1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD, VT, Legal); 407 setOperationAction(ISD::SUB, VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::SELECT_CC, VT, Promote); 435 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 436 setOperationAction(ISD::STORE, VT, Promote); 437 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 438 439 // No other operations are legal. 440 setOperationAction(ISD::MUL , VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UDIV, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::FDIV, VT, Expand); 446 setOperationAction(ISD::FREM, VT, Expand); 447 setOperationAction(ISD::FNEG, VT, Expand); 448 setOperationAction(ISD::FSQRT, VT, Expand); 449 setOperationAction(ISD::FLOG, VT, Expand); 450 setOperationAction(ISD::FLOG10, VT, Expand); 451 setOperationAction(ISD::FLOG2, VT, Expand); 452 setOperationAction(ISD::FEXP, VT, Expand); 453 setOperationAction(ISD::FEXP2, VT, Expand); 454 setOperationAction(ISD::FSIN, VT, Expand); 455 setOperationAction(ISD::FCOS, VT, Expand); 456 setOperationAction(ISD::FABS, VT, Expand); 457 setOperationAction(ISD::FPOWI, VT, Expand); 458 setOperationAction(ISD::FFLOOR, VT, Expand); 459 setOperationAction(ISD::FCEIL, VT, Expand); 460 setOperationAction(ISD::FTRUNC, VT, Expand); 461 setOperationAction(ISD::FRINT, VT, Expand); 462 setOperationAction(ISD::FNEARBYINT, VT, Expand); 463 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 464 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 465 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 469 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::UDIVREM, VT, Expand); 471 setOperationAction(ISD::SDIVREM, VT, Expand); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 473 setOperationAction(ISD::FPOW, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 480 481 for (MVT InnerVT : MVT::vector_valuetypes()) { 482 setTruncStoreAction(VT, InnerVT, Expand); 483 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 484 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 485 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 486 } 487 } 488 489 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 490 // with merges, splats, etc. 491 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 492 493 setOperationAction(ISD::AND , MVT::v4i32, Legal); 494 setOperationAction(ISD::OR , MVT::v4i32, Legal); 495 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 496 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 497 setOperationAction(ISD::SELECT, MVT::v4i32, 498 Subtarget.useCRBits() ? Legal : Expand); 499 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 500 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 501 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 502 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 503 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 504 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 505 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 506 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 507 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 508 509 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 511 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 512 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 513 514 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 515 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 516 517 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 518 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 519 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 520 } 521 522 if (Subtarget.hasP8Altivec()) 523 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 524 else 525 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 526 527 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 528 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 529 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 531 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 532 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 536 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 537 538 // Altivec does not contain unordered floating-point compare instructions 539 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 542 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 543 544 if (Subtarget.hasVSX()) { 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 546 if (Subtarget.hasP8Vector()) 547 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 548 if (Subtarget.hasDirectMove()) { 549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 550 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 551 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 552 // FIXME: this is causing bootstrap failures, disable temporarily 553 //setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 554 } 555 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 556 557 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 558 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 559 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 560 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 561 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 562 563 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 564 565 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 566 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 567 568 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 569 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 570 571 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 572 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 573 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 574 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 575 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 576 577 // Share the Altivec comparison restrictions. 578 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 579 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 580 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 581 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 582 583 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 584 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 585 586 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 587 588 if (Subtarget.hasP8Vector()) 589 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 590 591 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 592 593 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 594 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 595 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 596 597 if (Subtarget.hasP8Altivec()) { 598 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 599 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 600 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 601 602 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 603 } 604 else { 605 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 606 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 607 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 608 609 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 610 611 // VSX v2i64 only supports non-arithmetic operations. 612 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 613 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 614 } 615 616 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 617 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 618 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 619 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 620 621 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 622 623 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 624 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 625 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 626 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 627 628 // Vector operation legalization checks the result type of 629 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 630 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 631 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 632 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 633 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 634 635 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 636 } 637 638 if (Subtarget.hasP8Altivec()) { 639 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 640 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 641 } 642 } 643 644 if (Subtarget.hasQPX()) { 645 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 646 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 647 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 648 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 649 650 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 651 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 652 653 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 654 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 655 656 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 657 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 658 659 if (!Subtarget.useCRBits()) 660 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 661 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 662 663 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 664 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 665 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 666 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 667 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 668 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 669 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 670 671 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 672 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 673 674 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 675 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 676 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 677 678 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 679 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 680 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 681 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 682 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 683 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 684 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 685 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 686 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 687 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 688 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 689 690 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 691 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 692 693 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 694 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 695 696 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 697 698 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 699 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 700 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 701 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 702 703 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 704 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 705 706 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 707 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 708 709 if (!Subtarget.useCRBits()) 710 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 711 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 712 713 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 714 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 715 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 716 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 717 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 718 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 719 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 720 721 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 722 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 723 724 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 725 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 726 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 727 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 728 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 729 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 730 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 731 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 732 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 733 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 734 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 735 736 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 737 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 738 739 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 740 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 741 742 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 743 744 setOperationAction(ISD::AND , MVT::v4i1, Legal); 745 setOperationAction(ISD::OR , MVT::v4i1, Legal); 746 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 747 748 if (!Subtarget.useCRBits()) 749 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 750 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 751 752 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 753 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 754 755 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 756 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 757 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 758 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 759 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 760 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 761 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 762 763 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 764 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 765 766 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 767 768 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 769 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 770 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 771 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 772 773 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 774 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 775 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 776 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 777 778 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 779 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 780 781 // These need to set FE_INEXACT, and so cannot be vectorized here. 782 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 783 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 784 785 if (TM.Options.UnsafeFPMath) { 786 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 787 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 788 789 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 790 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 791 } else { 792 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 793 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 794 795 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 796 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 797 } 798 } 799 800 if (Subtarget.has64BitSupport()) 801 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 802 803 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 804 805 if (!isPPC64) { 806 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 807 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 808 } 809 810 setBooleanContents(ZeroOrOneBooleanContent); 811 812 if (Subtarget.hasAltivec()) { 813 // Altivec instructions set fields to all zeros or all ones. 814 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 815 } 816 817 if (!isPPC64) { 818 // These libcalls are not available in 32-bit. 819 setLibcallName(RTLIB::SHL_I128, nullptr); 820 setLibcallName(RTLIB::SRL_I128, nullptr); 821 setLibcallName(RTLIB::SRA_I128, nullptr); 822 } 823 824 if (isPPC64) { 825 setStackPointerRegisterToSaveRestore(PPC::X1); 826 setExceptionPointerRegister(PPC::X3); 827 setExceptionSelectorRegister(PPC::X4); 828 } else { 829 setStackPointerRegisterToSaveRestore(PPC::R1); 830 setExceptionPointerRegister(PPC::R3); 831 setExceptionSelectorRegister(PPC::R4); 832 } 833 834 // We have target-specific dag combine patterns for the following nodes: 835 setTargetDAGCombine(ISD::SINT_TO_FP); 836 if (Subtarget.hasFPCVT()) 837 setTargetDAGCombine(ISD::UINT_TO_FP); 838 setTargetDAGCombine(ISD::LOAD); 839 setTargetDAGCombine(ISD::STORE); 840 setTargetDAGCombine(ISD::BR_CC); 841 if (Subtarget.useCRBits()) 842 setTargetDAGCombine(ISD::BRCOND); 843 setTargetDAGCombine(ISD::BSWAP); 844 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 845 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 846 setTargetDAGCombine(ISD::INTRINSIC_VOID); 847 848 setTargetDAGCombine(ISD::SIGN_EXTEND); 849 setTargetDAGCombine(ISD::ZERO_EXTEND); 850 setTargetDAGCombine(ISD::ANY_EXTEND); 851 852 if (Subtarget.useCRBits()) { 853 setTargetDAGCombine(ISD::TRUNCATE); 854 setTargetDAGCombine(ISD::SETCC); 855 setTargetDAGCombine(ISD::SELECT_CC); 856 } 857 858 // Use reciprocal estimates. 859 if (TM.Options.UnsafeFPMath) { 860 setTargetDAGCombine(ISD::FDIV); 861 setTargetDAGCombine(ISD::FSQRT); 862 } 863 864 // Darwin long double math library functions have $LDBL128 appended. 865 if (Subtarget.isDarwin()) { 866 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 867 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 868 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 869 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 870 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 871 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 872 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 873 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 874 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 875 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 876 } 877 878 // With 32 condition bits, we don't need to sink (and duplicate) compares 879 // aggressively in CodeGenPrep. 880 if (Subtarget.useCRBits()) { 881 setHasMultipleConditionRegisters(); 882 setJumpIsExpensive(); 883 } 884 885 setMinFunctionAlignment(2); 886 if (Subtarget.isDarwin()) 887 setPrefFunctionAlignment(4); 888 889 switch (Subtarget.getDarwinDirective()) { 890 default: break; 891 case PPC::DIR_970: 892 case PPC::DIR_A2: 893 case PPC::DIR_E500mc: 894 case PPC::DIR_E5500: 895 case PPC::DIR_PWR4: 896 case PPC::DIR_PWR5: 897 case PPC::DIR_PWR5X: 898 case PPC::DIR_PWR6: 899 case PPC::DIR_PWR6X: 900 case PPC::DIR_PWR7: 901 case PPC::DIR_PWR8: 902 setPrefFunctionAlignment(4); 903 setPrefLoopAlignment(4); 904 break; 905 } 906 907 setInsertFencesForAtomic(true); 908 909 if (Subtarget.enableMachineScheduler()) 910 setSchedulingPreference(Sched::Source); 911 else 912 setSchedulingPreference(Sched::Hybrid); 913 914 computeRegisterProperties(STI.getRegisterInfo()); 915 916 // The Freescale cores do better with aggressive inlining of memcpy and 917 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 918 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 919 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 920 MaxStoresPerMemset = 32; 921 MaxStoresPerMemsetOptSize = 16; 922 MaxStoresPerMemcpy = 32; 923 MaxStoresPerMemcpyOptSize = 8; 924 MaxStoresPerMemmove = 32; 925 MaxStoresPerMemmoveOptSize = 8; 926 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 927 // The A2 also benefits from (very) aggressive inlining of memcpy and 928 // friends. The overhead of a the function call, even when warm, can be 929 // over one hundred cycles. 930 MaxStoresPerMemset = 128; 931 MaxStoresPerMemcpy = 128; 932 MaxStoresPerMemmove = 128; 933 } 934 } 935 936 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 937 /// the desired ByVal argument alignment. 938 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 939 unsigned MaxMaxAlign) { 940 if (MaxAlign == MaxMaxAlign) 941 return; 942 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 943 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 944 MaxAlign = 32; 945 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 946 MaxAlign = 16; 947 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 948 unsigned EltAlign = 0; 949 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 950 if (EltAlign > MaxAlign) 951 MaxAlign = EltAlign; 952 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 953 for (auto *EltTy : STy->elements()) { 954 unsigned EltAlign = 0; 955 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 956 if (EltAlign > MaxAlign) 957 MaxAlign = EltAlign; 958 if (MaxAlign == MaxMaxAlign) 959 break; 960 } 961 } 962 } 963 964 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 965 /// function arguments in the caller parameter area. 966 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 967 const DataLayout &DL) const { 968 // Darwin passes everything on 4 byte boundary. 969 if (Subtarget.isDarwin()) 970 return 4; 971 972 // 16byte and wider vectors are passed on 16byte boundary. 973 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 974 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 975 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 976 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 977 return Align; 978 } 979 980 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 981 switch ((PPCISD::NodeType)Opcode) { 982 case PPCISD::FIRST_NUMBER: break; 983 case PPCISD::FSEL: return "PPCISD::FSEL"; 984 case PPCISD::FCFID: return "PPCISD::FCFID"; 985 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 986 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 987 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 988 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 989 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 990 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 991 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 992 case PPCISD::FRE: return "PPCISD::FRE"; 993 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 994 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 995 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 996 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 997 case PPCISD::VPERM: return "PPCISD::VPERM"; 998 case PPCISD::CMPB: return "PPCISD::CMPB"; 999 case PPCISD::Hi: return "PPCISD::Hi"; 1000 case PPCISD::Lo: return "PPCISD::Lo"; 1001 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1002 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1003 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1004 case PPCISD::SRL: return "PPCISD::SRL"; 1005 case PPCISD::SRA: return "PPCISD::SRA"; 1006 case PPCISD::SHL: return "PPCISD::SHL"; 1007 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1008 case PPCISD::CALL: return "PPCISD::CALL"; 1009 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1010 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1011 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1012 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1013 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1014 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1015 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1016 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1017 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1018 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1019 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1020 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1021 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1022 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1023 case PPCISD::VCMP: return "PPCISD::VCMP"; 1024 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1025 case PPCISD::LBRX: return "PPCISD::LBRX"; 1026 case PPCISD::STBRX: return "PPCISD::STBRX"; 1027 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1028 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1029 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1030 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1031 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1032 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1033 case PPCISD::BDZ: return "PPCISD::BDZ"; 1034 case PPCISD::MFFS: return "PPCISD::MFFS"; 1035 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1036 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1037 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1038 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1039 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1040 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1041 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1042 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1043 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1044 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1045 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1046 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1047 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1048 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1049 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1050 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1051 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1052 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1053 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1054 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1055 case PPCISD::SC: return "PPCISD::SC"; 1056 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1057 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1058 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1059 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1060 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1061 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1062 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1063 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1064 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1065 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1066 } 1067 return nullptr; 1068 } 1069 1070 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1071 EVT VT) const { 1072 if (!VT.isVector()) 1073 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1074 1075 if (Subtarget.hasQPX()) 1076 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1077 1078 return VT.changeVectorElementTypeToInteger(); 1079 } 1080 1081 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1082 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1083 return true; 1084 } 1085 1086 //===----------------------------------------------------------------------===// 1087 // Node matching predicates, for use by the tblgen matching code. 1088 //===----------------------------------------------------------------------===// 1089 1090 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1091 static bool isFloatingPointZero(SDValue Op) { 1092 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1093 return CFP->getValueAPF().isZero(); 1094 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1095 // Maybe this has already been legalized into the constant pool? 1096 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1097 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1098 return CFP->getValueAPF().isZero(); 1099 } 1100 return false; 1101 } 1102 1103 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1104 /// true if Op is undef or if it matches the specified value. 1105 static bool isConstantOrUndef(int Op, int Val) { 1106 return Op < 0 || Op == Val; 1107 } 1108 1109 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1110 /// VPKUHUM instruction. 1111 /// The ShuffleKind distinguishes between big-endian operations with 1112 /// two different inputs (0), either-endian operations with two identical 1113 /// inputs (1), and little-endian operations with two different inputs (2). 1114 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1115 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1116 SelectionDAG &DAG) { 1117 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1118 if (ShuffleKind == 0) { 1119 if (IsLE) 1120 return false; 1121 for (unsigned i = 0; i != 16; ++i) 1122 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1123 return false; 1124 } else if (ShuffleKind == 2) { 1125 if (!IsLE) 1126 return false; 1127 for (unsigned i = 0; i != 16; ++i) 1128 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1129 return false; 1130 } else if (ShuffleKind == 1) { 1131 unsigned j = IsLE ? 0 : 1; 1132 for (unsigned i = 0; i != 8; ++i) 1133 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1134 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1135 return false; 1136 } 1137 return true; 1138 } 1139 1140 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1141 /// VPKUWUM instruction. 1142 /// The ShuffleKind distinguishes between big-endian operations with 1143 /// two different inputs (0), either-endian operations with two identical 1144 /// inputs (1), and little-endian operations with two different inputs (2). 1145 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1146 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1147 SelectionDAG &DAG) { 1148 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1149 if (ShuffleKind == 0) { 1150 if (IsLE) 1151 return false; 1152 for (unsigned i = 0; i != 16; i += 2) 1153 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1154 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1155 return false; 1156 } else if (ShuffleKind == 2) { 1157 if (!IsLE) 1158 return false; 1159 for (unsigned i = 0; i != 16; i += 2) 1160 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1161 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1162 return false; 1163 } else if (ShuffleKind == 1) { 1164 unsigned j = IsLE ? 0 : 2; 1165 for (unsigned i = 0; i != 8; i += 2) 1166 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1167 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1168 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1169 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1170 return false; 1171 } 1172 return true; 1173 } 1174 1175 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1176 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1177 /// current subtarget. 1178 /// 1179 /// The ShuffleKind distinguishes between big-endian operations with 1180 /// two different inputs (0), either-endian operations with two identical 1181 /// inputs (1), and little-endian operations with two different inputs (2). 1182 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1183 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1184 SelectionDAG &DAG) { 1185 const PPCSubtarget& Subtarget = 1186 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1187 if (!Subtarget.hasP8Vector()) 1188 return false; 1189 1190 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1191 if (ShuffleKind == 0) { 1192 if (IsLE) 1193 return false; 1194 for (unsigned i = 0; i != 16; i += 4) 1195 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1196 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1197 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1198 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1199 return false; 1200 } else if (ShuffleKind == 2) { 1201 if (!IsLE) 1202 return false; 1203 for (unsigned i = 0; i != 16; i += 4) 1204 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1205 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1206 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1207 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1208 return false; 1209 } else if (ShuffleKind == 1) { 1210 unsigned j = IsLE ? 0 : 4; 1211 for (unsigned i = 0; i != 8; i += 4) 1212 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1213 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1214 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1215 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1216 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1217 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1218 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1219 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1220 return false; 1221 } 1222 return true; 1223 } 1224 1225 /// isVMerge - Common function, used to match vmrg* shuffles. 1226 /// 1227 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1228 unsigned LHSStart, unsigned RHSStart) { 1229 if (N->getValueType(0) != MVT::v16i8) 1230 return false; 1231 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1232 "Unsupported merge size!"); 1233 1234 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1235 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1236 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1237 LHSStart+j+i*UnitSize) || 1238 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1239 RHSStart+j+i*UnitSize)) 1240 return false; 1241 } 1242 return true; 1243 } 1244 1245 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1246 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1247 /// The ShuffleKind distinguishes between big-endian merges with two 1248 /// different inputs (0), either-endian merges with two identical inputs (1), 1249 /// and little-endian merges with two different inputs (2). For the latter, 1250 /// the input operands are swapped (see PPCInstrAltivec.td). 1251 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1252 unsigned ShuffleKind, SelectionDAG &DAG) { 1253 if (DAG.getDataLayout().isLittleEndian()) { 1254 if (ShuffleKind == 1) // unary 1255 return isVMerge(N, UnitSize, 0, 0); 1256 else if (ShuffleKind == 2) // swapped 1257 return isVMerge(N, UnitSize, 0, 16); 1258 else 1259 return false; 1260 } else { 1261 if (ShuffleKind == 1) // unary 1262 return isVMerge(N, UnitSize, 8, 8); 1263 else if (ShuffleKind == 0) // normal 1264 return isVMerge(N, UnitSize, 8, 24); 1265 else 1266 return false; 1267 } 1268 } 1269 1270 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1271 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1272 /// The ShuffleKind distinguishes between big-endian merges with two 1273 /// different inputs (0), either-endian merges with two identical inputs (1), 1274 /// and little-endian merges with two different inputs (2). For the latter, 1275 /// the input operands are swapped (see PPCInstrAltivec.td). 1276 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1277 unsigned ShuffleKind, SelectionDAG &DAG) { 1278 if (DAG.getDataLayout().isLittleEndian()) { 1279 if (ShuffleKind == 1) // unary 1280 return isVMerge(N, UnitSize, 8, 8); 1281 else if (ShuffleKind == 2) // swapped 1282 return isVMerge(N, UnitSize, 8, 24); 1283 else 1284 return false; 1285 } else { 1286 if (ShuffleKind == 1) // unary 1287 return isVMerge(N, UnitSize, 0, 0); 1288 else if (ShuffleKind == 0) // normal 1289 return isVMerge(N, UnitSize, 0, 16); 1290 else 1291 return false; 1292 } 1293 } 1294 1295 /** 1296 * \brief Common function used to match vmrgew and vmrgow shuffles 1297 * 1298 * The indexOffset determines whether to look for even or odd words in 1299 * the shuffle mask. This is based on the of the endianness of the target 1300 * machine. 1301 * - Little Endian: 1302 * - Use offset of 0 to check for odd elements 1303 * - Use offset of 4 to check for even elements 1304 * - Big Endian: 1305 * - Use offset of 0 to check for even elements 1306 * - Use offset of 4 to check for odd elements 1307 * A detailed description of the vector element ordering for little endian and 1308 * big endian can be found at 1309 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1310 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1311 * compiler differences mean to you 1312 * 1313 * The mask to the shuffle vector instruction specifies the indices of the 1314 * elements from the two input vectors to place in the result. The elements are 1315 * numbered in array-access order, starting with the first vector. These vectors 1316 * are always of type v16i8, thus each vector will contain 16 elements of size 1317 * 8. More info on the shuffle vector can be found in the 1318 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1319 * Language Reference. 1320 * 1321 * The RHSStartValue indicates whether the same input vectors are used (unary) 1322 * or two different input vectors are used, based on the following: 1323 * - If the instruction uses the same vector for both inputs, the range of the 1324 * indices will be 0 to 15. In this case, the RHSStart value passed should 1325 * be 0. 1326 * - If the instruction has two different vectors then the range of the 1327 * indices will be 0 to 31. In this case, the RHSStart value passed should 1328 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1329 * to 31 specify elements in the second vector). 1330 * 1331 * \param[in] N The shuffle vector SD Node to analyze 1332 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1333 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1334 * vector to the shuffle_vector instruction 1335 * \return true iff this shuffle vector represents an even or odd word merge 1336 */ 1337 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1338 unsigned RHSStartValue) { 1339 if (N->getValueType(0) != MVT::v16i8) 1340 return false; 1341 1342 for (unsigned i = 0; i < 2; ++i) 1343 for (unsigned j = 0; j < 4; ++j) 1344 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1345 i*RHSStartValue+j+IndexOffset) || 1346 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1347 i*RHSStartValue+j+IndexOffset+8)) 1348 return false; 1349 return true; 1350 } 1351 1352 /** 1353 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1354 * vmrgow instructions. 1355 * 1356 * \param[in] N The shuffle vector SD Node to analyze 1357 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1358 * \param[in] ShuffleKind Identify the type of merge: 1359 * - 0 = big-endian merge with two different inputs; 1360 * - 1 = either-endian merge with two identical inputs; 1361 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1362 * little-endian merges). 1363 * \param[in] DAG The current SelectionDAG 1364 * \return true iff this shuffle mask 1365 */ 1366 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1367 unsigned ShuffleKind, SelectionDAG &DAG) { 1368 if (DAG.getDataLayout().isLittleEndian()) { 1369 unsigned indexOffset = CheckEven ? 4 : 0; 1370 if (ShuffleKind == 1) // Unary 1371 return isVMerge(N, indexOffset, 0); 1372 else if (ShuffleKind == 2) // swapped 1373 return isVMerge(N, indexOffset, 16); 1374 else 1375 return false; 1376 } 1377 else { 1378 unsigned indexOffset = CheckEven ? 0 : 4; 1379 if (ShuffleKind == 1) // Unary 1380 return isVMerge(N, indexOffset, 0); 1381 else if (ShuffleKind == 0) // Normal 1382 return isVMerge(N, indexOffset, 16); 1383 else 1384 return false; 1385 } 1386 return false; 1387 } 1388 1389 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1390 /// amount, otherwise return -1. 1391 /// The ShuffleKind distinguishes between big-endian operations with two 1392 /// different inputs (0), either-endian operations with two identical inputs 1393 /// (1), and little-endian operations with two different inputs (2). For the 1394 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1395 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1396 SelectionDAG &DAG) { 1397 if (N->getValueType(0) != MVT::v16i8) 1398 return -1; 1399 1400 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1401 1402 // Find the first non-undef value in the shuffle mask. 1403 unsigned i; 1404 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1405 /*search*/; 1406 1407 if (i == 16) return -1; // all undef. 1408 1409 // Otherwise, check to see if the rest of the elements are consecutively 1410 // numbered from this value. 1411 unsigned ShiftAmt = SVOp->getMaskElt(i); 1412 if (ShiftAmt < i) return -1; 1413 1414 ShiftAmt -= i; 1415 bool isLE = DAG.getDataLayout().isLittleEndian(); 1416 1417 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1418 // Check the rest of the elements to see if they are consecutive. 1419 for (++i; i != 16; ++i) 1420 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1421 return -1; 1422 } else if (ShuffleKind == 1) { 1423 // Check the rest of the elements to see if they are consecutive. 1424 for (++i; i != 16; ++i) 1425 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1426 return -1; 1427 } else 1428 return -1; 1429 1430 if (isLE) 1431 ShiftAmt = 16 - ShiftAmt; 1432 1433 return ShiftAmt; 1434 } 1435 1436 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1437 /// specifies a splat of a single element that is suitable for input to 1438 /// VSPLTB/VSPLTH/VSPLTW. 1439 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1440 assert(N->getValueType(0) == MVT::v16i8 && 1441 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1442 1443 // The consecutive indices need to specify an element, not part of two 1444 // different elements. So abandon ship early if this isn't the case. 1445 if (N->getMaskElt(0) % EltSize != 0) 1446 return false; 1447 1448 // This is a splat operation if each element of the permute is the same, and 1449 // if the value doesn't reference the second vector. 1450 unsigned ElementBase = N->getMaskElt(0); 1451 1452 // FIXME: Handle UNDEF elements too! 1453 if (ElementBase >= 16) 1454 return false; 1455 1456 // Check that the indices are consecutive, in the case of a multi-byte element 1457 // splatted with a v16i8 mask. 1458 for (unsigned i = 1; i != EltSize; ++i) 1459 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1460 return false; 1461 1462 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1463 if (N->getMaskElt(i) < 0) continue; 1464 for (unsigned j = 0; j != EltSize; ++j) 1465 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1466 return false; 1467 } 1468 return true; 1469 } 1470 1471 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1472 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1473 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1474 SelectionDAG &DAG) { 1475 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1476 assert(isSplatShuffleMask(SVOp, EltSize)); 1477 if (DAG.getDataLayout().isLittleEndian()) 1478 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1479 else 1480 return SVOp->getMaskElt(0) / EltSize; 1481 } 1482 1483 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1484 /// by using a vspltis[bhw] instruction of the specified element size, return 1485 /// the constant being splatted. The ByteSize field indicates the number of 1486 /// bytes of each element [124] -> [bhw]. 1487 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1488 SDValue OpVal(nullptr, 0); 1489 1490 // If ByteSize of the splat is bigger than the element size of the 1491 // build_vector, then we have a case where we are checking for a splat where 1492 // multiple elements of the buildvector are folded together into a single 1493 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1494 unsigned EltSize = 16/N->getNumOperands(); 1495 if (EltSize < ByteSize) { 1496 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1497 SDValue UniquedVals[4]; 1498 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1499 1500 // See if all of the elements in the buildvector agree across. 1501 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1502 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1503 // If the element isn't a constant, bail fully out. 1504 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1505 1506 1507 if (!UniquedVals[i&(Multiple-1)].getNode()) 1508 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1509 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1510 return SDValue(); // no match. 1511 } 1512 1513 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1514 // either constant or undef values that are identical for each chunk. See 1515 // if these chunks can form into a larger vspltis*. 1516 1517 // Check to see if all of the leading entries are either 0 or -1. If 1518 // neither, then this won't fit into the immediate field. 1519 bool LeadingZero = true; 1520 bool LeadingOnes = true; 1521 for (unsigned i = 0; i != Multiple-1; ++i) { 1522 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1523 1524 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1525 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1526 } 1527 // Finally, check the least significant entry. 1528 if (LeadingZero) { 1529 if (!UniquedVals[Multiple-1].getNode()) 1530 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1531 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1532 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1533 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1534 } 1535 if (LeadingOnes) { 1536 if (!UniquedVals[Multiple-1].getNode()) 1537 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1538 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1539 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1540 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1541 } 1542 1543 return SDValue(); 1544 } 1545 1546 // Check to see if this buildvec has a single non-undef value in its elements. 1547 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1548 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1549 if (!OpVal.getNode()) 1550 OpVal = N->getOperand(i); 1551 else if (OpVal != N->getOperand(i)) 1552 return SDValue(); 1553 } 1554 1555 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1556 1557 unsigned ValSizeInBytes = EltSize; 1558 uint64_t Value = 0; 1559 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1560 Value = CN->getZExtValue(); 1561 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1562 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1563 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1564 } 1565 1566 // If the splat value is larger than the element value, then we can never do 1567 // this splat. The only case that we could fit the replicated bits into our 1568 // immediate field for would be zero, and we prefer to use vxor for it. 1569 if (ValSizeInBytes < ByteSize) return SDValue(); 1570 1571 // If the element value is larger than the splat value, check if it consists 1572 // of a repeated bit pattern of size ByteSize. 1573 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1574 return SDValue(); 1575 1576 // Properly sign extend the value. 1577 int MaskVal = SignExtend32(Value, ByteSize * 8); 1578 1579 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1580 if (MaskVal == 0) return SDValue(); 1581 1582 // Finally, if this value fits in a 5 bit sext field, return it 1583 if (SignExtend32<5>(MaskVal) == MaskVal) 1584 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1585 return SDValue(); 1586 } 1587 1588 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1589 /// amount, otherwise return -1. 1590 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1591 EVT VT = N->getValueType(0); 1592 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1593 return -1; 1594 1595 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1596 1597 // Find the first non-undef value in the shuffle mask. 1598 unsigned i; 1599 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1600 /*search*/; 1601 1602 if (i == 4) return -1; // all undef. 1603 1604 // Otherwise, check to see if the rest of the elements are consecutively 1605 // numbered from this value. 1606 unsigned ShiftAmt = SVOp->getMaskElt(i); 1607 if (ShiftAmt < i) return -1; 1608 ShiftAmt -= i; 1609 1610 // Check the rest of the elements to see if they are consecutive. 1611 for (++i; i != 4; ++i) 1612 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1613 return -1; 1614 1615 return ShiftAmt; 1616 } 1617 1618 //===----------------------------------------------------------------------===// 1619 // Addressing Mode Selection 1620 //===----------------------------------------------------------------------===// 1621 1622 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1623 /// or 64-bit immediate, and if the value can be accurately represented as a 1624 /// sign extension from a 16-bit value. If so, this returns true and the 1625 /// immediate. 1626 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1627 if (!isa<ConstantSDNode>(N)) 1628 return false; 1629 1630 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1631 if (N->getValueType(0) == MVT::i32) 1632 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1633 else 1634 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1635 } 1636 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1637 return isIntS16Immediate(Op.getNode(), Imm); 1638 } 1639 1640 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1641 /// can be represented as an indexed [r+r] operation. Returns false if it 1642 /// can be more efficiently represented with [r+imm]. 1643 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1644 SDValue &Index, 1645 SelectionDAG &DAG) const { 1646 short imm = 0; 1647 if (N.getOpcode() == ISD::ADD) { 1648 if (isIntS16Immediate(N.getOperand(1), imm)) 1649 return false; // r+i 1650 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1651 return false; // r+i 1652 1653 Base = N.getOperand(0); 1654 Index = N.getOperand(1); 1655 return true; 1656 } else if (N.getOpcode() == ISD::OR) { 1657 if (isIntS16Immediate(N.getOperand(1), imm)) 1658 return false; // r+i can fold it if we can. 1659 1660 // If this is an or of disjoint bitfields, we can codegen this as an add 1661 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1662 // disjoint. 1663 APInt LHSKnownZero, LHSKnownOne; 1664 APInt RHSKnownZero, RHSKnownOne; 1665 DAG.computeKnownBits(N.getOperand(0), 1666 LHSKnownZero, LHSKnownOne); 1667 1668 if (LHSKnownZero.getBoolValue()) { 1669 DAG.computeKnownBits(N.getOperand(1), 1670 RHSKnownZero, RHSKnownOne); 1671 // If all of the bits are known zero on the LHS or RHS, the add won't 1672 // carry. 1673 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1674 Base = N.getOperand(0); 1675 Index = N.getOperand(1); 1676 return true; 1677 } 1678 } 1679 } 1680 1681 return false; 1682 } 1683 1684 // If we happen to be doing an i64 load or store into a stack slot that has 1685 // less than a 4-byte alignment, then the frame-index elimination may need to 1686 // use an indexed load or store instruction (because the offset may not be a 1687 // multiple of 4). The extra register needed to hold the offset comes from the 1688 // register scavenger, and it is possible that the scavenger will need to use 1689 // an emergency spill slot. As a result, we need to make sure that a spill slot 1690 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1691 // stack slot. 1692 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1693 // FIXME: This does not handle the LWA case. 1694 if (VT != MVT::i64) 1695 return; 1696 1697 // NOTE: We'll exclude negative FIs here, which come from argument 1698 // lowering, because there are no known test cases triggering this problem 1699 // using packed structures (or similar). We can remove this exclusion if 1700 // we find such a test case. The reason why this is so test-case driven is 1701 // because this entire 'fixup' is only to prevent crashes (from the 1702 // register scavenger) on not-really-valid inputs. For example, if we have: 1703 // %a = alloca i1 1704 // %b = bitcast i1* %a to i64* 1705 // store i64* a, i64 b 1706 // then the store should really be marked as 'align 1', but is not. If it 1707 // were marked as 'align 1' then the indexed form would have been 1708 // instruction-selected initially, and the problem this 'fixup' is preventing 1709 // won't happen regardless. 1710 if (FrameIdx < 0) 1711 return; 1712 1713 MachineFunction &MF = DAG.getMachineFunction(); 1714 MachineFrameInfo *MFI = MF.getFrameInfo(); 1715 1716 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1717 if (Align >= 4) 1718 return; 1719 1720 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1721 FuncInfo->setHasNonRISpills(); 1722 } 1723 1724 /// Returns true if the address N can be represented by a base register plus 1725 /// a signed 16-bit displacement [r+imm], and if it is not better 1726 /// represented as reg+reg. If Aligned is true, only accept displacements 1727 /// suitable for STD and friends, i.e. multiples of 4. 