1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCPerfectShuffle.h"
19 #include "PPCTargetMachine.h"
20 #include "PPCTargetObjectFile.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringSwitch.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/Format.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetOptions.h"
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "ppc-lowering"
48 
49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
51 
52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
54 
55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
57 
58 static cl::opt<bool> DisableSCO("disable-ppc-sco", cl::init(true),
59 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
60 
61 STATISTIC(NumTailCalls, "Number of tail calls");
62 STATISTIC(NumSiblingCalls, "Number of sibling calls");
63 
64 // FIXME: Remove this once the bug has been fixed!
65 extern cl::opt<bool> ANDIGlueBug;
66 
67 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
68                                      const PPCSubtarget &STI)
69     : TargetLowering(TM), Subtarget(STI) {
70   // Use _setjmp/_longjmp instead of setjmp/longjmp.
71   setUseUnderscoreSetJmp(true);
72   setUseUnderscoreLongJmp(true);
73 
74   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
75   // arguments are at least 4/8 bytes aligned.
76   bool isPPC64 = Subtarget.isPPC64();
77   setMinStackArgumentAlignment(isPPC64 ? 8:4);
78 
79   // Set up the register classes.
80   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
81   if (!Subtarget.useSoftFloat()) {
82     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
83     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
84   }
85 
86   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
87   for (MVT VT : MVT::integer_valuetypes()) {
88     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
89     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
90   }
91 
92   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
93 
94   // PowerPC has pre-inc load and store's.
95   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
96   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
97   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
98   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
99   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
100   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
101   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
102   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
103   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
104   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
105   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
106   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
107   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
108   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
109 
110   if (Subtarget.useCRBits()) {
111     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
112 
113     if (isPPC64 || Subtarget.hasFPCVT()) {
114       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
115       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
116                          isPPC64 ? MVT::i64 : MVT::i32);
117       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
118       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
119                         isPPC64 ? MVT::i64 : MVT::i32);
120     } else {
121       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
122       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
123     }
124 
125     // PowerPC does not support direct load / store of condition registers
126     setOperationAction(ISD::LOAD, MVT::i1, Custom);
127     setOperationAction(ISD::STORE, MVT::i1, Custom);
128 
129     // FIXME: Remove this once the ANDI glue bug is fixed:
130     if (ANDIGlueBug)
131       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
132 
133     for (MVT VT : MVT::integer_valuetypes()) {
134       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
135       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
136       setTruncStoreAction(VT, MVT::i1, Expand);
137     }
138 
139     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
140   }
141 
142   // This is used in the ppcf128->int sequence.  Note it has different semantics
143   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
144   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
145 
146   // We do not currently implement these libm ops for PowerPC.
147   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
148   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
149   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
150   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
151   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
152   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
153 
154   // PowerPC has no SREM/UREM instructions
155   setOperationAction(ISD::SREM, MVT::i32, Expand);
156   setOperationAction(ISD::UREM, MVT::i32, Expand);
157   setOperationAction(ISD::SREM, MVT::i64, Expand);
158   setOperationAction(ISD::UREM, MVT::i64, Expand);
159 
160   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
161   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
162   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
163   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
164   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
165   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
166   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
167   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
168   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
169 
170   // We don't support sin/cos/sqrt/fmod/pow
171   setOperationAction(ISD::FSIN , MVT::f64, Expand);
172   setOperationAction(ISD::FCOS , MVT::f64, Expand);
173   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
174   setOperationAction(ISD::FREM , MVT::f64, Expand);
175   setOperationAction(ISD::FPOW , MVT::f64, Expand);
176   setOperationAction(ISD::FMA  , MVT::f64, Legal);
177   setOperationAction(ISD::FSIN , MVT::f32, Expand);
178   setOperationAction(ISD::FCOS , MVT::f32, Expand);
179   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
180   setOperationAction(ISD::FREM , MVT::f32, Expand);
181   setOperationAction(ISD::FPOW , MVT::f32, Expand);
182   setOperationAction(ISD::FMA  , MVT::f32, Legal);
183 
184   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
185 
186   // If we're enabling GP optimizations, use hardware square root
187   if (!Subtarget.hasFSQRT() &&
188       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
189         Subtarget.hasFRE()))
190     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
191 
192   if (!Subtarget.hasFSQRT() &&
193       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
194         Subtarget.hasFRES()))
195     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
196 
197   if (Subtarget.hasFCPSGN()) {
198     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
199     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
200   } else {
201     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
202     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
203   }
204 
205   if (Subtarget.hasFPRND()) {
206     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
207     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
208     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
209     setOperationAction(ISD::FROUND, MVT::f64, Legal);
210 
211     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
212     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
213     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
214     setOperationAction(ISD::FROUND, MVT::f32, Legal);
215   }
216 
217   // PowerPC does not have BSWAP, CTPOP or CTTZ
218   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
219   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
220   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
221   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
222   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
223   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
224   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
225   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
226 
227   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
228     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
229     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
230   } else {
231     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
232     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
233   }
234 
235   // PowerPC does not have ROTR
236   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
237   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
238 
239   if (!Subtarget.useCRBits()) {
240     // PowerPC does not have Select
241     setOperationAction(ISD::SELECT, MVT::i32, Expand);
242     setOperationAction(ISD::SELECT, MVT::i64, Expand);
243     setOperationAction(ISD::SELECT, MVT::f32, Expand);
244     setOperationAction(ISD::SELECT, MVT::f64, Expand);
245   }
246 
247   // PowerPC wants to turn select_cc of FP into fsel when possible.
248   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
249   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
250 
251   // PowerPC wants to optimize integer setcc a bit
252   if (!Subtarget.useCRBits())
253     setOperationAction(ISD::SETCC, MVT::i32, Custom);
254 
255   // PowerPC does not have BRCOND which requires SetCC
256   if (!Subtarget.useCRBits())
257     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
258 
259   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
260 
261   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
262   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
263 
264   // PowerPC does not have [U|S]INT_TO_FP
265   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
266   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
267 
268   if (Subtarget.hasDirectMove() && isPPC64) {
269     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
270     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
271     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
272     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
273   } else {
274     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
275     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
276     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
277     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
278   }
279 
280   // We cannot sextinreg(i1).  Expand to shifts.
281   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
282 
283   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
284   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
285   // support continuation, user-level threading, and etc.. As a result, no
286   // other SjLj exception interfaces are implemented and please don't build
287   // your own exception handling based on them.
288   // LLVM/Clang supports zero-cost DWARF exception handling.
289   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
290   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
291 
292   // We want to legalize GlobalAddress and ConstantPool nodes into the
293   // appropriate instructions to materialize the address.
294   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
295   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
296   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
297   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
298   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
299   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
300   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
301   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
302   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
303   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
304 
305   // TRAP is legal.
306   setOperationAction(ISD::TRAP, MVT::Other, Legal);
307 
308   // TRAMPOLINE is custom lowered.
309   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
310   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
311 
312   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
313   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
314 
315   if (Subtarget.isSVR4ABI()) {
316     if (isPPC64) {
317       // VAARG always uses double-word chunks, so promote anything smaller.
318       setOperationAction(ISD::VAARG, MVT::i1, Promote);
319       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
320       setOperationAction(ISD::VAARG, MVT::i8, Promote);
321       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
322       setOperationAction(ISD::VAARG, MVT::i16, Promote);
323       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
324       setOperationAction(ISD::VAARG, MVT::i32, Promote);
325       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
326       setOperationAction(ISD::VAARG, MVT::Other, Expand);
327     } else {
328       // VAARG is custom lowered with the 32-bit SVR4 ABI.
329       setOperationAction(ISD::VAARG, MVT::Other, Custom);
330       setOperationAction(ISD::VAARG, MVT::i64, Custom);
331     }
332   } else
333     setOperationAction(ISD::VAARG, MVT::Other, Expand);
334 
335   if (Subtarget.isSVR4ABI() && !isPPC64)
336     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
337     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
338   else
339     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
340 
341   // Use the default implementation.
342   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
343   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
344   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
345   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
346   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
347   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
348   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
349 
350   // We want to custom lower some of our intrinsics.
351   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
352 
353   // To handle counter-based loop conditions.
354   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
355 
356   // Comparisons that require checking two conditions.
357   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
358   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
359   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
360   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
361   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
362   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
363   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
364   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
365   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
366   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
367   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
368   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
369 
370   if (Subtarget.has64BitSupport()) {
371     // They also have instructions for converting between i64 and fp.
372     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
373     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
374     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
375     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
376     // This is just the low 32 bits of a (signed) fp->i64 conversion.
377     // We cannot do this with Promote because i64 is not a legal type.
378     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
379 
380     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
381       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
382   } else {
383     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
384     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
385   }
386 
387   // With the instructions enabled under FPCVT, we can do everything.
388   if (Subtarget.hasFPCVT()) {
389     if (Subtarget.has64BitSupport()) {
390       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
391       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
392       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
393       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
394     }
395 
396     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
397     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
398     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
399     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
400   }
401 
402   if (Subtarget.use64BitRegs()) {
403     // 64-bit PowerPC implementations can support i64 types directly
404     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
405     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
406     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
407     // 64-bit PowerPC wants to expand i128 shifts itself.
408     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
409     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
410     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
411   } else {
412     // 32-bit PowerPC wants to expand i64 shifts itself.
413     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
414     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
415     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
416   }
417 
418   if (Subtarget.hasAltivec()) {
419     // First set operation action for all vector types to expand. Then we
420     // will selectively turn on ones that can be effectively codegen'd.
421     for (MVT VT : MVT::vector_valuetypes()) {
422       // add/sub are legal for all supported vector VT's.
423       setOperationAction(ISD::ADD, VT, Legal);
424       setOperationAction(ISD::SUB, VT, Legal);
425 
426       // Vector instructions introduced in P8
427       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
428         setOperationAction(ISD::CTPOP, VT, Legal);
429         setOperationAction(ISD::CTLZ, VT, Legal);
430       }
431       else {
432         setOperationAction(ISD::CTPOP, VT, Expand);
433         setOperationAction(ISD::CTLZ, VT, Expand);
434       }
435 
436       // We promote all shuffles to v16i8.
437       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
438       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
439 
440       // We promote all non-typed operations to v4i32.
441       setOperationAction(ISD::AND   , VT, Promote);
442       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
443       setOperationAction(ISD::OR    , VT, Promote);
444       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
445       setOperationAction(ISD::XOR   , VT, Promote);
446       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
447       setOperationAction(ISD::LOAD  , VT, Promote);
448       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
449       setOperationAction(ISD::SELECT, VT, Promote);
450       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
451       setOperationAction(ISD::SELECT_CC, VT, Promote);
452       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
453       setOperationAction(ISD::STORE, VT, Promote);
454       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
455 
456       // No other operations are legal.
457       setOperationAction(ISD::MUL , VT, Expand);
458       setOperationAction(ISD::SDIV, VT, Expand);
459       setOperationAction(ISD::SREM, VT, Expand);
460       setOperationAction(ISD::UDIV, VT, Expand);
461       setOperationAction(ISD::UREM, VT, Expand);
462       setOperationAction(ISD::FDIV, VT, Expand);
463       setOperationAction(ISD::FREM, VT, Expand);
464       setOperationAction(ISD::FNEG, VT, Expand);
465       setOperationAction(ISD::FSQRT, VT, Expand);
466       setOperationAction(ISD::FLOG, VT, Expand);
467       setOperationAction(ISD::FLOG10, VT, Expand);
468       setOperationAction(ISD::FLOG2, VT, Expand);
469       setOperationAction(ISD::FEXP, VT, Expand);
470       setOperationAction(ISD::FEXP2, VT, Expand);
471       setOperationAction(ISD::FSIN, VT, Expand);
472       setOperationAction(ISD::FCOS, VT, Expand);
473       setOperationAction(ISD::FABS, VT, Expand);
474       setOperationAction(ISD::FPOWI, VT, Expand);
475       setOperationAction(ISD::FFLOOR, VT, Expand);
476       setOperationAction(ISD::FCEIL,  VT, Expand);
477       setOperationAction(ISD::FTRUNC, VT, Expand);
478       setOperationAction(ISD::FRINT,  VT, Expand);
479       setOperationAction(ISD::FNEARBYINT, VT, Expand);
480       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
481       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
482       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
483       setOperationAction(ISD::MULHU, VT, Expand);
484       setOperationAction(ISD::MULHS, VT, Expand);
485       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
486       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
487       setOperationAction(ISD::UDIVREM, VT, Expand);
488       setOperationAction(ISD::SDIVREM, VT, Expand);
489       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
490       setOperationAction(ISD::FPOW, VT, Expand);
491       setOperationAction(ISD::BSWAP, VT, Expand);
492       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
493       setOperationAction(ISD::CTTZ, VT, Expand);
494       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
495       setOperationAction(ISD::VSELECT, VT, Expand);
496       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
497       setOperationAction(ISD::ROTL, VT, Expand);
498       setOperationAction(ISD::ROTR, VT, Expand);
499 
500       for (MVT InnerVT : MVT::vector_valuetypes()) {
501         setTruncStoreAction(VT, InnerVT, Expand);
502         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
503         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
504         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
505       }
506     }
507 
508     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
509     // with merges, splats, etc.
