so 7026 // that the callee handling can skip over it easily. 7027 State.addLoc( 7028 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7029 LocInfo) 7030 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7031 break; 7032 } 7033 } 7034 7035 return false; 7036 } 7037 } 7038 return true; 7039 } 7040 7041 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7042 bool IsPPC64) { 7043 assert((IsPPC64 || SVT != MVT::i64) && 7044 "i64 should have been split for 32-bit codegen."); 7045 7046 switch (SVT) { 7047 default: 7048 report_fatal_error("Unexpected value type for formal argument"); 7049 case MVT::i1: 7050 case MVT::i32: 7051 case MVT::i64: 7052 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7053 case MVT::f32: 7054 return &PPC::F4RCRegClass; 7055 case MVT::f64: 7056 return &PPC::F8RCRegClass; 7057 } 7058 } 7059 7060 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7061 SelectionDAG &DAG, SDValue ArgValue, 7062 MVT LocVT, const SDLoc &dl) { 7063 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7064 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7065 7066 if (Flags.isSExt()) 7067 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7068 DAG.getValueType(ValVT)); 7069 else if (Flags.isZExt()) 7070 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7071 DAG.getValueType(ValVT)); 7072 7073 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7074 } 7075 7076 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7077 const unsigned LASize = FL->getLinkageSize(); 7078 7079 if (PPC::GPRCRegClass.contains(Reg)) { 7080 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7081 "Reg must be a valid argument register!"); 7082 return LASize + 4 * (Reg - PPC::R3); 7083 } 7084 7085 if (PPC::G8RCRegClass.contains(Reg)) { 7086 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7087 "Reg must be a valid argument register!"); 7088 return LASize + 8 * (Reg - PPC::X3); 7089 } 7090 7091 llvm_unreachable("Only general purpose registers expected."); 7092 } 7093 7094 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7095 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7096 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7097 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7098 7099 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7100 CallConv == CallingConv::Fast) && 7101 "Unexpected calling convention!"); 7102 7103 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7104 report_fatal_error("Tail call support is unimplemented on AIX."); 7105 7106 if (useSoftFloat()) 7107 report_fatal_error("Soft float support is unimplemented on AIX."); 7108 7109 const PPCSubtarget &Subtarget = 7110 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7111 if (Subtarget.hasQPX()) 7112 report_fatal_error("QPX support is not supported on AIX."); 7113 7114 const bool IsPPC64 = Subtarget.isPPC64(); 7115 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7116 7117 // Assign locations to all of the incoming arguments. 7118 SmallVector<CCValAssign, 16> ArgLocs; 7119 MachineFunction &MF = DAG.getMachineFunction(); 7120 MachineFrameInfo &MFI = MF.getFrameInfo(); 7121 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7122 7123 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7124 // Reserve space for the linkage area on the stack. 7125 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7126 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7127 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7128 7129 SmallVector<SDValue, 8> MemOps; 7130 7131 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7132 CCValAssign &VA = ArgLocs[I++]; 7133 MVT LocVT = VA.getLocVT(); 7134 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7135 7136 // For compatibility with the AIX XL compiler, the float args in the 7137 // parameter save area are initialized even if the argument is available 7138 // in register. The caller is required to initialize both the register 7139 // and memory, however, the callee can choose to expect it in either. 7140 // The memloc is dismissed here because the argument is retrieved from 7141 // the register. 7142 if (VA.isMemLoc() && VA.needsCustom()) 7143 continue; 7144 7145 if (Flags.isByVal() && VA.isMemLoc()) { 7146 const unsigned Size = 7147 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7148 PtrByteSize); 7149 const int FI = MF.getFrameInfo().CreateFixedObject( 7150 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7151 /* IsAliased */ true); 7152 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7153 InVals.push_back(FIN); 7154 7155 continue; 7156 } 7157 7158 if (Flags.isByVal()) { 7159 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7160 7161 const MCPhysReg ArgReg = VA.getLocReg(); 7162 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7163 7164 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7165 report_fatal_error("Over aligned byvals not supported yet."); 7166 7167 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7168 const int FI = MF.getFrameInfo().CreateFixedObject( 7169 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7170 /* IsAliased */ true); 7171 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7172 InVals.push_back(FIN); 7173 7174 // Add live ins for all the RegLocs for the same ByVal. 7175 const TargetRegisterClass *RegClass = 7176 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7177 7178 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7179 unsigned Offset) { 7180 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7181 // Since the callers side has left justified the aggregate in the 7182 // register, we can simply store the entire register into the stack 7183 // slot. 7184 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7185 // The store to the fixedstack object is needed becuase accessing a 7186 // field of the ByVal will use a gep and load. Ideally we will optimize 7187 // to extracting the value from the register directly, and elide the 7188 // stores when the arguments address is not taken, but that will need to 7189 // be future work. 7190 SDValue Store = 7191 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7192 DAG.getObjectPtrOffset(dl, FIN, Offset), 7193 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7194 7195 MemOps.push_back(Store); 7196 }; 7197 7198 unsigned Offset = 0; 7199 HandleRegLoc(VA.getLocReg(), Offset); 7200 Offset += PtrByteSize; 7201 for (; Offset != StackSize; Offset += PtrByteSize) { 7202 assert(I != End && 7203 "Expecting enough RegLocs to copy entire ByVal arg."); 7204 7205 if (!ArgLocs[I].isRegLoc()) 7206 report_fatal_error("Passing ByVals split between registers and stack " 7207 "not yet implemented."); 7208 7209 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7210 "Expecting more RegLocs for ByVal argument."); 7211 7212 const CCValAssign RL = ArgLocs[I++]; 7213 HandleRegLoc(RL.getLocReg(), Offset); 7214 } 7215 continue; 7216 } 7217 7218 EVT ValVT = VA.getValVT(); 7219 if (VA.isRegLoc() && !VA.needsCustom()) { 7220 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7221 unsigned VReg = 7222 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7223 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7224 if (ValVT.isScalarInteger() && 7225 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7226 ArgValue = 7227 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7228 } 7229 InVals.push_back(ArgValue); 7230 continue; 7231 } 7232 if (VA.isMemLoc()) { 7233 const unsigned LocSize = LocVT.getStoreSize(); 7234 const unsigned ValSize = ValVT.getStoreSize(); 7235 assert((ValSize <= LocSize) && 7236 "Object size is larger than size of MemLoc"); 7237 int CurArgOffset = VA.getLocMemOffset(); 7238 // Objects are right-justified because AIX is big-endian. 7239 if (LocSize > ValSize) 7240 CurArgOffset += LocSize - ValSize; 7241 // Potential tail calls could cause overwriting of argument stack slots. 7242 const bool IsImmutable = 7243 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7244 (CallConv == CallingConv::Fast)); 7245 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7246 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7247 SDValue ArgValue = 7248 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7249 InVals.push_back(ArgValue); 7250 continue; 7251 } 7252 } 7253 7254 // On AIX a minimum of 8 words is saved to the parameter save area. 7255 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7256 // Area that is at least reserved in the caller of this function. 7257 unsigned CallerReservedArea = 7258 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7259 7260 // Set the size that is at least reserved in caller of this function. Tail 7261 // call optimized function's reserved stack space needs to be aligned so 7262 // that taking the difference between two stack areas will result in an 7263 // aligned stack. 7264 CallerReservedArea = 7265 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7266 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7267 FuncInfo->setMinReservedArea(CallerReservedArea); 7268 7269 if (isVarArg) { 7270 FuncInfo->setVarArgsFrameIndex( 7271 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7272 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7273 7274 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7275 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7276 7277 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7278 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7279 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7280 7281 // The fixed integer arguments of a variadic function are stored to the 7282 // VarArgsFrameIndex on the stack so that they may be loaded by 7283 // dereferencing the result of va_next. 7284 for (unsigned GPRIndex = 7285 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7286 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7287 7288 const unsigned VReg = 7289 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7290 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7291 7292 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7293 SDValue Store = 7294 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7295 MemOps.push_back(Store); 7296 // Increment the address for the next argument to store. 7297 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7298 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7299 } 7300 } 7301 7302 if (!MemOps.empty()) 7303 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7304 7305 return Chain; 7306 } 7307 7308 SDValue PPCTargetLowering::LowerCall_AIX( 7309 SDValue Chain, SDValue Callee, CallFlags CFlags, 7310 const SmallVectorImpl<ISD::OutputArg> &Outs, 7311 const SmallVectorImpl<SDValue> &OutVals, 7312 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7313 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7314 const CallBase *CB) const { 7315 7316 assert((CFlags.CallConv == CallingConv::C || 7317 CFlags.CallConv == CallingConv::Cold || 7318 CFlags.CallConv == CallingConv::Fast) && 7319 "Unexpected calling convention!"); 7320 7321 if (CFlags.IsPatchPoint) 7322 report_fatal_error("This call type is unimplemented on AIX."); 7323 7324 const PPCSubtarget& Subtarget = 7325 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7326 if (Subtarget.hasQPX()) 7327 report_fatal_error("QPX is not supported on AIX."); 7328 if (Subtarget.hasAltivec()) 7329 report_fatal_error("Altivec support is unimplemented on AIX."); 7330 7331 MachineFunction &MF = DAG.getMachineFunction(); 7332 SmallVector<CCValAssign, 16> ArgLocs; 7333 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7334 *DAG.getContext()); 7335 7336 // Reserve space for the linkage save area (LSA) on the stack. 7337 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7338 // [SP][CR][LR][2 x reserved][TOC]. 7339 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7340 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7341 const bool IsPPC64 = Subtarget.isPPC64(); 7342 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7343 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7344 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7345 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7346 7347 // The prolog code of the callee may store up to 8 GPR argument registers to 7348 // the stack, allowing va_start to index over them in memory if the callee 7349 // is variadic. 7350 // Because we cannot tell if this is needed on the caller side, we have to 7351 // conservatively assume that it is needed. As such, make sure we have at 7352 // least enough stack space for the caller to store the 8 GPRs. 7353 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7354 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7355 CCInfo.getNextStackOffset()); 7356 7357 // Adjust the stack pointer for the new arguments... 7358 // These operations are automatically eliminated by the prolog/epilog pass. 7359 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7360 SDValue CallSeqStart = Chain; 7361 7362 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7363 SmallVector<SDValue, 8> MemOpChains; 7364 7365 // Set up a copy of the stack pointer for loading and storing any 7366 // arguments that may not fit in the registers available for argument 7367 // passing. 7368 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7369 : DAG.getRegister(PPC::R1, MVT::i32); 7370 7371 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7372 const unsigned ValNo = ArgLocs[I].getValNo(); 7373 SDValue Arg = OutVals[ValNo]; 7374 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7375 7376 if (Flags.isByVal()) { 7377 const unsigned ByValSize = Flags.getByValSize(); 7378 7379 // Nothing to do for zero-sized ByVals on the caller side. 7380 if (!ByValSize) { 7381 ++I; 7382 continue; 7383 } 7384 7385 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7386 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7387 (LoadOffset != 0) 7388 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7389 : Arg, 7390 MachinePointerInfo(), VT); 7391 }; 7392 7393 unsigned LoadOffset = 0; 7394 7395 // Initialize registers, which are fully occupied by the by-val argument. 7396 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7397 SDValue Load = GetLoad(PtrVT, LoadOffset); 7398 MemOpChains.push_back(Load.getValue(1)); 7399 LoadOffset += PtrByteSize; 7400 const CCValAssign &ByValVA = ArgLocs[I++]; 7401 assert(ByValVA.getValNo() == ValNo && 7402 "Unexpected location for pass-by-value argument."); 7403 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7404 } 7405 7406 if (LoadOffset == ByValSize) 7407 continue; 7408 7409 // There must be one more loc to handle the remainder. 7410 assert(ArgLocs[I].getValNo() == ValNo && 7411 "Expected additional location for by-value argument."); 7412 7413 if (ArgLocs[I].isMemLoc()) { 7414 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7415 const CCValAssign &ByValVA = ArgLocs[I++]; 7416 ISD::ArgFlagsTy MemcpyFlags = Flags; 7417 // Only memcpy the bytes that don't pass in register. 7418 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7419 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7420 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7421 : Arg, 7422 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7423 CallSeqStart, MemcpyFlags, DAG, dl); 7424 continue; 7425 } 7426 7427 // Initialize the final register residue. 7428 // Any residue that occupies the final by-val arg register must be 7429 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7430 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7431 // 2 and 1 byte loads. 7432 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7433 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7434 "Unexpected register residue for by-value argument."); 7435 SDValue ResidueVal; 7436 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7437 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7438 const MVT VT = 7439 N == 1 ? MVT::i8 7440 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7441 SDValue Load = GetLoad(VT, LoadOffset); 7442 MemOpChains.push_back(Load.getValue(1)); 7443 LoadOffset += N; 7444 Bytes += N; 7445 7446 // By-val arguments are passed left-justfied in register. 7447 // Every load here needs to be shifted, otherwise a full register load 7448 // should have been used. 7449 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7450 "Unexpected load emitted during handling of pass-by-value " 7451 "argument."); 7452 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7453 EVT ShiftAmountTy = 7454 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7455 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7456 SDValue ShiftedLoad = 7457 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7458 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7459 ShiftedLoad) 7460 : ShiftedLoad; 7461 } 7462 7463 const CCValAssign &ByValVA = ArgLocs[I++]; 7464 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7465 continue; 7466 } 7467 7468 CCValAssign &VA = ArgLocs[I++]; 7469 const MVT LocVT = VA.getLocVT(); 7470 const MVT ValVT = VA.getValVT(); 7471 7472 switch (VA.getLocInfo()) { 7473 default: 7474 report_fatal_error("Unexpected argument extension type."); 7475 case CCValAssign::Full: 7476 break; 7477 case CCValAssign::ZExt: 7478 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7479 break; 7480 case CCValAssign::SExt: 7481 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7482 break; 7483 } 7484 7485 if (VA.isRegLoc() && !VA.needsCustom()) { 7486 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7487 continue; 7488 } 7489 7490 if (VA.isMemLoc()) { 7491 SDValue PtrOff = 7492 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7493 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7494 MemOpChains.push_back( 7495 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7496 7497 continue; 7498 } 7499 7500 // Custom handling is used for GPR initializations for vararg float 7501 // arguments. 7502 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7503 ValVT.isFloatingPoint() && LocVT.isInteger() && 7504 "Unexpected register handling for calling convention."); 7505 7506 SDValue ArgAsInt = 7507 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7508 7509 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7510 // f32 in 32-bit GPR 7511 // f64 in 64-bit GPR 7512 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7513 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7514 // f32 in 64-bit GPR. 7515 RegsToPass.push_back(std::make_pair( 7516 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7517 else { 7518 // f64 in two 32-bit GPRs 7519 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7520 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7521 "Unexpected custom register for argument!"); 7522 CCValAssign &GPR1 = VA; 7523 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7524 DAG.getConstant(32, dl, MVT::i8)); 7525 RegsToPass.push_back(std::make_pair( 7526 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7527 7528 if (I != E) { 7529 // If only 1 GPR was available, there will only be one custom GPR and 7530 // the argument will also pass in memory. 7531 CCValAssign &PeekArg = ArgLocs[I]; 7532 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7533 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7534 CCValAssign &GPR2 = ArgLocs[I++]; 7535 RegsToPass.push_back(std::make_pair( 7536 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7537 } 7538 } 7539 } 7540 } 7541 7542 if (!MemOpChains.empty()) 7543 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7544 7545 // For indirect calls, we need to save the TOC base to the stack for 7546 // restoration after the call. 7547 if (CFlags.IsIndirect) { 7548 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7549 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7550 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7551 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7552 const unsigned TOCSaveOffset = 7553 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7554 7555 setUsesTOCBasePtr(DAG); 7556 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7557 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7558 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7559 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7560 Chain = DAG.getStore( 7561 Val.getValue(1), dl, Val, AddPtr, 7562 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7563 } 7564 7565 // Build a sequence of copy-to-reg nodes chained together with token chain 7566 // and flag operands which copy the outgoing args into the appropriate regs. 7567 SDValue InFlag; 7568 for (auto Reg : RegsToPass) { 7569 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7570 InFlag = Chain.getValue(1); 7571 } 7572 7573 const int SPDiff = 0; 7574 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7575 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7576 } 7577 7578 bool 7579 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7580 MachineFunction &MF, bool isVarArg, 7581 const SmallVectorImpl<ISD::OutputArg> &Outs, 7582 LLVMContext &Context) const { 7583 SmallVector<CCValAssign, 16> RVLocs; 7584 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7585 return CCInfo.CheckReturn( 7586 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7587 ? RetCC_PPC_Cold 7588 : RetCC_PPC); 7589 } 7590 7591 SDValue 7592 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7593 bool isVarArg, 7594 const SmallVectorImpl<ISD::OutputArg> &Outs, 7595 const SmallVectorImpl<SDValue> &OutVals, 7596 const SDLoc &dl, SelectionDAG &DAG) const { 7597 SmallVector<CCValAssign, 16> RVLocs; 7598 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7599 *DAG.getContext()); 7600 CCInfo.AnalyzeReturn(Outs, 7601 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7602 ? RetCC_PPC_Cold 7603 : RetCC_PPC); 7604 7605 SDValue Flag; 7606 SmallVector<SDValue, 4> RetOps(1, Chain); 7607 7608 // Copy the result values into the output registers. 7609 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7610 CCValAssign &VA = RVLocs[i]; 7611 assert(VA.isRegLoc() && "Can only return in registers!"); 7612 7613 SDValue Arg = OutVals[RealResIdx]; 7614 7615 switch (VA.getLocInfo()) { 7616 default: llvm_unreachable("Unknown loc info!"); 7617 case CCValAssign::Full: break; 7618 case CCValAssign::AExt: 7619 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7620 break; 7621 case CCValAssign::ZExt: 7622 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7623 break; 7624 case CCValAssign::SExt: 7625 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7626 break; 7627 } 7628 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7629 bool isLittleEndian = Subtarget.isLittleEndian(); 7630 // Legalize ret f64 -> ret 2 x i32. 7631 SDValue SVal = 7632 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7633 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7634 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7635 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7636 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7637 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7638 Flag = Chain.getValue(1); 7639 VA = RVLocs[++i]; // skip ahead to next loc 7640 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7641 } else 7642 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7643 Flag = Chain.getValue(1); 7644 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7645 } 7646 7647 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7648 const MCPhysReg *I = 7649 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7650 if (I) { 7651 for (; *I; ++I) { 7652 7653 if (PPC::G8RCRegClass.contains(*I)) 7654 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7655 else if (PPC::F8RCRegClass.contains(*I)) 7656 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7657 else if (PPC::CRRCRegClass.contains(*I)) 7658 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7659 else if (PPC::VRRCRegClass.contains(*I)) 7660 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7661 else 7662 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7663 } 7664 } 7665 7666 RetOps[0] = Chain; // Update chain. 7667 7668 // Add the flag if we have it. 7669 if (Flag.getNode()) 7670 RetOps.push_back(Flag); 7671 7672 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7673 } 7674 7675 SDValue 7676 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7677 SelectionDAG &DAG) const { 7678 SDLoc dl(Op); 7679 7680 // Get the correct type for integers. 7681 EVT IntVT = Op.getValueType(); 7682 7683 // Get the inputs. 7684 SDValue Chain = Op.getOperand(0); 7685 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7686 // Build a DYNAREAOFFSET node. 7687 SDValue Ops[2] = {Chain, FPSIdx}; 7688 SDVTList VTs = DAG.getVTList(IntVT); 7689 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7690 } 7691 7692 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7693 SelectionDAG &DAG) const { 7694 // When we pop the dynamic allocation we need to restore the SP link. 7695 SDLoc dl(Op); 7696 7697 // Get the correct type for pointers. 7698 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7699 7700 // Construct the stack pointer operand. 7701 bool isPPC64 = Subtarget.isPPC64(); 7702 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7703 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7704 7705 // Get the operands for the STACKRESTORE. 7706 SDValue Chain = Op.getOperand(0); 7707 SDValue SaveSP = Op.getOperand(1); 7708 7709 // Load the old link SP. 7710 SDValue LoadLinkSP = 7711 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7712 7713 // Restore the stack pointer. 7714 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7715 7716 // Store the old link SP. 7717 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7718 } 7719 7720 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7721 MachineFunction &MF = DAG.getMachineFunction(); 7722 bool isPPC64 = Subtarget.isPPC64(); 7723 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7724 7725 // Get current frame pointer save index. The users of this index will be 7726 // primarily DYNALLOC instructions. 7727 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7728 int RASI = FI->getReturnAddrSaveIndex(); 7729 7730 // If the frame pointer save index hasn't been defined yet. 7731 if (!RASI) { 7732 // Find out what the fix offset of the frame pointer save area. 7733 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7734 // Allocate the frame index for frame pointer save area. 7735 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7736 // Save the result. 7737 FI->setReturnAddrSaveIndex(RASI); 7738 } 7739 return DAG.getFrameIndex(RASI, PtrVT); 7740 } 7741 7742 SDValue 7743 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7744 MachineFunction &MF = DAG.getMachineFunction(); 7745 bool isPPC64 = Subtarget.isPPC64(); 7746 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7747 7748 // Get current frame pointer save index. The users of this index will be 7749 // primarily DYNALLOC instructions. 7750 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7751 int FPSI = FI->getFramePointerSaveIndex(); 7752 7753 // If the frame pointer save index hasn't been defined yet. 7754 if (!FPSI) { 7755 // Find out what the fix offset of the frame pointer save area. 7756 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7757 // Allocate the frame index for frame pointer save area. 7758 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7759 // Save the result. 7760 FI->setFramePointerSaveIndex(FPSI); 7761 } 7762 return DAG.getFrameIndex(FPSI, PtrVT); 7763 } 7764 7765 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7766 SelectionDAG &DAG) const { 7767 // Get the inputs. 7768 SDValue Chain = Op.getOperand(0); 7769 SDValue Size = Op.getOperand(1); 7770 SDLoc dl(Op); 7771 7772 // Get the correct type for pointers. 7773 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7774 // Negate the size. 7775 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7776 DAG.getConstant(0, dl, PtrVT), Size); 7777 // Construct a node for the frame pointer save index. 7778 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7779 // Build a DYNALLOC node. 7780 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7781 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7782 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7783 } 7784 7785 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7786 SelectionDAG &DAG) const { 7787 MachineFunction &MF = DAG.getMachineFunction(); 7788 7789 bool isPPC64 = Subtarget.isPPC64(); 7790 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7791 7792 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7793 return DAG.getFrameIndex(FI, PtrVT); 7794 } 7795 7796 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7797 SelectionDAG &DAG) const { 7798 SDLoc DL(Op); 7799 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7800 DAG.getVTList(MVT::i32, MVT::Other), 7801 Op.getOperand(0), Op.getOperand(1)); 7802 } 7803 7804 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7805 SelectionDAG &DAG) const { 7806 SDLoc DL(Op); 7807 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7808 Op.getOperand(0), Op.getOperand(1)); 7809 } 7810 7811 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7812 if (Op.getValueType().isVector()) 7813 return LowerVectorLoad(Op, DAG); 7814 7815 assert(Op.getValueType() == MVT::i1 && 7816 "Custom lowering only for i1 loads"); 7817 7818 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7819 7820 SDLoc dl(Op); 7821 LoadSDNode *LD = cast<LoadSDNode>(Op); 7822 7823 SDValue Chain = LD->getChain(); 7824 SDValue BasePtr = LD->getBasePtr(); 7825 MachineMemOperand *MMO = LD->getMemOperand(); 7826 7827 SDValue NewLD = 7828 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7829 BasePtr, MVT::i8, MMO); 7830 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7831 7832 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7833 return DAG.getMergeValues(Ops, dl); 7834 } 7835 7836 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7837 if (Op.getOperand(1).getValueType().isVector()) 7838 return LowerVectorStore(Op, DAG); 7839 7840 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7841 "Custom lowering only for i1 stores"); 7842 7843 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7844 7845 SDLoc dl(Op); 7846 StoreSDNode *ST = cast<StoreSDNode>(Op); 7847 7848 SDValue Chain = ST->getChain(); 7849 SDValue BasePtr = ST->getBasePtr(); 7850 SDValue Value = ST->getValue(); 7851 MachineMemOperand *MMO = ST->getMemOperand(); 7852 7853 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7854 Value); 7855 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7856 } 7857 7858 // FIXME: Remove this once the ANDI glue bug is fixed: 7859 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7860 assert(Op.getValueType() == MVT::i1 && 7861 "Custom lowering only for i1 results"); 7862 7863 SDLoc DL(Op); 7864 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7865 } 7866 7867 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7868 SelectionDAG &DAG) const { 7869 7870 // Implements a vector truncate that fits in a vector register as a shuffle. 7871 // We want to legalize vector truncates down to where the source fits in 7872 // a vector register (and target is therefore smaller than vector register 7873 // size). At that point legalization will try to custom lower the sub-legal 7874 // result and get here - where we can contain the truncate as a single target 7875 // operation. 7876 7877 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7878 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7879 // 7880 // We will implement it for big-endian ordering as this (where x denotes 7881 // undefined): 7882 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7883 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7884 // 7885 // The same operation in little-endian ordering will be: 7886 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7887 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7888 7889 assert(Op.getValueType().isVector() && "Vector type expected."); 7890 7891 SDLoc DL(Op); 7892 SDValue N1 = Op.getOperand(0); 7893 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7894 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7895 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7896 7897 EVT TrgVT = Op.getValueType(); 7898 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7899 EVT EltVT = TrgVT.getVectorElementType(); 7900 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7901 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7902 7903 // First list the elements we want to keep. 7904 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7905 SmallVector<int, 16> ShuffV; 7906 if (Subtarget.isLittleEndian()) 7907 for (unsigned i = 0; i < TrgNumElts; ++i) 7908 ShuffV.push_back(i * SizeMult); 7909 else 7910 for (unsigned i = 1; i <= TrgNumElts; ++i) 7911 ShuffV.push_back(i * SizeMult - 1); 7912 7913 // Populate the remaining elements with undefs. 7914 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7915 // ShuffV.push_back(i + WideNumElts); 7916 ShuffV.push_back(WideNumElts + 1); 7917 7918 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7919 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7920 } 7921 7922 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7923 /// possible. 7924 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7925 // Not FP? Not a fsel. 7926 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7927 !Op.getOperand(2).getValueType().isFloatingPoint()) 7928 return Op; 7929 7930 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7931 7932 EVT ResVT = Op.getValueType(); 7933 EVT CmpVT = Op.getOperand(0).getValueType(); 7934 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7935 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7936 SDLoc dl(Op); 7937 7938 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7939 // presence of infinities. 7940 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7941 switch (CC) { 7942 default: 7943 break; 7944 case ISD::SETOGT: 7945 case ISD::SETGT: 7946 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7947 case ISD::SETOLT: 7948 case ISD::SETLT: 7949 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7950 } 7951 } 7952 7953 // We might be able to do better than this under some circumstances, but in 7954 // general, fsel-based lowering of select is a finite-math-only optimization. 7955 // For more information, see section F.3 of the 2.06 ISA specification. 7956 // With ISA 3.0 7957 if (!DAG.getTarget().Options.NoInfsFPMath || 7958 !DAG.getTarget().Options.NoNaNsFPMath) 7959 return Op; 7960 7961 // TODO: Propagate flags from the select rather than global settings. 7962 SDNodeFlags Flags; 7963 Flags.setNoInfs(true); 7964 Flags.setNoNaNs(true); 7965 7966 // If the RHS of the comparison is a 0.0, we don't need to do the 7967 // subtraction at all. 7968 SDValue Sel1; 7969 if (isFloatingPointZero(RHS)) 7970 switch (CC) { 7971 default: break; // SETUO etc aren't handled by fsel. 7972 case ISD::SETNE: 7973 std::swap(TV, FV); 7974 LLVM_FALLTHROUGH; 7975 case ISD::SETEQ: 7976 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7977 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7978 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7979 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7980 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7981 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7982 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7983 case ISD::SETULT: 7984 case ISD::SETLT: 7985 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7986 LLVM_FALLTHROUGH; 7987 case ISD::SETOGE: 7988 case ISD::SETGE: 7989 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7990 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7991 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7992 case ISD::SETUGT: 7993 case ISD::SETGT: 7994 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7995 LLVM_FALLTHROUGH; 7996 case ISD::SETOLE: 7997 case ISD::SETLE: 7998 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7999 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8000 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8001 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8002 } 8003 8004 SDValue Cmp; 8005 switch (CC) { 8006 default: break; // SETUO etc aren't handled by fsel. 8007 case ISD::SETNE: 8008 std::swap(TV, FV); 8009 LLVM_FALLTHROUGH; 8010 case ISD::SETEQ: 8011 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8012 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8013 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8014 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8015 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8016 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8017 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8018 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8019 case ISD::SETULT: 8020 case ISD::SETLT: 8021 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8022 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8023 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8024 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8025 case ISD::SETOGE: 8026 case ISD::SETGE: 8027 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8028 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8029 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8030 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8031 case ISD::SETUGT: 8032 case ISD::SETGT: 8033 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8034 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8035 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8036 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8037 case ISD::SETOLE: 8038 case ISD::SETLE: 8039 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8040 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8041 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8042 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8043 } 8044 return Op; 8045 } 8046 8047 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8048 SelectionDAG &DAG, 8049 const SDLoc &dl) const { 8050 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8051 SDValue Src = Op.getOperand(0); 8052 if (Src.getValueType() == MVT::f32) 8053 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8054 8055 SDValue Tmp; 8056 switch (Op.getSimpleValueType().SimpleTy) { 8057 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8058 case MVT::i32: 8059 Tmp = DAG.getNode( 8060 Op.getOpcode() == ISD::FP_TO_SINT 8061 ? PPCISD::FCTIWZ 8062 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8063 dl, MVT::f64, Src); 8064 break; 8065 case MVT::i64: 8066 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8067 "i64 FP_TO_UINT is supported only with FPCVT"); 8068 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8069 PPCISD::FCTIDUZ, 8070 dl, MVT::f64, Src); 8071 break; 8072 } 8073 8074 // Convert the FP value to an int value through memory. 8075 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8076 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8077 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8078 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8079 MachinePointerInfo MPI = 8080 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8081 8082 // Emit a store to the stack slot. 8083 SDValue Chain; 8084 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8085 if (i32Stack) { 8086 MachineFunction &MF = DAG.getMachineFunction(); 8087 Alignment = Align(4); 8088 MachineMemOperand *MMO = 8089 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8090 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8091 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8092 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8093 } else 8094 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8095 8096 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8097 // add in a bias on big endian. 8098 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8099 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8100 DAG.getConstant(4, dl, FIPtr.getValueType())); 8101 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8102 } 8103 8104 RLI.Chain = Chain; 8105 RLI.Ptr = FIPtr; 8106 RLI.MPI = MPI; 8107 RLI.Alignment = Alignment; 8108 } 8109 8110 /// Custom lowers floating point to integer conversions to use 8111 /// the direct move instructions available in ISA 2.07 to avoid the 8112 /// need for load/store combinations. 8113 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8114 SelectionDAG &DAG, 8115 const SDLoc &dl) const { 8116 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8117 SDValue Src = Op.getOperand(0); 8118 8119 if (Src.getValueType() == MVT::f32) 8120 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8121 8122 SDValue Tmp; 8123 switch (Op.getSimpleValueType().SimpleTy) { 8124 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8125 case MVT::i32: 8126 Tmp = DAG.getNode( 8127 Op.getOpcode() == ISD::FP_TO_SINT 8128 ? PPCISD::FCTIWZ 8129 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8130 dl, MVT::f64, Src); 8131 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8132 break; 8133 case MVT::i64: 8134 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8135 "i64 FP_TO_UINT is supported only with FPCVT"); 8136 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8137 PPCISD::FCTIDUZ, 8138 dl, MVT::f64, Src); 8139 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8140 break; 8141 } 8142 return Tmp; 8143 } 8144 8145 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8146 const SDLoc &dl) const { 8147 8148 // FP to INT conversions are legal for f128. 8149 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8150 return Op; 8151 8152 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8153 // PPC (the libcall is not available). 8154 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8155 if (Op.getValueType() == MVT::i32) { 8156 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8157 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8158 MVT::f64, Op.getOperand(0), 8159 DAG.getIntPtrConstant(0, dl)); 8160 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8161 MVT::f64, Op.getOperand(0), 8162 DAG.getIntPtrConstant(1, dl)); 8163 8164 // Add the two halves of the long double in round-to-zero mode. 8165 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8166 8167 // Now use a smaller FP_TO_SINT. 8168 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8169 } 8170 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8171 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8172 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8173 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8174 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8175 // FIXME: generated code sucks. 