1728 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1729 SDValue &Base, 1730 SelectionDAG &DAG, 1731 bool Aligned) const { 1732 // FIXME dl should come from parent load or store, not from address 1733 SDLoc dl(N); 1734 // If this can be more profitably realized as r+r, fail. 1735 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1736 return false; 1737 1738 if (N.getOpcode() == ISD::ADD) { 1739 short imm = 0; 1740 if (isIntS16Immediate(N.getOperand(1), imm) && 1741 (!Aligned || (imm & 3) == 0)) { 1742 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1743 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1744 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1745 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1746 } else { 1747 Base = N.getOperand(0); 1748 } 1749 return true; // [r+i] 1750 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1751 // Match LOAD (ADD (X, Lo(G))). 1752 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1753 && "Cannot handle constant offsets yet!"); 1754 Disp = N.getOperand(1).getOperand(0); // The global address. 1755 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1756 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1757 Disp.getOpcode() == ISD::TargetConstantPool || 1758 Disp.getOpcode() == ISD::TargetJumpTable); 1759 Base = N.getOperand(0); 1760 return true; // [&g+r] 1761 } 1762 } else if (N.getOpcode() == ISD::OR) { 1763 short imm = 0; 1764 if (isIntS16Immediate(N.getOperand(1), imm) && 1765 (!Aligned || (imm & 3) == 0)) { 1766 // If this is an or of disjoint bitfields, we can codegen this as an add 1767 // (for better address arithmetic) if the LHS and RHS of the OR are 1768 // provably disjoint. 1769 APInt LHSKnownZero, LHSKnownOne; 1770 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1771 1772 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1773 // If all of the bits are known zero on the LHS or RHS, the add won't 1774 // carry. 1775 if (FrameIndexSDNode *FI = 1776 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1777 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1778 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1779 } else { 1780 Base = N.getOperand(0); 1781 } 1782 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1783 return true; 1784 } 1785 } 1786 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1787 // Loading from a constant address. 1788 1789 // If this address fits entirely in a 16-bit sext immediate field, codegen 1790 // this as "d, 0" 1791 short Imm; 1792 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1793 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1794 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1795 CN->getValueType(0)); 1796 return true; 1797 } 1798 1799 // Handle 32-bit sext immediates with LIS + addr mode. 1800 if ((CN->getValueType(0) == MVT::i32 || 1801 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1802 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1803 int Addr = (int)CN->getZExtValue(); 1804 1805 // Otherwise, break this down into an LIS + disp. 1806 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1807 1808 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1809 MVT::i32); 1810 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1811 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1812 return true; 1813 } 1814 } 1815 1816 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1817 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1818 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1819 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1820 } else 1821 Base = N; 1822 return true; // [r+0] 1823 } 1824 1825 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1826 /// represented as an indexed [r+r] operation. 1827 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1828 SDValue &Index, 1829 SelectionDAG &DAG) const { 1830 // Check to see if we can easily represent this as an [r+r] address. This 1831 // will fail if it thinks that the address is more profitably represented as 1832 // reg+imm, e.g. where imm = 0. 1833 if (SelectAddressRegReg(N, Base, Index, DAG)) 1834 return true; 1835 1836 // If the operand is an addition, always emit this as [r+r], since this is 1837 // better (for code size, and execution, as the memop does the add for free) 1838 // than emitting an explicit add. 1839 if (N.getOpcode() == ISD::ADD) { 1840 Base = N.getOperand(0); 1841 Index = N.getOperand(1); 1842 return true; 1843 } 1844 1845 // Otherwise, do it the hard way, using R0 as the base register. 1846 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1847 N.getValueType()); 1848 Index = N; 1849 return true; 1850 } 1851 1852 /// getPreIndexedAddressParts - returns true by value, base pointer and 1853 /// offset pointer and addressing mode by reference if the node's address 1854 /// can be legally represented as pre-indexed load / store address. 1855 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1856 SDValue &Offset, 1857 ISD::MemIndexedMode &AM, 1858 SelectionDAG &DAG) const { 1859 if (DisablePPCPreinc) return false; 1860 1861 bool isLoad = true; 1862 SDValue Ptr; 1863 EVT VT; 1864 unsigned Alignment; 1865 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1866 Ptr = LD->getBasePtr(); 1867 VT = LD->getMemoryVT(); 1868 Alignment = LD->getAlignment(); 1869 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1870 Ptr = ST->getBasePtr(); 1871 VT = ST->getMemoryVT(); 1872 Alignment = ST->getAlignment(); 1873 isLoad = false; 1874 } else 1875 return false; 1876 1877 // PowerPC doesn't have preinc load/store instructions for vectors (except 1878 // for QPX, which does have preinc r+r forms). 1879 if (VT.isVector()) { 1880 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1881 return false; 1882 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1883 AM = ISD::PRE_INC; 1884 return true; 1885 } 1886 } 1887 1888 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1889 1890 // Common code will reject creating a pre-inc form if the base pointer 1891 // is a frame index, or if N is a store and the base pointer is either 1892 // the same as or a predecessor of the value being stored. Check for 1893 // those situations here, and try with swapped Base/Offset instead. 1894 bool Swap = false; 1895 1896 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1897 Swap = true; 1898 else if (!isLoad) { 1899 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1900 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1901 Swap = true; 1902 } 1903 1904 if (Swap) 1905 std::swap(Base, Offset); 1906 1907 AM = ISD::PRE_INC; 1908 return true; 1909 } 1910 1911 // LDU/STU can only handle immediates that are a multiple of 4. 1912 if (VT != MVT::i64) { 1913 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1914 return false; 1915 } else { 1916 // LDU/STU need an address with at least 4-byte alignment. 1917 if (Alignment < 4) 1918 return false; 1919 1920 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1921 return false; 1922 } 1923 1924 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1925 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1926 // sext i32 to i64 when addr mode is r+i. 1927 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1928 LD->getExtensionType() == ISD::SEXTLOAD && 1929 isa<ConstantSDNode>(Offset)) 1930 return false; 1931 } 1932 1933 AM = ISD::PRE_INC; 1934 return true; 1935 } 1936 1937 //===----------------------------------------------------------------------===// 1938 // LowerOperation implementation 1939 //===----------------------------------------------------------------------===// 1940 1941 /// GetLabelAccessInfo - Return true if we should reference labels using a 1942 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1943 static bool GetLabelAccessInfo(const TargetMachine &TM, 1944 const PPCSubtarget &Subtarget, 1945 unsigned &HiOpFlags, unsigned &LoOpFlags, 1946 const GlobalValue *GV = nullptr) { 1947 HiOpFlags = PPCII::MO_HA; 1948 LoOpFlags = PPCII::MO_LO; 1949 1950 // Don't use the pic base if not in PIC relocation model. 1951 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1952 1953 if (isPIC) { 1954 HiOpFlags |= PPCII::MO_PIC_FLAG; 1955 LoOpFlags |= PPCII::MO_PIC_FLAG; 1956 } 1957 1958 // If this is a reference to a global value that requires a non-lazy-ptr, make 1959 // sure that instruction lowering adds it. 1960 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1961 HiOpFlags |= PPCII::MO_NLP_FLAG; 1962 LoOpFlags |= PPCII::MO_NLP_FLAG; 1963 1964 if (GV->hasHiddenVisibility()) { 1965 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1966 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1967 } 1968 } 1969 1970 return isPIC; 1971 } 1972 1973 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1974 SelectionDAG &DAG) { 1975 SDLoc DL(HiPart); 1976 EVT PtrVT = HiPart.getValueType(); 1977 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1978 1979 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1980 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1981 1982 // With PIC, the first instruction is actually "GR+hi(&G)". 1983 if (isPIC) 1984 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1985 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1986 1987 // Generate non-pic code that has direct accesses to the constant pool. 1988 // The address of the global is just (hi(&g)+lo(&g)). 1989 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1990 } 1991 1992 static void setUsesTOCBasePtr(MachineFunction &MF) { 1993 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1994 FuncInfo->setUsesTOCBasePtr(); 1995 } 1996 1997 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1998 setUsesTOCBasePtr(DAG.getMachineFunction()); 1999 } 2000 2001 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2002 SDValue GA) { 2003 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2004 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2005 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2006 2007 SDValue Ops[] = { GA, Reg }; 2008 return DAG.getMemIntrinsicNode( 2009 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2010 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2011 false, 0); 2012 } 2013 2014 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2015 SelectionDAG &DAG) const { 2016 EVT PtrVT = Op.getValueType(); 2017 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2018 const Constant *C = CP->getConstVal(); 2019 2020 // 64-bit SVR4 ABI code is always position-independent. 2021 // The actual address of the GlobalValue is stored in the TOC. 2022 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2023 setUsesTOCBasePtr(DAG); 2024 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2025 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2026 } 2027 2028 unsigned MOHiFlag, MOLoFlag; 2029 bool isPIC = 2030 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2031 2032 if (isPIC && Subtarget.isSVR4ABI()) { 2033 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2034 PPCII::MO_PIC_FLAG); 2035 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2036 } 2037 2038 SDValue CPIHi = 2039 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2040 SDValue CPILo = 2041 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2042 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2043 } 2044 2045 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2046 EVT PtrVT = Op.getValueType(); 2047 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2048 2049 // 64-bit SVR4 ABI code is always position-independent. 2050 // The actual address of the GlobalValue is stored in the TOC. 2051 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2052 setUsesTOCBasePtr(DAG); 2053 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2054 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2055 } 2056 2057 unsigned MOHiFlag, MOLoFlag; 2058 bool isPIC = 2059 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2060 2061 if (isPIC && Subtarget.isSVR4ABI()) { 2062 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2063 PPCII::MO_PIC_FLAG); 2064 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2065 } 2066 2067 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2068 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2069 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2070 } 2071 2072 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2073 SelectionDAG &DAG) const { 2074 EVT PtrVT = Op.getValueType(); 2075 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2076 const BlockAddress *BA = BASDN->getBlockAddress(); 2077 2078 // 64-bit SVR4 ABI code is always position-independent. 2079 // The actual BlockAddress is stored in the TOC. 2080 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2081 setUsesTOCBasePtr(DAG); 2082 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2083 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2084 } 2085 2086 unsigned MOHiFlag, MOLoFlag; 2087 bool isPIC = 2088 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2089 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2090 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2091 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2092 } 2093 2094 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2095 SelectionDAG &DAG) const { 2096 2097 // FIXME: TLS addresses currently use medium model code sequences, 2098 // which is the most useful form. Eventually support for small and 2099 // large models could be added if users need it, at the cost of 2100 // additional complexity. 2101 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2102 if (DAG.getTarget().Options.EmulatedTLS) 2103 return LowerToTLSEmulatedModel(GA, DAG); 2104 2105 SDLoc dl(GA); 2106 const GlobalValue *GV = GA->getGlobal(); 2107 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2108 bool is64bit = Subtarget.isPPC64(); 2109 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2110 PICLevel::Level picLevel = M->getPICLevel(); 2111 2112 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2113 2114 if (Model == TLSModel::LocalExec) { 2115 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2116 PPCII::MO_TPREL_HA); 2117 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2118 PPCII::MO_TPREL_LO); 2119 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2120 is64bit ? MVT::i64 : MVT::i32); 2121 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2122 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2123 } 2124 2125 if (Model == TLSModel::InitialExec) { 2126 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2127 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2128 PPCII::MO_TLS); 2129 SDValue GOTPtr; 2130 if (is64bit) { 2131 setUsesTOCBasePtr(DAG); 2132 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2133 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2134 PtrVT, GOTReg, TGA); 2135 } else 2136 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2137 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2138 PtrVT, TGA, GOTPtr); 2139 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2140 } 2141 2142 if (Model == TLSModel::GeneralDynamic) { 2143 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2144 SDValue GOTPtr; 2145 if (is64bit) { 2146 setUsesTOCBasePtr(DAG); 2147 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2148 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2149 GOTReg, TGA); 2150 } else { 2151 if (picLevel == PICLevel::Small) 2152 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2153 else 2154 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2155 } 2156 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2157 GOTPtr, TGA, TGA); 2158 } 2159 2160 if (Model == TLSModel::LocalDynamic) { 2161 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2162 SDValue GOTPtr; 2163 if (is64bit) { 2164 setUsesTOCBasePtr(DAG); 2165 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2166 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2167 GOTReg, TGA); 2168 } else { 2169 if (picLevel == PICLevel::Small) 2170 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2171 else 2172 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2173 } 2174 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2175 PtrVT, GOTPtr, TGA, TGA); 2176 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2177 PtrVT, TLSAddr, TGA); 2178 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2179 } 2180 2181 llvm_unreachable("Unknown TLS model!"); 2182 } 2183 2184 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2185 SelectionDAG &DAG) const { 2186 EVT PtrVT = Op.getValueType(); 2187 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2188 SDLoc DL(GSDN); 2189 const GlobalValue *GV = GSDN->getGlobal(); 2190 2191 // 64-bit SVR4 ABI code is always position-independent. 2192 // The actual address of the GlobalValue is stored in the TOC. 2193 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2194 setUsesTOCBasePtr(DAG); 2195 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2196 return getTOCEntry(DAG, DL, true, GA); 2197 } 2198 2199 unsigned MOHiFlag, MOLoFlag; 2200 bool isPIC = 2201 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2202 2203 if (isPIC && Subtarget.isSVR4ABI()) { 2204 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2205 GSDN->getOffset(), 2206 PPCII::MO_PIC_FLAG); 2207 return getTOCEntry(DAG, DL, false, GA); 2208 } 2209 2210 SDValue GAHi = 2211 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2212 SDValue GALo = 2213 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2214 2215 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2216 2217 // If the global reference is actually to a non-lazy-pointer, we have to do an 2218 // extra load to get the address of the global. 2219 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2220 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2221 false, false, false, 0); 2222 return Ptr; 2223 } 2224 2225 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2227 SDLoc dl(Op); 2228 2229 if (Op.getValueType() == MVT::v2i64) { 2230 // When the operands themselves are v2i64 values, we need to do something 2231 // special because VSX has no underlying comparison operations for these. 2232 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2233 // Equality can be handled by casting to the legal type for Altivec 2234 // comparisons, everything else needs to be expanded. 2235 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2236 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2237 DAG.getSetCC(dl, MVT::v4i32, 2238 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2239 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2240 CC)); 2241 } 2242 2243 return SDValue(); 2244 } 2245 2246 // We handle most of these in the usual way. 2247 return Op; 2248 } 2249 2250 // If we're comparing for equality to zero, expose the fact that this is 2251 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2252 // fold the new nodes. 2253 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2254 if (C->isNullValue() && CC == ISD::SETEQ) { 2255 EVT VT = Op.getOperand(0).getValueType(); 2256 SDValue Zext = Op.getOperand(0); 2257 if (VT.bitsLT(MVT::i32)) { 2258 VT = MVT::i32; 2259 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2260 } 2261 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2262 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2263 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2264 DAG.getConstant(Log2b, dl, MVT::i32)); 2265 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2266 } 2267 // Leave comparisons against 0 and -1 alone for now, since they're usually 2268 // optimized. FIXME: revisit this when we can custom lower all setcc 2269 // optimizations. 2270 if (C->isAllOnesValue() || C->isNullValue()) 2271 return SDValue(); 2272 } 2273 2274 // If we have an integer seteq/setne, turn it into a compare against zero 2275 // by xor'ing the rhs with the lhs, which is faster than setting a 2276 // condition register, reading it back out, and masking the correct bit. The 2277 // normal approach here uses sub to do this instead of xor. Using xor exposes 2278 // the result to other bit-twiddling opportunities. 2279 EVT LHSVT = Op.getOperand(0).getValueType(); 2280 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2281 EVT VT = Op.getValueType(); 2282 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2283 Op.getOperand(1)); 2284 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2285 } 2286 return SDValue(); 2287 } 2288 2289 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2290 const PPCSubtarget &Subtarget) const { 2291 SDNode *Node = Op.getNode(); 2292 EVT VT = Node->getValueType(0); 2293 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2294 SDValue InChain = Node->getOperand(0); 2295 SDValue VAListPtr = Node->getOperand(1); 2296 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2297 SDLoc dl(Node); 2298 2299 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2300 2301 // gpr_index 2302 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2303 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2304 false, false, false, 0); 2305 InChain = GprIndex.getValue(1); 2306 2307 if (VT == MVT::i64) { 2308 // Check if GprIndex is even 2309 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2310 DAG.getConstant(1, dl, MVT::i32)); 2311 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2312 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2313 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2314 DAG.getConstant(1, dl, MVT::i32)); 2315 // Align GprIndex to be even if it isn't 2316 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2317 GprIndex); 2318 } 2319 2320 // fpr index is 1 byte after gpr 2321 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2322 DAG.getConstant(1, dl, MVT::i32)); 2323 2324 // fpr 2325 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2326 FprPtr, MachinePointerInfo(SV), MVT::i8, 2327 false, false, false, 0); 2328 InChain = FprIndex.getValue(1); 2329 2330 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2331 DAG.getConstant(8, dl, MVT::i32)); 2332 2333 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2334 DAG.getConstant(4, dl, MVT::i32)); 2335 2336 // areas 2337 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2338 MachinePointerInfo(), false, false, 2339 false, 0); 2340 InChain = OverflowArea.getValue(1); 2341 2342 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2343 MachinePointerInfo(), false, false, 2344 false, 0); 2345 InChain = RegSaveArea.getValue(1); 2346 2347 // select overflow_area if index > 8 2348 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2349 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2350 2351 // adjustment constant gpr_index * 4/8 2352 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2353 VT.isInteger() ? GprIndex : FprIndex, 2354 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2355 MVT::i32)); 2356 2357 // OurReg = RegSaveArea + RegConstant 2358 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2359 RegConstant); 2360 2361 // Floating types are 32 bytes into RegSaveArea 2362 if (VT.isFloatingPoint()) 2363 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2364 DAG.getConstant(32, dl, MVT::i32)); 2365 2366 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2367 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2368 VT.isInteger() ? GprIndex : FprIndex, 2369 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2370 MVT::i32)); 2371 2372 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2373 VT.isInteger() ? VAListPtr : FprPtr, 2374 MachinePointerInfo(SV), 2375 MVT::i8, false, false, 0); 2376 2377 // determine if we should load from reg_save_area or overflow_area 2378 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2379 2380 // increase overflow_area by 4/8 if gpr/fpr > 8 2381 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2382 DAG.getConstant(VT.isInteger() ? 4 : 8, 2383 dl, MVT::i32)); 2384 2385 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2386 OverflowAreaPlusN); 2387 2388 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2389 OverflowAreaPtr, 2390 MachinePointerInfo(), 2391 MVT::i32, false, false, 0); 2392 2393 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2394 false, false, false, 0); 2395 } 2396 2397 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2398 const PPCSubtarget &Subtarget) const { 2399 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2400 2401 // We have to copy the entire va_list struct: 2402 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2403 return DAG.getMemcpy(Op.getOperand(0), Op, 2404 Op.getOperand(1), Op.getOperand(2), 2405 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2406 false, MachinePointerInfo(), MachinePointerInfo()); 2407 } 2408 2409 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2410 SelectionDAG &DAG) const { 2411 return Op.getOperand(0); 2412 } 2413 2414 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2415 SelectionDAG &DAG) const { 2416 SDValue Chain = Op.getOperand(0); 2417 SDValue Trmp = Op.getOperand(1); // trampoline 2418 SDValue FPtr = Op.getOperand(2); // nested function 2419 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2420 SDLoc dl(Op); 2421 2422 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2423 bool isPPC64 = (PtrVT == MVT::i64); 2424 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2425 2426 TargetLowering::ArgListTy Args; 2427 TargetLowering::ArgListEntry Entry; 2428 2429 Entry.Ty = IntPtrTy; 2430 Entry.Node = Trmp; Args.push_back(Entry); 2431 2432 // TrampSize == (isPPC64 ? 48 : 40); 2433 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2434 isPPC64 ? MVT::i64 : MVT::i32); 2435 Args.push_back(Entry); 2436 2437 Entry.Node = FPtr; Args.push_back(Entry); 2438 Entry.Node = Nest; Args.push_back(Entry); 2439 2440 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2441 TargetLowering::CallLoweringInfo CLI(DAG); 2442 CLI.setDebugLoc(dl).setChain(Chain) 2443 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2444 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2445 std::move(Args), 0); 2446 2447 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2448 return CallResult.second; 2449 } 2450 2451 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2452 const PPCSubtarget &Subtarget) const { 2453 MachineFunction &MF = DAG.getMachineFunction(); 2454 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2455 2456 SDLoc dl(Op); 2457 2458 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2459 // vastart just stores the address of the VarArgsFrameIndex slot into the 2460 // memory location argument. 2461 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2462 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2463 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2464 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2465 MachinePointerInfo(SV), 2466 false, false, 0); 2467 } 2468 2469 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2470 // We suppose the given va_list is already allocated. 2471 // 2472 // typedef struct { 2473 // char gpr; /* index into the array of 8 GPRs 2474 // * stored in the register save area 2475 // * gpr=0 corresponds to r3, 2476 // * gpr=1 to r4, etc. 2477 // */ 2478 // char fpr; /* index into the array of 8 FPRs 2479 // * stored in the register save area 2480 // * fpr=0 corresponds to f1, 2481 // * fpr=1 to f2, etc. 2482 // */ 2483 // char *overflow_arg_area; 2484 // /* location on stack that holds 2485 // * the next overflow argument 2486 // */ 2487 // char *reg_save_area; 2488 // /* where r3:r10 and f1:f8 (if saved) 2489 // * are stored 2490 // */ 2491 // } va_list[1]; 2492 2493 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2494 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2495 2496 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2497 2498 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2499 PtrVT); 2500 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2501 PtrVT); 2502 2503 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2504 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2505 2506 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2507 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2508 2509 uint64_t FPROffset = 1; 2510 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2511 2512 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2513 2514 // Store first byte : number of int regs 2515 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2516 Op.getOperand(1), 2517 MachinePointerInfo(SV), 2518 MVT::i8, false, false, 0); 2519 uint64_t nextOffset = FPROffset; 2520 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2521 ConstFPROffset); 2522 2523 // Store second byte : number of float regs 2524 SDValue secondStore = 2525 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2526 MachinePointerInfo(SV, nextOffset), MVT::i8, 2527 false, false, 0); 2528 nextOffset += StackOffset; 2529 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2530 2531 // Store second word : arguments given on stack 2532 SDValue thirdStore = 2533 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2534 MachinePointerInfo(SV, nextOffset), 2535 false, false, 0); 2536 nextOffset += FrameOffset; 2537 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2538 2539 // Store third word : arguments given in registers 2540 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2541 MachinePointerInfo(SV, nextOffset), 2542 false, false, 0); 2543 2544 } 2545 2546 #include "PPCGenCallingConv.inc" 2547 2548 // Function whose sole purpose is to kill compiler warnings 2549 // stemming from unused functions included from PPCGenCallingConv.inc. 2550 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2551 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2552 } 2553 2554 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2555 CCValAssign::LocInfo &LocInfo, 2556 ISD::ArgFlagsTy &ArgFlags, 2557 CCState &State) { 2558 return true; 2559 } 2560 2561 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2562 MVT &LocVT, 2563 CCValAssign::LocInfo &LocInfo, 2564 ISD::ArgFlagsTy &ArgFlags, 2565 CCState &State) { 2566 static const MCPhysReg ArgRegs[] = { 2567 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2568 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2569 }; 2570 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2571 2572 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2573 2574 // Skip one register if the first unallocated register has an even register 2575 // number and there are still argument registers available which have not been 2576 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2577 // need to skip a register if RegNum is odd. 2578 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2579 State.AllocateReg(ArgRegs[RegNum]); 2580 } 2581 2582 // Always return false here, as this function only makes sure that the first 2583 // unallocated register has an odd register number and does not actually 2584 // allocate a register for the current argument. 2585 return false; 2586 } 2587 2588 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2589 MVT &LocVT, 2590 CCValAssign::LocInfo &LocInfo, 2591 ISD::ArgFlagsTy &ArgFlags, 2592 CCState &State) { 2593 static const MCPhysReg ArgRegs[] = { 2594 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2595 PPC::F8 2596 }; 2597 2598 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2599 2600 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2601 2602 // If there is only one Floating-point register left we need to put both f64 2603 // values of a split ppc_fp128 value on the stack. 2604 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2605 State.AllocateReg(ArgRegs[RegNum]); 2606 } 2607 2608 // Always return false here, as this function only makes sure that the two f64 2609 // values a ppc_fp128 value is split into are both passed in registers or both 2610 // passed on the stack and does not actually allocate a register for the 2611 // current argument. 2612 return false; 2613 } 2614 2615 /// FPR - The set of FP registers that should be allocated for arguments, 2616 /// on Darwin. 2617 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2618 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2619 PPC::F11, PPC::F12, PPC::F13}; 2620 2621 /// QFPR - The set of QPX registers that should be allocated for arguments. 2622 static const MCPhysReg QFPR[] = { 2623 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2624 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2625 2626 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2627 /// the stack. 2628 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2629 unsigned PtrByteSize) { 2630 unsigned ArgSize = ArgVT.getStoreSize(); 2631 if (Flags.isByVal()) 2632 ArgSize = Flags.getByValSize(); 2633 2634 // Round up to multiples of the pointer size, except for array members, 2635 // which are always packed. 2636 if (!Flags.isInConsecutiveRegs()) 2637 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2638 2639 return ArgSize; 2640 } 2641 2642 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2643 /// on the stack. 2644 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2645 ISD::ArgFlagsTy Flags, 2646 unsigned PtrByteSize) { 2647 unsigned Align = PtrByteSize; 2648 2649 // Altivec parameters are padded to a 16 byte boundary. 2650 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2651 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2652 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2653 ArgVT == MVT::v1i128) 2654 Align = 16; 2655 // QPX vector types stored in double-precision are padded to a 32 byte 2656 // boundary. 2657 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2658 Align = 32; 2659 2660 // ByVal parameters are aligned as requested. 2661 if (Flags.isByVal()) { 2662 unsigned BVAlign = Flags.getByValAlign(); 2663 if (BVAlign > PtrByteSize) { 2664 if (BVAlign % PtrByteSize != 0) 2665 llvm_unreachable( 2666 "ByVal alignment is not a multiple of the pointer size"); 2667 2668 Align = BVAlign; 2669 } 2670 } 2671 2672 // Array members are always packed to their original alignment. 2673 if (Flags.isInConsecutiveRegs()) { 2674 // If the array member was split into multiple registers, the first 2675 // needs to be aligned to the size of the full type. (Except for 2676 // ppcf128, which is only aligned as its f64 components.) 2677 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2678 Align = OrigVT.getStoreSize(); 2679 else 2680 Align = ArgVT.getStoreSize(); 2681 } 2682 2683 return Align; 2684 } 2685 2686 /// CalculateStackSlotUsed - Return whether this argument will use its 2687 /// stack slot (instead of being passed in registers). ArgOffset, 2688 /// AvailableFPRs, and AvailableVRs must hold the current argument 2689 /// position, and will be updated to account for this argument. 2690 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2691 ISD::ArgFlagsTy Flags, 2692 unsigned PtrByteSize, 2693 unsigned LinkageSize, 2694 unsigned ParamAreaSize, 2695 unsigned &ArgOffset, 2696 unsigned &AvailableFPRs, 2697 unsigned &AvailableVRs, bool HasQPX) { 2698 bool UseMemory = false; 2699 2700 // Respect alignment of argument on the stack. 2701 unsigned Align = 2702 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2703 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2704 // If there's no space left in the argument save area, we must 2705 // use memory (this check also catches zero-sized arguments). 2706 if (ArgOffset >= LinkageSize + ParamAreaSize) 2707 UseMemory = true; 2708 2709 // Allocate argument on the stack. 2710 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2711 if (Flags.isInConsecutiveRegsLast()) 2712 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2713 // If we overran the argument save area, we must use memory 2714 // (this check catches arguments passed partially in memory) 2715 if (ArgOffset > LinkageSize + ParamAreaSize) 2716 UseMemory = true; 2717 2718 // However, if the argument is actually passed in an FPR or a VR, 2719 // we don't use memory after all. 2720 if (!Flags.isByVal()) { 2721 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2722 // QPX registers overlap with the scalar FP registers. 2723 (HasQPX && (ArgVT == MVT::v4f32 || 2724 ArgVT == MVT::v4f64 || 2725 ArgVT == MVT::v4i1))) 2726 if (AvailableFPRs > 0) { 2727 --AvailableFPRs; 2728 return false; 2729 } 2730 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2731 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2732 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2733 ArgVT == MVT::v1i128) 2734 if (AvailableVRs > 0) { 2735 --AvailableVRs; 2736 return false; 2737 } 2738 } 2739 2740 return UseMemory; 2741 } 2742 2743 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2744 /// ensure minimum alignment required for target. 2745 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2746 unsigned NumBytes) { 2747 unsigned TargetAlign = Lowering->getStackAlignment(); 2748 unsigned AlignMask = TargetAlign - 1; 2749 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2750 return NumBytes; 2751 } 2752 2753 SDValue 2754 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2755 CallingConv::ID CallConv, bool isVarArg, 2756 const SmallVectorImpl<ISD::InputArg> 2757 &Ins, 2758 SDLoc dl, SelectionDAG &DAG, 2759 SmallVectorImpl<SDValue> &InVals) 2760 const { 2761 if (Subtarget.isSVR4ABI()) { 2762 if (Subtarget.isPPC64()) 2763 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2764 dl, DAG, InVals); 2765 else 2766 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2767 dl, DAG, InVals); 2768 } else { 2769 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2770 dl, DAG, InVals); 2771 } 2772 } 2773 2774 SDValue 2775 PPCTargetLowering::LowerFormalArguments_32SVR4( 2776 SDValue Chain, 2777 CallingConv::ID CallConv, bool isVarArg, 2778 const SmallVectorImpl<ISD::InputArg> 2779 &Ins, 2780 SDLoc dl, SelectionDAG &DAG, 2781 SmallVectorImpl<SDValue> &InVals) const { 2782 2783 // 32-bit SVR4 ABI Stack Frame Layout: 2784 // +-----------------------------------+ 2785 // +--> | Back chain | 2786 // | +-----------------------------------+ 2787 // | | Floating-point register save area | 2788 // | +-----------------------------------+ 2789 // | | General register save area | 2790 // | +-----------------------------------+ 2791 // | | CR save word | 2792 // | +-----------------------------------+ 2793 // | | VRSAVE save word | 2794 // | +-----------------------------------+ 2795 // | | Alignment padding | 2796 // | +-----------------------------------+ 2797 // | | Vector register save area | 2798 // | +-----------------------------------+ 2799 // | | Local variable space | 2800 // | +-----------------------------------+ 2801 // | | Parameter list area | 2802 // | +-----------------------------------+ 2803 // | | LR save word | 2804 // | +-----------------------------------+ 2805 // SP--> +--- | Back chain | 2806 // +-----------------------------------+ 2807 // 2808 // Specifications: 2809 // System V Application Binary Interface PowerPC Processor Supplement 2810 // AltiVec Technology Programming Interface Manual 2811 2812 MachineFunction &MF = DAG.getMachineFunction(); 2813 MachineFrameInfo *MFI = MF.getFrameInfo(); 2814 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2815 2816 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2817 // Potential tail calls could cause overwriting of argument stack slots. 2818 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2819 (CallConv == CallingConv::Fast)); 2820 unsigned PtrByteSize = 4; 2821 2822 // Assign locations to all of the incoming arguments. 2823 SmallVector<CCValAssign, 16> ArgLocs; 2824 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2825 *DAG.getContext()); 2826 2827 // Reserve space for the linkage area on the stack. 2828 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2829 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2830 2831 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2832 2833 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2834 CCValAssign &VA = ArgLocs[i]; 2835 2836 // Arguments stored in registers. 2837 if (VA.isRegLoc()) { 2838 const TargetRegisterClass *RC; 2839 EVT ValVT = VA.getValVT(); 2840 2841 switch (ValVT.getSimpleVT().SimpleTy) { 2842 default: 2843 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2844 case MVT::i1: 2845 case MVT::i32: 2846 RC = &PPC::GPRCRegClass; 2847 break; 2848 case MVT::f32: 2849 if (Subtarget.hasP8Vector()) 2850 RC = &PPC::VSSRCRegClass; 2851 else 2852 RC = &PPC::F4RCRegClass; 2853 break; 2854 case MVT::f64: 2855 if (Subtarget.hasVSX()) 2856 RC = &PPC::VSFRCRegClass; 2857 else 2858 RC = &PPC::F8RCRegClass; 2859 break; 2860 case MVT::v16i8: 2861 case MVT::v8i16: 2862 case MVT::v4i32: 2863 RC = &PPC::VRRCRegClass; 2864 break; 2865 case MVT::v4f32: 2866 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2867 break; 2868 case MVT::v2f64: 2869 case MVT::v2i64: 2870 RC = &PPC::VSHRCRegClass; 2871 break; 2872 case MVT::v4f64: 2873 RC = &PPC::QFRCRegClass; 2874 break; 2875 case MVT::v4i1: 2876 RC = &PPC::QBRCRegClass; 2877 break; 2878 } 2879 2880 // Transform the arguments stored in physical registers into virtual ones. 2881 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2882 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2883 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2884 2885 if (ValVT == MVT::i1) 2886 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2887 2888 InVals.push_back(ArgValue); 2889 } else { 2890 // Argument stored in memory. 2891 assert(VA.isMemLoc()); 2892 2893 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2894 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2895 isImmutable); 2896 2897 // Create load nodes to retrieve arguments from the stack. 2898 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2899 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2900 MachinePointerInfo(), 2901 false, false, false, 0)); 2902 } 2903 } 2904 2905 // Assign locations to all of the incoming aggregate by value arguments. 2906 // Aggregates passed by value are stored in the local variable space of the 2907 // caller's stack frame, right above the parameter list area. 2908 SmallVector<CCValAssign, 16> ByValArgLocs; 2909 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2910 ByValArgLocs, *DAG.getContext()); 2911 2912 // Reserve stack space for the allocations in CCInfo. 2913 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2914 2915 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2916 2917 // Area that is at least reserved in the caller of this function. 2918 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2919 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2920 2921 // Set the size that is at least reserved in caller of this function. Tail 2922 // call optimized function's reserved stack space needs to be aligned so that 2923 // taking the difference between two stack areas will result in an aligned 2924 // stack. 2925 MinReservedArea = 2926 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2927 FuncInfo->setMinReservedArea(MinReservedArea); 2928 2929 SmallVector<SDValue, 8> MemOps; 2930 2931 // If the function takes variable number of arguments, make a frame index for 2932 // the start of the first vararg value... for expansion of llvm.va_start. 2933 if (isVarArg) { 2934 static const MCPhysReg GPArgRegs[] = { 2935 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2936 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2937 }; 2938 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2939 2940 static const MCPhysReg FPArgRegs[] = { 2941 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2942 PPC::F8 2943 }; 2944 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2945 if (DisablePPCFloatInVariadic) 2946 NumFPArgRegs = 0; 2947 2948 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2949 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2950 2951 // Make room for NumGPArgRegs and NumFPArgRegs. 2952 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2953 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2954 2955 FuncInfo->setVarArgsStackOffset( 2956 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2957 CCInfo.getNextStackOffset(), true)); 2958 2959 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2960 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2961 2962 // The fixed integer arguments of a variadic function are stored to the 2963 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2964 // the result of va_next. 2965 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2966 // Get an existing live-in vreg, or add a new one. 2967 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2968 if (!VReg) 2969 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2970 2971 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2972 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2973 MachinePointerInfo(), false, false, 0); 2974 MemOps.push_back(Store); 2975 // Increment the address by four for the next argument to store 2976 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2977 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2978 } 2979 2980 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2981 // is set. 2982 // The double arguments are stored to the VarArgsFrameIndex 2983 // on the stack. 2984 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2985 // Get an existing live-in vreg, or add a new one. 2986 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2987 if (!VReg) 2988 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2989 2990 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2991 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2992 MachinePointerInfo(), false, false, 0); 2993 MemOps.push_back(Store); 2994 // Increment the address by eight for the next argument to store 2995 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2996 PtrVT); 2997 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2998 } 2999 } 3000 3001 if (!MemOps.empty()) 3002 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3003 3004 return Chain; 3005 } 3006 3007 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3008 // value to MVT::i64 and then truncate to the correct register size. 3009 SDValue 3010 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3011 SelectionDAG &DAG, SDValue ArgVal, 3012 SDLoc dl) const { 3013 if (Flags.isSExt()) 3014 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3015 DAG.getValueType(ObjectVT)); 3016 else if (Flags.isZExt()) 3017 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3018 DAG.getValueType(ObjectVT)); 3019 3020 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3021 } 3022 3023 SDValue 3024 PPCTargetLowering::LowerFormalArguments_64SVR4( 3025 SDValue Chain, 3026 CallingConv::ID CallConv, bool isVarArg, 3027 const SmallVectorImpl<ISD::InputArg> 3028 &Ins, 3029 SDLoc dl, SelectionDAG &DAG, 3030 SmallVectorImpl<SDValue> &InVals) const { 3031 // TODO: add description of PPC stack frame format, or at least some docs. 3032 // 3033 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3034 bool isLittleEndian = Subtarget.isLittleEndian(); 3035 MachineFunction &MF = DAG.getMachineFunction(); 3036 MachineFrameInfo *MFI = MF.getFrameInfo(); 3037 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3038 3039 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3040 "fastcc not supported on varargs functions"); 3041 3042 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3043 // Potential tail calls could cause overwriting of argument stack slots. 3044 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3045 (CallConv == CallingConv::Fast)); 3046 unsigned PtrByteSize = 8; 3047 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3048 3049 static const MCPhysReg GPR[] = { 3050 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3051 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3052 }; 3053 static const MCPhysReg VR[] = { 3054 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3055 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3056 }; 3057 static const MCPhysReg VSRH[] = { 3058 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3059 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3060 }; 3061 3062 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3063 const unsigned Num_FPR_Regs = 13; 3064 const unsigned Num_VR_Regs = array_lengthof(VR); 3065 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3066 3067 // Do a first pass over the arguments to determine whether the ABI 3068 // guarantees that our caller has allocated the parameter save area 3069 // on its stack frame. In the ELFv1 ABI, this is always the case; 3070 // in the ELFv2 ABI, it is true if this is a vararg function or if 3071 // any parameter is located in a stack slot. 3072 3073 bool HasParameterArea = !isELFv2ABI || isVarArg; 3074 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3075 unsigned NumBytes = LinkageSize; 3076 unsigned AvailableFPRs = Num_FPR_Regs; 3077 unsigned AvailableVRs = Num_VR_Regs; 3078 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3079 if (Ins[i].Flags.isNest()) 3080 continue; 3081 3082 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3083 PtrByteSize, LinkageSize, ParamAreaSize, 3084 NumBytes, AvailableFPRs, AvailableVRs, 3085 Subtarget.hasQPX())) 3086 HasParameterArea = true; 3087 } 3088 3089 // Add DAG nodes to load the arguments or copy them out of registers. On 3090 // entry to a function on PPC, the arguments start after the linkage area, 3091 // although the first ones are often in registers. 3092 3093 unsigned ArgOffset = LinkageSize; 3094 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3095 unsigned &QFPR_idx = FPR_idx; 3096 SmallVector<SDValue, 8> MemOps; 3097 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3098 unsigned CurArgIdx = 0; 3099 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3100 SDValue ArgVal; 3101 bool needsLoad = false; 3102 EVT ObjectVT = Ins[ArgNo].VT; 3103 EVT OrigVT = Ins[ArgNo].ArgVT; 3104 unsigned ObjSize = ObjectVT.getStoreSize(); 3105 unsigned ArgSize = ObjSize; 3106 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3107 if (Ins[ArgNo].isOrigArg()) { 3108 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3109 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3110 } 3111 // We re-align the argument offset for each argument, except when using the 3112 // fast calling convention, when we need to make sure we do that only when 3113 // we'll actually use a stack slot. 3114 unsigned CurArgOffset, Align; 3115 auto ComputeArgOffset = [&]() { 3116 /* Respect alignment of argument on the stack. */ 3117 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3118 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3119 CurArgOffset = ArgOffset; 3120 }; 3121 3122 if (CallConv != CallingConv::Fast) { 3123 ComputeArgOffset(); 3124 3125 /* Compute GPR index associated with argument offset. */ 3126 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3127 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3128 } 3129 3130 // FIXME the codegen can be much improved in some cases. 3131 // We do not have to keep everything in memory. 3132 if (Flags.isByVal()) { 3133 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3134 3135 if (CallConv == CallingConv::Fast) 3136 ComputeArgOffset(); 3137 3138 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3139 ObjSize = Flags.getByValSize(); 3140 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3141 // Empty aggregate parameters do not take up registers. Examples: 3142 // struct { } a; 3143 // union { } b; 3144 // int c[0]; 3145 // etc. However, we have to provide a place-holder in InVals, so 3146 // pretend we have an 8-byte item at the current address for that 3147 // purpose. 