510     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
511 
512     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
513     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
514     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
515     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
516     setOperationAction(ISD::SELECT, MVT::v4i32,
517                        Subtarget.useCRBits() ? Legal : Expand);
518     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
519     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
520     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
521     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
522     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
523     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
524     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
525     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
526     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
527 
528     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
529     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
530     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
531     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
532 
533     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
535 
536     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
537       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
538       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     }
540 
541     if (Subtarget.hasP8Altivec())
542       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
543     else
544       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
545 
546     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
547     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
548 
549     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
550     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
551 
552     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
553     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
554     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
555     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
556 
557     // Altivec does not contain unordered floating-point compare instructions
558     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
559     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
560     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
561     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
562 
563     if (Subtarget.hasVSX()) {
564       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
565       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
566       if (Subtarget.hasP8Vector()) {
567         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
568         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
569       }
570       if (Subtarget.hasDirectMove() && isPPC64) {
571         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
572         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
573         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
574         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
575         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
576         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
577         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
578         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
579       }
580       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
581 
582       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
583       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
584       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
585       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
586       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
587 
588       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
589 
590       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
591       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
592 
593       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
594       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
595 
596       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
597       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
598       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
599       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
600       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
601 
602       // Share the Altivec comparison restrictions.
603       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
604       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
605       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
606       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
607 
608       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
609       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
610 
611       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
612 
613       if (Subtarget.hasP8Vector())
614         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
615 
616       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
617 
618       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
619       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
620       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
621 
622       if (Subtarget.hasP8Altivec()) {
623         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
624         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
625         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
626 
627         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
628       }
629       else {
630         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
631         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
632         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
633 
634         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
635 
636         // VSX v2i64 only supports non-arithmetic operations.
637         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
638         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
639       }
640 
641       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
642       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
643       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
644       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
645 
646       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
647 
648       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
649       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
650       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
651       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
652 
653       // Vector operation legalization checks the result type of
654       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
655       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
656       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
657       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
658       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
659 
660       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
661       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
662       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
663       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
664 
665       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
666     }
667 
668     if (Subtarget.hasP8Altivec()) {
669       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
670       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
671     }
672   }
673 
674   if (Subtarget.hasQPX()) {
675     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
676     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
677     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
678     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
679 
680     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
681     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
682 
683     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
684     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
685 
686     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
687     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
688 
689     if (!Subtarget.useCRBits())
690       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
691     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
692 
693     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
694     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
695     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
696     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
697     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
698     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
700 
701     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
702     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
703 
704     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
705     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
706     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
707 
708     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
709     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
710     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
711     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
712     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
713     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
714     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
715     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
716     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
717     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
718     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
719 
720     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
721     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
722 
723     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
724     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
725 
726     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
727 
728     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
729     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
730     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
731     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
732 
733     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
734     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
735 
736     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
737     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
738 
739     if (!Subtarget.useCRBits())
740       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
741     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
742 
743     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
744     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
745     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
746     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
747     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
748     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
749     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
750 
751     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
752     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
753 
754     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
755     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
756     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
757     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
758     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
759     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
760     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
761     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
762     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
763     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
764     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
765 
766     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
767     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
768 
769     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
770     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
771 
772     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
773 
774     setOperationAction(ISD::AND , MVT::v4i1, Legal);
775     setOperationAction(ISD::OR , MVT::v4i1, Legal);
776     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
777 
778     if (!Subtarget.useCRBits())
779       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
780     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
781 
782     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
783     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
784 
785     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
786     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
787     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
788     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
789     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
790     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
791     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
792 
793     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
794     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
795 
796     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
797 
798     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
799     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
800     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
801     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
802 
803     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
804     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
805     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
806     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
807 
808     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
809     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
810 
811     // These need to set FE_INEXACT, and so cannot be vectorized here.
812     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
813     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
814 
815     if (TM.Options.UnsafeFPMath) {
816       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
817       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
818 
819       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
820       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
821     } else {
822       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
823       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
824 
825       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
826       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
827     }
828   }
829 
830   if (Subtarget.has64BitSupport())
831     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
832 
833   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
834 
835   if (!isPPC64) {
836     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
837     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
838   }
839 
840   setBooleanContents(ZeroOrOneBooleanContent);
841 
842   if (Subtarget.hasAltivec()) {
843     // Altivec instructions set fields to all zeros or all ones.
844     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
845   }
846 
847   if (!isPPC64) {
848     // These libcalls are not available in 32-bit.
849     setLibcallName(RTLIB::SHL_I128, nullptr);
850     setLibcallName(RTLIB::SRL_I128, nullptr);
851     setLibcallName(RTLIB::SRA_I128, nullptr);
852   }
853 
854   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
855 
856   // We have target-specific dag combine patterns for the following nodes:
857   setTargetDAGCombine(ISD::SINT_TO_FP);
858   if (Subtarget.hasFPCVT())
859     setTargetDAGCombine(ISD::UINT_TO_FP);
860   setTargetDAGCombine(ISD::LOAD);
861   setTargetDAGCombine(ISD::STORE);
862   setTargetDAGCombine(ISD::BR_CC);
863   if (Subtarget.useCRBits())
864     setTargetDAGCombine(ISD::BRCOND);
865   setTargetDAGCombine(ISD::BSWAP);
866   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
867   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
868   setTargetDAGCombine(ISD::INTRINSIC_VOID);
869 
870   setTargetDAGCombine(ISD::SIGN_EXTEND);
871   setTargetDAGCombine(ISD::ZERO_EXTEND);
872   setTargetDAGCombine(ISD::ANY_EXTEND);
873 
874   if (Subtarget.useCRBits()) {
875     setTargetDAGCombine(ISD::TRUNCATE);
876     setTargetDAGCombine(ISD::SETCC);
877     setTargetDAGCombine(ISD::SELECT_CC);
878   }
879 
880   // Use reciprocal estimates.
881   if (TM.Options.UnsafeFPMath) {
882     setTargetDAGCombine(ISD::FDIV);
883     setTargetDAGCombine(ISD::FSQRT);
884   }
885 
886   // Darwin long double math library functions have $LDBL128 appended.
887   if (Subtarget.isDarwin()) {
888     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
889     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
890     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
891     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
892     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
893     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
894     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
895     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
896     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
897     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
898   }
899 
900   // With 32 condition bits, we don't need to sink (and duplicate) compares
901   // aggressively in CodeGenPrep.
902   if (Subtarget.useCRBits()) {
903     setHasMultipleConditionRegisters();
904     setJumpIsExpensive();
905   }
906 
907   setMinFunctionAlignment(2);
908   if (Subtarget.isDarwin())
909     setPrefFunctionAlignment(4);
910 
911   switch (Subtarget.getDarwinDirective()) {
912   default: break;
913   case PPC::DIR_970:
914   case PPC::DIR_A2:
915   case PPC::DIR_E500mc:
916   case PPC::DIR_E5500:
917   case PPC::DIR_PWR4:
918   case PPC::DIR_PWR5:
919   case PPC::DIR_PWR5X:
920   case PPC::DIR_PWR6:
921   case PPC::DIR_PWR6X:
922   case PPC::DIR_PWR7:
923   case PPC::DIR_PWR8:
924     setPrefFunctionAlignment(4);
925     setPrefLoopAlignment(4);
926     break;
927   }
928 
929 
930   if (Subtarget.enableMachineScheduler())
931     setSchedulingPreference(Sched::Source);
932   else
933     setSchedulingPreference(Sched::Hybrid);
934 
935   computeRegisterProperties(STI.getRegisterInfo());
936 
937   // The Freescale cores do better with aggressive inlining of memcpy and
938   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
939   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
940       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
941     MaxStoresPerMemset = 32;
942     MaxStoresPerMemsetOptSize = 16;
943     MaxStoresPerMemcpy = 32;
944     MaxStoresPerMemcpyOptSize = 8;
945     MaxStoresPerMemmove = 32;
946     MaxStoresPerMemmoveOptSize = 8;
947   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
948     // The A2 also benefits from (very) aggressive inlining of memcpy and
949     // friends. The overhead of a the function call, even when warm, can be
950     // over one hundred cycles.
951     MaxStoresPerMemset = 128;
952     MaxStoresPerMemcpy = 128;
953     MaxStoresPerMemmove = 128;
954   }
955 }
956 
957 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
958 /// the desired ByVal argument alignment.
959 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
960                              unsigned MaxMaxAlign) {
961   if (MaxAlign == MaxMaxAlign)
962     return;
963   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
964     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
965       MaxAlign = 32;
966     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
967       MaxAlign = 16;
968   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
969     unsigned EltAlign = 0;
970     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
971     if (EltAlign > MaxAlign)
972       MaxAlign = EltAlign;
973   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
974     for (auto *EltTy : STy->elements()) {
975       unsigned EltAlign = 0;
976       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
977       if (EltAlign > MaxAlign)
978         MaxAlign = EltAlign;
979       if (MaxAlign == MaxMaxAlign)
980         break;
981     }
982   }
983 }
984 
985 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
986 /// function arguments in the caller parameter area.
987 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
988                                                   const DataLayout &DL) const {
989   // Darwin passes everything on 4 byte boundary.
990   if (Subtarget.isDarwin())
991     return 4;
992 
993   // 16byte and wider vectors are passed on 16byte boundary.
994   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
995   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
996   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
997     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
998   return Align;
999 }
1000 
1001 bool PPCTargetLowering::useSoftFloat() const {
1002   return Subtarget.useSoftFloat();
1003 }
1004 
1005 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1006   switch ((PPCISD::NodeType)Opcode) {
1007   case PPCISD::FIRST_NUMBER:    break;
1008   case PPCISD::FSEL:            return "PPCISD::FSEL";
1009   case PPCISD::FCFID:           return "PPCISD::FCFID";
1010   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1011   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1012   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1013   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1014   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1015   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1016   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1017   case PPCISD::FRE:             return "PPCISD::FRE";
1018   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1019   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1020   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1021   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1022   case PPCISD::VPERM:           return "PPCISD::VPERM";
1023   case PPCISD::CMPB:            return "PPCISD::CMPB";
1024   case PPCISD::Hi:              return "PPCISD::Hi";
1025   case PPCISD::Lo:              return "PPCISD::Lo";
1026   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1027   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1028   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1029   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1030   case PPCISD::SRL:             return "PPCISD::SRL";
1031   case PPCISD::SRA:             return "PPCISD::SRA";
1032   case PPCISD::SHL:             return "PPCISD::SHL";
1033   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1034   case PPCISD::CALL:            return "PPCISD::CALL";
1035   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1036   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1037   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1038   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1039   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1040   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1041   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1042   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1043   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1044   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1045   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1046   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1047   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1048   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1049   case PPCISD::VCMP:            return "PPCISD::VCMP";
1050   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1051   case PPCISD::LBRX:            return "PPCISD::LBRX";
1052   case PPCISD::STBRX:           return "PPCISD::STBRX";
1053   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1054   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1055   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1056   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1057   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1058   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1059   case PPCISD::BDZ:             return "PPCISD::BDZ";
1060   case PPCISD::MFFS:            return "PPCISD::MFFS";
1061   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1062   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1063   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1064   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1065   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1066   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1067   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1068   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1069   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1070   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1071   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1072   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1073   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1074   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1075   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1076   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1077   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1078   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1079   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1080   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1081   case PPCISD::SC:              return "PPCISD::SC";
1082   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1083   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1084   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1085   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1086   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1087   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1088   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1089   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1090   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1091   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1092   }
1093   return nullptr;
1094 }
1095 
1096 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1097                                           EVT VT) const {
1098   if (!VT.isVector())
1099     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1100 
1101   if (Subtarget.hasQPX())
1102     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1103 
1104   return VT.changeVectorElementTypeToInteger();
1105 }
1106 
1107 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1108   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1109   return true;
1110 }
1111 
1112 //===----------------------------------------------------------------------===//
1113 // Node matching predicates, for use by the tblgen matching code.
1114 //===----------------------------------------------------------------------===//
1115 
1116 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1117 static bool isFloatingPointZero(SDValue Op) {
1118   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1119     return CFP->getValueAPF().isZero();
1120   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1121     // Maybe this has already been legalized into the constant pool?