8176 // TODO: Are there fast-math-flags to propagate to this FSUB? 8177 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8178 Op.getOperand(0), Tmp); 8179 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8180 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8181 DAG.getConstant(0x80000000, dl, MVT::i32)); 8182 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8183 Op.getOperand(0)); 8184 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8185 ISD::SETGE); 8186 } 8187 } 8188 8189 return SDValue(); 8190 } 8191 8192 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8193 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8194 8195 ReuseLoadInfo RLI; 8196 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8197 8198 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8199 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8200 } 8201 8202 // We're trying to insert a regular store, S, and then a load, L. If the 8203 // incoming value, O, is a load, we might just be able to have our load use the 8204 // address used by O. However, we don't know if anything else will store to 8205 // that address before we can load from it. To prevent this situation, we need 8206 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8207 // the same chain operand as O, we create a token factor from the chain results 8208 // of O and L, and we replace all uses of O's chain result with that token 8209 // factor (see spliceIntoChain below for this last part). 8210 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8211 ReuseLoadInfo &RLI, 8212 SelectionDAG &DAG, 8213 ISD::LoadExtType ET) const { 8214 SDLoc dl(Op); 8215 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8216 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8217 if (ET == ISD::NON_EXTLOAD && 8218 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8219 isOperationLegalOrCustom(Op.getOpcode(), 8220 Op.getOperand(0).getValueType())) { 8221 8222 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8223 return true; 8224 } 8225 8226 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8227 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8228 LD->isNonTemporal()) 8229 return false; 8230 if (LD->getMemoryVT() != MemVT) 8231 return false; 8232 8233 RLI.Ptr = LD->getBasePtr(); 8234 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8235 assert(LD->getAddressingMode() == ISD::PRE_INC && 8236 "Non-pre-inc AM on PPC?"); 8237 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8238 LD->getOffset()); 8239 } 8240 8241 RLI.Chain = LD->getChain(); 8242 RLI.MPI = LD->getPointerInfo(); 8243 RLI.IsDereferenceable = LD->isDereferenceable(); 8244 RLI.IsInvariant = LD->isInvariant(); 8245 RLI.Alignment = LD->getAlign(); 8246 RLI.AAInfo = LD->getAAInfo(); 8247 RLI.Ranges = LD->getRanges(); 8248 8249 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8250 return true; 8251 } 8252 8253 // Given the head of the old chain, ResChain, insert a token factor containing 8254 // it and NewResChain, and make users of ResChain now be users of that token 8255 // factor. 8256 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8257 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8258 SDValue NewResChain, 8259 SelectionDAG &DAG) const { 8260 if (!ResChain) 8261 return; 8262 8263 SDLoc dl(NewResChain); 8264 8265 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8266 NewResChain, DAG.getUNDEF(MVT::Other)); 8267 assert(TF.getNode() != NewResChain.getNode() && 8268 "A new TF really is required here"); 8269 8270 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8271 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8272 } 8273 8274 /// Analyze profitability of direct move 8275 /// prefer float load to int load plus direct move 8276 /// when there is no integer use of int load 8277 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8278 SDNode *Origin = Op.getOperand(0).getNode(); 8279 if (Origin->getOpcode() != ISD::LOAD) 8280 return true; 8281 8282 // If there is no LXSIBZX/LXSIHZX, like Power8, 8283 // prefer direct move if the memory size is 1 or 2 bytes. 8284 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8285 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8286 return true; 8287 8288 for (SDNode::use_iterator UI = Origin->use_begin(), 8289 UE = Origin->use_end(); 8290 UI != UE; ++UI) { 8291 8292 // Only look at the users of the loaded value. 8293 if (UI.getUse().get().getResNo() != 0) 8294 continue; 8295 8296 if (UI->getOpcode() != ISD::SINT_TO_FP && 8297 UI->getOpcode() != ISD::UINT_TO_FP) 8298 return true; 8299 } 8300 8301 return false; 8302 } 8303 8304 /// Custom lowers integer to floating point conversions to use 8305 /// the direct move instructions available in ISA 2.07 to avoid the 8306 /// need for load/store combinations. 8307 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8308 SelectionDAG &DAG, 8309 const SDLoc &dl) const { 8310 assert((Op.getValueType() == MVT::f32 || 8311 Op.getValueType() == MVT::f64) && 8312 "Invalid floating point type as target of conversion"); 8313 assert(Subtarget.hasFPCVT() && 8314 "Int to FP conversions with direct moves require FPCVT"); 8315 SDValue FP; 8316 SDValue Src = Op.getOperand(0); 8317 bool SinglePrec = Op.getValueType() == MVT::f32; 8318 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8319 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8320 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8321 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8322 8323 if (WordInt) { 8324 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8325 dl, MVT::f64, Src); 8326 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8327 } 8328 else { 8329 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8330 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8331 } 8332 8333 return FP; 8334 } 8335 8336 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8337 8338 EVT VecVT = Vec.getValueType(); 8339 assert(VecVT.isVector() && "Expected a vector type."); 8340 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8341 8342 EVT EltVT = VecVT.getVectorElementType(); 8343 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8344 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8345 8346 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8347 SmallVector<SDValue, 16> Ops(NumConcat); 8348 Ops[0] = Vec; 8349 SDValue UndefVec = DAG.getUNDEF(VecVT); 8350 for (unsigned i = 1; i < NumConcat; ++i) 8351 Ops[i] = UndefVec; 8352 8353 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8354 } 8355 8356 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8357 const SDLoc &dl) const { 8358 8359 unsigned Opc = Op.getOpcode(); 8360 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8361 "Unexpected conversion type"); 8362 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8363 "Supports conversions to v2f64/v4f32 only."); 8364 8365 bool SignedConv = Opc == ISD::SINT_TO_FP; 8366 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8367 8368 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8369 EVT WideVT = Wide.getValueType(); 8370 unsigned WideNumElts = WideVT.getVectorNumElements(); 8371 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8372 8373 SmallVector<int, 16> ShuffV; 8374 for (unsigned i = 0; i < WideNumElts; ++i) 8375 ShuffV.push_back(i + WideNumElts); 8376 8377 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8378 int SaveElts = FourEltRes ? 4 : 2; 8379 if (Subtarget.isLittleEndian()) 8380 for (int i = 0; i < SaveElts; i++) 8381 ShuffV[i * Stride] = i; 8382 else 8383 for (int i = 1; i <= SaveElts; i++) 8384 ShuffV[i * Stride - 1] = i - 1; 8385 8386 SDValue ShuffleSrc2 = 8387 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8388 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8389 8390 SDValue Extend; 8391 if (SignedConv) { 8392 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8393 EVT ExtVT = Op.getOperand(0).getValueType(); 8394 if (Subtarget.hasP9Altivec()) 8395 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8396 IntermediateVT.getVectorNumElements()); 8397 8398 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8399 DAG.getValueType(ExtVT)); 8400 } else 8401 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8402 8403 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8404 } 8405 8406 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8407 SelectionDAG &DAG) const { 8408 SDLoc dl(Op); 8409 8410 EVT InVT = Op.getOperand(0).getValueType(); 8411 EVT OutVT = Op.getValueType(); 8412 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8413 isOperationCustom(Op.getOpcode(), InVT)) 8414 return LowerINT_TO_FPVector(Op, DAG, dl); 8415 8416 // Conversions to f128 are legal. 8417 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8418 return Op; 8419 8420 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8421 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8422 return SDValue(); 8423 8424 SDValue Value = Op.getOperand(0); 8425 // The values are now known to be -1 (false) or 1 (true). To convert this 8426 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8427 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8428 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8429 8430 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8431 8432 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8433 8434 if (Op.getValueType() != MVT::v4f64) 8435 Value = DAG.getNode(ISD::FP_ROUND, dl, 8436 Op.getValueType(), Value, 8437 DAG.getIntPtrConstant(1, dl)); 8438 return Value; 8439 } 8440 8441 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8442 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8443 return SDValue(); 8444 8445 if (Op.getOperand(0).getValueType() == MVT::i1) 8446 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8447 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8448 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8449 8450 // If we have direct moves, we can do all the conversion, skip the store/load 8451 // however, without FPCVT we can't do most conversions. 8452 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8453 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8454 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8455 8456 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8457 "UINT_TO_FP is supported only with FPCVT"); 8458 8459 // If we have FCFIDS, then use it when converting to single-precision. 8460 // Otherwise, convert to double-precision and then round. 8461 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8462 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8463 : PPCISD::FCFIDS) 8464 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8465 : PPCISD::FCFID); 8466 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8467 ? MVT::f32 8468 : MVT::f64; 8469 8470 if (Op.getOperand(0).getValueType() == MVT::i64) { 8471 SDValue SINT = Op.getOperand(0); 8472 // When converting to single-precision, we actually need to convert 8473 // to double-precision first and then round to single-precision. 8474 // To avoid double-rounding effects during that operation, we have 8475 // to prepare the input operand. Bits that might be truncated when 8476 // converting to double-precision are replaced by a bit that won't 8477 // be lost at this stage, but is below the single-precision rounding 8478 // position. 8479 // 8480 // However, if -enable-unsafe-fp-math is in effect, accept double 8481 // rounding to avoid the extra overhead. 8482 if (Op.getValueType() == MVT::f32 && 8483 !Subtarget.hasFPCVT() && 8484 !DAG.getTarget().Options.UnsafeFPMath) { 8485 8486 // Twiddle input to make sure the low 11 bits are zero. (If this 8487 // is the case, we are guaranteed the value will fit into the 53 bit 8488 // mantissa of an IEEE double-precision value without rounding.) 8489 // If any of those low 11 bits were not zero originally, make sure 8490 // bit 12 (value 2048) is set instead, so that the final rounding 8491 // to single-precision gets the correct result. 8492 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8493 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8494 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8495 Round, DAG.getConstant(2047, dl, MVT::i64)); 8496 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8497 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8498 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8499 8500 // However, we cannot use that value unconditionally: if the magnitude 8501 // of the input value is small, the bit-twiddling we did above might 8502 // end up visibly changing the output. Fortunately, in that case, we 8503 // don't need to twiddle bits since the original input will convert 8504 // exactly to double-precision floating-point already. Therefore, 8505 // construct a conditional to use the original value if the top 11 8506 // bits are all sign-bit copies, and use the rounded value computed 8507 // above otherwise. 8508 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8509 SINT, DAG.getConstant(53, dl, MVT::i32)); 8510 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8511 Cond, DAG.getConstant(1, dl, MVT::i64)); 8512 Cond = DAG.getSetCC( 8513 dl, 8514 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8515 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8516 8517 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8518 } 8519 8520 ReuseLoadInfo RLI; 8521 SDValue Bits; 8522 8523 MachineFunction &MF = DAG.getMachineFunction(); 8524 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8525 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8526 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8527 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8528 } else if (Subtarget.hasLFIWAX() && 8529 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8530 MachineMemOperand *MMO = 8531 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8532 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8533 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8534 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8535 DAG.getVTList(MVT::f64, MVT::Other), 8536 Ops, MVT::i32, MMO); 8537 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8538 } else if (Subtarget.hasFPCVT() && 8539 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8540 MachineMemOperand *MMO = 8541 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8542 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8543 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8544 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8545 DAG.getVTList(MVT::f64, MVT::Other), 8546 Ops, MVT::i32, MMO); 8547 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8548 } else if (((Subtarget.hasLFIWAX() && 8549 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8550 (Subtarget.hasFPCVT() && 8551 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8552 SINT.getOperand(0).getValueType() == MVT::i32) { 8553 MachineFrameInfo &MFI = MF.getFrameInfo(); 8554 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8555 8556 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8557 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8558 8559 SDValue Store = 8560 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8561 MachinePointerInfo::getFixedStack( 8562 DAG.getMachineFunction(), FrameIdx)); 8563 8564 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8565 "Expected an i32 store"); 8566 8567 RLI.Ptr = FIdx; 8568 RLI.Chain = Store; 8569 RLI.MPI = 8570 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8571 RLI.Alignment = Align(4); 8572 8573 MachineMemOperand *MMO = 8574 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8575 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8576 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8577 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8578 PPCISD::LFIWZX : PPCISD::LFIWAX, 8579 dl, DAG.getVTList(MVT::f64, MVT::Other), 8580 Ops, MVT::i32, MMO); 8581 } else 8582 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8583 8584 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8585 8586 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8587 FP = DAG.getNode(ISD::FP_ROUND, dl, 8588 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8589 return FP; 8590 } 8591 8592 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8593 "Unhandled INT_TO_FP type in custom expander!"); 8594 // Since we only generate this in 64-bit mode, we can take advantage of 8595 // 64-bit registers. In particular, sign extend the input value into the 8596 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8597 // then lfd it and fcfid it. 8598 MachineFunction &MF = DAG.getMachineFunction(); 8599 MachineFrameInfo &MFI = MF.getFrameInfo(); 8600 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8601 8602 SDValue Ld; 8603 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8604 ReuseLoadInfo RLI; 8605 bool ReusingLoad; 8606 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8607 DAG))) { 8608 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8609 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8610 8611 SDValue Store = 8612 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8613 MachinePointerInfo::getFixedStack( 8614 DAG.getMachineFunction(), FrameIdx)); 8615 8616 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8617 "Expected an i32 store"); 8618 8619 RLI.Ptr = FIdx; 8620 RLI.Chain = Store; 8621 RLI.MPI = 8622 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8623 RLI.Alignment = Align(4); 8624 } 8625 8626 MachineMemOperand *MMO = 8627 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8628 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8629 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8630 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8631 PPCISD::LFIWZX : PPCISD::LFIWAX, 8632 dl, DAG.getVTList(MVT::f64, MVT::Other), 8633 Ops, MVT::i32, MMO); 8634 if (ReusingLoad) 8635 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8636 } else { 8637 assert(Subtarget.isPPC64() && 8638 "i32->FP without LFIWAX supported only on PPC64"); 8639 8640 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8641 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8642 8643 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8644 Op.getOperand(0)); 8645 8646 // STD the extended value into the stack slot. 8647 SDValue Store = DAG.getStore( 8648 DAG.getEntryNode(), dl, Ext64, FIdx, 8649 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8650 8651 // Load the value as a double. 8652 Ld = DAG.getLoad( 8653 MVT::f64, dl, Store, FIdx, 8654 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8655 } 8656 8657 // FCFID it and return it. 8658 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8659 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8660 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8661 DAG.getIntPtrConstant(0, dl)); 8662 return FP; 8663 } 8664 8665 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8666 SelectionDAG &DAG) const { 8667 SDLoc dl(Op); 8668 /* 8669 The rounding mode is in bits 30:31 of FPSR, and has the following 8670 settings: 8671 00 Round to nearest 8672 01 Round to 0 8673 10 Round to +inf 8674 11 Round to -inf 8675 8676 FLT_ROUNDS, on the other hand, expects the following: 8677 -1 Undefined 8678 0 Round to 0 8679 1 Round to nearest 8680 2 Round to +inf 8681 3 Round to -inf 8682 8683 To perform the conversion, we do: 8684 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8685 */ 8686 8687 MachineFunction &MF = DAG.getMachineFunction(); 8688 EVT VT = Op.getValueType(); 8689 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8690 8691 // Save FP Control Word to register 8692 SDValue Chain = Op.getOperand(0); 8693 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8694 Chain = MFFS.getValue(1); 8695 8696 // Save FP register to stack slot 8697 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8698 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8699 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8700 8701 // Load FP Control Word from low 32 bits of stack slot. 8702 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8703 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8704 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8705 Chain = CWD.getValue(1); 8706 8707 // Transform as necessary 8708 SDValue CWD1 = 8709 DAG.getNode(ISD::AND, dl, MVT::i32, 8710 CWD, DAG.getConstant(3, dl, MVT::i32)); 8711 SDValue CWD2 = 8712 DAG.getNode(ISD::SRL, dl, MVT::i32, 8713 DAG.getNode(ISD::AND, dl, MVT::i32, 8714 DAG.getNode(ISD::XOR, dl, MVT::i32, 8715 CWD, DAG.getConstant(3, dl, MVT::i32)), 8716 DAG.getConstant(3, dl, MVT::i32)), 8717 DAG.getConstant(1, dl, MVT::i32)); 8718 8719 SDValue RetVal = 8720 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8721 8722 RetVal = 8723 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8724 dl, VT, RetVal); 8725 8726 return DAG.getMergeValues({RetVal, Chain}, dl); 8727 } 8728 8729 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8730 EVT VT = Op.getValueType(); 8731 unsigned BitWidth = VT.getSizeInBits(); 8732 SDLoc dl(Op); 8733 assert(Op.getNumOperands() == 3 && 8734 VT == Op.getOperand(1).getValueType() && 8735 "Unexpected SHL!"); 8736 8737 // Expand into a bunch of logical ops. Note that these ops 8738 // depend on the PPC behavior for oversized shift amounts. 8739 SDValue Lo = Op.getOperand(0); 8740 SDValue Hi = Op.getOperand(1); 8741 SDValue Amt = Op.getOperand(2); 8742 EVT AmtVT = Amt.getValueType(); 8743 8744 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8745 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8746 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8747 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8748 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8749 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8750 DAG.getConstant(-BitWidth, dl, AmtVT)); 8751 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8752 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8753 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8754 SDValue OutOps[] = { OutLo, OutHi }; 8755 return DAG.getMergeValues(OutOps, dl); 8756 } 8757 8758 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8759 EVT VT = Op.getValueType(); 8760 SDLoc dl(Op); 8761 unsigned BitWidth = VT.getSizeInBits(); 8762 assert(Op.getNumOperands() == 3 && 8763 VT == Op.getOperand(1).getValueType() && 8764 "Unexpected SRL!"); 8765 8766 // Expand into a bunch of logical ops. Note that these ops 8767 // depend on the PPC behavior for oversized shift amounts. 8768 SDValue Lo = Op.getOperand(0); 8769 SDValue Hi = Op.getOperand(1); 8770 SDValue Amt = Op.getOperand(2); 8771 EVT AmtVT = Amt.getValueType(); 8772 8773 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8774 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8775 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8776 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8777 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8778 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8779 DAG.getConstant(-BitWidth, dl, AmtVT)); 8780 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8781 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8782 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8783 SDValue OutOps[] = { OutLo, OutHi }; 8784 return DAG.getMergeValues(OutOps, dl); 8785 } 8786 8787 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8788 SDLoc dl(Op); 8789 EVT VT = Op.getValueType(); 8790 unsigned BitWidth = VT.getSizeInBits(); 8791 assert(Op.getNumOperands() == 3 && 8792 VT == Op.getOperand(1).getValueType() && 8793 "Unexpected SRA!"); 8794 8795 // Expand into a bunch of logical ops, followed by a select_cc. 8796 SDValue Lo = Op.getOperand(0); 8797 SDValue Hi = Op.getOperand(1); 8798 SDValue Amt = Op.getOperand(2); 8799 EVT AmtVT = Amt.getValueType(); 8800 8801 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8802 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8803 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8804 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8805 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8806 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8807 DAG.getConstant(-BitWidth, dl, AmtVT)); 8808 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8809 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8810 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8811 Tmp4, Tmp6, ISD::SETLE); 8812 SDValue OutOps[] = { OutLo, OutHi }; 8813 return DAG.getMergeValues(OutOps, dl); 8814 } 8815 8816 //===----------------------------------------------------------------------===// 8817 // Vector related lowering. 8818 // 8819 8820 /// BuildSplatI - Build a canonical splati of Val with an element size of 8821 /// SplatSize. Cast the result to VT. 8822 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8823 SelectionDAG &DAG, const SDLoc &dl) { 8824 static const MVT VTys[] = { // canonical VT to use for each size. 8825 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8826 }; 8827 8828 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8829 8830 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8831 if (Val == -1) 8832 SplatSize = 1; 8833 8834 EVT CanonicalVT = VTys[SplatSize-1]; 8835 8836 // Build a canonical splat for this value. 8837 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8838 } 8839 8840 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8841 /// specified intrinsic ID. 8842 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8843 const SDLoc &dl, EVT DestVT = MVT::Other) { 8844 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8845 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8846 DAG.getConstant(IID, dl, MVT::i32), Op); 8847 } 8848 8849 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8850 /// specified intrinsic ID. 8851 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8852 SelectionDAG &DAG, const SDLoc &dl, 8853 EVT DestVT = MVT::Other) { 8854 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8855 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8856 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8857 } 8858 8859 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8860 /// specified intrinsic ID. 8861 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8862 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8863 EVT DestVT = MVT::Other) { 8864 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8865 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8866 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8867 } 8868 8869 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8870 /// amount. The result has the specified value type. 8871 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8872 SelectionDAG &DAG, const SDLoc &dl) { 8873 // Force LHS/RHS to be the right type. 8874 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8875 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8876 8877 int Ops[16]; 8878 for (unsigned i = 0; i != 16; ++i) 8879 Ops[i] = i + Amt; 8880 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8881 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8882 } 8883 8884 /// Do we have an efficient pattern in a .td file for this node? 8885 /// 8886 /// \param V - pointer to the BuildVectorSDNode being matched 8887 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8888 /// 8889 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8890 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8891 /// the opposite is true (expansion is beneficial) are: 8892 /// - The node builds a vector out of integers that are not 32 or 64-bits 8893 /// - The node builds a vector out of constants 8894 /// - The node is a "load-and-splat" 8895 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8896 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8897 bool HasDirectMove, 8898 bool HasP8Vector) { 8899 EVT VecVT = V->getValueType(0); 8900 bool RightType = VecVT == MVT::v2f64 || 8901 (HasP8Vector && VecVT == MVT::v4f32) || 8902 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8903 if (!RightType) 8904 return false; 8905 8906 bool IsSplat = true; 8907 bool IsLoad = false; 8908 SDValue Op0 = V->getOperand(0); 8909 8910 // This function is called in a block that confirms the node is not a constant 8911 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8912 // different constants. 8913 if (V->isConstant()) 8914 return false; 8915 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8916 if (V->getOperand(i).isUndef()) 8917 return false; 8918 // We want to expand nodes that represent load-and-splat even if the 8919 // loaded value is a floating point truncation or conversion to int. 8920 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8921 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8922 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8923 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8924 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8925 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8926 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8927 IsLoad = true; 8928 // If the operands are different or the input is not a load and has more 8929 // uses than just this BV node, then it isn't a splat. 8930 if (V->getOperand(i) != Op0 || 8931 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8932 IsSplat = false; 8933 } 8934 return !(IsSplat && IsLoad); 8935 } 8936 8937 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8938 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8939 8940 SDLoc dl(Op); 8941 SDValue Op0 = Op->getOperand(0); 8942 8943 if (!EnableQuadPrecision || 8944 (Op.getValueType() != MVT::f128 ) || 8945 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8946 (Op0.getOperand(0).getValueType() != MVT::i64) || 8947 (Op0.getOperand(1).getValueType() != MVT::i64)) 8948 return SDValue(); 8949 8950 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8951 Op0.getOperand(1)); 8952 } 8953 8954 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8955 const SDValue *InputLoad = &Op; 8956 if (InputLoad->getOpcode() == ISD::BITCAST) 8957 InputLoad = &InputLoad->getOperand(0); 8958 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8959 InputLoad = &InputLoad->getOperand(0); 8960 if (InputLoad->getOpcode() != ISD::LOAD) 8961 return nullptr; 8962 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8963 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8964 } 8965 8966 // If this is a case we can't handle, return null and let the default 8967 // expansion code take care of it. If we CAN select this case, and if it 8968 // selects to a single instruction, return Op. Otherwise, if we can codegen 8969 // this case more efficiently than a constant pool load, lower it to the 8970 // sequence of ops that should be used. 8971 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8972 SelectionDAG &DAG) const { 8973 SDLoc dl(Op); 8974 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8975 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8976 8977 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8978 // We first build an i32 vector, load it into a QPX register, 8979 // then convert it to a floating-point vector and compare it 8980 // to a zero vector to get the boolean result. 8981 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8982 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8983 MachinePointerInfo PtrInfo = 8984 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8985 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8986 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8987 8988 assert(BVN->getNumOperands() == 4 && 8989 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8990 8991 bool IsConst = true; 8992 for (unsigned i = 0; i < 4; ++i) { 8993 if (BVN->getOperand(i).isUndef()) continue; 8994 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8995 IsConst = false; 8996 break; 8997 } 8998 } 8999 9000 if (IsConst) { 9001 Constant *One = 9002 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9003 Constant *NegOne = 9004 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9005 9006 Constant *CV[4]; 9007 for (unsigned i = 0; i < 4; ++i) { 9008 if (BVN->getOperand(i).isUndef()) 9009 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9010 else if (isNullConstant(BVN->getOperand(i))) 9011 CV[i] = NegOne; 9012 else 9013 CV[i] = One; 9014 } 9015 9016 Constant *CP = ConstantVector::get(CV); 9017 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 9018 16 /* alignment */); 9019 9020 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9021 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9022 return DAG.getMemIntrinsicNode( 9023 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9024 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9025 } 9026 9027 SmallVector<SDValue, 4> Stores; 9028 for (unsigned i = 0; i < 4; ++i) { 9029 if (BVN->getOperand(i).isUndef()) continue; 9030 9031 unsigned Offset = 4*i; 9032 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9033 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9034 9035 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9036 if (StoreSize > 4) { 9037 Stores.push_back( 9038 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9039 PtrInfo.getWithOffset(Offset), MVT::i32)); 9040 } else { 9041 SDValue StoreValue = BVN->getOperand(i); 9042 if (StoreSize < 4) 9043 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9044 9045 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9046 PtrInfo.getWithOffset(Offset))); 9047 } 9048 } 9049 9050 SDValue StoreChain; 9051 if (!Stores.empty()) 9052 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9053 else 9054 StoreChain = DAG.getEntryNode(); 9055 9056 // Now load from v4i32 into the QPX register; this will extend it to 9057 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9058 // is typed as v4f64 because the QPX register integer states are not 9059 // explicitly represented. 9060 9061 SDValue Ops[] = {StoreChain, 9062 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9063 FIdx}; 9064 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9065 9066 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9067 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9068 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9069 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9070 LoadedVect); 9071 9072 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9073 9074 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9075 } 9076 9077 // All other QPX vectors are handled by generic code. 9078 if (Subtarget.hasQPX()) 9079 return SDValue(); 9080 9081 // Check if this is a splat of a constant value. 9082 APInt APSplatBits, APSplatUndef; 9083 unsigned SplatBitSize; 9084 bool HasAnyUndefs; 9085 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9086 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9087 SplatBitSize > 32) { 9088 9089 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9090 // Handle load-and-splat patterns as we have instructions that will do this 9091 // in one go. 9092 if (InputLoad && DAG.isSplatValue(Op, true)) { 9093 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9094 9095 // We have handling for 4 and 8 byte elements. 9096 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9097 9098 // Checking for a single use of this load, we have to check for vector 9099 // width (128 bits) / ElementSize uses (since each operand of the 9100 // BUILD_VECTOR is a separate use of the value. 9101 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9102 ((Subtarget.hasVSX() && ElementSize == 64) || 9103 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9104 SDValue Ops[] = { 9105 LD->getChain(), // Chain 9106 LD->getBasePtr(), // Ptr 9107 DAG.getValueType(Op.getValueType()) // VT 9108 }; 9109 return 9110 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9111 DAG.getVTList(Op.getValueType(), MVT::Other), 9112 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9113 } 9114 } 9115 9116 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9117 // lowered to VSX instructions under certain conditions. 9118 // Without VSX, there is no pattern more efficient than expanding the node. 9119 if (Subtarget.hasVSX() && 9120 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9121 Subtarget.hasP8Vector())) 9122 return Op; 9123 return SDValue(); 9124 } 9125 9126 unsigned SplatBits = APSplatBits.getZExtValue(); 9127 unsigned SplatUndef = APSplatUndef.getZExtValue(); 9128 unsigned SplatSize = SplatBitSize / 8; 9129 9130 // First, handle single instruction cases. 9131 9132 // All zeros? 9133 if (SplatBits == 0) { 9134 // Canonicalize all zero vectors to be v4i32. 9135 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9136 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9137 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9138 } 9139 return Op; 9140 } 9141 9142 // We have XXSPLTIB for constant splats one byte wide 9143 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 9144 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 9145 if (Subtarget.hasP9Vector() && SplatSize == 1) 9146 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 9147 9148 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9149 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9150 (32-SplatBitSize)); 9151 if (SextVal >= -16 && SextVal <= 15) 9152 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 9153 9154 // Two instruction sequences. 9155 9156 // If this value is in the range [-32,30] and is even, use: 9157 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9158 // If this value is in the range [17,31] and is odd, use: 9159 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9160 // If this value is in the range [-31,-17] and is odd, use: 9161 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9162 // Note the last two are three-instruction sequences. 9163 if (SextVal >= -32 && SextVal <= 31) { 9164 // To avoid having these optimizations undone by constant folding, 9165 // we convert to a pseudo that will be expanded later into one of 9166 // the above forms. 9167 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9168 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9169 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9170 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9171 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9172 if (VT == Op.getValueType()) 9173 return RetVal; 9174 else 9175 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9176 } 9177 9178 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9179 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9180 // for fneg/fabs. 9181 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9182 // Make -1 and vspltisw -1: 9183 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 9184 9185 // Make the VSLW intrinsic, computing 0x8000_0000. 9186 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9187 OnesV, DAG, dl); 9188 9189 // xor by OnesV to invert it. 9190 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9191 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9192 } 9193 9194 // Check to see if this is a wide variety of vsplti*, binop self cases. 9195 static const signed char SplatCsts[] = { 9196 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9197 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9198 }; 9199 9200 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9201 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9202 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9203 int i = SplatCsts[idx]; 9204 9205 // Figure out what shift amount will be used by altivec if shifted by i in 9206 // this splat size. 9207 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9208 9209 // vsplti + shl self. 9210 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9211 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9212 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9213 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9214 Intrinsic::ppc_altivec_vslw 9215 }; 9216 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9217 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9218 } 9219 9220 // vsplti + srl self. 9221 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9222 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9223 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9224 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9225 Intrinsic::ppc_altivec_vsrw 9226 }; 9227 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9228 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9229 } 9230 9231 // vsplti + sra self. 9232 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9233 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9234 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9235 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9236 Intrinsic::ppc_altivec_vsraw 9237 }; 9238 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9239 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9240 } 9241 9242 // vsplti + rol self. 9243 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9244 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9245 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9246 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9247 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9248 Intrinsic::ppc_altivec_vrlw 9249 }; 9250 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9251 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9252 } 9253 9254 // t = vsplti c, result = vsldoi t, t, 1 9255 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9256 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9257 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9258 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9259 } 9260 // t = vsplti c, result = vsldoi t, t, 2 9261 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9262 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9263 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9264 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9265 } 9266 // t = vsplti c, result = vsldoi t, t, 3 9267 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9268 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9269 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9270 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9271 } 9272 } 9273 9274 return SDValue(); 9275 } 9276 9277 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9278 /// the specified operations to build the shuffle. 