3148 if (!ObjSize) { 3149 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3150 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3151 InVals.push_back(FIN); 3152 continue; 3153 } 3154 3155 // Create a stack object covering all stack doublewords occupied 3156 // by the argument. If the argument is (fully or partially) on 3157 // the stack, or if the argument is fully in registers but the 3158 // caller has allocated the parameter save anyway, we can refer 3159 // directly to the caller's stack frame. Otherwise, create a 3160 // local copy in our own frame. 3161 int FI; 3162 if (HasParameterArea || 3163 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3164 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3165 else 3166 FI = MFI->CreateStackObject(ArgSize, Align, false); 3167 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3168 3169 // Handle aggregates smaller than 8 bytes. 3170 if (ObjSize < PtrByteSize) { 3171 // The value of the object is its address, which differs from the 3172 // address of the enclosing doubleword on big-endian systems. 3173 SDValue Arg = FIN; 3174 if (!isLittleEndian) { 3175 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3176 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3177 } 3178 InVals.push_back(Arg); 3179 3180 if (GPR_idx != Num_GPR_Regs) { 3181 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3182 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3183 SDValue Store; 3184 3185 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3186 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3187 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3188 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3189 MachinePointerInfo(FuncArg), 3190 ObjType, false, false, 0); 3191 } else { 3192 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3193 // store the whole register as-is to the parameter save area 3194 // slot. 3195 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3196 MachinePointerInfo(FuncArg), 3197 false, false, 0); 3198 } 3199 3200 MemOps.push_back(Store); 3201 } 3202 // Whether we copied from a register or not, advance the offset 3203 // into the parameter save area by a full doubleword. 3204 ArgOffset += PtrByteSize; 3205 continue; 3206 } 3207 3208 // The value of the object is its address, which is the address of 3209 // its first stack doubleword. 3210 InVals.push_back(FIN); 3211 3212 // Store whatever pieces of the object are in registers to memory. 3213 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3214 if (GPR_idx == Num_GPR_Regs) 3215 break; 3216 3217 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3218 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3219 SDValue Addr = FIN; 3220 if (j) { 3221 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3222 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3223 } 3224 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3225 MachinePointerInfo(FuncArg, j), 3226 false, false, 0); 3227 MemOps.push_back(Store); 3228 ++GPR_idx; 3229 } 3230 ArgOffset += ArgSize; 3231 continue; 3232 } 3233 3234 switch (ObjectVT.getSimpleVT().SimpleTy) { 3235 default: llvm_unreachable("Unhandled argument type!"); 3236 case MVT::i1: 3237 case MVT::i32: 3238 case MVT::i64: 3239 if (Flags.isNest()) { 3240 // The 'nest' parameter, if any, is passed in R11. 3241 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3242 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3243 3244 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3245 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3246 3247 break; 3248 } 3249 3250 // These can be scalar arguments or elements of an integer array type 3251 // passed directly. Clang may use those instead of "byval" aggregate 3252 // types to avoid forcing arguments to memory unnecessarily. 3253 if (GPR_idx != Num_GPR_Regs) { 3254 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3255 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3256 3257 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3258 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3259 // value to MVT::i64 and then truncate to the correct register size. 3260 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3261 } else { 3262 if (CallConv == CallingConv::Fast) 3263 ComputeArgOffset(); 3264 3265 needsLoad = true; 3266 ArgSize = PtrByteSize; 3267 } 3268 if (CallConv != CallingConv::Fast || needsLoad) 3269 ArgOffset += 8; 3270 break; 3271 3272 case MVT::f32: 3273 case MVT::f64: 3274 // These can be scalar arguments or elements of a float array type 3275 // passed directly. The latter are used to implement ELFv2 homogenous 3276 // float aggregates. 3277 if (FPR_idx != Num_FPR_Regs) { 3278 unsigned VReg; 3279 3280 if (ObjectVT == MVT::f32) 3281 VReg = MF.addLiveIn(FPR[FPR_idx], 3282 Subtarget.hasP8Vector() 3283 ? &PPC::VSSRCRegClass 3284 : &PPC::F4RCRegClass); 3285 else 3286 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3287 ? &PPC::VSFRCRegClass 3288 : &PPC::F8RCRegClass); 3289 3290 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3291 ++FPR_idx; 3292 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3293 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3294 // once we support fp <-> gpr moves. 3295 3296 // This can only ever happen in the presence of f32 array types, 3297 // since otherwise we never run out of FPRs before running out 3298 // of GPRs. 3299 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3300 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3301 3302 if (ObjectVT == MVT::f32) { 3303 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3304 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3305 DAG.getConstant(32, dl, MVT::i32)); 3306 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3307 } 3308 3309 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3310 } else { 3311 if (CallConv == CallingConv::Fast) 3312 ComputeArgOffset(); 3313 3314 needsLoad = true; 3315 } 3316 3317 // When passing an array of floats, the array occupies consecutive 3318 // space in the argument area; only round up to the next doubleword 3319 // at the end of the array. Otherwise, each float takes 8 bytes. 3320 if (CallConv != CallingConv::Fast || needsLoad) { 3321 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3322 ArgOffset += ArgSize; 3323 if (Flags.isInConsecutiveRegsLast()) 3324 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3325 } 3326 break; 3327 case MVT::v4f32: 3328 case MVT::v4i32: 3329 case MVT::v8i16: 3330 case MVT::v16i8: 3331 case MVT::v2f64: 3332 case MVT::v2i64: 3333 case MVT::v1i128: 3334 if (!Subtarget.hasQPX()) { 3335 // These can be scalar arguments or elements of a vector array type 3336 // passed directly. The latter are used to implement ELFv2 homogenous 3337 // vector aggregates. 3338 if (VR_idx != Num_VR_Regs) { 3339 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3340 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3341 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3342 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3343 ++VR_idx; 3344 } else { 3345 if (CallConv == CallingConv::Fast) 3346 ComputeArgOffset(); 3347 3348 needsLoad = true; 3349 } 3350 if (CallConv != CallingConv::Fast || needsLoad) 3351 ArgOffset += 16; 3352 break; 3353 } // not QPX 3354 3355 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3356 "Invalid QPX parameter type"); 3357 /* fall through */ 3358 3359 case MVT::v4f64: 3360 case MVT::v4i1: 3361 // QPX vectors are treated like their scalar floating-point subregisters 3362 // (except that they're larger). 3363 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3364 if (QFPR_idx != Num_QFPR_Regs) { 3365 const TargetRegisterClass *RC; 3366 switch (ObjectVT.getSimpleVT().SimpleTy) { 3367 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3368 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3369 default: RC = &PPC::QBRCRegClass; break; 3370 } 3371 3372 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3373 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3374 ++QFPR_idx; 3375 } else { 3376 if (CallConv == CallingConv::Fast) 3377 ComputeArgOffset(); 3378 needsLoad = true; 3379 } 3380 if (CallConv != CallingConv::Fast || needsLoad) 3381 ArgOffset += Sz; 3382 break; 3383 } 3384 3385 // We need to load the argument to a virtual register if we determined 3386 // above that we ran out of physical registers of the appropriate type. 3387 if (needsLoad) { 3388 if (ObjSize < ArgSize && !isLittleEndian) 3389 CurArgOffset += ArgSize - ObjSize; 3390 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3391 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3392 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3393 false, false, false, 0); 3394 } 3395 3396 InVals.push_back(ArgVal); 3397 } 3398 3399 // Area that is at least reserved in the caller of this function. 3400 unsigned MinReservedArea; 3401 if (HasParameterArea) 3402 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3403 else 3404 MinReservedArea = LinkageSize; 3405 3406 // Set the size that is at least reserved in caller of this function. Tail 3407 // call optimized functions' reserved stack space needs to be aligned so that 3408 // taking the difference between two stack areas will result in an aligned 3409 // stack. 3410 MinReservedArea = 3411 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3412 FuncInfo->setMinReservedArea(MinReservedArea); 3413 3414 // If the function takes variable number of arguments, make a frame index for 3415 // the start of the first vararg value... for expansion of llvm.va_start. 3416 if (isVarArg) { 3417 int Depth = ArgOffset; 3418 3419 FuncInfo->setVarArgsFrameIndex( 3420 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3421 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3422 3423 // If this function is vararg, store any remaining integer argument regs 3424 // to their spots on the stack so that they may be loaded by deferencing the 3425 // result of va_next. 3426 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3427 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3428 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3429 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3430 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3431 MachinePointerInfo(), false, false, 0); 3432 MemOps.push_back(Store); 3433 // Increment the address by four for the next argument to store 3434 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3435 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3436 } 3437 } 3438 3439 if (!MemOps.empty()) 3440 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3441 3442 return Chain; 3443 } 3444 3445 SDValue 3446 PPCTargetLowering::LowerFormalArguments_Darwin( 3447 SDValue Chain, 3448 CallingConv::ID CallConv, bool isVarArg, 3449 const SmallVectorImpl<ISD::InputArg> 3450 &Ins, 3451 SDLoc dl, SelectionDAG &DAG, 3452 SmallVectorImpl<SDValue> &InVals) const { 3453 // TODO: add description of PPC stack frame format, or at least some docs. 3454 // 3455 MachineFunction &MF = DAG.getMachineFunction(); 3456 MachineFrameInfo *MFI = MF.getFrameInfo(); 3457 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3458 3459 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3460 bool isPPC64 = PtrVT == MVT::i64; 3461 // Potential tail calls could cause overwriting of argument stack slots. 3462 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3463 (CallConv == CallingConv::Fast)); 3464 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3465 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3466 unsigned ArgOffset = LinkageSize; 3467 // Area that is at least reserved in caller of this function. 3468 unsigned MinReservedArea = ArgOffset; 3469 3470 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3471 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3472 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3473 }; 3474 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3475 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3476 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3477 }; 3478 static const MCPhysReg VR[] = { 3479 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3480 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3481 }; 3482 3483 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3484 const unsigned Num_FPR_Regs = 13; 3485 const unsigned Num_VR_Regs = array_lengthof( VR); 3486 3487 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3488 3489 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3490 3491 // In 32-bit non-varargs functions, the stack space for vectors is after the 3492 // stack space for non-vectors. We do not use this space unless we have 3493 // too many vectors to fit in registers, something that only occurs in 3494 // constructed examples:), but we have to walk the arglist to figure 3495 // that out...for the pathological case, compute VecArgOffset as the 3496 // start of the vector parameter area. Computing VecArgOffset is the 3497 // entire point of the following loop. 3498 unsigned VecArgOffset = ArgOffset; 3499 if (!isVarArg && !isPPC64) { 3500 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3501 ++ArgNo) { 3502 EVT ObjectVT = Ins[ArgNo].VT; 3503 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3504 3505 if (Flags.isByVal()) { 3506 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3507 unsigned ObjSize = Flags.getByValSize(); 3508 unsigned ArgSize = 3509 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3510 VecArgOffset += ArgSize; 3511 continue; 3512 } 3513 3514 switch(ObjectVT.getSimpleVT().SimpleTy) { 3515 default: llvm_unreachable("Unhandled argument type!"); 3516 case MVT::i1: 3517 case MVT::i32: 3518 case MVT::f32: 3519 VecArgOffset += 4; 3520 break; 3521 case MVT::i64: // PPC64 3522 case MVT::f64: 3523 // FIXME: We are guaranteed to be !isPPC64 at this point. 3524 // Does MVT::i64 apply? 3525 VecArgOffset += 8; 3526 break; 3527 case MVT::v4f32: 3528 case MVT::v4i32: 3529 case MVT::v8i16: 3530 case MVT::v16i8: 3531 // Nothing to do, we're only looking at Nonvector args here. 3532 break; 3533 } 3534 } 3535 } 3536 // We've found where the vector parameter area in memory is. Skip the 3537 // first 12 parameters; these don't use that memory. 3538 VecArgOffset = ((VecArgOffset+15)/16)*16; 3539 VecArgOffset += 12*16; 3540 3541 // Add DAG nodes to load the arguments or copy them out of registers. On 3542 // entry to a function on PPC, the arguments start after the linkage area, 3543 // although the first ones are often in registers. 3544 3545 SmallVector<SDValue, 8> MemOps; 3546 unsigned nAltivecParamsAtEnd = 0; 3547 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3548 unsigned CurArgIdx = 0; 3549 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3550 SDValue ArgVal; 3551 bool needsLoad = false; 3552 EVT ObjectVT = Ins[ArgNo].VT; 3553 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3554 unsigned ArgSize = ObjSize; 3555 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3556 if (Ins[ArgNo].isOrigArg()) { 3557 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3558 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3559 } 3560 unsigned CurArgOffset = ArgOffset; 3561 3562 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3563 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3564 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3565 if (isVarArg || isPPC64) { 3566 MinReservedArea = ((MinReservedArea+15)/16)*16; 3567 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3568 Flags, 3569 PtrByteSize); 3570 } else nAltivecParamsAtEnd++; 3571 } else 3572 // Calculate min reserved area. 3573 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3574 Flags, 3575 PtrByteSize); 3576 3577 // FIXME the codegen can be much improved in some cases. 3578 // We do not have to keep everything in memory. 3579 if (Flags.isByVal()) { 3580 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3581 3582 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3583 ObjSize = Flags.getByValSize(); 3584 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3585 // Objects of size 1 and 2 are right justified, everything else is 3586 // left justified. This means the memory address is adjusted forwards. 3587 if (ObjSize==1 || ObjSize==2) { 3588 CurArgOffset = CurArgOffset + (4 - ObjSize); 3589 } 3590 // The value of the object is its address. 3591 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3592 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3593 InVals.push_back(FIN); 3594 if (ObjSize==1 || ObjSize==2) { 3595 if (GPR_idx != Num_GPR_Regs) { 3596 unsigned VReg; 3597 if (isPPC64) 3598 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3599 else 3600 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3601 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3602 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3603 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3604 MachinePointerInfo(FuncArg), 3605 ObjType, false, false, 0); 3606 MemOps.push_back(Store); 3607 ++GPR_idx; 3608 } 3609 3610 ArgOffset += PtrByteSize; 3611 3612 continue; 3613 } 3614 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3615 // Store whatever pieces of the object are in registers 3616 // to memory. ArgOffset will be the address of the beginning 3617 // of the object. 3618 if (GPR_idx != Num_GPR_Regs) { 3619 unsigned VReg; 3620 if (isPPC64) 3621 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3622 else 3623 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3624 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3625 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3626 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3627 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3628 MachinePointerInfo(FuncArg, j), 3629 false, false, 0); 3630 MemOps.push_back(Store); 3631 ++GPR_idx; 3632 ArgOffset += PtrByteSize; 3633 } else { 3634 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3635 break; 3636 } 3637 } 3638 continue; 3639 } 3640 3641 switch (ObjectVT.getSimpleVT().SimpleTy) { 3642 default: llvm_unreachable("Unhandled argument type!"); 3643 case MVT::i1: 3644 case MVT::i32: 3645 if (!isPPC64) { 3646 if (GPR_idx != Num_GPR_Regs) { 3647 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3648 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3649 3650 if (ObjectVT == MVT::i1) 3651 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3652 3653 ++GPR_idx; 3654 } else { 3655 needsLoad = true; 3656 ArgSize = PtrByteSize; 3657 } 3658 // All int arguments reserve stack space in the Darwin ABI. 3659 ArgOffset += PtrByteSize; 3660 break; 3661 } 3662 // FALLTHROUGH 3663 case MVT::i64: // PPC64 3664 if (GPR_idx != Num_GPR_Regs) { 3665 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3666 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3667 3668 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3669 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3670 // value to MVT::i64 and then truncate to the correct register size. 3671 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3672 3673 ++GPR_idx; 3674 } else { 3675 needsLoad = true; 3676 ArgSize = PtrByteSize; 3677 } 3678 // All int arguments reserve stack space in the Darwin ABI. 3679 ArgOffset += 8; 3680 break; 3681 3682 case MVT::f32: 3683 case MVT::f64: 3684 // Every 4 bytes of argument space consumes one of the GPRs available for 3685 // argument passing. 3686 if (GPR_idx != Num_GPR_Regs) { 3687 ++GPR_idx; 3688 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3689 ++GPR_idx; 3690 } 3691 if (FPR_idx != Num_FPR_Regs) { 3692 unsigned VReg; 3693 3694 if (ObjectVT == MVT::f32) 3695 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3696 else 3697 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3698 3699 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3700 ++FPR_idx; 3701 } else { 3702 needsLoad = true; 3703 } 3704 3705 // All FP arguments reserve stack space in the Darwin ABI. 3706 ArgOffset += isPPC64 ? 8 : ObjSize; 3707 break; 3708 case MVT::v4f32: 3709 case MVT::v4i32: 3710 case MVT::v8i16: 3711 case MVT::v16i8: 3712 // Note that vector arguments in registers don't reserve stack space, 3713 // except in varargs functions. 3714 if (VR_idx != Num_VR_Regs) { 3715 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3716 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3717 if (isVarArg) { 3718 while ((ArgOffset % 16) != 0) { 3719 ArgOffset += PtrByteSize; 3720 if (GPR_idx != Num_GPR_Regs) 3721 GPR_idx++; 3722 } 3723 ArgOffset += 16; 3724 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3725 } 3726 ++VR_idx; 3727 } else { 3728 if (!isVarArg && !isPPC64) { 3729 // Vectors go after all the nonvectors. 3730 CurArgOffset = VecArgOffset; 3731 VecArgOffset += 16; 3732 } else { 3733 // Vectors are aligned. 3734 ArgOffset = ((ArgOffset+15)/16)*16; 3735 CurArgOffset = ArgOffset; 3736 ArgOffset += 16; 3737 } 3738 needsLoad = true; 3739 } 3740 break; 3741 } 3742 3743 // We need to load the argument to a virtual register if we determined above 3744 // that we ran out of physical registers of the appropriate type. 3745 if (needsLoad) { 3746 int FI = MFI->CreateFixedObject(ObjSize, 3747 CurArgOffset + (ArgSize - ObjSize), 3748 isImmutable); 3749 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3750 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3751 false, false, false, 0); 3752 } 3753 3754 InVals.push_back(ArgVal); 3755 } 3756 3757 // Allow for Altivec parameters at the end, if needed. 3758 if (nAltivecParamsAtEnd) { 3759 MinReservedArea = ((MinReservedArea+15)/16)*16; 3760 MinReservedArea += 16*nAltivecParamsAtEnd; 3761 } 3762 3763 // Area that is at least reserved in the caller of this function. 3764 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3765 3766 // Set the size that is at least reserved in caller of this function. Tail 3767 // call optimized functions' reserved stack space needs to be aligned so that 3768 // taking the difference between two stack areas will result in an aligned 3769 // stack. 3770 MinReservedArea = 3771 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3772 FuncInfo->setMinReservedArea(MinReservedArea); 3773 3774 // If the function takes variable number of arguments, make a frame index for 3775 // the start of the first vararg value... for expansion of llvm.va_start. 3776 if (isVarArg) { 3777 int Depth = ArgOffset; 3778 3779 FuncInfo->setVarArgsFrameIndex( 3780 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3781 Depth, true)); 3782 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3783 3784 // If this function is vararg, store any remaining integer argument regs 3785 // to their spots on the stack so that they may be loaded by deferencing the 3786 // result of va_next. 3787 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3788 unsigned VReg; 3789 3790 if (isPPC64) 3791 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3792 else 3793 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3794 3795 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3796 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3797 MachinePointerInfo(), false, false, 0); 3798 MemOps.push_back(Store); 3799 // Increment the address by four for the next argument to store 3800 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3801 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3802 } 3803 } 3804 3805 if (!MemOps.empty()) 3806 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3807 3808 return Chain; 3809 } 3810 3811 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3812 /// adjusted to accommodate the arguments for the tailcall. 3813 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3814 unsigned ParamSize) { 3815 3816 if (!isTailCall) return 0; 3817 3818 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3819 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3820 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3821 // Remember only if the new adjustement is bigger. 3822 if (SPDiff < FI->getTailCallSPDelta()) 3823 FI->setTailCallSPDelta(SPDiff); 3824 3825 return SPDiff; 3826 } 3827 3828 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3829 /// for tail call optimization. Targets which want to do tail call 3830 /// optimization should implement this function. 3831 bool 3832 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3833 CallingConv::ID CalleeCC, 3834 bool isVarArg, 3835 const SmallVectorImpl<ISD::InputArg> &Ins, 3836 SelectionDAG& DAG) const { 3837 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3838 return false; 3839 3840 // Variable argument functions are not supported. 3841 if (isVarArg) 3842 return false; 3843 3844 MachineFunction &MF = DAG.getMachineFunction(); 3845 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3846 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3847 // Functions containing by val parameters are not supported. 3848 for (unsigned i = 0; i != Ins.size(); i++) { 3849 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3850 if (Flags.isByVal()) return false; 3851 } 3852 3853 // Non-PIC/GOT tail calls are supported. 3854 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3855 return true; 3856 3857 // At the moment we can only do local tail calls (in same module, hidden 3858 // or protected) if we are generating PIC. 3859 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3860 return G->getGlobal()->hasHiddenVisibility() 3861 || G->getGlobal()->hasProtectedVisibility(); 3862 } 3863 3864 return false; 3865 } 3866 3867 /// isCallCompatibleAddress - Return the immediate to use if the specified 3868 /// 32-bit value is representable in the immediate field of a BxA instruction. 3869 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3870 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3871 if (!C) return nullptr; 3872 3873 int Addr = C->getZExtValue(); 3874 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3875 SignExtend32<26>(Addr) != Addr) 3876 return nullptr; // Top 6 bits have to be sext of immediate. 3877 3878 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3879 DAG.getTargetLoweringInfo().getPointerTy( 3880 DAG.getDataLayout())).getNode(); 3881 } 3882 3883 namespace { 3884 3885 struct TailCallArgumentInfo { 3886 SDValue Arg; 3887 SDValue FrameIdxOp; 3888 int FrameIdx; 3889 3890 TailCallArgumentInfo() : FrameIdx(0) {} 3891 }; 3892 } 3893 3894 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3895 static void 3896 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3897 SDValue Chain, 3898 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3899 SmallVectorImpl<SDValue> &MemOpChains, 3900 SDLoc dl) { 3901 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3902 SDValue Arg = TailCallArgs[i].Arg; 3903 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3904 int FI = TailCallArgs[i].FrameIdx; 3905 // Store relative to framepointer. 3906 MemOpChains.push_back(DAG.getStore( 3907 Chain, dl, Arg, FIN, 3908 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3909 false, 0)); 3910 } 3911 } 3912 3913 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3914 /// the appropriate stack slot for the tail call optimized function call. 3915 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3916 MachineFunction &MF, 3917 SDValue Chain, 3918 SDValue OldRetAddr, 3919 SDValue OldFP, 3920 int SPDiff, 3921 bool isPPC64, 3922 bool isDarwinABI, 3923 SDLoc dl) { 3924 if (SPDiff) { 3925 // Calculate the new stack slot for the return address. 3926 int SlotSize = isPPC64 ? 8 : 4; 3927 const PPCFrameLowering *FL = 3928 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3929 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3930 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3931 NewRetAddrLoc, true); 3932 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3933 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3934 Chain = DAG.getStore( 3935 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3936 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3937 false, false, 0); 3938 3939 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3940 // slot as the FP is never overwritten. 3941 if (isDarwinABI) { 3942 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3943 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3944 true); 3945 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3946 Chain = DAG.getStore( 3947 Chain, dl, OldFP, NewFramePtrIdx, 3948 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3949 false, false, 0); 3950 } 3951 } 3952 return Chain; 3953 } 3954 3955 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3956 /// the position of the argument. 3957 static void 3958 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3959 SDValue Arg, int SPDiff, unsigned ArgOffset, 3960 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3961 int Offset = ArgOffset + SPDiff; 3962 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3963 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3964 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3965 SDValue FIN = DAG.getFrameIndex(FI, VT); 3966 TailCallArgumentInfo Info; 3967 Info.Arg = Arg; 3968 Info.FrameIdxOp = FIN; 3969 Info.FrameIdx = FI; 3970 TailCallArguments.push_back(Info); 3971 } 3972 3973 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3974 /// stack slot. Returns the chain as result and the loaded frame pointers in 3975 /// LROpOut/FPOpout. Used when tail calling. 3976 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3977 int SPDiff, 3978 SDValue Chain, 3979 SDValue &LROpOut, 3980 SDValue &FPOpOut, 3981 bool isDarwinABI, 3982 SDLoc dl) const { 3983 if (SPDiff) { 3984 // Load the LR and FP stack slot for later adjusting. 3985 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3986 LROpOut = getReturnAddrFrameIndex(DAG); 3987 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3988 false, false, false, 0); 3989 Chain = SDValue(LROpOut.getNode(), 1); 3990 3991 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3992 // slot as the FP is never overwritten. 3993 if (isDarwinABI) { 3994 FPOpOut = getFramePointerFrameIndex(DAG); 3995 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3996 false, false, false, 0); 3997 Chain = SDValue(FPOpOut.getNode(), 1); 3998 } 3999 } 4000 return Chain; 4001 } 4002 4003 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4004 /// by "Src" to address "Dst" of size "Size". Alignment information is 4005 /// specified by the specific parameter attribute. The copy will be passed as 4006 /// a byval function parameter. 4007 /// Sometimes what we are copying is the end of a larger object, the part that 4008 /// does not fit in registers. 4009 static SDValue 4010 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4011 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4012 SDLoc dl) { 4013 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4014 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4015 false, false, false, MachinePointerInfo(), 4016 MachinePointerInfo()); 4017 } 4018 4019 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4020 /// tail calls. 4021 static void 4022 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4023 SDValue Arg, SDValue PtrOff, int SPDiff, 4024 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4025 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4026 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4027 SDLoc dl) { 4028 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4029 if (!isTailCall) { 4030 if (isVector) { 4031 SDValue StackPtr; 4032 if (isPPC64) 4033 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4034 else 4035 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4036 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4037 DAG.getConstant(ArgOffset, dl, PtrVT)); 4038 } 4039 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4040 MachinePointerInfo(), false, false, 0)); 4041 // Calculate and remember argument location. 4042 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4043 TailCallArguments); 4044 } 4045 4046 static 4047 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4048 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4049 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4050 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4051 MachineFunction &MF = DAG.getMachineFunction(); 4052 4053 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4054 // might overwrite each other in case of tail call optimization. 4055 SmallVector<SDValue, 8> MemOpChains2; 4056 // Do not flag preceding copytoreg stuff together with the following stuff. 4057 InFlag = SDValue(); 4058 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4059 MemOpChains2, dl); 4060 if (!MemOpChains2.empty()) 4061 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4062 4063 // Store the return address to the appropriate stack slot. 4064 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4065 isPPC64, isDarwinABI, dl); 4066 4067 // Emit callseq_end just before tailcall node. 4068 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4069 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4070 InFlag = Chain.getValue(1); 4071 } 4072 4073 // Is this global address that of a function that can be called by name? (as 4074 // opposed to something that must hold a descriptor for an indirect call). 4075 static bool isFunctionGlobalAddress(SDValue Callee) { 4076 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4077 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4078 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4079 return false; 4080 4081 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4082 } 4083 4084 return false; 4085 } 4086 4087 static 4088 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4089 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4090 bool isTailCall, bool IsPatchPoint, bool hasNest, 4091 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4092 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4093 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4094 4095 bool isPPC64 = Subtarget.isPPC64(); 4096 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4097 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4098 4099 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4100 NodeTys.push_back(MVT::Other); // Returns a chain 4101 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4102 4103 unsigned CallOpc = PPCISD::CALL; 4104 4105 bool needIndirectCall = true; 4106 if (!isSVR4ABI || !isPPC64) 4107 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4108 // If this is an absolute destination address, use the munged value. 4109 Callee = SDValue(Dest, 0); 4110 needIndirectCall = false; 4111 } 4112 4113 if (isFunctionGlobalAddress(Callee)) { 4114 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4115 // A call to a TLS address is actually an indirect call to a 4116 // thread-specific pointer. 4117 unsigned OpFlags = 0; 4118 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4119 (Subtarget.getTargetTriple().isMacOSX() && 4120 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4121 !G->getGlobal()->isStrongDefinitionForLinker()) || 4122 (Subtarget.isTargetELF() && !isPPC64 && 4123 !G->getGlobal()->hasLocalLinkage() && 4124 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4125 // PC-relative references to external symbols should go through $stub, 4126 // unless we're building with the leopard linker or later, which 4127 // automatically synthesizes these stubs. 4128 OpFlags = PPCII::MO_PLT_OR_STUB; 4129 } 4130 4131 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4132 // every direct call is) turn it into a TargetGlobalAddress / 4133 // TargetExternalSymbol node so that legalize doesn't hack it. 4134 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4135 Callee.getValueType(), 0, OpFlags); 4136 needIndirectCall = false; 4137 } 4138 4139 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4140 unsigned char OpFlags = 0; 4141 4142 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4143 (Subtarget.getTargetTriple().isMacOSX() && 4144 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4145 (Subtarget.isTargetELF() && !isPPC64 && 4146 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4147 // PC-relative references to external symbols should go through $stub, 4148 // unless we're building with the leopard linker or later, which 4149 // automatically synthesizes these stubs. 4150 OpFlags = PPCII::MO_PLT_OR_STUB; 4151 } 4152 4153 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4154 OpFlags); 4155 needIndirectCall = false; 4156 } 4157 4158 if (IsPatchPoint) { 4159 // We'll form an invalid direct call when lowering a patchpoint; the full 4160 // sequence for an indirect call is complicated, and many of the 4161 // instructions introduced might have side effects (and, thus, can't be 4162 // removed later). The call itself will be removed as soon as the 4163 // argument/return lowering is complete, so the fact that it has the wrong 4164 // kind of operands should not really matter. 4165 needIndirectCall = false; 4166 } 4167 4168 if (needIndirectCall) { 4169 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4170 // to do the call, we can't use PPCISD::CALL. 4171 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4172 4173 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4174 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4175 // entry point, but to the function descriptor (the function entry point 4176 // address is part of the function descriptor though). 4177 // The function descriptor is a three doubleword structure with the 4178 // following fields: function entry point, TOC base address and 4179 // environment pointer. 4180 // Thus for a call through a function pointer, the following actions need 4181 // to be performed: 4182 // 1. Save the TOC of the caller in the TOC save area of its stack 4183 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4184 // 2. Load the address of the function entry point from the function 4185 // descriptor. 4186 // 3. Load the TOC of the callee from the function descriptor into r2. 4187 // 4. Load the environment pointer from the function descriptor into 4188 // r11. 4189 // 5. Branch to the function entry point address. 4190 // 6. On return of the callee, the TOC of the caller needs to be 4191 // restored (this is done in FinishCall()). 4192 // 4193 // The loads are scheduled at the beginning of the call sequence, and the 4194 // register copies are flagged together to ensure that no other 4195 // operations can be scheduled in between. E.g. without flagging the 4196 // copies together, a TOC access in the caller could be scheduled between 4197 // the assignment of the callee TOC and the branch to the callee, which 4198 // results in the TOC access going through the TOC of the callee instead 4199 // of going through the TOC of the caller, which leads to incorrect code. 4200 4201 // Load the address of the function entry point from the function 4202 // descriptor. 4203 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4204 if (LDChain.getValueType() == MVT::Glue) 4205 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4206 4207 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4208 4209 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4210 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4211 false, false, LoadsInv, 8); 4212 4213 // Load environment pointer into r11. 4214 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4215 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4216 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4217 MPI.getWithOffset(16), false, false, 4218 LoadsInv, 8); 4219 4220 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4221 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4222 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4223 MPI.getWithOffset(8), false, false, 4224 LoadsInv, 8); 4225 4226 setUsesTOCBasePtr(DAG); 4227 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4228 InFlag); 4229 Chain = TOCVal.getValue(0); 4230 InFlag = TOCVal.getValue(1); 4231 4232 // If the function call has an explicit 'nest' parameter, it takes the 4233 // place of the environment pointer. 4234 if (!hasNest) { 4235 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4236 InFlag); 4237 4238 Chain = EnvVal.getValue(0); 4239 InFlag = EnvVal.getValue(1); 4240 } 4241 4242 MTCTROps[0] = Chain; 4243 MTCTROps[1] = LoadFuncPtr; 4244 MTCTROps[2] = InFlag; 4245 } 4246 4247 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4248 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4249 InFlag = Chain.getValue(1); 4250 4251 NodeTys.clear(); 4252 NodeTys.push_back(MVT::Other); 4253 NodeTys.push_back(MVT::Glue); 4254 Ops.push_back(Chain); 4255 CallOpc = PPCISD::BCTRL; 4256 Callee.setNode(nullptr); 4257 // Add use of X11 (holding environment pointer) 4258 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4259 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4260 // Add CTR register as callee so a bctr can be emitted later. 4261 if (isTailCall) 4262 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4263 } 4264 4265 // If this is a direct call, pass the chain and the callee. 4266 if (Callee.getNode()) { 4267 Ops.push_back(Chain); 4268 Ops.push_back(Callee); 4269 } 4270 // If this is a tail call add stack pointer delta. 4271 if (isTailCall) 4272 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4273 4274 // Add argument registers to the end of the list so that they are known live 4275 // into the call. 4276 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4277 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4278 RegsToPass[i].second.getValueType())); 4279 4280 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4281 // into the call. 4282 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4283 setUsesTOCBasePtr(DAG); 4284 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4285 } 4286 4287 return CallOpc; 4288 } 4289 4290 static 4291 bool isLocalCall(const SDValue &Callee) 4292 { 4293 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4294 return G->getGlobal()->isStrongDefinitionForLinker(); 4295 return false; 4296 } 4297 4298 SDValue 4299 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4300 CallingConv::ID CallConv, bool isVarArg, 4301 const SmallVectorImpl<ISD::InputArg> &Ins, 4302 SDLoc dl, SelectionDAG &DAG, 4303 SmallVectorImpl<SDValue> &InVals) const { 4304 4305 SmallVector<CCValAssign, 16> RVLocs; 4306 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4307 *DAG.getContext()); 4308 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4309 4310 // Copy all of the result registers out of their specified physreg. 4311 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4312 CCValAssign &VA = RVLocs[i]; 4313 assert(VA.isRegLoc() && "Can only return in registers!"); 4314 4315 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4316 VA.getLocReg(), VA.getLocVT(), InFlag); 4317 Chain = Val.getValue(1); 4318 InFlag = Val.getValue(2); 4319 4320 switch (VA.getLocInfo()) { 4321 default: llvm_unreachable("Unknown loc info!"); 4322 case CCValAssign::Full: break; 4323 case CCValAssign::AExt: 4324 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4325 break; 4326 case CCValAssign::ZExt: 4327 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4328 DAG.getValueType(VA.getValVT())); 4329 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4330 break; 4331 case CCValAssign::SExt: 4332 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4333 DAG.getValueType(VA.getValVT())); 4334 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4335 break; 4336 } 4337 4338 InVals.push_back(Val); 4339 } 4340 4341 return Chain; 4342 } 4343 4344 SDValue 4345 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4346 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4347 bool hasNest, SelectionDAG &DAG, 4348 SmallVector<std::pair<unsigned, SDValue>, 8> 4349 &RegsToPass, 4350 SDValue InFlag, SDValue Chain, 4351 SDValue CallSeqStart, SDValue &Callee, 4352 int SPDiff, unsigned NumBytes, 4353 const SmallVectorImpl<ISD::InputArg> &Ins, 4354 SmallVectorImpl<SDValue> &InVals, 4355 ImmutableCallSite *CS) const { 4356 4357 std::vector<EVT> NodeTys; 4358 SmallVector<SDValue, 8> Ops; 4359 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4360 SPDiff, isTailCall, IsPatchPoint, hasNest, 4361 RegsToPass, Ops, NodeTys, CS, Subtarget); 4362 4363 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4364 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4365 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4366 4367 // When performing tail call optimization the callee pops its arguments off 4368 // the stack. Account for this here so these bytes can be pushed back on in 4369 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4370 int BytesCalleePops = 4371 (CallConv == CallingConv::Fast && 4372 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4373 4374 // Add a register mask operand representing the call-preserved registers. 4375 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4376 const uint32_t *Mask = 4377 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4378 assert(Mask && "Missing call preserved mask for calling convention"); 4379 Ops.push_back(DAG.getRegisterMask(Mask)); 4380 4381 if (InFlag.getNode()) 4382 Ops.push_back(InFlag); 4383 4384 // Emit tail call. 4385 if (isTailCall) { 4386 assert(((Callee.getOpcode() == ISD::Register && 4387 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4388 Callee.getOpcode() == ISD::TargetExternalSymbol || 4389 Callee.getOpcode() == ISD::TargetGlobalAddress || 4390 isa<ConstantSDNode>(Callee)) && 4391 "Expecting an global address, external symbol, absolute value or register"); 4392 4393 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4394 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4395 } 4396 4397 // Add a NOP immediately after the branch instruction when using the 64-bit 4398 // SVR4 ABI. At link time, if caller and callee are in a different module and 4399 // thus have a different TOC, the call will be replaced with a call to a stub 4400 // function which saves the current TOC, loads the TOC of the callee and 4401 // branches to the callee. The NOP will be replaced with a load instruction 4402 // which restores the TOC of the caller from the TOC save slot of the current 4403 // stack frame. If caller and callee belong to the same module (and have the 4404 // same TOC), the NOP will remain unchanged. 4405 4406 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4407 !IsPatchPoint) { 4408 if (CallOpc == PPCISD::BCTRL) { 4409 // This is a call through a function pointer. 4410 // Restore the caller TOC from the save area into R2. 4411 // See PrepareCall() for more information about calls through function 4412 // pointers in the 64-bit SVR4 ABI. 4413 // We are using a target-specific load with r2 hard coded, because the 4414 // result of a target-independent load would never go directly into r2, 4415 // since r2 is a reserved register (which prevents the register allocator 4416 // from allocating it), resulting in an additional register being 4417 // allocated and an unnecessary move instruction being generated. 4418 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4419 4420 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4421 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4422 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4423 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4424 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4425 4426 // The address needs to go after the chain input but before the flag (or 4427 // any other variadic arguments). 4428 Ops.insert(std::next(Ops.begin()), AddTOC); 4429 } else if ((CallOpc == PPCISD::CALL) && 4430 (!isLocalCall(Callee) || 4431 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4432 // Otherwise insert NOP for non-local calls. 4433 CallOpc = PPCISD::CALL_NOP; 4434 } 4435 4436 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4437 InFlag = Chain.getValue(1); 4438 4439 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4440 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4441 InFlag, dl); 4442 if (!Ins.empty()) 4443 InFlag = Chain.getValue(1); 4444 4445 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4446 Ins, dl, DAG, InVals); 4447 } 4448 4449 SDValue 4450 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4451 SmallVectorImpl<SDValue> &InVals) const { 4452 SelectionDAG &DAG = CLI.DAG; 4453 SDLoc &dl = CLI.DL; 4454 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4455 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4456 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4457 SDValue Chain = CLI.Chain; 4458 SDValue Callee = CLI.Callee; 4459 bool &isTailCall = CLI.IsTailCall; 4460 CallingConv::ID CallConv = CLI.CallConv; 4461 bool isVarArg = CLI.IsVarArg; 4462 bool IsPatchPoint = CLI.IsPatchPoint; 4463 ImmutableCallSite *CS = CLI.CS; 4464 4465 if (isTailCall) 4466 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4467 Ins, DAG); 4468 4469 if (!isTailCall && CS && CS->isMustTailCall()) 4470 report_fatal_error("failed to perform tail call elimination on a call " 4471 "site marked musttail"); 4472 4473 if (Subtarget.isSVR4ABI()) { 4474 if (Subtarget.isPPC64()) 4475 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4476 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4477 dl, DAG, InVals, CS); 4478 else 4479 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4480 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4481 dl, DAG, InVals, CS); 4482 } 4483 4484 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4485 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4486 dl, DAG, InVals, CS); 4487 } 4488 4489 SDValue 4490 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4491 CallingConv::ID CallConv, bool isVarArg, 4492 bool isTailCall, bool IsPatchPoint, 4493 const SmallVectorImpl<ISD::OutputArg> &Outs, 4494 const SmallVectorImpl<SDValue> &OutVals, 4495 const SmallVectorImpl<ISD::InputArg> &Ins, 4496 SDLoc dl, SelectionDAG &DAG, 4497 SmallVectorImpl<SDValue> &InVals, 4498 ImmutableCallSite *CS) const { 4499 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4500 // of the 32-bit SVR4 ABI stack frame layout. 4501 4502 assert((CallConv == CallingConv::C || 4503 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4504 4505 unsigned PtrByteSize = 4; 4506 4507 MachineFunction &MF = DAG.getMachineFunction(); 4508 4509 // Mark this function as potentially containing a function that contains a 4510 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4511 // and restoring the callers stack pointer in this functions epilog. This is 4512 // done because by tail calling the called function might overwrite the value 4513 // in this function's (MF) stack pointer stack slot 0(SP). 4514 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4515 CallConv == CallingConv::Fast) 4516 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4517 4518 // Count how many bytes are to be pushed on the stack, including the linkage 4519 // area, parameter list area and the part of the local variable space which 4520 // contains copies of aggregates which are passed by value. 4521 4522 // Assign locations to all of the outgoing arguments. 4523 SmallVector<CCValAssign, 16> ArgLocs; 4524 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4525 *DAG.getContext()); 4526 4527 // Reserve space for the linkage area on the stack. 4528 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4529 PtrByteSize); 4530 4531 if (isVarArg) { 4532 // Handle fixed and variable vector arguments differently. 4533 // Fixed vector arguments go into registers as long as registers are 4534 // available. Variable vector arguments always go into memory. 