1122     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1123       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1124         return CFP->getValueAPF().isZero();
1125   }
1126   return false;
1127 }
1128 
1129 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1130 /// true if Op is undef or if it matches the specified value.
1131 static bool isConstantOrUndef(int Op, int Val) {
1132   return Op < 0 || Op == Val;
1133 }
1134 
1135 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1136 /// VPKUHUM instruction.
1137 /// The ShuffleKind distinguishes between big-endian operations with
1138 /// two different inputs (0), either-endian operations with two identical
1139 /// inputs (1), and little-endian operations with two different inputs (2).
1140 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1141 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1142                                SelectionDAG &DAG) {
1143   bool IsLE = DAG.getDataLayout().isLittleEndian();
1144   if (ShuffleKind == 0) {
1145     if (IsLE)
1146       return false;
1147     for (unsigned i = 0; i != 16; ++i)
1148       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1149         return false;
1150   } else if (ShuffleKind == 2) {
1151     if (!IsLE)
1152       return false;
1153     for (unsigned i = 0; i != 16; ++i)
1154       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1155         return false;
1156   } else if (ShuffleKind == 1) {
1157     unsigned j = IsLE ? 0 : 1;
1158     for (unsigned i = 0; i != 8; ++i)
1159       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1160           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1161         return false;
1162   }
1163   return true;
1164 }
1165 
1166 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1167 /// VPKUWUM instruction.
1168 /// The ShuffleKind distinguishes between big-endian operations with
1169 /// two different inputs (0), either-endian operations with two identical
1170 /// inputs (1), and little-endian operations with two different inputs (2).
1171 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1172 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1173                                SelectionDAG &DAG) {
1174   bool IsLE = DAG.getDataLayout().isLittleEndian();
1175   if (ShuffleKind == 0) {
1176     if (IsLE)
1177       return false;
1178     for (unsigned i = 0; i != 16; i += 2)
1179       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1180           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1181         return false;
1182   } else if (ShuffleKind == 2) {
1183     if (!IsLE)
1184       return false;
1185     for (unsigned i = 0; i != 16; i += 2)
1186       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1187           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1188         return false;
1189   } else if (ShuffleKind == 1) {
1190     unsigned j = IsLE ? 0 : 2;
1191     for (unsigned i = 0; i != 8; i += 2)
1192       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1193           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1194           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1195           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1196         return false;
1197   }
1198   return true;
1199 }
1200 
1201 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1202 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1203 /// current subtarget.
1204 ///
1205 /// The ShuffleKind distinguishes between big-endian operations with
1206 /// two different inputs (0), either-endian operations with two identical
1207 /// inputs (1), and little-endian operations with two different inputs (2).
1208 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1209 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1210                                SelectionDAG &DAG) {
1211   const PPCSubtarget& Subtarget =
1212     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1213   if (!Subtarget.hasP8Vector())
1214     return false;
1215 
1216   bool IsLE = DAG.getDataLayout().isLittleEndian();
1217   if (ShuffleKind == 0) {
1218     if (IsLE)
1219       return false;
1220     for (unsigned i = 0; i != 16; i += 4)
1221       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1222           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1223           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1224           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1225         return false;
1226   } else if (ShuffleKind == 2) {
1227     if (!IsLE)
1228       return false;
1229     for (unsigned i = 0; i != 16; i += 4)
1230       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1231           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1232           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1233           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1234         return false;
1235   } else if (ShuffleKind == 1) {
1236     unsigned j = IsLE ? 0 : 4;
1237     for (unsigned i = 0; i != 8; i += 4)
1238       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1239           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1240           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1241           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1242           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1243           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1244           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1245           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1246         return false;
1247   }
1248   return true;
1249 }
1250 
1251 /// isVMerge - Common function, used to match vmrg* shuffles.
1252 ///
1253 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1254                      unsigned LHSStart, unsigned RHSStart) {
1255   if (N->getValueType(0) != MVT::v16i8)
1256     return false;
1257   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1258          "Unsupported merge size!");
1259 
1260   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1261     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1262       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1263                              LHSStart+j+i*UnitSize) ||
1264           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1265                              RHSStart+j+i*UnitSize))
1266         return false;
1267     }
1268   return true;
1269 }
1270 
1271 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1272 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1273 /// The ShuffleKind distinguishes between big-endian merges with two
1274 /// different inputs (0), either-endian merges with two identical inputs (1),
1275 /// and little-endian merges with two different inputs (2).  For the latter,
1276 /// the input operands are swapped (see PPCInstrAltivec.td).
1277 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1278                              unsigned ShuffleKind, SelectionDAG &DAG) {
1279   if (DAG.getDataLayout().isLittleEndian()) {
1280     if (ShuffleKind == 1) // unary
1281       return isVMerge(N, UnitSize, 0, 0);
1282     else if (ShuffleKind == 2) // swapped
1283       return isVMerge(N, UnitSize, 0, 16);
1284     else
1285       return false;
1286   } else {
1287     if (ShuffleKind == 1) // unary
1288       return isVMerge(N, UnitSize, 8, 8);
1289     else if (ShuffleKind == 0) // normal
1290       return isVMerge(N, UnitSize, 8, 24);
1291     else
1292       return false;
1293   }
1294 }
1295 
1296 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1297 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1298 /// The ShuffleKind distinguishes between big-endian merges with two
1299 /// different inputs (0), either-endian merges with two identical inputs (1),
1300 /// and little-endian merges with two different inputs (2).  For the latter,
1301 /// the input operands are swapped (see PPCInstrAltivec.td).
1302 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1303                              unsigned ShuffleKind, SelectionDAG &DAG) {
1304   if (DAG.getDataLayout().isLittleEndian()) {
1305     if (ShuffleKind == 1) // unary
1306       return isVMerge(N, UnitSize, 8, 8);
1307     else if (ShuffleKind == 2) // swapped
1308       return isVMerge(N, UnitSize, 8, 24);
1309     else
1310       return false;
1311   } else {
1312     if (ShuffleKind == 1) // unary
1313       return isVMerge(N, UnitSize, 0, 0);
1314     else if (ShuffleKind == 0) // normal
1315       return isVMerge(N, UnitSize, 0, 16);
1316     else
1317       return false;
1318   }
1319 }
1320 
1321 /**
1322  * \brief Common function used to match vmrgew and vmrgow shuffles
1323  *
1324  * The indexOffset determines whether to look for even or odd words in
1325  * the shuffle mask. This is based on the of the endianness of the target
1326  * machine.
1327  *   - Little Endian:
1328  *     - Use offset of 0 to check for odd elements
1329  *     - Use offset of 4 to check for even elements
1330  *   - Big Endian:
1331  *     - Use offset of 0 to check for even elements
1332  *     - Use offset of 4 to check for odd elements
1333  * A detailed description of the vector element ordering for little endian and
1334  * big endian can be found at
1335  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1336  * Targeting your applications - what little endian and big endian IBM XL C/C++
1337  * compiler differences mean to you
1338  *
1339  * The mask to the shuffle vector instruction specifies the indices of the
1340  * elements from the two input vectors to place in the result. The elements are
1341  * numbered in array-access order, starting with the first vector. These vectors
1342  * are always of type v16i8, thus each vector will contain 16 elements of size
1343  * 8. More info on the shuffle vector can be found in the
1344  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1345  * Language Reference.
1346  *
1347  * The RHSStartValue indicates whether the same input vectors are used (unary)
1348  * or two different input vectors are used, based on the following:
1349  *   - If the instruction uses the same vector for both inputs, the range of the
1350  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1351  *     be 0.
1352  *   - If the instruction has two different vectors then the range of the
1353  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1354  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1355  *     to 31 specify elements in the second vector).
1356  *
1357  * \param[in] N The shuffle vector SD Node to analyze
1358  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1359  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1360  * vector to the shuffle_vector instruction
1361  * \return true iff this shuffle vector represents an even or odd word merge
1362  */
1363 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1364                      unsigned RHSStartValue) {
1365   if (N->getValueType(0) != MVT::v16i8)
1366     return false;
1367 
1368   for (unsigned i = 0; i < 2; ++i)
1369     for (unsigned j = 0; j < 4; ++j)
1370       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1371                              i*RHSStartValue+j+IndexOffset) ||
1372           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1373                              i*RHSStartValue+j+IndexOffset+8))
1374         return false;
1375   return true;
1376 }
1377 
1378 /**
1379  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1380  * vmrgow instructions.
1381  *
1382  * \param[in] N The shuffle vector SD Node to analyze
1383  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1384  * \param[in] ShuffleKind Identify the type of merge:
1385  *   - 0 = big-endian merge with two different inputs;
1386  *   - 1 = either-endian merge with two identical inputs;
1387  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1388  *     little-endian merges).
1389  * \param[in] DAG The current SelectionDAG
1390  * \return true iff this shuffle mask
1391  */
1392 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1393                               unsigned ShuffleKind, SelectionDAG &DAG) {
1394   if (DAG.getDataLayout().isLittleEndian()) {
1395     unsigned indexOffset = CheckEven ? 4 : 0;
1396     if (ShuffleKind == 1) // Unary
1397       return isVMerge(N, indexOffset, 0);
1398     else if (ShuffleKind == 2) // swapped
1399       return isVMerge(N, indexOffset, 16);
1400     else
1401       return false;
1402   }
1403   else {
1404     unsigned indexOffset = CheckEven ? 0 : 4;
1405     if (ShuffleKind == 1) // Unary
1406       return isVMerge(N, indexOffset, 0);
1407     else if (ShuffleKind == 0) // Normal
1408       return isVMerge(N, indexOffset, 16);
1409     else
1410       return false;
1411   }
1412   return false;
1413 }
1414 
1415 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1416 /// amount, otherwise return -1.
1417 /// The ShuffleKind distinguishes between big-endian operations with two
1418 /// different inputs (0), either-endian operations with two identical inputs
1419 /// (1), and little-endian operations with two different inputs (2).  For the
1420 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1421 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1422                              SelectionDAG &DAG) {
1423   if (N->getValueType(0) != MVT::v16i8)
1424     return -1;
1425 
1426   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1427 
1428   // Find the first non-undef value in the shuffle mask.
1429   unsigned i;
1430   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1431     /*search*/;
1432 
1433   if (i == 16) return -1;  // all undef.
1434 
1435   // Otherwise, check to see if the rest of the elements are consecutively
1436   // numbered from this value.
1437   unsigned ShiftAmt = SVOp->getMaskElt(i);
1438   if (ShiftAmt < i) return -1;
1439 
1440   ShiftAmt -= i;
1441   bool isLE = DAG.getDataLayout().isLittleEndian();
1442 
1443   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1444     // Check the rest of the elements to see if they are consecutive.
1445     for (++i; i != 16; ++i)
1446       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1447         return -1;
1448   } else if (ShuffleKind == 1) {
1449     // Check the rest of the elements to see if they are consecutive.
1450     for (++i; i != 16; ++i)
1451       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1452         return -1;
1453   } else
1454     return -1;
1455 
1456   if (isLE)
1457     ShiftAmt = 16 - ShiftAmt;
1458 
1459   return ShiftAmt;
1460 }
1461 
1462 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1463 /// specifies a splat of a single element that is suitable for input to
1464 /// VSPLTB/VSPLTH/VSPLTW.
1465 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1466   assert(N->getValueType(0) == MVT::v16i8 &&
1467          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1468 
1469   // The consecutive indices need to specify an element, not part of two
1470   // different elements.  So abandon ship early if this isn't the case.
1471   if (N->getMaskElt(0) % EltSize != 0)
1472     return false;
1473 
1474   // This is a splat operation if each element of the permute is the same, and
1475   // if the value doesn't reference the second vector.
1476   unsigned ElementBase = N->getMaskElt(0);
1477 
1478   // FIXME: Handle UNDEF elements too!
1479   if (ElementBase >= 16)
1480     return false;
1481 
1482   // Check that the indices are consecutive, in the case of a multi-byte element
1483   // splatted with a v16i8 mask.
1484   for (unsigned i = 1; i != EltSize; ++i)
1485     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1486       return false;
1487 
1488   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1489     if (N->getMaskElt(i) < 0) continue;
1490     for (unsigned j = 0; j != EltSize; ++j)
1491       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1492         return false;
1493   }
1494   return true;
1495 }
1496 
1497 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1498 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1499 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1500                                 SelectionDAG &DAG) {
1501   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1502   assert(isSplatShuffleMask(SVOp, EltSize));
1503   if (DAG.getDataLayout().isLittleEndian())
1504     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1505   else
1506     return SVOp->getMaskElt(0) / EltSize;
1507 }
1508 
1509 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1510 /// by using a vspltis[bhw] instruction of the specified element size, return
1511 /// the constant being splatted.  The ByteSize field indicates the number of
1512 /// bytes of each element [124] -> [bhw].