9279 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9280 SDValue RHS, SelectionDAG &DAG, 9281 const SDLoc &dl) { 9282 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9283 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9284 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9285 9286 enum { 9287 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9288 OP_VMRGHW, 9289 OP_VMRGLW, 9290 OP_VSPLTISW0, 9291 OP_VSPLTISW1, 9292 OP_VSPLTISW2, 9293 OP_VSPLTISW3, 9294 OP_VSLDOI4, 9295 OP_VSLDOI8, 9296 OP_VSLDOI12 9297 }; 9298 9299 if (OpNum == OP_COPY) { 9300 if (LHSID == (1*9+2)*9+3) return LHS; 9301 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9302 return RHS; 9303 } 9304 9305 SDValue OpLHS, OpRHS; 9306 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9307 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9308 9309 int ShufIdxs[16]; 9310 switch (OpNum) { 9311 default: llvm_unreachable("Unknown i32 permute!"); 9312 case OP_VMRGHW: 9313 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9314 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9315 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9316 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9317 break; 9318 case OP_VMRGLW: 9319 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9320 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9321 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9322 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9323 break; 9324 case OP_VSPLTISW0: 9325 for (unsigned i = 0; i != 16; ++i) 9326 ShufIdxs[i] = (i&3)+0; 9327 break; 9328 case OP_VSPLTISW1: 9329 for (unsigned i = 0; i != 16; ++i) 9330 ShufIdxs[i] = (i&3)+4; 9331 break; 9332 case OP_VSPLTISW2: 9333 for (unsigned i = 0; i != 16; ++i) 9334 ShufIdxs[i] = (i&3)+8; 9335 break; 9336 case OP_VSPLTISW3: 9337 for (unsigned i = 0; i != 16; ++i) 9338 ShufIdxs[i] = (i&3)+12; 9339 break; 9340 case OP_VSLDOI4: 9341 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9342 case OP_VSLDOI8: 9343 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9344 case OP_VSLDOI12: 9345 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9346 } 9347 EVT VT = OpLHS.getValueType(); 9348 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9349 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9350 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9351 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9352 } 9353 9354 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9355 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9356 /// SDValue. 9357 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9358 SelectionDAG &DAG) const { 9359 const unsigned BytesInVector = 16; 9360 bool IsLE = Subtarget.isLittleEndian(); 9361 SDLoc dl(N); 9362 SDValue V1 = N->getOperand(0); 9363 SDValue V2 = N->getOperand(1); 9364 unsigned ShiftElts = 0, InsertAtByte = 0; 9365 bool Swap = false; 9366 9367 // Shifts required to get the byte we want at element 7. 9368 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9369 0, 15, 14, 13, 12, 11, 10, 9}; 9370 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9371 1, 2, 3, 4, 5, 6, 7, 8}; 9372 9373 ArrayRef<int> Mask = N->getMask(); 9374 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9375 9376 // For each mask element, find out if we're just inserting something 9377 // from V2 into V1 or vice versa. 9378 // Possible permutations inserting an element from V2 into V1: 9379 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9380 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9381 // ... 9382 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9383 // Inserting from V1 into V2 will be similar, except mask range will be 9384 // [16,31]. 9385 9386 bool FoundCandidate = false; 9387 // If both vector operands for the shuffle are the same vector, the mask 9388 // will contain only elements from the first one and the second one will be 9389 // undef. 9390 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9391 // Go through the mask of half-words to find an element that's being moved 9392 // from one vector to the other. 9393 for (unsigned i = 0; i < BytesInVector; ++i) { 9394 unsigned CurrentElement = Mask[i]; 9395 // If 2nd operand is undefined, we should only look for element 7 in the 9396 // Mask. 9397 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9398 continue; 9399 9400 bool OtherElementsInOrder = true; 9401 // Examine the other elements in the Mask to see if they're in original 9402 // order. 9403 for (unsigned j = 0; j < BytesInVector; ++j) { 9404 if (j == i) 9405 continue; 9406 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9407 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9408 // in which we always assume we're always picking from the 1st operand. 9409 int MaskOffset = 9410 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9411 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9412 OtherElementsInOrder = false; 9413 break; 9414 } 9415 } 9416 // If other elements are in original order, we record the number of shifts 9417 // we need to get the element we want into element 7. Also record which byte 9418 // in the vector we should insert into. 9419 if (OtherElementsInOrder) { 9420 // If 2nd operand is undefined, we assume no shifts and no swapping. 9421 if (V2.isUndef()) { 9422 ShiftElts = 0; 9423 Swap = false; 9424 } else { 9425 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9426 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9427 : BigEndianShifts[CurrentElement & 0xF]; 9428 Swap = CurrentElement < BytesInVector; 9429 } 9430 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9431 FoundCandidate = true; 9432 break; 9433 } 9434 } 9435 9436 if (!FoundCandidate) 9437 return SDValue(); 9438 9439 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9440 // optionally with VECSHL if shift is required. 9441 if (Swap) 9442 std::swap(V1, V2); 9443 if (V2.isUndef()) 9444 V2 = V1; 9445 if (ShiftElts) { 9446 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9447 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9448 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9449 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9450 } 9451 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9452 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9453 } 9454 9455 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9456 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9457 /// SDValue. 9458 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9459 SelectionDAG &DAG) const { 9460 const unsigned NumHalfWords = 8; 9461 const unsigned BytesInVector = NumHalfWords * 2; 9462 // Check that the shuffle is on half-words. 9463 if (!isNByteElemShuffleMask(N, 2, 1)) 9464 return SDValue(); 9465 9466 bool IsLE = Subtarget.isLittleEndian(); 9467 SDLoc dl(N); 9468 SDValue V1 = N->getOperand(0); 9469 SDValue V2 = N->getOperand(1); 9470 unsigned ShiftElts = 0, InsertAtByte = 0; 9471 bool Swap = false; 9472 9473 // Shifts required to get the half-word we want at element 3. 9474 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9475 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9476 9477 uint32_t Mask = 0; 9478 uint32_t OriginalOrderLow = 0x1234567; 9479 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9480 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9481 // 32-bit space, only need 4-bit nibbles per element. 9482 for (unsigned i = 0; i < NumHalfWords; ++i) { 9483 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9484 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9485 } 9486 9487 // For each mask element, find out if we're just inserting something 9488 // from V2 into V1 or vice versa. Possible permutations inserting an element 9489 // from V2 into V1: 9490 // X, 1, 2, 3, 4, 5, 6, 7 9491 // 0, X, 2, 3, 4, 5, 6, 7 9492 // 0, 1, X, 3, 4, 5, 6, 7 9493 // 0, 1, 2, X, 4, 5, 6, 7 9494 // 0, 1, 2, 3, X, 5, 6, 7 9495 // 0, 1, 2, 3, 4, X, 6, 7 9496 // 0, 1, 2, 3, 4, 5, X, 7 9497 // 0, 1, 2, 3, 4, 5, 6, X 9498 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9499 9500 bool FoundCandidate = false; 9501 // Go through the mask of half-words to find an element that's being moved 9502 // from one vector to the other. 9503 for (unsigned i = 0; i < NumHalfWords; ++i) { 9504 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9505 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9506 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9507 uint32_t TargetOrder = 0x0; 9508 9509 // If both vector operands for the shuffle are the same vector, the mask 9510 // will contain only elements from the first one and the second one will be 9511 // undef. 9512 if (V2.isUndef()) { 9513 ShiftElts = 0; 9514 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9515 TargetOrder = OriginalOrderLow; 9516 Swap = false; 9517 // Skip if not the correct element or mask of other elements don't equal 9518 // to our expected order. 9519 if (MaskOneElt == VINSERTHSrcElem && 9520 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9521 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9522 FoundCandidate = true; 9523 break; 9524 } 9525 } else { // If both operands are defined. 9526 // Target order is [8,15] if the current mask is between [0,7]. 9527 TargetOrder = 9528 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9529 // Skip if mask of other elements don't equal our expected order. 9530 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9531 // We only need the last 3 bits for the number of shifts. 9532 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9533 : BigEndianShifts[MaskOneElt & 0x7]; 9534 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9535 Swap = MaskOneElt < NumHalfWords; 9536 FoundCandidate = true; 9537 break; 9538 } 9539 } 9540 } 9541 9542 if (!FoundCandidate) 9543 return SDValue(); 9544 9545 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9546 // optionally with VECSHL if shift is required. 9547 if (Swap) 9548 std::swap(V1, V2); 9549 if (V2.isUndef()) 9550 V2 = V1; 9551 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9552 if (ShiftElts) { 9553 // Double ShiftElts because we're left shifting on v16i8 type. 9554 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9555 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9556 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9557 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9558 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9559 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9560 } 9561 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9562 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9563 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9564 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9565 } 9566 9567 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9568 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9569 /// return the code it can be lowered into. Worst case, it can always be 9570 /// lowered into a vperm. 9571 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9572 SelectionDAG &DAG) const { 9573 SDLoc dl(Op); 9574 SDValue V1 = Op.getOperand(0); 9575 SDValue V2 = Op.getOperand(1); 9576 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9577 EVT VT = Op.getValueType(); 9578 bool isLittleEndian = Subtarget.isLittleEndian(); 9579 9580 unsigned ShiftElts, InsertAtByte; 9581 bool Swap = false; 9582 9583 // If this is a load-and-splat, we can do that with a single instruction 9584 // in some cases. However if the load has multiple uses, we don't want to 9585 // combine it because that will just produce multiple loads. 9586 const SDValue *InputLoad = getNormalLoadInput(V1); 9587 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9588 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9589 InputLoad->hasOneUse()) { 9590 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9591 int SplatIdx = 9592 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9593 9594 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9595 // For 4-byte load-and-splat, we need Power9. 9596 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9597 uint64_t Offset = 0; 9598 if (IsFourByte) 9599 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9600 else 9601 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9602 SDValue BasePtr = LD->getBasePtr(); 9603 if (Offset != 0) 9604 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9605 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9606 SDValue Ops[] = { 9607 LD->getChain(), // Chain 9608 BasePtr, // BasePtr 9609 DAG.getValueType(Op.getValueType()) // VT 9610 }; 9611 SDVTList VTL = 9612 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9613 SDValue LdSplt = 9614 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9615 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9616 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9617 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9618 return LdSplt; 9619 } 9620 } 9621 if (Subtarget.hasP9Vector() && 9622 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9623 isLittleEndian)) { 9624 if (Swap) 9625 std::swap(V1, V2); 9626 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9627 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9628 if (ShiftElts) { 9629 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9630 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9631 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9632 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9633 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9634 } 9635 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9636 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9637 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9638 } 9639 9640 if (Subtarget.hasP9Altivec()) { 9641 SDValue NewISDNode; 9642 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9643 return NewISDNode; 9644 9645 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9646 return NewISDNode; 9647 } 9648 9649 if (Subtarget.hasVSX() && 9650 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9651 if (Swap) 9652 std::swap(V1, V2); 9653 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9654 SDValue Conv2 = 9655 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9656 9657 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9658 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9659 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9660 } 9661 9662 if (Subtarget.hasVSX() && 9663 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9664 if (Swap) 9665 std::swap(V1, V2); 9666 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9667 SDValue Conv2 = 9668 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9669 9670 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9671 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9672 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9673 } 9674 9675 if (Subtarget.hasP9Vector()) { 9676 if (PPC::isXXBRHShuffleMask(SVOp)) { 9677 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9678 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9679 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9680 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9681 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9682 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9683 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9684 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9685 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9686 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9687 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9688 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9689 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9690 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9691 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9692 } 9693 } 9694 9695 if (Subtarget.hasVSX()) { 9696 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9697 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9698 9699 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9700 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9701 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9702 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9703 } 9704 9705 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9706 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9707 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9708 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9709 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9710 } 9711 } 9712 9713 if (Subtarget.hasQPX()) { 9714 if (VT.getVectorNumElements() != 4) 9715 return SDValue(); 9716 9717 if (V2.isUndef()) V2 = V1; 9718 9719 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9720 if (AlignIdx != -1) { 9721 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9722 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9723 } else if (SVOp->isSplat()) { 9724 int SplatIdx = SVOp->getSplatIndex(); 9725 if (SplatIdx >= 4) { 9726 std::swap(V1, V2); 9727 SplatIdx -= 4; 9728 } 9729 9730 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9731 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9732 } 9733 9734 // Lower this into a qvgpci/qvfperm pair. 9735 9736 // Compute the qvgpci literal 9737 unsigned idx = 0; 9738 for (unsigned i = 0; i < 4; ++i) { 9739 int m = SVOp->getMaskElt(i); 9740 unsigned mm = m >= 0 ? (unsigned) m : i; 9741 idx |= mm << (3-i)*3; 9742 } 9743 9744 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9745 DAG.getConstant(idx, dl, MVT::i32)); 9746 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9747 } 9748 9749 // Cases that are handled by instructions that take permute immediates 9750 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9751 // selected by the instruction selector. 9752 if (V2.isUndef()) { 9753 if (PPC::isSplatShuffleMask(SVOp, 1) || 9754 PPC::isSplatShuffleMask(SVOp, 2) || 9755 PPC::isSplatShuffleMask(SVOp, 4) || 9756 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9757 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9758 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9759 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9760 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9761 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9762 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9763 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9764 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9765 (Subtarget.hasP8Altivec() && ( 9766 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9767 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9768 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9769 return Op; 9770 } 9771 } 9772 9773 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9774 // and produce a fixed permutation. If any of these match, do not lower to 9775 // VPERM. 9776 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9777 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9778 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9779 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9780 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9781 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9782 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9783 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9784 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9785 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9786 (Subtarget.hasP8Altivec() && ( 9787 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9788 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9789 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9790 return Op; 9791 9792 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9793 // perfect shuffle table to emit an optimal matching sequence. 9794 ArrayRef<int> PermMask = SVOp->getMask(); 9795 9796 unsigned PFIndexes[4]; 9797 bool isFourElementShuffle = true; 9798 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9799 unsigned EltNo = 8; // Start out undef. 9800 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9801 if (PermMask[i*4+j] < 0) 9802 continue; // Undef, ignore it. 9803 9804 unsigned ByteSource = PermMask[i*4+j]; 9805 if ((ByteSource & 3) != j) { 9806 isFourElementShuffle = false; 9807 break; 9808 } 9809 9810 if (EltNo == 8) { 9811 EltNo = ByteSource/4; 9812 } else if (EltNo != ByteSource/4) { 9813 isFourElementShuffle = false; 9814 break; 9815 } 9816 } 9817 PFIndexes[i] = EltNo; 9818 } 9819 9820 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9821 // perfect shuffle vector to determine if it is cost effective to do this as 9822 // discrete instructions, or whether we should use a vperm. 9823 // For now, we skip this for little endian until such time as we have a 9824 // little-endian perfect shuffle table. 9825 if (isFourElementShuffle && !isLittleEndian) { 9826 // Compute the index in the perfect shuffle table. 9827 unsigned PFTableIndex = 9828 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9829 9830 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9831 unsigned Cost = (PFEntry >> 30); 9832 9833 // Determining when to avoid vperm is tricky. Many things affect the cost 9834 // of vperm, particularly how many times the perm mask needs to be computed. 9835 // For example, if the perm mask can be hoisted out of a loop or is already 9836 // used (perhaps because there are multiple permutes with the same shuffle 9837 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9838 // the loop requires an extra register. 9839 // 9840 // As a compromise, we only emit discrete instructions if the shuffle can be 9841 // generated in 3 or fewer operations. When we have loop information 9842 // available, if this block is within a loop, we should avoid using vperm 9843 // for 3-operation perms and use a constant pool load instead. 9844 if (Cost < 3) 9845 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9846 } 9847 9848 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9849 // vector that will get spilled to the constant pool. 9850 if (V2.isUndef()) V2 = V1; 9851 9852 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9853 // that it is in input element units, not in bytes. Convert now. 9854 9855 // For little endian, the order of the input vectors is reversed, and 9856 // the permutation mask is complemented with respect to 31. This is 9857 // necessary to produce proper semantics with the big-endian-biased vperm 9858 // instruction. 9859 EVT EltVT = V1.getValueType().getVectorElementType(); 9860 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9861 9862 SmallVector<SDValue, 16> ResultMask; 9863 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9864 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9865 9866 for (unsigned j = 0; j != BytesPerElement; ++j) 9867 if (isLittleEndian) 9868 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9869 dl, MVT::i32)); 9870 else 9871 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9872 MVT::i32)); 9873 } 9874 9875 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9876 if (isLittleEndian) 9877 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9878 V2, V1, VPermMask); 9879 else 9880 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9881 V1, V2, VPermMask); 9882 } 9883 9884 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9885 /// vector comparison. If it is, return true and fill in Opc/isDot with 9886 /// information about the intrinsic. 9887 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9888 bool &isDot, const PPCSubtarget &Subtarget) { 9889 unsigned IntrinsicID = 9890 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9891 CompareOpc = -1; 9892 isDot = false; 9893 switch (IntrinsicID) { 9894 default: 9895 return false; 9896 // Comparison predicates. 9897 case Intrinsic::ppc_altivec_vcmpbfp_p: 9898 CompareOpc = 966; 9899 isDot = true; 9900 break; 9901 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9902 CompareOpc = 198; 9903 isDot = true; 9904 break; 9905 case Intrinsic::ppc_altivec_vcmpequb_p: 9906 CompareOpc = 6; 9907 isDot = true; 9908 break; 9909 case Intrinsic::ppc_altivec_vcmpequh_p: 9910 CompareOpc = 70; 9911 isDot = true; 9912 break; 9913 case Intrinsic::ppc_altivec_vcmpequw_p: 9914 CompareOpc = 134; 9915 isDot = true; 9916 break; 9917 case Intrinsic::ppc_altivec_vcmpequd_p: 9918 if (Subtarget.hasP8Altivec()) { 9919 CompareOpc = 199; 9920 isDot = true; 9921 } else 9922 return false; 9923 break; 9924 case Intrinsic::ppc_altivec_vcmpneb_p: 9925 case Intrinsic::ppc_altivec_vcmpneh_p: 9926 case Intrinsic::ppc_altivec_vcmpnew_p: 9927 case Intrinsic::ppc_altivec_vcmpnezb_p: 9928 case Intrinsic::ppc_altivec_vcmpnezh_p: 9929 case Intrinsic::ppc_altivec_vcmpnezw_p: 9930 if (Subtarget.hasP9Altivec()) { 9931 switch (IntrinsicID) { 9932 default: 9933 llvm_unreachable("Unknown comparison intrinsic."); 9934 case Intrinsic::ppc_altivec_vcmpneb_p: 9935 CompareOpc = 7; 9936 break; 9937 case Intrinsic::ppc_altivec_vcmpneh_p: 9938 CompareOpc = 71; 9939 break; 9940 case Intrinsic::ppc_altivec_vcmpnew_p: 9941 CompareOpc = 135; 9942 break; 9943 case Intrinsic::ppc_altivec_vcmpnezb_p: 9944 CompareOpc = 263; 9945 break; 9946 case Intrinsic::ppc_altivec_vcmpnezh_p: 9947 CompareOpc = 327; 9948 break; 9949 case Intrinsic::ppc_altivec_vcmpnezw_p: 9950 CompareOpc = 391; 9951 break; 9952 } 9953 isDot = true; 9954 } else 9955 return false; 9956 break; 9957 case Intrinsic::ppc_altivec_vcmpgefp_p: 9958 CompareOpc = 454; 9959 isDot = true; 9960 break; 9961 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9962 CompareOpc = 710; 9963 isDot = true; 9964 break; 9965 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9966 CompareOpc = 774; 9967 isDot = true; 9968 break; 9969 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9970 CompareOpc = 838; 9971 isDot = true; 9972 break; 9973 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9974 CompareOpc = 902; 9975 isDot = true; 9976 break; 9977 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9978 if (Subtarget.hasP8Altivec()) { 9979 CompareOpc = 967; 9980 isDot = true; 9981 } else 9982 return false; 9983 break; 9984 case Intrinsic::ppc_altivec_vcmpgtub_p: 9985 CompareOpc = 518; 9986 isDot = true; 9987 break; 9988 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9989 CompareOpc = 582; 9990 isDot = true; 9991 break; 9992 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9993 CompareOpc = 646; 9994 isDot = true; 9995 break; 9996 case Intrinsic::ppc_altivec_vcmpgtud_p: 9997 if (Subtarget.hasP8Altivec()) { 9998 CompareOpc = 711; 9999 isDot = true; 10000 } else 10001 return false; 10002 break; 10003 10004 // VSX predicate comparisons use the same infrastructure 10005 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10006 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10007 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10008 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10009 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10010 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10011 if (Subtarget.hasVSX()) { 10012 switch (IntrinsicID) { 10013 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10014 CompareOpc = 99; 10015 break; 10016 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10017 CompareOpc = 115; 10018 break; 10019 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10020 CompareOpc = 107; 10021 break; 10022 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10023 CompareOpc = 67; 10024 break; 10025 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10026 CompareOpc = 83; 10027 break; 10028 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10029 CompareOpc = 75; 10030 break; 10031 } 10032 isDot = true; 10033 } else 10034 return false; 10035 break; 10036 10037 // Normal Comparisons. 10038 case Intrinsic::ppc_altivec_vcmpbfp: 10039 CompareOpc = 966; 10040 break; 10041 case Intrinsic::ppc_altivec_vcmpeqfp: 10042 CompareOpc = 198; 10043 break; 10044 case Intrinsic::ppc_altivec_vcmpequb: 10045 CompareOpc = 6; 10046 break; 10047 case Intrinsic::ppc_altivec_vcmpequh: 10048 CompareOpc = 70; 10049 break; 10050 case Intrinsic::ppc_altivec_vcmpequw: 10051 CompareOpc = 134; 10052 break; 10053 case Intrinsic::ppc_altivec_vcmpequd: 10054 if (Subtarget.hasP8Altivec()) 10055 CompareOpc = 199; 10056 else 10057 return false; 10058 break; 10059 case Intrinsic::ppc_altivec_vcmpneb: 10060 case Intrinsic::ppc_altivec_vcmpneh: 10061 case Intrinsic::ppc_altivec_vcmpnew: 10062 case Intrinsic::ppc_altivec_vcmpnezb: 10063 case Intrinsic::ppc_altivec_vcmpnezh: 10064 case Intrinsic::ppc_altivec_vcmpnezw: 10065 if (Subtarget.hasP9Altivec()) 10066 switch (IntrinsicID) { 10067 default: 10068 llvm_unreachable("Unknown comparison intrinsic."); 10069 case Intrinsic::ppc_altivec_vcmpneb: 10070 CompareOpc = 7; 10071 break; 10072 case Intrinsic::ppc_altivec_vcmpneh: 10073 CompareOpc = 71; 10074 break; 10075 case Intrinsic::ppc_altivec_vcmpnew: 10076 CompareOpc = 135; 10077 break; 10078 case Intrinsic::ppc_altivec_vcmpnezb: 10079 CompareOpc = 263; 10080 break; 10081 case Intrinsic::ppc_altivec_vcmpnezh: 10082 CompareOpc = 327; 10083 break; 10084 case Intrinsic::ppc_altivec_vcmpnezw: 10085 CompareOpc = 391; 10086 break; 10087 } 10088 else 10089 return false; 10090 break; 10091 case Intrinsic::ppc_altivec_vcmpgefp: 10092 CompareOpc = 454; 10093 break; 10094 case Intrinsic::ppc_altivec_vcmpgtfp: 10095 CompareOpc = 710; 10096 break; 10097 case Intrinsic::ppc_altivec_vcmpgtsb: 10098 CompareOpc = 774; 10099 break; 10100 case Intrinsic::ppc_altivec_vcmpgtsh: 10101 CompareOpc = 838; 10102 break; 10103 case Intrinsic::ppc_altivec_vcmpgtsw: 10104 CompareOpc = 902; 10105 break; 10106 case Intrinsic::ppc_altivec_vcmpgtsd: 10107 if (Subtarget.hasP8Altivec()) 10108 CompareOpc = 967; 10109 else 10110 return false; 10111 break; 10112 case Intrinsic::ppc_altivec_vcmpgtub: 10113 CompareOpc = 518; 10114 break; 10115 case Intrinsic::ppc_altivec_vcmpgtuh: 10116 CompareOpc = 582; 10117 break; 10118 case Intrinsic::ppc_altivec_vcmpgtuw: 10119 CompareOpc = 646; 10120 break; 10121 case Intrinsic::ppc_altivec_vcmpgtud: 10122 if (Subtarget.hasP8Altivec()) 10123 CompareOpc = 711; 10124 else 10125 return false; 10126 break; 10127 } 10128 return true; 10129 } 10130 10131 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10132 /// lower, do it, otherwise return null. 10133 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10134 SelectionDAG &DAG) const { 10135 unsigned IntrinsicID = 10136 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10137 10138 SDLoc dl(Op); 10139 10140 if (IntrinsicID == Intrinsic::thread_pointer) { 10141 // Reads the thread pointer register, used for __builtin_thread_pointer. 10142 if (Subtarget.isPPC64()) 10143 return DAG.getRegister(PPC::X13, MVT::i64); 10144 return DAG.getRegister(PPC::R2, MVT::i32); 10145 } 10146 10147 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10148 // opcode number of the comparison. 10149 int CompareOpc; 10150 bool isDot; 10151 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10152 return SDValue(); // Don't custom lower most intrinsics. 10153 10154 // If this is a non-dot comparison, make the VCMP node and we are done. 10155 if (!isDot) { 10156 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10157 Op.getOperand(1), Op.getOperand(2), 10158 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10159 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10160 } 10161 10162 // Create the PPCISD altivec 'dot' comparison node. 10163 SDValue Ops[] = { 10164 Op.getOperand(2), // LHS 10165 Op.getOperand(3), // RHS 10166 DAG.getConstant(CompareOpc, dl, MVT::i32) 10167 }; 10168 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10169 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10170 10171 // Now that we have the comparison, emit a copy from the CR to a GPR. 10172 // This is flagged to the above dot comparison. 10173 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10174 DAG.getRegister(PPC::CR6, MVT::i32), 10175 CompNode.getValue(1)); 10176 10177 // Unpack the result based on how the target uses it. 10178 unsigned BitNo; // Bit # of CR6. 10179 bool InvertBit; // Invert result? 10180 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10181 default: // Can't happen, don't crash on invalid number though. 10182 case 0: // Return the value of the EQ bit of CR6. 10183 BitNo = 0; InvertBit = false; 10184 break; 10185 case 1: // Return the inverted value of the EQ bit of CR6. 10186 BitNo = 0; InvertBit = true; 10187 break; 10188 case 2: // Return the value of the LT bit of CR6. 10189 BitNo = 2; InvertBit = false; 10190 break; 10191 case 3: // Return the inverted value of the LT bit of CR6. 10192 BitNo = 2; InvertBit = true; 10193 break; 10194 } 10195 10196 // Shift the bit into the low position. 10197 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10198 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10199 // Isolate the bit. 10200 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10201 DAG.getConstant(1, dl, MVT::i32)); 10202 10203 // If we are supposed to, toggle the bit. 10204 if (InvertBit) 10205 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10206 DAG.getConstant(1, dl, MVT::i32)); 10207 return Flags; 10208 } 10209 10210 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10211 SelectionDAG &DAG) const { 10212 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10213 // the beginning of the argument list. 10214 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10215 SDLoc DL(Op); 10216 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10217 case Intrinsic::ppc_cfence: { 10218 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10219 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10220 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10221 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10222 Op.getOperand(ArgStart + 1)), 10223 Op.getOperand(0)), 10224 0); 10225 } 10226 default: 10227 break; 10228 } 10229 return SDValue(); 10230 } 10231 10232 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10233 // Check for a DIV with the same operands as this REM. 10234 for (auto UI : Op.getOperand(1)->uses()) { 10235 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10236 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10237 if (UI->getOperand(0) == Op.getOperand(0) && 10238 UI->getOperand(1) == Op.getOperand(1)) 10239 return SDValue(); 10240 } 10241 return Op; 10242 } 10243 10244 // Lower scalar BSWAP64 to xxbrd. 10245 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10246 SDLoc dl(Op); 10247 // MTVSRDD 10248 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10249 Op.getOperand(0)); 10250 // XXBRD 10251 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10252 // MFVSRD 10253 int VectorIndex = 0; 10254 if (Subtarget.isLittleEndian()) 10255 VectorIndex = 1; 10256 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10257 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10258 return Op; 10259 } 10260 10261 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10262 // compared to a value that is atomically loaded (atomic loads zero-extend). 10263 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10264 SelectionDAG &DAG) const { 10265 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10266 "Expecting an atomic compare-and-swap here."); 10267 SDLoc dl(Op); 10268 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10269 EVT MemVT = AtomicNode->getMemoryVT(); 10270 if (MemVT.getSizeInBits() >= 32) 10271 return Op; 10272 10273 SDValue CmpOp = Op.getOperand(2); 10274 // If this is already correctly zero-extended, leave it alone. 10275 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10276 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10277 return Op; 10278 10279 // Clear the high bits of the compare operand. 10280 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10281 SDValue NewCmpOp = 10282 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10283 DAG.getConstant(MaskVal, dl, MVT::i32)); 10284 10285 // Replace the existing compare operand with the properly zero-extended one. 10286 SmallVector<SDValue, 4> Ops; 10287 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10288 Ops.push_back(AtomicNode->getOperand(i)); 10289 Ops[2] = NewCmpOp; 10290 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10291 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10292 auto NodeTy = 10293 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10294 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10295 } 10296 10297 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10298 SelectionDAG &DAG) const { 10299 SDLoc dl(Op); 10300 // Create a stack slot that is 16-byte aligned. 10301 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10302 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10303 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10304 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10305 10306 // Store the input value into Value#0 of the stack slot. 10307 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10308 MachinePointerInfo()); 10309 // Load it out. 10310 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10311 } 10312 10313 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10314 SelectionDAG &DAG) const { 10315 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10316 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10317 10318 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10319 // We have legal lowering for constant indices but not for variable ones. 10320 if (!C) 10321 return SDValue(); 10322 10323 EVT VT = Op.getValueType(); 10324 SDLoc dl(Op); 10325 SDValue V1 = Op.getOperand(0); 10326 SDValue V2 = Op.getOperand(1); 10327 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10328 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10329 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10330 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10331 unsigned InsertAtElement = C->getZExtValue(); 10332 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10333 if (Subtarget.isLittleEndian()) { 10334 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10335 } 10336 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10337 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10338 } 10339 return Op; 10340 } 10341 10342 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10343 SelectionDAG &DAG) const { 10344 SDLoc dl(Op); 10345 SDNode *N = Op.getNode(); 10346 10347 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10348 "Unknown extract_vector_elt type"); 10349 10350 SDValue Value = N->getOperand(0); 10351 10352 // The first part of this is like the store lowering except that we don't 10353 // need to track the chain. 10354 10355 // The values are now known to be -1 (false) or 1 (true). To convert this 10356 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10357 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10358 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10359 10360 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10361 // understand how to form the extending load. 10362 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10363 10364 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10365 10366 // Now convert to an integer and store. 10367 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10368 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10369 Value); 10370 10371 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10372 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10373 MachinePointerInfo PtrInfo = 10374 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10375 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10376 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10377 10378 SDValue StoreChain = DAG.getEntryNode(); 10379 SDValue Ops[] = {StoreChain, 10380 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10381 Value, FIdx}; 10382 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10383 10384 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10385 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10386 10387 // Extract the value requested. 10388 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10389 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10390 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10391 10392 SDValue IntVal = 10393 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10394 10395 if (!Subtarget.useCRBits()) 10396 return IntVal; 10397 10398 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10399 } 10400 10401 /// Lowering for QPX v4i1 loads 10402 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10403 SelectionDAG &DAG) const { 10404 SDLoc dl(Op); 10405 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10406 SDValue LoadChain = LN->getChain(); 10407 SDValue BasePtr = LN->getBasePtr(); 10408 10409 if (Op.getValueType() == MVT::v4f64 || 10410 Op.getValueType() == MVT::v4f32) { 10411 EVT MemVT = LN->getMemoryVT(); 10412 unsigned Alignment = LN->getAlignment(); 10413 10414 // If this load is properly aligned, then it is legal. 10415 if (Alignment >= MemVT.getStoreSize()) 10416 return Op; 10417 10418 EVT ScalarVT = Op.getValueType().getScalarType(), 10419 ScalarMemVT = MemVT.getScalarType(); 10420 unsigned Stride = ScalarMemVT.getStoreSize(); 10421 10422 SDValue Vals[4], LoadChains[4]; 10423 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10424 SDValue Load; 10425 if (ScalarVT != ScalarMemVT) 10426 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10427 BasePtr, 10428 LN->getPointerInfo().getWithOffset(Idx * Stride), 10429 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10430 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10431 else 10432 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10433 LN->getPointerInfo().getWithOffset(Idx * Stride), 10434 MinAlign(Alignment, Idx * Stride), 10435 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10436 10437 if (Idx == 0 && LN->isIndexed()) { 10438 assert(LN->getAddressingMode() == ISD::PRE_INC && 10439 "Unknown addressing mode on vector load"); 10440 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10441 LN->getAddressingMode()); 10442 } 10443 10444 Vals[Idx] = Load; 10445 LoadChains[Idx] = Load.getValue(1); 10446 10447 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10448 DAG.getConstant(Stride, dl, 10449 BasePtr.getValueType())); 10450 } 10451 10452 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10453 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10454 10455 if (LN->isIndexed()) { 10456 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10457 return DAG.getMergeValues(RetOps, dl); 10458 } 10459 10460 SDValue RetOps[] = { Value, TF }; 10461 return DAG.getMergeValues(RetOps, dl); 10462 } 10463 10464 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10465 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10466 10467 // To lower v4i1 from a byte array, we load the byte elements of the 10468 // vector and then reuse the BUILD_VECTOR logic. 