4535 unsigned NumArgs = Outs.size(); 4536 4537 for (unsigned i = 0; i != NumArgs; ++i) { 4538 MVT ArgVT = Outs[i].VT; 4539 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4540 bool Result; 4541 4542 if (Outs[i].IsFixed) { 4543 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4544 CCInfo); 4545 } else { 4546 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4547 ArgFlags, CCInfo); 4548 } 4549 4550 if (Result) { 4551 #ifndef NDEBUG 4552 errs() << "Call operand #" << i << " has unhandled type " 4553 << EVT(ArgVT).getEVTString() << "\n"; 4554 #endif 4555 llvm_unreachable(nullptr); 4556 } 4557 } 4558 } else { 4559 // All arguments are treated the same. 4560 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4561 } 4562 4563 // Assign locations to all of the outgoing aggregate by value arguments. 4564 SmallVector<CCValAssign, 16> ByValArgLocs; 4565 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4566 ByValArgLocs, *DAG.getContext()); 4567 4568 // Reserve stack space for the allocations in CCInfo. 4569 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4570 4571 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4572 4573 // Size of the linkage area, parameter list area and the part of the local 4574 // space variable where copies of aggregates which are passed by value are 4575 // stored. 4576 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4577 4578 // Calculate by how many bytes the stack has to be adjusted in case of tail 4579 // call optimization. 4580 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4581 4582 // Adjust the stack pointer for the new arguments... 4583 // These operations are automatically eliminated by the prolog/epilog pass 4584 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4585 dl); 4586 SDValue CallSeqStart = Chain; 4587 4588 // Load the return address and frame pointer so it can be moved somewhere else 4589 // later. 4590 SDValue LROp, FPOp; 4591 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4592 dl); 4593 4594 // Set up a copy of the stack pointer for use loading and storing any 4595 // arguments that may not fit in the registers available for argument 4596 // passing. 4597 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4598 4599 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4600 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4601 SmallVector<SDValue, 8> MemOpChains; 4602 4603 bool seenFloatArg = false; 4604 // Walk the register/memloc assignments, inserting copies/loads. 4605 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4606 i != e; 4607 ++i) { 4608 CCValAssign &VA = ArgLocs[i]; 4609 SDValue Arg = OutVals[i]; 4610 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4611 4612 if (Flags.isByVal()) { 4613 // Argument is an aggregate which is passed by value, thus we need to 4614 // create a copy of it in the local variable space of the current stack 4615 // frame (which is the stack frame of the caller) and pass the address of 4616 // this copy to the callee. 4617 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4618 CCValAssign &ByValVA = ByValArgLocs[j++]; 4619 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4620 4621 // Memory reserved in the local variable space of the callers stack frame. 4622 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4623 4624 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4625 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4626 StackPtr, PtrOff); 4627 4628 // Create a copy of the argument in the local area of the current 4629 // stack frame. 4630 SDValue MemcpyCall = 4631 CreateCopyOfByValArgument(Arg, PtrOff, 4632 CallSeqStart.getNode()->getOperand(0), 4633 Flags, DAG, dl); 4634 4635 // This must go outside the CALLSEQ_START..END. 4636 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4637 CallSeqStart.getNode()->getOperand(1), 4638 SDLoc(MemcpyCall)); 4639 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4640 NewCallSeqStart.getNode()); 4641 Chain = CallSeqStart = NewCallSeqStart; 4642 4643 // Pass the address of the aggregate copy on the stack either in a 4644 // physical register or in the parameter list area of the current stack 4645 // frame to the callee. 4646 Arg = PtrOff; 4647 } 4648 4649 if (VA.isRegLoc()) { 4650 if (Arg.getValueType() == MVT::i1) 4651 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4652 4653 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4654 // Put argument in a physical register. 4655 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4656 } else { 4657 // Put argument in the parameter list area of the current stack frame. 4658 assert(VA.isMemLoc()); 4659 unsigned LocMemOffset = VA.getLocMemOffset(); 4660 4661 if (!isTailCall) { 4662 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4663 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4664 StackPtr, PtrOff); 4665 4666 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4667 MachinePointerInfo(), 4668 false, false, 0)); 4669 } else { 4670 // Calculate and remember argument location. 4671 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4672 TailCallArguments); 4673 } 4674 } 4675 } 4676 4677 if (!MemOpChains.empty()) 4678 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4679 4680 // Build a sequence of copy-to-reg nodes chained together with token chain 4681 // and flag operands which copy the outgoing args into the appropriate regs. 4682 SDValue InFlag; 4683 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4684 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4685 RegsToPass[i].second, InFlag); 4686 InFlag = Chain.getValue(1); 4687 } 4688 4689 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4690 // registers. 4691 if (isVarArg) { 4692 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4693 SDValue Ops[] = { Chain, InFlag }; 4694 4695 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4696 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4697 4698 InFlag = Chain.getValue(1); 4699 } 4700 4701 if (isTailCall) 4702 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4703 false, TailCallArguments); 4704 4705 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4706 /* unused except on PPC64 ELFv1 */ false, DAG, 4707 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4708 NumBytes, Ins, InVals, CS); 4709 } 4710 4711 // Copy an argument into memory, being careful to do this outside the 4712 // call sequence for the call to which the argument belongs. 4713 SDValue 4714 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4715 SDValue CallSeqStart, 4716 ISD::ArgFlagsTy Flags, 4717 SelectionDAG &DAG, 4718 SDLoc dl) const { 4719 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4720 CallSeqStart.getNode()->getOperand(0), 4721 Flags, DAG, dl); 4722 // The MEMCPY must go outside the CALLSEQ_START..END. 4723 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4724 CallSeqStart.getNode()->getOperand(1), 4725 SDLoc(MemcpyCall)); 4726 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4727 NewCallSeqStart.getNode()); 4728 return NewCallSeqStart; 4729 } 4730 4731 SDValue 4732 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4733 CallingConv::ID CallConv, bool isVarArg, 4734 bool isTailCall, bool IsPatchPoint, 4735 const SmallVectorImpl<ISD::OutputArg> &Outs, 4736 const SmallVectorImpl<SDValue> &OutVals, 4737 const SmallVectorImpl<ISD::InputArg> &Ins, 4738 SDLoc dl, SelectionDAG &DAG, 4739 SmallVectorImpl<SDValue> &InVals, 4740 ImmutableCallSite *CS) const { 4741 4742 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4743 bool isLittleEndian = Subtarget.isLittleEndian(); 4744 unsigned NumOps = Outs.size(); 4745 bool hasNest = false; 4746 4747 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4748 unsigned PtrByteSize = 8; 4749 4750 MachineFunction &MF = DAG.getMachineFunction(); 4751 4752 // Mark this function as potentially containing a function that contains a 4753 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4754 // and restoring the callers stack pointer in this functions epilog. This is 4755 // done because by tail calling the called function might overwrite the value 4756 // in this function's (MF) stack pointer stack slot 0(SP). 4757 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4758 CallConv == CallingConv::Fast) 4759 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4760 4761 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4762 "fastcc not supported on varargs functions"); 4763 4764 // Count how many bytes are to be pushed on the stack, including the linkage 4765 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4766 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4767 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4768 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4769 unsigned NumBytes = LinkageSize; 4770 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4771 unsigned &QFPR_idx = FPR_idx; 4772 4773 static const MCPhysReg GPR[] = { 4774 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4775 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4776 }; 4777 static const MCPhysReg VR[] = { 4778 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4779 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4780 }; 4781 static const MCPhysReg VSRH[] = { 4782 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4783 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4784 }; 4785 4786 const unsigned NumGPRs = array_lengthof(GPR); 4787 const unsigned NumFPRs = 13; 4788 const unsigned NumVRs = array_lengthof(VR); 4789 const unsigned NumQFPRs = NumFPRs; 4790 4791 // When using the fast calling convention, we don't provide backing for 4792 // arguments that will be in registers. 4793 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4794 4795 // Add up all the space actually used. 4796 for (unsigned i = 0; i != NumOps; ++i) { 4797 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4798 EVT ArgVT = Outs[i].VT; 4799 EVT OrigVT = Outs[i].ArgVT; 4800 4801 if (Flags.isNest()) 4802 continue; 4803 4804 if (CallConv == CallingConv::Fast) { 4805 if (Flags.isByVal()) 4806 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4807 else 4808 switch (ArgVT.getSimpleVT().SimpleTy) { 4809 default: llvm_unreachable("Unexpected ValueType for argument!"); 4810 case MVT::i1: 4811 case MVT::i32: 4812 case MVT::i64: 4813 if (++NumGPRsUsed <= NumGPRs) 4814 continue; 4815 break; 4816 case MVT::v4i32: 4817 case MVT::v8i16: 4818 case MVT::v16i8: 4819 case MVT::v2f64: 4820 case MVT::v2i64: 4821 case MVT::v1i128: 4822 if (++NumVRsUsed <= NumVRs) 4823 continue; 4824 break; 4825 case MVT::v4f32: 4826 // When using QPX, this is handled like a FP register, otherwise, it 4827 // is an Altivec register. 4828 if (Subtarget.hasQPX()) { 4829 if (++NumFPRsUsed <= NumFPRs) 4830 continue; 4831 } else { 4832 if (++NumVRsUsed <= NumVRs) 4833 continue; 4834 } 4835 break; 4836 case MVT::f32: 4837 case MVT::f64: 4838 case MVT::v4f64: // QPX 4839 case MVT::v4i1: // QPX 4840 if (++NumFPRsUsed <= NumFPRs) 4841 continue; 4842 break; 4843 } 4844 } 4845 4846 /* Respect alignment of argument on the stack. */ 4847 unsigned Align = 4848 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4849 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4850 4851 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4852 if (Flags.isInConsecutiveRegsLast()) 4853 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4854 } 4855 4856 unsigned NumBytesActuallyUsed = NumBytes; 4857 4858 // The prolog code of the callee may store up to 8 GPR argument registers to 4859 // the stack, allowing va_start to index over them in memory if its varargs. 4860 // Because we cannot tell if this is needed on the caller side, we have to 4861 // conservatively assume that it is needed. As such, make sure we have at 4862 // least enough stack space for the caller to store the 8 GPRs. 4863 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4864 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4865 4866 // Tail call needs the stack to be aligned. 4867 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4868 CallConv == CallingConv::Fast) 4869 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4870 4871 // Calculate by how many bytes the stack has to be adjusted in case of tail 4872 // call optimization. 4873 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4874 4875 // To protect arguments on the stack from being clobbered in a tail call, 4876 // force all the loads to happen before doing any other lowering. 4877 if (isTailCall) 4878 Chain = DAG.getStackArgumentTokenFactor(Chain); 4879 4880 // Adjust the stack pointer for the new arguments... 4881 // These operations are automatically eliminated by the prolog/epilog pass 4882 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4883 dl); 4884 SDValue CallSeqStart = Chain; 4885 4886 // Load the return address and frame pointer so it can be move somewhere else 4887 // later. 4888 SDValue LROp, FPOp; 4889 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4890 dl); 4891 4892 // Set up a copy of the stack pointer for use loading and storing any 4893 // arguments that may not fit in the registers available for argument 4894 // passing. 4895 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4896 4897 // Figure out which arguments are going to go in registers, and which in 4898 // memory. Also, if this is a vararg function, floating point operations 4899 // must be stored to our stack, and loaded into integer regs as well, if 4900 // any integer regs are available for argument passing. 4901 unsigned ArgOffset = LinkageSize; 4902 4903 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4904 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4905 4906 SmallVector<SDValue, 8> MemOpChains; 4907 for (unsigned i = 0; i != NumOps; ++i) { 4908 SDValue Arg = OutVals[i]; 4909 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4910 EVT ArgVT = Outs[i].VT; 4911 EVT OrigVT = Outs[i].ArgVT; 4912 4913 // PtrOff will be used to store the current argument to the stack if a 4914 // register cannot be found for it. 4915 SDValue PtrOff; 4916 4917 // We re-align the argument offset for each argument, except when using the 4918 // fast calling convention, when we need to make sure we do that only when 4919 // we'll actually use a stack slot. 4920 auto ComputePtrOff = [&]() { 4921 /* Respect alignment of argument on the stack. */ 4922 unsigned Align = 4923 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4924 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4925 4926 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4927 4928 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4929 }; 4930 4931 if (CallConv != CallingConv::Fast) { 4932 ComputePtrOff(); 4933 4934 /* Compute GPR index associated with argument offset. */ 4935 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4936 GPR_idx = std::min(GPR_idx, NumGPRs); 4937 } 4938 4939 // Promote integers to 64-bit values. 4940 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4941 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4942 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4943 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4944 } 4945 4946 // FIXME memcpy is used way more than necessary. Correctness first. 4947 // Note: "by value" is code for passing a structure by value, not 4948 // basic types. 4949 if (Flags.isByVal()) { 4950 // Note: Size includes alignment padding, so 4951 // struct x { short a; char b; } 4952 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4953 // These are the proper values we need for right-justifying the 4954 // aggregate in a parameter register. 4955 unsigned Size = Flags.getByValSize(); 4956 4957 // An empty aggregate parameter takes up no storage and no 4958 // registers. 4959 if (Size == 0) 4960 continue; 4961 4962 if (CallConv == CallingConv::Fast) 4963 ComputePtrOff(); 4964 4965 // All aggregates smaller than 8 bytes must be passed right-justified. 4966 if (Size==1 || Size==2 || Size==4) { 4967 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4968 if (GPR_idx != NumGPRs) { 4969 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4970 MachinePointerInfo(), VT, 4971 false, false, false, 0); 4972 MemOpChains.push_back(Load.getValue(1)); 4973 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4974 4975 ArgOffset += PtrByteSize; 4976 continue; 4977 } 4978 } 4979 4980 if (GPR_idx == NumGPRs && Size < 8) { 4981 SDValue AddPtr = PtrOff; 4982 if (!isLittleEndian) { 4983 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4984 PtrOff.getValueType()); 4985 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4986 } 4987 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4988 CallSeqStart, 4989 Flags, DAG, dl); 4990 ArgOffset += PtrByteSize; 4991 continue; 4992 } 4993 // Copy entire object into memory. There are cases where gcc-generated 4994 // code assumes it is there, even if it could be put entirely into 4995 // registers. (This is not what the doc says.) 4996 4997 // FIXME: The above statement is likely due to a misunderstanding of the 4998 // documents. All arguments must be copied into the parameter area BY 4999 // THE CALLEE in the event that the callee takes the address of any 5000 // formal argument. That has not yet been implemented. However, it is 5001 // reasonable to use the stack area as a staging area for the register 5002 // load. 5003 5004 // Skip this for small aggregates, as we will use the same slot for a 5005 // right-justified copy, below. 5006 if (Size >= 8) 5007 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5008 CallSeqStart, 5009 Flags, DAG, dl); 5010 5011 // When a register is available, pass a small aggregate right-justified. 5012 if (Size < 8 && GPR_idx != NumGPRs) { 5013 // The easiest way to get this right-justified in a register 5014 // is to copy the structure into the rightmost portion of a 5015 // local variable slot, then load the whole slot into the 5016 // register. 5017 // FIXME: The memcpy seems to produce pretty awful code for 5018 // small aggregates, particularly for packed ones. 5019 // FIXME: It would be preferable to use the slot in the 5020 // parameter save area instead of a new local variable. 5021 SDValue AddPtr = PtrOff; 5022 if (!isLittleEndian) { 5023 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5024 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5025 } 5026 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5027 CallSeqStart, 5028 Flags, DAG, dl); 5029 5030 // Load the slot into the register. 5031 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5032 MachinePointerInfo(), 5033 false, false, false, 0); 5034 MemOpChains.push_back(Load.getValue(1)); 5035 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5036 5037 // Done with this argument. 5038 ArgOffset += PtrByteSize; 5039 continue; 5040 } 5041 5042 // For aggregates larger than PtrByteSize, copy the pieces of the 5043 // object that fit into registers from the parameter save area. 5044 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5045 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5046 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5047 if (GPR_idx != NumGPRs) { 5048 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5049 MachinePointerInfo(), 5050 false, false, false, 0); 5051 MemOpChains.push_back(Load.getValue(1)); 5052 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5053 ArgOffset += PtrByteSize; 5054 } else { 5055 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5056 break; 5057 } 5058 } 5059 continue; 5060 } 5061 5062 switch (Arg.getSimpleValueType().SimpleTy) { 5063 default: llvm_unreachable("Unexpected ValueType for argument!"); 5064 case MVT::i1: 5065 case MVT::i32: 5066 case MVT::i64: 5067 if (Flags.isNest()) { 5068 // The 'nest' parameter, if any, is passed in R11. 5069 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5070 hasNest = true; 5071 break; 5072 } 5073 5074 // These can be scalar arguments or elements of an integer array type 5075 // passed directly. Clang may use those instead of "byval" aggregate 5076 // types to avoid forcing arguments to memory unnecessarily. 5077 if (GPR_idx != NumGPRs) { 5078 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5079 } else { 5080 if (CallConv == CallingConv::Fast) 5081 ComputePtrOff(); 5082 5083 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5084 true, isTailCall, false, MemOpChains, 5085 TailCallArguments, dl); 5086 if (CallConv == CallingConv::Fast) 5087 ArgOffset += PtrByteSize; 5088 } 5089 if (CallConv != CallingConv::Fast) 5090 ArgOffset += PtrByteSize; 5091 break; 5092 case MVT::f32: 5093 case MVT::f64: { 5094 // These can be scalar arguments or elements of a float array type 5095 // passed directly. The latter are used to implement ELFv2 homogenous 5096 // float aggregates. 5097 5098 // Named arguments go into FPRs first, and once they overflow, the 5099 // remaining arguments go into GPRs and then the parameter save area. 5100 // Unnamed arguments for vararg functions always go to GPRs and 5101 // then the parameter save area. For now, put all arguments to vararg 5102 // routines always in both locations (FPR *and* GPR or stack slot). 5103 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5104 bool NeededLoad = false; 5105 5106 // First load the argument into the next available FPR. 5107 if (FPR_idx != NumFPRs) 5108 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5109 5110 // Next, load the argument into GPR or stack slot if needed. 5111 if (!NeedGPROrStack) 5112 ; 5113 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5114 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5115 // once we support fp <-> gpr moves. 5116 5117 // In the non-vararg case, this can only ever happen in the 5118 // presence of f32 array types, since otherwise we never run 5119 // out of FPRs before running out of GPRs. 5120 SDValue ArgVal; 5121 5122 // Double values are always passed in a single GPR. 5123 if (Arg.getValueType() != MVT::f32) { 5124 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5125 5126 // Non-array float values are extended and passed in a GPR. 5127 } else if (!Flags.isInConsecutiveRegs()) { 5128 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5129 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5130 5131 // If we have an array of floats, we collect every odd element 5132 // together with its predecessor into one GPR. 5133 } else if (ArgOffset % PtrByteSize != 0) { 5134 SDValue Lo, Hi; 5135 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5136 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5137 if (!isLittleEndian) 5138 std::swap(Lo, Hi); 5139 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5140 5141 // The final element, if even, goes into the first half of a GPR. 5142 } else if (Flags.isInConsecutiveRegsLast()) { 5143 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5144 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5145 if (!isLittleEndian) 5146 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5147 DAG.getConstant(32, dl, MVT::i32)); 5148 5149 // Non-final even elements are skipped; they will be handled 5150 // together the with subsequent argument on the next go-around. 5151 } else 5152 ArgVal = SDValue(); 5153 5154 if (ArgVal.getNode()) 5155 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5156 } else { 5157 if (CallConv == CallingConv::Fast) 5158 ComputePtrOff(); 5159 5160 // Single-precision floating-point values are mapped to the 5161 // second (rightmost) word of the stack doubleword. 5162 if (Arg.getValueType() == MVT::f32 && 5163 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5164 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5165 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5166 } 5167 5168 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5169 true, isTailCall, false, MemOpChains, 5170 TailCallArguments, dl); 5171 5172 NeededLoad = true; 5173 } 5174 // When passing an array of floats, the array occupies consecutive 5175 // space in the argument area; only round up to the next doubleword 5176 // at the end of the array. Otherwise, each float takes 8 bytes. 5177 if (CallConv != CallingConv::Fast || NeededLoad) { 5178 ArgOffset += (Arg.getValueType() == MVT::f32 && 5179 Flags.isInConsecutiveRegs()) ? 4 : 8; 5180 if (Flags.isInConsecutiveRegsLast()) 5181 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5182 } 5183 break; 5184 } 5185 case MVT::v4f32: 5186 case MVT::v4i32: 5187 case MVT::v8i16: 5188 case MVT::v16i8: 5189 case MVT::v2f64: 5190 case MVT::v2i64: 5191 case MVT::v1i128: 5192 if (!Subtarget.hasQPX()) { 5193 // These can be scalar arguments or elements of a vector array type 5194 // passed directly. The latter are used to implement ELFv2 homogenous 5195 // vector aggregates. 5196 5197 // For a varargs call, named arguments go into VRs or on the stack as 5198 // usual; unnamed arguments always go to the stack or the corresponding 5199 // GPRs when within range. For now, we always put the value in both 5200 // locations (or even all three). 5201 if (isVarArg) { 5202 // We could elide this store in the case where the object fits 5203 // entirely in R registers. Maybe later. 5204 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5205 MachinePointerInfo(), false, false, 0); 5206 MemOpChains.push_back(Store); 5207 if (VR_idx != NumVRs) { 5208 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5209 MachinePointerInfo(), 5210 false, false, false, 0); 5211 MemOpChains.push_back(Load.getValue(1)); 5212 5213 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5214 Arg.getSimpleValueType() == MVT::v2i64) ? 5215 VSRH[VR_idx] : VR[VR_idx]; 5216 ++VR_idx; 5217 5218 RegsToPass.push_back(std::make_pair(VReg, Load)); 5219 } 5220 ArgOffset += 16; 5221 for (unsigned i=0; i<16; i+=PtrByteSize) { 5222 if (GPR_idx == NumGPRs) 5223 break; 5224 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5225 DAG.getConstant(i, dl, PtrVT)); 5226 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5227 false, false, false, 0); 5228 MemOpChains.push_back(Load.getValue(1)); 5229 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5230 } 5231 break; 5232 } 5233 5234 // Non-varargs Altivec params go into VRs or on the stack. 5235 if (VR_idx != NumVRs) { 5236 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5237 Arg.getSimpleValueType() == MVT::v2i64) ? 5238 VSRH[VR_idx] : VR[VR_idx]; 5239 ++VR_idx; 5240 5241 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5242 } else { 5243 if (CallConv == CallingConv::Fast) 5244 ComputePtrOff(); 5245 5246 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5247 true, isTailCall, true, MemOpChains, 5248 TailCallArguments, dl); 5249 if (CallConv == CallingConv::Fast) 5250 ArgOffset += 16; 5251 } 5252 5253 if (CallConv != CallingConv::Fast) 5254 ArgOffset += 16; 5255 break; 5256 } // not QPX 5257 5258 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5259 "Invalid QPX parameter type"); 5260 5261 /* fall through */ 5262 case MVT::v4f64: 5263 case MVT::v4i1: { 5264 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5265 if (isVarArg) { 5266 // We could elide this store in the case where the object fits 5267 // entirely in R registers. Maybe later. 5268 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5269 MachinePointerInfo(), false, false, 0); 5270 MemOpChains.push_back(Store); 5271 if (QFPR_idx != NumQFPRs) { 5272 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5273 Store, PtrOff, MachinePointerInfo(), 5274 false, false, false, 0); 5275 MemOpChains.push_back(Load.getValue(1)); 5276 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5277 } 5278 ArgOffset += (IsF32 ? 16 : 32); 5279 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5280 if (GPR_idx == NumGPRs) 5281 break; 5282 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5283 DAG.getConstant(i, dl, PtrVT)); 5284 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5285 false, false, false, 0); 5286 MemOpChains.push_back(Load.getValue(1)); 5287 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5288 } 5289 break; 5290 } 5291 5292 // Non-varargs QPX params go into registers or on the stack. 5293 if (QFPR_idx != NumQFPRs) { 5294 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5295 } else { 5296 if (CallConv == CallingConv::Fast) 5297 ComputePtrOff(); 5298 5299 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5300 true, isTailCall, true, MemOpChains, 5301 TailCallArguments, dl); 5302 if (CallConv == CallingConv::Fast) 5303 ArgOffset += (IsF32 ? 16 : 32); 5304 } 5305 5306 if (CallConv != CallingConv::Fast) 5307 ArgOffset += (IsF32 ? 16 : 32); 5308 break; 5309 } 5310 } 5311 } 5312 5313 assert(NumBytesActuallyUsed == ArgOffset); 5314 (void)NumBytesActuallyUsed; 5315 5316 if (!MemOpChains.empty()) 5317 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5318 5319 // Check if this is an indirect call (MTCTR/BCTRL). 5320 // See PrepareCall() for more information about calls through function 5321 // pointers in the 64-bit SVR4 ABI. 5322 if (!isTailCall && !IsPatchPoint && 5323 !isFunctionGlobalAddress(Callee) && 5324 !isa<ExternalSymbolSDNode>(Callee)) { 5325 // Load r2 into a virtual register and store it to the TOC save area. 5326 setUsesTOCBasePtr(DAG); 5327 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5328 // TOC save area offset. 5329 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5330 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5331 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5332 Chain = DAG.getStore( 5333 Val.getValue(1), dl, Val, AddPtr, 5334 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5335 false, false, 0); 5336 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5337 // This does not mean the MTCTR instruction must use R12; it's easier 5338 // to model this as an extra parameter, so do that. 5339 if (isELFv2ABI && !IsPatchPoint) 5340 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5341 } 5342 5343 // Build a sequence of copy-to-reg nodes chained together with token chain 5344 // and flag operands which copy the outgoing args into the appropriate regs. 5345 SDValue InFlag; 5346 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5347 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5348 RegsToPass[i].second, InFlag); 5349 InFlag = Chain.getValue(1); 5350 } 5351 5352 if (isTailCall) 5353 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5354 FPOp, true, TailCallArguments); 5355 5356 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5357 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5358 SPDiff, NumBytes, Ins, InVals, CS); 5359 } 5360 5361 SDValue 5362 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5363 CallingConv::ID CallConv, bool isVarArg, 5364 bool isTailCall, bool IsPatchPoint, 5365 const SmallVectorImpl<ISD::OutputArg> &Outs, 5366 const SmallVectorImpl<SDValue> &OutVals, 5367 const SmallVectorImpl<ISD::InputArg> &Ins, 5368 SDLoc dl, SelectionDAG &DAG, 5369 SmallVectorImpl<SDValue> &InVals, 5370 ImmutableCallSite *CS) const { 5371 5372 unsigned NumOps = Outs.size(); 5373 5374 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5375 bool isPPC64 = PtrVT == MVT::i64; 5376 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5377 5378 MachineFunction &MF = DAG.getMachineFunction(); 5379 5380 // Mark this function as potentially containing a function that contains a 5381 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5382 // and restoring the callers stack pointer in this functions epilog. This is 5383 // done because by tail calling the called function might overwrite the value 5384 // in this function's (MF) stack pointer stack slot 0(SP). 5385 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5386 CallConv == CallingConv::Fast) 5387 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5388 5389 // Count how many bytes are to be pushed on the stack, including the linkage 5390 // area, and parameter passing area. We start with 24/48 bytes, which is 5391 // prereserved space for [SP][CR][LR][3 x unused]. 5392 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5393 unsigned NumBytes = LinkageSize; 5394 5395 // Add up all the space actually used. 5396 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5397 // they all go in registers, but we must reserve stack space for them for 5398 // possible use by the caller. In varargs or 64-bit calls, parameters are 5399 // assigned stack space in order, with padding so Altivec parameters are 5400 // 16-byte aligned. 5401 unsigned nAltivecParamsAtEnd = 0; 5402 for (unsigned i = 0; i != NumOps; ++i) { 5403 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5404 EVT ArgVT = Outs[i].VT; 5405 // Varargs Altivec parameters are padded to a 16 byte boundary. 5406 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5407 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5408 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5409 if (!isVarArg && !isPPC64) { 5410 // Non-varargs Altivec parameters go after all the non-Altivec 5411 // parameters; handle those later so we know how much padding we need. 5412 nAltivecParamsAtEnd++; 5413 continue; 5414 } 5415 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5416 NumBytes = ((NumBytes+15)/16)*16; 5417 } 5418 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5419 } 5420 5421 // Allow for Altivec parameters at the end, if needed. 5422 if (nAltivecParamsAtEnd) { 5423 NumBytes = ((NumBytes+15)/16)*16; 5424 NumBytes += 16*nAltivecParamsAtEnd; 5425 } 5426 5427 // The prolog code of the callee may store up to 8 GPR argument registers to 5428 // the stack, allowing va_start to index over them in memory if its varargs. 5429 // Because we cannot tell if this is needed on the caller side, we have to 5430 // conservatively assume that it is needed. As such, make sure we have at 5431 // least enough stack space for the caller to store the 8 GPRs. 5432 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5433 5434 // Tail call needs the stack to be aligned. 5435 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5436 CallConv == CallingConv::Fast) 5437 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5438 5439 // Calculate by how many bytes the stack has to be adjusted in case of tail 5440 // call optimization. 5441 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5442 5443 // To protect arguments on the stack from being clobbered in a tail call, 5444 // force all the loads to happen before doing any other lowering. 5445 if (isTailCall) 5446 Chain = DAG.getStackArgumentTokenFactor(Chain); 5447 5448 // Adjust the stack pointer for the new arguments... 5449 // These operations are automatically eliminated by the prolog/epilog pass 5450 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5451 dl); 5452 SDValue CallSeqStart = Chain; 5453 5454 // Load the return address and frame pointer so it can be move somewhere else 5455 // later. 5456 SDValue LROp, FPOp; 5457 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5458 dl); 5459 5460 // Set up a copy of the stack pointer for use loading and storing any 5461 // arguments that may not fit in the registers available for argument 5462 // passing. 5463 SDValue StackPtr; 5464 if (isPPC64) 5465 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5466 else 5467 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5468 5469 // Figure out which arguments are going to go in registers, and which in 5470 // memory. Also, if this is a vararg function, floating point operations 5471 // must be stored to our stack, and loaded into integer regs as well, if 5472 // any integer regs are available for argument passing. 5473 unsigned ArgOffset = LinkageSize; 5474 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5475 5476 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5477 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5478 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5479 }; 5480 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5481 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5482 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5483 }; 5484 static const MCPhysReg VR[] = { 5485 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5486 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5487 }; 5488 const unsigned NumGPRs = array_lengthof(GPR_32); 5489 const unsigned NumFPRs = 13; 5490 const unsigned NumVRs = array_lengthof(VR); 5491 5492 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5493 5494 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5495 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5496 5497 SmallVector<SDValue, 8> MemOpChains; 5498 for (unsigned i = 0; i != NumOps; ++i) { 5499 SDValue Arg = OutVals[i]; 5500 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5501 5502 // PtrOff will be used to store the current argument to the stack if a 5503 // register cannot be found for it. 5504 SDValue PtrOff; 5505 5506 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5507 5508 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5509 5510 // On PPC64, promote integers to 64-bit values. 5511 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5512 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5513 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5514 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5515 } 5516 5517 // FIXME memcpy is used way more than necessary. Correctness first. 5518 // Note: "by value" is code for passing a structure by value, not 5519 // basic types. 5520 if (Flags.isByVal()) { 5521 unsigned Size = Flags.getByValSize(); 5522 // Very small objects are passed right-justified. Everything else is 5523 // passed left-justified. 5524 if (Size==1 || Size==2) { 5525 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5526 if (GPR_idx != NumGPRs) { 5527 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5528 MachinePointerInfo(), VT, 5529 false, false, false, 0); 5530 MemOpChains.push_back(Load.getValue(1)); 5531 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5532 5533 ArgOffset += PtrByteSize; 5534 } else { 5535 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5536 PtrOff.getValueType()); 5537 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5538 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5539 CallSeqStart, 5540 Flags, DAG, dl); 5541 ArgOffset += PtrByteSize; 5542 } 5543 continue; 5544 } 5545 // Copy entire object into memory. There are cases where gcc-generated 5546 // code assumes it is there, even if it could be put entirely into 5547 // registers. (This is not what the doc says.) 5548 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5549 CallSeqStart, 5550 Flags, DAG, dl); 5551 5552 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5553 // copy the pieces of the object that fit into registers from the 5554 // parameter save area. 5555 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5556 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5557 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5558 if (GPR_idx != NumGPRs) { 5559 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5560 MachinePointerInfo(), 5561 false, false, false, 0); 5562 MemOpChains.push_back(Load.getValue(1)); 5563 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5564 ArgOffset += PtrByteSize; 5565 } else { 5566 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5567 break; 5568 } 5569 } 5570 continue; 5571 } 5572 5573 switch (Arg.getSimpleValueType().SimpleTy) { 5574 default: llvm_unreachable("Unexpected ValueType for argument!"); 5575 case MVT::i1: 5576 case MVT::i32: 5577 case MVT::i64: 5578 if (GPR_idx != NumGPRs) { 5579 if (Arg.getValueType() == MVT::i1) 5580 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5581 5582 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5583 } else { 5584 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5585 isPPC64, isTailCall, false, MemOpChains, 5586 TailCallArguments, dl); 5587 } 5588 ArgOffset += PtrByteSize; 5589 break; 5590 case MVT::f32: 5591 case MVT::f64: 5592 if (FPR_idx != NumFPRs) { 5593 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5594 5595 if (isVarArg) { 5596 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5597 MachinePointerInfo(), false, false, 0); 5598 MemOpChains.push_back(Store); 5599 5600 // Float varargs are always shadowed in available integer registers 5601 if (GPR_idx != NumGPRs) { 5602 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5603 MachinePointerInfo(), false, false, 5604 false, 0); 5605 MemOpChains.push_back(Load.getValue(1)); 5606 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5607 } 5608 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5609 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5610 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5611 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5612 MachinePointerInfo(), 5613 false, false, false, 0); 5614 MemOpChains.push_back(Load.getValue(1)); 5615 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5616 } 5617 } else { 5618 // If we have any FPRs remaining, we may also have GPRs remaining. 5619 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5620 // GPRs. 5621 if (GPR_idx != NumGPRs) 5622 ++GPR_idx; 5623 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5624 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5625 ++GPR_idx; 5626 } 5627 } else 5628 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5629 isPPC64, isTailCall, false, MemOpChains, 5630 TailCallArguments, dl); 5631 if (isPPC64) 5632 ArgOffset += 8; 5633 else 5634 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5635 break; 5636 case MVT::v4f32: 5637 case MVT::v4i32: 5638 case MVT::v8i16: 5639 case MVT::v16i8: 5640 if (isVarArg) { 5641 // These go aligned on the stack, or in the corresponding R registers 5642 // when within range. The Darwin PPC ABI doc claims they also go in 5643 // V registers; in fact gcc does this only for arguments that are 5644 // prototyped, not for those that match the ... We do it for all 5645 // arguments, seems to work. 5646 while (ArgOffset % 16 !=0) { 5647 ArgOffset += PtrByteSize; 5648 if (GPR_idx != NumGPRs) 5649 GPR_idx++; 5650 } 5651 // We could elide this store in the case where the object fits 5652 // entirely in R registers. Maybe later. 5653 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5654 DAG.getConstant(ArgOffset, dl, PtrVT)); 5655 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5656 MachinePointerInfo(), false, false, 0); 5657 MemOpChains.push_back(Store); 5658 if (VR_idx != NumVRs) { 5659 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5660 MachinePointerInfo(), 5661 false, false, false, 0); 5662 MemOpChains.push_back(Load.getValue(1)); 5663 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5664 } 5665 ArgOffset += 16; 5666 for (unsigned i=0; i<16; i+=PtrByteSize) { 5667 if (GPR_idx == NumGPRs) 5668 break; 5669 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5670 DAG.getConstant(i, dl, PtrVT)); 5671 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5672 false, false, false, 0); 5673 MemOpChains.push_back(Load.getValue(1)); 5674 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5675 } 5676 break; 5677 } 5678 5679 // Non-varargs Altivec params generally go in registers, but have 5680 // stack space allocated at the end. 5681 if (VR_idx != NumVRs) { 5682 // Doesn't have GPR space allocated. 5683 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5684 } else if (nAltivecParamsAtEnd==0) { 5685 // We are emitting Altivec params in order. 5686 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5687 isPPC64, isTailCall, true, MemOpChains, 5688 TailCallArguments, dl); 5689 ArgOffset += 16; 5690 } 5691 break; 5692 } 5693 } 5694 // If all Altivec parameters fit in registers, as they usually do, 5695 // they get stack space following the non-Altivec parameters. We 5696 // don't track this here because nobody below needs it. 5697 // If there are more Altivec parameters than fit in registers emit 5698 // the stores here. 5699 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5700 unsigned j = 0; 5701 // Offset is aligned; skip 1st 12 params which go in V registers. 5702 ArgOffset = ((ArgOffset+15)/16)*16; 5703 ArgOffset += 12*16; 5704 for (unsigned i = 0; i != NumOps; ++i) { 5705 SDValue Arg = OutVals[i]; 5706 EVT ArgType = Outs[i].VT; 5707 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5708 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5709 if (++j > NumVRs) { 5710 SDValue PtrOff; 5711 // We are emitting Altivec params in order. 5712 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5713 isPPC64, isTailCall, true, MemOpChains, 5714 TailCallArguments, dl); 5715 ArgOffset += 16; 5716 } 5717 } 5718 } 5719 } 5720 5721 if (!MemOpChains.empty()) 5722 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5723 5724 // On Darwin, R12 must contain the address of an indirect callee. This does 5725 // not mean the MTCTR instruction must use R12; it's easier to model this as 5726 // an extra parameter, so do that. 5727 if (!isTailCall && 5728 !isFunctionGlobalAddress(Callee) && 5729 !isa<ExternalSymbolSDNode>(Callee) && 5730 !isBLACompatibleAddress(Callee, DAG)) 5731 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5732 PPC::R12), Callee)); 5733 5734 // Build a sequence of copy-to-reg nodes chained together with token chain 5735 // and flag operands which copy the outgoing args into the appropriate regs. 5736 SDValue InFlag; 5737 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5738 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5739 RegsToPass[i].second, InFlag); 5740 InFlag = Chain.getValue(1); 5741 } 5742 5743 if (isTailCall) 5744 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5745 FPOp, true, TailCallArguments); 5746 5747 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5748 /* unused except on PPC64 ELFv1 */ false, DAG, 5749 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5750 NumBytes, Ins, InVals, CS); 5751 } 5752 5753 bool 5754 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5755 MachineFunction &MF, bool isVarArg, 5756 const SmallVectorImpl<ISD::OutputArg> &Outs, 5757 LLVMContext &Context) const { 5758 SmallVector<CCValAssign, 16> RVLocs; 5759 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5760 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5761 } 5762 5763 SDValue 5764 PPCTargetLowering::LowerReturn(SDValue Chain, 5765 CallingConv::ID CallConv, bool isVarArg, 5766 const SmallVectorImpl<ISD::OutputArg> &Outs, 5767 const SmallVectorImpl<SDValue> &OutVals, 5768 SDLoc dl, SelectionDAG &DAG) const { 5769 5770 SmallVector<CCValAssign, 16> RVLocs; 5771 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5772 *DAG.getContext()); 5773 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5774 5775 SDValue Flag; 5776 SmallVector<SDValue, 4> RetOps(1, Chain); 5777 5778 // Copy the result values into the output registers. 5779 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5780 CCValAssign &VA = RVLocs[i]; 5781 assert(VA.isRegLoc() && "Can only return in registers!"); 5782 5783 SDValue Arg = OutVals[i]; 5784 5785 switch (VA.getLocInfo()) { 5786 default: llvm_unreachable("Unknown loc info!"); 5787 case CCValAssign::Full: break; 5788 case CCValAssign::AExt: 5789 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5790 break; 5791 case CCValAssign::ZExt: 5792 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5793 break; 5794 case CCValAssign::SExt: 5795 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5796 break; 5797 } 5798 5799 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5800 Flag = Chain.getValue(1); 5801 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5802 } 5803 5804 RetOps[0] = Chain; // Update chain. 5805 5806 // Add the flag if we have it. 5807 if (Flag.getNode()) 5808 RetOps.push_back(Flag); 5809 5810 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5811 } 5812 5813 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5814 const PPCSubtarget &Subtarget) const { 5815 // When we pop the dynamic allocation we need to restore the SP link. 5816 SDLoc dl(Op); 5817 5818 // Get the corect type for pointers. 5819 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5820 5821 // Construct the stack pointer operand. 5822 bool isPPC64 = Subtarget.isPPC64(); 5823 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5824 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5825 5826 // Get the operands for the STACKRESTORE. 5827 SDValue Chain = Op.getOperand(0); 5828 SDValue SaveSP = Op.getOperand(1); 5829 5830 // Load the old link SP. 5831 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5832 MachinePointerInfo(), 5833 false, false, false, 0); 5834 5835 // Restore the stack pointer. 5836 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5837 5838 // Store the old link SP. 5839 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5840 false, false, 0); 5841 } 5842 5843 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5844 MachineFunction &MF = DAG.getMachineFunction(); 5845 bool isPPC64 = Subtarget.isPPC64(); 5846 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5847 5848 // Get current frame pointer save index. The users of this index will be 5849 // primarily DYNALLOC instructions. 5850 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5851 int RASI = FI->getReturnAddrSaveIndex(); 5852 5853 // If the frame pointer save index hasn't been defined yet. 5854 if (!RASI) { 5855 // Find out what the fix offset of the frame pointer save area. 5856 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5857 // Allocate the frame index for frame pointer save area. 5858 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5859 // Save the result. 5860 FI->setReturnAddrSaveIndex(RASI); 5861 } 5862 return DAG.getFrameIndex(RASI, PtrVT); 5863 } 5864 5865 SDValue 5866 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5867 MachineFunction &MF = DAG.getMachineFunction(); 5868 bool isPPC64 = Subtarget.isPPC64(); 5869 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5870 5871 // Get current frame pointer save index. The users of this index will be 5872 // primarily DYNALLOC instructions. 5873 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5874 int FPSI = FI->getFramePointerSaveIndex(); 5875 5876 // If the frame pointer save index hasn't been defined yet. 5877 if (!FPSI) { 5878 // Find out what the fix offset of the frame pointer save area. 5879 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5880 // Allocate the frame index for frame pointer save area. 5881 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5882 // Save the result. 5883 FI->setFramePointerSaveIndex(FPSI); 5884 } 5885 return DAG.getFrameIndex(FPSI, PtrVT); 5886 } 5887 5888 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5889 SelectionDAG &DAG, 5890 const PPCSubtarget &Subtarget) const { 5891 // Get the inputs. 5892 SDValue Chain = Op.getOperand(0); 5893 SDValue Size = Op.getOperand(1); 5894 SDLoc dl(Op); 5895 5896 // Get the corect type for pointers. 5897 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5898 // Negate the size. 5899 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5900 DAG.getConstant(0, dl, PtrVT), Size); 5901 // Construct a node for the frame pointer save index. 