1513 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1514   SDValue OpVal(nullptr, 0);
1515 
1516   // If ByteSize of the splat is bigger than the element size of the
1517   // build_vector, then we have a case where we are checking for a splat where
1518   // multiple elements of the buildvector are folded together into a single
1519   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1520   unsigned EltSize = 16/N->getNumOperands();
1521   if (EltSize < ByteSize) {
1522     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1523     SDValue UniquedVals[4];
1524     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1525 
1526     // See if all of the elements in the buildvector agree across.
1527     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1528       if (N->getOperand(i).isUndef()) continue;
1529       // If the element isn't a constant, bail fully out.
1530       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1531 
1532 
1533       if (!UniquedVals[i&(Multiple-1)].getNode())
1534         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1535       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1536         return SDValue();  // no match.
1537     }
1538 
1539     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1540     // either constant or undef values that are identical for each chunk.  See
1541     // if these chunks can form into a larger vspltis*.
1542 
1543     // Check to see if all of the leading entries are either 0 or -1.  If
1544     // neither, then this won't fit into the immediate field.
1545     bool LeadingZero = true;
1546     bool LeadingOnes = true;
1547     for (unsigned i = 0; i != Multiple-1; ++i) {
1548       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1549 
1550       LeadingZero &= isNullConstant(UniquedVals[i]);
1551       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1552     }
1553     // Finally, check the least significant entry.
1554     if (LeadingZero) {
1555       if (!UniquedVals[Multiple-1].getNode())
1556         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1557       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1558       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1559         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1560     }
1561     if (LeadingOnes) {
1562       if (!UniquedVals[Multiple-1].getNode())
1563         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1564       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1565       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1566         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1567     }
1568 
1569     return SDValue();
1570   }
1571 
1572   // Check to see if this buildvec has a single non-undef value in its elements.
1573   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1574     if (N->getOperand(i).isUndef()) continue;
1575     if (!OpVal.getNode())
1576       OpVal = N->getOperand(i);
1577     else if (OpVal != N->getOperand(i))
1578       return SDValue();
1579   }
1580 
1581   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1582 
1583   unsigned ValSizeInBytes = EltSize;
1584   uint64_t Value = 0;
1585   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1586     Value = CN->getZExtValue();
1587   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1588     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1589     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1590   }
1591 
1592   // If the splat value is larger than the element value, then we can never do
1593   // this splat.  The only case that we could fit the replicated bits into our
1594   // immediate field for would be zero, and we prefer to use vxor for it.
1595   if (ValSizeInBytes < ByteSize) return SDValue();
1596 
1597   // If the element value is larger than the splat value, check if it consists
1598   // of a repeated bit pattern of size ByteSize.
1599   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1600     return SDValue();
1601 
1602   // Properly sign extend the value.
1603   int MaskVal = SignExtend32(Value, ByteSize * 8);
1604 
1605   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1606   if (MaskVal == 0) return SDValue();
1607 
1608   // Finally, if this value fits in a 5 bit sext field, return it
1609   if (SignExtend32<5>(MaskVal) == MaskVal)
1610     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1611   return SDValue();
1612 }
1613 
1614 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1615 /// amount, otherwise return -1.
1616 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1617   EVT VT = N->getValueType(0);
1618   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1619     return -1;
1620 
1621   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1622 
1623   // Find the first non-undef value in the shuffle mask.
1624   unsigned i;
1625   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1626     /*search*/;
1627 
1628   if (i == 4) return -1;  // all undef.
1629 
1630   // Otherwise, check to see if the rest of the elements are consecutively
1631   // numbered from this value.
1632   unsigned ShiftAmt = SVOp->getMaskElt(i);
1633   if (ShiftAmt < i) return -1;
1634   ShiftAmt -= i;
1635 
1636   // Check the rest of the elements to see if they are consecutive.
1637   for (++i; i != 4; ++i)
1638     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1639       return -1;
1640 
1641   return ShiftAmt;
1642 }
1643 
1644 //===----------------------------------------------------------------------===//
1645 //  Addressing Mode Selection
1646 //===----------------------------------------------------------------------===//
1647 
1648 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1649 /// or 64-bit immediate, and if the value can be accurately represented as a
1650 /// sign extension from a 16-bit value.  If so, this returns true and the
1651 /// immediate.
1652 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1653   if (!isa<ConstantSDNode>(N))
1654     return false;
1655 
1656   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1657   if (N->getValueType(0) == MVT::i32)
1658     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1659   else
1660     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1661 }
1662 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1663   return isIntS16Immediate(Op.getNode(), Imm);
1664 }
1665 
1666 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1667 /// can be represented as an indexed [r+r] operation.  Returns false if it
1668 /// can be more efficiently represented with [r+imm].
1669 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1670                                             SDValue &Index,
1671                                             SelectionDAG &DAG) const {
1672   short imm = 0;
1673   if (N.getOpcode() == ISD::ADD) {
1674     if (isIntS16Immediate(N.getOperand(1), imm))
1675       return false;    // r+i
1676     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1677       return false;    // r+i
1678 
1679     Base = N.getOperand(0);
1680     Index = N.getOperand(1);
1681     return true;
1682   } else if (N.getOpcode() == ISD::OR) {
1683     if (isIntS16Immediate(N.getOperand(1), imm))
1684       return false;    // r+i can fold it if we can.
1685 
1686     // If this is an or of disjoint bitfields, we can codegen this as an add
1687     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1688     // disjoint.
1689     APInt LHSKnownZero, LHSKnownOne;
1690     APInt RHSKnownZero, RHSKnownOne;
1691     DAG.computeKnownBits(N.getOperand(0),
1692                          LHSKnownZero, LHSKnownOne);
1693 
1694     if (LHSKnownZero.getBoolValue()) {
1695       DAG.computeKnownBits(N.getOperand(1),
1696                            RHSKnownZero, RHSKnownOne);
1697       // If all of the bits are known zero on the LHS or RHS, the add won't
1698       // carry.
1699       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1700         Base = N.getOperand(0);
1701         Index = N.getOperand(1);
1702         return true;
1703       }
1704     }
1705   }
1706 
1707   return false;
1708 }
1709 
1710 // If we happen to be doing an i64 load or store into a stack slot that has
1711 // less than a 4-byte alignment, then the frame-index elimination may need to
1712 // use an indexed load or store instruction (because the offset may not be a
1713 // multiple of 4). The extra register needed to hold the offset comes from the
1714 // register scavenger, and it is possible that the scavenger will need to use
1715 // an emergency spill slot. As a result, we need to make sure that a spill slot
1716 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1717 // stack slot.
1718 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1719   // FIXME: This does not handle the LWA case.
1720   if (VT != MVT::i64)
1721     return;
1722 
1723   // NOTE: We'll exclude negative FIs here, which come from argument
1724   // lowering, because there are no known test cases triggering this problem
1725   // using packed structures (or similar). We can remove this exclusion if
1726   // we find such a test case. The reason why this is so test-case driven is
1727   // because this entire 'fixup' is only to prevent crashes (from the
1728   // register scavenger) on not-really-valid inputs. For example, if we have:
1729   //   %a = alloca i1
1730   //   %b = bitcast i1* %a to i64*
1731   //   store i64* a, i64 b
1732   // then the store should really be marked as 'align 1', but is not. If it
1733   // were marked as 'align 1' then the indexed form would have been
1734   // instruction-selected initially, and the problem this 'fixup' is preventing
1735   // won't happen regardless.
1736   if (FrameIdx < 0)
1737     return;
1738 
1739   MachineFunction &MF = DAG.getMachineFunction();
1740   MachineFrameInfo *MFI = MF.getFrameInfo();
1741 
1742   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1743   if (Align >= 4)
1744     return;
1745 
1746   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1747   FuncInfo->setHasNonRISpills();
1748 }
1749 
1750 /// Returns true if the address N can be represented by a base register plus
1751 /// a signed 16-bit displacement [r+imm], and if it is not better
1752 /// represented as reg+reg.  If Aligned is true, only accept displacements
1753 /// suitable for STD and friends, i.e. multiples of 4.
1754 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1755                                             SDValue &Base,
1756                                             SelectionDAG &DAG,
1757                                             bool Aligned) const {
1758   // FIXME dl should come from parent load or store, not from address
1759   SDLoc dl(N);
1760   // If this can be more profitably realized as r+r, fail.
1761   if (SelectAddressRegReg(N, Disp, Base, DAG))
1762     return false;
1763 
1764   if (N.getOpcode() == ISD::ADD) {
1765     short imm = 0;
1766     if (isIntS16Immediate(N.getOperand(1), imm) &&
1767         (!Aligned || (imm & 3) == 0)) {
1768       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1769       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1770         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1771         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1772       } else {
1773         Base = N.getOperand(0);
1774       }
1775       return true; // [r+i]
1776     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1777       // Match LOAD (ADD (X, Lo(G))).
1778       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1779              && "Cannot handle constant offsets yet!");
1780       Disp = N.getOperand(1).getOperand(0);  // The global address.
1781       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1782              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1783              Disp.getOpcode() == ISD::TargetConstantPool ||
1784              Disp.getOpcode() == ISD::TargetJumpTable);
1785       Base = N.getOperand(0);
1786       return true;  // [&g+r]
1787     }
1788   } else if (N.getOpcode() == ISD::OR) {
1789     short imm = 0;
1790     if (isIntS16Immediate(N.getOperand(1), imm) &&
1791         (!Aligned || (imm & 3) == 0)) {
1792       // If this is an or of disjoint bitfields, we can codegen this as an add
1793       // (for better address arithmetic) if the LHS and RHS of the OR are
1794       // provably disjoint.
1795       APInt LHSKnownZero, LHSKnownOne;
1796       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1797 
1798       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1799         // If all of the bits are known zero on the LHS or RHS, the add won't
1800         // carry.
1801         if (FrameIndexSDNode *FI =
1802               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1803           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1804           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1805         } else {
1806           Base = N.getOperand(0);
1807         }
1808         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1809         return true;
1810       }
1811     }
1812   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1813     // Loading from a constant address.
1814 
1815     // If this address fits entirely in a 16-bit sext immediate field, codegen
1816     // this as "d, 0"
1817     short Imm;
1818     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1819       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1820       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1821                              CN->getValueType(0));
1822       return true;
1823     }
1824 
1825     // Handle 32-bit sext immediates with LIS + addr mode.
1826     if ((CN->getValueType(0) == MVT::i32 ||
1827          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1828         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1829       int Addr = (int)CN->getZExtValue();
1830 
1831       // Otherwise, break this down into an LIS + disp.
1832       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1833 
1834       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1835                                    MVT::i32);
1836       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1837       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1838       return true;
1839     }
1840   }
1841 
1842   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1843   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1844     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1845     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1846   } else
1847     Base = N;
1848   return true;      // [r+0]
1849 }
1850 
1851 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1852 /// represented as an indexed [r+r] operation.
1853 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1854                                                 SDValue &Index,
1855                                                 SelectionDAG &DAG) const {
1856   // Check to see if we can easily represent this as an [r+r] address.  This
1857   // will fail if it thinks that the address is more profitably represented as
1858   // reg+imm, e.g. where imm = 0.
1859   if (SelectAddressRegReg(N, Base, Index, DAG))
1860     return true;
1861 
1862   // If the operand is an addition, always emit this as [r+r], since this is
1863   // better (for code size, and execution, as the memop does the add for free)
1864   // than emitting an explicit add.
1865   if (N.getOpcode() == ISD::ADD) {
1866     Base = N.getOperand(0);
1867     Index = N.getOperand(1);
1868     return true;
1869   }
1870 
1871   // Otherwise, do it the hard way, using R0 as the base register.
1872   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1873                          N.getValueType());
1874   Index = N;
1875   return true;
1876 }
1877 
1878 /// getPreIndexedAddressParts - returns true by value, base pointer and
1879 /// offset pointer and addressing mode by reference if the node's address
1880 /// can be legally represented as pre-indexed load / store address.
1881 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1882                                                   SDValue &Offset,
1883                                                   ISD::MemIndexedMode &AM,
1884                                                   SelectionDAG &DAG) const {
1885   if (DisablePPCPreinc) return false;
1886 
1887   bool isLoad = true;
1888   SDValue Ptr;
1889   EVT VT;
1890   unsigned Alignment;
1891   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1892     Ptr = LD->getBasePtr();
1893     VT = LD->getMemoryVT();
1894     Alignment = LD->getAlignment();
1895   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1896     Ptr = ST->getBasePtr();
1897     VT  = ST->getMemoryVT();
1898     Alignment = ST->getAlignment();
1899     isLoad = false;
1900   } else
1901     return false;
1902 
1903   // PowerPC doesn't have preinc load/store instructions for vectors (except
1904   // for QPX, which does have preinc r+r forms).