10469 10470 SDValue VectElmts[4], VectElmtChains[4]; 10471 for (unsigned i = 0; i < 4; ++i) { 10472 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10473 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10474 10475 VectElmts[i] = DAG.getExtLoad( 10476 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10477 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10478 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10479 VectElmtChains[i] = VectElmts[i].getValue(1); 10480 } 10481 10482 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10483 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10484 10485 SDValue RVals[] = { Value, LoadChain }; 10486 return DAG.getMergeValues(RVals, dl); 10487 } 10488 10489 /// Lowering for QPX v4i1 stores 10490 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10491 SelectionDAG &DAG) const { 10492 SDLoc dl(Op); 10493 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10494 SDValue StoreChain = SN->getChain(); 10495 SDValue BasePtr = SN->getBasePtr(); 10496 SDValue Value = SN->getValue(); 10497 10498 if (Value.getValueType() == MVT::v4f64 || 10499 Value.getValueType() == MVT::v4f32) { 10500 EVT MemVT = SN->getMemoryVT(); 10501 unsigned Alignment = SN->getAlignment(); 10502 10503 // If this store is properly aligned, then it is legal. 10504 if (Alignment >= MemVT.getStoreSize()) 10505 return Op; 10506 10507 EVT ScalarVT = Value.getValueType().getScalarType(), 10508 ScalarMemVT = MemVT.getScalarType(); 10509 unsigned Stride = ScalarMemVT.getStoreSize(); 10510 10511 SDValue Stores[4]; 10512 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10513 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10514 DAG.getVectorIdxConstant(Idx, dl)); 10515 SDValue Store; 10516 if (ScalarVT != ScalarMemVT) 10517 Store = 10518 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10519 SN->getPointerInfo().getWithOffset(Idx * Stride), 10520 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10521 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10522 else 10523 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10524 SN->getPointerInfo().getWithOffset(Idx * Stride), 10525 MinAlign(Alignment, Idx * Stride), 10526 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10527 10528 if (Idx == 0 && SN->isIndexed()) { 10529 assert(SN->getAddressingMode() == ISD::PRE_INC && 10530 "Unknown addressing mode on vector store"); 10531 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10532 SN->getAddressingMode()); 10533 } 10534 10535 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10536 DAG.getConstant(Stride, dl, 10537 BasePtr.getValueType())); 10538 Stores[Idx] = Store; 10539 } 10540 10541 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10542 10543 if (SN->isIndexed()) { 10544 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10545 return DAG.getMergeValues(RetOps, dl); 10546 } 10547 10548 return TF; 10549 } 10550 10551 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10552 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10553 10554 // The values are now known to be -1 (false) or 1 (true). To convert this 10555 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10556 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10557 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10558 10559 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10560 // understand how to form the extending load. 10561 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10562 10563 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10564 10565 // Now convert to an integer and store. 10566 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10567 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10568 Value); 10569 10570 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10571 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10572 MachinePointerInfo PtrInfo = 10573 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10574 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10575 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10576 10577 SDValue Ops[] = {StoreChain, 10578 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10579 Value, FIdx}; 10580 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10581 10582 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10583 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10584 10585 // Move data into the byte array. 10586 SDValue Loads[4], LoadChains[4]; 10587 for (unsigned i = 0; i < 4; ++i) { 10588 unsigned Offset = 4*i; 10589 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10590 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10591 10592 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10593 PtrInfo.getWithOffset(Offset)); 10594 LoadChains[i] = Loads[i].getValue(1); 10595 } 10596 10597 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10598 10599 SDValue Stores[4]; 10600 for (unsigned i = 0; i < 4; ++i) { 10601 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10602 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10603 10604 Stores[i] = DAG.getTruncStore( 10605 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10606 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10607 SN->getAAInfo()); 10608 } 10609 10610 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10611 10612 return StoreChain; 10613 } 10614 10615 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10616 SDLoc dl(Op); 10617 if (Op.getValueType() == MVT::v4i32) { 10618 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10619 10620 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10621 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10622 10623 SDValue RHSSwap = // = vrlw RHS, 16 10624 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10625 10626 // Shrinkify inputs to v8i16. 10627 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10628 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10629 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10630 10631 // Low parts multiplied together, generating 32-bit results (we ignore the 10632 // top parts). 10633 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10634 LHS, RHS, DAG, dl, MVT::v4i32); 10635 10636 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10637 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10638 // Shift the high parts up 16 bits. 10639 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10640 Neg16, DAG, dl); 10641 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10642 } else if (Op.getValueType() == MVT::v16i8) { 10643 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10644 bool isLittleEndian = Subtarget.isLittleEndian(); 10645 10646 // Multiply the even 8-bit parts, producing 16-bit sums. 10647 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10648 LHS, RHS, DAG, dl, MVT::v8i16); 10649 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10650 10651 // Multiply the odd 8-bit parts, producing 16-bit sums. 10652 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10653 LHS, RHS, DAG, dl, MVT::v8i16); 10654 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10655 10656 // Merge the results together. Because vmuleub and vmuloub are 10657 // instructions with a big-endian bias, we must reverse the 10658 // element numbering and reverse the meaning of "odd" and "even" 10659 // when generating little endian code. 10660 int Ops[16]; 10661 for (unsigned i = 0; i != 8; ++i) { 10662 if (isLittleEndian) { 10663 Ops[i*2 ] = 2*i; 10664 Ops[i*2+1] = 2*i+16; 10665 } else { 10666 Ops[i*2 ] = 2*i+1; 10667 Ops[i*2+1] = 2*i+1+16; 10668 } 10669 } 10670 if (isLittleEndian) 10671 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10672 else 10673 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10674 } else { 10675 llvm_unreachable("Unknown mul to lower!"); 10676 } 10677 } 10678 10679 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10680 10681 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10682 10683 EVT VT = Op.getValueType(); 10684 assert(VT.isVector() && 10685 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10686 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10687 VT == MVT::v16i8) && 10688 "Unexpected vector element type!"); 10689 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10690 "Current subtarget doesn't support smax v2i64!"); 10691 10692 // For vector abs, it can be lowered to: 10693 // abs x 10694 // ==> 10695 // y = -x 10696 // smax(x, y) 10697 10698 SDLoc dl(Op); 10699 SDValue X = Op.getOperand(0); 10700 SDValue Zero = DAG.getConstant(0, dl, VT); 10701 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10702 10703 // SMAX patch https://reviews.llvm.org/D47332 10704 // hasn't landed yet, so use intrinsic first here. 10705 // TODO: Should use SMAX directly once SMAX patch landed 10706 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10707 if (VT == MVT::v2i64) 10708 BifID = Intrinsic::ppc_altivec_vmaxsd; 10709 else if (VT == MVT::v8i16) 10710 BifID = Intrinsic::ppc_altivec_vmaxsh; 10711 else if (VT == MVT::v16i8) 10712 BifID = Intrinsic::ppc_altivec_vmaxsb; 10713 10714 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10715 } 10716 10717 // Custom lowering for fpext vf32 to v2f64 10718 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10719 10720 assert(Op.getOpcode() == ISD::FP_EXTEND && 10721 "Should only be called for ISD::FP_EXTEND"); 10722 10723 // We only want to custom lower an extend from v2f32 to v2f64. 10724 if (Op.getValueType() != MVT::v2f64 || 10725 Op.getOperand(0).getValueType() != MVT::v2f32) 10726 return SDValue(); 10727 10728 SDLoc dl(Op); 10729 SDValue Op0 = Op.getOperand(0); 10730 10731 switch (Op0.getOpcode()) { 10732 default: 10733 return SDValue(); 10734 case ISD::EXTRACT_SUBVECTOR: { 10735 assert(Op0.getNumOperands() == 2 && 10736 isa<ConstantSDNode>(Op0->getOperand(1)) && 10737 "Node should have 2 operands with second one being a constant!"); 10738 10739 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10740 return SDValue(); 10741 10742 // Custom lower is only done for high or low doubleword. 10743 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10744 if (Idx % 2 != 0) 10745 return SDValue(); 10746 10747 // Since input is v4f32, at this point Idx is either 0 or 2. 10748 // Shift to get the doubleword position we want. 10749 int DWord = Idx >> 1; 10750 10751 // High and low word positions are different on little endian. 10752 if (Subtarget.isLittleEndian()) 10753 DWord ^= 0x1; 10754 10755 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10756 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10757 } 10758 case ISD::FADD: 10759 case ISD::FMUL: 10760 case ISD::FSUB: { 10761 SDValue NewLoad[2]; 10762 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10763 // Ensure both input are loads. 10764 SDValue LdOp = Op0.getOperand(i); 10765 if (LdOp.getOpcode() != ISD::LOAD) 10766 return SDValue(); 10767 // Generate new load node. 10768 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10769 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10770 NewLoad[i] = DAG.getMemIntrinsicNode( 10771 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10772 LD->getMemoryVT(), LD->getMemOperand()); 10773 } 10774 SDValue NewOp = 10775 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10776 NewLoad[1], Op0.getNode()->getFlags()); 10777 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10778 DAG.getConstant(0, dl, MVT::i32)); 10779 } 10780 case ISD::LOAD: { 10781 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10782 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10783 SDValue NewLd = DAG.getMemIntrinsicNode( 10784 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10785 LD->getMemoryVT(), LD->getMemOperand()); 10786 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10787 DAG.getConstant(0, dl, MVT::i32)); 10788 } 10789 } 10790 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10791 } 10792 10793 /// LowerOperation - Provide custom lowering hooks for some operations. 10794 /// 10795 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10796 switch (Op.getOpcode()) { 10797 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10798 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10799 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10800 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10801 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10802 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10803 case ISD::SETCC: return LowerSETCC(Op, DAG); 10804 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10805 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10806 10807 // Variable argument lowering. 10808 case ISD::VASTART: return LowerVASTART(Op, DAG); 10809 case ISD::VAARG: return LowerVAARG(Op, DAG); 10810 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10811 10812 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10813 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10814 case ISD::GET_DYNAMIC_AREA_OFFSET: 10815 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10816 10817 // Exception handling lowering. 10818 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10819 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10820 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10821 10822 case ISD::LOAD: return LowerLOAD(Op, DAG); 10823 case ISD::STORE: return LowerSTORE(Op, DAG); 10824 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10825 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10826 case ISD::FP_TO_UINT: 10827 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10828 case ISD::UINT_TO_FP: 10829 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10830 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10831 10832 // Lower 64-bit shifts. 10833 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10834 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10835 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10836 10837 // Vector-related lowering. 10838 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10839 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10840 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10841 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10842 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10843 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10844 case ISD::MUL: return LowerMUL(Op, DAG); 10845 case ISD::ABS: return LowerABS(Op, DAG); 10846 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10847 10848 // For counter-based loop handling. 10849 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10850 10851 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10852 10853 // Frame & Return address. 10854 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10855 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10856 10857 case ISD::INTRINSIC_VOID: 10858 return LowerINTRINSIC_VOID(Op, DAG); 10859 case ISD::SREM: 10860 case ISD::UREM: 10861 return LowerREM(Op, DAG); 10862 case ISD::BSWAP: 10863 return LowerBSWAP(Op, DAG); 10864 case ISD::ATOMIC_CMP_SWAP: 10865 return LowerATOMIC_CMP_SWAP(Op, DAG); 10866 } 10867 } 10868 10869 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10870 SmallVectorImpl<SDValue>&Results, 10871 SelectionDAG &DAG) const { 10872 SDLoc dl(N); 10873 switch (N->getOpcode()) { 10874 default: 10875 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10876 case ISD::READCYCLECOUNTER: { 10877 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10878 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10879 10880 Results.push_back( 10881 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10882 Results.push_back(RTB.getValue(2)); 10883 break; 10884 } 10885 case ISD::INTRINSIC_W_CHAIN: { 10886 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10887 Intrinsic::loop_decrement) 10888 break; 10889 10890 assert(N->getValueType(0) == MVT::i1 && 10891 "Unexpected result type for CTR decrement intrinsic"); 10892 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10893 N->getValueType(0)); 10894 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10895 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10896 N->getOperand(1)); 10897 10898 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10899 Results.push_back(NewInt.getValue(1)); 10900 break; 10901 } 10902 case ISD::VAARG: { 10903 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10904 return; 10905 10906 EVT VT = N->getValueType(0); 10907 10908 if (VT == MVT::i64) { 10909 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10910 10911 Results.push_back(NewNode); 10912 Results.push_back(NewNode.getValue(1)); 10913 } 10914 return; 10915 } 10916 case ISD::FP_TO_SINT: 10917 case ISD::FP_TO_UINT: 10918 // LowerFP_TO_INT() can only handle f32 and f64. 10919 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10920 return; 10921 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10922 return; 10923 case ISD::TRUNCATE: { 10924 EVT TrgVT = N->getValueType(0); 10925 EVT OpVT = N->getOperand(0).getValueType(); 10926 if (TrgVT.isVector() && 10927 isOperationCustom(N->getOpcode(), TrgVT) && 10928 OpVT.getSizeInBits() <= 128 && 10929 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10930 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10931 return; 10932 } 10933 case ISD::BITCAST: 10934 // Don't handle bitcast here. 10935 return; 10936 } 10937 } 10938 10939 //===----------------------------------------------------------------------===// 10940 // Other Lowering Code 10941 //===----------------------------------------------------------------------===// 10942 10943 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10944 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10945 Function *Func = Intrinsic::getDeclaration(M, Id); 10946 return Builder.CreateCall(Func, {}); 10947 } 10948 10949 // The mappings for emitLeading/TrailingFence is taken from 10950 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10951 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10952 Instruction *Inst, 10953 AtomicOrdering Ord) const { 10954 if (Ord == AtomicOrdering::SequentiallyConsistent) 10955 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10956 if (isReleaseOrStronger(Ord)) 10957 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10958 return nullptr; 10959 } 10960 10961 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10962 Instruction *Inst, 10963 AtomicOrdering Ord) const { 10964 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10965 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10966 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10967 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10968 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10969 return Builder.CreateCall( 10970 Intrinsic::getDeclaration( 10971 Builder.GetInsertBlock()->getParent()->getParent(), 10972 Intrinsic::ppc_cfence, {Inst->getType()}), 10973 {Inst}); 10974 // FIXME: Can use isync for rmw operation. 10975 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10976 } 10977 return nullptr; 10978 } 10979 10980 MachineBasicBlock * 10981 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10982 unsigned AtomicSize, 10983 unsigned BinOpcode, 10984 unsigned CmpOpcode, 10985 unsigned CmpPred) const { 10986 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10987 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10988 10989 auto LoadMnemonic = PPC::LDARX; 10990 auto StoreMnemonic = PPC::STDCX; 10991 switch (AtomicSize) { 10992 default: 10993 llvm_unreachable("Unexpected size of atomic entity"); 10994 case 1: 10995 LoadMnemonic = PPC::LBARX; 10996 StoreMnemonic = PPC::STBCX; 10997 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10998 break; 10999 case 2: 11000 LoadMnemonic = PPC::LHARX; 11001 StoreMnemonic = PPC::STHCX; 11002 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11003 break; 11004 case 4: 11005 LoadMnemonic = PPC::LWARX; 11006 StoreMnemonic = PPC::STWCX; 11007 break; 11008 case 8: 11009 LoadMnemonic = PPC::LDARX; 11010 StoreMnemonic = PPC::STDCX; 11011 break; 11012 } 11013 11014 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11015 MachineFunction *F = BB->getParent(); 11016 MachineFunction::iterator It = ++BB->getIterator(); 11017 11018 Register dest = MI.getOperand(0).getReg(); 11019 Register ptrA = MI.getOperand(1).getReg(); 11020 Register ptrB = MI.getOperand(2).getReg(); 11021 Register incr = MI.getOperand(3).getReg(); 11022 DebugLoc dl = MI.getDebugLoc(); 11023 11024 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11025 MachineBasicBlock *loop2MBB = 11026 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11027 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11028 F->insert(It, loopMBB); 11029 if (CmpOpcode) 11030 F->insert(It, loop2MBB); 11031 F->insert(It, exitMBB); 11032 exitMBB->splice(exitMBB->begin(), BB, 11033 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11034 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11035 11036 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11037 Register TmpReg = (!BinOpcode) ? incr : 11038 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11039 : &PPC::GPRCRegClass); 11040 11041 // thisMBB: 11042 // ... 11043 // fallthrough --> loopMBB 11044 BB->addSuccessor(loopMBB); 11045 11046 // loopMBB: 11047 // l[wd]arx dest, ptr 11048 // add r0, dest, incr 11049 // st[wd]cx. r0, ptr 11050 // bne- loopMBB 11051 // fallthrough --> exitMBB 11052 11053 // For max/min... 11054 // loopMBB: 11055 // l[wd]arx dest, ptr 11056 // cmpl?[wd] incr, dest 11057 // bgt exitMBB 11058 // loop2MBB: 11059 // st[wd]cx. dest, ptr 11060 // bne- loopMBB 11061 // fallthrough --> exitMBB 11062 11063 BB = loopMBB; 11064 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11065 .addReg(ptrA).addReg(ptrB); 11066 if (BinOpcode) 11067 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11068 if (CmpOpcode) { 11069 // Signed comparisons of byte or halfword values must be sign-extended. 11070 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11071 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11072 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11073 ExtReg).addReg(dest); 11074 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11075 .addReg(incr).addReg(ExtReg); 11076 } else 11077 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11078 .addReg(incr).addReg(dest); 11079 11080 BuildMI(BB, dl, TII->get(PPC::BCC)) 11081 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11082 BB->addSuccessor(loop2MBB); 11083 BB->addSuccessor(exitMBB); 11084 BB = loop2MBB; 11085 } 11086 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11087 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11088 BuildMI(BB, dl, TII->get(PPC::BCC)) 11089 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11090 BB->addSuccessor(loopMBB); 11091 BB->addSuccessor(exitMBB); 11092 11093 // exitMBB: 11094 // ... 11095 BB = exitMBB; 11096 return BB; 11097 } 11098 11099 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11100 MachineInstr &MI, MachineBasicBlock *BB, 11101 bool is8bit, // operation 11102 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11103 // If we support part-word atomic mnemonics, just use them 11104 if (Subtarget.hasPartwordAtomics()) 11105 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11106 CmpPred); 11107 11108 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11109 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11110 // In 64 bit mode we have to use 64 bits for addresses, even though the 11111 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11112 // registers without caring whether they're 32 or 64, but here we're 11113 // doing actual arithmetic on the addresses. 11114 bool is64bit = Subtarget.isPPC64(); 11115 bool isLittleEndian = Subtarget.isLittleEndian(); 11116 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11117 11118 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11119 MachineFunction *F = BB->getParent(); 11120 MachineFunction::iterator It = ++BB->getIterator(); 11121 11122 Register dest = MI.getOperand(0).getReg(); 11123 Register ptrA = MI.getOperand(1).getReg(); 11124 Register ptrB = MI.getOperand(2).getReg(); 11125 Register incr = MI.getOperand(3).getReg(); 11126 DebugLoc dl = MI.getDebugLoc(); 11127 11128 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11129 MachineBasicBlock *loop2MBB = 11130 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11131 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11132 F->insert(It, loopMBB); 11133 if (CmpOpcode) 11134 F->insert(It, loop2MBB); 11135 F->insert(It, exitMBB); 11136 exitMBB->splice(exitMBB->begin(), BB, 11137 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11138 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11139 11140 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11141 const TargetRegisterClass *RC = 11142 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11143 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11144 11145 Register PtrReg = RegInfo.createVirtualRegister(RC); 11146 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11147 Register ShiftReg = 11148 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11149 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11150 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11151 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11152 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11153 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11154 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11155 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11156 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11157 Register Ptr1Reg; 11158 Register TmpReg = 11159 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11160 11161 // thisMBB: 11162 // ... 11163 // fallthrough --> loopMBB 11164 BB->addSuccessor(loopMBB); 11165 11166 // The 4-byte load must be aligned, while a char or short may be 11167 // anywhere in the word. Hence all this nasty bookkeeping code. 11168 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11169 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11170 // xori shift, shift1, 24 [16] 11171 // rlwinm ptr, ptr1, 0, 0, 29 11172 // slw incr2, incr, shift 11173 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11174 // slw mask, mask2, shift 11175 // loopMBB: 11176 // lwarx tmpDest, ptr 11177 // add tmp, tmpDest, incr2 11178 // andc tmp2, tmpDest, mask 11179 // and tmp3, tmp, mask 11180 // or tmp4, tmp3, tmp2 11181 // stwcx. tmp4, ptr 11182 // bne- loopMBB 11183 // fallthrough --> exitMBB 11184 // srw dest, tmpDest, shift 11185 if (ptrA != ZeroReg) { 11186 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11187 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11188 .addReg(ptrA) 11189 .addReg(ptrB); 11190 } else { 11191 Ptr1Reg = ptrB; 11192 } 11193 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11194 // mode. 11195 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11196 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11197 .addImm(3) 11198 .addImm(27) 11199 .addImm(is8bit ? 28 : 27); 11200 if (!isLittleEndian) 11201 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11202 .addReg(Shift1Reg) 11203 .addImm(is8bit ? 24 : 16); 11204 if (is64bit) 11205 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11206 .addReg(Ptr1Reg) 11207 .addImm(0) 11208 .addImm(61); 11209 else 11210 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11211 .addReg(Ptr1Reg) 11212 .addImm(0) 11213 .addImm(0) 11214 .addImm(29); 11215 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11216 if (is8bit) 11217 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11218 else { 11219 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11220 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11221 .addReg(Mask3Reg) 11222 .addImm(65535); 11223 } 11224 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11225 .addReg(Mask2Reg) 11226 .addReg(ShiftReg); 11227 11228 BB = loopMBB; 11229 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11230 .addReg(ZeroReg) 11231 .addReg(PtrReg); 11232 if (BinOpcode) 11233 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11234 .addReg(Incr2Reg) 11235 .addReg(TmpDestReg); 11236 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11237 .addReg(TmpDestReg) 11238 .addReg(MaskReg); 11239 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11240 if (CmpOpcode) { 11241 // For unsigned comparisons, we can directly compare the shifted values. 11242 // For signed comparisons we shift and sign extend. 11243 Register SReg = RegInfo.createVirtualRegister(GPRC); 11244 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11245 .addReg(TmpDestReg) 11246 .addReg(MaskReg); 11247 unsigned ValueReg = SReg; 11248 unsigned CmpReg = Incr2Reg; 11249 if (CmpOpcode == PPC::CMPW) { 11250 ValueReg = RegInfo.createVirtualRegister(GPRC); 11251 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11252 .addReg(SReg) 11253 .addReg(ShiftReg); 11254 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11255 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11256 .addReg(ValueReg); 11257 ValueReg = ValueSReg; 11258 CmpReg = incr; 11259 } 11260 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11261 .addReg(CmpReg) 11262 .addReg(ValueReg); 11263 BuildMI(BB, dl, TII->get(PPC::BCC)) 11264 .addImm(CmpPred) 11265 .addReg(PPC::CR0) 11266 .addMBB(exitMBB); 11267 BB->addSuccessor(loop2MBB); 11268 BB->addSuccessor(exitMBB); 11269 BB = loop2MBB; 11270 } 11271 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11272 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11273 .addReg(Tmp4Reg) 11274 .addReg(ZeroReg) 11275 .addReg(PtrReg); 11276 BuildMI(BB, dl, TII->get(PPC::BCC)) 11277 .addImm(PPC::PRED_NE) 11278 .addReg(PPC::CR0) 11279 .addMBB(loopMBB); 11280 BB->addSuccessor(loopMBB); 11281 BB->addSuccessor(exitMBB); 11282 11283 // exitMBB: 11284 // ... 11285 BB = exitMBB; 11286 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11287 .addReg(TmpDestReg) 11288 .addReg(ShiftReg); 11289 return BB; 11290 } 11291 11292 llvm::MachineBasicBlock * 11293 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11294 MachineBasicBlock *MBB) const { 11295 DebugLoc DL = MI.getDebugLoc(); 11296 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11297 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11298 11299 MachineFunction *MF = MBB->getParent(); 11300 MachineRegisterInfo &MRI = MF->getRegInfo(); 11301 11302 const BasicBlock *BB = MBB->getBasicBlock(); 11303 MachineFunction::iterator I = ++MBB->getIterator(); 11304 11305 Register DstReg = MI.getOperand(0).getReg(); 11306 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11307 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11308 Register mainDstReg = MRI.createVirtualRegister(RC); 11309 Register restoreDstReg = MRI.createVirtualRegister(RC); 11310 11311 MVT PVT = getPointerTy(MF->getDataLayout()); 11312 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11313 "Invalid Pointer Size!"); 11314 // For v = setjmp(buf), we generate 11315 // 11316 // thisMBB: 11317 // SjLjSetup mainMBB 11318 // bl mainMBB 11319 // v_restore = 1 11320 // b sinkMBB 11321 // 11322 // mainMBB: 11323 // buf[LabelOffset] = LR 11324 // v_main = 0 11325 // 11326 // sinkMBB: 11327 // v = phi(main, restore) 11328 // 11329 11330 MachineBasicBlock *thisMBB = MBB; 11331 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11332 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11333 MF->insert(I, mainMBB); 11334 MF->insert(I, sinkMBB); 11335 11336 MachineInstrBuilder MIB; 11337 11338 // Transfer the remainder of BB and its successor edges to sinkMBB. 11339 sinkMBB->splice(sinkMBB->begin(), MBB, 11340 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11341 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11342 11343 // Note that the structure of the jmp_buf used here is not compatible 11344 // with that used by libc, and is not designed to be. Specifically, it 11345 // stores only those 'reserved' registers that LLVM does not otherwise 11346 // understand how to spill. Also, by convention, by the time this 11347 // intrinsic is called, Clang has already stored the frame address in the 11348 // first slot of the buffer and stack address in the third. Following the 11349 // X86 target code, we'll store the jump address in the second slot. We also 11350 // need to save the TOC pointer (R2) to handle jumps between shared 11351 // libraries, and that will be stored in the fourth slot. The thread 11352 // identifier (R13) is not affected. 11353 11354 // thisMBB: 11355 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11356 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11357 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11358 11359 // Prepare IP either in reg. 11360 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11361 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11362 Register BufReg = MI.getOperand(1).getReg(); 11363 11364 if (Subtarget.is64BitELFABI()) { 11365 setUsesTOCBasePtr(*MBB->getParent()); 11366 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11367 .addReg(PPC::X2) 11368 .addImm(TOCOffset) 11369 .addReg(BufReg) 11370 .cloneMemRefs(MI); 11371 } 11372 11373 // Naked functions never have a base pointer, and so we use r1. For all 11374 // other functions, this decision must be delayed until during PEI. 11375 unsigned BaseReg; 11376 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11377 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11378 else 11379 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11380 11381 MIB = BuildMI(*thisMBB, MI, DL, 11382 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11383 .addReg(BaseReg) 11384 .addImm(BPOffset) 11385 .addReg(BufReg) 11386 .cloneMemRefs(MI); 11387 11388 // Setup 11389 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11390 MIB.addRegMask(TRI->getNoPreservedMask()); 11391 11392 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11393 11394 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11395 .addMBB(mainMBB); 11396 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11397 11398 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11399 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11400 11401 // mainMBB: 11402 // mainDstReg = 0 11403 MIB = 11404 BuildMI(mainMBB, DL, 11405 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11406 11407 // Store IP 11408 if (Subtarget.isPPC64()) { 11409 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11410 .addReg(LabelReg) 11411 .addImm(LabelOffset) 11412 .addReg(BufReg); 11413 } else { 11414 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11415 .addReg(LabelReg) 11416 .addImm(LabelOffset) 11417 .addReg(BufReg); 11418 } 11419 MIB.cloneMemRefs(MI); 11420 11421 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11422 mainMBB->addSuccessor(sinkMBB); 11423 11424 // sinkMBB: 11425 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11426 TII->get(PPC::PHI), DstReg) 11427 .addReg(mainDstReg).addMBB(mainMBB) 11428 .addReg(restoreDstReg).addMBB(thisMBB); 11429 11430 MI.eraseFromParent(); 11431 return sinkMBB; 11432 } 11433 11434 MachineBasicBlock * 11435 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11436 MachineBasicBlock *MBB) const { 11437 DebugLoc DL = MI.getDebugLoc(); 11438 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11439 11440 MachineFunction *MF = MBB->getParent(); 11441 MachineRegisterInfo &MRI = MF->getRegInfo(); 11442 11443 MVT PVT = getPointerTy(MF->getDataLayout()); 11444 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11445 "Invalid Pointer Size!"); 11446 11447 const TargetRegisterClass *RC = 11448 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11449 Register Tmp = MRI.createVirtualRegister(RC); 11450 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11451 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11452 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11453 unsigned BP = 11454 (PVT == MVT::i64) 11455 ? PPC::X30 11456 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11457 : PPC::R30); 11458 11459 MachineInstrBuilder MIB; 11460 11461 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11462 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11463 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11464 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11465 11466 Register BufReg = MI.getOperand(0).getReg(); 11467 11468 // Reload FP (the jumped-to function may not have had a 11469 // frame pointer, and if so, then its r31 will be restored 11470 // as necessary). 11471 if (PVT == MVT::i64) { 11472 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11473 .addImm(0) 11474 .addReg(BufReg); 11475 } else { 11476 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11477 .addImm(0) 11478 .addReg(BufReg); 11479 } 11480 MIB.cloneMemRefs(MI); 11481 11482 // Reload IP 11483 if (PVT == MVT::i64) { 11484 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11485 .addImm(LabelOffset) 11486 .addReg(BufReg); 11487 } else { 11488 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11489 .addImm(LabelOffset) 11490 .addReg(BufReg); 11491 } 11492 MIB.cloneMemRefs(MI); 11493 11494 // Reload SP 11495 if (PVT == MVT::i64) { 11496 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11497 .addImm(SPOffset) 11498 .addReg(BufReg); 11499 } else { 11500 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11501 .addImm(SPOffset) 11502 .addReg(BufReg); 11503 } 11504 MIB.cloneMemRefs(MI); 11505 11506 // Reload BP 11507 if (PVT == MVT::i64) { 11508 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11509 .addImm(BPOffset) 11510 .addReg(BufReg); 11511 } else { 11512 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11513 .addImm(BPOffset) 11514 .addReg(BufReg); 11515 } 11516 MIB.cloneMemRefs(MI); 11517 11518 // Reload TOC 11519 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11520 setUsesTOCBasePtr(*MBB->getParent()); 11521 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11522 .addImm(TOCOffset) 11523 .addReg(BufReg) 11524 .cloneMemRefs(MI); 11525 } 11526 11527 // Jump 11528 BuildMI(*MBB, MI, DL, 11529 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11530 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11531 11532 MI.eraseFromParent(); 11533 return MBB; 11534 } 11535 11536 MachineBasicBlock * 11537 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11538 MachineBasicBlock *BB) const { 11539 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11540 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11541 if (Subtarget.is64BitELFABI() && 11542 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11543 !Subtarget.isUsingPCRelativeCalls()) { 11544 // Call lowering should have added an r2 operand to indicate a dependence 11545 // on the TOC base pointer value. It can't however, because there is no 11546 // way to mark the dependence as implicit there, and so the stackmap code 11547 // will confuse it with a regular operand. Instead, add the dependence 11548 // here. 11549 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11550 } 11551 11552 return emitPatchPoint(MI, BB); 11553 } 11554 11555 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11556 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11557 return emitEHSjLjSetJmp(MI, BB); 11558 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11559 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11560 return emitEHSjLjLongJmp(MI, BB); 11561 } 11562 11563 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11564 11565 // To "insert" these instructions we actually have to insert their 11566 // control-flow patterns. 11567 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11568 MachineFunction::iterator It = ++BB->getIterator(); 11569 11570 MachineFunction *F = BB->getParent(); 11571 11572 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11573 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11574 MI.getOpcode() == PPC::SELECT_I8) { 11575 SmallVector<MachineOperand, 2> Cond; 11576 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11577 MI.getOpcode() == PPC::SELECT_CC_I8) 11578 Cond.push_back(MI.getOperand(4)); 11579 else 11580 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11581 Cond.push_back(MI.getOperand(1)); 11582 11583 DebugLoc dl = MI.getDebugLoc(); 11584 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11585 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11586 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11587 MI.getOpcode() == PPC::SELECT_CC_F8 || 11588 MI.getOpcode() == PPC::SELECT_CC_F16 || 11589 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11590 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11591 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11592 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11593 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11594 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11595 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11596 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11597 MI.getOpcode() == PPC::SELECT_CC_SPE || 11598 MI.getOpcode() == PPC::SELECT_F4 || 11599 MI.getOpcode() == PPC::SELECT_F8 || 11600 MI.getOpcode() == PPC::SELECT_F16 || 11601 MI.getOpcode() == PPC::SELECT_QFRC || 11602 MI.getOpcode() == PPC::SELECT_QSRC || 11603 MI.getOpcode() == PPC::SELECT_QBRC || 11604 MI.getOpcode() == PPC::SELECT_SPE || 11605 MI.getOpcode() == PPC::SELECT_SPE4 || 11606 MI.getOpcode() == PPC::SELECT_VRRC || 11607 MI.getOpcode() == PPC::SELECT_VSFRC || 11608 MI.getOpcode() == PPC::SELECT_VSSRC || 11609 MI.getOpcode() == PPC::SELECT_VSRC) { 11610 // The incoming instruction knows the destination vreg to set, the 11611 // condition code register to branch on, the true/false values to 11612 // select between, and a branch opcode to use. 11613 11614 // thisMBB: 11615 // ... 11616 // TrueVal = ... 11617 // cmpTY ccX, r1, r2 11618 // bCC copy1MBB 11619 // fallthrough --> copy0MBB 11620 MachineBasicBlock *thisMBB = BB; 11621 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11622 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11623 DebugLoc dl = MI.getDebugLoc(); 11624 F->insert(It, copy0MBB); 11625 F->insert(It, sinkMBB); 11626 11627 // Transfer the remainder of BB and its successor edges to sinkMBB. 11628 sinkMBB->splice(sinkMBB->begin(), BB, 11629 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11630 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11631 11632 // Next, add the true and fallthrough blocks as its successors. 11633 BB->addSuccessor(copy0MBB); 11634 BB->addSuccessor(sinkMBB); 11635 11636 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11637 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11638 MI.getOpcode() == PPC::SELECT_F16 || 11639 MI.getOpcode() == PPC::SELECT_SPE4 || 11640 MI.getOpcode() == PPC::SELECT_SPE || 11641 MI.getOpcode() == PPC::SELECT_QFRC || 11642 MI.getOpcode() == PPC::SELECT_QSRC || 11643 MI.getOpcode() == PPC::SELECT_QBRC || 11644 MI.getOpcode() == PPC::SELECT_VRRC || 11645 MI.getOpcode() == PPC::SELECT_VSFRC || 11646 MI.getOpcode() == PPC::SELECT_VSSRC || 11647 MI.getOpcode() == PPC::SELECT_VSRC) { 11648 BuildMI(BB, dl, TII->get(PPC::BC)) 11649 .addReg(MI.getOperand(1).getReg()) 11650 .addMBB(sinkMBB); 11651 } else { 11652 unsigned SelectPred = MI.getOperand(4).getImm(); 11653 BuildMI(BB, dl, TII->get(PPC::BCC)) 11654 .addImm(SelectPred) 11655 .addReg(MI.getOperand(1).getReg()) 11656 .addMBB(sinkMBB); 11657 } 11658 11659 // copy0MBB: 11660 // %FalseValue = ... 