5902 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5903 // Build a DYNALLOC node. 5904 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5905 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5906 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5907 } 5908 5909 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5910 SelectionDAG &DAG) const { 5911 SDLoc DL(Op); 5912 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5913 DAG.getVTList(MVT::i32, MVT::Other), 5914 Op.getOperand(0), Op.getOperand(1)); 5915 } 5916 5917 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5918 SelectionDAG &DAG) const { 5919 SDLoc DL(Op); 5920 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5921 Op.getOperand(0), Op.getOperand(1)); 5922 } 5923 5924 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5925 if (Op.getValueType().isVector()) 5926 return LowerVectorLoad(Op, DAG); 5927 5928 assert(Op.getValueType() == MVT::i1 && 5929 "Custom lowering only for i1 loads"); 5930 5931 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5932 5933 SDLoc dl(Op); 5934 LoadSDNode *LD = cast<LoadSDNode>(Op); 5935 5936 SDValue Chain = LD->getChain(); 5937 SDValue BasePtr = LD->getBasePtr(); 5938 MachineMemOperand *MMO = LD->getMemOperand(); 5939 5940 SDValue NewLD = 5941 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5942 BasePtr, MVT::i8, MMO); 5943 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5944 5945 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5946 return DAG.getMergeValues(Ops, dl); 5947 } 5948 5949 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5950 if (Op.getOperand(1).getValueType().isVector()) 5951 return LowerVectorStore(Op, DAG); 5952 5953 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5954 "Custom lowering only for i1 stores"); 5955 5956 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5957 5958 SDLoc dl(Op); 5959 StoreSDNode *ST = cast<StoreSDNode>(Op); 5960 5961 SDValue Chain = ST->getChain(); 5962 SDValue BasePtr = ST->getBasePtr(); 5963 SDValue Value = ST->getValue(); 5964 MachineMemOperand *MMO = ST->getMemOperand(); 5965 5966 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5967 Value); 5968 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5969 } 5970 5971 // FIXME: Remove this once the ANDI glue bug is fixed: 5972 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5973 assert(Op.getValueType() == MVT::i1 && 5974 "Custom lowering only for i1 results"); 5975 5976 SDLoc DL(Op); 5977 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5978 Op.getOperand(0)); 5979 } 5980 5981 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5982 /// possible. 5983 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5984 // Not FP? Not a fsel. 5985 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5986 !Op.getOperand(2).getValueType().isFloatingPoint()) 5987 return Op; 5988 5989 // We might be able to do better than this under some circumstances, but in 5990 // general, fsel-based lowering of select is a finite-math-only optimization. 5991 // For more information, see section F.3 of the 2.06 ISA specification. 5992 if (!DAG.getTarget().Options.NoInfsFPMath || 5993 !DAG.getTarget().Options.NoNaNsFPMath) 5994 return Op; 5995 // TODO: Propagate flags from the select rather than global settings. 5996 SDNodeFlags Flags; 5997 Flags.setNoInfs(true); 5998 Flags.setNoNaNs(true); 5999 6000 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6001 6002 EVT ResVT = Op.getValueType(); 6003 EVT CmpVT = Op.getOperand(0).getValueType(); 6004 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6005 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6006 SDLoc dl(Op); 6007 6008 // If the RHS of the comparison is a 0.0, we don't need to do the 6009 // subtraction at all. 6010 SDValue Sel1; 6011 if (isFloatingPointZero(RHS)) 6012 switch (CC) { 6013 default: break; // SETUO etc aren't handled by fsel. 6014 case ISD::SETNE: 6015 std::swap(TV, FV); 6016 case ISD::SETEQ: 6017 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6018 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6019 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6020 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6021 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6022 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6023 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6024 case ISD::SETULT: 6025 case ISD::SETLT: 6026 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6027 case ISD::SETOGE: 6028 case ISD::SETGE: 6029 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6030 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6031 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6032 case ISD::SETUGT: 6033 case ISD::SETGT: 6034 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6035 case ISD::SETOLE: 6036 case ISD::SETLE: 6037 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6038 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6039 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6040 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6041 } 6042 6043 SDValue Cmp; 6044 switch (CC) { 6045 default: break; // SETUO etc aren't handled by fsel. 6046 case ISD::SETNE: 6047 std::swap(TV, FV); 6048 case ISD::SETEQ: 6049 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6050 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6051 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6052 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6053 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6054 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6055 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6056 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6057 case ISD::SETULT: 6058 case ISD::SETLT: 6059 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6060 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6061 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6062 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6063 case ISD::SETOGE: 6064 case ISD::SETGE: 6065 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6066 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6067 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6068 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6069 case ISD::SETUGT: 6070 case ISD::SETGT: 6071 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6072 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6073 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6074 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6075 case ISD::SETOLE: 6076 case ISD::SETLE: 6077 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6078 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6079 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6080 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6081 } 6082 return Op; 6083 } 6084 6085 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6086 SelectionDAG &DAG, 6087 SDLoc dl) const { 6088 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6089 SDValue Src = Op.getOperand(0); 6090 if (Src.getValueType() == MVT::f32) 6091 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6092 6093 SDValue Tmp; 6094 switch (Op.getSimpleValueType().SimpleTy) { 6095 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6096 case MVT::i32: 6097 Tmp = DAG.getNode( 6098 Op.getOpcode() == ISD::FP_TO_SINT 6099 ? PPCISD::FCTIWZ 6100 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6101 dl, MVT::f64, Src); 6102 break; 6103 case MVT::i64: 6104 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6105 "i64 FP_TO_UINT is supported only with FPCVT"); 6106 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6107 PPCISD::FCTIDUZ, 6108 dl, MVT::f64, Src); 6109 break; 6110 } 6111 6112 // Convert the FP value to an int value through memory. 6113 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6114 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6115 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6116 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6117 MachinePointerInfo MPI = 6118 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6119 6120 // Emit a store to the stack slot. 6121 SDValue Chain; 6122 if (i32Stack) { 6123 MachineFunction &MF = DAG.getMachineFunction(); 6124 MachineMemOperand *MMO = 6125 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6126 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6127 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6128 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6129 } else 6130 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6131 MPI, false, false, 0); 6132 6133 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6134 // add in a bias. 6135 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6136 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6137 DAG.getConstant(4, dl, FIPtr.getValueType())); 6138 MPI = MPI.getWithOffset(4); 6139 } 6140 6141 RLI.Chain = Chain; 6142 RLI.Ptr = FIPtr; 6143 RLI.MPI = MPI; 6144 } 6145 6146 /// \brief Custom lowers floating point to integer conversions to use 6147 /// the direct move instructions available in ISA 2.07 to avoid the 6148 /// need for load/store combinations. 6149 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6150 SelectionDAG &DAG, 6151 SDLoc dl) const { 6152 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6153 SDValue Src = Op.getOperand(0); 6154 6155 if (Src.getValueType() == MVT::f32) 6156 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6157 6158 SDValue Tmp; 6159 switch (Op.getSimpleValueType().SimpleTy) { 6160 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6161 case MVT::i32: 6162 Tmp = DAG.getNode( 6163 Op.getOpcode() == ISD::FP_TO_SINT 6164 ? PPCISD::FCTIWZ 6165 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6166 dl, MVT::f64, Src); 6167 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6168 break; 6169 case MVT::i64: 6170 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6171 "i64 FP_TO_UINT is supported only with FPCVT"); 6172 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6173 PPCISD::FCTIDUZ, 6174 dl, MVT::f64, Src); 6175 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6176 break; 6177 } 6178 return Tmp; 6179 } 6180 6181 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6182 SDLoc dl) const { 6183 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6184 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6185 6186 ReuseLoadInfo RLI; 6187 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6188 6189 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6190 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6191 RLI.Ranges); 6192 } 6193 6194 // We're trying to insert a regular store, S, and then a load, L. If the 6195 // incoming value, O, is a load, we might just be able to have our load use the 6196 // address used by O. However, we don't know if anything else will store to 6197 // that address before we can load from it. To prevent this situation, we need 6198 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6199 // the same chain operand as O, we create a token factor from the chain results 6200 // of O and L, and we replace all uses of O's chain result with that token 6201 // factor (see spliceIntoChain below for this last part). 6202 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6203 ReuseLoadInfo &RLI, 6204 SelectionDAG &DAG, 6205 ISD::LoadExtType ET) const { 6206 SDLoc dl(Op); 6207 if (ET == ISD::NON_EXTLOAD && 6208 (Op.getOpcode() == ISD::FP_TO_UINT || 6209 Op.getOpcode() == ISD::FP_TO_SINT) && 6210 isOperationLegalOrCustom(Op.getOpcode(), 6211 Op.getOperand(0).getValueType())) { 6212 6213 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6214 return true; 6215 } 6216 6217 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6218 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6219 LD->isNonTemporal()) 6220 return false; 6221 if (LD->getMemoryVT() != MemVT) 6222 return false; 6223 6224 RLI.Ptr = LD->getBasePtr(); 6225 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6226 assert(LD->getAddressingMode() == ISD::PRE_INC && 6227 "Non-pre-inc AM on PPC?"); 6228 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6229 LD->getOffset()); 6230 } 6231 6232 RLI.Chain = LD->getChain(); 6233 RLI.MPI = LD->getPointerInfo(); 6234 RLI.IsInvariant = LD->isInvariant(); 6235 RLI.Alignment = LD->getAlignment(); 6236 RLI.AAInfo = LD->getAAInfo(); 6237 RLI.Ranges = LD->getRanges(); 6238 6239 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6240 return true; 6241 } 6242 6243 // Given the head of the old chain, ResChain, insert a token factor containing 6244 // it and NewResChain, and make users of ResChain now be users of that token 6245 // factor. 6246 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6247 SDValue NewResChain, 6248 SelectionDAG &DAG) const { 6249 if (!ResChain) 6250 return; 6251 6252 SDLoc dl(NewResChain); 6253 6254 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6255 NewResChain, DAG.getUNDEF(MVT::Other)); 6256 assert(TF.getNode() != NewResChain.getNode() && 6257 "A new TF really is required here"); 6258 6259 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6260 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6261 } 6262 6263 /// \brief Custom lowers integer to floating point conversions to use 6264 /// the direct move instructions available in ISA 2.07 to avoid the 6265 /// need for load/store combinations. 6266 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6267 SelectionDAG &DAG, 6268 SDLoc dl) const { 6269 assert((Op.getValueType() == MVT::f32 || 6270 Op.getValueType() == MVT::f64) && 6271 "Invalid floating point type as target of conversion"); 6272 assert(Subtarget.hasFPCVT() && 6273 "Int to FP conversions with direct moves require FPCVT"); 6274 SDValue FP; 6275 SDValue Src = Op.getOperand(0); 6276 bool SinglePrec = Op.getValueType() == MVT::f32; 6277 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6278 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6279 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6280 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6281 6282 if (WordInt) { 6283 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6284 dl, MVT::f64, Src); 6285 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6286 } 6287 else { 6288 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6289 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6290 } 6291 6292 return FP; 6293 } 6294 6295 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6296 SelectionDAG &DAG) const { 6297 SDLoc dl(Op); 6298 6299 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6300 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6301 return SDValue(); 6302 6303 SDValue Value = Op.getOperand(0); 6304 // The values are now known to be -1 (false) or 1 (true). To convert this 6305 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6306 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6307 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6308 6309 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6310 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs, 6311 FPHalfs, FPHalfs); 6312 6313 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6314 6315 if (Op.getValueType() != MVT::v4f64) 6316 Value = DAG.getNode(ISD::FP_ROUND, dl, 6317 Op.getValueType(), Value, 6318 DAG.getIntPtrConstant(1, dl)); 6319 return Value; 6320 } 6321 6322 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6323 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6324 return SDValue(); 6325 6326 if (Op.getOperand(0).getValueType() == MVT::i1) 6327 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6328 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6329 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6330 6331 // If we have direct moves, we can do all the conversion, skip the store/load 6332 // however, without FPCVT we can't do most conversions. 6333 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6334 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6335 6336 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6337 "UINT_TO_FP is supported only with FPCVT"); 6338 6339 // If we have FCFIDS, then use it when converting to single-precision. 6340 // Otherwise, convert to double-precision and then round. 6341 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6342 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6343 : PPCISD::FCFIDS) 6344 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6345 : PPCISD::FCFID); 6346 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6347 ? MVT::f32 6348 : MVT::f64; 6349 6350 if (Op.getOperand(0).getValueType() == MVT::i64) { 6351 SDValue SINT = Op.getOperand(0); 6352 // When converting to single-precision, we actually need to convert 6353 // to double-precision first and then round to single-precision. 6354 // To avoid double-rounding effects during that operation, we have 6355 // to prepare the input operand. Bits that might be truncated when 6356 // converting to double-precision are replaced by a bit that won't 6357 // be lost at this stage, but is below the single-precision rounding 6358 // position. 6359 // 6360 // However, if -enable-unsafe-fp-math is in effect, accept double 6361 // rounding to avoid the extra overhead. 6362 if (Op.getValueType() == MVT::f32 && 6363 !Subtarget.hasFPCVT() && 6364 !DAG.getTarget().Options.UnsafeFPMath) { 6365 6366 // Twiddle input to make sure the low 11 bits are zero. (If this 6367 // is the case, we are guaranteed the value will fit into the 53 bit 6368 // mantissa of an IEEE double-precision value without rounding.) 6369 // If any of those low 11 bits were not zero originally, make sure 6370 // bit 12 (value 2048) is set instead, so that the final rounding 6371 // to single-precision gets the correct result. 6372 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6373 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6374 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6375 Round, DAG.getConstant(2047, dl, MVT::i64)); 6376 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6377 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6378 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6379 6380 // However, we cannot use that value unconditionally: if the magnitude 6381 // of the input value is small, the bit-twiddling we did above might 6382 // end up visibly changing the output. Fortunately, in that case, we 6383 // don't need to twiddle bits since the original input will convert 6384 // exactly to double-precision floating-point already. Therefore, 6385 // construct a conditional to use the original value if the top 11 6386 // bits are all sign-bit copies, and use the rounded value computed 6387 // above otherwise. 6388 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6389 SINT, DAG.getConstant(53, dl, MVT::i32)); 6390 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6391 Cond, DAG.getConstant(1, dl, MVT::i64)); 6392 Cond = DAG.getSetCC(dl, MVT::i32, 6393 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6394 6395 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6396 } 6397 6398 ReuseLoadInfo RLI; 6399 SDValue Bits; 6400 6401 MachineFunction &MF = DAG.getMachineFunction(); 6402 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6403 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6404 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6405 RLI.Ranges); 6406 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6407 } else if (Subtarget.hasLFIWAX() && 6408 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6409 MachineMemOperand *MMO = 6410 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6411 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6412 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6413 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6414 DAG.getVTList(MVT::f64, MVT::Other), 6415 Ops, MVT::i32, MMO); 6416 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6417 } else if (Subtarget.hasFPCVT() && 6418 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6419 MachineMemOperand *MMO = 6420 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6421 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6422 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6423 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6424 DAG.getVTList(MVT::f64, MVT::Other), 6425 Ops, MVT::i32, MMO); 6426 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6427 } else if (((Subtarget.hasLFIWAX() && 6428 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6429 (Subtarget.hasFPCVT() && 6430 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6431 SINT.getOperand(0).getValueType() == MVT::i32) { 6432 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6433 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6434 6435 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6436 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6437 6438 SDValue Store = DAG.getStore( 6439 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6440 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6441 false, false, 0); 6442 6443 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6444 "Expected an i32 store"); 6445 6446 RLI.Ptr = FIdx; 6447 RLI.Chain = Store; 6448 RLI.MPI = 6449 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6450 RLI.Alignment = 4; 6451 6452 MachineMemOperand *MMO = 6453 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6454 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6455 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6456 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6457 PPCISD::LFIWZX : PPCISD::LFIWAX, 6458 dl, DAG.getVTList(MVT::f64, MVT::Other), 6459 Ops, MVT::i32, MMO); 6460 } else 6461 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6462 6463 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6464 6465 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6466 FP = DAG.getNode(ISD::FP_ROUND, dl, 6467 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6468 return FP; 6469 } 6470 6471 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6472 "Unhandled INT_TO_FP type in custom expander!"); 6473 // Since we only generate this in 64-bit mode, we can take advantage of 6474 // 64-bit registers. In particular, sign extend the input value into the 6475 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6476 // then lfd it and fcfid it. 6477 MachineFunction &MF = DAG.getMachineFunction(); 6478 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6479 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6480 6481 SDValue Ld; 6482 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6483 ReuseLoadInfo RLI; 6484 bool ReusingLoad; 6485 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6486 DAG))) { 6487 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6488 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6489 6490 SDValue Store = DAG.getStore( 6491 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6492 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6493 false, false, 0); 6494 6495 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6496 "Expected an i32 store"); 6497 6498 RLI.Ptr = FIdx; 6499 RLI.Chain = Store; 6500 RLI.MPI = 6501 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6502 RLI.Alignment = 4; 6503 } 6504 6505 MachineMemOperand *MMO = 6506 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6507 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6508 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6509 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6510 PPCISD::LFIWZX : PPCISD::LFIWAX, 6511 dl, DAG.getVTList(MVT::f64, MVT::Other), 6512 Ops, MVT::i32, MMO); 6513 if (ReusingLoad) 6514 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6515 } else { 6516 assert(Subtarget.isPPC64() && 6517 "i32->FP without LFIWAX supported only on PPC64"); 6518 6519 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6520 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6521 6522 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6523 Op.getOperand(0)); 6524 6525 // STD the extended value into the stack slot. 6526 SDValue Store = DAG.getStore( 6527 DAG.getEntryNode(), dl, Ext64, FIdx, 6528 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6529 false, false, 0); 6530 6531 // Load the value as a double. 6532 Ld = DAG.getLoad( 6533 MVT::f64, dl, Store, FIdx, 6534 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6535 false, false, false, 0); 6536 } 6537 6538 // FCFID it and return it. 6539 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6540 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6541 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6542 DAG.getIntPtrConstant(0, dl)); 6543 return FP; 6544 } 6545 6546 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6547 SelectionDAG &DAG) const { 6548 SDLoc dl(Op); 6549 /* 6550 The rounding mode is in bits 30:31 of FPSR, and has the following 6551 settings: 6552 00 Round to nearest 6553 01 Round to 0 6554 10 Round to +inf 6555 11 Round to -inf 6556 6557 FLT_ROUNDS, on the other hand, expects the following: 6558 -1 Undefined 6559 0 Round to 0 6560 1 Round to nearest 6561 2 Round to +inf 6562 3 Round to -inf 6563 6564 To perform the conversion, we do: 6565 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6566 */ 6567 6568 MachineFunction &MF = DAG.getMachineFunction(); 6569 EVT VT = Op.getValueType(); 6570 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6571 6572 // Save FP Control Word to register 6573 EVT NodeTys[] = { 6574 MVT::f64, // return register 6575 MVT::Glue // unused in this context 6576 }; 6577 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6578 6579 // Save FP register to stack slot 6580 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6581 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6582 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6583 StackSlot, MachinePointerInfo(), false, false,0); 6584 6585 // Load FP Control Word from low 32 bits of stack slot. 6586 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6587 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6588 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6589 false, false, false, 0); 6590 6591 // Transform as necessary 6592 SDValue CWD1 = 6593 DAG.getNode(ISD::AND, dl, MVT::i32, 6594 CWD, DAG.getConstant(3, dl, MVT::i32)); 6595 SDValue CWD2 = 6596 DAG.getNode(ISD::SRL, dl, MVT::i32, 6597 DAG.getNode(ISD::AND, dl, MVT::i32, 6598 DAG.getNode(ISD::XOR, dl, MVT::i32, 6599 CWD, DAG.getConstant(3, dl, MVT::i32)), 6600 DAG.getConstant(3, dl, MVT::i32)), 6601 DAG.getConstant(1, dl, MVT::i32)); 6602 6603 SDValue RetVal = 6604 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6605 6606 return DAG.getNode((VT.getSizeInBits() < 16 ? 6607 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6608 } 6609 6610 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6611 EVT VT = Op.getValueType(); 6612 unsigned BitWidth = VT.getSizeInBits(); 6613 SDLoc dl(Op); 6614 assert(Op.getNumOperands() == 3 && 6615 VT == Op.getOperand(1).getValueType() && 6616 "Unexpected SHL!"); 6617 6618 // Expand into a bunch of logical ops. Note that these ops 6619 // depend on the PPC behavior for oversized shift amounts. 6620 SDValue Lo = Op.getOperand(0); 6621 SDValue Hi = Op.getOperand(1); 6622 SDValue Amt = Op.getOperand(2); 6623 EVT AmtVT = Amt.getValueType(); 6624 6625 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6626 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6627 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6628 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6629 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6630 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6631 DAG.getConstant(-BitWidth, dl, AmtVT)); 6632 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6633 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6634 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6635 SDValue OutOps[] = { OutLo, OutHi }; 6636 return DAG.getMergeValues(OutOps, dl); 6637 } 6638 6639 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6640 EVT VT = Op.getValueType(); 6641 SDLoc dl(Op); 6642 unsigned BitWidth = VT.getSizeInBits(); 6643 assert(Op.getNumOperands() == 3 && 6644 VT == Op.getOperand(1).getValueType() && 6645 "Unexpected SRL!"); 6646 6647 // Expand into a bunch of logical ops. Note that these ops 6648 // depend on the PPC behavior for oversized shift amounts. 6649 SDValue Lo = Op.getOperand(0); 6650 SDValue Hi = Op.getOperand(1); 6651 SDValue Amt = Op.getOperand(2); 6652 EVT AmtVT = Amt.getValueType(); 6653 6654 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6655 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6656 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6657 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6658 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6659 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6660 DAG.getConstant(-BitWidth, dl, AmtVT)); 6661 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6662 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6663 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6664 SDValue OutOps[] = { OutLo, OutHi }; 6665 return DAG.getMergeValues(OutOps, dl); 6666 } 6667 6668 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6669 SDLoc dl(Op); 6670 EVT VT = Op.getValueType(); 6671 unsigned BitWidth = VT.getSizeInBits(); 6672 assert(Op.getNumOperands() == 3 && 6673 VT == Op.getOperand(1).getValueType() && 6674 "Unexpected SRA!"); 6675 6676 // Expand into a bunch of logical ops, followed by a select_cc. 6677 SDValue Lo = Op.getOperand(0); 6678 SDValue Hi = Op.getOperand(1); 6679 SDValue Amt = Op.getOperand(2); 6680 EVT AmtVT = Amt.getValueType(); 6681 6682 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6683 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6684 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6685 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6686 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6687 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6688 DAG.getConstant(-BitWidth, dl, AmtVT)); 6689 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6690 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6691 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6692 Tmp4, Tmp6, ISD::SETLE); 6693 SDValue OutOps[] = { OutLo, OutHi }; 6694 return DAG.getMergeValues(OutOps, dl); 6695 } 6696 6697 //===----------------------------------------------------------------------===// 6698 // Vector related lowering. 6699 // 6700 6701 /// BuildSplatI - Build a canonical splati of Val with an element size of 6702 /// SplatSize. Cast the result to VT. 6703 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6704 SelectionDAG &DAG, SDLoc dl) { 6705 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6706 6707 static const MVT VTys[] = { // canonical VT to use for each size. 6708 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6709 }; 6710 6711 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6712 6713 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6714 if (Val == -1) 6715 SplatSize = 1; 6716 6717 EVT CanonicalVT = VTys[SplatSize-1]; 6718 6719 // Build a canonical splat for this value. 6720 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6721 SmallVector<SDValue, 8> Ops; 6722 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6723 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6724 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6725 } 6726 6727 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6728 /// specified intrinsic ID. 6729 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6730 SelectionDAG &DAG, SDLoc dl, 6731 EVT DestVT = MVT::Other) { 6732 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6733 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6734 DAG.getConstant(IID, dl, MVT::i32), Op); 6735 } 6736 6737 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6738 /// specified intrinsic ID. 6739 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6740 SelectionDAG &DAG, SDLoc dl, 6741 EVT DestVT = MVT::Other) { 6742 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6743 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6744 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6745 } 6746 6747 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6748 /// specified intrinsic ID. 6749 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6750 SDValue Op2, SelectionDAG &DAG, 6751 SDLoc dl, EVT DestVT = MVT::Other) { 6752 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6753 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6754 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6755 } 6756 6757 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6758 /// amount. The result has the specified value type. 6759 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6760 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6761 // Force LHS/RHS to be the right type. 6762 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6763 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6764 6765 int Ops[16]; 6766 for (unsigned i = 0; i != 16; ++i) 6767 Ops[i] = i + Amt; 6768 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6769 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6770 } 6771 6772 // If this is a case we can't handle, return null and let the default 6773 // expansion code take care of it. If we CAN select this case, and if it 6774 // selects to a single instruction, return Op. Otherwise, if we can codegen 6775 // this case more efficiently than a constant pool load, lower it to the 6776 // sequence of ops that should be used. 6777 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6778 SelectionDAG &DAG) const { 6779 SDLoc dl(Op); 6780 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6781 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6782 6783 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6784 // We first build an i32 vector, load it into a QPX register, 6785 // then convert it to a floating-point vector and compare it 6786 // to a zero vector to get the boolean result. 6787 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6788 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6789 MachinePointerInfo PtrInfo = 6790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6791 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6792 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6793 6794 assert(BVN->getNumOperands() == 4 && 6795 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6796 6797 bool IsConst = true; 6798 for (unsigned i = 0; i < 4; ++i) { 6799 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6800 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6801 IsConst = false; 6802 break; 6803 } 6804 } 6805 6806 if (IsConst) { 6807 Constant *One = 6808 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6809 Constant *NegOne = 6810 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6811 6812 SmallVector<Constant*, 4> CV(4, NegOne); 6813 for (unsigned i = 0; i < 4; ++i) { 6814 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6815 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6816 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6817 getConstantIntValue()->isZero()) 6818 continue; 6819 else 6820 CV[i] = One; 6821 } 6822 6823 Constant *CP = ConstantVector::get(CV); 6824 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6825 16 /* alignment */); 6826 6827 SmallVector<SDValue, 2> Ops; 6828 Ops.push_back(DAG.getEntryNode()); 6829 Ops.push_back(CPIdx); 6830 6831 SmallVector<EVT, 2> ValueVTs; 6832 ValueVTs.push_back(MVT::v4i1); 6833 ValueVTs.push_back(MVT::Other); // chain 6834 SDVTList VTs = DAG.getVTList(ValueVTs); 6835 6836 return DAG.getMemIntrinsicNode( 6837 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6838 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6839 } 6840 6841 SmallVector<SDValue, 4> Stores; 6842 for (unsigned i = 0; i < 4; ++i) { 6843 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6844 6845 unsigned Offset = 4*i; 6846 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6847 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6848 6849 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6850 if (StoreSize > 4) { 6851 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6852 BVN->getOperand(i), Idx, 6853 PtrInfo.getWithOffset(Offset), 6854 MVT::i32, false, false, 0)); 6855 } else { 6856 SDValue StoreValue = BVN->getOperand(i); 6857 if (StoreSize < 4) 6858 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6859 6860 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6861 StoreValue, Idx, 6862 PtrInfo.getWithOffset(Offset), 6863 false, false, 0)); 6864 } 6865 } 6866 6867 SDValue StoreChain; 6868 if (!Stores.empty()) 6869 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6870 else 6871 StoreChain = DAG.getEntryNode(); 6872 6873 // Now load from v4i32 into the QPX register; this will extend it to 6874 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6875 // is typed as v4f64 because the QPX register integer states are not 6876 // explicitly represented. 6877 6878 SmallVector<SDValue, 2> Ops; 6879 Ops.push_back(StoreChain); 6880 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6881 Ops.push_back(FIdx); 6882 6883 SmallVector<EVT, 2> ValueVTs; 6884 ValueVTs.push_back(MVT::v4f64); 6885 ValueVTs.push_back(MVT::Other); // chain 6886 SDVTList VTs = DAG.getVTList(ValueVTs); 6887 6888 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6889 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6890 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6891 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6892 LoadedVect); 6893 6894 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6895 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6896 FPZeros, FPZeros, FPZeros, FPZeros); 6897 6898 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6899 } 6900 6901 // All other QPX vectors are handled by generic code. 6902 if (Subtarget.hasQPX()) 6903 return SDValue(); 6904 6905 // Check if this is a splat of a constant value. 6906 APInt APSplatBits, APSplatUndef; 6907 unsigned SplatBitSize; 6908 bool HasAnyUndefs; 6909 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6910 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6911 SplatBitSize > 32) 6912 return SDValue(); 6913 6914 unsigned SplatBits = APSplatBits.getZExtValue(); 6915 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6916 unsigned SplatSize = SplatBitSize / 8; 6917 6918 // First, handle single instruction cases. 6919 6920 // All zeros? 6921 if (SplatBits == 0) { 6922 // Canonicalize all zero vectors to be v4i32. 6923 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6924 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6925 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6926 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6927 } 6928 return Op; 6929 } 6930 6931 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6932 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6933 (32-SplatBitSize)); 6934 if (SextVal >= -16 && SextVal <= 15) 6935 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6936 6937 // Two instruction sequences. 6938 6939 // If this value is in the range [-32,30] and is even, use: 6940 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6941 // If this value is in the range [17,31] and is odd, use: 6942 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6943 // If this value is in the range [-31,-17] and is odd, use: 6944 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6945 // Note the last two are three-instruction sequences. 6946 if (SextVal >= -32 && SextVal <= 31) { 6947 // To avoid having these optimizations undone by constant folding, 6948 // we convert to a pseudo that will be expanded later into one of 6949 // the above forms. 6950 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6951 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6952 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6953 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6954 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6955 if (VT == Op.getValueType()) 6956 return RetVal; 6957 else 6958 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6959 } 6960 6961 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6962 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6963 // for fneg/fabs. 6964 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6965 // Make -1 and vspltisw -1: 6966 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6967 6968 // Make the VSLW intrinsic, computing 0x8000_0000. 6969 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6970 OnesV, DAG, dl); 6971 6972 // xor by OnesV to invert it. 6973 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6974 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6975 } 6976 6977 // Check to see if this is a wide variety of vsplti*, binop self cases. 6978 static const signed char SplatCsts[] = { 6979 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6980 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6981 }; 6982 6983 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6984 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6985 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6986 int i = SplatCsts[idx]; 6987 6988 // Figure out what shift amount will be used by altivec if shifted by i in 6989 // this splat size. 6990 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6991 6992 // vsplti + shl self. 6993 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6994 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6995 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6996 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6997 Intrinsic::ppc_altivec_vslw 6998 }; 6999 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7000 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7001 } 7002 7003 // vsplti + srl self. 7004 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7005 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7006 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7007 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7008 Intrinsic::ppc_altivec_vsrw 7009 }; 7010 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7011 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7012 } 7013 7014 // vsplti + sra self. 7015 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7016 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7017 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7018 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7019 Intrinsic::ppc_altivec_vsraw 7020 }; 7021 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7022 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7023 } 7024 7025 // vsplti + rol self. 7026 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7027 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7028 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7029 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7030 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7031 Intrinsic::ppc_altivec_vrlw 7032 }; 7033 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7034 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7035 } 7036 7037 // t = vsplti c, result = vsldoi t, t, 1 7038 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7039 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7040 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7041 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7042 } 7043 // t = vsplti c, result = vsldoi t, t, 2 7044 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7045 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7046 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7047 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7048 } 7049 // t = vsplti c, result = vsldoi t, t, 3 7050 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7051 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7052 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7053 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7054 } 7055 } 7056 7057 return SDValue(); 7058 } 7059 7060 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7061 /// the specified operations to build the shuffle. 7062 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7063 SDValue RHS, SelectionDAG &DAG, 7064 SDLoc dl) { 7065 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7066 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7067 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7068 7069 enum { 7070 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7071 OP_VMRGHW, 7072 OP_VMRGLW, 7073 OP_VSPLTISW0, 7074 OP_VSPLTISW1, 7075 OP_VSPLTISW2, 7076 OP_VSPLTISW3, 7077 OP_VSLDOI4, 7078 OP_VSLDOI8, 7079 OP_VSLDOI12 7080 }; 7081 7082 if (OpNum == OP_COPY) { 7083 if (LHSID == (1*9+2)*9+3) return LHS; 7084 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7085 return RHS; 7086 } 7087 7088 SDValue OpLHS, OpRHS; 7089 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7090 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7091 7092 int ShufIdxs[16]; 7093 switch (OpNum) { 7094 default: llvm_unreachable("Unknown i32 permute!"); 7095 case OP_VMRGHW: 7096 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7097 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7098 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7099 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7100 break; 7101 case OP_VMRGLW: 7102 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7103 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7104 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7105 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7106 break; 7107 case OP_VSPLTISW0: 7108 for (unsigned i = 0; i != 16; ++i) 7109 ShufIdxs[i] = (i&3)+0; 7110 break; 7111 case OP_VSPLTISW1: 7112 for (unsigned i = 0; i != 16; ++i) 7113 ShufIdxs[i] = (i&3)+4; 7114 break; 7115 case OP_VSPLTISW2: 7116 for (unsigned i = 0; i != 16; ++i) 7117 ShufIdxs[i] = (i&3)+8; 7118 break; 7119 case OP_VSPLTISW3: 7120 for (unsigned i = 0; i != 16; ++i) 7121 ShufIdxs[i] = (i&3)+12; 7122 break; 7123 case OP_VSLDOI4: 7124 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7125 case OP_VSLDOI8: 7126 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7127 case OP_VSLDOI12: 7128 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7129 } 7130 EVT VT = OpLHS.getValueType(); 7131 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7132 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7133 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7134 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7135 } 7136 7137 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7138 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7139 /// return the code it can be lowered into. Worst case, it can always be 7140 /// lowered into a vperm. 7141 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7142 SelectionDAG &DAG) const { 7143 SDLoc dl(Op); 7144 SDValue V1 = Op.getOperand(0); 7145 SDValue V2 = Op.getOperand(1); 7146 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7147 EVT VT = Op.getValueType(); 7148 bool isLittleEndian = Subtarget.isLittleEndian(); 7149 7150 if (Subtarget.hasQPX()) { 7151 if (VT.getVectorNumElements() != 4) 7152 return SDValue(); 7153 7154 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7155 7156 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7157 if (AlignIdx != -1) { 7158 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7159 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7160 } else if (SVOp->isSplat()) { 7161 int SplatIdx = SVOp->getSplatIndex(); 7162 if (SplatIdx >= 4) { 7163 std::swap(V1, V2); 7164 SplatIdx -= 4; 7165 } 7166 7167 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7168 // nothing to do. 7169 7170 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7171 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7172 } 7173 7174 // Lower this into a qvgpci/qvfperm pair. 7175 7176 // Compute the qvgpci literal 7177 unsigned idx = 0; 7178 for (unsigned i = 0; i < 4; ++i) { 7179 int m = SVOp->getMaskElt(i); 7180 unsigned mm = m >= 0 ? (unsigned) m : i; 7181 idx |= mm << (3-i)*3; 7182 } 7183 7184 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7185 DAG.getConstant(idx, dl, MVT::i32)); 7186 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7187 } 7188 7189 // Cases that are handled by instructions that take permute immediates 7190 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7191 // selected by the instruction selector. 7192 if (V2.getOpcode() == ISD::UNDEF) { 7193 if (PPC::isSplatShuffleMask(SVOp, 1) || 7194 PPC::isSplatShuffleMask(SVOp, 2) || 7195 PPC::isSplatShuffleMask(SVOp, 4) || 7196 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7197 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7198 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7199 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7200 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7201 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7202 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7203 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7204 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7205 (Subtarget.hasP8Altivec() && ( 7206 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7207 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7208 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7209 return Op; 7210 } 7211 } 7212 7213 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7214 // and produce a fixed permutation. If any of these match, do not lower to 7215 // VPERM. 7216 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7217 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7218 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7219 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7220 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7221 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7222 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7223 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7224 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7225 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7226 (Subtarget.hasP8Altivec() && ( 7227 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7228 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7229 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7230 return Op; 7231 7232 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7233 // perfect shuffle table to emit an optimal matching sequence. 7234 ArrayRef<int> PermMask = SVOp->getMask(); 7235 7236 unsigned PFIndexes[4]; 7237 bool isFourElementShuffle = true; 7238 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7239 unsigned EltNo = 8; // Start out undef. 7240 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7241 if (PermMask[i*4+j] < 0) 7242 continue; // Undef, ignore it. 7243 7244 unsigned ByteSource = PermMask[i*4+j]; 7245 if ((ByteSource & 3) != j) { 7246 isFourElementShuffle = false; 7247 break; 7248 } 7249 7250 if (EltNo == 8) { 7251 EltNo = ByteSource/4; 7252 } else if (EltNo != ByteSource/4) { 7253 isFourElementShuffle = false; 7254 break; 7255 } 7256 } 7257 PFIndexes[i] = EltNo; 7258 } 7259 7260 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7261 // perfect shuffle vector to determine if it is cost effective to do this as 7262 // discrete instructions, or whether we should use a vperm. 7263 // For now, we skip this for little endian until such time as we have a 7264 // little-endian perfect shuffle table. 7265 if (isFourElementShuffle && !isLittleEndian) { 7266 // Compute the index in the perfect shuffle table. 7267 unsigned PFTableIndex = 7268 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7269 7270 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7271 unsigned Cost = (PFEntry >> 30); 7272 7273 // Determining when to avoid vperm is tricky. Many things affect the cost 7274 // of vperm, particularly how many times the perm mask needs to be computed. 7275 // For example, if the perm mask can be hoisted out of a loop or is already 7276 // used (perhaps because there are multiple permutes with the same shuffle 7277 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7278 // the loop requires an extra register. 7279 // 7280 // As a compromise, we only emit discrete instructions if the shuffle can be 7281 // generated in 3 or fewer operations. When we have loop information 7282 // available, if this block is within a loop, we should avoid using vperm 7283 // for 3-operation perms and use a constant pool load instead. 