1905   if (VT.isVector()) {
1906     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1907       return false;
1908     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1909       AM = ISD::PRE_INC;
1910       return true;
1911     }
1912   }
1913 
1914   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1915 
1916     // Common code will reject creating a pre-inc form if the base pointer
1917     // is a frame index, or if N is a store and the base pointer is either
1918     // the same as or a predecessor of the value being stored.  Check for
1919     // those situations here, and try with swapped Base/Offset instead.
1920     bool Swap = false;
1921 
1922     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1923       Swap = true;
1924     else if (!isLoad) {
1925       SDValue Val = cast<StoreSDNode>(N)->getValue();
1926       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1927         Swap = true;
1928     }
1929 
1930     if (Swap)
1931       std::swap(Base, Offset);
1932 
1933     AM = ISD::PRE_INC;
1934     return true;
1935   }
1936 
1937   // LDU/STU can only handle immediates that are a multiple of 4.
1938   if (VT != MVT::i64) {
1939     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1940       return false;
1941   } else {
1942     // LDU/STU need an address with at least 4-byte alignment.
1943     if (Alignment < 4)
1944       return false;
1945 
1946     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1947       return false;
1948   }
1949 
1950   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1951     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1952     // sext i32 to i64 when addr mode is r+i.
1953     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1954         LD->getExtensionType() == ISD::SEXTLOAD &&
1955         isa<ConstantSDNode>(Offset))
1956       return false;
1957   }
1958 
1959   AM = ISD::PRE_INC;
1960   return true;
1961 }
1962 
1963 //===----------------------------------------------------------------------===//
1964 //  LowerOperation implementation
1965 //===----------------------------------------------------------------------===//
1966 
1967 /// GetLabelAccessInfo - Return true if we should reference labels using a
1968 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1969 static bool GetLabelAccessInfo(const TargetMachine &TM,
1970                                const PPCSubtarget &Subtarget,
1971                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1972                                const GlobalValue *GV = nullptr) {
1973   HiOpFlags = PPCII::MO_HA;
1974   LoOpFlags = PPCII::MO_LO;
1975 
1976   // Don't use the pic base if not in PIC relocation model.
1977   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1978 
1979   if (isPIC) {
1980     HiOpFlags |= PPCII::MO_PIC_FLAG;
1981     LoOpFlags |= PPCII::MO_PIC_FLAG;
1982   }
1983 
1984   // If this is a reference to a global value that requires a non-lazy-ptr, make
1985   // sure that instruction lowering adds it.
1986   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1987     HiOpFlags |= PPCII::MO_NLP_FLAG;
1988     LoOpFlags |= PPCII::MO_NLP_FLAG;
1989 
1990     if (GV->hasHiddenVisibility()) {
1991       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1992       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1993     }
1994   }
1995 
1996   return isPIC;
1997 }
1998 
1999 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2000                              SelectionDAG &DAG) {
2001   SDLoc DL(HiPart);
2002   EVT PtrVT = HiPart.getValueType();
2003   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2004 
2005   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2006   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2007 
2008   // With PIC, the first instruction is actually "GR+hi(&G)".
2009   if (isPIC)
2010     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2011                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2012 
2013   // Generate non-pic code that has direct accesses to the constant pool.
2014   // The address of the global is just (hi(&g)+lo(&g)).
2015   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2016 }
2017 
2018 static void setUsesTOCBasePtr(MachineFunction &MF) {
2019   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2020   FuncInfo->setUsesTOCBasePtr();
2021 }
2022 
2023 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2024   setUsesTOCBasePtr(DAG.getMachineFunction());
2025 }
2026 
2027 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
2028                            SDValue GA) {
2029   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2030   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2031                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2032 
2033   SDValue Ops[] = { GA, Reg };
2034   return DAG.getMemIntrinsicNode(
2035       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2036       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2037       false, 0);
2038 }
2039 
2040 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2041                                              SelectionDAG &DAG) const {
2042   EVT PtrVT = Op.getValueType();
2043   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2044   const Constant *C = CP->getConstVal();
2045 
2046   // 64-bit SVR4 ABI code is always position-independent.
2047   // The actual address of the GlobalValue is stored in the TOC.
2048   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2049     setUsesTOCBasePtr(DAG);
2050     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2051     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2052   }
2053 
2054   unsigned MOHiFlag, MOLoFlag;
2055   bool isPIC =
2056       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2057 
2058   if (isPIC && Subtarget.isSVR4ABI()) {
2059     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2060                                            PPCII::MO_PIC_FLAG);
2061     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2062   }
2063 
2064   SDValue CPIHi =
2065     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2066   SDValue CPILo =
2067     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2068   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
2069 }
2070 
2071 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2072   EVT PtrVT = Op.getValueType();
2073   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2074 
2075   // 64-bit SVR4 ABI code is always position-independent.
2076   // The actual address of the GlobalValue is stored in the TOC.
2077   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2078     setUsesTOCBasePtr(DAG);
2079     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2080     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2081   }
2082 
2083   unsigned MOHiFlag, MOLoFlag;
2084   bool isPIC =
2085       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2086 
2087   if (isPIC && Subtarget.isSVR4ABI()) {
2088     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2089                                         PPCII::MO_PIC_FLAG);
2090     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2091   }
2092 
2093   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2094   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2095   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
2096 }
2097 
2098 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2099                                              SelectionDAG &DAG) const {
2100   EVT PtrVT = Op.getValueType();
2101   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2102   const BlockAddress *BA = BASDN->getBlockAddress();
2103 
2104   // 64-bit SVR4 ABI code is always position-independent.
2105   // The actual BlockAddress is stored in the TOC.
2106   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2107     setUsesTOCBasePtr(DAG);
2108     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2109     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2110   }
2111 
2112   unsigned MOHiFlag, MOLoFlag;
2113   bool isPIC =
2114       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2115   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2116   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2117   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
2118 }
2119 
2120 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2121                                               SelectionDAG &DAG) const {
2122 
2123   // FIXME: TLS addresses currently use medium model code sequences,
2124   // which is the most useful form.  Eventually support for small and
2125   // large models could be added if users need it, at the cost of
2126   // additional complexity.
2127   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2128   if (DAG.getTarget().Options.EmulatedTLS)
2129     return LowerToTLSEmulatedModel(GA, DAG);
2130 
2131   SDLoc dl(GA);
2132   const GlobalValue *GV = GA->getGlobal();
2133   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2134   bool is64bit = Subtarget.isPPC64();
2135   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2136   PICLevel::Level picLevel = M->getPICLevel();
2137 
2138   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2139 
2140   if (Model == TLSModel::LocalExec) {
2141     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2142                                                PPCII::MO_TPREL_HA);
2143     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2144                                                PPCII::MO_TPREL_LO);
2145     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2146                                      is64bit ? MVT::i64 : MVT::i32);
2147     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2148     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2149   }
2150 
2151   if (Model == TLSModel::InitialExec) {
2152     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2153     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2154                                                 PPCII::MO_TLS);
2155     SDValue GOTPtr;
2156     if (is64bit) {
2157       setUsesTOCBasePtr(DAG);
2158       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2159       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2160                            PtrVT, GOTReg, TGA);
2161     } else
2162       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2163     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2164                                    PtrVT, TGA, GOTPtr);
2165     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2166   }
2167 
2168   if (Model == TLSModel::GeneralDynamic) {
2169     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2170     SDValue GOTPtr;
2171     if (is64bit) {
2172       setUsesTOCBasePtr(DAG);
2173       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2174       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2175                                    GOTReg, TGA);
2176     } else {
2177       if (picLevel == PICLevel::Small)
2178         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2179       else
2180         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2181     }
2182     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2183                        GOTPtr, TGA, TGA);
2184   }
2185 
2186   if (Model == TLSModel::LocalDynamic) {
2187     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2188     SDValue GOTPtr;
2189     if (is64bit) {
2190       setUsesTOCBasePtr(DAG);
2191       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2192       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2193                            GOTReg, TGA);
2194     } else {
2195       if (picLevel == PICLevel::Small)
2196         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2197       else
2198         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2199     }
2200     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2201                                   PtrVT, GOTPtr, TGA, TGA);
2202     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2203                                       PtrVT, TLSAddr, TGA);
2204     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2205   }
2206 
2207   llvm_unreachable("Unknown TLS model!");
2208 }
2209 
2210 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2211                                               SelectionDAG &DAG) const {
2212   EVT PtrVT = Op.getValueType();
2213   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2214   SDLoc DL(GSDN);
2215   const GlobalValue *GV = GSDN->getGlobal();
2216 
2217   // 64-bit SVR4 ABI code is always position-independent.
2218   // The actual address of the GlobalValue is stored in the TOC.
2219   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2220     setUsesTOCBasePtr(DAG);
2221     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2222     return getTOCEntry(DAG, DL, true, GA);
2223   }
2224 
2225   unsigned MOHiFlag, MOLoFlag;
2226   bool isPIC =
2227       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2228 
2229   if (isPIC && Subtarget.isSVR4ABI()) {
2230     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2231                                             GSDN->getOffset(),
2232                                             PPCII::MO_PIC_FLAG);
2233     return getTOCEntry(DAG, DL, false, GA);
2234   }
2235 
2236   SDValue GAHi =
2237     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2238   SDValue GALo =
2239     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2240 
2241   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2242 
2243   // If the global reference is actually to a non-lazy-pointer, we have to do an
2244   // extra load to get the address of the global.
2245   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2246     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2247                       false, false, false, 0);
2248   return Ptr;
2249 }
2250 
2251 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2252   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2253   SDLoc dl(Op);
2254 
2255   if (Op.getValueType() == MVT::v2i64) {
2256     // When the operands themselves are v2i64 values, we need to do something
2257     // special because VSX has no underlying comparison operations for these.
2258     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2259       // Equality can be handled by casting to the legal type for Altivec
2260       // comparisons, everything else needs to be expanded.
2261       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2262         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2263                  DAG.getSetCC(dl, MVT::v4i32,
2264                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2265                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2266                    CC));
2267       }
2268 
2269       return SDValue();
2270     }
2271 
2272     // We handle most of these in the usual way.
2273     return Op;
2274   }
2275 
2276   // If we're comparing for equality to zero, expose the fact that this is
2277   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2278   // fold the new nodes.
2279   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2280     if (C->isNullValue() && CC == ISD::SETEQ) {
2281       EVT VT = Op.getOperand(0).getValueType();
2282       SDValue Zext = Op.getOperand(0);
2283       if (VT.bitsLT(MVT::i32)) {
2284         VT = MVT::i32;
2285         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2286       }
2287       unsigned Log2b = Log2_32(VT.getSizeInBits());
2288       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2289       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2290                                 DAG.getConstant(Log2b, dl, MVT::i32));
2291       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2292     }
2293     // Leave comparisons against 0 and -1 alone for now, since they're usually
2294     // optimized.  FIXME: revisit this when we can custom lower all setcc
2295     // optimizations.
2296     if (C->isAllOnesValue() || C->isNullValue())
2297       return SDValue();
2298   }
2299 
2300   // If we have an integer seteq/setne, turn it into a compare against zero
2301   // by xor'ing the rhs with the lhs, which is faster than setting a
2302   // condition register, reading it back out, and masking the correct bit.  The
2303   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2304   // the result to other bit-twiddling opportunities.