11661 // # fallthrough to sinkMBB 11662 BB = copy0MBB; 11663 11664 // Update machine-CFG edges 11665 BB->addSuccessor(sinkMBB); 11666 11667 // sinkMBB: 11668 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11669 // ... 11670 BB = sinkMBB; 11671 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11672 .addReg(MI.getOperand(3).getReg()) 11673 .addMBB(copy0MBB) 11674 .addReg(MI.getOperand(2).getReg()) 11675 .addMBB(thisMBB); 11676 } else if (MI.getOpcode() == PPC::ReadTB) { 11677 // To read the 64-bit time-base register on a 32-bit target, we read the 11678 // two halves. Should the counter have wrapped while it was being read, we 11679 // need to try again. 11680 // ... 11681 // readLoop: 11682 // mfspr Rx,TBU # load from TBU 11683 // mfspr Ry,TB # load from TB 11684 // mfspr Rz,TBU # load from TBU 11685 // cmpw crX,Rx,Rz # check if 'old'='new' 11686 // bne readLoop # branch if they're not equal 11687 // ... 11688 11689 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11690 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11691 DebugLoc dl = MI.getDebugLoc(); 11692 F->insert(It, readMBB); 11693 F->insert(It, sinkMBB); 11694 11695 // Transfer the remainder of BB and its successor edges to sinkMBB. 11696 sinkMBB->splice(sinkMBB->begin(), BB, 11697 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11698 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11699 11700 BB->addSuccessor(readMBB); 11701 BB = readMBB; 11702 11703 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11704 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11705 Register LoReg = MI.getOperand(0).getReg(); 11706 Register HiReg = MI.getOperand(1).getReg(); 11707 11708 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11709 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11710 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11711 11712 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11713 11714 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11715 .addReg(HiReg) 11716 .addReg(ReadAgainReg); 11717 BuildMI(BB, dl, TII->get(PPC::BCC)) 11718 .addImm(PPC::PRED_NE) 11719 .addReg(CmpReg) 11720 .addMBB(readMBB); 11721 11722 BB->addSuccessor(readMBB); 11723 BB->addSuccessor(sinkMBB); 11724 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11725 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11726 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11727 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11728 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11729 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11730 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11731 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11732 11733 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11734 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11735 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11736 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11737 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11738 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11739 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11740 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11741 11742 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11743 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11744 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11745 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11746 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11747 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11748 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11749 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11750 11751 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11752 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11753 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11754 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11755 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11756 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11757 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11758 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11759 11760 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11761 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11762 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11763 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11764 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11765 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11766 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11767 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11768 11769 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11770 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11771 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11772 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11773 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11774 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11775 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11776 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11777 11778 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11779 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11780 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11781 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11782 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11783 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11784 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11785 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11786 11787 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11788 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11789 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11790 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11791 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11792 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11793 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11794 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11795 11796 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11797 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11798 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11799 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11800 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11801 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11802 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11803 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11804 11805 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11806 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11807 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11808 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11809 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11810 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11811 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11812 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11813 11814 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11815 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11816 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11817 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11818 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11819 BB = EmitAtomicBinary(MI, BB, 4, 0); 11820 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11821 BB = EmitAtomicBinary(MI, BB, 8, 0); 11822 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11823 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11824 (Subtarget.hasPartwordAtomics() && 11825 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11826 (Subtarget.hasPartwordAtomics() && 11827 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11828 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11829 11830 auto LoadMnemonic = PPC::LDARX; 11831 auto StoreMnemonic = PPC::STDCX; 11832 switch (MI.getOpcode()) { 11833 default: 11834 llvm_unreachable("Compare and swap of unknown size"); 11835 case PPC::ATOMIC_CMP_SWAP_I8: 11836 LoadMnemonic = PPC::LBARX; 11837 StoreMnemonic = PPC::STBCX; 11838 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11839 break; 11840 case PPC::ATOMIC_CMP_SWAP_I16: 11841 LoadMnemonic = PPC::LHARX; 11842 StoreMnemonic = PPC::STHCX; 11843 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11844 break; 11845 case PPC::ATOMIC_CMP_SWAP_I32: 11846 LoadMnemonic = PPC::LWARX; 11847 StoreMnemonic = PPC::STWCX; 11848 break; 11849 case PPC::ATOMIC_CMP_SWAP_I64: 11850 LoadMnemonic = PPC::LDARX; 11851 StoreMnemonic = PPC::STDCX; 11852 break; 11853 } 11854 Register dest = MI.getOperand(0).getReg(); 11855 Register ptrA = MI.getOperand(1).getReg(); 11856 Register ptrB = MI.getOperand(2).getReg(); 11857 Register oldval = MI.getOperand(3).getReg(); 11858 Register newval = MI.getOperand(4).getReg(); 11859 DebugLoc dl = MI.getDebugLoc(); 11860 11861 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11862 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11863 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11864 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11865 F->insert(It, loop1MBB); 11866 F->insert(It, loop2MBB); 11867 F->insert(It, midMBB); 11868 F->insert(It, exitMBB); 11869 exitMBB->splice(exitMBB->begin(), BB, 11870 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11871 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11872 11873 // thisMBB: 11874 // ... 11875 // fallthrough --> loopMBB 11876 BB->addSuccessor(loop1MBB); 11877 11878 // loop1MBB: 11879 // l[bhwd]arx dest, ptr 11880 // cmp[wd] dest, oldval 11881 // bne- midMBB 11882 // loop2MBB: 11883 // st[bhwd]cx. newval, ptr 11884 // bne- loopMBB 11885 // b exitBB 11886 // midMBB: 11887 // st[bhwd]cx. dest, ptr 11888 // exitBB: 11889 BB = loop1MBB; 11890 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11891 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11892 .addReg(oldval) 11893 .addReg(dest); 11894 BuildMI(BB, dl, TII->get(PPC::BCC)) 11895 .addImm(PPC::PRED_NE) 11896 .addReg(PPC::CR0) 11897 .addMBB(midMBB); 11898 BB->addSuccessor(loop2MBB); 11899 BB->addSuccessor(midMBB); 11900 11901 BB = loop2MBB; 11902 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11903 .addReg(newval) 11904 .addReg(ptrA) 11905 .addReg(ptrB); 11906 BuildMI(BB, dl, TII->get(PPC::BCC)) 11907 .addImm(PPC::PRED_NE) 11908 .addReg(PPC::CR0) 11909 .addMBB(loop1MBB); 11910 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11911 BB->addSuccessor(loop1MBB); 11912 BB->addSuccessor(exitMBB); 11913 11914 BB = midMBB; 11915 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11916 .addReg(dest) 11917 .addReg(ptrA) 11918 .addReg(ptrB); 11919 BB->addSuccessor(exitMBB); 11920 11921 // exitMBB: 11922 // ... 11923 BB = exitMBB; 11924 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11925 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11926 // We must use 64-bit registers for addresses when targeting 64-bit, 11927 // since we're actually doing arithmetic on them. Other registers 11928 // can be 32-bit. 11929 bool is64bit = Subtarget.isPPC64(); 11930 bool isLittleEndian = Subtarget.isLittleEndian(); 11931 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11932 11933 Register dest = MI.getOperand(0).getReg(); 11934 Register ptrA = MI.getOperand(1).getReg(); 11935 Register ptrB = MI.getOperand(2).getReg(); 11936 Register oldval = MI.getOperand(3).getReg(); 11937 Register newval = MI.getOperand(4).getReg(); 11938 DebugLoc dl = MI.getDebugLoc(); 11939 11940 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11941 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11942 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11943 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11944 F->insert(It, loop1MBB); 11945 F->insert(It, loop2MBB); 11946 F->insert(It, midMBB); 11947 F->insert(It, exitMBB); 11948 exitMBB->splice(exitMBB->begin(), BB, 11949 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11950 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11951 11952 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11953 const TargetRegisterClass *RC = 11954 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11955 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11956 11957 Register PtrReg = RegInfo.createVirtualRegister(RC); 11958 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11959 Register ShiftReg = 11960 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11961 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11962 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11963 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11964 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11965 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11966 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11967 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11968 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11969 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11970 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11971 Register Ptr1Reg; 11972 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11973 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11974 // thisMBB: 11975 // ... 11976 // fallthrough --> loopMBB 11977 BB->addSuccessor(loop1MBB); 11978 11979 // The 4-byte load must be aligned, while a char or short may be 11980 // anywhere in the word. Hence all this nasty bookkeeping code. 11981 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11982 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11983 // xori shift, shift1, 24 [16] 11984 // rlwinm ptr, ptr1, 0, 0, 29 11985 // slw newval2, newval, shift 11986 // slw oldval2, oldval,shift 11987 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11988 // slw mask, mask2, shift 11989 // and newval3, newval2, mask 11990 // and oldval3, oldval2, mask 11991 // loop1MBB: 11992 // lwarx tmpDest, ptr 11993 // and tmp, tmpDest, mask 11994 // cmpw tmp, oldval3 11995 // bne- midMBB 11996 // loop2MBB: 11997 // andc tmp2, tmpDest, mask 11998 // or tmp4, tmp2, newval3 11999 // stwcx. tmp4, ptr 12000 // bne- loop1MBB 12001 // b exitBB 12002 // midMBB: 12003 // stwcx. tmpDest, ptr 12004 // exitBB: 12005 // srw dest, tmpDest, shift 12006 if (ptrA != ZeroReg) { 12007 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12008 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12009 .addReg(ptrA) 12010 .addReg(ptrB); 12011 } else { 12012 Ptr1Reg = ptrB; 12013 } 12014 12015 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12016 // mode. 12017 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12018 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12019 .addImm(3) 12020 .addImm(27) 12021 .addImm(is8bit ? 28 : 27); 12022 if (!isLittleEndian) 12023 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12024 .addReg(Shift1Reg) 12025 .addImm(is8bit ? 24 : 16); 12026 if (is64bit) 12027 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12028 .addReg(Ptr1Reg) 12029 .addImm(0) 12030 .addImm(61); 12031 else 12032 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12033 .addReg(Ptr1Reg) 12034 .addImm(0) 12035 .addImm(0) 12036 .addImm(29); 12037 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12038 .addReg(newval) 12039 .addReg(ShiftReg); 12040 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12041 .addReg(oldval) 12042 .addReg(ShiftReg); 12043 if (is8bit) 12044 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12045 else { 12046 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12047 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12048 .addReg(Mask3Reg) 12049 .addImm(65535); 12050 } 12051 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12052 .addReg(Mask2Reg) 12053 .addReg(ShiftReg); 12054 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12055 .addReg(NewVal2Reg) 12056 .addReg(MaskReg); 12057 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12058 .addReg(OldVal2Reg) 12059 .addReg(MaskReg); 12060 12061 BB = loop1MBB; 12062 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12063 .addReg(ZeroReg) 12064 .addReg(PtrReg); 12065 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12066 .addReg(TmpDestReg) 12067 .addReg(MaskReg); 12068 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12069 .addReg(TmpReg) 12070 .addReg(OldVal3Reg); 12071 BuildMI(BB, dl, TII->get(PPC::BCC)) 12072 .addImm(PPC::PRED_NE) 12073 .addReg(PPC::CR0) 12074 .addMBB(midMBB); 12075 BB->addSuccessor(loop2MBB); 12076 BB->addSuccessor(midMBB); 12077 12078 BB = loop2MBB; 12079 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12080 .addReg(TmpDestReg) 12081 .addReg(MaskReg); 12082 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12083 .addReg(Tmp2Reg) 12084 .addReg(NewVal3Reg); 12085 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12086 .addReg(Tmp4Reg) 12087 .addReg(ZeroReg) 12088 .addReg(PtrReg); 12089 BuildMI(BB, dl, TII->get(PPC::BCC)) 12090 .addImm(PPC::PRED_NE) 12091 .addReg(PPC::CR0) 12092 .addMBB(loop1MBB); 12093 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12094 BB->addSuccessor(loop1MBB); 12095 BB->addSuccessor(exitMBB); 12096 12097 BB = midMBB; 12098 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12099 .addReg(TmpDestReg) 12100 .addReg(ZeroReg) 12101 .addReg(PtrReg); 12102 BB->addSuccessor(exitMBB); 12103 12104 // exitMBB: 12105 // ... 12106 BB = exitMBB; 12107 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12108 .addReg(TmpReg) 12109 .addReg(ShiftReg); 12110 } else if (MI.getOpcode() == PPC::FADDrtz) { 12111 // This pseudo performs an FADD with rounding mode temporarily forced 12112 // to round-to-zero. We emit this via custom inserter since the FPSCR 12113 // is not modeled at the SelectionDAG level. 12114 Register Dest = MI.getOperand(0).getReg(); 12115 Register Src1 = MI.getOperand(1).getReg(); 12116 Register Src2 = MI.getOperand(2).getReg(); 12117 DebugLoc dl = MI.getDebugLoc(); 12118 12119 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12120 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12121 12122 // Save FPSCR value. 12123 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12124 12125 // Set rounding mode to round-to-zero. 12126 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12127 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12128 12129 // Perform addition. 12130 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12131 12132 // Restore FPSCR value. 12133 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12134 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12135 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12136 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12137 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12138 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12139 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12140 ? PPC::ANDI8_rec 12141 : PPC::ANDI_rec; 12142 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12143 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12144 12145 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12146 Register Dest = RegInfo.createVirtualRegister( 12147 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12148 12149 DebugLoc Dl = MI.getDebugLoc(); 12150 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12151 .addReg(MI.getOperand(1).getReg()) 12152 .addImm(1); 12153 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12154 MI.getOperand(0).getReg()) 12155 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12156 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12157 DebugLoc Dl = MI.getDebugLoc(); 12158 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12159 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12160 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12161 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12162 MI.getOperand(0).getReg()) 12163 .addReg(CRReg); 12164 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12165 DebugLoc Dl = MI.getDebugLoc(); 12166 unsigned Imm = MI.getOperand(1).getImm(); 12167 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12168 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12169 MI.getOperand(0).getReg()) 12170 .addReg(PPC::CR0EQ); 12171 } else if (MI.getOpcode() == PPC::SETRNDi) { 12172 DebugLoc dl = MI.getDebugLoc(); 12173 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12174 12175 // Save FPSCR value. 12176 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12177 12178 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12179 // the following settings: 12180 // 00 Round to nearest 12181 // 01 Round to 0 12182 // 10 Round to +inf 12183 // 11 Round to -inf 12184 12185 // When the operand is immediate, using the two least significant bits of 12186 // the immediate to set the bits 62:63 of FPSCR. 12187 unsigned Mode = MI.getOperand(1).getImm(); 12188 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12189 .addImm(31); 12190 12191 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12192 .addImm(30); 12193 } else if (MI.getOpcode() == PPC::SETRND) { 12194 DebugLoc dl = MI.getDebugLoc(); 12195 12196 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12197 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12198 // If the target doesn't have DirectMove, we should use stack to do the 12199 // conversion, because the target doesn't have the instructions like mtvsrd 12200 // or mfvsrd to do this conversion directly. 12201 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12202 if (Subtarget.hasDirectMove()) { 12203 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12204 .addReg(SrcReg); 12205 } else { 12206 // Use stack to do the register copy. 12207 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12208 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12209 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12210 if (RC == &PPC::F8RCRegClass) { 12211 // Copy register from F8RCRegClass to G8RCRegclass. 12212 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12213 "Unsupported RegClass."); 12214 12215 StoreOp = PPC::STFD; 12216 LoadOp = PPC::LD; 12217 } else { 12218 // Copy register from G8RCRegClass to F8RCRegclass. 12219 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12220 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12221 "Unsupported RegClass."); 12222 } 12223 12224 MachineFrameInfo &MFI = F->getFrameInfo(); 12225 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12226 12227 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12228 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12229 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12230 MFI.getObjectAlign(FrameIdx)); 12231 12232 // Store the SrcReg into the stack. 12233 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12234 .addReg(SrcReg) 12235 .addImm(0) 12236 .addFrameIndex(FrameIdx) 12237 .addMemOperand(MMOStore); 12238 12239 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12240 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12241 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12242 MFI.getObjectAlign(FrameIdx)); 12243 12244 // Load from the stack where SrcReg is stored, and save to DestReg, 12245 // so we have done the RegClass conversion from RegClass::SrcReg to 12246 // RegClass::DestReg. 12247 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12248 .addImm(0) 12249 .addFrameIndex(FrameIdx) 12250 .addMemOperand(MMOLoad); 12251 } 12252 }; 12253 12254 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12255 12256 // Save FPSCR value. 12257 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12258 12259 // When the operand is gprc register, use two least significant bits of the 12260 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12261 // 12262 // copy OldFPSCRTmpReg, OldFPSCRReg 12263 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12264 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12265 // copy NewFPSCRReg, NewFPSCRTmpReg 12266 // mtfsf 255, NewFPSCRReg 12267 MachineOperand SrcOp = MI.getOperand(1); 12268 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12269 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12270 12271 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12272 12273 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12274 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12275 12276 // The first operand of INSERT_SUBREG should be a register which has 12277 // subregisters, we only care about its RegClass, so we should use an 12278 // IMPLICIT_DEF register. 12279 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12280 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12281 .addReg(ImDefReg) 12282 .add(SrcOp) 12283 .addImm(1); 12284 12285 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12286 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12287 .addReg(OldFPSCRTmpReg) 12288 .addReg(ExtSrcReg) 12289 .addImm(0) 12290 .addImm(62); 12291 12292 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12293 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12294 12295 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12296 // bits of FPSCR. 12297 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12298 .addImm(255) 12299 .addReg(NewFPSCRReg) 12300 .addImm(0) 12301 .addImm(0); 12302 } else { 12303 llvm_unreachable("Unexpected instr type to insert"); 12304 } 12305 12306 MI.eraseFromParent(); // The pseudo instruction is gone now. 12307 return BB; 12308 } 12309 12310 //===----------------------------------------------------------------------===// 12311 // Target Optimization Hooks 12312 //===----------------------------------------------------------------------===// 12313 12314 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12315 // For the estimates, convergence is quadratic, so we essentially double the 12316 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12317 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12318 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12319 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12320 if (VT.getScalarType() == MVT::f64) 12321 RefinementSteps++; 12322 return RefinementSteps; 12323 } 12324 12325 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12326 int Enabled, int &RefinementSteps, 12327 bool &UseOneConstNR, 12328 bool Reciprocal) const { 12329 EVT VT = Operand.getValueType(); 12330 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12331 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12332 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12333 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12334 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12335 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12336 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12337 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12338 12339 // The Newton-Raphson computation with a single constant does not provide 12340 // enough accuracy on some CPUs. 12341 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12342 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12343 } 12344 return SDValue(); 12345 } 12346 12347 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12348 int Enabled, 12349 int &RefinementSteps) const { 12350 EVT VT = Operand.getValueType(); 12351 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12352 (VT == MVT::f64 && Subtarget.hasFRE()) || 12353 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12354 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12355 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12356 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12357 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12358 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12359 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12360 } 12361 return SDValue(); 12362 } 12363 12364 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12365 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12366 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12367 // enabled for division), this functionality is redundant with the default 12368 // combiner logic (once the division -> reciprocal/multiply transformation 12369 // has taken place). As a result, this matters more for older cores than for 12370 // newer ones. 12371 12372 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12373 // reciprocal if there are two or more FDIVs (for embedded cores with only 12374 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12375 switch (Subtarget.getCPUDirective()) { 12376 default: 12377 return 3; 12378 case PPC::DIR_440: 12379 case PPC::DIR_A2: 12380 case PPC::DIR_E500: 12381 case PPC::DIR_E500mc: 12382 case PPC::DIR_E5500: 12383 return 2; 12384 } 12385 } 12386 12387 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12388 // collapsed, and so we need to look through chains of them. 12389 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12390 int64_t& Offset, SelectionDAG &DAG) { 12391 if (DAG.isBaseWithConstantOffset(Loc)) { 12392 Base = Loc.getOperand(0); 12393 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12394 12395 // The base might itself be a base plus an offset, and if so, accumulate 12396 // that as well. 12397 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12398 } 12399 } 12400 12401 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12402 unsigned Bytes, int Dist, 12403 SelectionDAG &DAG) { 12404 if (VT.getSizeInBits() / 8 != Bytes) 12405 return false; 12406 12407 SDValue BaseLoc = Base->getBasePtr(); 12408 if (Loc.getOpcode() == ISD::FrameIndex) { 12409 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12410 return false; 12411 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12412 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12413 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12414 int FS = MFI.getObjectSize(FI); 12415 int BFS = MFI.getObjectSize(BFI); 12416 if (FS != BFS || FS != (int)Bytes) return false; 12417 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12418 } 12419 12420 SDValue Base1 = Loc, Base2 = BaseLoc; 12421 int64_t Offset1 = 0, Offset2 = 0; 12422 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12423 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12424 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12425 return true; 12426 12427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12428 const GlobalValue *GV1 = nullptr; 12429 const GlobalValue *GV2 = nullptr; 12430 Offset1 = 0; 12431 Offset2 = 0; 12432 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12433 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12434 if (isGA1 && isGA2 && GV1 == GV2) 12435 return Offset1 == (Offset2 + Dist*Bytes); 12436 return false; 12437 } 12438 12439 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12440 // not enforce equality of the chain operands. 12441 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12442 unsigned Bytes, int Dist, 12443 SelectionDAG &DAG) { 12444 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12445 EVT VT = LS->getMemoryVT(); 12446 SDValue Loc = LS->getBasePtr(); 12447 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12448 } 12449 12450 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12451 EVT VT; 12452 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12453 default: return false; 12454 case Intrinsic::ppc_qpx_qvlfd: 12455 case Intrinsic::ppc_qpx_qvlfda: 12456 VT = MVT::v4f64; 12457 break; 12458 case Intrinsic::ppc_qpx_qvlfs: 12459 case Intrinsic::ppc_qpx_qvlfsa: 12460 VT = MVT::v4f32; 12461 break; 12462 case Intrinsic::ppc_qpx_qvlfcd: 12463 case Intrinsic::ppc_qpx_qvlfcda: 12464 VT = MVT::v2f64; 12465 break; 12466 case Intrinsic::ppc_qpx_qvlfcs: 12467 case Intrinsic::ppc_qpx_qvlfcsa: 12468 VT = MVT::v2f32; 12469 break; 12470 case Intrinsic::ppc_qpx_qvlfiwa: 12471 case Intrinsic::ppc_qpx_qvlfiwz: 12472 case Intrinsic::ppc_altivec_lvx: 12473 case Intrinsic::ppc_altivec_lvxl: 12474 case Intrinsic::ppc_vsx_lxvw4x: 12475 case Intrinsic::ppc_vsx_lxvw4x_be: 12476 VT = MVT::v4i32; 12477 break; 12478 case Intrinsic::ppc_vsx_lxvd2x: 12479 case Intrinsic::ppc_vsx_lxvd2x_be: 12480 VT = MVT::v2f64; 12481 break; 12482 case Intrinsic::ppc_altivec_lvebx: 12483 VT = MVT::i8; 12484 break; 12485 case Intrinsic::ppc_altivec_lvehx: 12486 VT = MVT::i16; 12487 break; 12488 case Intrinsic::ppc_altivec_lvewx: 12489 VT = MVT::i32; 12490 break; 12491 } 12492 12493 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12494 } 12495 12496 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12497 EVT VT; 12498 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12499 default: return false; 12500 case Intrinsic::ppc_qpx_qvstfd: 12501 case Intrinsic::ppc_qpx_qvstfda: 12502 VT = MVT::v4f64; 12503 break; 12504 case Intrinsic::ppc_qpx_qvstfs: 12505 case Intrinsic::ppc_qpx_qvstfsa: 12506 VT = MVT::v4f32; 12507 break; 12508 case Intrinsic::ppc_qpx_qvstfcd: 12509 case Intrinsic::ppc_qpx_qvstfcda: 12510 VT = MVT::v2f64; 12511 break; 12512 case Intrinsic::ppc_qpx_qvstfcs: 12513 case Intrinsic::ppc_qpx_qvstfcsa: 12514 VT = MVT::v2f32; 12515 break; 12516 case Intrinsic::ppc_qpx_qvstfiw: 12517 case Intrinsic::ppc_qpx_qvstfiwa: 12518 case Intrinsic::ppc_altivec_stvx: 12519 case Intrinsic::ppc_altivec_stvxl: 12520 case Intrinsic::ppc_vsx_stxvw4x: 12521 VT = MVT::v4i32; 12522 break; 12523 case Intrinsic::ppc_vsx_stxvd2x: 12524 VT = MVT::v2f64; 12525 break; 12526 case Intrinsic::ppc_vsx_stxvw4x_be: 12527 VT = MVT::v4i32; 12528 break; 12529 case Intrinsic::ppc_vsx_stxvd2x_be: 12530 VT = MVT::v2f64; 12531 break; 12532 case Intrinsic::ppc_altivec_stvebx: 12533 VT = MVT::i8; 12534 break; 12535 case Intrinsic::ppc_altivec_stvehx: 12536 VT = MVT::i16; 12537 break; 12538 case Intrinsic::ppc_altivec_stvewx: 12539 VT = MVT::i32; 12540 break; 12541 } 12542 12543 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12544 } 12545 12546 return false; 12547 } 12548 12549 // Return true is there is a nearyby consecutive load to the one provided 12550 // (regardless of alignment). We search up and down the chain, looking though 12551 // token factors and other loads (but nothing else). As a result, a true result 12552 // indicates that it is safe to create a new consecutive load adjacent to the 12553 // load provided. 12554 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12555 SDValue Chain = LD->getChain(); 12556 EVT VT = LD->getMemoryVT(); 12557 12558 SmallSet<SDNode *, 16> LoadRoots; 12559 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12560 SmallSet<SDNode *, 16> Visited; 12561 12562 // First, search up the chain, branching to follow all token-factor operands. 12563 // If we find a consecutive load, then we're done, otherwise, record all 12564 // nodes just above the top-level loads and token factors. 12565 while (!Queue.empty()) { 12566 SDNode *ChainNext = Queue.pop_back_val(); 12567 if (!Visited.insert(ChainNext).second) 12568 continue; 12569 12570 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12571 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12572 return true; 12573 12574 if (!Visited.count(ChainLD->getChain().getNode())) 12575 Queue.push_back(ChainLD->getChain().getNode()); 12576 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12577 for (const SDUse &O : ChainNext->ops()) 12578 if (!Visited.count(O.getNode())) 12579 Queue.push_back(O.getNode()); 12580 } else 12581 LoadRoots.insert(ChainNext); 12582 } 12583 12584 // Second, search down the chain, starting from the top-level nodes recorded 12585 // in the first phase. These top-level nodes are the nodes just above all 12586 // loads and token factors. Starting with their uses, recursively look though 12587 // all loads (just the chain uses) and token factors to find a consecutive 12588 // load. 12589 Visited.clear(); 12590 Queue.clear(); 12591 12592 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12593 IE = LoadRoots.end(); I != IE; ++I) { 12594 Queue.push_back(*I); 12595 12596 while (!Queue.empty()) { 12597 SDNode *LoadRoot = Queue.pop_back_val(); 12598 if (!Visited.insert(LoadRoot).second) 12599 continue; 12600 12601 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12602 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12603 return true; 12604 12605 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12606 UE = LoadRoot->use_end(); UI != UE; ++UI) 12607 if (((isa<MemSDNode>(*UI) && 12608 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12609 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12610 Queue.push_back(*UI); 12611 } 12612 } 12613 12614 return false; 12615 } 12616 12617 /// This function is called when we have proved that a SETCC node can be replaced 12618 /// by subtraction (and other supporting instructions) so that the result of 12619 /// comparison is kept in a GPR instead of CR. This function is purely for 12620 /// codegen purposes and has some flags to guide the codegen process. 12621 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12622 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12623 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12624 12625 // Zero extend the operands to the largest legal integer. Originally, they 12626 // must be of a strictly smaller size. 12627 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12628 DAG.getConstant(Size, DL, MVT::i32)); 12629 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12630 DAG.getConstant(Size, DL, MVT::i32)); 12631 12632 // Swap if needed. Depends on the condition code. 12633 if (Swap) 12634 std::swap(Op0, Op1); 12635 12636 // Subtract extended integers. 12637 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12638 12639 // Move the sign bit to the least significant position and zero out the rest. 12640 // Now the least significant bit carries the result of original comparison. 12641 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12642 DAG.getConstant(Size - 1, DL, MVT::i32)); 12643 auto Final = Shifted; 12644 12645 // Complement the result if needed. Based on the condition code. 12646 if (Complement) 12647 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12648 DAG.getConstant(1, DL, MVT::i64)); 12649 12650 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12651 } 12652 12653 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12654 DAGCombinerInfo &DCI) const { 12655 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12656 12657 SelectionDAG &DAG = DCI.DAG; 12658 SDLoc DL(N); 12659 12660 // Size of integers being compared has a critical role in the following 12661 // analysis, so we prefer to do this when all types are legal. 12662 if (!DCI.isAfterLegalizeDAG()) 12663 return SDValue(); 12664 12665 // If all users of SETCC extend its value to a legal integer type 12666 // then we replace SETCC with a subtraction 12667 for (SDNode::use_iterator UI = N->use_begin(), 12668 UE = N->use_end(); UI != UE; ++UI) { 12669 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12670 return SDValue(); 12671 } 12672 12673 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12674 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12675 12676 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12677 12678 if (OpSize < Size) { 12679 switch (CC) { 12680 default: break; 12681 case ISD::SETULT: 12682 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12683 case ISD::SETULE: 12684 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12685 case ISD::SETUGT: 12686 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12687 case ISD::SETUGE: 12688 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12689 } 12690 } 12691 12692 return SDValue(); 12693 } 12694 12695 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12696 DAGCombinerInfo &DCI) const { 12697 SelectionDAG &DAG = DCI.DAG; 12698 SDLoc dl(N); 12699 12700 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12701 // If we're tracking CR bits, we need to be careful that we don't have: 12702 // trunc(binary-ops(zext(x), zext(y))) 12703 // or 12704 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12705 // such that we're unnecessarily moving things into GPRs when it would be 12706 // better to keep them in CR bits. 12707 12708 // Note that trunc here can be an actual i1 trunc, or can be the effective 12709 // truncation that comes from a setcc or select_cc. 12710 if (N->getOpcode() == ISD::TRUNCATE && 12711 N->getValueType(0) != MVT::i1) 12712 return SDValue(); 12713 12714 if (N->getOperand(0).getValueType() != MVT::i32 && 12715 N->getOperand(0).getValueType() != MVT::i64) 12716 return SDValue(); 12717 12718 if (N->getOpcode() == ISD::SETCC || 12719 N->getOpcode() == ISD::SELECT_CC) { 12720 // If we're looking at a comparison, then we need to make sure that the 12721 // high bits (all except for the first) don't matter the result. 12722 ISD::CondCode CC = 12723 cast<CondCodeSDNode>(N->getOperand( 12724 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12725 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12726 12727 if (ISD::isSignedIntSetCC(CC)) { 12728 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12729 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12730 return SDValue(); 12731 } else if (ISD::isUnsignedIntSetCC(CC)) { 12732 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12733 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12734 !DAG.MaskedValueIsZero(N->getOperand(1), 12735 APInt::getHighBitsSet(OpBits, OpBits-1))) 12736 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12737 : SDValue()); 12738 } else { 12739 // This is neither a signed nor an unsigned comparison, just make sure 12740 // that the high bits are equal. 12741 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12742 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12743 12744 // We don't really care about what is known about the first bit (if 12745 // anything), so clear it in all masks prior to comparing them. 12746 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12747 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12748 12749 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12750 return SDValue(); 12751 } 12752 } 12753 12754 // We now know that the higher-order bits are irrelevant, we just need to 12755 // make sure that all of the intermediate operations are bit operations, and 12756 // all inputs are extensions. 