7284 if (Cost < 3) 7285 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7286 } 7287 7288 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7289 // vector that will get spilled to the constant pool. 7290 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7291 7292 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7293 // that it is in input element units, not in bytes. Convert now. 7294 7295 // For little endian, the order of the input vectors is reversed, and 7296 // the permutation mask is complemented with respect to 31. This is 7297 // necessary to produce proper semantics with the big-endian-biased vperm 7298 // instruction. 7299 EVT EltVT = V1.getValueType().getVectorElementType(); 7300 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7301 7302 SmallVector<SDValue, 16> ResultMask; 7303 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7304 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7305 7306 for (unsigned j = 0; j != BytesPerElement; ++j) 7307 if (isLittleEndian) 7308 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7309 dl, MVT::i32)); 7310 else 7311 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7312 MVT::i32)); 7313 } 7314 7315 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7316 ResultMask); 7317 if (isLittleEndian) 7318 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7319 V2, V1, VPermMask); 7320 else 7321 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7322 V1, V2, VPermMask); 7323 } 7324 7325 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7326 /// vector comparison. If it is, return true and fill in Opc/isDot with 7327 /// information about the intrinsic. 7328 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7329 bool &isDot, const PPCSubtarget &Subtarget) { 7330 unsigned IntrinsicID = 7331 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7332 CompareOpc = -1; 7333 isDot = false; 7334 switch (IntrinsicID) { 7335 default: return false; 7336 // Comparison predicates. 7337 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7338 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7339 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7340 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7341 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7342 case Intrinsic::ppc_altivec_vcmpequd_p: 7343 if (Subtarget.hasP8Altivec()) { 7344 CompareOpc = 199; 7345 isDot = 1; 7346 } else 7347 return false; 7348 7349 break; 7350 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7351 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7352 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7353 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7354 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7355 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7356 if (Subtarget.hasP8Altivec()) { 7357 CompareOpc = 967; 7358 isDot = 1; 7359 } else 7360 return false; 7361 7362 break; 7363 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7364 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7365 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7366 case Intrinsic::ppc_altivec_vcmpgtud_p: 7367 if (Subtarget.hasP8Altivec()) { 7368 CompareOpc = 711; 7369 isDot = 1; 7370 } else 7371 return false; 7372 7373 break; 7374 // VSX predicate comparisons use the same infrastructure 7375 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7376 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7377 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7378 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7379 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7380 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7381 if (Subtarget.hasVSX()) { 7382 switch (IntrinsicID) { 7383 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7384 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7385 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7386 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7387 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7388 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7389 } 7390 isDot = 1; 7391 } 7392 else 7393 return false; 7394 7395 break; 7396 7397 // Normal Comparisons. 7398 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7399 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7400 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7401 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7402 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7403 case Intrinsic::ppc_altivec_vcmpequd: 7404 if (Subtarget.hasP8Altivec()) { 7405 CompareOpc = 199; 7406 isDot = 0; 7407 } else 7408 return false; 7409 7410 break; 7411 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7412 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7413 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7414 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7415 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7416 case Intrinsic::ppc_altivec_vcmpgtsd: 7417 if (Subtarget.hasP8Altivec()) { 7418 CompareOpc = 967; 7419 isDot = 0; 7420 } else 7421 return false; 7422 7423 break; 7424 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7425 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7426 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7427 case Intrinsic::ppc_altivec_vcmpgtud: 7428 if (Subtarget.hasP8Altivec()) { 7429 CompareOpc = 711; 7430 isDot = 0; 7431 } else 7432 return false; 7433 7434 break; 7435 } 7436 return true; 7437 } 7438 7439 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7440 /// lower, do it, otherwise return null. 7441 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7442 SelectionDAG &DAG) const { 7443 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7444 // opcode number of the comparison. 7445 SDLoc dl(Op); 7446 int CompareOpc; 7447 bool isDot; 7448 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7449 return SDValue(); // Don't custom lower most intrinsics. 7450 7451 // If this is a non-dot comparison, make the VCMP node and we are done. 7452 if (!isDot) { 7453 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7454 Op.getOperand(1), Op.getOperand(2), 7455 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7456 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7457 } 7458 7459 // Create the PPCISD altivec 'dot' comparison node. 7460 SDValue Ops[] = { 7461 Op.getOperand(2), // LHS 7462 Op.getOperand(3), // RHS 7463 DAG.getConstant(CompareOpc, dl, MVT::i32) 7464 }; 7465 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7466 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7467 7468 // Now that we have the comparison, emit a copy from the CR to a GPR. 7469 // This is flagged to the above dot comparison. 7470 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7471 DAG.getRegister(PPC::CR6, MVT::i32), 7472 CompNode.getValue(1)); 7473 7474 // Unpack the result based on how the target uses it. 7475 unsigned BitNo; // Bit # of CR6. 7476 bool InvertBit; // Invert result? 7477 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7478 default: // Can't happen, don't crash on invalid number though. 7479 case 0: // Return the value of the EQ bit of CR6. 7480 BitNo = 0; InvertBit = false; 7481 break; 7482 case 1: // Return the inverted value of the EQ bit of CR6. 7483 BitNo = 0; InvertBit = true; 7484 break; 7485 case 2: // Return the value of the LT bit of CR6. 7486 BitNo = 2; InvertBit = false; 7487 break; 7488 case 3: // Return the inverted value of the LT bit of CR6. 7489 BitNo = 2; InvertBit = true; 7490 break; 7491 } 7492 7493 // Shift the bit into the low position. 7494 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7495 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7496 // Isolate the bit. 7497 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7498 DAG.getConstant(1, dl, MVT::i32)); 7499 7500 // If we are supposed to, toggle the bit. 7501 if (InvertBit) 7502 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7503 DAG.getConstant(1, dl, MVT::i32)); 7504 return Flags; 7505 } 7506 7507 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7508 SelectionDAG &DAG) const { 7509 SDLoc dl(Op); 7510 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7511 // instructions), but for smaller types, we need to first extend up to v2i32 7512 // before doing going farther. 7513 if (Op.getValueType() == MVT::v2i64) { 7514 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7515 if (ExtVT != MVT::v2i32) { 7516 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7517 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7518 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7519 ExtVT.getVectorElementType(), 4))); 7520 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7521 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7522 DAG.getValueType(MVT::v2i32)); 7523 } 7524 7525 return Op; 7526 } 7527 7528 return SDValue(); 7529 } 7530 7531 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7532 SelectionDAG &DAG) const { 7533 SDLoc dl(Op); 7534 // Create a stack slot that is 16-byte aligned. 7535 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7536 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7537 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7538 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7539 7540 // Store the input value into Value#0 of the stack slot. 7541 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7542 Op.getOperand(0), FIdx, MachinePointerInfo(), 7543 false, false, 0); 7544 // Load it out. 7545 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7546 false, false, false, 0); 7547 } 7548 7549 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7550 SelectionDAG &DAG) const { 7551 SDLoc dl(Op); 7552 SDNode *N = Op.getNode(); 7553 7554 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7555 "Unknown extract_vector_elt type"); 7556 7557 SDValue Value = N->getOperand(0); 7558 7559 // The first part of this is like the store lowering except that we don't 7560 // need to track the chain. 7561 7562 // The values are now known to be -1 (false) or 1 (true). To convert this 7563 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7564 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7565 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7566 7567 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7568 // understand how to form the extending load. 7569 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7570 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7571 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7572 7573 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7574 7575 // Now convert to an integer and store. 7576 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7577 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7578 Value); 7579 7580 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7581 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7582 MachinePointerInfo PtrInfo = 7583 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7584 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7585 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7586 7587 SDValue StoreChain = DAG.getEntryNode(); 7588 SmallVector<SDValue, 2> Ops; 7589 Ops.push_back(StoreChain); 7590 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7591 Ops.push_back(Value); 7592 Ops.push_back(FIdx); 7593 7594 SmallVector<EVT, 2> ValueVTs; 7595 ValueVTs.push_back(MVT::Other); // chain 7596 SDVTList VTs = DAG.getVTList(ValueVTs); 7597 7598 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7599 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7600 7601 // Extract the value requested. 7602 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7603 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7604 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7605 7606 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7607 PtrInfo.getWithOffset(Offset), 7608 false, false, false, 0); 7609 7610 if (!Subtarget.useCRBits()) 7611 return IntVal; 7612 7613 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7614 } 7615 7616 /// Lowering for QPX v4i1 loads 7617 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7618 SelectionDAG &DAG) const { 7619 SDLoc dl(Op); 7620 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7621 SDValue LoadChain = LN->getChain(); 7622 SDValue BasePtr = LN->getBasePtr(); 7623 7624 if (Op.getValueType() == MVT::v4f64 || 7625 Op.getValueType() == MVT::v4f32) { 7626 EVT MemVT = LN->getMemoryVT(); 7627 unsigned Alignment = LN->getAlignment(); 7628 7629 // If this load is properly aligned, then it is legal. 7630 if (Alignment >= MemVT.getStoreSize()) 7631 return Op; 7632 7633 EVT ScalarVT = Op.getValueType().getScalarType(), 7634 ScalarMemVT = MemVT.getScalarType(); 7635 unsigned Stride = ScalarMemVT.getStoreSize(); 7636 7637 SmallVector<SDValue, 8> Vals, LoadChains; 7638 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7639 SDValue Load; 7640 if (ScalarVT != ScalarMemVT) 7641 Load = 7642 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7643 BasePtr, 7644 LN->getPointerInfo().getWithOffset(Idx*Stride), 7645 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7646 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7647 LN->getAAInfo()); 7648 else 7649 Load = 7650 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7651 LN->getPointerInfo().getWithOffset(Idx*Stride), 7652 LN->isVolatile(), LN->isNonTemporal(), 7653 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7654 LN->getAAInfo()); 7655 7656 if (Idx == 0 && LN->isIndexed()) { 7657 assert(LN->getAddressingMode() == ISD::PRE_INC && 7658 "Unknown addressing mode on vector load"); 7659 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7660 LN->getAddressingMode()); 7661 } 7662 7663 Vals.push_back(Load); 7664 LoadChains.push_back(Load.getValue(1)); 7665 7666 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7667 DAG.getConstant(Stride, dl, 7668 BasePtr.getValueType())); 7669 } 7670 7671 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7672 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7673 Op.getValueType(), Vals); 7674 7675 if (LN->isIndexed()) { 7676 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7677 return DAG.getMergeValues(RetOps, dl); 7678 } 7679 7680 SDValue RetOps[] = { Value, TF }; 7681 return DAG.getMergeValues(RetOps, dl); 7682 } 7683 7684 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7685 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7686 7687 // To lower v4i1 from a byte array, we load the byte elements of the 7688 // vector and then reuse the BUILD_VECTOR logic. 7689 7690 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7691 for (unsigned i = 0; i < 4; ++i) { 7692 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7693 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7694 7695 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7696 dl, MVT::i32, LoadChain, Idx, 7697 LN->getPointerInfo().getWithOffset(i), 7698 MVT::i8 /* memory type */, 7699 LN->isVolatile(), LN->isNonTemporal(), 7700 LN->isInvariant(), 7701 1 /* alignment */, LN->getAAInfo())); 7702 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7703 } 7704 7705 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7706 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7707 7708 SDValue RVals[] = { Value, LoadChain }; 7709 return DAG.getMergeValues(RVals, dl); 7710 } 7711 7712 /// Lowering for QPX v4i1 stores 7713 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7714 SelectionDAG &DAG) const { 7715 SDLoc dl(Op); 7716 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7717 SDValue StoreChain = SN->getChain(); 7718 SDValue BasePtr = SN->getBasePtr(); 7719 SDValue Value = SN->getValue(); 7720 7721 if (Value.getValueType() == MVT::v4f64 || 7722 Value.getValueType() == MVT::v4f32) { 7723 EVT MemVT = SN->getMemoryVT(); 7724 unsigned Alignment = SN->getAlignment(); 7725 7726 // If this store is properly aligned, then it is legal. 7727 if (Alignment >= MemVT.getStoreSize()) 7728 return Op; 7729 7730 EVT ScalarVT = Value.getValueType().getScalarType(), 7731 ScalarMemVT = MemVT.getScalarType(); 7732 unsigned Stride = ScalarMemVT.getStoreSize(); 7733 7734 SmallVector<SDValue, 8> Stores; 7735 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7736 SDValue Ex = DAG.getNode( 7737 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7738 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7739 SDValue Store; 7740 if (ScalarVT != ScalarMemVT) 7741 Store = 7742 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7743 SN->getPointerInfo().getWithOffset(Idx*Stride), 7744 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7745 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7746 else 7747 Store = 7748 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7749 SN->getPointerInfo().getWithOffset(Idx*Stride), 7750 SN->isVolatile(), SN->isNonTemporal(), 7751 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7752 7753 if (Idx == 0 && SN->isIndexed()) { 7754 assert(SN->getAddressingMode() == ISD::PRE_INC && 7755 "Unknown addressing mode on vector store"); 7756 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7757 SN->getAddressingMode()); 7758 } 7759 7760 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7761 DAG.getConstant(Stride, dl, 7762 BasePtr.getValueType())); 7763 Stores.push_back(Store); 7764 } 7765 7766 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7767 7768 if (SN->isIndexed()) { 7769 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7770 return DAG.getMergeValues(RetOps, dl); 7771 } 7772 7773 return TF; 7774 } 7775 7776 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7777 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7778 7779 // The values are now known to be -1 (false) or 1 (true). To convert this 7780 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7781 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7782 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7783 7784 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7785 // understand how to form the extending load. 7786 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7787 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7788 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7789 7790 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7791 7792 // Now convert to an integer and store. 7793 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7794 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7795 Value); 7796 7797 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7798 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7799 MachinePointerInfo PtrInfo = 7800 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7801 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7802 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7803 7804 SmallVector<SDValue, 2> Ops; 7805 Ops.push_back(StoreChain); 7806 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7807 Ops.push_back(Value); 7808 Ops.push_back(FIdx); 7809 7810 SmallVector<EVT, 2> ValueVTs; 7811 ValueVTs.push_back(MVT::Other); // chain 7812 SDVTList VTs = DAG.getVTList(ValueVTs); 7813 7814 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7815 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7816 7817 // Move data into the byte array. 7818 SmallVector<SDValue, 4> Loads, LoadChains; 7819 for (unsigned i = 0; i < 4; ++i) { 7820 unsigned Offset = 4*i; 7821 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7822 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7823 7824 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7825 PtrInfo.getWithOffset(Offset), 7826 false, false, false, 0)); 7827 LoadChains.push_back(Loads[i].getValue(1)); 7828 } 7829 7830 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7831 7832 SmallVector<SDValue, 4> Stores; 7833 for (unsigned i = 0; i < 4; ++i) { 7834 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7835 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7836 7837 Stores.push_back(DAG.getTruncStore( 7838 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7839 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7840 1 /* alignment */, SN->getAAInfo())); 7841 } 7842 7843 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7844 7845 return StoreChain; 7846 } 7847 7848 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7849 SDLoc dl(Op); 7850 if (Op.getValueType() == MVT::v4i32) { 7851 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7852 7853 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7854 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7855 7856 SDValue RHSSwap = // = vrlw RHS, 16 7857 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7858 7859 // Shrinkify inputs to v8i16. 7860 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7861 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7862 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7863 7864 // Low parts multiplied together, generating 32-bit results (we ignore the 7865 // top parts). 7866 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7867 LHS, RHS, DAG, dl, MVT::v4i32); 7868 7869 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7870 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7871 // Shift the high parts up 16 bits. 7872 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7873 Neg16, DAG, dl); 7874 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7875 } else if (Op.getValueType() == MVT::v8i16) { 7876 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7877 7878 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7879 7880 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7881 LHS, RHS, Zero, DAG, dl); 7882 } else if (Op.getValueType() == MVT::v16i8) { 7883 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7884 bool isLittleEndian = Subtarget.isLittleEndian(); 7885 7886 // Multiply the even 8-bit parts, producing 16-bit sums. 7887 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7888 LHS, RHS, DAG, dl, MVT::v8i16); 7889 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7890 7891 // Multiply the odd 8-bit parts, producing 16-bit sums. 7892 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7893 LHS, RHS, DAG, dl, MVT::v8i16); 7894 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7895 7896 // Merge the results together. Because vmuleub and vmuloub are 7897 // instructions with a big-endian bias, we must reverse the 7898 // element numbering and reverse the meaning of "odd" and "even" 7899 // when generating little endian code. 7900 int Ops[16]; 7901 for (unsigned i = 0; i != 8; ++i) { 7902 if (isLittleEndian) { 7903 Ops[i*2 ] = 2*i; 7904 Ops[i*2+1] = 2*i+16; 7905 } else { 7906 Ops[i*2 ] = 2*i+1; 7907 Ops[i*2+1] = 2*i+1+16; 7908 } 7909 } 7910 if (isLittleEndian) 7911 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7912 else 7913 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7914 } else { 7915 llvm_unreachable("Unknown mul to lower!"); 7916 } 7917 } 7918 7919 /// LowerOperation - Provide custom lowering hooks for some operations. 7920 /// 7921 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7922 switch (Op.getOpcode()) { 7923 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7924 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7925 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7926 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7927 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7928 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7929 case ISD::SETCC: return LowerSETCC(Op, DAG); 7930 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7931 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7932 case ISD::VASTART: 7933 return LowerVASTART(Op, DAG, Subtarget); 7934 7935 case ISD::VAARG: 7936 return LowerVAARG(Op, DAG, Subtarget); 7937 7938 case ISD::VACOPY: 7939 return LowerVACOPY(Op, DAG, Subtarget); 7940 7941 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7942 case ISD::DYNAMIC_STACKALLOC: 7943 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7944 7945 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7946 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7947 7948 case ISD::LOAD: return LowerLOAD(Op, DAG); 7949 case ISD::STORE: return LowerSTORE(Op, DAG); 7950 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7951 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7952 case ISD::FP_TO_UINT: 7953 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7954 SDLoc(Op)); 7955 case ISD::UINT_TO_FP: 7956 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7957 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7958 7959 // Lower 64-bit shifts. 7960 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7961 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7962 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7963 7964 // Vector-related lowering. 7965 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7966 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7967 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7968 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7969 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7970 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7971 case ISD::MUL: return LowerMUL(Op, DAG); 7972 7973 // For counter-based loop handling. 7974 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7975 7976 // Frame & Return address. 7977 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7978 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7979 } 7980 } 7981 7982 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7983 SmallVectorImpl<SDValue>&Results, 7984 SelectionDAG &DAG) const { 7985 SDLoc dl(N); 7986 switch (N->getOpcode()) { 7987 default: 7988 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7989 case ISD::READCYCLECOUNTER: { 7990 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7991 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7992 7993 Results.push_back(RTB); 7994 Results.push_back(RTB.getValue(1)); 7995 Results.push_back(RTB.getValue(2)); 7996 break; 7997 } 7998 case ISD::INTRINSIC_W_CHAIN: { 7999 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8000 Intrinsic::ppc_is_decremented_ctr_nonzero) 8001 break; 8002 8003 assert(N->getValueType(0) == MVT::i1 && 8004 "Unexpected result type for CTR decrement intrinsic"); 8005 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8006 N->getValueType(0)); 8007 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8008 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8009 N->getOperand(1)); 8010 8011 Results.push_back(NewInt); 8012 Results.push_back(NewInt.getValue(1)); 8013 break; 8014 } 8015 case ISD::VAARG: { 8016 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8017 return; 8018 8019 EVT VT = N->getValueType(0); 8020 8021 if (VT == MVT::i64) { 8022 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8023 8024 Results.push_back(NewNode); 8025 Results.push_back(NewNode.getValue(1)); 8026 } 8027 return; 8028 } 8029 case ISD::FP_ROUND_INREG: { 8030 assert(N->getValueType(0) == MVT::ppcf128); 8031 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8032 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8033 MVT::f64, N->getOperand(0), 8034 DAG.getIntPtrConstant(0, dl)); 8035 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8036 MVT::f64, N->getOperand(0), 8037 DAG.getIntPtrConstant(1, dl)); 8038 8039 // Add the two halves of the long double in round-to-zero mode. 8040 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8041 8042 // We know the low half is about to be thrown away, so just use something 8043 // convenient. 8044 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8045 FPreg, FPreg)); 8046 return; 8047 } 8048 case ISD::FP_TO_SINT: 8049 case ISD::FP_TO_UINT: 8050 // LowerFP_TO_INT() can only handle f32 and f64. 8051 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8052 return; 8053 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8054 return; 8055 } 8056 } 8057 8058 //===----------------------------------------------------------------------===// 8059 // Other Lowering Code 8060 //===----------------------------------------------------------------------===// 8061 8062 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8063 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8064 Function *Func = Intrinsic::getDeclaration(M, Id); 8065 return Builder.CreateCall(Func, {}); 8066 } 8067 8068 // The mappings for emitLeading/TrailingFence is taken from 8069 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8070 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8071 AtomicOrdering Ord, bool IsStore, 8072 bool IsLoad) const { 8073 if (Ord == SequentiallyConsistent) 8074 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8075 if (isAtLeastRelease(Ord)) 8076 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8077 return nullptr; 8078 } 8079 8080 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8081 AtomicOrdering Ord, bool IsStore, 8082 bool IsLoad) const { 8083 if (IsLoad && isAtLeastAcquire(Ord)) 8084 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8085 // FIXME: this is too conservative, a dependent branch + isync is enough. 8086 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8087 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8088 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8089 return nullptr; 8090 } 8091 8092 MachineBasicBlock * 8093 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8094 unsigned AtomicSize, 8095 unsigned BinOpcode) const { 8096 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8097 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8098 8099 auto LoadMnemonic = PPC::LDARX; 8100 auto StoreMnemonic = PPC::STDCX; 8101 switch (AtomicSize) { 8102 default: 8103 llvm_unreachable("Unexpected size of atomic entity"); 8104 case 1: 8105 LoadMnemonic = PPC::LBARX; 8106 StoreMnemonic = PPC::STBCX; 8107 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8108 break; 8109 case 2: 8110 LoadMnemonic = PPC::LHARX; 8111 StoreMnemonic = PPC::STHCX; 8112 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8113 break; 8114 case 4: 8115 LoadMnemonic = PPC::LWARX; 8116 StoreMnemonic = PPC::STWCX; 8117 break; 8118 case 8: 8119 LoadMnemonic = PPC::LDARX; 8120 StoreMnemonic = PPC::STDCX; 8121 break; 8122 } 8123 8124 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8125 MachineFunction *F = BB->getParent(); 8126 MachineFunction::iterator It = BB; 8127 ++It; 8128 8129 unsigned dest = MI->getOperand(0).getReg(); 8130 unsigned ptrA = MI->getOperand(1).getReg(); 8131 unsigned ptrB = MI->getOperand(2).getReg(); 8132 unsigned incr = MI->getOperand(3).getReg(); 8133 DebugLoc dl = MI->getDebugLoc(); 8134 8135 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8136 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8137 F->insert(It, loopMBB); 8138 F->insert(It, exitMBB); 8139 exitMBB->splice(exitMBB->begin(), BB, 8140 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8141 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8142 8143 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8144 unsigned TmpReg = (!BinOpcode) ? incr : 8145 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8146 : &PPC::GPRCRegClass); 8147 8148 // thisMBB: 8149 // ... 8150 // fallthrough --> loopMBB 8151 BB->addSuccessor(loopMBB); 8152 8153 // loopMBB: 8154 // l[wd]arx dest, ptr 8155 // add r0, dest, incr 8156 // st[wd]cx. r0, ptr 8157 // bne- loopMBB 8158 // fallthrough --> exitMBB 8159 BB = loopMBB; 8160 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8161 .addReg(ptrA).addReg(ptrB); 8162 if (BinOpcode) 8163 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8164 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8165 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8166 BuildMI(BB, dl, TII->get(PPC::BCC)) 8167 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8168 BB->addSuccessor(loopMBB); 8169 BB->addSuccessor(exitMBB); 8170 8171 // exitMBB: 8172 // ... 8173 BB = exitMBB; 8174 return BB; 8175 } 8176 8177 MachineBasicBlock * 8178 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8179 MachineBasicBlock *BB, 8180 bool is8bit, // operation 8181 unsigned BinOpcode) const { 8182 // If we support part-word atomic mnemonics, just use them 8183 if (Subtarget.hasPartwordAtomics()) 8184 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8185 8186 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8187 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8188 // In 64 bit mode we have to use 64 bits for addresses, even though the 8189 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8190 // registers without caring whether they're 32 or 64, but here we're 8191 // doing actual arithmetic on the addresses. 8192 bool is64bit = Subtarget.isPPC64(); 8193 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8194 8195 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8196 MachineFunction *F = BB->getParent(); 8197 MachineFunction::iterator It = BB; 8198 ++It; 8199 8200 unsigned dest = MI->getOperand(0).getReg(); 8201 unsigned ptrA = MI->getOperand(1).getReg(); 8202 unsigned ptrB = MI->getOperand(2).getReg(); 8203 unsigned incr = MI->getOperand(3).getReg(); 8204 DebugLoc dl = MI->getDebugLoc(); 8205 8206 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8207 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8208 F->insert(It, loopMBB); 8209 F->insert(It, exitMBB); 8210 exitMBB->splice(exitMBB->begin(), BB, 8211 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8212 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8213 8214 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8215 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8216 : &PPC::GPRCRegClass; 8217 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8218 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8219 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8220 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8221 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8222 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8223 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8224 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8225 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8226 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8227 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8228 unsigned Ptr1Reg; 8229 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8230 8231 // thisMBB: 8232 // ... 8233 // fallthrough --> loopMBB 8234 BB->addSuccessor(loopMBB); 8235 8236 // The 4-byte load must be aligned, while a char or short may be 8237 // anywhere in the word. Hence all this nasty bookkeeping code. 8238 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8239 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8240 // xori shift, shift1, 24 [16] 8241 // rlwinm ptr, ptr1, 0, 0, 29 8242 // slw incr2, incr, shift 8243 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8244 // slw mask, mask2, shift 8245 // loopMBB: 8246 // lwarx tmpDest, ptr 8247 // add tmp, tmpDest, incr2 8248 // andc tmp2, tmpDest, mask 8249 // and tmp3, tmp, mask 8250 // or tmp4, tmp3, tmp2 8251 // stwcx. tmp4, ptr 8252 // bne- loopMBB 8253 // fallthrough --> exitMBB 8254 // srw dest, tmpDest, shift 8255 if (ptrA != ZeroReg) { 8256 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8257 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8258 .addReg(ptrA).addReg(ptrB); 8259 } else { 8260 Ptr1Reg = ptrB; 8261 } 8262 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8263 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8264 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8265 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8266 if (is64bit) 8267 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8268 .addReg(Ptr1Reg).addImm(0).addImm(61); 8269 else 8270 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8271 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8272 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8273 .addReg(incr).addReg(ShiftReg); 8274 if (is8bit) 8275 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8276 else { 8277 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8278 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8279 } 8280 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8281 .addReg(Mask2Reg).addReg(ShiftReg); 8282 8283 BB = loopMBB; 8284 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8285 .addReg(ZeroReg).addReg(PtrReg); 8286 if (BinOpcode) 8287 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8288 .addReg(Incr2Reg).addReg(TmpDestReg); 8289 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8290 .addReg(TmpDestReg).addReg(MaskReg); 8291 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8292 .addReg(TmpReg).addReg(MaskReg); 8293 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8294 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8295 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8296 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8297 BuildMI(BB, dl, TII->get(PPC::BCC)) 8298 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8299 BB->addSuccessor(loopMBB); 8300 BB->addSuccessor(exitMBB); 8301 8302 // exitMBB: 8303 // ... 8304 BB = exitMBB; 8305 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8306 .addReg(ShiftReg); 8307 return BB; 8308 } 8309 8310 llvm::MachineBasicBlock* 8311 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8312 MachineBasicBlock *MBB) const { 8313 DebugLoc DL = MI->getDebugLoc(); 8314 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8315 8316 MachineFunction *MF = MBB->getParent(); 8317 MachineRegisterInfo &MRI = MF->getRegInfo(); 8318 8319 const BasicBlock *BB = MBB->getBasicBlock(); 8320 MachineFunction::iterator I = MBB; 8321 ++I; 8322 8323 // Memory Reference 8324 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8325 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8326 8327 unsigned DstReg = MI->getOperand(0).getReg(); 8328 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8329 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8330 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8331 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8332 8333 MVT PVT = getPointerTy(MF->getDataLayout()); 8334 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8335 "Invalid Pointer Size!"); 8336 // For v = setjmp(buf), we generate 8337 // 8338 // thisMBB: 8339 // SjLjSetup mainMBB 8340 // bl mainMBB 8341 // v_restore = 1 8342 // b sinkMBB 8343 // 8344 // mainMBB: 8345 // buf[LabelOffset] = LR 8346 // v_main = 0 8347 // 8348 // sinkMBB: 8349 // v = phi(main, restore) 8350 // 8351 8352 MachineBasicBlock *thisMBB = MBB; 8353 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8354 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8355 MF->insert(I, mainMBB); 8356 MF->insert(I, sinkMBB); 8357 8358 MachineInstrBuilder MIB; 8359 8360 // Transfer the remainder of BB and its successor edges to sinkMBB. 8361 sinkMBB->splice(sinkMBB->begin(), MBB, 8362 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8363 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8364 8365 // Note that the structure of the jmp_buf used here is not compatible 8366 // with that used by libc, and is not designed to be. Specifically, it 8367 // stores only those 'reserved' registers that LLVM does not otherwise 8368 // understand how to spill. Also, by convention, by the time this 8369 // intrinsic is called, Clang has already stored the frame address in the 8370 // first slot of the buffer and stack address in the third. Following the 8371 // X86 target code, we'll store the jump address in the second slot. We also 8372 // need to save the TOC pointer (R2) to handle jumps between shared 8373 // libraries, and that will be stored in the fourth slot. The thread 8374 // identifier (R13) is not affected. 8375 8376 // thisMBB: 8377 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8378 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8379 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8380 8381 // Prepare IP either in reg. 8382 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8383 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8384 unsigned BufReg = MI->getOperand(1).getReg(); 8385 8386 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8387 setUsesTOCBasePtr(*MBB->getParent()); 8388 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8389 .addReg(PPC::X2) 8390 .addImm(TOCOffset) 8391 .addReg(BufReg); 8392 MIB.setMemRefs(MMOBegin, MMOEnd); 8393 } 8394 8395 // Naked functions never have a base pointer, and so we use r1. For all 8396 // other functions, this decision must be delayed until during PEI. 8397 unsigned BaseReg; 8398 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8399 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8400 else 8401 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8402 8403 MIB = BuildMI(*thisMBB, MI, DL, 8404 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8405 .addReg(BaseReg) 8406 .addImm(BPOffset) 8407 .addReg(BufReg); 8408 MIB.setMemRefs(MMOBegin, MMOEnd); 8409 8410 // Setup 8411 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8412 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8413 MIB.addRegMask(TRI->getNoPreservedMask()); 8414 8415 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8416 8417 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8418 .addMBB(mainMBB); 8419 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8420 8421 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8422 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8423 8424 // mainMBB: 8425 // mainDstReg = 0 8426 MIB = 8427 BuildMI(mainMBB, DL, 8428 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8429 8430 // Store IP 8431 if (Subtarget.isPPC64()) { 8432 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8433 .addReg(LabelReg) 8434 .addImm(LabelOffset) 8435 .addReg(BufReg); 8436 } else { 8437 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8438 .addReg(LabelReg) 8439 .addImm(LabelOffset) 8440 .addReg(BufReg); 8441 } 8442 8443 MIB.setMemRefs(MMOBegin, MMOEnd); 8444 8445 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8446 mainMBB->addSuccessor(sinkMBB); 8447 8448 // sinkMBB: 8449 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8450 TII->get(PPC::PHI), DstReg) 8451 .addReg(mainDstReg).addMBB(mainMBB) 8452 .addReg(restoreDstReg).addMBB(thisMBB); 8453 8454 MI->eraseFromParent(); 8455 return sinkMBB; 8456 } 8457 8458 MachineBasicBlock * 8459 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8460 MachineBasicBlock *MBB) const { 8461 DebugLoc DL = MI->getDebugLoc(); 8462 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8463 8464 MachineFunction *MF = MBB->getParent(); 8465 MachineRegisterInfo &MRI = MF->getRegInfo(); 8466 8467 // Memory Reference 8468 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8469 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8470 8471 MVT PVT = getPointerTy(MF->getDataLayout()); 8472 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8473 "Invalid Pointer Size!"); 8474 8475 const TargetRegisterClass *RC = 8476 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8477 unsigned Tmp = MRI.createVirtualRegister(RC); 8478 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8479 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8480 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8481 unsigned BP = 8482 (PVT == MVT::i64) 8483 ? PPC::X30 8484 : (Subtarget.isSVR4ABI() && 8485 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8486 ? PPC::R29 8487 : PPC::R30); 8488 8489 MachineInstrBuilder MIB; 8490 8491 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8492 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8493 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8494 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8495 8496 unsigned BufReg = MI->getOperand(0).getReg(); 8497 8498 // Reload FP (the jumped-to function may not have had a 8499 // frame pointer, and if so, then its r31 will be restored 8500 // as necessary). 8501 if (PVT == MVT::i64) { 8502 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8503 .addImm(0) 8504 .addReg(BufReg); 8505 } else { 8506 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8507 .addImm(0) 8508 .addReg(BufReg); 8509 } 8510 MIB.setMemRefs(MMOBegin, MMOEnd); 8511 8512 // Reload IP 8513 if (PVT == MVT::i64) { 8514 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8515 .addImm(LabelOffset) 8516 .addReg(BufReg); 8517 } else { 8518 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8519 .addImm(LabelOffset) 8520 .addReg(BufReg); 8521 } 8522 MIB.setMemRefs(MMOBegin, MMOEnd); 8523 8524 // Reload SP 8525 if (PVT == MVT::i64) { 8526 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8527 .addImm(SPOffset) 8528 .addReg(BufReg); 8529 } else { 8530 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8531 .addImm(SPOffset) 8532 .addReg(BufReg); 8533 } 8534 MIB.setMemRefs(MMOBegin, MMOEnd); 8535 8536 // Reload BP 8537 if (PVT == MVT::i64) { 8538 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8539 .addImm(BPOffset) 8540 .addReg(BufReg); 8541 } else { 8542 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8543 .addImm(BPOffset) 8544 .addReg(BufReg); 8545 } 8546 MIB.setMemRefs(MMOBegin, MMOEnd); 8547 8548 // Reload TOC 8549 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8550 setUsesTOCBasePtr(*MBB->getParent()); 8551 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8552 .addImm(TOCOffset) 8553 .addReg(BufReg); 8554 8555 MIB.setMemRefs(MMOBegin, MMOEnd); 8556 } 8557 8558 // Jump 8559 BuildMI(*MBB, MI, DL, 8560 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8561 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8562 8563 MI->eraseFromParent(); 8564 return MBB; 8565 } 8566 8567 MachineBasicBlock * 8568 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8569 MachineBasicBlock *BB) const { 8570 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8571 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8572 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8573 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8574 // Call lowering should have added an r2 operand to indicate a dependence 8575 // on the TOC base pointer value. It can't however, because there is no 8576 // way to mark the dependence as implicit there, and so the stackmap code 8577 // will confuse it with a regular operand. Instead, add the dependence 8578 // here. 8579 setUsesTOCBasePtr(*BB->getParent()); 8580 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8581 } 8582 8583 return emitPatchPoint(MI, BB); 8584 } 8585 8586 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8587 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8588 return emitEHSjLjSetJmp(MI, BB); 8589 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8590 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8591 return emitEHSjLjLongJmp(MI, BB); 8592 } 8593 8594 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8595 8596 // To "insert" these instructions we actually have to insert their 8597 // control-flow patterns. 8598 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8599 MachineFunction::iterator It = BB; 8600 ++It; 8601 8602 MachineFunction *F = BB->getParent(); 8603 8604 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8605 MI->getOpcode() == PPC::SELECT_CC_I8 || 8606 MI->getOpcode() == PPC::SELECT_I4 || 8607 MI->getOpcode() == PPC::SELECT_I8)) { 8608 SmallVector<MachineOperand, 2> Cond; 8609 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8610 MI->getOpcode() == PPC::SELECT_CC_I8) 8611 Cond.push_back(MI->getOperand(4)); 8612 else 8613 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8614 Cond.push_back(MI->getOperand(1)); 8615 8616 DebugLoc dl = MI->getDebugLoc(); 8617 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8618 Cond, MI->getOperand(2).getReg(), 8619 MI->getOperand(3).getReg()); 8620 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8621 MI->getOpcode() == PPC::SELECT_CC_I8 || 8622 MI->getOpcode() == PPC::SELECT_CC_F4 || 8623 MI->getOpcode() == PPC::SELECT_CC_F8 || 8624 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8625 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8626 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8627 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8628 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8629 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8630 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8631 MI->getOpcode() == PPC::SELECT_I4 || 8632 MI->getOpcode() == PPC::SELECT_I8 || 8633 MI->getOpcode() == PPC::SELECT_F4 || 8634 MI->getOpcode() == PPC::SELECT_F8 || 8635 MI->getOpcode() == PPC::SELECT_QFRC || 8636 MI->getOpcode() == PPC::SELECT_QSRC || 8637 MI->getOpcode() == PPC::SELECT_QBRC || 8638 MI->getOpcode() == PPC::SELECT_VRRC || 8639 MI->getOpcode() == PPC::SELECT_VSFRC || 8640 MI->getOpcode() == PPC::SELECT_VSSRC || 8641 MI->getOpcode() == PPC::SELECT_VSRC) { 8642 // The incoming instruction knows the destination vreg to set, the 8643 // condition code register to branch on, the true/false values to 8644 // select between, and a branch opcode to use. 8645 8646 // thisMBB: 8647 // ... 8648 // TrueVal = ... 8649 // cmpTY ccX, r1, r2 8650 // bCC copy1MBB 8651 // fallthrough --> copy0MBB 8652 MachineBasicBlock *thisMBB = BB; 8653 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8654 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8655 DebugLoc dl = MI->getDebugLoc(); 8656 F->insert(It, copy0MBB); 8657 F->insert(It, sinkMBB); 8658 8659 // Transfer the remainder of BB and its successor edges to sinkMBB. 8660 sinkMBB->splice(sinkMBB->begin(), BB, 8661 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8662 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8663 8664 // Next, add the true and fallthrough blocks as its successors. 8665 BB->addSuccessor(copy0MBB); 8666 BB->addSuccessor(sinkMBB); 8667 8668 if (MI->getOpcode() == PPC::SELECT_I4 || 8669 MI->getOpcode() == PPC::SELECT_I8 || 8670 MI->getOpcode() == PPC::SELECT_F4 || 8671 MI->getOpcode() == PPC::SELECT_F8 || 8672 MI->getOpcode() == PPC::SELECT_QFRC || 8673 MI->getOpcode() == PPC::SELECT_QSRC || 8674 MI->getOpcode() == PPC::SELECT_QBRC || 8675 MI->getOpcode() == PPC::SELECT_VRRC || 8676 MI->getOpcode() == PPC::SELECT_VSFRC || 8677 MI->getOpcode() == PPC::SELECT_VSSRC || 8678 MI->getOpcode() == PPC::SELECT_VSRC) { 8679 BuildMI(BB, dl, TII->get(PPC::BC)) 8680 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8681 } else { 8682 unsigned SelectPred = MI->getOperand(4).getImm(); 8683 BuildMI(BB, dl, TII->get(PPC::BCC)) 8684 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8685 } 8686 8687 // copy0MBB: 8688 // %FalseValue = ... 8689 // # fallthrough to sinkMBB 8690 BB = copy0MBB; 8691 8692 // Update machine-CFG edges 8693 BB->addSuccessor(sinkMBB); 8694 8695 // sinkMBB: 8696 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8697 // ... 8698 BB = sinkMBB; 8699 BuildMI(*BB, BB->begin(), dl, 8700 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8701 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8702 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8703 } else if (MI->getOpcode() == PPC::ReadTB) { 8704 // To read the 64-bit time-base register on a 32-bit target, we read the 8705 // two halves. Should the counter have wrapped while it was being read, we 8706 // need to try again. 8707 // ... 8708 // readLoop: 8709 // mfspr Rx,TBU # load from TBU 8710 // mfspr Ry,TB # load from TB 8711 // mfspr Rz,TBU # load from TBU 8712 // cmpw crX,Rx,Rz # check if 'old'='new' 8713 // bne readLoop # branch if they're not equal 8714 // ... 8715 8716 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8717 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8718 DebugLoc dl = MI->getDebugLoc(); 8719 F->insert(It, readMBB); 8720 F->insert(It, sinkMBB); 8721 8722 // Transfer the remainder of BB and its successor edges to sinkMBB. 