2305   EVT LHSVT = Op.getOperand(0).getValueType();
2306   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2307     EVT VT = Op.getValueType();
2308     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2309                                 Op.getOperand(1));
2310     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2311   }
2312   return SDValue();
2313 }
2314 
2315 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2316                                       const PPCSubtarget &Subtarget) const {
2317   SDNode *Node = Op.getNode();
2318   EVT VT = Node->getValueType(0);
2319   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2320   SDValue InChain = Node->getOperand(0);
2321   SDValue VAListPtr = Node->getOperand(1);
2322   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2323   SDLoc dl(Node);
2324 
2325   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2326 
2327   // gpr_index
2328   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2329                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2330                                     false, false, false, 0);
2331   InChain = GprIndex.getValue(1);
2332 
2333   if (VT == MVT::i64) {
2334     // Check if GprIndex is even
2335     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2336                                  DAG.getConstant(1, dl, MVT::i32));
2337     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2338                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2339     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2340                                           DAG.getConstant(1, dl, MVT::i32));
2341     // Align GprIndex to be even if it isn't
2342     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2343                            GprIndex);
2344   }
2345 
2346   // fpr index is 1 byte after gpr
2347   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2348                                DAG.getConstant(1, dl, MVT::i32));
2349 
2350   // fpr
2351   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2352                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2353                                     false, false, false, 0);
2354   InChain = FprIndex.getValue(1);
2355 
2356   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2357                                        DAG.getConstant(8, dl, MVT::i32));
2358 
2359   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2360                                         DAG.getConstant(4, dl, MVT::i32));
2361 
2362   // areas
2363   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2364                                      MachinePointerInfo(), false, false,
2365                                      false, 0);
2366   InChain = OverflowArea.getValue(1);
2367 
2368   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2369                                     MachinePointerInfo(), false, false,
2370                                     false, 0);
2371   InChain = RegSaveArea.getValue(1);
2372 
2373   // select overflow_area if index > 8
2374   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2375                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2376 
2377   // adjustment constant gpr_index * 4/8
2378   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2379                                     VT.isInteger() ? GprIndex : FprIndex,
2380                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2381                                                     MVT::i32));
2382 
2383   // OurReg = RegSaveArea + RegConstant
2384   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2385                                RegConstant);
2386 
2387   // Floating types are 32 bytes into RegSaveArea
2388   if (VT.isFloatingPoint())
2389     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2390                          DAG.getConstant(32, dl, MVT::i32));
2391 
2392   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2393   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2394                                    VT.isInteger() ? GprIndex : FprIndex,
2395                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2396                                                    MVT::i32));
2397 
2398   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2399                               VT.isInteger() ? VAListPtr : FprPtr,
2400                               MachinePointerInfo(SV),
2401                               MVT::i8, false, false, 0);
2402 
2403   // determine if we should load from reg_save_area or overflow_area
2404   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2405 
2406   // increase overflow_area by 4/8 if gpr/fpr > 8
2407   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2408                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2409                                           dl, MVT::i32));
2410 
2411   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2412                              OverflowAreaPlusN);
2413 
2414   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2415                               OverflowAreaPtr,
2416                               MachinePointerInfo(),
2417                               MVT::i32, false, false, 0);
2418 
2419   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2420                      false, false, false, 0);
2421 }
2422 
2423 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2424                                        const PPCSubtarget &Subtarget) const {
2425   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2426 
2427   // We have to copy the entire va_list struct:
2428   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2429   return DAG.getMemcpy(Op.getOperand(0), Op,
2430                        Op.getOperand(1), Op.getOperand(2),
2431                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2432                        false, MachinePointerInfo(), MachinePointerInfo());
2433 }
2434 
2435 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2436                                                   SelectionDAG &DAG) const {
2437   return Op.getOperand(0);
2438 }
2439 
2440 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2441                                                 SelectionDAG &DAG) const {
2442   SDValue Chain = Op.getOperand(0);
2443   SDValue Trmp = Op.getOperand(1); // trampoline
2444   SDValue FPtr = Op.getOperand(2); // nested function
2445   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2446   SDLoc dl(Op);
2447 
2448   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2449   bool isPPC64 = (PtrVT == MVT::i64);
2450   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2451 
2452   TargetLowering::ArgListTy Args;
2453   TargetLowering::ArgListEntry Entry;
2454 
2455   Entry.Ty = IntPtrTy;
2456   Entry.Node = Trmp; Args.push_back(Entry);
2457 
2458   // TrampSize == (isPPC64 ? 48 : 40);
2459   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2460                                isPPC64 ? MVT::i64 : MVT::i32);
2461   Args.push_back(Entry);
2462 
2463   Entry.Node = FPtr; Args.push_back(Entry);
2464   Entry.Node = Nest; Args.push_back(Entry);
2465 
2466   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2467   TargetLowering::CallLoweringInfo CLI(DAG);
2468   CLI.setDebugLoc(dl).setChain(Chain)
2469     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2470                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2471                std::move(Args), 0);
2472 
2473   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2474   return CallResult.second;
2475 }
2476 
2477 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2478                                         const PPCSubtarget &Subtarget) const {
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2481 
2482   SDLoc dl(Op);
2483 
2484   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2485     // vastart just stores the address of the VarArgsFrameIndex slot into the
2486     // memory location argument.
2487     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2488     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2489     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2490     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2491                         MachinePointerInfo(SV),
2492                         false, false, 0);
2493   }
2494 
2495   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2496   // We suppose the given va_list is already allocated.
2497   //
2498   // typedef struct {
2499   //  char gpr;     /* index into the array of 8 GPRs
2500   //                 * stored in the register save area
2501   //                 * gpr=0 corresponds to r3,
2502   //                 * gpr=1 to r4, etc.
2503   //                 */
2504   //  char fpr;     /* index into the array of 8 FPRs
2505   //                 * stored in the register save area
2506   //                 * fpr=0 corresponds to f1,
2507   //                 * fpr=1 to f2, etc.
2508   //                 */
2509   //  char *overflow_arg_area;
2510   //                /* location on stack that holds
2511   //                 * the next overflow argument
2512   //                 */
2513   //  char *reg_save_area;
2514   //               /* where r3:r10 and f1:f8 (if saved)
2515   //                * are stored
2516   //                */
2517   // } va_list[1];
2518 
2519   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2520   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2521 
2522   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2523 
2524   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2525                                             PtrVT);
2526   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2527                                  PtrVT);
2528 
2529   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2530   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2531 
2532   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2533   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2534 
2535   uint64_t FPROffset = 1;
2536   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2537 
2538   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2539 
2540   // Store first byte : number of int regs
2541   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2542                                          Op.getOperand(1),
2543                                          MachinePointerInfo(SV),
2544                                          MVT::i8, false, false, 0);
2545   uint64_t nextOffset = FPROffset;
2546   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2547                                   ConstFPROffset);
2548 
2549   // Store second byte : number of float regs
2550   SDValue secondStore =
2551     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2552                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2553                       false, false, 0);
2554   nextOffset += StackOffset;
2555   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2556 
2557   // Store second word : arguments given on stack
2558   SDValue thirdStore =
2559     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2560                  MachinePointerInfo(SV, nextOffset),
2561                  false, false, 0);
2562   nextOffset += FrameOffset;
2563   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2564 
2565   // Store third word : arguments given in registers
2566   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2567                       MachinePointerInfo(SV, nextOffset),
2568                       false, false, 0);
2569 
2570 }
2571 
2572 #include "PPCGenCallingConv.inc"
2573 
2574 // Function whose sole purpose is to kill compiler warnings
2575 // stemming from unused functions included from PPCGenCallingConv.inc.
2576 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2577   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2578 }
2579 
2580 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2581                                       CCValAssign::LocInfo &LocInfo,
2582                                       ISD::ArgFlagsTy &ArgFlags,
2583                                       CCState &State) {
2584   return true;
2585 }
2586 
2587 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2588                                              MVT &LocVT,
2589                                              CCValAssign::LocInfo &LocInfo,
2590                                              ISD::ArgFlagsTy &ArgFlags,
2591                                              CCState &State) {
2592   static const MCPhysReg ArgRegs[] = {
2593     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2594     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2595   };
2596   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2597 
2598   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2599 
2600   // Skip one register if the first unallocated register has an even register
2601   // number and there are still argument registers available which have not been
2602   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2603   // need to skip a register if RegNum is odd.
2604   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2605     State.AllocateReg(ArgRegs[RegNum]);
2606   }
2607 
2608   // Always return false here, as this function only makes sure that the first
2609   // unallocated register has an odd register number and does not actually
2610   // allocate a register for the current argument.
2611   return false;
2612 }
2613 
2614 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2615                                                MVT &LocVT,
2616                                                CCValAssign::LocInfo &LocInfo,
2617                                                ISD::ArgFlagsTy &ArgFlags,
2618                                                CCState &State) {
2619   static const MCPhysReg ArgRegs[] = {
2620     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2621     PPC::F8
2622   };
2623 
2624   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2625 
2626   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2627 
2628   // If there is only one Floating-point register left we need to put both f64
2629   // values of a split ppc_fp128 value on the stack.
2630   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2631     State.AllocateReg(ArgRegs[RegNum]);
2632   }
2633 
2634   // Always return false here, as this function only makes sure that the two f64
2635   // values a ppc_fp128 value is split into are both passed in registers or both
2636   // passed on the stack and does not actually allocate a register for the
2637   // current argument.
2638   return false;
2639 }
2640 
2641 /// FPR - The set of FP registers that should be allocated for arguments,
2642 /// on Darwin.
2643 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2644                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2645                                 PPC::F11, PPC::F12, PPC::F13};
2646 
2647 /// QFPR - The set of QPX registers that should be allocated for arguments.
2648 static const MCPhysReg QFPR[] = {
2649     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2650     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2651 
2652 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2653 /// the stack.
2654 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2655                                        unsigned PtrByteSize) {
2656   unsigned ArgSize = ArgVT.getStoreSize();
2657   if (Flags.isByVal())
2658     ArgSize = Flags.getByValSize();
2659 
2660   // Round up to multiples of the pointer size, except for array members,
2661   // which are always packed.
2662   if (!Flags.isInConsecutiveRegs())
2663     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2664 
2665   return ArgSize;
2666 }
2667 
2668 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2669 /// on the stack.
2670 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2671                                             ISD::ArgFlagsTy Flags,
2672                                             unsigned PtrByteSize) {
2673   unsigned Align = PtrByteSize;
2674 
2675   // Altivec parameters are padded to a 16 byte boundary.
2676   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2677       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2678       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2679       ArgVT == MVT::v1i128)
2680     Align = 16;
2681   // QPX vector types stored in double-precision are padded to a 32 byte
2682   // boundary.
2683   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2684     Align = 32;
2685 
2686   // ByVal parameters are aligned as requested.
2687   if (Flags.isByVal()) {
2688     unsigned BVAlign = Flags.getByValAlign();
2689     if (BVAlign > PtrByteSize) {
2690       if (BVAlign % PtrByteSize != 0)
2691           llvm_unreachable(
2692             "ByVal alignment is not a multiple of the pointer size");
2693 
2694       Align = BVAlign;
2695     }
2696   }
2697 
2698   // Array members are always packed to their original alignment.
2699   if (Flags.isInConsecutiveRegs()) {
2700     // If the array member was split into multiple registers, the first
2701     // needs to be aligned to the size of the full type.  (Except for
2702     // ppcf128, which is only aligned as its f64 components.)
2703     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2704       Align = OrigVT.getStoreSize();
2705     else
2706       Align = ArgVT.getStoreSize();
2707   }
2708 
2709   return Align;
2710 }
2711 
2712 /// CalculateStackSlotUsed - Return whether this argument will use its
2713 /// stack slot (instead of being passed in registers).  ArgOffset,
2714 /// AvailableFPRs, and AvailableVRs must hold the current argument
2715 /// position, and will be updated to account for this argument.
2716 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2717                                    ISD::ArgFlagsTy Flags,
2718                                    unsigned PtrByteSize,
2719                                    unsigned LinkageSize,
2720                                    unsigned ParamAreaSize,
2721                                    unsigned &ArgOffset,
2722                                    unsigned &AvailableFPRs,
2723                                    unsigned &AvailableVRs, bool HasQPX) {
2724   bool UseMemory = false;
2725 
2726   // Respect alignment of argument on the stack.
2727   unsigned Align =
2728     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2729   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2730   // If there's no space left in the argument save area, we must
2731   // use memory (this check also catches zero-sized arguments).
2732   if (ArgOffset >= LinkageSize + ParamAreaSize)
2733     UseMemory = true;
2734 
2735   // Allocate argument on the stack.
2736   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2737   if (Flags.isInConsecutiveRegsLast())
2738     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2739   // If we overran the argument save area, we must use memory
2740   // (this check catches arguments passed partially in memory)
2741   if (ArgOffset > LinkageSize + ParamAreaSize)
2742     UseMemory = true;
2743 
2744   // However, if the argument is actually passed in an FPR or a VR,
2745   // we don't use memory after all.
2746   if (!Flags.isByVal()) {
2747     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2748         // QPX registers overlap with the scalar FP registers.
2749         (HasQPX && (ArgVT == MVT::v4f32 ||
2750                     ArgVT == MVT::v4f64 ||
2751                     ArgVT == MVT::v4i1)))
2752       if (AvailableFPRs > 0) {
2753         --AvailableFPRs;
2754         return false;
2755       }
2756     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2757         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2758         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2759         ArgVT == MVT::v1i128)
2760       if (AvailableVRs > 0) {
2761         --AvailableVRs;
2762         return false;
2763       }
2764   }
2765 
2766   return UseMemory;
2767 }
2768 
2769 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2770 /// ensure minimum alignment required for target.