12757 if (N->getOperand(0).getOpcode() != ISD::AND && 12758 N->getOperand(0).getOpcode() != ISD::OR && 12759 N->getOperand(0).getOpcode() != ISD::XOR && 12760 N->getOperand(0).getOpcode() != ISD::SELECT && 12761 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12762 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12763 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12764 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12765 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12766 return SDValue(); 12767 12768 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12769 N->getOperand(1).getOpcode() != ISD::AND && 12770 N->getOperand(1).getOpcode() != ISD::OR && 12771 N->getOperand(1).getOpcode() != ISD::XOR && 12772 N->getOperand(1).getOpcode() != ISD::SELECT && 12773 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12774 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12775 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12776 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12777 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12778 return SDValue(); 12779 12780 SmallVector<SDValue, 4> Inputs; 12781 SmallVector<SDValue, 8> BinOps, PromOps; 12782 SmallPtrSet<SDNode *, 16> Visited; 12783 12784 for (unsigned i = 0; i < 2; ++i) { 12785 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12786 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12787 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12788 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12789 isa<ConstantSDNode>(N->getOperand(i))) 12790 Inputs.push_back(N->getOperand(i)); 12791 else 12792 BinOps.push_back(N->getOperand(i)); 12793 12794 if (N->getOpcode() == ISD::TRUNCATE) 12795 break; 12796 } 12797 12798 // Visit all inputs, collect all binary operations (and, or, xor and 12799 // select) that are all fed by extensions. 12800 while (!BinOps.empty()) { 12801 SDValue BinOp = BinOps.back(); 12802 BinOps.pop_back(); 12803 12804 if (!Visited.insert(BinOp.getNode()).second) 12805 continue; 12806 12807 PromOps.push_back(BinOp); 12808 12809 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12810 // The condition of the select is not promoted. 12811 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12812 continue; 12813 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12814 continue; 12815 12816 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12817 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12818 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12819 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12820 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12821 Inputs.push_back(BinOp.getOperand(i)); 12822 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12823 BinOp.getOperand(i).getOpcode() == ISD::OR || 12824 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12825 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12826 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12827 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12828 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12829 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12830 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12831 BinOps.push_back(BinOp.getOperand(i)); 12832 } else { 12833 // We have an input that is not an extension or another binary 12834 // operation; we'll abort this transformation. 12835 return SDValue(); 12836 } 12837 } 12838 } 12839 12840 // Make sure that this is a self-contained cluster of operations (which 12841 // is not quite the same thing as saying that everything has only one 12842 // use). 12843 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12844 if (isa<ConstantSDNode>(Inputs[i])) 12845 continue; 12846 12847 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12848 UE = Inputs[i].getNode()->use_end(); 12849 UI != UE; ++UI) { 12850 SDNode *User = *UI; 12851 if (User != N && !Visited.count(User)) 12852 return SDValue(); 12853 12854 // Make sure that we're not going to promote the non-output-value 12855 // operand(s) or SELECT or SELECT_CC. 12856 // FIXME: Although we could sometimes handle this, and it does occur in 12857 // practice that one of the condition inputs to the select is also one of 12858 // the outputs, we currently can't deal with this. 12859 if (User->getOpcode() == ISD::SELECT) { 12860 if (User->getOperand(0) == Inputs[i]) 12861 return SDValue(); 12862 } else if (User->getOpcode() == ISD::SELECT_CC) { 12863 if (User->getOperand(0) == Inputs[i] || 12864 User->getOperand(1) == Inputs[i]) 12865 return SDValue(); 12866 } 12867 } 12868 } 12869 12870 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12871 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12872 UE = PromOps[i].getNode()->use_end(); 12873 UI != UE; ++UI) { 12874 SDNode *User = *UI; 12875 if (User != N && !Visited.count(User)) 12876 return SDValue(); 12877 12878 // Make sure that we're not going to promote the non-output-value 12879 // operand(s) or SELECT or SELECT_CC. 12880 // FIXME: Although we could sometimes handle this, and it does occur in 12881 // practice that one of the condition inputs to the select is also one of 12882 // the outputs, we currently can't deal with this. 12883 if (User->getOpcode() == ISD::SELECT) { 12884 if (User->getOperand(0) == PromOps[i]) 12885 return SDValue(); 12886 } else if (User->getOpcode() == ISD::SELECT_CC) { 12887 if (User->getOperand(0) == PromOps[i] || 12888 User->getOperand(1) == PromOps[i]) 12889 return SDValue(); 12890 } 12891 } 12892 } 12893 12894 // Replace all inputs with the extension operand. 12895 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12896 // Constants may have users outside the cluster of to-be-promoted nodes, 12897 // and so we need to replace those as we do the promotions. 12898 if (isa<ConstantSDNode>(Inputs[i])) 12899 continue; 12900 else 12901 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12902 } 12903 12904 std::list<HandleSDNode> PromOpHandles; 12905 for (auto &PromOp : PromOps) 12906 PromOpHandles.emplace_back(PromOp); 12907 12908 // Replace all operations (these are all the same, but have a different 12909 // (i1) return type). DAG.getNode will validate that the types of 12910 // a binary operator match, so go through the list in reverse so that 12911 // we've likely promoted both operands first. Any intermediate truncations or 12912 // extensions disappear. 12913 while (!PromOpHandles.empty()) { 12914 SDValue PromOp = PromOpHandles.back().getValue(); 12915 PromOpHandles.pop_back(); 12916 12917 if (PromOp.getOpcode() == ISD::TRUNCATE || 12918 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12919 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12920 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12921 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12922 PromOp.getOperand(0).getValueType() != MVT::i1) { 12923 // The operand is not yet ready (see comment below). 12924 PromOpHandles.emplace_front(PromOp); 12925 continue; 12926 } 12927 12928 SDValue RepValue = PromOp.getOperand(0); 12929 if (isa<ConstantSDNode>(RepValue)) 12930 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12931 12932 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12933 continue; 12934 } 12935 12936 unsigned C; 12937 switch (PromOp.getOpcode()) { 12938 default: C = 0; break; 12939 case ISD::SELECT: C = 1; break; 12940 case ISD::SELECT_CC: C = 2; break; 12941 } 12942 12943 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12944 PromOp.getOperand(C).getValueType() != MVT::i1) || 12945 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12946 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12947 // The to-be-promoted operands of this node have not yet been 12948 // promoted (this should be rare because we're going through the 12949 // list backward, but if one of the operands has several users in 12950 // this cluster of to-be-promoted nodes, it is possible). 12951 PromOpHandles.emplace_front(PromOp); 12952 continue; 12953 } 12954 12955 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12956 PromOp.getNode()->op_end()); 12957 12958 // If there are any constant inputs, make sure they're replaced now. 12959 for (unsigned i = 0; i < 2; ++i) 12960 if (isa<ConstantSDNode>(Ops[C+i])) 12961 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12962 12963 DAG.ReplaceAllUsesOfValueWith(PromOp, 12964 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12965 } 12966 12967 // Now we're left with the initial truncation itself. 12968 if (N->getOpcode() == ISD::TRUNCATE) 12969 return N->getOperand(0); 12970 12971 // Otherwise, this is a comparison. The operands to be compared have just 12972 // changed type (to i1), but everything else is the same. 12973 return SDValue(N, 0); 12974 } 12975 12976 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12977 DAGCombinerInfo &DCI) const { 12978 SelectionDAG &DAG = DCI.DAG; 12979 SDLoc dl(N); 12980 12981 // If we're tracking CR bits, we need to be careful that we don't have: 12982 // zext(binary-ops(trunc(x), trunc(y))) 12983 // or 12984 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12985 // such that we're unnecessarily moving things into CR bits that can more 12986 // efficiently stay in GPRs. Note that if we're not certain that the high 12987 // bits are set as required by the final extension, we still may need to do 12988 // some masking to get the proper behavior. 12989 12990 // This same functionality is important on PPC64 when dealing with 12991 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12992 // the return values of functions. Because it is so similar, it is handled 12993 // here as well. 12994 12995 if (N->getValueType(0) != MVT::i32 && 12996 N->getValueType(0) != MVT::i64) 12997 return SDValue(); 12998 12999 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13000 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13001 return SDValue(); 13002 13003 if (N->getOperand(0).getOpcode() != ISD::AND && 13004 N->getOperand(0).getOpcode() != ISD::OR && 13005 N->getOperand(0).getOpcode() != ISD::XOR && 13006 N->getOperand(0).getOpcode() != ISD::SELECT && 13007 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13008 return SDValue(); 13009 13010 SmallVector<SDValue, 4> Inputs; 13011 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13012 SmallPtrSet<SDNode *, 16> Visited; 13013 13014 // Visit all inputs, collect all binary operations (and, or, xor and 13015 // select) that are all fed by truncations. 13016 while (!BinOps.empty()) { 13017 SDValue BinOp = BinOps.back(); 13018 BinOps.pop_back(); 13019 13020 if (!Visited.insert(BinOp.getNode()).second) 13021 continue; 13022 13023 PromOps.push_back(BinOp); 13024 13025 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13026 // The condition of the select is not promoted. 13027 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13028 continue; 13029 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13030 continue; 13031 13032 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13033 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13034 Inputs.push_back(BinOp.getOperand(i)); 13035 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13036 BinOp.getOperand(i).getOpcode() == ISD::OR || 13037 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13038 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13039 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13040 BinOps.push_back(BinOp.getOperand(i)); 13041 } else { 13042 // We have an input that is not a truncation or another binary 13043 // operation; we'll abort this transformation. 13044 return SDValue(); 13045 } 13046 } 13047 } 13048 13049 // The operands of a select that must be truncated when the select is 13050 // promoted because the operand is actually part of the to-be-promoted set. 13051 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13052 13053 // Make sure that this is a self-contained cluster of operations (which 13054 // is not quite the same thing as saying that everything has only one 13055 // use). 13056 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13057 if (isa<ConstantSDNode>(Inputs[i])) 13058 continue; 13059 13060 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13061 UE = Inputs[i].getNode()->use_end(); 13062 UI != UE; ++UI) { 13063 SDNode *User = *UI; 13064 if (User != N && !Visited.count(User)) 13065 return SDValue(); 13066 13067 // If we're going to promote the non-output-value operand(s) or SELECT or 13068 // SELECT_CC, record them for truncation. 13069 if (User->getOpcode() == ISD::SELECT) { 13070 if (User->getOperand(0) == Inputs[i]) 13071 SelectTruncOp[0].insert(std::make_pair(User, 13072 User->getOperand(0).getValueType())); 13073 } else if (User->getOpcode() == ISD::SELECT_CC) { 13074 if (User->getOperand(0) == Inputs[i]) 13075 SelectTruncOp[0].insert(std::make_pair(User, 13076 User->getOperand(0).getValueType())); 13077 if (User->getOperand(1) == Inputs[i]) 13078 SelectTruncOp[1].insert(std::make_pair(User, 13079 User->getOperand(1).getValueType())); 13080 } 13081 } 13082 } 13083 13084 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13085 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13086 UE = PromOps[i].getNode()->use_end(); 13087 UI != UE; ++UI) { 13088 SDNode *User = *UI; 13089 if (User != N && !Visited.count(User)) 13090 return SDValue(); 13091 13092 // If we're going to promote the non-output-value operand(s) or SELECT or 13093 // SELECT_CC, record them for truncation. 13094 if (User->getOpcode() == ISD::SELECT) { 13095 if (User->getOperand(0) == PromOps[i]) 13096 SelectTruncOp[0].insert(std::make_pair(User, 13097 User->getOperand(0).getValueType())); 13098 } else if (User->getOpcode() == ISD::SELECT_CC) { 13099 if (User->getOperand(0) == PromOps[i]) 13100 SelectTruncOp[0].insert(std::make_pair(User, 13101 User->getOperand(0).getValueType())); 13102 if (User->getOperand(1) == PromOps[i]) 13103 SelectTruncOp[1].insert(std::make_pair(User, 13104 User->getOperand(1).getValueType())); 13105 } 13106 } 13107 } 13108 13109 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13110 bool ReallyNeedsExt = false; 13111 if (N->getOpcode() != ISD::ANY_EXTEND) { 13112 // If all of the inputs are not already sign/zero extended, then 13113 // we'll still need to do that at the end. 13114 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13115 if (isa<ConstantSDNode>(Inputs[i])) 13116 continue; 13117 13118 unsigned OpBits = 13119 Inputs[i].getOperand(0).getValueSizeInBits(); 13120 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13121 13122 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13123 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13124 APInt::getHighBitsSet(OpBits, 13125 OpBits-PromBits))) || 13126 (N->getOpcode() == ISD::SIGN_EXTEND && 13127 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13128 (OpBits-(PromBits-1)))) { 13129 ReallyNeedsExt = true; 13130 break; 13131 } 13132 } 13133 } 13134 13135 // Replace all inputs, either with the truncation operand, or a 13136 // truncation or extension to the final output type. 13137 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13138 // Constant inputs need to be replaced with the to-be-promoted nodes that 13139 // use them because they might have users outside of the cluster of 13140 // promoted nodes. 13141 if (isa<ConstantSDNode>(Inputs[i])) 13142 continue; 13143 13144 SDValue InSrc = Inputs[i].getOperand(0); 13145 if (Inputs[i].getValueType() == N->getValueType(0)) 13146 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13147 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13148 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13149 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13150 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13151 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13152 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13153 else 13154 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13155 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13156 } 13157 13158 std::list<HandleSDNode> PromOpHandles; 13159 for (auto &PromOp : PromOps) 13160 PromOpHandles.emplace_back(PromOp); 13161 13162 // Replace all operations (these are all the same, but have a different 13163 // (promoted) return type). DAG.getNode will validate that the types of 13164 // a binary operator match, so go through the list in reverse so that 13165 // we've likely promoted both operands first. 13166 while (!PromOpHandles.empty()) { 13167 SDValue PromOp = PromOpHandles.back().getValue(); 13168 PromOpHandles.pop_back(); 13169 13170 unsigned C; 13171 switch (PromOp.getOpcode()) { 13172 default: C = 0; break; 13173 case ISD::SELECT: C = 1; break; 13174 case ISD::SELECT_CC: C = 2; break; 13175 } 13176 13177 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13178 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13179 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13180 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13181 // The to-be-promoted operands of this node have not yet been 13182 // promoted (this should be rare because we're going through the 13183 // list backward, but if one of the operands has several users in 13184 // this cluster of to-be-promoted nodes, it is possible). 13185 PromOpHandles.emplace_front(PromOp); 13186 continue; 13187 } 13188 13189 // For SELECT and SELECT_CC nodes, we do a similar check for any 13190 // to-be-promoted comparison inputs. 13191 if (PromOp.getOpcode() == ISD::SELECT || 13192 PromOp.getOpcode() == ISD::SELECT_CC) { 13193 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13194 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13195 (SelectTruncOp[1].count(PromOp.getNode()) && 13196 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13197 PromOpHandles.emplace_front(PromOp); 13198 continue; 13199 } 13200 } 13201 13202 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13203 PromOp.getNode()->op_end()); 13204 13205 // If this node has constant inputs, then they'll need to be promoted here. 13206 for (unsigned i = 0; i < 2; ++i) { 13207 if (!isa<ConstantSDNode>(Ops[C+i])) 13208 continue; 13209 if (Ops[C+i].getValueType() == N->getValueType(0)) 13210 continue; 13211 13212 if (N->getOpcode() == ISD::SIGN_EXTEND) 13213 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13214 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13215 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13216 else 13217 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13218 } 13219 13220 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13221 // truncate them again to the original value type. 13222 if (PromOp.getOpcode() == ISD::SELECT || 13223 PromOp.getOpcode() == ISD::SELECT_CC) { 13224 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13225 if (SI0 != SelectTruncOp[0].end()) 13226 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13227 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13228 if (SI1 != SelectTruncOp[1].end()) 13229 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13230 } 13231 13232 DAG.ReplaceAllUsesOfValueWith(PromOp, 13233 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13234 } 13235 13236 // Now we're left with the initial extension itself. 13237 if (!ReallyNeedsExt) 13238 return N->getOperand(0); 13239 13240 // To zero extend, just mask off everything except for the first bit (in the 13241 // i1 case). 13242 if (N->getOpcode() == ISD::ZERO_EXTEND) 13243 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13244 DAG.getConstant(APInt::getLowBitsSet( 13245 N->getValueSizeInBits(0), PromBits), 13246 dl, N->getValueType(0))); 13247 13248 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13249 "Invalid extension type"); 13250 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13251 SDValue ShiftCst = 13252 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13253 return DAG.getNode( 13254 ISD::SRA, dl, N->getValueType(0), 13255 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13256 ShiftCst); 13257 } 13258 13259 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13260 DAGCombinerInfo &DCI) const { 13261 assert(N->getOpcode() == ISD::SETCC && 13262 "Should be called with a SETCC node"); 13263 13264 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13265 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13266 SDValue LHS = N->getOperand(0); 13267 SDValue RHS = N->getOperand(1); 13268 13269 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13270 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13271 LHS.hasOneUse()) 13272 std::swap(LHS, RHS); 13273 13274 // x == 0-y --> x+y == 0 13275 // x != 0-y --> x+y != 0 13276 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13277 RHS.hasOneUse()) { 13278 SDLoc DL(N); 13279 SelectionDAG &DAG = DCI.DAG; 13280 EVT VT = N->getValueType(0); 13281 EVT OpVT = LHS.getValueType(); 13282 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13283 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13284 } 13285 } 13286 13287 return DAGCombineTruncBoolExt(N, DCI); 13288 } 13289 13290 // Is this an extending load from an f32 to an f64? 13291 static bool isFPExtLoad(SDValue Op) { 13292 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13293 return LD->getExtensionType() == ISD::EXTLOAD && 13294 Op.getValueType() == MVT::f64; 13295 return false; 13296 } 13297 13298 /// Reduces the number of fp-to-int conversion when building a vector. 13299 /// 13300 /// If this vector is built out of floating to integer conversions, 13301 /// transform it to a vector built out of floating point values followed by a 13302 /// single floating to integer conversion of the vector. 13303 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13304 /// becomes (fptosi (build_vector ($A, $B, ...))) 13305 SDValue PPCTargetLowering:: 13306 combineElementTruncationToVectorTruncation(SDNode *N, 13307 DAGCombinerInfo &DCI) const { 13308 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13309 "Should be called with a BUILD_VECTOR node"); 13310 13311 SelectionDAG &DAG = DCI.DAG; 13312 SDLoc dl(N); 13313 13314 SDValue FirstInput = N->getOperand(0); 13315 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13316 "The input operand must be an fp-to-int conversion."); 13317 13318 // This combine happens after legalization so the fp_to_[su]i nodes are 13319 // already converted to PPCSISD nodes. 13320 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13321 if (FirstConversion == PPCISD::FCTIDZ || 13322 FirstConversion == PPCISD::FCTIDUZ || 13323 FirstConversion == PPCISD::FCTIWZ || 13324 FirstConversion == PPCISD::FCTIWUZ) { 13325 bool IsSplat = true; 13326 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13327 FirstConversion == PPCISD::FCTIWUZ; 13328 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13329 SmallVector<SDValue, 4> Ops; 13330 EVT TargetVT = N->getValueType(0); 13331 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13332 SDValue NextOp = N->getOperand(i); 13333 if (NextOp.getOpcode() != PPCISD::MFVSR) 13334 return SDValue(); 13335 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13336 if (NextConversion != FirstConversion) 13337 return SDValue(); 13338 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13339 // This is not valid if the input was originally double precision. It is 13340 // also not profitable to do unless this is an extending load in which 13341 // case doing this combine will allow us to combine consecutive loads. 13342 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13343 return SDValue(); 13344 if (N->getOperand(i) != FirstInput) 13345 IsSplat = false; 13346 } 13347 13348 // If this is a splat, we leave it as-is since there will be only a single 13349 // fp-to-int conversion followed by a splat of the integer. This is better 13350 // for 32-bit and smaller ints and neutral for 64-bit ints. 13351 if (IsSplat) 13352 return SDValue(); 13353 13354 // Now that we know we have the right type of node, get its operands 13355 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13356 SDValue In = N->getOperand(i).getOperand(0); 13357 if (Is32Bit) { 13358 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13359 // here, we know that all inputs are extending loads so this is safe). 13360 if (In.isUndef()) 13361 Ops.push_back(DAG.getUNDEF(SrcVT)); 13362 else { 13363 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13364 MVT::f32, In.getOperand(0), 13365 DAG.getIntPtrConstant(1, dl)); 13366 Ops.push_back(Trunc); 13367 } 13368 } else 13369 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13370 } 13371 13372 unsigned Opcode; 13373 if (FirstConversion == PPCISD::FCTIDZ || 13374 FirstConversion == PPCISD::FCTIWZ) 13375 Opcode = ISD::FP_TO_SINT; 13376 else 13377 Opcode = ISD::FP_TO_UINT; 13378 13379 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13380 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13381 return DAG.getNode(Opcode, dl, TargetVT, BV); 13382 } 13383 return SDValue(); 13384 } 13385 13386 /// Reduce the number of loads when building a vector. 13387 /// 13388 /// Building a vector out of multiple loads can be converted to a load 13389 /// of the vector type if the loads are consecutive. If the loads are 13390 /// consecutive but in descending order, a shuffle is added at the end 13391 /// to reorder the vector. 13392 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13393 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13394 "Should be called with a BUILD_VECTOR node"); 13395 13396 SDLoc dl(N); 13397 13398 // Return early for non byte-sized type, as they can't be consecutive. 13399 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13400 return SDValue(); 13401 13402 bool InputsAreConsecutiveLoads = true; 13403 bool InputsAreReverseConsecutive = true; 13404 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13405 SDValue FirstInput = N->getOperand(0); 13406 bool IsRoundOfExtLoad = false; 13407 13408 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13409 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13410 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13411 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13412 } 13413 // Not a build vector of (possibly fp_rounded) loads. 13414 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13415 N->getNumOperands() == 1) 13416 return SDValue(); 13417 13418 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13419 // If any inputs are fp_round(extload), they all must be. 13420 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13421 return SDValue(); 13422 13423 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13424 N->getOperand(i); 13425 if (NextInput.getOpcode() != ISD::LOAD) 13426 return SDValue(); 13427 13428 SDValue PreviousInput = 13429 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13430 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13431 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13432 13433 // If any inputs are fp_round(extload), they all must be. 13434 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13435 return SDValue(); 13436 13437 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13438 InputsAreConsecutiveLoads = false; 13439 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13440 InputsAreReverseConsecutive = false; 13441 13442 // Exit early if the loads are neither consecutive nor reverse consecutive. 13443 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13444 return SDValue(); 13445 } 13446 13447 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13448 "The loads cannot be both consecutive and reverse consecutive."); 13449 13450 SDValue FirstLoadOp = 13451 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13452 SDValue LastLoadOp = 13453 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13454 N->getOperand(N->getNumOperands()-1); 13455 13456 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13457 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13458 if (InputsAreConsecutiveLoads) { 13459 assert(LD1 && "Input needs to be a LoadSDNode."); 13460 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13461 LD1->getBasePtr(), LD1->getPointerInfo(), 13462 LD1->getAlignment()); 13463 } 13464 if (InputsAreReverseConsecutive) { 13465 assert(LDL && "Input needs to be a LoadSDNode."); 13466 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13467 LDL->getBasePtr(), LDL->getPointerInfo(), 13468 LDL->getAlignment()); 13469 SmallVector<int, 16> Ops; 13470 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13471 Ops.push_back(i); 13472 13473 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13474 DAG.getUNDEF(N->getValueType(0)), Ops); 13475 } 13476 return SDValue(); 13477 } 13478 13479 // This function adds the required vector_shuffle needed to get 13480 // the elements of the vector extract in the correct position 13481 // as specified by the CorrectElems encoding. 13482 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13483 SDValue Input, uint64_t Elems, 13484 uint64_t CorrectElems) { 13485 SDLoc dl(N); 13486 13487 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13488 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13489 13490 // Knowing the element indices being extracted from the original 13491 // vector and the order in which they're being inserted, just put 13492 // them at element indices required for the instruction. 13493 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13494 if (DAG.getDataLayout().isLittleEndian()) 13495 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13496 else 13497 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13498 CorrectElems = CorrectElems >> 8; 13499 Elems = Elems >> 8; 13500 } 13501 13502 SDValue Shuffle = 13503 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13504 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13505 13506 EVT VT = N->getValueType(0); 13507 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13508 13509 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13510 Input.getValueType().getVectorElementType(), 13511 VT.getVectorNumElements()); 13512 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13513 DAG.getValueType(ExtVT)); 13514 } 13515 13516 // Look for build vector patterns where input operands come from sign 13517 // extended vector_extract elements of specific indices. If the correct indices 13518 // aren't used, add a vector shuffle to fix up the indices and create 13519 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13520 // during instruction selection. 13521 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13522 // This array encodes the indices that the vector sign extend instructions 13523 // extract from when extending from one type to another for both BE and LE. 13524 // The right nibble of each byte corresponds to the LE incides. 13525 // and the left nibble of each byte corresponds to the BE incides. 13526 // For example: 0x3074B8FC byte->word 13527 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13528 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13529 // For example: 0x000070F8 byte->double word 13530 // For LE: the allowed indices are: 0x0,0x8 13531 // For BE: the allowed indices are: 0x7,0xF 13532 uint64_t TargetElems[] = { 13533 0x3074B8FC, // b->w 13534 0x000070F8, // b->d 13535 0x10325476, // h->w 13536 0x00003074, // h->d 13537 0x00001032, // w->d 13538 }; 13539 13540 uint64_t Elems = 0; 13541 int Index; 13542 SDValue Input; 13543 13544 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13545 if (!Op) 13546 return false; 13547 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13548 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13549 return false; 13550 13551 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13552 // of the right width. 13553 SDValue Extract = Op.getOperand(0); 13554 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13555 Extract = Extract.getOperand(0); 13556 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13557 return false; 13558 13559 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13560 if (!ExtOp) 13561 return false; 13562 13563 Index = ExtOp->getZExtValue(); 13564 if (Input && Input != Extract.getOperand(0)) 13565 return false; 13566 13567 if (!Input) 13568 Input = Extract.getOperand(0); 13569 13570 Elems = Elems << 8; 13571 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13572 Elems |= Index; 13573 13574 return true; 13575 }; 13576 13577 // If the build vector operands aren't sign extended vector extracts, 13578 // of the same input vector, then return. 13579 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13580 if (!isSExtOfVecExtract(N->getOperand(i))) { 13581 return SDValue(); 13582 } 13583 } 13584 13585 // If the vector extract indicies are not correct, add the appropriate 13586 // vector_shuffle. 13587 int TgtElemArrayIdx; 13588 int InputSize = Input.getValueType().getScalarSizeInBits(); 13589 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13590 if (InputSize + OutputSize == 40) 13591 TgtElemArrayIdx = 0; 13592 else if (InputSize + OutputSize == 72) 13593 TgtElemArrayIdx = 1; 13594 else if (InputSize + OutputSize == 48) 13595 TgtElemArrayIdx = 2; 13596 else if (InputSize + OutputSize == 80) 13597 TgtElemArrayIdx = 3; 13598 else if (InputSize + OutputSize == 96) 13599 TgtElemArrayIdx = 4; 13600 else 13601 return SDValue(); 13602 13603 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13604 CorrectElems = DAG.getDataLayout().isLittleEndian() 13605 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13606 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13607 if (Elems != CorrectElems) { 13608 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13609 } 13610 13611 // Regular lowering will catch cases where a shuffle is not needed. 13612 return SDValue(); 13613 } 13614 13615 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13616 DAGCombinerInfo &DCI) const { 13617 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13618 "Should be called with a BUILD_VECTOR node"); 13619 13620 SelectionDAG &DAG = DCI.DAG; 13621 SDLoc dl(N); 13622 13623 if (!Subtarget.hasVSX()) 13624 return SDValue(); 13625 13626 // The target independent DAG combiner will leave a build_vector of 13627 // float-to-int conversions intact. We can generate MUCH better code for 13628 // a float-to-int conversion of a vector of floats. 13629 SDValue FirstInput = N->getOperand(0); 13630 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13631 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13632 if (Reduced) 13633 return Reduced; 13634 } 13635 13636 // If we're building a vector out of consecutive loads, just load that 13637 // vector type. 13638 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13639 if (Reduced) 13640 return Reduced; 13641 13642 // If we're building a vector out of extended elements from another vector 13643 // we have P9 vector integer extend instructions. The code assumes legal 13644 // input types (i.e. it can't handle things like v4i16) so do not run before 13645 // legalization. 13646 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13647 Reduced = combineBVOfVecSExt(N, DAG); 13648 if (Reduced) 13649 return Reduced; 13650 } 13651 13652 13653 if (N->getValueType(0) != MVT::v2f64) 13654 return SDValue(); 13655 13656 // Looking for: 13657 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13658 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13659 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13660 return SDValue(); 13661 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13662 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13663 return SDValue(); 13664 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13665 return SDValue(); 13666 13667 SDValue Ext1 = FirstInput.getOperand(0); 13668 SDValue Ext2 = N->getOperand(1).getOperand(0); 13669 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13670 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13671 return SDValue(); 13672 13673 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13674 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13675 if (!Ext1Op || !Ext2Op) 13676 return SDValue(); 13677 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13678 Ext1.getOperand(0) != Ext2.getOperand(0)) 13679 return SDValue(); 13680 13681 int FirstElem = Ext1Op->getZExtValue(); 13682 int SecondElem = Ext2Op->getZExtValue(); 13683 int SubvecIdx; 13684 if (FirstElem == 0 && SecondElem == 1) 13685 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13686 else if (FirstElem == 2 && SecondElem == 3) 13687 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13688 else 13689 return SDValue(); 13690 13691 SDValue SrcVec = Ext1.getOperand(0); 13692 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13693 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13694 return DAG.getNode(NodeType, dl, MVT::v2f64, 13695 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13696 } 13697 13698 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13699 DAGCombinerInfo &DCI) const { 13700 assert((N->getOpcode() == ISD::SINT_TO_FP || 13701 N->getOpcode() == ISD::UINT_TO_FP) && 13702 "Need an int -> FP conversion node here"); 13703 13704 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13705 return SDValue(); 13706 13707 SelectionDAG &DAG = DCI.DAG; 13708 SDLoc dl(N); 13709 SDValue Op(N, 0); 13710 13711 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13712 // from the hardware. 13713 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13714 return SDValue(); 13715 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13716 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13717 return SDValue(); 13718 13719 SDValue FirstOperand(Op.getOperand(0)); 13720 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13721 (FirstOperand.getValueType() == MVT::i8 || 13722 FirstOperand.getValueType() == MVT::i16); 13723 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13724 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13725 bool DstDouble = Op.getValueType() == MVT::f64; 13726 unsigned ConvOp = Signed ? 13727 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13728 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13729 SDValue WidthConst = 13730 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13731 dl, false); 13732 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13733 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13734 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13735 DAG.getVTList(MVT::f64, MVT::Other), 13736 Ops, MVT::i8, LDN->getMemOperand()); 13737 13738 // For signed conversion, we need to sign-extend the value in the VSR 13739 if (Signed) { 13740 SDValue ExtOps[] = { Ld, WidthConst }; 13741 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13742 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13743 } else 13744 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13745 } 13746 13747 13748 // For i32 intermediate values, unfortunately, the conversion functions 13749 // leave the upper 32 bits of the value are undefined. Within the set of 13750 // scalar instructions, we have no method for zero- or sign-extending the 13751 // value. Thus, we cannot handle i32 intermediate values here. 13752 if (Op.getOperand(0).getValueType() == MVT::i32) 13753 return SDValue(); 13754 13755 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13756 "UINT_TO_FP is supported only with FPCVT"); 13757 13758 // If we have FCFIDS, then use it when converting to single-precision. 13759 // Otherwise, convert to double-precision and then round. 13760 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13761 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13762 : PPCISD::FCFIDS) 13763 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13764 : PPCISD::FCFID); 13765 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13766 ? MVT::f32 13767 : MVT::f64; 13768 13769 // If we're converting from a float, to an int, and back to a float again, 13770 // then we don't need the store/load pair at all. 13771 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13772 Subtarget.hasFPCVT()) || 13773 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13774 SDValue Src = Op.getOperand(0).getOperand(0); 13775 if (Src.getValueType() == MVT::f32) { 13776 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13777 DCI.AddToWorklist(Src.getNode()); 13778 } else if (Src.getValueType() != MVT::f64) { 13779 // Make sure that we don't pick up a ppc_fp128 source value. 13780 return SDValue(); 13781 } 13782 13783 unsigned FCTOp = 13784 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13785 PPCISD::FCTIDUZ; 13786 13787 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13788 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13789 13790 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13791 FP = DAG.getNode(ISD::FP_ROUND, dl, 13792 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13793 DCI.AddToWorklist(FP.getNode()); 13794 } 13795 13796 return FP; 13797 } 13798 13799 return SDValue(); 13800 } 13801 13802 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13803 // builtins) into loads with swaps. 13804 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13805 DAGCombinerInfo &DCI) const { 13806 SelectionDAG &DAG = DCI.DAG; 13807 SDLoc dl(N); 13808 SDValue Chain; 13809 SDValue Base; 13810 MachineMemOperand *MMO; 13811 13812 switch (N->getOpcode()) { 13813 default: 13814 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13815 case ISD::LOAD: { 13816 LoadSDNode *LD = cast<LoadSDNode>(N); 13817 Chain = LD->getChain(); 13818 Base = LD->getBasePtr(); 13819 MMO = LD->getMemOperand(); 13820 // If the MMO suggests this isn't a load of a full vector, leave 13821 // things alone. For a built-in, we have to make the change for 13822 // correctness, so if there is a size problem that will be a bug. 13823 if (MMO->getSize() < 16) 13824 return SDValue(); 13825 break; 13826 } 13827 case ISD::INTRINSIC_W_CHAIN: { 13828 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13829 Chain = Intrin->getChain(); 13830 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13831 // us what we want. Get operand 2 instead. 13832 Base = Intrin->getOperand(2); 13833 MMO = Intrin->getMemOperand(); 13834 break; 13835 } 13836 } 13837 13838 MVT VecTy = N->getValueType(0).getSimpleVT(); 13839 13840 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13841 // aligned and the type is a vector with elements up to 4 bytes 13842 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13843 VecTy.getScalarSizeInBits() <= 32) { 13844 return SDValue(); 13845 } 13846 13847 SDValue LoadOps[] = { Chain, Base }; 13848 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13849 DAG.getVTList(MVT::v2f64, MVT::Other), 13850 LoadOps, MVT::v2f64, MMO); 13851 13852 DCI.AddToWorklist(Load.getNode()); 13853 Chain = Load.getValue(1); 13854 SDValue Swap = DAG.getNode( 13855 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13856 DCI.AddToWorklist(Swap.getNode()); 13857 13858 // Add a bitcast if the resulting load type doesn't match v2f64. 13859 if (VecTy != MVT::v2f64) { 13860 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13861 DCI.AddToWorklist(N.getNode()); 13862 // Package {bitcast value, swap's chain} to match Load's shape. 13863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13864 N, Swap.getValue(1)); 13865 } 13866 13867 return Swap; 13868 } 13869 13870 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13871 // builtins) into stores with swaps. 