8723 sinkMBB->splice(sinkMBB->begin(), BB, 8724 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8725 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8726 8727 BB->addSuccessor(readMBB); 8728 BB = readMBB; 8729 8730 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8731 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8732 unsigned LoReg = MI->getOperand(0).getReg(); 8733 unsigned HiReg = MI->getOperand(1).getReg(); 8734 8735 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8736 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8737 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8738 8739 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8740 8741 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8742 .addReg(HiReg).addReg(ReadAgainReg); 8743 BuildMI(BB, dl, TII->get(PPC::BCC)) 8744 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8745 8746 BB->addSuccessor(readMBB); 8747 BB->addSuccessor(sinkMBB); 8748 } 8749 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8750 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8751 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8752 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8753 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8754 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8755 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8756 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8757 8758 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8759 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8760 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8761 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8762 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8763 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8765 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8766 8767 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8768 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8769 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8770 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8771 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8772 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8774 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8775 8776 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8777 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8778 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8779 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8780 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8781 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8783 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8784 8785 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8786 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8787 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8788 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8789 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8790 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8792 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8793 8794 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8795 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8796 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8797 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8798 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8799 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8801 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8802 8803 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8804 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8805 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8806 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8807 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8808 BB = EmitAtomicBinary(MI, BB, 4, 0); 8809 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8810 BB = EmitAtomicBinary(MI, BB, 8, 0); 8811 8812 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8813 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8814 (Subtarget.hasPartwordAtomics() && 8815 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8816 (Subtarget.hasPartwordAtomics() && 8817 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8818 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8819 8820 auto LoadMnemonic = PPC::LDARX; 8821 auto StoreMnemonic = PPC::STDCX; 8822 switch(MI->getOpcode()) { 8823 default: 8824 llvm_unreachable("Compare and swap of unknown size"); 8825 case PPC::ATOMIC_CMP_SWAP_I8: 8826 LoadMnemonic = PPC::LBARX; 8827 StoreMnemonic = PPC::STBCX; 8828 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8829 break; 8830 case PPC::ATOMIC_CMP_SWAP_I16: 8831 LoadMnemonic = PPC::LHARX; 8832 StoreMnemonic = PPC::STHCX; 8833 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8834 break; 8835 case PPC::ATOMIC_CMP_SWAP_I32: 8836 LoadMnemonic = PPC::LWARX; 8837 StoreMnemonic = PPC::STWCX; 8838 break; 8839 case PPC::ATOMIC_CMP_SWAP_I64: 8840 LoadMnemonic = PPC::LDARX; 8841 StoreMnemonic = PPC::STDCX; 8842 break; 8843 } 8844 unsigned dest = MI->getOperand(0).getReg(); 8845 unsigned ptrA = MI->getOperand(1).getReg(); 8846 unsigned ptrB = MI->getOperand(2).getReg(); 8847 unsigned oldval = MI->getOperand(3).getReg(); 8848 unsigned newval = MI->getOperand(4).getReg(); 8849 DebugLoc dl = MI->getDebugLoc(); 8850 8851 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8852 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8853 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8854 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8855 F->insert(It, loop1MBB); 8856 F->insert(It, loop2MBB); 8857 F->insert(It, midMBB); 8858 F->insert(It, exitMBB); 8859 exitMBB->splice(exitMBB->begin(), BB, 8860 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8861 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8862 8863 // thisMBB: 8864 // ... 8865 // fallthrough --> loopMBB 8866 BB->addSuccessor(loop1MBB); 8867 8868 // loop1MBB: 8869 // l[bhwd]arx dest, ptr 8870 // cmp[wd] dest, oldval 8871 // bne- midMBB 8872 // loop2MBB: 8873 // st[bhwd]cx. newval, ptr 8874 // bne- loopMBB 8875 // b exitBB 8876 // midMBB: 8877 // st[bhwd]cx. dest, ptr 8878 // exitBB: 8879 BB = loop1MBB; 8880 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8881 .addReg(ptrA).addReg(ptrB); 8882 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8883 .addReg(oldval).addReg(dest); 8884 BuildMI(BB, dl, TII->get(PPC::BCC)) 8885 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8886 BB->addSuccessor(loop2MBB); 8887 BB->addSuccessor(midMBB); 8888 8889 BB = loop2MBB; 8890 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8891 .addReg(newval).addReg(ptrA).addReg(ptrB); 8892 BuildMI(BB, dl, TII->get(PPC::BCC)) 8893 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8894 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8895 BB->addSuccessor(loop1MBB); 8896 BB->addSuccessor(exitMBB); 8897 8898 BB = midMBB; 8899 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8900 .addReg(dest).addReg(ptrA).addReg(ptrB); 8901 BB->addSuccessor(exitMBB); 8902 8903 // exitMBB: 8904 // ... 8905 BB = exitMBB; 8906 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8907 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8908 // We must use 64-bit registers for addresses when targeting 64-bit, 8909 // since we're actually doing arithmetic on them. Other registers 8910 // can be 32-bit. 8911 bool is64bit = Subtarget.isPPC64(); 8912 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8913 8914 unsigned dest = MI->getOperand(0).getReg(); 8915 unsigned ptrA = MI->getOperand(1).getReg(); 8916 unsigned ptrB = MI->getOperand(2).getReg(); 8917 unsigned oldval = MI->getOperand(3).getReg(); 8918 unsigned newval = MI->getOperand(4).getReg(); 8919 DebugLoc dl = MI->getDebugLoc(); 8920 8921 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8922 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8923 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8924 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8925 F->insert(It, loop1MBB); 8926 F->insert(It, loop2MBB); 8927 F->insert(It, midMBB); 8928 F->insert(It, exitMBB); 8929 exitMBB->splice(exitMBB->begin(), BB, 8930 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8931 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8932 8933 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8934 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8935 : &PPC::GPRCRegClass; 8936 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8937 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8938 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8939 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8940 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8941 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8942 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8943 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8944 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8945 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8946 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8947 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8948 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8949 unsigned Ptr1Reg; 8950 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8951 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8952 // thisMBB: 8953 // ... 8954 // fallthrough --> loopMBB 8955 BB->addSuccessor(loop1MBB); 8956 8957 // The 4-byte load must be aligned, while a char or short may be 8958 // anywhere in the word. Hence all this nasty bookkeeping code. 8959 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8960 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8961 // xori shift, shift1, 24 [16] 8962 // rlwinm ptr, ptr1, 0, 0, 29 8963 // slw newval2, newval, shift 8964 // slw oldval2, oldval,shift 8965 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8966 // slw mask, mask2, shift 8967 // and newval3, newval2, mask 8968 // and oldval3, oldval2, mask 8969 // loop1MBB: 8970 // lwarx tmpDest, ptr 8971 // and tmp, tmpDest, mask 8972 // cmpw tmp, oldval3 8973 // bne- midMBB 8974 // loop2MBB: 8975 // andc tmp2, tmpDest, mask 8976 // or tmp4, tmp2, newval3 8977 // stwcx. tmp4, ptr 8978 // bne- loop1MBB 8979 // b exitBB 8980 // midMBB: 8981 // stwcx. tmpDest, ptr 8982 // exitBB: 8983 // srw dest, tmpDest, shift 8984 if (ptrA != ZeroReg) { 8985 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8986 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8987 .addReg(ptrA).addReg(ptrB); 8988 } else { 8989 Ptr1Reg = ptrB; 8990 } 8991 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8992 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8993 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8994 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8995 if (is64bit) 8996 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8997 .addReg(Ptr1Reg).addImm(0).addImm(61); 8998 else 8999 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9000 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9001 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9002 .addReg(newval).addReg(ShiftReg); 9003 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9004 .addReg(oldval).addReg(ShiftReg); 9005 if (is8bit) 9006 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9007 else { 9008 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9009 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9010 .addReg(Mask3Reg).addImm(65535); 9011 } 9012 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9013 .addReg(Mask2Reg).addReg(ShiftReg); 9014 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9015 .addReg(NewVal2Reg).addReg(MaskReg); 9016 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9017 .addReg(OldVal2Reg).addReg(MaskReg); 9018 9019 BB = loop1MBB; 9020 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9021 .addReg(ZeroReg).addReg(PtrReg); 9022 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9023 .addReg(TmpDestReg).addReg(MaskReg); 9024 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9025 .addReg(TmpReg).addReg(OldVal3Reg); 9026 BuildMI(BB, dl, TII->get(PPC::BCC)) 9027 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9028 BB->addSuccessor(loop2MBB); 9029 BB->addSuccessor(midMBB); 9030 9031 BB = loop2MBB; 9032 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9033 .addReg(TmpDestReg).addReg(MaskReg); 9034 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9035 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9036 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9037 .addReg(ZeroReg).addReg(PtrReg); 9038 BuildMI(BB, dl, TII->get(PPC::BCC)) 9039 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9040 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9041 BB->addSuccessor(loop1MBB); 9042 BB->addSuccessor(exitMBB); 9043 9044 BB = midMBB; 9045 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9046 .addReg(ZeroReg).addReg(PtrReg); 9047 BB->addSuccessor(exitMBB); 9048 9049 // exitMBB: 9050 // ... 9051 BB = exitMBB; 9052 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9053 .addReg(ShiftReg); 9054 } else if (MI->getOpcode() == PPC::FADDrtz) { 9055 // This pseudo performs an FADD with rounding mode temporarily forced 9056 // to round-to-zero. We emit this via custom inserter since the FPSCR 9057 // is not modeled at the SelectionDAG level. 9058 unsigned Dest = MI->getOperand(0).getReg(); 9059 unsigned Src1 = MI->getOperand(1).getReg(); 9060 unsigned Src2 = MI->getOperand(2).getReg(); 9061 DebugLoc dl = MI->getDebugLoc(); 9062 9063 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9064 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9065 9066 // Save FPSCR value. 9067 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9068 9069 // Set rounding mode to round-to-zero. 9070 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9071 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9072 9073 // Perform addition. 9074 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9075 9076 // Restore FPSCR value. 9077 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9078 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9079 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9080 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9081 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9082 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9083 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9084 PPC::ANDIo8 : PPC::ANDIo; 9085 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9086 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9087 9088 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9089 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9090 &PPC::GPRCRegClass : 9091 &PPC::G8RCRegClass); 9092 9093 DebugLoc dl = MI->getDebugLoc(); 9094 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9095 .addReg(MI->getOperand(1).getReg()).addImm(1); 9096 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9097 MI->getOperand(0).getReg()) 9098 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9099 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9100 DebugLoc Dl = MI->getDebugLoc(); 9101 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9102 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9103 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9104 return BB; 9105 } else { 9106 llvm_unreachable("Unexpected instr type to insert"); 9107 } 9108 9109 MI->eraseFromParent(); // The pseudo instruction is gone now. 9110 return BB; 9111 } 9112 9113 //===----------------------------------------------------------------------===// 9114 // Target Optimization Hooks 9115 //===----------------------------------------------------------------------===// 9116 9117 static std::string getRecipOp(const char *Base, EVT VT) { 9118 std::string RecipOp(Base); 9119 if (VT.getScalarType() == MVT::f64) 9120 RecipOp += "d"; 9121 else 9122 RecipOp += "f"; 9123 9124 if (VT.isVector()) 9125 RecipOp = "vec-" + RecipOp; 9126 9127 return RecipOp; 9128 } 9129 9130 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9131 DAGCombinerInfo &DCI, 9132 unsigned &RefinementSteps, 9133 bool &UseOneConstNR) const { 9134 EVT VT = Operand.getValueType(); 9135 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9136 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9137 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9138 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9139 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9140 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9141 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9142 std::string RecipOp = getRecipOp("sqrt", VT); 9143 if (!Recips.isEnabled(RecipOp)) 9144 return SDValue(); 9145 9146 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9147 UseOneConstNR = true; 9148 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9149 } 9150 return SDValue(); 9151 } 9152 9153 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9154 DAGCombinerInfo &DCI, 9155 unsigned &RefinementSteps) const { 9156 EVT VT = Operand.getValueType(); 9157 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9158 (VT == MVT::f64 && Subtarget.hasFRE()) || 9159 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9160 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9161 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9162 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9163 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9164 std::string RecipOp = getRecipOp("div", VT); 9165 if (!Recips.isEnabled(RecipOp)) 9166 return SDValue(); 9167 9168 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9169 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9170 } 9171 return SDValue(); 9172 } 9173 9174 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9175 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9176 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9177 // enabled for division), this functionality is redundant with the default 9178 // combiner logic (once the division -> reciprocal/multiply transformation 9179 // has taken place). As a result, this matters more for older cores than for 9180 // newer ones. 9181 9182 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9183 // reciprocal if there are two or more FDIVs (for embedded cores with only 9184 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9185 switch (Subtarget.getDarwinDirective()) { 9186 default: 9187 return 3; 9188 case PPC::DIR_440: 9189 case PPC::DIR_A2: 9190 case PPC::DIR_E500mc: 9191 case PPC::DIR_E5500: 9192 return 2; 9193 } 9194 } 9195 9196 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9197 // collapsed, and so we need to look through chains of them. 9198 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9199 int64_t& Offset, SelectionDAG &DAG) { 9200 if (DAG.isBaseWithConstantOffset(Loc)) { 9201 Base = Loc.getOperand(0); 9202 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9203 9204 // The base might itself be a base plus an offset, and if so, accumulate 9205 // that as well. 9206 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9207 } 9208 } 9209 9210 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9211 unsigned Bytes, int Dist, 9212 SelectionDAG &DAG) { 9213 if (VT.getSizeInBits() / 8 != Bytes) 9214 return false; 9215 9216 SDValue BaseLoc = Base->getBasePtr(); 9217 if (Loc.getOpcode() == ISD::FrameIndex) { 9218 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9219 return false; 9220 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9221 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9222 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9223 int FS = MFI->getObjectSize(FI); 9224 int BFS = MFI->getObjectSize(BFI); 9225 if (FS != BFS || FS != (int)Bytes) return false; 9226 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9227 } 9228 9229 SDValue Base1 = Loc, Base2 = BaseLoc; 9230 int64_t Offset1 = 0, Offset2 = 0; 9231 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9232 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9233 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9234 return true; 9235 9236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9237 const GlobalValue *GV1 = nullptr; 9238 const GlobalValue *GV2 = nullptr; 9239 Offset1 = 0; 9240 Offset2 = 0; 9241 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9242 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9243 if (isGA1 && isGA2 && GV1 == GV2) 9244 return Offset1 == (Offset2 + Dist*Bytes); 9245 return false; 9246 } 9247 9248 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9249 // not enforce equality of the chain operands. 9250 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9251 unsigned Bytes, int Dist, 9252 SelectionDAG &DAG) { 9253 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9254 EVT VT = LS->getMemoryVT(); 9255 SDValue Loc = LS->getBasePtr(); 9256 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9257 } 9258 9259 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9260 EVT VT; 9261 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9262 default: return false; 9263 case Intrinsic::ppc_qpx_qvlfd: 9264 case Intrinsic::ppc_qpx_qvlfda: 9265 VT = MVT::v4f64; 9266 break; 9267 case Intrinsic::ppc_qpx_qvlfs: 9268 case Intrinsic::ppc_qpx_qvlfsa: 9269 VT = MVT::v4f32; 9270 break; 9271 case Intrinsic::ppc_qpx_qvlfcd: 9272 case Intrinsic::ppc_qpx_qvlfcda: 9273 VT = MVT::v2f64; 9274 break; 9275 case Intrinsic::ppc_qpx_qvlfcs: 9276 case Intrinsic::ppc_qpx_qvlfcsa: 9277 VT = MVT::v2f32; 9278 break; 9279 case Intrinsic::ppc_qpx_qvlfiwa: 9280 case Intrinsic::ppc_qpx_qvlfiwz: 9281 case Intrinsic::ppc_altivec_lvx: 9282 case Intrinsic::ppc_altivec_lvxl: 9283 case Intrinsic::ppc_vsx_lxvw4x: 9284 VT = MVT::v4i32; 9285 break; 9286 case Intrinsic::ppc_vsx_lxvd2x: 9287 VT = MVT::v2f64; 9288 break; 9289 case Intrinsic::ppc_altivec_lvebx: 9290 VT = MVT::i8; 9291 break; 9292 case Intrinsic::ppc_altivec_lvehx: 9293 VT = MVT::i16; 9294 break; 9295 case Intrinsic::ppc_altivec_lvewx: 9296 VT = MVT::i32; 9297 break; 9298 } 9299 9300 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9301 } 9302 9303 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9304 EVT VT; 9305 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9306 default: return false; 9307 case Intrinsic::ppc_qpx_qvstfd: 9308 case Intrinsic::ppc_qpx_qvstfda: 9309 VT = MVT::v4f64; 9310 break; 9311 case Intrinsic::ppc_qpx_qvstfs: 9312 case Intrinsic::ppc_qpx_qvstfsa: 9313 VT = MVT::v4f32; 9314 break; 9315 case Intrinsic::ppc_qpx_qvstfcd: 9316 case Intrinsic::ppc_qpx_qvstfcda: 9317 VT = MVT::v2f64; 9318 break; 9319 case Intrinsic::ppc_qpx_qvstfcs: 9320 case Intrinsic::ppc_qpx_qvstfcsa: 9321 VT = MVT::v2f32; 9322 break; 9323 case Intrinsic::ppc_qpx_qvstfiw: 9324 case Intrinsic::ppc_qpx_qvstfiwa: 9325 case Intrinsic::ppc_altivec_stvx: 9326 case Intrinsic::ppc_altivec_stvxl: 9327 case Intrinsic::ppc_vsx_stxvw4x: 9328 VT = MVT::v4i32; 9329 break; 9330 case Intrinsic::ppc_vsx_stxvd2x: 9331 VT = MVT::v2f64; 9332 break; 9333 case Intrinsic::ppc_altivec_stvebx: 9334 VT = MVT::i8; 9335 break; 9336 case Intrinsic::ppc_altivec_stvehx: 9337 VT = MVT::i16; 9338 break; 9339 case Intrinsic::ppc_altivec_stvewx: 9340 VT = MVT::i32; 9341 break; 9342 } 9343 9344 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9345 } 9346 9347 return false; 9348 } 9349 9350 // Return true is there is a nearyby consecutive load to the one provided 9351 // (regardless of alignment). We search up and down the chain, looking though 9352 // token factors and other loads (but nothing else). As a result, a true result 9353 // indicates that it is safe to create a new consecutive load adjacent to the 9354 // load provided. 9355 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9356 SDValue Chain = LD->getChain(); 9357 EVT VT = LD->getMemoryVT(); 9358 9359 SmallSet<SDNode *, 16> LoadRoots; 9360 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9361 SmallSet<SDNode *, 16> Visited; 9362 9363 // First, search up the chain, branching to follow all token-factor operands. 9364 // If we find a consecutive load, then we're done, otherwise, record all 9365 // nodes just above the top-level loads and token factors. 9366 while (!Queue.empty()) { 9367 SDNode *ChainNext = Queue.pop_back_val(); 9368 if (!Visited.insert(ChainNext).second) 9369 continue; 9370 9371 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9372 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9373 return true; 9374 9375 if (!Visited.count(ChainLD->getChain().getNode())) 9376 Queue.push_back(ChainLD->getChain().getNode()); 9377 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9378 for (const SDUse &O : ChainNext->ops()) 9379 if (!Visited.count(O.getNode())) 9380 Queue.push_back(O.getNode()); 9381 } else 9382 LoadRoots.insert(ChainNext); 9383 } 9384 9385 // Second, search down the chain, starting from the top-level nodes recorded 9386 // in the first phase. These top-level nodes are the nodes just above all 9387 // loads and token factors. Starting with their uses, recursively look though 9388 // all loads (just the chain uses) and token factors to find a consecutive 9389 // load. 9390 Visited.clear(); 9391 Queue.clear(); 9392 9393 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9394 IE = LoadRoots.end(); I != IE; ++I) { 9395 Queue.push_back(*I); 9396 9397 while (!Queue.empty()) { 9398 SDNode *LoadRoot = Queue.pop_back_val(); 9399 if (!Visited.insert(LoadRoot).second) 9400 continue; 9401 9402 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9403 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9404 return true; 9405 9406 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9407 UE = LoadRoot->use_end(); UI != UE; ++UI) 9408 if (((isa<MemSDNode>(*UI) && 9409 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9410 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9411 Queue.push_back(*UI); 9412 } 9413 } 9414 9415 return false; 9416 } 9417 9418 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9419 DAGCombinerInfo &DCI) const { 9420 SelectionDAG &DAG = DCI.DAG; 9421 SDLoc dl(N); 9422 9423 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9424 // If we're tracking CR bits, we need to be careful that we don't have: 9425 // trunc(binary-ops(zext(x), zext(y))) 9426 // or 9427 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9428 // such that we're unnecessarily moving things into GPRs when it would be 9429 // better to keep them in CR bits. 9430 9431 // Note that trunc here can be an actual i1 trunc, or can be the effective 9432 // truncation that comes from a setcc or select_cc. 9433 if (N->getOpcode() == ISD::TRUNCATE && 9434 N->getValueType(0) != MVT::i1) 9435 return SDValue(); 9436 9437 if (N->getOperand(0).getValueType() != MVT::i32 && 9438 N->getOperand(0).getValueType() != MVT::i64) 9439 return SDValue(); 9440 9441 if (N->getOpcode() == ISD::SETCC || 9442 N->getOpcode() == ISD::SELECT_CC) { 9443 // If we're looking at a comparison, then we need to make sure that the 9444 // high bits (all except for the first) don't matter the result. 9445 ISD::CondCode CC = 9446 cast<CondCodeSDNode>(N->getOperand( 9447 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9448 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9449 9450 if (ISD::isSignedIntSetCC(CC)) { 9451 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9452 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9453 return SDValue(); 9454 } else if (ISD::isUnsignedIntSetCC(CC)) { 9455 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9456 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9457 !DAG.MaskedValueIsZero(N->getOperand(1), 9458 APInt::getHighBitsSet(OpBits, OpBits-1))) 9459 return SDValue(); 9460 } else { 9461 // This is neither a signed nor an unsigned comparison, just make sure 9462 // that the high bits are equal. 9463 APInt Op1Zero, Op1One; 9464 APInt Op2Zero, Op2One; 9465 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9466 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9467 9468 // We don't really care about what is known about the first bit (if 9469 // anything), so clear it in all masks prior to comparing them. 9470 Op1Zero.clearBit(0); Op1One.clearBit(0); 9471 Op2Zero.clearBit(0); Op2One.clearBit(0); 9472 9473 if (Op1Zero != Op2Zero || Op1One != Op2One) 9474 return SDValue(); 9475 } 9476 } 9477 9478 // We now know that the higher-order bits are irrelevant, we just need to 9479 // make sure that all of the intermediate operations are bit operations, and 9480 // all inputs are extensions. 9481 if (N->getOperand(0).getOpcode() != ISD::AND && 9482 N->getOperand(0).getOpcode() != ISD::OR && 9483 N->getOperand(0).getOpcode() != ISD::XOR && 9484 N->getOperand(0).getOpcode() != ISD::SELECT && 9485 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9486 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9487 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9488 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9489 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9490 return SDValue(); 9491 9492 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9493 N->getOperand(1).getOpcode() != ISD::AND && 9494 N->getOperand(1).getOpcode() != ISD::OR && 9495 N->getOperand(1).getOpcode() != ISD::XOR && 9496 N->getOperand(1).getOpcode() != ISD::SELECT && 9497 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9498 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9499 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9500 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9501 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9502 return SDValue(); 9503 9504 SmallVector<SDValue, 4> Inputs; 9505 SmallVector<SDValue, 8> BinOps, PromOps; 9506 SmallPtrSet<SDNode *, 16> Visited; 9507 9508 for (unsigned i = 0; i < 2; ++i) { 9509 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9510 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9511 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9512 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9513 isa<ConstantSDNode>(N->getOperand(i))) 9514 Inputs.push_back(N->getOperand(i)); 9515 else 9516 BinOps.push_back(N->getOperand(i)); 9517 9518 if (N->getOpcode() == ISD::TRUNCATE) 9519 break; 9520 } 9521 9522 // Visit all inputs, collect all binary operations (and, or, xor and 9523 // select) that are all fed by extensions. 9524 while (!BinOps.empty()) { 9525 SDValue BinOp = BinOps.back(); 9526 BinOps.pop_back(); 9527 9528 if (!Visited.insert(BinOp.getNode()).second) 9529 continue; 9530 9531 PromOps.push_back(BinOp); 9532 9533 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9534 // The condition of the select is not promoted. 9535 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9536 continue; 9537 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9538 continue; 9539 9540 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9541 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9542 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9543 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9544 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9545 Inputs.push_back(BinOp.getOperand(i)); 9546 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9547 BinOp.getOperand(i).getOpcode() == ISD::OR || 9548 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9549 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9550 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9551 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9552 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9553 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9554 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9555 BinOps.push_back(BinOp.getOperand(i)); 9556 } else { 9557 // We have an input that is not an extension or another binary 9558 // operation; we'll abort this transformation. 9559 return SDValue(); 9560 } 9561 } 9562 } 9563 9564 // Make sure that this is a self-contained cluster of operations (which 9565 // is not quite the same thing as saying that everything has only one 9566 // use). 9567 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9568 if (isa<ConstantSDNode>(Inputs[i])) 9569 continue; 9570 9571 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9572 UE = Inputs[i].getNode()->use_end(); 9573 UI != UE; ++UI) { 9574 SDNode *User = *UI; 9575 if (User != N && !Visited.count(User)) 9576 return SDValue(); 9577 9578 // Make sure that we're not going to promote the non-output-value 9579 // operand(s) or SELECT or SELECT_CC. 9580 // FIXME: Although we could sometimes handle this, and it does occur in 9581 // practice that one of the condition inputs to the select is also one of 9582 // the outputs, we currently can't deal with this. 9583 if (User->getOpcode() == ISD::SELECT) { 9584 if (User->getOperand(0) == Inputs[i]) 9585 return SDValue(); 9586 } else if (User->getOpcode() == ISD::SELECT_CC) { 9587 if (User->getOperand(0) == Inputs[i] || 9588 User->getOperand(1) == Inputs[i]) 9589 return SDValue(); 9590 } 9591 } 9592 } 9593 9594 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9595 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9596 UE = PromOps[i].getNode()->use_end(); 9597 UI != UE; ++UI) { 9598 SDNode *User = *UI; 9599 if (User != N && !Visited.count(User)) 9600 return SDValue(); 9601 9602 // Make sure that we're not going to promote the non-output-value 9603 // operand(s) or SELECT or SELECT_CC. 9604 // FIXME: Although we could sometimes handle this, and it does occur in 9605 // practice that one of the condition inputs to the select is also one of 9606 // the outputs, we currently can't deal with this. 9607 if (User->getOpcode() == ISD::SELECT) { 9608 if (User->getOperand(0) == PromOps[i]) 9609 return SDValue(); 9610 } else if (User->getOpcode() == ISD::SELECT_CC) { 9611 if (User->getOperand(0) == PromOps[i] || 9612 User->getOperand(1) == PromOps[i]) 9613 return SDValue(); 9614 } 9615 } 9616 } 9617 9618 // Replace all inputs with the extension operand. 9619 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9620 // Constants may have users outside the cluster of to-be-promoted nodes, 9621 // and so we need to replace those as we do the promotions. 9622 if (isa<ConstantSDNode>(Inputs[i])) 9623 continue; 9624 else 9625 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9626 } 9627 9628 // Replace all operations (these are all the same, but have a different 9629 // (i1) return type). DAG.getNode will validate that the types of 9630 // a binary operator match, so go through the list in reverse so that 9631 // we've likely promoted both operands first. Any intermediate truncations or 9632 // extensions disappear. 9633 while (!PromOps.empty()) { 9634 SDValue PromOp = PromOps.back(); 9635 PromOps.pop_back(); 9636 9637 if (PromOp.getOpcode() == ISD::TRUNCATE || 9638 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9639 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9640 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9641 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9642 PromOp.getOperand(0).getValueType() != MVT::i1) { 9643 // The operand is not yet ready (see comment below). 9644 PromOps.insert(PromOps.begin(), PromOp); 9645 continue; 9646 } 9647 9648 SDValue RepValue = PromOp.getOperand(0); 9649 if (isa<ConstantSDNode>(RepValue)) 9650 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9651 9652 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9653 continue; 9654 } 9655 9656 unsigned C; 9657 switch (PromOp.getOpcode()) { 9658 default: C = 0; break; 9659 case ISD::SELECT: C = 1; break; 9660 case ISD::SELECT_CC: C = 2; break; 9661 } 9662 9663 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9664 PromOp.getOperand(C).getValueType() != MVT::i1) || 9665 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9666 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9667 // The to-be-promoted operands of this node have not yet been 9668 // promoted (this should be rare because we're going through the 9669 // list backward, but if one of the operands has several users in 9670 // this cluster of to-be-promoted nodes, it is possible). 9671 PromOps.insert(PromOps.begin(), PromOp); 9672 continue; 9673 } 9674 9675 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9676 PromOp.getNode()->op_end()); 9677 9678 // If there are any constant inputs, make sure they're replaced now. 9679 for (unsigned i = 0; i < 2; ++i) 9680 if (isa<ConstantSDNode>(Ops[C+i])) 9681 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9682 9683 DAG.ReplaceAllUsesOfValueWith(PromOp, 9684 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9685 } 9686 9687 // Now we're left with the initial truncation itself. 9688 if (N->getOpcode() == ISD::TRUNCATE) 9689 return N->getOperand(0); 9690 9691 // Otherwise, this is a comparison. The operands to be compared have just 9692 // changed type (to i1), but everything else is the same. 9693 return SDValue(N, 0); 9694 } 9695 9696 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9697 DAGCombinerInfo &DCI) const { 9698 SelectionDAG &DAG = DCI.DAG; 9699 SDLoc dl(N); 9700 9701 // If we're tracking CR bits, we need to be careful that we don't have: 9702 // zext(binary-ops(trunc(x), trunc(y))) 9703 // or 9704 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9705 // such that we're unnecessarily moving things into CR bits that can more 9706 // efficiently stay in GPRs. Note that if we're not certain that the high 9707 // bits are set as required by the final extension, we still may need to do 9708 // some masking to get the proper behavior. 9709 9710 // This same functionality is important on PPC64 when dealing with 9711 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9712 // the return values of functions. Because it is so similar, it is handled 9713 // here as well. 9714 9715 if (N->getValueType(0) != MVT::i32 && 9716 N->getValueType(0) != MVT::i64) 9717 return SDValue(); 9718 9719 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9720 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9721 return SDValue(); 9722 9723 if (N->getOperand(0).getOpcode() != ISD::AND && 9724 N->getOperand(0).getOpcode() != ISD::OR && 9725 N->getOperand(0).getOpcode() != ISD::XOR && 9726 N->getOperand(0).getOpcode() != ISD::SELECT && 9727 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9728 return SDValue(); 9729 9730 SmallVector<SDValue, 4> Inputs; 9731 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9732 SmallPtrSet<SDNode *, 16> Visited; 9733 9734 // Visit all inputs, collect all binary operations (and, or, xor and 9735 // select) that are all fed by truncations. 9736 while (!BinOps.empty()) { 9737 SDValue BinOp = BinOps.back(); 9738 BinOps.pop_back(); 9739 9740 if (!Visited.insert(BinOp.getNode()).second) 9741 continue; 9742 9743 PromOps.push_back(BinOp); 9744 9745 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9746 // The condition of the select is not promoted. 9747 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9748 continue; 9749 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9750 continue; 9751 9752 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9753 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9754 Inputs.push_back(BinOp.getOperand(i)); 9755 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9756 BinOp.getOperand(i).getOpcode() == ISD::OR || 9757 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9758 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9759 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9760 BinOps.push_back(BinOp.getOperand(i)); 9761 } else { 9762 // We have an input that is not a truncation or another binary 9763 // operation; we'll abort this transformation. 9764 return SDValue(); 9765 } 9766 } 9767 } 9768 9769 // The operands of a select that must be truncated when the select is 9770 // promoted because the operand is actually part of the to-be-promoted set. 9771 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9772 9773 // Make sure that this is a self-contained cluster of operations (which 9774 // is not quite the same thing as saying that everything has only one 9775 // use). 9776 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9777 if (isa<ConstantSDNode>(Inputs[i])) 9778 continue; 9779 9780 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9781 UE = Inputs[i].getNode()->use_end(); 9782 UI != UE; ++UI) { 9783 SDNode *User = *UI; 9784 if (User != N && !Visited.count(User)) 9785 return SDValue(); 9786 9787 // If we're going to promote the non-output-value operand(s) or SELECT or 9788 // SELECT_CC, record them for truncation. 9789 if (User->getOpcode() == ISD::SELECT) { 9790 if (User->getOperand(0) == Inputs[i]) 9791 SelectTruncOp[0].insert(std::make_pair(User, 9792 User->getOperand(0).getValueType())); 9793 } else if (User->getOpcode() == ISD::SELECT_CC) { 9794 if (User->getOperand(0) == Inputs[i]) 9795 SelectTruncOp[0].insert(std::make_pair(User, 9796 User->getOperand(0).getValueType())); 9797 if (User->getOperand(1) == Inputs[i]) 9798 SelectTruncOp[1].insert(std::make_pair(User, 9799 User->getOperand(1).getValueType())); 9800 } 9801 } 9802 } 9803 9804 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9805 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9806 UE = PromOps[i].getNode()->use_end(); 9807 UI != UE; ++UI) { 9808 SDNode *User = *UI; 9809 if (User != N && !Visited.count(User)) 9810 return SDValue(); 9811 9812 // If we're going to promote the non-output-value operand(s) or SELECT or 9813 // SELECT_CC, record them for truncation. 9814 if (User->getOpcode() == ISD::SELECT) { 9815 if (User->getOperand(0) == PromOps[i]) 9816 SelectTruncOp[0].insert(std::make_pair(User, 9817 User->getOperand(0).getValueType())); 9818 } else if (User->getOpcode() == ISD::SELECT_CC) { 9819 if (User->getOperand(0) == PromOps[i]) 9820 SelectTruncOp[0].insert(std::make_pair(User, 9821 User->getOperand(0).getValueType())); 9822 if (User->getOperand(1) == PromOps[i]) 9823 SelectTruncOp[1].insert(std::make_pair(User, 9824 User->getOperand(1).getValueType())); 9825 } 9826 } 9827 } 9828 9829 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9830 bool ReallyNeedsExt = false; 9831 if (N->getOpcode() != ISD::ANY_EXTEND) { 9832 // If all of the inputs are not already sign/zero extended, then 9833 // we'll still need to do that at the end. 9834 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9835 if (isa<ConstantSDNode>(Inputs[i])) 9836 continue; 9837 9838 unsigned OpBits = 9839 Inputs[i].getOperand(0).getValueSizeInBits(); 9840 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9841 9842 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9843 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9844 APInt::getHighBitsSet(OpBits, 9845 OpBits-PromBits))) || 9846 (N->getOpcode() == ISD::SIGN_EXTEND && 9847 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9848 (OpBits-(PromBits-1)))) { 9849 ReallyNeedsExt = true; 9850 break; 9851 } 9852 } 9853 } 9854 9855 // Replace all inputs, either with the truncation operand, or a 9856 // truncation or extension to the final output type. 9857 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9858 // Constant inputs need to be replaced with the to-be-promoted nodes that 9859 // use them because they might have users outside of the cluster of 9860 // promoted nodes. 9861 if (isa<ConstantSDNode>(Inputs[i])) 9862 continue; 9863 9864 SDValue InSrc = Inputs[i].getOperand(0); 9865 if (Inputs[i].getValueType() == N->getValueType(0)) 9866 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9867 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9868 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9869 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9870 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9871 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9872 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9873 else 9874 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9875 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9876 } 9877 9878 // Replace all operations (these are all the same, but have a different 9879 // (promoted) return type). DAG.getNode will validate that the types of 9880 // a binary operator match, so go through the list in reverse so that 9881 // we've likely promoted both operands first. 9882 while (!PromOps.empty()) { 9883 SDValue PromOp = PromOps.back(); 9884 PromOps.pop_back(); 9885 9886 unsigned C; 9887 switch (PromOp.getOpcode()) { 9888 default: C = 0; break; 9889 case ISD::SELECT: C = 1; break; 9890 case ISD::SELECT_CC: C = 2; break; 9891 } 9892 9893 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9894 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9895 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9896 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9897 // The to-be-promoted operands of this node have not yet been 9898 // promoted (this should be rare because we're going through the 9899 // list backward, but if one of the operands has several users in 9900 // this cluster of to-be-promoted nodes, it is possible). 9901 PromOps.insert(PromOps.begin(), PromOp); 9902 continue; 9903 } 9904 9905 // For SELECT and SELECT_CC nodes, we do a similar check for any 9906 // to-be-promoted comparison inputs. 9907 if (PromOp.getOpcode() == ISD::SELECT || 9908 PromOp.getOpcode() == ISD::SELECT_CC) { 9909 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9910 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9911 (SelectTruncOp[1].count(PromOp.getNode()) && 9912 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9913 PromOps.insert(PromOps.begin(), PromOp); 9914 continue; 9915 } 9916 } 9917 9918 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9919 PromOp.getNode()->op_end()); 9920 9921 // If this node has constant inputs, then they'll need to be promoted here. 9922 for (unsigned i = 0; i < 2; ++i) { 9923 if (!isa<ConstantSDNode>(Ops[C+i])) 9924 continue; 9925 if (Ops[C+i].getValueType() == N->getValueType(0)) 9926 continue; 9927 9928 if (N->getOpcode() == ISD::SIGN_EXTEND) 9929 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9930 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9931 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9932 else 9933 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9934 } 9935 9936 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9937 // truncate them again to the original value type. 9938 if (PromOp.getOpcode() == ISD::SELECT || 9939 PromOp.getOpcode() == ISD::SELECT_CC) { 9940 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9941 if (SI0 != SelectTruncOp[0].end()) 9942 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9943 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9944 if (SI1 != SelectTruncOp[1].end()) 9945 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9946 } 9947 9948 DAG.ReplaceAllUsesOfValueWith(PromOp, 9949 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9950 } 9951 9952 // Now we're left with the initial extension itself. 9953 if (!ReallyNeedsExt) 9954 return N->getOperand(0); 9955 9956 // To zero extend, just mask off everything except for the first bit (in the 9957 // i1 case). 9958 if (N->getOpcode() == ISD::ZERO_EXTEND) 9959 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9960 DAG.getConstant(APInt::getLowBitsSet( 9961 N->getValueSizeInBits(0), PromBits), 9962 dl, N->getValueType(0))); 9963 9964 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9965 "Invalid extension type"); 9966 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9967 SDValue ShiftCst = 9968 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9969 return DAG.getNode( 9970 ISD::SRA, dl, N->getValueType(0), 9971 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9972 ShiftCst); 9973 } 9974 9975 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9976 DAGCombinerInfo &DCI) const { 9977 assert((N->getOpcode() == ISD::SINT_TO_FP || 9978 N->getOpcode() == ISD::UINT_TO_FP) && 9979 "Need an int -> FP conversion node here"); 9980 9981 if (!Subtarget.has64BitSupport()) 9982 return SDValue(); 9983 9984 SelectionDAG &DAG = DCI.DAG; 9985 SDLoc dl(N); 9986 SDValue Op(N, 0); 9987 9988 // Don't handle ppc_fp128 here or i1 conversions. 9989 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9990 return SDValue(); 9991 if (Op.getOperand(0).getValueType() == MVT::i1) 9992 return SDValue(); 9993 9994 // For i32 intermediate values, unfortunately, the conversion functions 9995 // leave the upper 32 bits of the value are undefined. Within the set of 9996 // scalar instructions, we have no method for zero- or sign-extending the 9997 // value. Thus, we cannot handle i32 intermediate values here. 9998 if (Op.getOperand(0).getValueType() == MVT::i32) 9999 return SDValue(); 10000 10001 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10002 "UINT_TO_FP is supported only with FPCVT"); 10003 10004 // If we have FCFIDS, then use it when converting to single-precision. 10005 // Otherwise, convert to double-precision and then round. 10006 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10007 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10008 : PPCISD::FCFIDS) 10009 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10010 : PPCISD::FCFID); 10011 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10012 ? MVT::f32 10013 : MVT::f64; 10014 10015 // If we're converting from a float, to an int, and back to a float again, 10016 // then we don't need the store/load pair at all. 10017 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10018 Subtarget.hasFPCVT()) || 10019 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10020 SDValue Src = Op.getOperand(0).getOperand(0); 10021 if (Src.getValueType() == MVT::f32) { 10022 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10023 DCI.AddToWorklist(Src.getNode()); 10024 } else if (Src.getValueType() != MVT::f64) { 10025 // Make sure that we don't pick up a ppc_fp128 source value. 10026 return SDValue(); 10027 } 10028 10029 unsigned FCTOp = 10030 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10031 PPCISD::FCTIDUZ; 10032 10033 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10034 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10035 10036 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10037 FP = DAG.getNode(ISD::FP_ROUND, dl, 10038 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10039 DCI.AddToWorklist(FP.getNode()); 10040 } 10041 10042 return FP; 10043 } 10044 10045 return SDValue(); 10046 } 10047 10048 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10049 // builtins) into loads with swaps. 10050 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10051 DAGCombinerInfo &DCI) const { 10052 SelectionDAG &DAG = DCI.DAG; 10053 SDLoc dl(N); 10054 SDValue Chain; 10055 SDValue Base; 10056 MachineMemOperand *MMO; 10057 10058 switch (N->getOpcode()) { 10059 default: 10060 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10061 case ISD::LOAD: { 10062 LoadSDNode *LD = cast<LoadSDNode>(N); 10063 Chain = LD->getChain(); 10064 Base = LD->getBasePtr(); 10065 MMO = LD->getMemOperand(); 10066 // If the MMO suggests this isn't a load of a full vector, leave 10067 // things alone. For a built-in, we have to make the change for 10068 // correctness, so if there is a size problem that will be a bug. 10069 if (MMO->getSize() < 16) 10070 return SDValue(); 10071 break; 10072 } 10073 case ISD::INTRINSIC_W_CHAIN: { 10074 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10075 Chain = Intrin->getChain(); 10076 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10077 // us what we want. Get operand 2 instead. 10078 Base = Intrin->getOperand(2); 10079 MMO = Intrin->getMemOperand(); 10080 break; 10081 } 10082 } 10083 10084 MVT VecTy = N->getValueType(0).getSimpleVT(); 10085 SDValue LoadOps[] = { Chain, Base }; 10086 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10087 DAG.getVTList(VecTy, MVT::Other), 10088 LoadOps, VecTy, MMO); 10089 DCI.AddToWorklist(Load.getNode()); 10090 Chain = Load.getValue(1); 10091 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10092 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10093 DCI.AddToWorklist(Swap.getNode()); 10094 return Swap; 10095 } 10096 10097 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10098 // builtins) into stores with swaps. 