2771 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2772                                      unsigned NumBytes) {
2773   unsigned TargetAlign = Lowering->getStackAlignment();
2774   unsigned AlignMask = TargetAlign - 1;
2775   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2776   return NumBytes;
2777 }
2778 
2779 SDValue
2780 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2781                                         CallingConv::ID CallConv, bool isVarArg,
2782                                         const SmallVectorImpl<ISD::InputArg>
2783                                           &Ins,
2784                                         SDLoc dl, SelectionDAG &DAG,
2785                                         SmallVectorImpl<SDValue> &InVals)
2786                                           const {
2787   if (Subtarget.isSVR4ABI()) {
2788     if (Subtarget.isPPC64())
2789       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2790                                          dl, DAG, InVals);
2791     else
2792       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2793                                          dl, DAG, InVals);
2794   } else {
2795     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2796                                        dl, DAG, InVals);
2797   }
2798 }
2799 
2800 SDValue
2801 PPCTargetLowering::LowerFormalArguments_32SVR4(
2802                                       SDValue Chain,
2803                                       CallingConv::ID CallConv, bool isVarArg,
2804                                       const SmallVectorImpl<ISD::InputArg>
2805                                         &Ins,
2806                                       SDLoc dl, SelectionDAG &DAG,
2807                                       SmallVectorImpl<SDValue> &InVals) const {
2808 
2809   // 32-bit SVR4 ABI Stack Frame Layout:
2810   //              +-----------------------------------+
2811   //        +-->  |            Back chain             |
2812   //        |     +-----------------------------------+
2813   //        |     | Floating-point register save area |
2814   //        |     +-----------------------------------+
2815   //        |     |    General register save area     |
2816   //        |     +-----------------------------------+
2817   //        |     |          CR save word             |
2818   //        |     +-----------------------------------+
2819   //        |     |         VRSAVE save word          |
2820   //        |     +-----------------------------------+
2821   //        |     |         Alignment padding         |
2822   //        |     +-----------------------------------+
2823   //        |     |     Vector register save area     |
2824   //        |     +-----------------------------------+
2825   //        |     |       Local variable space        |
2826   //        |     +-----------------------------------+
2827   //        |     |        Parameter list area        |
2828   //        |     +-----------------------------------+
2829   //        |     |           LR save word            |
2830   //        |     +-----------------------------------+
2831   // SP-->  +---  |            Back chain             |
2832   //              +-----------------------------------+
2833   //
2834   // Specifications:
2835   //   System V Application Binary Interface PowerPC Processor Supplement
2836   //   AltiVec Technology Programming Interface Manual
2837 
2838   MachineFunction &MF = DAG.getMachineFunction();
2839   MachineFrameInfo *MFI = MF.getFrameInfo();
2840   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2841 
2842   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2843   // Potential tail calls could cause overwriting of argument stack slots.
2844   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2845                        (CallConv == CallingConv::Fast));
2846   unsigned PtrByteSize = 4;
2847 
2848   // Assign locations to all of the incoming arguments.
2849   SmallVector<CCValAssign, 16> ArgLocs;
2850   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2851                  *DAG.getContext());
2852 
2853   // Reserve space for the linkage area on the stack.
2854   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2855   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2856 
2857   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2858 
2859   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2860     CCValAssign &VA = ArgLocs[i];
2861 
2862     // Arguments stored in registers.
2863     if (VA.isRegLoc()) {
2864       const TargetRegisterClass *RC;
2865       EVT ValVT = VA.getValVT();
2866 
2867       switch (ValVT.getSimpleVT().SimpleTy) {
2868         default:
2869           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2870         case MVT::i1:
2871         case MVT::i32:
2872           RC = &PPC::GPRCRegClass;
2873           break;
2874         case MVT::f32:
2875           if (Subtarget.hasP8Vector())
2876             RC = &PPC::VSSRCRegClass;
2877           else
2878             RC = &PPC::F4RCRegClass;
2879           break;
2880         case MVT::f64:
2881           if (Subtarget.hasVSX())
2882             RC = &PPC::VSFRCRegClass;
2883           else
2884             RC = &PPC::F8RCRegClass;
2885           break;
2886         case MVT::v16i8:
2887         case MVT::v8i16:
2888         case MVT::v4i32:
2889           RC = &PPC::VRRCRegClass;
2890           break;
2891         case MVT::v4f32:
2892           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2893           break;
2894         case MVT::v2f64:
2895         case MVT::v2i64:
2896           RC = &PPC::VSHRCRegClass;
2897           break;
2898         case MVT::v4f64:
2899           RC = &PPC::QFRCRegClass;
2900           break;
2901         case MVT::v4i1:
2902           RC = &PPC::QBRCRegClass;
2903           break;
2904       }
2905 
2906       // Transform the arguments stored in physical registers into virtual ones.
2907       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2908       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2909                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2910 
2911       if (ValVT == MVT::i1)
2912         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2913 
2914       InVals.push_back(ArgValue);
2915     } else {
2916       // Argument stored in memory.
2917       assert(VA.isMemLoc());
2918 
2919       unsigned ArgSize = VA.getLocVT().getStoreSize();
2920       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2921                                       isImmutable);
2922 
2923       // Create load nodes to retrieve arguments from the stack.
2924       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2925       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2926                                    MachinePointerInfo(),
2927                                    false, false, false, 0));
2928     }
2929   }
2930 
2931   // Assign locations to all of the incoming aggregate by value arguments.
2932   // Aggregates passed by value are stored in the local variable space of the
2933   // caller's stack frame, right above the parameter list area.
2934   SmallVector<CCValAssign, 16> ByValArgLocs;
2935   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2936                       ByValArgLocs, *DAG.getContext());
2937 
2938   // Reserve stack space for the allocations in CCInfo.
2939   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2940 
2941   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2942 
2943   // Area that is at least reserved in the caller of this function.
2944   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2945   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2946 
2947   // Set the size that is at least reserved in caller of this function.  Tail
2948   // call optimized function's reserved stack space needs to be aligned so that
2949   // taking the difference between two stack areas will result in an aligned
2950   // stack.
2951   MinReservedArea =
2952       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2953   FuncInfo->setMinReservedArea(MinReservedArea);
2954 
2955   SmallVector<SDValue, 8> MemOps;
2956 
2957   // If the function takes variable number of arguments, make a frame index for
2958   // the start of the first vararg value... for expansion of llvm.va_start.
2959   if (isVarArg) {
2960     static const MCPhysReg GPArgRegs[] = {
2961       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2962       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2963     };
2964     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2965 
2966     static const MCPhysReg FPArgRegs[] = {
2967       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2968       PPC::F8
2969     };
2970     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2971 
2972     if (Subtarget.useSoftFloat())
2973        NumFPArgRegs = 0;
2974 
2975     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2976     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2977 
2978     // Make room for NumGPArgRegs and NumFPArgRegs.
2979     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2980                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2981 
2982     FuncInfo->setVarArgsStackOffset(
2983       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2984                              CCInfo.getNextStackOffset(), true));
2985 
2986     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2987     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2988 
2989     // The fixed integer arguments of a variadic function are stored to the
2990     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2991     // the result of va_next.
2992     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2993       // Get an existing live-in vreg, or add a new one.
2994       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2995       if (!VReg)
2996         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2997 
2998       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2999       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3000                                    MachinePointerInfo(), false, false, 0);
3001       MemOps.push_back(Store);
3002       // Increment the address by four for the next argument to store
3003       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3004       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3005     }
3006 
3007     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3008     // is set.
3009     // The double arguments are stored to the VarArgsFrameIndex
3010     // on the stack.
3011     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3012       // Get an existing live-in vreg, or add a new one.
3013       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3014       if (!VReg)
3015         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3016 
3017       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3018       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3019                                    MachinePointerInfo(), false, false, 0);
3020       MemOps.push_back(Store);
3021       // Increment the address by eight for the next argument to store
3022       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3023                                          PtrVT);
3024       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3025     }
3026   }
3027 
3028   if (!MemOps.empty())
3029     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3030 
3031   return Chain;
3032 }
3033 
3034 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3035 // value to MVT::i64 and then truncate to the correct register size.
3036 SDValue
3037 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
3038                                      SelectionDAG &DAG, SDValue ArgVal,
3039                                      SDLoc dl) const {
3040   if (Flags.isSExt())
3041     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3042                          DAG.getValueType(ObjectVT));
3043   else if (Flags.isZExt())
3044     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3045                          DAG.getValueType(ObjectVT));
3046 
3047   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3048 }
3049 
3050 SDValue
3051 PPCTargetLowering::LowerFormalArguments_64SVR4(
3052                                       SDValue Chain,
3053                                       CallingConv::ID CallConv, bool isVarArg,
3054                                       const SmallVectorImpl<ISD::InputArg>
3055                                         &Ins,
3056                                       SDLoc dl, SelectionDAG &DAG,
3057                                       SmallVectorImpl<SDValue> &InVals) const {
3058   // TODO: add description of PPC stack frame format, or at least some docs.
3059   //
3060   bool isELFv2ABI = Subtarget.isELFv2ABI();
3061   bool isLittleEndian = Subtarget.isLittleEndian();
3062   MachineFunction &MF = DAG.getMachineFunction();
3063   MachineFrameInfo *MFI = MF.getFrameInfo();
3064   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3065 
3066   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3067          "fastcc not supported on varargs functions");
3068 
3069   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3070   // Potential tail calls could cause overwriting of argument stack slots.
3071   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3072                        (CallConv == CallingConv::Fast));
3073   unsigned PtrByteSize = 8;
3074   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3075 
3076   static const MCPhysReg GPR[] = {
3077     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3078     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3079   };
3080   static const MCPhysReg VR[] = {
3081     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3082     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3083   };
3084   static const MCPhysReg VSRH[] = {
3085     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3086     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3087   };
3088 
3089   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3090   const unsigned Num_FPR_Regs = 13;
3091   const unsigned Num_VR_Regs  = array_lengthof(VR);
3092   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3093 
3094   // Do a first pass over the arguments to determine whether the ABI
3095   // guarantees that our caller has allocated the parameter save area
3096   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3097   // in the ELFv2 ABI, it is true if this is a vararg function or if
3098   // any parameter is located in a stack slot.
3099 
3100   bool HasParameterArea = !isELFv2ABI || isVarArg;
3101   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3102   unsigned NumBytes = LinkageSize;
3103   unsigned AvailableFPRs = Num_FPR_Regs;
3104   unsigned AvailableVRs = Num_VR_Regs;
3105   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3106     if (Ins[i].Flags.isNest())
3107       continue;
3108 
3109     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3110                                PtrByteSize, LinkageSize, ParamAreaSize,
3111                                NumBytes, AvailableFPRs, AvailableVRs,
3112                                Subtarget.hasQPX()))
3113       HasParameterArea = true;
3114   }
3115 
3116   // Add DAG nodes to load the arguments or copy them out of registers.  On
3117   // entry to a function on PPC, the arguments start after the linkage area,
3118   // although the first ones are often in registers.
3119 
3120   unsigned ArgOffset = LinkageSize;
3121   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3122   unsigned &QFPR_idx = FPR_idx;
3123   SmallVector<SDValue, 8> MemOps;
3124   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3125   unsigned CurArgIdx = 0;
3126   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3127     SDValue ArgVal;
3128     bool needsLoad = false;
3129     EVT ObjectVT = Ins[ArgNo].VT;
3130     EVT OrigVT = Ins[ArgNo].ArgVT;
3131     unsigned ObjSize = ObjectVT.getStoreSize();
3132     unsigned ArgSize = ObjSize;
3133     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3134     if (Ins[ArgNo].isOrigArg()) {
3135       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3136       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3137     }
3138     // We re-align the argument offset for each argument, except when using the
3139     // fast calling convention, when we need to make sure we do that only when
3140     // we'll actually use a stack slot.
3141     unsigned CurArgOffset, Align;
3142     auto ComputeArgOffset = [&]() {
3143       /* Respect alignment of argument on the stack.  */
3144       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3145       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3146       CurArgOffset = ArgOffset;
3147     };
3148 
3149     if (CallConv != CallingConv::Fast) {
3150       ComputeArgOffset();
3151 
3152       /* Compute GPR index associated with argument offset.  */
3153       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3154       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3155     }
3156 
3157     // FIXME the codegen can be much improved in some cases.
3158     // We do not have to keep everything in memory.
3159     if (Flags.isByVal()) {
3160       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3161 
3162       if (CallConv == CallingConv::Fast)
3163         ComputeArgOffset();
3164 
3165       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3166       ObjSize = Flags.getByValSize();
3167       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3168       // Empty aggregate parameters do not take up registers.  Examples:
3169       //   struct { } a;
3170       //   union  { } b;
3171       //   int c[0];
3172       // etc.  However, we have to provide a place-holder in InVals, so
3173       // pretend we have an 8-byte item at the current address for that
3174       // purpose.