13872 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13873 DAGCombinerInfo &DCI) const { 13874 SelectionDAG &DAG = DCI.DAG; 13875 SDLoc dl(N); 13876 SDValue Chain; 13877 SDValue Base; 13878 unsigned SrcOpnd; 13879 MachineMemOperand *MMO; 13880 13881 switch (N->getOpcode()) { 13882 default: 13883 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13884 case ISD::STORE: { 13885 StoreSDNode *ST = cast<StoreSDNode>(N); 13886 Chain = ST->getChain(); 13887 Base = ST->getBasePtr(); 13888 MMO = ST->getMemOperand(); 13889 SrcOpnd = 1; 13890 // If the MMO suggests this isn't a store of a full vector, leave 13891 // things alone. For a built-in, we have to make the change for 13892 // correctness, so if there is a size problem that will be a bug. 13893 if (MMO->getSize() < 16) 13894 return SDValue(); 13895 break; 13896 } 13897 case ISD::INTRINSIC_VOID: { 13898 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13899 Chain = Intrin->getChain(); 13900 // Intrin->getBasePtr() oddly does not get what we want. 13901 Base = Intrin->getOperand(3); 13902 MMO = Intrin->getMemOperand(); 13903 SrcOpnd = 2; 13904 break; 13905 } 13906 } 13907 13908 SDValue Src = N->getOperand(SrcOpnd); 13909 MVT VecTy = Src.getValueType().getSimpleVT(); 13910 13911 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13912 // aligned and the type is a vector with elements up to 4 bytes 13913 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13914 VecTy.getScalarSizeInBits() <= 32) { 13915 return SDValue(); 13916 } 13917 13918 // All stores are done as v2f64 and possible bit cast. 13919 if (VecTy != MVT::v2f64) { 13920 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13921 DCI.AddToWorklist(Src.getNode()); 13922 } 13923 13924 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13925 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13926 DCI.AddToWorklist(Swap.getNode()); 13927 Chain = Swap.getValue(1); 13928 SDValue StoreOps[] = { Chain, Swap, Base }; 13929 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13930 DAG.getVTList(MVT::Other), 13931 StoreOps, VecTy, MMO); 13932 DCI.AddToWorklist(Store.getNode()); 13933 return Store; 13934 } 13935 13936 // Handle DAG combine for STORE (FP_TO_INT F). 13937 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13938 DAGCombinerInfo &DCI) const { 13939 13940 SelectionDAG &DAG = DCI.DAG; 13941 SDLoc dl(N); 13942 unsigned Opcode = N->getOperand(1).getOpcode(); 13943 13944 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13945 && "Not a FP_TO_INT Instruction!"); 13946 13947 SDValue Val = N->getOperand(1).getOperand(0); 13948 EVT Op1VT = N->getOperand(1).getValueType(); 13949 EVT ResVT = Val.getValueType(); 13950 13951 // Floating point types smaller than 32 bits are not legal on Power. 13952 if (ResVT.getScalarSizeInBits() < 32) 13953 return SDValue(); 13954 13955 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13956 bool ValidTypeForStoreFltAsInt = 13957 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13958 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13959 13960 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13961 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13962 return SDValue(); 13963 13964 // Extend f32 values to f64 13965 if (ResVT.getScalarSizeInBits() == 32) { 13966 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13967 DCI.AddToWorklist(Val.getNode()); 13968 } 13969 13970 // Set signed or unsigned conversion opcode. 13971 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13972 PPCISD::FP_TO_SINT_IN_VSR : 13973 PPCISD::FP_TO_UINT_IN_VSR; 13974 13975 Val = DAG.getNode(ConvOpcode, 13976 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13977 DCI.AddToWorklist(Val.getNode()); 13978 13979 // Set number of bytes being converted. 13980 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13981 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13982 DAG.getIntPtrConstant(ByteSize, dl, false), 13983 DAG.getValueType(Op1VT) }; 13984 13985 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13986 DAG.getVTList(MVT::Other), Ops, 13987 cast<StoreSDNode>(N)->getMemoryVT(), 13988 cast<StoreSDNode>(N)->getMemOperand()); 13989 13990 DCI.AddToWorklist(Val.getNode()); 13991 return Val; 13992 } 13993 13994 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13995 LSBaseSDNode *LSBase, 13996 DAGCombinerInfo &DCI) const { 13997 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13998 "Not a reverse memop pattern!"); 13999 14000 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14001 auto Mask = SVN->getMask(); 14002 int i = 0; 14003 auto I = Mask.rbegin(); 14004 auto E = Mask.rend(); 14005 14006 for (; I != E; ++I) { 14007 if (*I != i) 14008 return false; 14009 i++; 14010 } 14011 return true; 14012 }; 14013 14014 SelectionDAG &DAG = DCI.DAG; 14015 EVT VT = SVN->getValueType(0); 14016 14017 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14018 return SDValue(); 14019 14020 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14021 // See comment in PPCVSXSwapRemoval.cpp. 14022 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14023 if (!Subtarget.hasP9Vector()) 14024 return SDValue(); 14025 14026 if(!IsElementReverse(SVN)) 14027 return SDValue(); 14028 14029 if (LSBase->getOpcode() == ISD::LOAD) { 14030 SDLoc dl(SVN); 14031 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14032 return DAG.getMemIntrinsicNode( 14033 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14034 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14035 } 14036 14037 if (LSBase->getOpcode() == ISD::STORE) { 14038 SDLoc dl(LSBase); 14039 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14040 LSBase->getBasePtr()}; 14041 return DAG.getMemIntrinsicNode( 14042 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14043 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14044 } 14045 14046 llvm_unreachable("Expected a load or store node here"); 14047 } 14048 14049 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14050 DAGCombinerInfo &DCI) const { 14051 SelectionDAG &DAG = DCI.DAG; 14052 SDLoc dl(N); 14053 switch (N->getOpcode()) { 14054 default: break; 14055 case ISD::ADD: 14056 return combineADD(N, DCI); 14057 case ISD::SHL: 14058 return combineSHL(N, DCI); 14059 case ISD::SRA: 14060 return combineSRA(N, DCI); 14061 case ISD::SRL: 14062 return combineSRL(N, DCI); 14063 case ISD::MUL: 14064 return combineMUL(N, DCI); 14065 case PPCISD::SHL: 14066 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14067 return N->getOperand(0); 14068 break; 14069 case PPCISD::SRL: 14070 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14071 return N->getOperand(0); 14072 break; 14073 case PPCISD::SRA: 14074 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14075 if (C->isNullValue() || // 0 >>s V -> 0. 14076 C->isAllOnesValue()) // -1 >>s V -> -1. 14077 return N->getOperand(0); 14078 } 14079 break; 14080 case ISD::SIGN_EXTEND: 14081 case ISD::ZERO_EXTEND: 14082 case ISD::ANY_EXTEND: 14083 return DAGCombineExtBoolTrunc(N, DCI); 14084 case ISD::TRUNCATE: 14085 return combineTRUNCATE(N, DCI); 14086 case ISD::SETCC: 14087 if (SDValue CSCC = combineSetCC(N, DCI)) 14088 return CSCC; 14089 LLVM_FALLTHROUGH; 14090 case ISD::SELECT_CC: 14091 return DAGCombineTruncBoolExt(N, DCI); 14092 case ISD::SINT_TO_FP: 14093 case ISD::UINT_TO_FP: 14094 return combineFPToIntToFP(N, DCI); 14095 case ISD::VECTOR_SHUFFLE: 14096 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14097 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14098 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14099 } 14100 break; 14101 case ISD::STORE: { 14102 14103 EVT Op1VT = N->getOperand(1).getValueType(); 14104 unsigned Opcode = N->getOperand(1).getOpcode(); 14105 14106 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14107 SDValue Val= combineStoreFPToInt(N, DCI); 14108 if (Val) 14109 return Val; 14110 } 14111 14112 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14113 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14114 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14115 if (Val) 14116 return Val; 14117 } 14118 14119 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14120 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14121 N->getOperand(1).getNode()->hasOneUse() && 14122 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14123 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14124 14125 // STBRX can only handle simple types and it makes no sense to store less 14126 // two bytes in byte-reversed order. 14127 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14128 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14129 break; 14130 14131 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14132 // Do an any-extend to 32-bits if this is a half-word input. 14133 if (BSwapOp.getValueType() == MVT::i16) 14134 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14135 14136 // If the type of BSWAP operand is wider than stored memory width 14137 // it need to be shifted to the right side before STBRX. 14138 if (Op1VT.bitsGT(mVT)) { 14139 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14140 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14141 DAG.getConstant(Shift, dl, MVT::i32)); 14142 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14143 if (Op1VT == MVT::i64) 14144 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14145 } 14146 14147 SDValue Ops[] = { 14148 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14149 }; 14150 return 14151 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14152 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14153 cast<StoreSDNode>(N)->getMemOperand()); 14154 } 14155 14156 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14157 // So it can increase the chance of CSE constant construction. 14158 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14159 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14160 // Need to sign-extended to 64-bits to handle negative values. 14161 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14162 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14163 MemVT.getSizeInBits()); 14164 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14165 14166 // DAG.getTruncStore() can't be used here because it doesn't accept 14167 // the general (base + offset) addressing mode. 14168 // So we use UpdateNodeOperands and setTruncatingStore instead. 14169 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14170 N->getOperand(3)); 14171 cast<StoreSDNode>(N)->setTruncatingStore(true); 14172 return SDValue(N, 0); 14173 } 14174 14175 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14176 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14177 if (Op1VT.isSimple()) { 14178 MVT StoreVT = Op1VT.getSimpleVT(); 14179 if (Subtarget.needsSwapsForVSXMemOps() && 14180 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14181 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14182 return expandVSXStoreForLE(N, DCI); 14183 } 14184 break; 14185 } 14186 case ISD::LOAD: { 14187 LoadSDNode *LD = cast<LoadSDNode>(N); 14188 EVT VT = LD->getValueType(0); 14189 14190 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14191 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14192 if (VT.isSimple()) { 14193 MVT LoadVT = VT.getSimpleVT(); 14194 if (Subtarget.needsSwapsForVSXMemOps() && 14195 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14196 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14197 return expandVSXLoadForLE(N, DCI); 14198 } 14199 14200 // We sometimes end up with a 64-bit integer load, from which we extract 14201 // two single-precision floating-point numbers. This happens with 14202 // std::complex<float>, and other similar structures, because of the way we 14203 // canonicalize structure copies. However, if we lack direct moves, 14204 // then the final bitcasts from the extracted integer values to the 14205 // floating-point numbers turn into store/load pairs. Even with direct moves, 14206 // just loading the two floating-point numbers is likely better. 14207 auto ReplaceTwoFloatLoad = [&]() { 14208 if (VT != MVT::i64) 14209 return false; 14210 14211 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14212 LD->isVolatile()) 14213 return false; 14214 14215 // We're looking for a sequence like this: 14216 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14217 // t16: i64 = srl t13, Constant:i32<32> 14218 // t17: i32 = truncate t16 14219 // t18: f32 = bitcast t17 14220 // t19: i32 = truncate t13 14221 // t20: f32 = bitcast t19 14222 14223 if (!LD->hasNUsesOfValue(2, 0)) 14224 return false; 14225 14226 auto UI = LD->use_begin(); 14227 while (UI.getUse().getResNo() != 0) ++UI; 14228 SDNode *Trunc = *UI++; 14229 while (UI.getUse().getResNo() != 0) ++UI; 14230 SDNode *RightShift = *UI; 14231 if (Trunc->getOpcode() != ISD::TRUNCATE) 14232 std::swap(Trunc, RightShift); 14233 14234 if (Trunc->getOpcode() != ISD::TRUNCATE || 14235 Trunc->getValueType(0) != MVT::i32 || 14236 !Trunc->hasOneUse()) 14237 return false; 14238 if (RightShift->getOpcode() != ISD::SRL || 14239 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14240 RightShift->getConstantOperandVal(1) != 32 || 14241 !RightShift->hasOneUse()) 14242 return false; 14243 14244 SDNode *Trunc2 = *RightShift->use_begin(); 14245 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14246 Trunc2->getValueType(0) != MVT::i32 || 14247 !Trunc2->hasOneUse()) 14248 return false; 14249 14250 SDNode *Bitcast = *Trunc->use_begin(); 14251 SDNode *Bitcast2 = *Trunc2->use_begin(); 14252 14253 if (Bitcast->getOpcode() != ISD::BITCAST || 14254 Bitcast->getValueType(0) != MVT::f32) 14255 return false; 14256 if (Bitcast2->getOpcode() != ISD::BITCAST || 14257 Bitcast2->getValueType(0) != MVT::f32) 14258 return false; 14259 14260 if (Subtarget.isLittleEndian()) 14261 std::swap(Bitcast, Bitcast2); 14262 14263 // Bitcast has the second float (in memory-layout order) and Bitcast2 14264 // has the first one. 14265 14266 SDValue BasePtr = LD->getBasePtr(); 14267 if (LD->isIndexed()) { 14268 assert(LD->getAddressingMode() == ISD::PRE_INC && 14269 "Non-pre-inc AM on PPC?"); 14270 BasePtr = 14271 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14272 LD->getOffset()); 14273 } 14274 14275 auto MMOFlags = 14276 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14277 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14278 LD->getPointerInfo(), LD->getAlignment(), 14279 MMOFlags, LD->getAAInfo()); 14280 SDValue AddPtr = 14281 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14282 BasePtr, DAG.getIntPtrConstant(4, dl)); 14283 SDValue FloatLoad2 = DAG.getLoad( 14284 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14285 LD->getPointerInfo().getWithOffset(4), 14286 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14287 14288 if (LD->isIndexed()) { 14289 // Note that DAGCombine should re-form any pre-increment load(s) from 14290 // what is produced here if that makes sense. 14291 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14292 } 14293 14294 DCI.CombineTo(Bitcast2, FloatLoad); 14295 DCI.CombineTo(Bitcast, FloatLoad2); 14296 14297 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14298 SDValue(FloatLoad2.getNode(), 1)); 14299 return true; 14300 }; 14301 14302 if (ReplaceTwoFloatLoad()) 14303 return SDValue(N, 0); 14304 14305 EVT MemVT = LD->getMemoryVT(); 14306 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14307 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14308 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14309 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14310 if (LD->isUnindexed() && VT.isVector() && 14311 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14312 // P8 and later hardware should just use LOAD. 14313 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14314 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14315 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14316 LD->getAlignment() >= ScalarABIAlignment)) && 14317 LD->getAlignment() < ABIAlignment) { 14318 // This is a type-legal unaligned Altivec or QPX load. 14319 SDValue Chain = LD->getChain(); 14320 SDValue Ptr = LD->getBasePtr(); 14321 bool isLittleEndian = Subtarget.isLittleEndian(); 14322 14323 // This implements the loading of unaligned vectors as described in 14324 // the venerable Apple Velocity Engine overview. Specifically: 14325 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14326 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14327 // 14328 // The general idea is to expand a sequence of one or more unaligned 14329 // loads into an alignment-based permutation-control instruction (lvsl 14330 // or lvsr), a series of regular vector loads (which always truncate 14331 // their input address to an aligned address), and a series of 14332 // permutations. The results of these permutations are the requested 14333 // loaded values. The trick is that the last "extra" load is not taken 14334 // from the address you might suspect (sizeof(vector) bytes after the 14335 // last requested load), but rather sizeof(vector) - 1 bytes after the 14336 // last requested vector. The point of this is to avoid a page fault if 14337 // the base address happened to be aligned. This works because if the 14338 // base address is aligned, then adding less than a full vector length 14339 // will cause the last vector in the sequence to be (re)loaded. 14340 // Otherwise, the next vector will be fetched as you might suspect was 14341 // necessary. 14342 14343 // We might be able to reuse the permutation generation from 14344 // a different base address offset from this one by an aligned amount. 14345 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14346 // optimization later. 14347 Intrinsic::ID Intr, IntrLD, IntrPerm; 14348 MVT PermCntlTy, PermTy, LDTy; 14349 if (Subtarget.hasAltivec()) { 14350 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14351 Intrinsic::ppc_altivec_lvsl; 14352 IntrLD = Intrinsic::ppc_altivec_lvx; 14353 IntrPerm = Intrinsic::ppc_altivec_vperm; 14354 PermCntlTy = MVT::v16i8; 14355 PermTy = MVT::v4i32; 14356 LDTy = MVT::v4i32; 14357 } else { 14358 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14359 Intrinsic::ppc_qpx_qvlpcls; 14360 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14361 Intrinsic::ppc_qpx_qvlfs; 14362 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14363 PermCntlTy = MVT::v4f64; 14364 PermTy = MVT::v4f64; 14365 LDTy = MemVT.getSimpleVT(); 14366 } 14367 14368 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14369 14370 // Create the new MMO for the new base load. It is like the original MMO, 14371 // but represents an area in memory almost twice the vector size centered 14372 // on the original address. If the address is unaligned, we might start 14373 // reading up to (sizeof(vector)-1) bytes below the address of the 14374 // original unaligned load. 14375 MachineFunction &MF = DAG.getMachineFunction(); 14376 MachineMemOperand *BaseMMO = 14377 MF.getMachineMemOperand(LD->getMemOperand(), 14378 -(long)MemVT.getStoreSize()+1, 14379 2*MemVT.getStoreSize()-1); 14380 14381 // Create the new base load. 14382 SDValue LDXIntID = 14383 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14384 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14385 SDValue BaseLoad = 14386 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14387 DAG.getVTList(PermTy, MVT::Other), 14388 BaseLoadOps, LDTy, BaseMMO); 14389 14390 // Note that the value of IncOffset (which is provided to the next 14391 // load's pointer info offset value, and thus used to calculate the 14392 // alignment), and the value of IncValue (which is actually used to 14393 // increment the pointer value) are different! This is because we 14394 // require the next load to appear to be aligned, even though it 14395 // is actually offset from the base pointer by a lesser amount. 14396 int IncOffset = VT.getSizeInBits() / 8; 14397 int IncValue = IncOffset; 14398 14399 // Walk (both up and down) the chain looking for another load at the real 14400 // (aligned) offset (the alignment of the other load does not matter in 14401 // this case). If found, then do not use the offset reduction trick, as 14402 // that will prevent the loads from being later combined (as they would 14403 // otherwise be duplicates). 14404 if (!findConsecutiveLoad(LD, DAG)) 14405 --IncValue; 14406 14407 SDValue Increment = 14408 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14409 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14410 14411 MachineMemOperand *ExtraMMO = 14412 MF.getMachineMemOperand(LD->getMemOperand(), 14413 1, 2*MemVT.getStoreSize()-1); 14414 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14415 SDValue ExtraLoad = 14416 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14417 DAG.getVTList(PermTy, MVT::Other), 14418 ExtraLoadOps, LDTy, ExtraMMO); 14419 14420 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14421 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14422 14423 // Because vperm has a big-endian bias, we must reverse the order 14424 // of the input vectors and complement the permute control vector 14425 // when generating little endian code. We have already handled the 14426 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14427 // and ExtraLoad here. 14428 SDValue Perm; 14429 if (isLittleEndian) 14430 Perm = BuildIntrinsicOp(IntrPerm, 14431 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14432 else 14433 Perm = BuildIntrinsicOp(IntrPerm, 14434 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14435 14436 if (VT != PermTy) 14437 Perm = Subtarget.hasAltivec() ? 14438 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14439 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14440 DAG.getTargetConstant(1, dl, MVT::i64)); 14441 // second argument is 1 because this rounding 14442 // is always exact. 14443 14444 // The output of the permutation is our loaded result, the TokenFactor is 14445 // our new chain. 14446 DCI.CombineTo(N, Perm, TF); 14447 return SDValue(N, 0); 14448 } 14449 } 14450 break; 14451 case ISD::INTRINSIC_WO_CHAIN: { 14452 bool isLittleEndian = Subtarget.isLittleEndian(); 14453 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14454 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14455 : Intrinsic::ppc_altivec_lvsl); 14456 if ((IID == Intr || 14457 IID == Intrinsic::ppc_qpx_qvlpcld || 14458 IID == Intrinsic::ppc_qpx_qvlpcls) && 14459 N->getOperand(1)->getOpcode() == ISD::ADD) { 14460 SDValue Add = N->getOperand(1); 14461 14462 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14463 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14464 14465 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14466 APInt::getAllOnesValue(Bits /* alignment */) 14467 .zext(Add.getScalarValueSizeInBits()))) { 14468 SDNode *BasePtr = Add->getOperand(0).getNode(); 14469 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14470 UE = BasePtr->use_end(); 14471 UI != UE; ++UI) { 14472 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14473 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14474 // We've found another LVSL/LVSR, and this address is an aligned 14475 // multiple of that one. The results will be the same, so use the 14476 // one we've just found instead. 14477 14478 return SDValue(*UI, 0); 14479 } 14480 } 14481 } 14482 14483 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14484 SDNode *BasePtr = Add->getOperand(0).getNode(); 14485 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14486 UE = BasePtr->use_end(); UI != UE; ++UI) { 14487 if (UI->getOpcode() == ISD::ADD && 14488 isa<ConstantSDNode>(UI->getOperand(1)) && 14489 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14490 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14491 (1ULL << Bits) == 0) { 14492 SDNode *OtherAdd = *UI; 14493 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14494 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14495 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14496 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14497 return SDValue(*VI, 0); 14498 } 14499 } 14500 } 14501 } 14502 } 14503 } 14504 14505 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14506 // Expose the vabsduw/h/b opportunity for down stream 14507 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14508 (IID == Intrinsic::ppc_altivec_vmaxsw || 14509 IID == Intrinsic::ppc_altivec_vmaxsh || 14510 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14511 SDValue V1 = N->getOperand(1); 14512 SDValue V2 = N->getOperand(2); 14513 if ((V1.getSimpleValueType() == MVT::v4i32 || 14514 V1.getSimpleValueType() == MVT::v8i16 || 14515 V1.getSimpleValueType() == MVT::v16i8) && 14516 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14517 // (0-a, a) 14518 if (V1.getOpcode() == ISD::SUB && 14519 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14520 V1.getOperand(1) == V2) { 14521 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14522 } 14523 // (a, 0-a) 14524 if (V2.getOpcode() == ISD::SUB && 14525 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14526 V2.getOperand(1) == V1) { 14527 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14528 } 14529 // (x-y, y-x) 14530 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14531 V1.getOperand(0) == V2.getOperand(1) && 14532 V1.getOperand(1) == V2.getOperand(0)) { 14533 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14534 } 14535 } 14536 } 14537 } 14538 14539 break; 14540 case ISD::INTRINSIC_W_CHAIN: 14541 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14542 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14543 if (Subtarget.needsSwapsForVSXMemOps()) { 14544 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14545 default: 14546 break; 14547 case Intrinsic::ppc_vsx_lxvw4x: 14548 case Intrinsic::ppc_vsx_lxvd2x: 14549 return expandVSXLoadForLE(N, DCI); 14550 } 14551 } 14552 break; 14553 case ISD::INTRINSIC_VOID: 14554 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14555 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14556 if (Subtarget.needsSwapsForVSXMemOps()) { 14557 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14558 default: 14559 break; 14560 case Intrinsic::ppc_vsx_stxvw4x: 14561 case Intrinsic::ppc_vsx_stxvd2x: 14562 return expandVSXStoreForLE(N, DCI); 14563 } 14564 } 14565 break; 14566 case ISD::BSWAP: 14567 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14568 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14569 N->getOperand(0).hasOneUse() && 14570 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14571 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14572 N->getValueType(0) == MVT::i64))) { 14573 SDValue Load = N->getOperand(0); 14574 LoadSDNode *LD = cast<LoadSDNode>(Load); 14575 // Create the byte-swapping load. 14576 SDValue Ops[] = { 14577 LD->getChain(), // Chain 14578 LD->getBasePtr(), // Ptr 14579 DAG.getValueType(N->getValueType(0)) // VT 14580 }; 14581 SDValue BSLoad = 14582 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14583 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14584 MVT::i64 : MVT::i32, MVT::Other), 14585 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14586 14587 // If this is an i16 load, insert the truncate. 14588 SDValue ResVal = BSLoad; 14589 if (N->getValueType(0) == MVT::i16) 14590 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14591 14592 // First, combine the bswap away. This makes the value produced by the 14593 // load dead. 14594 DCI.CombineTo(N, ResVal); 14595 14596 // Next, combine the load away, we give it a bogus result value but a real 14597 // chain result. The result value is dead because the bswap is dead. 14598 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14599 14600 // Return N so it doesn't get rechecked! 14601 return SDValue(N, 0); 14602 } 14603 break; 14604 case PPCISD::VCMP: 14605 // If a VCMPo node already exists with exactly the same operands as this 14606 // node, use its result instead of this node (VCMPo computes both a CR6 and 14607 // a normal output). 14608 // 14609 if (!N->getOperand(0).hasOneUse() && 14610 !N->getOperand(1).hasOneUse() && 14611 !N->getOperand(2).hasOneUse()) { 14612 14613 // Scan all of the users of the LHS, looking for VCMPo's that match. 14614 SDNode *VCMPoNode = nullptr; 14615 14616 SDNode *LHSN = N->getOperand(0).getNode(); 14617 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14618 UI != E; ++UI) 14619 if (UI->getOpcode() == PPCISD::VCMPo && 14620 UI->getOperand(1) == N->getOperand(1) && 14621 UI->getOperand(2) == N->getOperand(2) && 14622 UI->getOperand(0) == N->getOperand(0)) { 14623 VCMPoNode = *UI; 14624 break; 14625 } 14626 14627 // If there is no VCMPo node, or if the flag value has a single use, don't 14628 // transform this. 14629 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14630 break; 14631 14632 // Look at the (necessarily single) use of the flag value. If it has a 14633 // chain, this transformation is more complex. Note that multiple things 14634 // could use the value result, which we should ignore. 14635 SDNode *FlagUser = nullptr; 14636 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14637 FlagUser == nullptr; ++UI) { 14638 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14639 SDNode *User = *UI; 14640 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14641 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14642 FlagUser = User; 14643 break; 14644 } 14645 } 14646 } 14647 14648 // If the user is a MFOCRF instruction, we know this is safe. 14649 // Otherwise we give up for right now. 14650 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14651 return SDValue(VCMPoNode, 0); 14652 } 14653 break; 14654 case ISD::BRCOND: { 14655 SDValue Cond = N->getOperand(1); 14656 SDValue Target = N->getOperand(2); 14657 14658 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14659 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14660 Intrinsic::loop_decrement) { 14661 14662 // We now need to make the intrinsic dead (it cannot be instruction 14663 // selected). 14664 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14665 assert(Cond.getNode()->hasOneUse() && 14666 "Counter decrement has more than one use"); 14667 14668 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14669 N->getOperand(0), Target); 14670 } 14671 } 14672 break; 14673 case ISD::BR_CC: { 14674 // If this is a branch on an altivec predicate comparison, lower this so 14675 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14676 // lowering is done pre-legalize, because the legalizer lowers the predicate 14677 // compare down to code that is difficult to reassemble. 14678 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14679 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14680 14681 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14682 // value. If so, pass-through the AND to get to the intrinsic. 14683 if (LHS.getOpcode() == ISD::AND && 14684 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14685 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14686 Intrinsic::loop_decrement && 14687 isa<ConstantSDNode>(LHS.getOperand(1)) && 14688 !isNullConstant(LHS.getOperand(1))) 14689 LHS = LHS.getOperand(0); 14690 14691 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14692 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14693 Intrinsic::loop_decrement && 14694 isa<ConstantSDNode>(RHS)) { 14695 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14696 "Counter decrement comparison is not EQ or NE"); 14697 14698 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14699 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14700 (CC == ISD::SETNE && !Val); 14701 14702 // We now need to make the intrinsic dead (it cannot be instruction 14703 // selected). 14704 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14705 assert(LHS.getNode()->hasOneUse() && 14706 "Counter decrement has more than one use"); 14707 14708 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14709 N->getOperand(0), N->getOperand(4)); 14710 } 14711 14712 int CompareOpc; 14713 bool isDot; 14714 14715 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14716 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14717 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14718 assert(isDot && "Can't compare against a vector result!"); 14719 14720 // If this is a comparison against something other than 0/1, then we know 14721 // that the condition is never/always true. 14722 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14723 if (Val != 0 && Val != 1) { 14724 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14725 return N->getOperand(0); 14726 // Always !=, turn it into an unconditional branch. 14727 return DAG.getNode(ISD::BR, dl, MVT::Other, 14728 N->getOperand(0), N->getOperand(4)); 14729 } 14730 14731 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14732 14733 // Create the PPCISD altivec 'dot' comparison node. 14734 SDValue Ops[] = { 14735 LHS.getOperand(2), // LHS of compare 14736 LHS.getOperand(3), // RHS of compare 14737 DAG.getConstant(CompareOpc, dl, MVT::i32) 14738 }; 14739 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14740 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14741 14742 // Unpack the result based on how the target uses it. 14743 PPC::Predicate CompOpc; 14744 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14745 default: // Can't happen, don't crash on invalid number though. 14746 case 0: // Branch on the value of the EQ bit of CR6. 14747 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14748 break; 14749 case 1: // Branch on the inverted value of the EQ bit of CR6. 14750 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14751 break; 14752 case 2: // Branch on the value of the LT bit of CR6. 14753 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14754 break; 14755 case 3: // Branch on the inverted value of the LT bit of CR6. 14756 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14757 break; 14758 } 14759 14760 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14761 DAG.getConstant(CompOpc, dl, MVT::i32), 14762 DAG.getRegister(PPC::CR6, MVT::i32), 14763 N->getOperand(4), CompNode.getValue(1)); 14764 } 14765 break; 14766 } 14767 case ISD::BUILD_VECTOR: 14768 return DAGCombineBuildVector(N, DCI); 14769 case ISD::ABS: 14770 return combineABS(N, DCI); 14771 case ISD::VSELECT: 14772 return combineVSelect(N, DCI); 14773 } 14774 14775 return SDValue(); 14776 } 14777 14778 SDValue 14779 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14780 SelectionDAG &DAG, 14781 SmallVectorImpl<SDNode *> &Created) const { 14782 // fold (sdiv X, pow2) 14783 EVT VT = N->getValueType(0); 14784 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14785 return SDValue(); 14786 if ((VT != MVT::i32 && VT != MVT::i64) || 14787 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14788 return SDValue(); 14789 14790 SDLoc DL(N); 14791 SDValue N0 = N->getOperand(0); 14792 14793 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14794 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14795 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14796 14797 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14798 Created.push_back(Op.getNode()); 14799 14800 if (IsNegPow2) { 14801 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14802 Created.push_back(Op.getNode()); 14803 } 14804 14805 return Op; 14806 } 14807 14808 //===----------------------------------------------------------------------===// 14809 // Inline Assembly Support 14810 //===----------------------------------------------------------------------===// 14811 14812 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14813 KnownBits &Known, 14814 const APInt &DemandedElts, 14815 const SelectionDAG &DAG, 14816 unsigned Depth) const { 14817 Known.resetAll(); 14818 switch (Op.getOpcode()) { 14819 default: break; 14820 case PPCISD::LBRX: { 14821 // lhbrx is known to have the top bits cleared out. 14822 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14823 Known.Zero = 0xFFFF0000; 14824 break; 14825 } 14826 case ISD::INTRINSIC_WO_CHAIN: { 14827 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14828 default: break; 14829 case Intrinsic::ppc_altivec_vcmpbfp_p: 14830 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14831 case Intrinsic::ppc_altivec_vcmpequb_p: 14832 case Intrinsic::ppc_altivec_vcmpequh_p: 14833 case Intrinsic::ppc_altivec_vcmpequw_p: 14834 case Intrinsic::ppc_altivec_vcmpequd_p: 14835 case Intrinsic::ppc_altivec_vcmpgefp_p: 14836 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14837 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14838 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14839 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14840 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14841 case Intrinsic::ppc_altivec_vcmpgtub_p: 14842 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14843 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14844 case Intrinsic::ppc_altivec_vcmpgtud_p: 14845 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14846 break; 14847 } 14848 } 14849 } 14850 } 14851 14852 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14853 switch (Subtarget.getCPUDirective()) { 14854 default: break; 14855 case PPC::DIR_970: 14856 case PPC::DIR_PWR4: 14857 case PPC::DIR_PWR5: 14858 case PPC::DIR_PWR5X: 14859 case PPC::DIR_PWR6: 14860 case PPC::DIR_PWR6X: 14861 case PPC::DIR_PWR7: 14862 case PPC::DIR_PWR8: 14863 case PPC::DIR_PWR9: 14864 case PPC::DIR_PWR_FUTURE: { 14865 if (!ML) 14866 break; 14867 14868 if (!DisableInnermostLoopAlign32) { 14869 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14870 // so that we can decrease cache misses and branch-prediction misses. 14871 // Actual alignment of the loop will depend on the hotness check and other 14872 // logic in alignBlocks. 14873 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14874 return Align(32); 14875 } 14876 14877 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14878 14879 // For small loops (between 5 and 8 instructions), align to a 32-byte 14880 // boundary so that the entire loop fits in one instruction-cache line. 14881 uint64_t LoopSize = 0; 14882 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14883 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14884 LoopSize += TII->getInstSizeInBytes(*J); 14885 if (LoopSize > 32) 14886 break; 14887 } 14888 14889 if (LoopSize > 16 && LoopSize <= 32) 14890 return Align(32); 14891 14892 break; 14893 } 14894 } 14895 14896 return TargetLowering::getPrefLoopAlignment(ML); 14897 } 14898 14899 /// getConstraintType - Given a constraint, return the type of 14900 /// constraint it is for this target. 14901 PPCTargetLowering::ConstraintType 14902 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14903 if (Constraint.size() == 1) { 14904 switch (Constraint[0]) { 14905 default: break; 14906 case 'b': 14907 case 'r': 14908 case 'f': 14909 case 'd': 14910 case 'v': 14911 case 'y': 14912 return C_RegisterClass; 14913 case 'Z': 14914 // FIXME: While Z does indicate a memory constraint, it specifically 14915 // indicates an r+r address (used in conjunction with the 'y' modifier 14916 // in the replacement string). Currently, we're forcing the base 14917 // register to be r0 in the asm printer (which is interpreted as zero) 14918 // and forming the complete address in the second register. This is 14919 // suboptimal. 14920 return C_Memory; 14921 } 14922 } else if (Constraint == "wc") { // individual CR bits. 14923 return C_RegisterClass; 14924 } else if (Constraint == "wa" || Constraint == "wd" || 14925 Constraint == "wf" || Constraint == "ws" || 14926 Constraint == "wi" || Constraint == "ww") { 14927 return C_RegisterClass; // VSX registers. 14928 } 14929 return TargetLowering::getConstraintType(Constraint); 14930 } 14931 14932 /// Examine constraint type and operand type and determine a weight value. 14933 /// This object must already have been set up with the operand type 14934 /// and the current alternative constraint selected. 14935 TargetLowering::ConstraintWeight 14936 PPCTargetLowering::getSingleConstraintMatchWeight( 14937 AsmOperandInfo &info, const char *constraint) const { 14938 ConstraintWeight weight = CW_Invalid; 14939 Value *CallOperandVal = info.CallOperandVal; 14940 // If we don't have a value, we can't do a match, 14941 // but allow it at the lowest weight. 14942 if (!CallOperandVal) 14943 return CW_Default; 14944 Type *type = CallOperandVal->getType(); 14945 14946 // Look at the constraint type. 14947 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14948 return CW_Register; // an individual CR bit. 14949 else if ((StringRef(constraint) == "wa" || 14950 StringRef(constraint) == "wd" || 14951 StringRef(constraint) == "wf") && 14952 type->isVectorTy()) 14953 return CW_Register; 14954 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14955 return CW_Register; // just hold 64-bit integers data. 14956 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14957 return CW_Register; 14958 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14959 return CW_Register; 14960 14961 switch (*constraint) { 14962 default: 14963 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14964 break; 14965 case 'b': 14966 if (type->isIntegerTy()) 14967 weight = CW_Register; 14968 break; 14969 case 'f': 14970 if (type->isFloatTy()) 14971 weight = CW_Register; 14972 break; 14973 case 'd': 14974 if (type->isDoubleTy()) 14975 weight = CW_Register; 14976 break; 14977 case 'v': 14978 if (type->isVectorTy()) 14979 weight = CW_Register; 14980 break; 14981 case 'y': 14982 weight = CW_Register; 14983 break; 14984 case 'Z': 14985 weight = CW_Memory; 14986 break; 14987 } 14988 return weight; 14989 } 14990 14991 std::pair<unsigned, const TargetRegisterClass *> 14992 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14993 StringRef Constraint, 14994 MVT VT) const { 14995 if (Constraint.size() == 1) { 14996 // GCC RS6000 Constraint Letters 14997 switch (Constraint[0]) { 14998 case 'b': // R1-R31 14999 if (VT == MVT::i64 && Subtarget.isPPC64()) 15000 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15001 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15002 case 'r': // R0-R31 15003 if (VT == MVT::i64 && Subtarget.isPPC64()) 15004 return std::make_pair(0U, &PPC::G8RCRegClass); 15005 return std::make_pair(0U, &PPC::GPRCRegClass); 15006 // 'd' and 'f' constraints are both defined to be "the floating point 15007 // registers", where one is for 32-bit and the other for 64-bit. We don't 15008 // really care overly much here so just give them all the same reg classes. 