10099 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10100 DAGCombinerInfo &DCI) const { 10101 SelectionDAG &DAG = DCI.DAG; 10102 SDLoc dl(N); 10103 SDValue Chain; 10104 SDValue Base; 10105 unsigned SrcOpnd; 10106 MachineMemOperand *MMO; 10107 10108 switch (N->getOpcode()) { 10109 default: 10110 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10111 case ISD::STORE: { 10112 StoreSDNode *ST = cast<StoreSDNode>(N); 10113 Chain = ST->getChain(); 10114 Base = ST->getBasePtr(); 10115 MMO = ST->getMemOperand(); 10116 SrcOpnd = 1; 10117 // If the MMO suggests this isn't a store of a full vector, leave 10118 // things alone. For a built-in, we have to make the change for 10119 // correctness, so if there is a size problem that will be a bug. 10120 if (MMO->getSize() < 16) 10121 return SDValue(); 10122 break; 10123 } 10124 case ISD::INTRINSIC_VOID: { 10125 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10126 Chain = Intrin->getChain(); 10127 // Intrin->getBasePtr() oddly does not get what we want. 10128 Base = Intrin->getOperand(3); 10129 MMO = Intrin->getMemOperand(); 10130 SrcOpnd = 2; 10131 break; 10132 } 10133 } 10134 10135 SDValue Src = N->getOperand(SrcOpnd); 10136 MVT VecTy = Src.getValueType().getSimpleVT(); 10137 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10138 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10139 DCI.AddToWorklist(Swap.getNode()); 10140 Chain = Swap.getValue(1); 10141 SDValue StoreOps[] = { Chain, Swap, Base }; 10142 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10143 DAG.getVTList(MVT::Other), 10144 StoreOps, VecTy, MMO); 10145 DCI.AddToWorklist(Store.getNode()); 10146 return Store; 10147 } 10148 10149 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10150 DAGCombinerInfo &DCI) const { 10151 SelectionDAG &DAG = DCI.DAG; 10152 SDLoc dl(N); 10153 switch (N->getOpcode()) { 10154 default: break; 10155 case PPCISD::SHL: 10156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10157 if (C->isNullValue()) // 0 << V -> 0. 10158 return N->getOperand(0); 10159 } 10160 break; 10161 case PPCISD::SRL: 10162 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10163 if (C->isNullValue()) // 0 >>u V -> 0. 10164 return N->getOperand(0); 10165 } 10166 break; 10167 case PPCISD::SRA: 10168 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10169 if (C->isNullValue() || // 0 >>s V -> 0. 10170 C->isAllOnesValue()) // -1 >>s V -> -1. 10171 return N->getOperand(0); 10172 } 10173 break; 10174 case ISD::SIGN_EXTEND: 10175 case ISD::ZERO_EXTEND: 10176 case ISD::ANY_EXTEND: 10177 return DAGCombineExtBoolTrunc(N, DCI); 10178 case ISD::TRUNCATE: 10179 case ISD::SETCC: 10180 case ISD::SELECT_CC: 10181 return DAGCombineTruncBoolExt(N, DCI); 10182 case ISD::SINT_TO_FP: 10183 case ISD::UINT_TO_FP: 10184 return combineFPToIntToFP(N, DCI); 10185 case ISD::STORE: { 10186 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10187 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10188 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10189 N->getOperand(1).getValueType() == MVT::i32 && 10190 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10191 SDValue Val = N->getOperand(1).getOperand(0); 10192 if (Val.getValueType() == MVT::f32) { 10193 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10194 DCI.AddToWorklist(Val.getNode()); 10195 } 10196 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10197 DCI.AddToWorklist(Val.getNode()); 10198 10199 SDValue Ops[] = { 10200 N->getOperand(0), Val, N->getOperand(2), 10201 DAG.getValueType(N->getOperand(1).getValueType()) 10202 }; 10203 10204 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10205 DAG.getVTList(MVT::Other), Ops, 10206 cast<StoreSDNode>(N)->getMemoryVT(), 10207 cast<StoreSDNode>(N)->getMemOperand()); 10208 DCI.AddToWorklist(Val.getNode()); 10209 return Val; 10210 } 10211 10212 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10213 if (cast<StoreSDNode>(N)->isUnindexed() && 10214 N->getOperand(1).getOpcode() == ISD::BSWAP && 10215 N->getOperand(1).getNode()->hasOneUse() && 10216 (N->getOperand(1).getValueType() == MVT::i32 || 10217 N->getOperand(1).getValueType() == MVT::i16 || 10218 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10219 N->getOperand(1).getValueType() == MVT::i64))) { 10220 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10221 // Do an any-extend to 32-bits if this is a half-word input. 10222 if (BSwapOp.getValueType() == MVT::i16) 10223 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10224 10225 SDValue Ops[] = { 10226 N->getOperand(0), BSwapOp, N->getOperand(2), 10227 DAG.getValueType(N->getOperand(1).getValueType()) 10228 }; 10229 return 10230 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10231 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10232 cast<StoreSDNode>(N)->getMemOperand()); 10233 } 10234 10235 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10236 EVT VT = N->getOperand(1).getValueType(); 10237 if (VT.isSimple()) { 10238 MVT StoreVT = VT.getSimpleVT(); 10239 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10240 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10241 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10242 return expandVSXStoreForLE(N, DCI); 10243 } 10244 break; 10245 } 10246 case ISD::LOAD: { 10247 LoadSDNode *LD = cast<LoadSDNode>(N); 10248 EVT VT = LD->getValueType(0); 10249 10250 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10251 if (VT.isSimple()) { 10252 MVT LoadVT = VT.getSimpleVT(); 10253 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10254 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10255 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10256 return expandVSXLoadForLE(N, DCI); 10257 } 10258 10259 EVT MemVT = LD->getMemoryVT(); 10260 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10261 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10262 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10263 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10264 if (LD->isUnindexed() && VT.isVector() && 10265 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10266 // P8 and later hardware should just use LOAD. 10267 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10268 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10269 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10270 LD->getAlignment() >= ScalarABIAlignment)) && 10271 LD->getAlignment() < ABIAlignment) { 10272 // This is a type-legal unaligned Altivec or QPX load. 10273 SDValue Chain = LD->getChain(); 10274 SDValue Ptr = LD->getBasePtr(); 10275 bool isLittleEndian = Subtarget.isLittleEndian(); 10276 10277 // This implements the loading of unaligned vectors as described in 10278 // the venerable Apple Velocity Engine overview. Specifically: 10279 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10280 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10281 // 10282 // The general idea is to expand a sequence of one or more unaligned 10283 // loads into an alignment-based permutation-control instruction (lvsl 10284 // or lvsr), a series of regular vector loads (which always truncate 10285 // their input address to an aligned address), and a series of 10286 // permutations. The results of these permutations are the requested 10287 // loaded values. The trick is that the last "extra" load is not taken 10288 // from the address you might suspect (sizeof(vector) bytes after the 10289 // last requested load), but rather sizeof(vector) - 1 bytes after the 10290 // last requested vector. The point of this is to avoid a page fault if 10291 // the base address happened to be aligned. This works because if the 10292 // base address is aligned, then adding less than a full vector length 10293 // will cause the last vector in the sequence to be (re)loaded. 10294 // Otherwise, the next vector will be fetched as you might suspect was 10295 // necessary. 10296 10297 // We might be able to reuse the permutation generation from 10298 // a different base address offset from this one by an aligned amount. 10299 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10300 // optimization later. 10301 Intrinsic::ID Intr, IntrLD, IntrPerm; 10302 MVT PermCntlTy, PermTy, LDTy; 10303 if (Subtarget.hasAltivec()) { 10304 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10305 Intrinsic::ppc_altivec_lvsl; 10306 IntrLD = Intrinsic::ppc_altivec_lvx; 10307 IntrPerm = Intrinsic::ppc_altivec_vperm; 10308 PermCntlTy = MVT::v16i8; 10309 PermTy = MVT::v4i32; 10310 LDTy = MVT::v4i32; 10311 } else { 10312 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10313 Intrinsic::ppc_qpx_qvlpcls; 10314 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10315 Intrinsic::ppc_qpx_qvlfs; 10316 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10317 PermCntlTy = MVT::v4f64; 10318 PermTy = MVT::v4f64; 10319 LDTy = MemVT.getSimpleVT(); 10320 } 10321 10322 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10323 10324 // Create the new MMO for the new base load. It is like the original MMO, 10325 // but represents an area in memory almost twice the vector size centered 10326 // on the original address. If the address is unaligned, we might start 10327 // reading up to (sizeof(vector)-1) bytes below the address of the 10328 // original unaligned load. 10329 MachineFunction &MF = DAG.getMachineFunction(); 10330 MachineMemOperand *BaseMMO = 10331 MF.getMachineMemOperand(LD->getMemOperand(), 10332 -(long)MemVT.getStoreSize()+1, 10333 2*MemVT.getStoreSize()-1); 10334 10335 // Create the new base load. 10336 SDValue LDXIntID = 10337 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10338 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10339 SDValue BaseLoad = 10340 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10341 DAG.getVTList(PermTy, MVT::Other), 10342 BaseLoadOps, LDTy, BaseMMO); 10343 10344 // Note that the value of IncOffset (which is provided to the next 10345 // load's pointer info offset value, and thus used to calculate the 10346 // alignment), and the value of IncValue (which is actually used to 10347 // increment the pointer value) are different! This is because we 10348 // require the next load to appear to be aligned, even though it 10349 // is actually offset from the base pointer by a lesser amount. 10350 int IncOffset = VT.getSizeInBits() / 8; 10351 int IncValue = IncOffset; 10352 10353 // Walk (both up and down) the chain looking for another load at the real 10354 // (aligned) offset (the alignment of the other load does not matter in 10355 // this case). If found, then do not use the offset reduction trick, as 10356 // that will prevent the loads from being later combined (as they would 10357 // otherwise be duplicates). 10358 if (!findConsecutiveLoad(LD, DAG)) 10359 --IncValue; 10360 10361 SDValue Increment = 10362 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10363 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10364 10365 MachineMemOperand *ExtraMMO = 10366 MF.getMachineMemOperand(LD->getMemOperand(), 10367 1, 2*MemVT.getStoreSize()-1); 10368 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10369 SDValue ExtraLoad = 10370 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10371 DAG.getVTList(PermTy, MVT::Other), 10372 ExtraLoadOps, LDTy, ExtraMMO); 10373 10374 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10375 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10376 10377 // Because vperm has a big-endian bias, we must reverse the order 10378 // of the input vectors and complement the permute control vector 10379 // when generating little endian code. We have already handled the 10380 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10381 // and ExtraLoad here. 10382 SDValue Perm; 10383 if (isLittleEndian) 10384 Perm = BuildIntrinsicOp(IntrPerm, 10385 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10386 else 10387 Perm = BuildIntrinsicOp(IntrPerm, 10388 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10389 10390 if (VT != PermTy) 10391 Perm = Subtarget.hasAltivec() ? 10392 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10393 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10394 DAG.getTargetConstant(1, dl, MVT::i64)); 10395 // second argument is 1 because this rounding 10396 // is always exact. 10397 10398 // The output of the permutation is our loaded result, the TokenFactor is 10399 // our new chain. 10400 DCI.CombineTo(N, Perm, TF); 10401 return SDValue(N, 0); 10402 } 10403 } 10404 break; 10405 case ISD::INTRINSIC_WO_CHAIN: { 10406 bool isLittleEndian = Subtarget.isLittleEndian(); 10407 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10408 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10409 : Intrinsic::ppc_altivec_lvsl); 10410 if ((IID == Intr || 10411 IID == Intrinsic::ppc_qpx_qvlpcld || 10412 IID == Intrinsic::ppc_qpx_qvlpcls) && 10413 N->getOperand(1)->getOpcode() == ISD::ADD) { 10414 SDValue Add = N->getOperand(1); 10415 10416 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10417 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10418 10419 if (DAG.MaskedValueIsZero( 10420 Add->getOperand(1), 10421 APInt::getAllOnesValue(Bits /* alignment */) 10422 .zext( 10423 Add.getValueType().getScalarType().getSizeInBits()))) { 10424 SDNode *BasePtr = Add->getOperand(0).getNode(); 10425 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10426 UE = BasePtr->use_end(); 10427 UI != UE; ++UI) { 10428 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10429 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10430 // We've found another LVSL/LVSR, and this address is an aligned 10431 // multiple of that one. The results will be the same, so use the 10432 // one we've just found instead. 10433 10434 return SDValue(*UI, 0); 10435 } 10436 } 10437 } 10438 10439 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10440 SDNode *BasePtr = Add->getOperand(0).getNode(); 10441 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10442 UE = BasePtr->use_end(); UI != UE; ++UI) { 10443 if (UI->getOpcode() == ISD::ADD && 10444 isa<ConstantSDNode>(UI->getOperand(1)) && 10445 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10446 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10447 (1ULL << Bits) == 0) { 10448 SDNode *OtherAdd = *UI; 10449 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10450 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10451 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10452 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10453 return SDValue(*VI, 0); 10454 } 10455 } 10456 } 10457 } 10458 } 10459 } 10460 } 10461 10462 break; 10463 case ISD::INTRINSIC_W_CHAIN: { 10464 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10465 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10466 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10467 default: 10468 break; 10469 case Intrinsic::ppc_vsx_lxvw4x: 10470 case Intrinsic::ppc_vsx_lxvd2x: 10471 return expandVSXLoadForLE(N, DCI); 10472 } 10473 } 10474 break; 10475 } 10476 case ISD::INTRINSIC_VOID: { 10477 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10478 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10479 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10480 default: 10481 break; 10482 case Intrinsic::ppc_vsx_stxvw4x: 10483 case Intrinsic::ppc_vsx_stxvd2x: 10484 return expandVSXStoreForLE(N, DCI); 10485 } 10486 } 10487 break; 10488 } 10489 case ISD::BSWAP: 10490 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10491 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10492 N->getOperand(0).hasOneUse() && 10493 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10494 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10495 N->getValueType(0) == MVT::i64))) { 10496 SDValue Load = N->getOperand(0); 10497 LoadSDNode *LD = cast<LoadSDNode>(Load); 10498 // Create the byte-swapping load. 10499 SDValue Ops[] = { 10500 LD->getChain(), // Chain 10501 LD->getBasePtr(), // Ptr 10502 DAG.getValueType(N->getValueType(0)) // VT 10503 }; 10504 SDValue BSLoad = 10505 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10506 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10507 MVT::i64 : MVT::i32, MVT::Other), 10508 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10509 10510 // If this is an i16 load, insert the truncate. 10511 SDValue ResVal = BSLoad; 10512 if (N->getValueType(0) == MVT::i16) 10513 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10514 10515 // First, combine the bswap away. This makes the value produced by the 10516 // load dead. 10517 DCI.CombineTo(N, ResVal); 10518 10519 // Next, combine the load away, we give it a bogus result value but a real 10520 // chain result. The result value is dead because the bswap is dead. 10521 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10522 10523 // Return N so it doesn't get rechecked! 10524 return SDValue(N, 0); 10525 } 10526 10527 break; 10528 case PPCISD::VCMP: { 10529 // If a VCMPo node already exists with exactly the same operands as this 10530 // node, use its result instead of this node (VCMPo computes both a CR6 and 10531 // a normal output). 10532 // 10533 if (!N->getOperand(0).hasOneUse() && 10534 !N->getOperand(1).hasOneUse() && 10535 !N->getOperand(2).hasOneUse()) { 10536 10537 // Scan all of the users of the LHS, looking for VCMPo's that match. 10538 SDNode *VCMPoNode = nullptr; 10539 10540 SDNode *LHSN = N->getOperand(0).getNode(); 10541 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10542 UI != E; ++UI) 10543 if (UI->getOpcode() == PPCISD::VCMPo && 10544 UI->getOperand(1) == N->getOperand(1) && 10545 UI->getOperand(2) == N->getOperand(2) && 10546 UI->getOperand(0) == N->getOperand(0)) { 10547 VCMPoNode = *UI; 10548 break; 10549 } 10550 10551 // If there is no VCMPo node, or if the flag value has a single use, don't 10552 // transform this. 10553 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10554 break; 10555 10556 // Look at the (necessarily single) use of the flag value. If it has a 10557 // chain, this transformation is more complex. Note that multiple things 10558 // could use the value result, which we should ignore. 10559 SDNode *FlagUser = nullptr; 10560 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10561 FlagUser == nullptr; ++UI) { 10562 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10563 SDNode *User = *UI; 10564 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10565 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10566 FlagUser = User; 10567 break; 10568 } 10569 } 10570 } 10571 10572 // If the user is a MFOCRF instruction, we know this is safe. 10573 // Otherwise we give up for right now. 10574 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10575 return SDValue(VCMPoNode, 0); 10576 } 10577 break; 10578 } 10579 case ISD::BRCOND: { 10580 SDValue Cond = N->getOperand(1); 10581 SDValue Target = N->getOperand(2); 10582 10583 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10584 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10585 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10586 10587 // We now need to make the intrinsic dead (it cannot be instruction 10588 // selected). 10589 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10590 assert(Cond.getNode()->hasOneUse() && 10591 "Counter decrement has more than one use"); 10592 10593 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10594 N->getOperand(0), Target); 10595 } 10596 } 10597 break; 10598 case ISD::BR_CC: { 10599 // If this is a branch on an altivec predicate comparison, lower this so 10600 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10601 // lowering is done pre-legalize, because the legalizer lowers the predicate 10602 // compare down to code that is difficult to reassemble. 10603 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10604 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10605 10606 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10607 // value. If so, pass-through the AND to get to the intrinsic. 10608 if (LHS.getOpcode() == ISD::AND && 10609 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10610 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10611 Intrinsic::ppc_is_decremented_ctr_nonzero && 10612 isa<ConstantSDNode>(LHS.getOperand(1)) && 10613 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10614 isZero()) 10615 LHS = LHS.getOperand(0); 10616 10617 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10618 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10619 Intrinsic::ppc_is_decremented_ctr_nonzero && 10620 isa<ConstantSDNode>(RHS)) { 10621 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10622 "Counter decrement comparison is not EQ or NE"); 10623 10624 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10625 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10626 (CC == ISD::SETNE && !Val); 10627 10628 // We now need to make the intrinsic dead (it cannot be instruction 10629 // selected). 10630 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10631 assert(LHS.getNode()->hasOneUse() && 10632 "Counter decrement has more than one use"); 10633 10634 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10635 N->getOperand(0), N->getOperand(4)); 10636 } 10637 10638 int CompareOpc; 10639 bool isDot; 10640 10641 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10642 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10643 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10644 assert(isDot && "Can't compare against a vector result!"); 10645 10646 // If this is a comparison against something other than 0/1, then we know 10647 // that the condition is never/always true. 10648 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10649 if (Val != 0 && Val != 1) { 10650 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10651 return N->getOperand(0); 10652 // Always !=, turn it into an unconditional branch. 10653 return DAG.getNode(ISD::BR, dl, MVT::Other, 10654 N->getOperand(0), N->getOperand(4)); 10655 } 10656 10657 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10658 10659 // Create the PPCISD altivec 'dot' comparison node. 10660 SDValue Ops[] = { 10661 LHS.getOperand(2), // LHS of compare 10662 LHS.getOperand(3), // RHS of compare 10663 DAG.getConstant(CompareOpc, dl, MVT::i32) 10664 }; 10665 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10666 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10667 10668 // Unpack the result based on how the target uses it. 10669 PPC::Predicate CompOpc; 10670 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10671 default: // Can't happen, don't crash on invalid number though. 10672 case 0: // Branch on the value of the EQ bit of CR6. 10673 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10674 break; 10675 case 1: // Branch on the inverted value of the EQ bit of CR6. 10676 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10677 break; 10678 case 2: // Branch on the value of the LT bit of CR6. 10679 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10680 break; 10681 case 3: // Branch on the inverted value of the LT bit of CR6. 10682 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10683 break; 10684 } 10685 10686 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10687 DAG.getConstant(CompOpc, dl, MVT::i32), 10688 DAG.getRegister(PPC::CR6, MVT::i32), 10689 N->getOperand(4), CompNode.getValue(1)); 10690 } 10691 break; 10692 } 10693 } 10694 10695 return SDValue(); 10696 } 10697 10698 SDValue 10699 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10700 SelectionDAG &DAG, 10701 std::vector<SDNode *> *Created) const { 10702 // fold (sdiv X, pow2) 10703 EVT VT = N->getValueType(0); 10704 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10705 return SDValue(); 10706 if ((VT != MVT::i32 && VT != MVT::i64) || 10707 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10708 return SDValue(); 10709 10710 SDLoc DL(N); 10711 SDValue N0 = N->getOperand(0); 10712 10713 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10714 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10715 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10716 10717 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10718 if (Created) 10719 Created->push_back(Op.getNode()); 10720 10721 if (IsNegPow2) { 10722 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10723 if (Created) 10724 Created->push_back(Op.getNode()); 10725 } 10726 10727 return Op; 10728 } 10729 10730 //===----------------------------------------------------------------------===// 10731 // Inline Assembly Support 10732 //===----------------------------------------------------------------------===// 10733 10734 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10735 APInt &KnownZero, 10736 APInt &KnownOne, 10737 const SelectionDAG &DAG, 10738 unsigned Depth) const { 10739 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10740 switch (Op.getOpcode()) { 10741 default: break; 10742 case PPCISD::LBRX: { 10743 // lhbrx is known to have the top bits cleared out. 10744 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10745 KnownZero = 0xFFFF0000; 10746 break; 10747 } 10748 case ISD::INTRINSIC_WO_CHAIN: { 10749 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10750 default: break; 10751 case Intrinsic::ppc_altivec_vcmpbfp_p: 10752 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10753 case Intrinsic::ppc_altivec_vcmpequb_p: 10754 case Intrinsic::ppc_altivec_vcmpequh_p: 10755 case Intrinsic::ppc_altivec_vcmpequw_p: 10756 case Intrinsic::ppc_altivec_vcmpequd_p: 10757 case Intrinsic::ppc_altivec_vcmpgefp_p: 10758 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10759 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10760 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10761 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10762 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10763 case Intrinsic::ppc_altivec_vcmpgtub_p: 10764 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10765 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10766 case Intrinsic::ppc_altivec_vcmpgtud_p: 10767 KnownZero = ~1U; // All bits but the low one are known to be zero. 10768 break; 10769 } 10770 } 10771 } 10772 } 10773 10774 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10775 switch (Subtarget.getDarwinDirective()) { 10776 default: break; 10777 case PPC::DIR_970: 10778 case PPC::DIR_PWR4: 10779 case PPC::DIR_PWR5: 10780 case PPC::DIR_PWR5X: 10781 case PPC::DIR_PWR6: 10782 case PPC::DIR_PWR6X: 10783 case PPC::DIR_PWR7: 10784 case PPC::DIR_PWR8: { 10785 if (!ML) 10786 break; 10787 10788 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10789 10790 // For small loops (between 5 and 8 instructions), align to a 32-byte 10791 // boundary so that the entire loop fits in one instruction-cache line. 10792 uint64_t LoopSize = 0; 10793 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10794 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10795 LoopSize += TII->GetInstSizeInBytes(J); 10796 10797 if (LoopSize > 16 && LoopSize <= 32) 10798 return 5; 10799 10800 break; 10801 } 10802 } 10803 10804 return TargetLowering::getPrefLoopAlignment(ML); 10805 } 10806 10807 /// getConstraintType - Given a constraint, return the type of 10808 /// constraint it is for this target. 10809 PPCTargetLowering::ConstraintType 10810 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10811 if (Constraint.size() == 1) { 10812 switch (Constraint[0]) { 10813 default: break; 10814 case 'b': 10815 case 'r': 10816 case 'f': 10817 case 'v': 10818 case 'y': 10819 return C_RegisterClass; 10820 case 'Z': 10821 // FIXME: While Z does indicate a memory constraint, it specifically 10822 // indicates an r+r address (used in conjunction with the 'y' modifier 10823 // in the replacement string). Currently, we're forcing the base 10824 // register to be r0 in the asm printer (which is interpreted as zero) 10825 // and forming the complete address in the second register. This is 10826 // suboptimal. 10827 return C_Memory; 10828 } 10829 } else if (Constraint == "wc") { // individual CR bits. 10830 return C_RegisterClass; 10831 } else if (Constraint == "wa" || Constraint == "wd" || 10832 Constraint == "wf" || Constraint == "ws") { 10833 return C_RegisterClass; // VSX registers. 10834 } 10835 return TargetLowering::getConstraintType(Constraint); 10836 } 10837 10838 /// Examine constraint type and operand type and determine a weight value. 10839 /// This object must already have been set up with the operand type 10840 /// and the current alternative constraint selected. 10841 TargetLowering::ConstraintWeight 10842 PPCTargetLowering::getSingleConstraintMatchWeight( 10843 AsmOperandInfo &info, const char *constraint) const { 10844 ConstraintWeight weight = CW_Invalid; 10845 Value *CallOperandVal = info.CallOperandVal; 10846 // If we don't have a value, we can't do a match, 10847 // but allow it at the lowest weight. 10848 if (!CallOperandVal) 10849 return CW_Default; 10850 Type *type = CallOperandVal->getType(); 10851 10852 // Look at the constraint type. 10853 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10854 return CW_Register; // an individual CR bit. 10855 else if ((StringRef(constraint) == "wa" || 10856 StringRef(constraint) == "wd" || 10857 StringRef(constraint) == "wf") && 10858 type->isVectorTy()) 10859 return CW_Register; 10860 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10861 return CW_Register; 10862 10863 switch (*constraint) { 10864 default: 10865 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10866 break; 10867 case 'b': 10868 if (type->isIntegerTy()) 10869 weight = CW_Register; 10870 break; 10871 case 'f': 10872 if (type->isFloatTy()) 10873 weight = CW_Register; 10874 break; 10875 case 'd': 10876 if (type->isDoubleTy()) 10877 weight = CW_Register; 10878 break; 10879 case 'v': 10880 if (type->isVectorTy()) 10881 weight = CW_Register; 10882 break; 10883 case 'y': 10884 weight = CW_Register; 10885 break; 10886 case 'Z': 10887 weight = CW_Memory; 10888 break; 10889 } 10890 return weight; 10891 } 10892 10893 std::pair<unsigned, const TargetRegisterClass *> 10894 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10895 StringRef Constraint, 10896 MVT VT) const { 10897 if (Constraint.size() == 1) { 10898 // GCC RS6000 Constraint Letters 10899 switch (Constraint[0]) { 10900 case 'b': // R1-R31 10901 if (VT == MVT::i64 && Subtarget.isPPC64()) 10902 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10903 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10904 case 'r': // R0-R31 10905 if (VT == MVT::i64 && Subtarget.isPPC64()) 10906 return std::make_pair(0U, &PPC::G8RCRegClass); 10907 return std::make_pair(0U, &PPC::GPRCRegClass); 10908 case 'f': 10909 if (VT == MVT::f32 || VT == MVT::i32) 10910 return std::make_pair(0U, &PPC::F4RCRegClass); 10911 if (VT == MVT::f64 || VT == MVT::i64) 10912 return std::make_pair(0U, &PPC::F8RCRegClass); 10913 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10914 return std::make_pair(0U, &PPC::QFRCRegClass); 10915 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10916 return std::make_pair(0U, &PPC::QSRCRegClass); 10917 break; 10918 case 'v': 10919 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10920 return std::make_pair(0U, &PPC::QFRCRegClass); 10921 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10922 return std::make_pair(0U, &PPC::QSRCRegClass); 10923 return std::make_pair(0U, &PPC::VRRCRegClass); 10924 case 'y': // crrc 10925 return std::make_pair(0U, &PPC::CRRCRegClass); 10926 } 10927 } else if (Constraint == "wc") { // an individual CR bit. 10928 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10929 } else if (Constraint == "wa" || Constraint == "wd" || 10930 Constraint == "wf") { 10931 return std::make_pair(0U, &PPC::VSRCRegClass); 10932 } else if (Constraint == "ws") { 10933 if (VT == MVT::f32) 10934 return std::make_pair(0U, &PPC::VSSRCRegClass); 10935 else 10936 return std::make_pair(0U, &PPC::VSFRCRegClass); 10937 } 10938 10939 std::pair<unsigned, const TargetRegisterClass *> R = 10940 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10941 10942 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10943 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10944 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10945 // register. 10946 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10947 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10948 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10949 PPC::GPRCRegClass.contains(R.first)) 10950 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10951 PPC::sub_32, &PPC::G8RCRegClass), 10952 &PPC::G8RCRegClass); 10953 10954 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10955 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10956 R.first = PPC::CR0; 10957 R.second = &PPC::CRRCRegClass; 10958 } 10959 10960 return R; 10961 } 10962 10963 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10964 /// vector. If it is invalid, don't add anything to Ops. 10965 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10966 std::string &Constraint, 10967 std::vector<SDValue>&Ops, 10968 SelectionDAG &DAG) const { 10969 SDValue Result; 10970 10971 // Only support length 1 constraints. 10972 if (Constraint.length() > 1) return; 10973 10974 char Letter = Constraint[0]; 10975 switch (Letter) { 10976 default: break; 10977 case 'I': 10978 case 'J': 10979 case 'K': 10980 case 'L': 10981 case 'M': 10982 case 'N': 10983 case 'O': 10984 case 'P': { 10985 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10986 if (!CST) return; // Must be an immediate to match. 10987 SDLoc dl(Op); 10988 int64_t Value = CST->getSExtValue(); 10989 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10990 // numbers are printed as such. 10991 switch (Letter) { 10992 default: llvm_unreachable("Unknown constraint letter!"); 10993 case 'I': // "I" is a signed 16-bit constant. 10994 if (isInt<16>(Value)) 10995 Result = DAG.getTargetConstant(Value, dl, TCVT); 10996 break; 10997 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 10998 if (isShiftedUInt<16, 16>(Value)) 10999 Result = DAG.getTargetConstant(Value, dl, TCVT); 11000 break; 11001 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11002 if (isShiftedInt<16, 16>(Value)) 11003 Result = DAG.getTargetConstant(Value, dl, TCVT); 11004 break; 11005 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11006 if (isUInt<16>(Value)) 11007 Result = DAG.getTargetConstant(Value, dl, TCVT); 11008 break; 11009 case 'M': // "M" is a constant that is greater than 31. 11010 if (Value > 31) 11011 Result = DAG.getTargetConstant(Value, dl, TCVT); 11012 break; 11013 case 'N': // "N" is a positive constant that is an exact power of two. 11014 if (Value > 0 && isPowerOf2_64(Value)) 11015 Result = DAG.getTargetConstant(Value, dl, TCVT); 11016 break; 11017 case 'O': // "O" is the constant zero. 11018 if (Value == 0) 11019 Result = DAG.getTargetConstant(Value, dl, TCVT); 11020 break; 11021 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11022 if (isInt<16>(-Value)) 11023 Result = DAG.getTargetConstant(Value, dl, TCVT); 11024 break; 11025 } 11026 break; 11027 } 11028 } 11029 11030 if (Result.getNode()) { 11031 Ops.push_back(Result); 11032 return; 11033 } 11034 11035 // Handle standard constraint letters. 11036 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11037 } 11038 11039 // isLegalAddressingMode - Return true if the addressing mode represented 11040 // by AM is legal for this target, for a load/store of the specified type. 11041 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11042 const AddrMode &AM, Type *Ty, 11043 unsigned AS) const { 11044 // PPC does not allow r+i addressing modes for vectors! 11045 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11046 return false; 11047 11048 // PPC allows a sign-extended 16-bit immediate field. 11049 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11050 return false; 11051 11052 // No global is ever allowed as a base. 11053 if (AM.BaseGV) 11054 return false; 11055 11056 // PPC only support r+r, 11057 switch (AM.Scale) { 11058 case 0: // "r+i" or just "i", depending on HasBaseReg. 11059 break; 11060 case 1: 11061 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11062 return false; 11063 // Otherwise we have r+r or r+i. 11064 break; 11065 case 2: 11066 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11067 return false; 11068 // Allow 2*r as r+r. 11069 break; 11070 default: 11071 // No other scales are supported. 11072 return false; 11073 } 11074 11075 return true; 11076 } 11077 11078 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11079 SelectionDAG &DAG) const { 11080 MachineFunction &MF = DAG.getMachineFunction(); 11081 MachineFrameInfo *MFI = MF.getFrameInfo(); 11082 MFI->setReturnAddressIsTaken(true); 11083 11084 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11085 return SDValue(); 11086 11087 SDLoc dl(Op); 11088 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11089 11090 // Make sure the function does not optimize away the store of the RA to 11091 // the stack. 11092 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11093 FuncInfo->setLRStoreRequired(); 11094 bool isPPC64 = Subtarget.isPPC64(); 11095 auto PtrVT = getPointerTy(MF.getDataLayout()); 11096 11097 if (Depth > 0) { 11098 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11099 SDValue Offset = 11100 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11101 isPPC64 ? MVT::i64 : MVT::i32); 11102 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11103 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11104 MachinePointerInfo(), false, false, false, 0); 11105 } 11106 11107 // Just load the return address off the stack. 11108 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11109 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11110 MachinePointerInfo(), false, false, false, 0); 11111 } 11112 11113 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11114 SelectionDAG &DAG) const { 11115 SDLoc dl(Op); 11116 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11117 11118 MachineFunction &MF = DAG.getMachineFunction(); 11119 MachineFrameInfo *MFI = MF.getFrameInfo(); 11120 MFI->setFrameAddressIsTaken(true); 11121 11122 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11123 bool isPPC64 = PtrVT == MVT::i64; 11124 11125 // Naked functions never have a frame pointer, and so we use r1. For all 11126 // other functions, this decision must be delayed until during PEI. 11127 unsigned FrameReg; 11128 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11129 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11130 else 11131 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11132 11133 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11134 PtrVT); 11135 while (Depth--) 11136 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11137 FrameAddr, MachinePointerInfo(), false, false, 11138 false, 0); 11139 return FrameAddr; 11140 } 11141 11142 // FIXME? Maybe this could be a TableGen attribute on some registers and 11143 // this table could be generated automatically from RegInfo. 11144 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11145 SelectionDAG &DAG) const { 11146 bool isPPC64 = Subtarget.isPPC64(); 11147 bool isDarwinABI = Subtarget.isDarwinABI(); 11148 11149 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11150 (!isPPC64 && VT != MVT::i32)) 11151 report_fatal_error("Invalid register global variable type"); 11152 11153 bool is64Bit = isPPC64 && VT == MVT::i64; 11154 unsigned Reg = StringSwitch<unsigned>(RegName) 11155 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11156 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11157 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11158 (is64Bit ? PPC::X13 : PPC::R13)) 11159 .Default(0); 11160 11161 if (Reg) 11162 return Reg; 11163 report_fatal_error("Invalid register name global variable"); 11164 } 11165 11166 bool 11167 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11168 // The PowerPC target isn't yet aware of offsets. 11169 return false; 11170 } 11171 11172 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11173 const CallInst &I, 11174 unsigned Intrinsic) const { 11175 11176 switch (Intrinsic) { 11177 case Intrinsic::ppc_qpx_qvlfd: 11178 case Intrinsic::ppc_qpx_qvlfs: 11179 case Intrinsic::ppc_qpx_qvlfcd: 11180 case Intrinsic::ppc_qpx_qvlfcs: 11181 case Intrinsic::ppc_qpx_qvlfiwa: 11182 case Intrinsic::ppc_qpx_qvlfiwz: 11183 case Intrinsic::ppc_altivec_lvx: 11184 case Intrinsic::ppc_altivec_lvxl: 11185 case Intrinsic::ppc_altivec_lvebx: 11186 case Intrinsic::ppc_altivec_lvehx: 11187 case Intrinsic::ppc_altivec_lvewx: 11188 case Intrinsic::ppc_vsx_lxvd2x: 11189 case Intrinsic::ppc_vsx_lxvw4x: { 11190 EVT VT; 11191 switch (Intrinsic) { 11192 case Intrinsic::ppc_altivec_lvebx: 11193 VT = MVT::i8; 11194 break; 11195 case Intrinsic::ppc_altivec_lvehx: 11196 VT = MVT::i16; 11197 break; 11198 case Intrinsic::ppc_altivec_lvewx: 11199 VT = MVT::i32; 11200 break; 11201 case Intrinsic::ppc_vsx_lxvd2x: 11202 VT = MVT::v2f64; 11203 break; 11204 case Intrinsic::ppc_qpx_qvlfd: 11205 VT = MVT::v4f64; 11206 break; 11207 case Intrinsic::ppc_qpx_qvlfs: 11208 VT = MVT::v4f32; 11209 break; 11210 case Intrinsic::ppc_qpx_qvlfcd: 11211 VT = MVT::v2f64; 11212 break; 11213 case Intrinsic::ppc_qpx_qvlfcs: 11214 VT = MVT::v2f32; 11215 break; 11216 default: 11217 VT = MVT::v4i32; 11218 break; 11219 } 11220 11221 Info.opc = ISD::INTRINSIC_W_CHAIN; 11222 Info.memVT = VT; 11223 Info.ptrVal = I.getArgOperand(0); 11224 Info.offset = -VT.getStoreSize()+1; 11225 Info.size = 2*VT.getStoreSize()-1; 11226 Info.align = 1; 11227 Info.vol = false; 11228 Info.readMem = true; 11229 Info.writeMem = false; 11230 return true; 11231 } 11232 case Intrinsic::ppc_qpx_qvlfda: 11233 case Intrinsic::ppc_qpx_qvlfsa: 11234 case Intrinsic::ppc_qpx_qvlfcda: 11235 case Intrinsic::ppc_qpx_qvlfcsa: 11236 case Intrinsic::ppc_qpx_qvlfiwaa: 11237 case Intrinsic::ppc_qpx_qvlfiwza: { 11238 EVT VT; 11239 switch (Intrinsic) { 11240 case Intrinsic::ppc_qpx_qvlfda: 11241 VT = MVT::v4f64; 11242 break; 11243 case Intrinsic::ppc_qpx_qvlfsa: 11244 VT = MVT::v4f32; 11245 break; 11246 case Intrinsic::ppc_qpx_qvlfcda: 11247 VT = MVT::v2f64; 11248 break; 11249 case Intrinsic::ppc_qpx_qvlfcsa: 11250 VT = MVT::v2f32; 11251 break; 11252 default: 11253 VT = MVT::v4i32; 11254 break; 11255 } 11256 11257 Info.opc = ISD::INTRINSIC_W_CHAIN; 11258 Info.memVT = VT; 11259 Info.ptrVal = I.getArgOperand(0); 11260 Info.offset = 0; 11261 Info.size = VT.getStoreSize(); 11262 Info.align = 1; 11263 Info.vol = false; 11264 Info.readMem = true; 11265 Info.writeMem = false; 11266 return true; 11267 } 11268 case Intrinsic::ppc_qpx_qvstfd: 11269 case Intrinsic::ppc_qpx_qvstfs: 11270 case Intrinsic::ppc_qpx_qvstfcd: 11271 case Intrinsic::ppc_qpx_qvstfcs: 11272 case Intrinsic::ppc_qpx_qvstfiw: 11273 case Intrinsic::ppc_altivec_stvx: 11274 case Intrinsic::ppc_altivec_stvxl: 11275 case Intrinsic::ppc_altivec_stvebx: 11276 case Intrinsic::ppc_altivec_stvehx: 11277 case Intrinsic::ppc_altivec_stvewx: 11278 case Intrinsic::ppc_vsx_stxvd2x: 11279 case Intrinsic::ppc_vsx_stxvw4x: { 11280 EVT VT; 11281 switch (Intrinsic) { 11282 case Intrinsic::ppc_altivec_stvebx: 11283 VT = MVT::i8; 11284 break; 11285 case Intrinsic::ppc_altivec_stvehx: 11286 VT = MVT::i16; 11287 break; 11288 case Intrinsic::ppc_altivec_stvewx: 11289 VT = MVT::i32; 11290 break; 11291 case Intrinsic::ppc_vsx_stxvd2x: 11292 VT = MVT::v2f64; 11293 break; 11294 case Intrinsic::ppc_qpx_qvstfd: 11295 VT = MVT::v4f64; 11296 break; 11297 case Intrinsic::ppc_qpx_qvstfs: 11298 VT = MVT::v4f32; 11299 break; 11300 case Intrinsic::ppc_qpx_qvstfcd: 11301 VT = MVT::v2f64; 11302 break; 11303 case Intrinsic::ppc_qpx_qvstfcs: 11304 VT = MVT::v2f32; 11305 break; 11306 default: 11307 VT = MVT::v4i32; 11308 break; 11309 } 11310 11311 Info.opc = ISD::INTRINSIC_VOID; 11312 Info.memVT = VT; 11313 Info.ptrVal = I.getArgOperand(1); 11314 Info.offset = -VT.getStoreSize()+1; 11315 Info.size = 2*VT.getStoreSize()-1; 11316 Info.align = 1; 11317 Info.vol = false; 11318 Info.readMem = false; 11319 Info.writeMem = true; 11320 return true; 11321 } 11322 case Intrinsic::ppc_qpx_qvstfda: 11323 case Intrinsic::ppc_qpx_qvstfsa: 11324 case Intrinsic::ppc_qpx_qvstfcda: 11325 case Intrinsic::ppc_qpx_qvstfcsa: 11326 case Intrinsic::ppc_qpx_qvstfiwa: { 11327 EVT VT; 11328 switch (Intrinsic) { 11329 case Intrinsic::ppc_qpx_qvstfda: 11330 VT = MVT::v4f64; 11331 break; 11332 case Intrinsic::ppc_qpx_qvstfsa: 11333 VT = MVT::v4f32; 11334 break; 11335 case Intrinsic::ppc_qpx_qvstfcda: 11336 VT = MVT::v2f64; 11337 break; 11338 case Intrinsic::ppc_qpx_qvstfcsa: 11339 VT = MVT::v2f32; 11340 break; 11341 default: 11342 VT = MVT::v4i32; 11343 break; 11344 } 11345 11346 Info.opc = ISD::INTRINSIC_VOID; 11347 Info.memVT = VT; 11348 Info.ptrVal = I.getArgOperand(1); 11349 Info.offset = 0; 11350 Info.size = VT.getStoreSize(); 11351 Info.align = 1; 11352 Info.vol = false; 11353 Info.readMem = false; 11354 Info.writeMem = true; 11355 return true; 11356 } 11357 default: 11358 break; 11359 } 11360 11361 return false; 11362 } 11363 11364 /// getOptimalMemOpType - Returns the target specific optimal type for load 11365 /// and store operations as a result of memset, memcpy, and memmove 11366 /// lowering. If DstAlign is zero that means it's safe to destination 11367 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11368 /// means there isn't a need to check it against alignment requirement, 11369 /// probably because the source does not need to be loaded. If 'IsMemset' is 11370 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11371 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11372 /// source is constant so it does not need to be loaded. 11373 /// It returns EVT::Other if the type should be determined using generic 11374 /// target-independent logic. 11375 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11376 unsigned DstAlign, unsigned SrcAlign, 11377 bool IsMemset, bool ZeroMemset, 11378 bool MemcpyStrSrc, 11379 MachineFunction &MF) const { 11380 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11381 const Function *F = MF.getFunction(); 11382 // When expanding a memset, require at least two QPX instructions to cover 11383 // the cost of loading the value to be stored from the constant pool. 11384 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11385 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11386 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11387 return MVT::v4f64; 11388 } 11389 11390 // We should use Altivec/VSX loads and stores when available. For unaligned 11391 // addresses, unaligned VSX loads are only fast starting with the P8. 11392 if (Subtarget.hasAltivec() && Size >= 16 && 11393 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11394 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11395 return MVT::v4i32; 11396 } 11397 11398 if (Subtarget.isPPC64()) { 11399 return MVT::i64; 11400 } 11401 11402 return MVT::i32; 11403 } 11404 11405 /// \brief Returns true if it is beneficial to convert a load of a constant 11406 /// to just the constant itself. 11407 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11408 Type *Ty) const { 11409 assert(Ty->isIntegerTy()); 11410 11411 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11412 if (BitSize == 0 || BitSize > 64) 11413 return false; 11414 return true; 11415 } 11416 11417 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11418 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11419 return false; 11420 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11421 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11422 return NumBits1 == 64 && NumBits2 == 32; 11423 } 11424 11425 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11426 if (!VT1.isInteger() || !VT2.isInteger()) 11427 return false; 11428 unsigned NumBits1 = VT1.getSizeInBits(); 11429 unsigned NumBits2 = VT2.getSizeInBits(); 11430 return NumBits1 == 64 && NumBits2 == 32; 11431 } 11432 11433 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11434 // Generally speaking, zexts are not free, but they are free when they can be 11435 // folded with other operations. 11436 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11437 EVT MemVT = LD->getMemoryVT(); 11438 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11439 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11440 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11441 LD->getExtensionType() == ISD::ZEXTLOAD)) 11442 return true; 11443 } 11444 11445 // FIXME: Add other cases... 11446 // - 32-bit shifts with a zext to i64 11447 // - zext after ctlz, bswap, etc. 11448 // - zext after and by a constant mask 11449 11450 return TargetLowering::isZExtFree(Val, VT2); 11451 } 11452 11453 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11454 assert(VT.isFloatingPoint()); 11455 return true; 11456 } 11457 11458 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11459 return isInt<16>(Imm) || isUInt<16>(Imm); 11460 } 11461 11462 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11463 return isInt<16>(Imm) || isUInt<16>(Imm); 11464 } 11465 11466 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11467 unsigned, 11468 unsigned, 11469 bool *Fast) const { 11470 if (DisablePPCUnaligned) 11471 return false; 11472 11473 // PowerPC supports unaligned memory access for simple non-vector types. 11474 // Although accessing unaligned addresses is not as efficient as accessing 11475 // aligned addresses, it is generally more efficient than manual expansion, 11476 // and generally only traps for software emulation when crossing page 11477 // boundaries. 11478 11479 if (!VT.isSimple()) 11480 return false; 11481 11482 if (VT.getSimpleVT().isVector()) { 11483 if (Subtarget.hasVSX()) { 11484 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11485 VT != MVT::v4f32 && VT != MVT::v4i32) 11486 return false; 11487 } else { 11488 return false; 11489 } 11490 } 11491 11492 if (VT == MVT::ppcf128) 11493 return false; 11494 11495 if (Fast) 11496 *Fast = true; 11497 11498 return true; 11499 } 11500 11501 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11502 VT = VT.getScalarType(); 11503 11504 if (!VT.isSimple()) 11505 return false; 11506 11507 switch (VT.getSimpleVT().SimpleTy) { 11508 case MVT::f32: 11509 case MVT::f64: 11510 return true; 11511 default: 11512 break; 11513 } 11514 11515 return false; 11516 } 11517 11518 const MCPhysReg * 11519 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11520 // LR is a callee-save register, but we must treat it as clobbered by any call 11521 // site. Hence we include LR in the scratch registers, which are in turn added 11522 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11523 // to CTR, which is used by any indirect call. 11524 static const MCPhysReg ScratchRegs[] = { 11525 PPC::X12, PPC::LR8, PPC::CTR8, 0 11526 }; 11527 11528 return ScratchRegs; 11529 } 11530 11531 bool 11532 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11533 EVT VT , unsigned DefinedValues) const { 11534 if (VT == MVT::v2i64) 11535 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11536 11537 if (Subtarget.hasQPX()) { 11538 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11539 return true; 11540 } 11541 11542 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11543 } 11544 11545 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11546 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11547 return TargetLowering::getSchedulingPreference(N); 11548 11549 return Sched::ILP; 11550 } 11551 11552 // Create a fast isel object. 11553 FastISel * 11554 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11555 const TargetLibraryInfo *LibInfo) const { 11556 return PPC::createFastISel(FuncInfo, LibInfo); 11557 } 11558