15009 case 'd': 15010 case 'f': 15011 if (Subtarget.hasSPE()) { 15012 if (VT == MVT::f32 || VT == MVT::i32) 15013 return std::make_pair(0U, &PPC::GPRCRegClass); 15014 if (VT == MVT::f64 || VT == MVT::i64) 15015 return std::make_pair(0U, &PPC::SPERCRegClass); 15016 } else { 15017 if (VT == MVT::f32 || VT == MVT::i32) 15018 return std::make_pair(0U, &PPC::F4RCRegClass); 15019 if (VT == MVT::f64 || VT == MVT::i64) 15020 return std::make_pair(0U, &PPC::F8RCRegClass); 15021 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15022 return std::make_pair(0U, &PPC::QFRCRegClass); 15023 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15024 return std::make_pair(0U, &PPC::QSRCRegClass); 15025 } 15026 break; 15027 case 'v': 15028 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15029 return std::make_pair(0U, &PPC::QFRCRegClass); 15030 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15031 return std::make_pair(0U, &PPC::QSRCRegClass); 15032 if (Subtarget.hasAltivec()) 15033 return std::make_pair(0U, &PPC::VRRCRegClass); 15034 break; 15035 case 'y': // crrc 15036 return std::make_pair(0U, &PPC::CRRCRegClass); 15037 } 15038 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15039 // An individual CR bit. 15040 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15041 } else if ((Constraint == "wa" || Constraint == "wd" || 15042 Constraint == "wf" || Constraint == "wi") && 15043 Subtarget.hasVSX()) { 15044 return std::make_pair(0U, &PPC::VSRCRegClass); 15045 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15046 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15047 return std::make_pair(0U, &PPC::VSSRCRegClass); 15048 else 15049 return std::make_pair(0U, &PPC::VSFRCRegClass); 15050 } 15051 15052 // If we name a VSX register, we can't defer to the base class because it 15053 // will not recognize the correct register (their names will be VSL{0-31} 15054 // and V{0-31} so they won't match). So we match them here. 15055 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15056 int VSNum = atoi(Constraint.data() + 3); 15057 assert(VSNum >= 0 && VSNum <= 63 && 15058 "Attempted to access a vsr out of range"); 15059 if (VSNum < 32) 15060 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15061 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15062 } 15063 std::pair<unsigned, const TargetRegisterClass *> R = 15064 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15065 15066 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15067 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15068 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15069 // register. 15070 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15071 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15072 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15073 PPC::GPRCRegClass.contains(R.first)) 15074 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15075 PPC::sub_32, &PPC::G8RCRegClass), 15076 &PPC::G8RCRegClass); 15077 15078 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15079 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15080 R.first = PPC::CR0; 15081 R.second = &PPC::CRRCRegClass; 15082 } 15083 15084 return R; 15085 } 15086 15087 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15088 /// vector. If it is invalid, don't add anything to Ops. 15089 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15090 std::string &Constraint, 15091 std::vector<SDValue>&Ops, 15092 SelectionDAG &DAG) const { 15093 SDValue Result; 15094 15095 // Only support length 1 constraints. 15096 if (Constraint.length() > 1) return; 15097 15098 char Letter = Constraint[0]; 15099 switch (Letter) { 15100 default: break; 15101 case 'I': 15102 case 'J': 15103 case 'K': 15104 case 'L': 15105 case 'M': 15106 case 'N': 15107 case 'O': 15108 case 'P': { 15109 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15110 if (!CST) return; // Must be an immediate to match. 15111 SDLoc dl(Op); 15112 int64_t Value = CST->getSExtValue(); 15113 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15114 // numbers are printed as such. 15115 switch (Letter) { 15116 default: llvm_unreachable("Unknown constraint letter!"); 15117 case 'I': // "I" is a signed 16-bit constant. 15118 if (isInt<16>(Value)) 15119 Result = DAG.getTargetConstant(Value, dl, TCVT); 15120 break; 15121 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15122 if (isShiftedUInt<16, 16>(Value)) 15123 Result = DAG.getTargetConstant(Value, dl, TCVT); 15124 break; 15125 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15126 if (isShiftedInt<16, 16>(Value)) 15127 Result = DAG.getTargetConstant(Value, dl, TCVT); 15128 break; 15129 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15130 if (isUInt<16>(Value)) 15131 Result = DAG.getTargetConstant(Value, dl, TCVT); 15132 break; 15133 case 'M': // "M" is a constant that is greater than 31. 15134 if (Value > 31) 15135 Result = DAG.getTargetConstant(Value, dl, TCVT); 15136 break; 15137 case 'N': // "N" is a positive constant that is an exact power of two. 15138 if (Value > 0 && isPowerOf2_64(Value)) 15139 Result = DAG.getTargetConstant(Value, dl, TCVT); 15140 break; 15141 case 'O': // "O" is the constant zero. 15142 if (Value == 0) 15143 Result = DAG.getTargetConstant(Value, dl, TCVT); 15144 break; 15145 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15146 if (isInt<16>(-Value)) 15147 Result = DAG.getTargetConstant(Value, dl, TCVT); 15148 break; 15149 } 15150 break; 15151 } 15152 } 15153 15154 if (Result.getNode()) { 15155 Ops.push_back(Result); 15156 return; 15157 } 15158 15159 // Handle standard constraint letters. 15160 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15161 } 15162 15163 // isLegalAddressingMode - Return true if the addressing mode represented 15164 // by AM is legal for this target, for a load/store of the specified type. 15165 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15166 const AddrMode &AM, Type *Ty, 15167 unsigned AS, Instruction *I) const { 15168 // PPC does not allow r+i addressing modes for vectors! 15169 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15170 return false; 15171 15172 // PPC allows a sign-extended 16-bit immediate field. 15173 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15174 return false; 15175 15176 // No global is ever allowed as a base. 15177 if (AM.BaseGV) 15178 return false; 15179 15180 // PPC only support r+r, 15181 switch (AM.Scale) { 15182 case 0: // "r+i" or just "i", depending on HasBaseReg. 15183 break; 15184 case 1: 15185 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15186 return false; 15187 // Otherwise we have r+r or r+i. 15188 break; 15189 case 2: 15190 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15191 return false; 15192 // Allow 2*r as r+r. 15193 break; 15194 default: 15195 // No other scales are supported. 15196 return false; 15197 } 15198 15199 return true; 15200 } 15201 15202 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15203 SelectionDAG &DAG) const { 15204 MachineFunction &MF = DAG.getMachineFunction(); 15205 MachineFrameInfo &MFI = MF.getFrameInfo(); 15206 MFI.setReturnAddressIsTaken(true); 15207 15208 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15209 return SDValue(); 15210 15211 SDLoc dl(Op); 15212 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15213 15214 // Make sure the function does not optimize away the store of the RA to 15215 // the stack. 15216 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15217 FuncInfo->setLRStoreRequired(); 15218 bool isPPC64 = Subtarget.isPPC64(); 15219 auto PtrVT = getPointerTy(MF.getDataLayout()); 15220 15221 if (Depth > 0) { 15222 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15223 SDValue Offset = 15224 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15225 isPPC64 ? MVT::i64 : MVT::i32); 15226 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15227 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15228 MachinePointerInfo()); 15229 } 15230 15231 // Just load the return address off the stack. 15232 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15233 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15234 MachinePointerInfo()); 15235 } 15236 15237 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15238 SelectionDAG &DAG) const { 15239 SDLoc dl(Op); 15240 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15241 15242 MachineFunction &MF = DAG.getMachineFunction(); 15243 MachineFrameInfo &MFI = MF.getFrameInfo(); 15244 MFI.setFrameAddressIsTaken(true); 15245 15246 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15247 bool isPPC64 = PtrVT == MVT::i64; 15248 15249 // Naked functions never have a frame pointer, and so we use r1. For all 15250 // other functions, this decision must be delayed until during PEI. 15251 unsigned FrameReg; 15252 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15253 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15254 else 15255 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15256 15257 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15258 PtrVT); 15259 while (Depth--) 15260 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15261 FrameAddr, MachinePointerInfo()); 15262 return FrameAddr; 15263 } 15264 15265 // FIXME? Maybe this could be a TableGen attribute on some registers and 15266 // this table could be generated automatically from RegInfo. 15267 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15268 const MachineFunction &MF) const { 15269 bool isPPC64 = Subtarget.isPPC64(); 15270 15271 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15272 if (!is64Bit && VT != LLT::scalar(32)) 15273 report_fatal_error("Invalid register global variable type"); 15274 15275 Register Reg = StringSwitch<Register>(RegName) 15276 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15277 .Case("r2", isPPC64 ? Register() : PPC::R2) 15278 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15279 .Default(Register()); 15280 15281 if (Reg) 15282 return Reg; 15283 report_fatal_error("Invalid register name global variable"); 15284 } 15285 15286 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15287 // 32-bit SVR4 ABI access everything as got-indirect. 15288 if (Subtarget.is32BitELFABI()) 15289 return true; 15290 15291 // AIX accesses everything indirectly through the TOC, which is similar to 15292 // the GOT. 15293 if (Subtarget.isAIXABI()) 15294 return true; 15295 15296 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15297 // If it is small or large code model, module locals are accessed 15298 // indirectly by loading their address from .toc/.got. 15299 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15300 return true; 15301 15302 // JumpTable and BlockAddress are accessed as got-indirect. 15303 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15304 return true; 15305 15306 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15307 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15308 15309 return false; 15310 } 15311 15312 bool 15313 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15314 // The PowerPC target isn't yet aware of offsets. 15315 return false; 15316 } 15317 15318 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15319 const CallInst &I, 15320 MachineFunction &MF, 15321 unsigned Intrinsic) const { 15322 switch (Intrinsic) { 15323 case Intrinsic::ppc_qpx_qvlfd: 15324 case Intrinsic::ppc_qpx_qvlfs: 15325 case Intrinsic::ppc_qpx_qvlfcd: 15326 case Intrinsic::ppc_qpx_qvlfcs: 15327 case Intrinsic::ppc_qpx_qvlfiwa: 15328 case Intrinsic::ppc_qpx_qvlfiwz: 15329 case Intrinsic::ppc_altivec_lvx: 15330 case Intrinsic::ppc_altivec_lvxl: 15331 case Intrinsic::ppc_altivec_lvebx: 15332 case Intrinsic::ppc_altivec_lvehx: 15333 case Intrinsic::ppc_altivec_lvewx: 15334 case Intrinsic::ppc_vsx_lxvd2x: 15335 case Intrinsic::ppc_vsx_lxvw4x: { 15336 EVT VT; 15337 switch (Intrinsic) { 15338 case Intrinsic::ppc_altivec_lvebx: 15339 VT = MVT::i8; 15340 break; 15341 case Intrinsic::ppc_altivec_lvehx: 15342 VT = MVT::i16; 15343 break; 15344 case Intrinsic::ppc_altivec_lvewx: 15345 VT = MVT::i32; 15346 break; 15347 case Intrinsic::ppc_vsx_lxvd2x: 15348 VT = MVT::v2f64; 15349 break; 15350 case Intrinsic::ppc_qpx_qvlfd: 15351 VT = MVT::v4f64; 15352 break; 15353 case Intrinsic::ppc_qpx_qvlfs: 15354 VT = MVT::v4f32; 15355 break; 15356 case Intrinsic::ppc_qpx_qvlfcd: 15357 VT = MVT::v2f64; 15358 break; 15359 case Intrinsic::ppc_qpx_qvlfcs: 15360 VT = MVT::v2f32; 15361 break; 15362 default: 15363 VT = MVT::v4i32; 15364 break; 15365 } 15366 15367 Info.opc = ISD::INTRINSIC_W_CHAIN; 15368 Info.memVT = VT; 15369 Info.ptrVal = I.getArgOperand(0); 15370 Info.offset = -VT.getStoreSize()+1; 15371 Info.size = 2*VT.getStoreSize()-1; 15372 Info.align = Align(1); 15373 Info.flags = MachineMemOperand::MOLoad; 15374 return true; 15375 } 15376 case Intrinsic::ppc_qpx_qvlfda: 15377 case Intrinsic::ppc_qpx_qvlfsa: 15378 case Intrinsic::ppc_qpx_qvlfcda: 15379 case Intrinsic::ppc_qpx_qvlfcsa: 15380 case Intrinsic::ppc_qpx_qvlfiwaa: 15381 case Intrinsic::ppc_qpx_qvlfiwza: { 15382 EVT VT; 15383 switch (Intrinsic) { 15384 case Intrinsic::ppc_qpx_qvlfda: 15385 VT = MVT::v4f64; 15386 break; 15387 case Intrinsic::ppc_qpx_qvlfsa: 15388 VT = MVT::v4f32; 15389 break; 15390 case Intrinsic::ppc_qpx_qvlfcda: 15391 VT = MVT::v2f64; 15392 break; 15393 case Intrinsic::ppc_qpx_qvlfcsa: 15394 VT = MVT::v2f32; 15395 break; 15396 default: 15397 VT = MVT::v4i32; 15398 break; 15399 } 15400 15401 Info.opc = ISD::INTRINSIC_W_CHAIN; 15402 Info.memVT = VT; 15403 Info.ptrVal = I.getArgOperand(0); 15404 Info.offset = 0; 15405 Info.size = VT.getStoreSize(); 15406 Info.align = Align(1); 15407 Info.flags = MachineMemOperand::MOLoad; 15408 return true; 15409 } 15410 case Intrinsic::ppc_qpx_qvstfd: 15411 case Intrinsic::ppc_qpx_qvstfs: 15412 case Intrinsic::ppc_qpx_qvstfcd: 15413 case Intrinsic::ppc_qpx_qvstfcs: 15414 case Intrinsic::ppc_qpx_qvstfiw: 15415 case Intrinsic::ppc_altivec_stvx: 15416 case Intrinsic::ppc_altivec_stvxl: 15417 case Intrinsic::ppc_altivec_stvebx: 15418 case Intrinsic::ppc_altivec_stvehx: 15419 case Intrinsic::ppc_altivec_stvewx: 15420 case Intrinsic::ppc_vsx_stxvd2x: 15421 case Intrinsic::ppc_vsx_stxvw4x: { 15422 EVT VT; 15423 switch (Intrinsic) { 15424 case Intrinsic::ppc_altivec_stvebx: 15425 VT = MVT::i8; 15426 break; 15427 case Intrinsic::ppc_altivec_stvehx: 15428 VT = MVT::i16; 15429 break; 15430 case Intrinsic::ppc_altivec_stvewx: 15431 VT = MVT::i32; 15432 break; 15433 case Intrinsic::ppc_vsx_stxvd2x: 15434 VT = MVT::v2f64; 15435 break; 15436 case Intrinsic::ppc_qpx_qvstfd: 15437 VT = MVT::v4f64; 15438 break; 15439 case Intrinsic::ppc_qpx_qvstfs: 15440 VT = MVT::v4f32; 15441 break; 15442 case Intrinsic::ppc_qpx_qvstfcd: 15443 VT = MVT::v2f64; 15444 break; 15445 case Intrinsic::ppc_qpx_qvstfcs: 15446 VT = MVT::v2f32; 15447 break; 15448 default: 15449 VT = MVT::v4i32; 15450 break; 15451 } 15452 15453 Info.opc = ISD::INTRINSIC_VOID; 15454 Info.memVT = VT; 15455 Info.ptrVal = I.getArgOperand(1); 15456 Info.offset = -VT.getStoreSize()+1; 15457 Info.size = 2*VT.getStoreSize()-1; 15458 Info.align = Align(1); 15459 Info.flags = MachineMemOperand::MOStore; 15460 return true; 15461 } 15462 case Intrinsic::ppc_qpx_qvstfda: 15463 case Intrinsic::ppc_qpx_qvstfsa: 15464 case Intrinsic::ppc_qpx_qvstfcda: 15465 case Intrinsic::ppc_qpx_qvstfcsa: 15466 case Intrinsic::ppc_qpx_qvstfiwa: { 15467 EVT VT; 15468 switch (Intrinsic) { 15469 case Intrinsic::ppc_qpx_qvstfda: 15470 VT = MVT::v4f64; 15471 break; 15472 case Intrinsic::ppc_qpx_qvstfsa: 15473 VT = MVT::v4f32; 15474 break; 15475 case Intrinsic::ppc_qpx_qvstfcda: 15476 VT = MVT::v2f64; 15477 break; 15478 case Intrinsic::ppc_qpx_qvstfcsa: 15479 VT = MVT::v2f32; 15480 break; 15481 default: 15482 VT = MVT::v4i32; 15483 break; 15484 } 15485 15486 Info.opc = ISD::INTRINSIC_VOID; 15487 Info.memVT = VT; 15488 Info.ptrVal = I.getArgOperand(1); 15489 Info.offset = 0; 15490 Info.size = VT.getStoreSize(); 15491 Info.align = Align(1); 15492 Info.flags = MachineMemOperand::MOStore; 15493 return true; 15494 } 15495 default: 15496 break; 15497 } 15498 15499 return false; 15500 } 15501 15502 /// It returns EVT::Other if the type should be determined using generic 15503 /// target-independent logic. 15504 EVT PPCTargetLowering::getOptimalMemOpType( 15505 const MemOp &Op, const AttributeList &FuncAttributes) const { 15506 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15507 // When expanding a memset, require at least two QPX instructions to cover 15508 // the cost of loading the value to be stored from the constant pool. 15509 if (Subtarget.hasQPX() && Op.size() >= 32 && 15510 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15511 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15512 return MVT::v4f64; 15513 } 15514 15515 // We should use Altivec/VSX loads and stores when available. For unaligned 15516 // addresses, unaligned VSX loads are only fast starting with the P8. 15517 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15518 (Op.isAligned(Align(16)) || 15519 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15520 return MVT::v4i32; 15521 } 15522 15523 if (Subtarget.isPPC64()) { 15524 return MVT::i64; 15525 } 15526 15527 return MVT::i32; 15528 } 15529 15530 /// Returns true if it is beneficial to convert a load of a constant 15531 /// to just the constant itself. 15532 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15533 Type *Ty) const { 15534 assert(Ty->isIntegerTy()); 15535 15536 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15537 return !(BitSize == 0 || BitSize > 64); 15538 } 15539 15540 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15541 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15542 return false; 15543 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15544 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15545 return NumBits1 == 64 && NumBits2 == 32; 15546 } 15547 15548 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15549 if (!VT1.isInteger() || !VT2.isInteger()) 15550 return false; 15551 unsigned NumBits1 = VT1.getSizeInBits(); 15552 unsigned NumBits2 = VT2.getSizeInBits(); 15553 return NumBits1 == 64 && NumBits2 == 32; 15554 } 15555 15556 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15557 // Generally speaking, zexts are not free, but they are free when they can be 15558 // folded with other operations. 15559 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15560 EVT MemVT = LD->getMemoryVT(); 15561 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15562 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15563 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15564 LD->getExtensionType() == ISD::ZEXTLOAD)) 15565 return true; 15566 } 15567 15568 // FIXME: Add other cases... 15569 // - 32-bit shifts with a zext to i64 15570 // - zext after ctlz, bswap, etc. 15571 // - zext after and by a constant mask 15572 15573 return TargetLowering::isZExtFree(Val, VT2); 15574 } 15575 15576 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15577 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15578 "invalid fpext types"); 15579 // Extending to float128 is not free. 15580 if (DestVT == MVT::f128) 15581 return false; 15582 return true; 15583 } 15584 15585 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15586 return isInt<16>(Imm) || isUInt<16>(Imm); 15587 } 15588 15589 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15590 return isInt<16>(Imm) || isUInt<16>(Imm); 15591 } 15592 15593 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15594 unsigned, 15595 unsigned, 15596 MachineMemOperand::Flags, 15597 bool *Fast) const { 15598 if (DisablePPCUnaligned) 15599 return false; 15600 15601 // PowerPC supports unaligned memory access for simple non-vector types. 15602 // Although accessing unaligned addresses is not as efficient as accessing 15603 // aligned addresses, it is generally more efficient than manual expansion, 15604 // and generally only traps for software emulation when crossing page 15605 // boundaries. 15606 15607 if (!VT.isSimple()) 15608 return false; 15609 15610 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15611 return false; 15612 15613 if (VT.getSimpleVT().isVector()) { 15614 if (Subtarget.hasVSX()) { 15615 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15616 VT != MVT::v4f32 && VT != MVT::v4i32) 15617 return false; 15618 } else { 15619 return false; 15620 } 15621 } 15622 15623 if (VT == MVT::ppcf128) 15624 return false; 15625 15626 if (Fast) 15627 *Fast = true; 15628 15629 return true; 15630 } 15631 15632 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15633 EVT VT) const { 15634 return isFMAFasterThanFMulAndFAdd( 15635 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15636 } 15637 15638 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15639 Type *Ty) const { 15640 switch (Ty->getScalarType()->getTypeID()) { 15641 case Type::FloatTyID: 15642 case Type::DoubleTyID: 15643 return true; 15644 case Type::FP128TyID: 15645 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15646 default: 15647 return false; 15648 } 15649 } 15650 15651 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15652 // FIXME: add more patterns which are profitable to hoist. 15653 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15654 if (I->getOpcode() != Instruction::FMul) 15655 return true; 15656 15657 if (!I->hasOneUse()) 15658 return true; 15659 15660 Instruction *User = I->user_back(); 15661 assert(User && "A single use instruction with no uses."); 15662 15663 if (User->getOpcode() != Instruction::FSub && 15664 User->getOpcode() != Instruction::FAdd) 15665 return true; 15666 15667 const TargetOptions &Options = getTargetMachine().Options; 15668 const Function *F = I->getFunction(); 15669 const DataLayout &DL = F->getParent()->getDataLayout(); 15670 Type *Ty = User->getOperand(0)->getType(); 15671 15672 return !( 15673 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15674 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15675 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15676 } 15677 15678 const MCPhysReg * 15679 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15680 // LR is a callee-save register, but we must treat it as clobbered by any call 15681 // site. Hence we include LR in the scratch registers, which are in turn added 15682 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15683 // to CTR, which is used by any indirect call. 15684 static const MCPhysReg ScratchRegs[] = { 15685 PPC::X12, PPC::LR8, PPC::CTR8, 0 15686 }; 15687 15688 return ScratchRegs; 15689 } 15690 15691 Register PPCTargetLowering::getExceptionPointerRegister( 15692 const Constant *PersonalityFn) const { 15693 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15694 } 15695 15696 Register PPCTargetLowering::getExceptionSelectorRegister( 15697 const Constant *PersonalityFn) const { 15698 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15699 } 15700 15701 bool 15702 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15703 EVT VT , unsigned DefinedValues) const { 15704 if (VT == MVT::v2i64) 15705 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15706 15707 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15708 return true; 15709 15710 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15711 } 15712 15713 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15714 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15715 return TargetLowering::getSchedulingPreference(N); 15716 15717 return Sched::ILP; 15718 } 15719 15720 // Create a fast isel object. 15721 FastISel * 15722 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15723 const TargetLibraryInfo *LibInfo) const { 15724 return PPC::createFastISel(FuncInfo, LibInfo); 15725 } 15726 15727 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15728 if (!Subtarget.isPPC64()) return; 15729 15730 // Update IsSplitCSR in PPCFunctionInfo 15731 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15732 PFI->setIsSplitCSR(true); 15733 } 15734 15735 void PPCTargetLowering::insertCopiesSplitCSR( 15736 MachineBasicBlock *Entry, 15737 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15738 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15739 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15740 if (!IStart) 15741 return; 15742 15743 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15744 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15745 MachineBasicBlock::iterator MBBI = Entry->begin(); 15746 for (const MCPhysReg *I = IStart; *I; ++I) { 15747 const TargetRegisterClass *RC = nullptr; 15748 if (PPC::G8RCRegClass.contains(*I)) 15749 RC = &PPC::G8RCRegClass; 15750 else if (PPC::F8RCRegClass.contains(*I)) 15751 RC = &PPC::F8RCRegClass; 15752 else if (PPC::CRRCRegClass.contains(*I)) 15753 RC = &PPC::CRRCRegClass; 15754 else if (PPC::VRRCRegClass.contains(*I)) 15755 RC = &PPC::VRRCRegClass; 15756 else 15757 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15758 15759 Register NewVR = MRI->createVirtualRegister(RC); 15760 // Create copy from CSR to a virtual register. 15761 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15762 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15763 // nounwind. If we want to generalize this later, we may need to emit 15764 // CFI pseudo-instructions. 15765 assert(Entry->getParent()->getFunction().hasFnAttribute( 15766 Attribute::NoUnwind) && 15767 "Function should be nounwind in insertCopiesSplitCSR!"); 15768 Entry->addLiveIn(*I); 15769 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15770 .addReg(*I); 15771 15772 // Insert the copy-back instructions right before the terminator. 15773 for (auto *Exit : Exits) 15774 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15775 TII->get(TargetOpcode::COPY), *I) 15776 .addReg(NewVR); 15777 } 15778 } 15779 15780 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15781 bool PPCTargetLowering::useLoadStackGuardNode() const { 15782 if (!Subtarget.isTargetLinux()) 15783 return TargetLowering::useLoadStackGuardNode(); 15784 return true; 15785 } 15786 15787 // Override to disable global variable loading on Linux. 15788 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15789 if (!Subtarget.isTargetLinux()) 15790 return TargetLowering::insertSSPDeclarations(M); 15791 } 15792 15793 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15794 bool ForCodeSize) const { 15795 if (!VT.isSimple() || !Subtarget.hasVSX()) 15796 return false; 15797 15798 switch(VT.getSimpleVT().SimpleTy) { 15799 default: 15800 // For FP types that are currently not supported by PPC backend, return 15801 // false. Examples: f16, f80. 15802 return false; 15803 case MVT::f32: 15804 case MVT::f64: 15805 case MVT::ppcf128: 15806 return Imm.isPosZero(); 15807 } 15808 } 15809 15810 // For vector shift operation op, fold 15811 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15812 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15813 SelectionDAG &DAG) { 15814 SDValue N0 = N->getOperand(0); 15815 SDValue N1 = N->getOperand(1); 15816 EVT VT = N0.getValueType(); 15817 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15818 unsigned Opcode = N->getOpcode(); 15819 unsigned TargetOpcode; 15820 15821 switch (Opcode) { 15822 default: 15823 llvm_unreachable("Unexpected shift operation"); 15824 case ISD::SHL: 15825 TargetOpcode = PPCISD::SHL; 15826 break; 15827 case ISD::SRL: 15828 TargetOpcode = PPCISD::SRL; 15829 break; 15830 case ISD::SRA: 15831 TargetOpcode = PPCISD::SRA; 15832 break; 15833 } 15834 15835 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15836 N1->getOpcode() == ISD::AND) 15837 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15838 if (Mask->getZExtValue() == OpSizeInBits - 1) 15839 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15840 15841 return SDValue(); 15842 } 15843 15844 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15845 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15846 return Value; 15847 15848 SDValue N0 = N->getOperand(0); 15849 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15850 if (!Subtarget.isISA3_0() || 15851 N0.getOpcode() != ISD::SIGN_EXTEND || 15852 N0.getOperand(0).getValueType() != MVT::i32 || 15853 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15854 return SDValue(); 15855 15856 // We can't save an operation here if the value is already extended, and 15857 // the existing shift is easier to combine. 15858 SDValue ExtsSrc = N0.getOperand(0); 15859 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15860 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15861 return SDValue(); 15862 15863 SDLoc DL(N0); 15864 SDValue ShiftBy = SDValue(CN1, 0); 15865 // We want the shift amount to be i32 on the extswli, but the shift could 15866 // have an i64. 15867 if (ShiftBy.getValueType() == MVT::i64) 15868 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15869 15870 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15871 ShiftBy); 15872 } 15873 15874 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15875 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15876 return Value; 15877 15878 return SDValue(); 15879 } 15880 15881 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15882 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15883 return Value; 15884 15885 return SDValue(); 15886 } 15887 15888 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15889 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15890 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15891 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15892 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15893 const PPCSubtarget &Subtarget) { 15894 if (!Subtarget.isPPC64()) 15895 return SDValue(); 15896 15897 SDValue LHS = N->getOperand(0); 15898 SDValue RHS = N->getOperand(1); 15899 15900 auto isZextOfCompareWithConstant = [](SDValue Op) { 15901 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15902 Op.getValueType() != MVT::i64) 15903 return false; 15904 15905 SDValue Cmp = Op.getOperand(0); 15906 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15907 Cmp.getOperand(0).getValueType() != MVT::i64) 15908 return false; 15909 15910 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15911 int64_t NegConstant = 0 - Constant->getSExtValue(); 15912 // Due to the limitations of the addi instruction, 15913 // -C is required to be [-32768, 32767]. 15914 return isInt<16>(NegConstant); 15915 } 15916 15917 return false; 15918 }; 15919 15920 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15921 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15922 15923 // If there is a pattern, canonicalize a zext operand to the RHS. 15924 if (LHSHasPattern && !RHSHasPattern) 15925 std::swap(LHS, RHS); 15926 else if (!LHSHasPattern && !RHSHasPattern) 15927 return SDValue(); 15928 15929 SDLoc DL(N); 15930 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15931 SDValue Cmp = RHS.getOperand(0); 15932 SDValue Z = Cmp.getOperand(0); 15933 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15934 15935 assert(Constant && "Constant Should not be a null pointer."); 15936 int64_t NegConstant = 0 - Constant->getSExtValue(); 15937 15938 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15939 default: break; 15940 case ISD::SETNE: { 15941 // when C == 0 15942 // --> addze X, (addic Z, -1).carry 15943 // / 15944 // add X, (zext(setne Z, C))-- 15945 // \ when -32768 <= -C <= 32767 && C != 0 15946 // --> addze X, (addic (addi Z, -C), -1).carry 15947 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15948 DAG.getConstant(NegConstant, DL, MVT::i64)); 15949 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15950 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15951 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15952 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15953 SDValue(Addc.getNode(), 1)); 15954 } 15955 case ISD::SETEQ: { 15956 // when C == 0 15957 // --> addze X, (subfic Z, 0).carry 15958 // / 15959 // add X, (zext(sete Z, C))-- 15960 // \ when -32768 <= -C <= 32767 && C != 0 15961 // --> addze X, (subfic (addi Z, -C), 0).carry 15962 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15963 DAG.getConstant(NegConstant, DL, MVT::i64)); 15964 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15965 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15966 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15967 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15968 SDValue(Subc.getNode(), 1)); 15969 } 15970 } 15971 15972 return SDValue(); 15973 } 15974 15975 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15976 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15977 return Value; 15978 15979 return SDValue(); 15980 } 15981 15982 // Detect TRUNCATE operations on bitcasts of float128 values. 15983 // What we are looking for here is the situtation where we extract a subset 15984 // of bits from a 128 bit float. 15985 // This can be of two forms: 15986 // 1) BITCAST of f128 feeding TRUNCATE 15987 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15988 // The reason this is required is because we do not have a legal i128 type 15989 // and so we want to prevent having to store the f128 and then reload part 15990 // of it. 15991 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15992 DAGCombinerInfo &DCI) const { 15993 // If we are using CRBits then try that first. 15994 if (Subtarget.useCRBits()) { 15995 // Check if CRBits did anything and return that if it did. 15996 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15997 return CRTruncValue; 15998 } 15999 16000 SDLoc dl(N); 16001 SDValue Op0 = N->getOperand(0); 16002 16003 // Looking for a truncate of i128 to i64. 16004 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16005 return SDValue(); 16006 16007 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16008 16009 // SRL feeding TRUNCATE. 16010 if (Op0.getOpcode() == ISD::SRL) { 16011 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16012 // The right shift has to be by 64 bits. 16013 if (!ConstNode || ConstNode->getZExtValue() != 64) 16014 return SDValue(); 16015 16016 // Switch the element number to extract. 16017 EltToExtract = EltToExtract ? 0 : 1; 16018 // Update Op0 past the SRL. 16019 Op0 = Op0.getOperand(0); 16020 } 16021 16022 // BITCAST feeding a TRUNCATE possibly via SRL. 16023 if (Op0.getOpcode() == ISD::BITCAST && 16024 Op0.getValueType() == MVT::i128 && 16025 Op0.getOperand(0).getValueType() == MVT::f128) { 16026 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16027 return DCI.DAG.getNode( 16028 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16029 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16030 } 16031 return SDValue(); 16032 } 16033 16034 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16035 SelectionDAG &DAG = DCI.DAG; 16036 16037 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16038 if (!ConstOpOrElement) 16039 return SDValue(); 16040 16041 // An imul is usually smaller than the alternative sequence for legal type. 16042 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16043 isOperationLegal(ISD::MUL, N->getValueType(0))) 16044 return SDValue(); 16045 16046 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16047 switch (this->Subtarget.getCPUDirective()) { 16048 default: 16049 // TODO: enhance the condition for subtarget before pwr8 16050 return false; 16051 case PPC::DIR_PWR8: 16052 // type mul add shl 16053 // scalar 4 1 1 16054 // vector 7 2 2 16055 return true; 16056 case PPC::DIR_PWR9: 16057 case PPC::DIR_PWR_FUTURE: 16058 // type mul add shl 16059 // scalar 5 2 2 16060 // vector 7 2 2 16061 16062 // The cycle RATIO of related operations are showed as a table above. 16063 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16064 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16065 // are 4, it is always profitable; but for 3 instrs patterns 16066 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16067 // So we should only do it for vector type. 16068 return IsAddOne && IsNeg ? VT.isVector() : true; 16069 } 16070 }; 16071 16072 EVT VT = N->getValueType(0); 16073 SDLoc DL(N); 16074 16075 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16076 bool IsNeg = MulAmt.isNegative(); 16077 APInt MulAmtAbs = MulAmt.abs(); 16078 16079 if ((MulAmtAbs - 1).isPowerOf2()) { 16080 // (mul x, 2^N + 1) => (add (shl x, N), x) 16081 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16082 16083 if (!IsProfitable(IsNeg, true, VT)) 16084 return SDValue(); 16085 16086 SDValue Op0 = N->getOperand(0); 16087 SDValue Op1 = 16088 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16089 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16090 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16091 16092 if (!IsNeg) 16093 return Res; 16094 16095 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16096 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16097 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16098 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16099 16100 if (!IsProfitable(IsNeg, false, VT)) 16101 return SDValue(); 16102 16103 SDValue Op0 = N->getOperand(0); 16104 SDValue Op1 = 16105 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16106 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16107 16108 if (!IsNeg) 16109 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16110 else 16111 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16112 16113 } else { 16114 return SDValue(); 16115 } 16116 } 16117 16118 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16119 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16120 if (!Subtarget.is64BitELFABI()) 16121 return false; 16122 16123 // If not a tail call then no need to proceed. 16124 if (!CI->isTailCall()) 16125 return false; 16126 16127 // If sibling calls have been disabled and tail-calls aren't guaranteed 16128 // there is no reason to duplicate. 16129 auto &TM = getTargetMachine(); 16130 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16131 return false; 16132 16133 // Can't tail call a function called indirectly, or if it has variadic args. 16134 const Function *Callee = CI->getCalledFunction(); 16135 if (!Callee || Callee->isVarArg()) 16136 return false; 16137 16138 // Make sure the callee and caller calling conventions are eligible for tco. 16139 const Function *Caller = CI->getParent()->getParent(); 16140 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16141 CI->getCallingConv())) 16142 return false; 16143 16144 // If the function is local then we have a good chance at tail-calling it 16145 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16146 } 16147 16148 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16149 if (!Subtarget.hasVSX()) 16150 return false; 16151 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16152 return true; 16153 return VT == MVT::f32 || VT == MVT::f64 || 16154 VT == MVT::v4f32 || VT == MVT::v2f64; 16155 } 16156 16157 bool PPCTargetLowering:: 16158 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16159 const Value *Mask = AndI.getOperand(1); 16160 // If the mask is suitable for andi. or andis. we should sink the and. 16161 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16162 // Can't handle constants wider than 64-bits. 16163 if (CI->getBitWidth() > 64) 16164 return false; 16165 int64_t ConstVal = CI->getZExtValue(); 16166 return isUInt<16>(ConstVal) || 16167 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16168 } 16169 16170 // For non-constant masks, we can always use the record-form and. 16171 return true; 16172 } 16173 16174 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16175 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16176 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16177 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16178 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16179 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16180 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16181 assert(Subtarget.hasP9Altivec() && 16182 "Only combine this when P9 altivec supported!"); 16183 EVT VT = N->getValueType(0); 16184 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16185 return SDValue(); 16186 16187 SelectionDAG &DAG = DCI.DAG; 16188 SDLoc dl(N); 16189 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16190 // Even for signed integers, if it's known to be positive (as signed 16191 // integer) due to zero-extended inputs. 16192 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16193 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16194 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16195 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16196 (SubOpcd1 == ISD::ZERO_EXTEND || 16197 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16198 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16199 N->getOperand(0)->getOperand(0), 16200 N->getOperand(0)->getOperand(1), 16201 DAG.getTargetConstant(0, dl, MVT::i32)); 16202 } 16203 16204 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16205 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16206 N->getOperand(0).hasOneUse()) { 16207 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16208 N->getOperand(0)->getOperand(0), 16209 N->getOperand(0)->getOperand(1), 16210 DAG.getTargetConstant(1, dl, MVT::i32)); 16211 } 16212 } 16213 16214 return SDValue(); 16215 } 16216 16217 // For type v4i32/v8ii16/v16i8, transform 16218 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16219 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16220 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16221 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16222 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16223 DAGCombinerInfo &DCI) const { 16224 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16225 assert(Subtarget.hasP9Altivec() && 16226 "Only combine this when P9 altivec supported!"); 16227 16228 SelectionDAG &DAG = DCI.DAG; 16229 SDLoc dl(N); 16230 SDValue Cond = N->getOperand(0); 16231 SDValue TrueOpnd = N->getOperand(1); 16232 SDValue FalseOpnd = N->getOperand(2); 16233 EVT VT = N->getOperand(1).getValueType(); 16234 16235 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16236 FalseOpnd.getOpcode() != ISD::SUB) 16237 return SDValue(); 16238 16239 // ABSD only available for type v4i32/v8i16/v16i8 16240 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16241 return SDValue(); 16242 16243 // At least to save one more dependent computation 16244 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16245 return SDValue(); 16246 16247 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16248 16249 // Can only handle unsigned comparison here 16250 switch (CC) { 16251 default: 16252 return SDValue(); 16253 case ISD::SETUGT: 16254 case ISD::SETUGE: 16255 break; 16256 case ISD::SETULT: 16257 case ISD::SETULE: 16258 std::swap(TrueOpnd, FalseOpnd); 16259 break; 16260 } 16261 16262 SDValue CmpOpnd1 = Cond.getOperand(0); 16263 SDValue CmpOpnd2 = Cond.getOperand(1); 16264 16265 // SETCC CmpOpnd1 CmpOpnd2 cond 16266 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16267 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16268 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16269 TrueOpnd.getOperand(1) == CmpOpnd2 && 16270 FalseOpnd.getOperand(0) == CmpOpnd2 && 16271 FalseOpnd.getOperand(1) == CmpOpnd1) { 16272 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16273 CmpOpnd1, CmpOpnd2, 16274 DAG.getTargetConstant(0, dl, MVT::i32)); 16275 } 16276 16277 return SDValue(); 16278 } 16279