3175       if (!ObjSize) {
3176         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3177         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3178         InVals.push_back(FIN);
3179         continue;
3180       }
3181 
3182       // Create a stack object covering all stack doublewords occupied
3183       // by the argument.  If the argument is (fully or partially) on
3184       // the stack, or if the argument is fully in registers but the
3185       // caller has allocated the parameter save anyway, we can refer
3186       // directly to the caller's stack frame.  Otherwise, create a
3187       // local copy in our own frame.
3188       int FI;
3189       if (HasParameterArea ||
3190           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3191         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3192       else
3193         FI = MFI->CreateStackObject(ArgSize, Align, false);
3194       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3195 
3196       // Handle aggregates smaller than 8 bytes.
3197       if (ObjSize < PtrByteSize) {
3198         // The value of the object is its address, which differs from the
3199         // address of the enclosing doubleword on big-endian systems.
3200         SDValue Arg = FIN;
3201         if (!isLittleEndian) {
3202           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3203           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3204         }
3205         InVals.push_back(Arg);
3206 
3207         if (GPR_idx != Num_GPR_Regs) {
3208           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3209           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3210           SDValue Store;
3211 
3212           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3213             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3214                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3215             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3216                                       MachinePointerInfo(&*FuncArg), ObjType,
3217                                       false, false, 0);
3218           } else {
3219             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3220             // store the whole register as-is to the parameter save area
3221             // slot.
3222             Store =
3223                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3224                              MachinePointerInfo(&*FuncArg), false, false, 0);
3225           }
3226 
3227           MemOps.push_back(Store);
3228         }
3229         // Whether we copied from a register or not, advance the offset
3230         // into the parameter save area by a full doubleword.
3231         ArgOffset += PtrByteSize;
3232         continue;
3233       }
3234 
3235       // The value of the object is its address, which is the address of
3236       // its first stack doubleword.
3237       InVals.push_back(FIN);
3238 
3239       // Store whatever pieces of the object are in registers to memory.
3240       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3241         if (GPR_idx == Num_GPR_Regs)
3242           break;
3243 
3244         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3245         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3246         SDValue Addr = FIN;
3247         if (j) {
3248           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3249           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3250         }
3251         SDValue Store =
3252             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3253                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3254         MemOps.push_back(Store);
3255         ++GPR_idx;
3256       }
3257       ArgOffset += ArgSize;
3258       continue;
3259     }
3260 
3261     switch (ObjectVT.getSimpleVT().SimpleTy) {
3262     default: llvm_unreachable("Unhandled argument type!");
3263     case MVT::i1:
3264     case MVT::i32:
3265     case MVT::i64:
3266       if (Flags.isNest()) {
3267         // The 'nest' parameter, if any, is passed in R11.
3268         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3269         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3270 
3271         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3272           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3273 
3274         break;
3275       }
3276 
3277       // These can be scalar arguments or elements of an integer array type
3278       // passed directly.  Clang may use those instead of "byval" aggregate
3279       // types to avoid forcing arguments to memory unnecessarily.
3280       if (GPR_idx != Num_GPR_Regs) {
3281         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3282         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3283 
3284         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3285           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3286           // value to MVT::i64 and then truncate to the correct register size.
3287           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3288       } else {
3289         if (CallConv == CallingConv::Fast)
3290           ComputeArgOffset();
3291 
3292         needsLoad = true;
3293         ArgSize = PtrByteSize;
3294       }
3295       if (CallConv != CallingConv::Fast || needsLoad)
3296         ArgOffset += 8;
3297       break;
3298 
3299     case MVT::f32:
3300     case MVT::f64:
3301       // These can be scalar arguments or elements of a float array type
3302       // passed directly.  The latter are used to implement ELFv2 homogenous
3303       // float aggregates.
3304       if (FPR_idx != Num_FPR_Regs) {
3305         unsigned VReg;
3306 
3307         if (ObjectVT == MVT::f32)
3308           VReg = MF.addLiveIn(FPR[FPR_idx],
3309                               Subtarget.hasP8Vector()
3310                                   ? &PPC::VSSRCRegClass
3311                                   : &PPC::F4RCRegClass);
3312         else
3313           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3314                                                 ? &PPC::VSFRCRegClass
3315                                                 : &PPC::F8RCRegClass);
3316 
3317         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3318         ++FPR_idx;
3319       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3320         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3321         // once we support fp <-> gpr moves.
3322 
3323         // This can only ever happen in the presence of f32 array types,
3324         // since otherwise we never run out of FPRs before running out
3325         // of GPRs.
3326         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3327         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3328 
3329         if (ObjectVT == MVT::f32) {
3330           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3331             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3332                                  DAG.getConstant(32, dl, MVT::i32));
3333           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3334         }
3335 
3336         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3337       } else {
3338         if (CallConv == CallingConv::Fast)
3339           ComputeArgOffset();
3340 
3341         needsLoad = true;
3342       }
3343 
3344       // When passing an array of floats, the array occupies consecutive
3345       // space in the argument area; only round up to the next doubleword
3346       // at the end of the array.  Otherwise, each float takes 8 bytes.
3347       if (CallConv != CallingConv::Fast || needsLoad) {
3348         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3349         ArgOffset += ArgSize;
3350         if (Flags.isInConsecutiveRegsLast())
3351           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3352       }
3353       break;
3354     case MVT::v4f32:
3355     case MVT::v4i32:
3356     case MVT::v8i16:
3357     case MVT::v16i8:
3358     case MVT::v2f64:
3359     case MVT::v2i64:
3360     case MVT::v1i128:
3361       if (!Subtarget.hasQPX()) {
3362       // These can be scalar arguments or elements of a vector array type
3363       // passed directly.  The latter are used to implement ELFv2 homogenous
3364       // vector aggregates.
3365       if (VR_idx != Num_VR_Regs) {
3366         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3367                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3368                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3369         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3370         ++VR_idx;
3371       } else {
3372         if (CallConv == CallingConv::Fast)
3373           ComputeArgOffset();
3374 
3375         needsLoad = true;
3376       }
3377       if (CallConv != CallingConv::Fast || needsLoad)
3378         ArgOffset += 16;
3379       break;
3380       } // not QPX
3381 
3382       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3383              "Invalid QPX parameter type");
3384       /* fall through */
3385 
3386     case MVT::v4f64:
3387     case MVT::v4i1:
3388       // QPX vectors are treated like their scalar floating-point subregisters
3389       // (except that they're larger).
3390       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3391       if (QFPR_idx != Num_QFPR_Regs) {
3392         const TargetRegisterClass *RC;
3393         switch (ObjectVT.getSimpleVT().SimpleTy) {
3394         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3395         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3396         default:         RC = &PPC::QBRCRegClass; break;
3397         }
3398 
3399         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3400         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3401         ++QFPR_idx;
3402       } else {
3403         if (CallConv == CallingConv::Fast)
3404           ComputeArgOffset();
3405         needsLoad = true;
3406       }
3407       if (CallConv != CallingConv::Fast || needsLoad)
3408         ArgOffset += Sz;
3409       break;
3410     }
3411 
3412     // We need to load the argument to a virtual register if we determined
3413     // above that we ran out of physical registers of the appropriate type.
3414     if (needsLoad) {
3415       if (ObjSize < ArgSize && !isLittleEndian)
3416         CurArgOffset += ArgSize - ObjSize;
3417       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3418       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3419       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3420                            false, false, false, 0);
3421     }
3422 
3423     InVals.push_back(ArgVal);
3424   }
3425 
3426   // Area that is at least reserved in the caller of this function.
3427   unsigned MinReservedArea;
3428   if (HasParameterArea)
3429     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3430   else
3431     MinReservedArea = LinkageSize;
3432 
3433   // Set the size that is at least reserved in caller of this function.  Tail
3434   // call optimized functions' reserved stack space needs to be aligned so that
3435   // taking the difference between two stack areas will result in an aligned
3436   // stack.
3437   MinReservedArea =
3438       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3439   FuncInfo->setMinReservedArea(MinReservedArea);
3440 
3441   // If the function takes variable number of arguments, make a frame index for
3442   // the start of the first vararg value... for expansion of llvm.va_start.
3443   if (isVarArg) {
3444     int Depth = ArgOffset;
3445 
3446     FuncInfo->setVarArgsFrameIndex(
3447       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3448     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3449 
3450     // If this function is vararg, store any remaining integer argument regs
3451     // to their spots on the stack so that they may be loaded by deferencing the
3452     // result of va_next.
3453     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3454          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3455       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3456       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3457       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3458                                    MachinePointerInfo(), false, false, 0);
3459       MemOps.push_back(Store);
3460       // Increment the address by four for the next argument to store
3461       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3462       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3463     }
3464   }
3465 
3466   if (!MemOps.empty())
3467     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3468 
3469   return Chain;
3470 }
3471 
3472 SDValue
3473 PPCTargetLowering::LowerFormalArguments_Darwin(
3474                                       SDValue Chain,
3475                                       CallingConv::ID CallConv, bool isVarArg,
3476                                       const SmallVectorImpl<ISD::InputArg>
3477                                         &Ins,
3478                                       SDLoc dl, SelectionDAG &DAG,
3479                                       SmallVectorImpl<SDValue> &InVals) const {
3480   // TODO: add description of PPC stack frame format, or at least some docs.
3481   //
3482   MachineFunction &MF = DAG.getMachineFunction();
3483   MachineFrameInfo *MFI = MF.getFrameInfo();
3484   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3485 
3486   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3487   bool isPPC64 = PtrVT == MVT::i64;
3488   // Potential tail calls could cause overwriting of argument stack slots.
3489   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3490                        (CallConv == CallingConv::Fast));
3491   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3492   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3493   unsigned ArgOffset = LinkageSize;
3494   // Area that is at least reserved in caller of this function.
3495   unsigned MinReservedArea = ArgOffset;
3496 
3497   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3498     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3499     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3500   };
3501   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3502     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3503     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3504   };
3505   static const MCPhysReg VR[] = {
3506     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3507     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3508   };
3509 
3510   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3511   const unsigned Num_FPR_Regs = 13;
3512   const unsigned Num_VR_Regs  = array_lengthof( VR);
3513 
3514   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3515 
3516   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3517 
3518   // In 32-bit non-varargs functions, the stack space for vectors is after the
3519   // stack space for non-vectors.  We do not use this space unless we have
3520   // too many vectors to fit in registers, something that only occurs in
3521   // constructed examples:), but we have to walk the arglist to figure
3522   // that out...for the pathological case, compute VecArgOffset as the
3523   // start of the vector parameter area.  Computing VecArgOffset is the
3524   // entire point of the following loop.
3525   unsigned VecArgOffset = ArgOffset;
3526   if (!isVarArg && !isPPC64) {
3527     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3528          ++ArgNo) {
3529       EVT ObjectVT = Ins[ArgNo].VT;
3530       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3531 
3532       if (Flags.isByVal()) {
3533         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3534         unsigned ObjSize = Flags.getByValSize();
3535         unsigned ArgSize =
3536                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3537         VecArgOffset += ArgSize;
3538         continue;
3539       }
3540 
3541       switch(ObjectVT.getSimpleVT().SimpleTy) {
3542       default: llvm_unreachable("Unhandled argument type!");
3543       case MVT::i1:
3544       case MVT::i32:
3545       case MVT::f32:
3546         VecArgOffset += 4;
3547         break;
3548       case MVT::i64:  // PPC64
3549       case MVT::f64:
3550         // FIXME: We are guaranteed to be !isPPC64 at this point.
3551         // Does MVT::i64 apply?
3552         VecArgOffset += 8;
3553         break;
3554       case MVT::v4f32:
3555       case MVT::v4i32:
3556       case MVT::v8i16:
3557       case MVT::v16i8:
3558         // Nothing to do, we're only looking at Nonvector args here.
3559         break;
3560       }
3561     }
3562   }
3563   // We've found where the vector parameter area in memory is.  Skip the
3564   // first 12 parameters; these don't use that memory.
3565   VecArgOffset = ((VecArgOffset+15)/16)*16;
3566   VecArgOffset += 12*16;
3567 
3568   // Add DAG nodes to load the arguments or copy them out of registers.  On
3569   // entry to a function on PPC, the arguments start after the linkage area,
3570   // although the first ones are often in registers.
3571 
3572   SmallVector<SDValue, 8> MemOps;
3573   unsigned nAltivecParamsAtEnd = 0;
3574   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3575   unsigned CurArgIdx = 0;
3576   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3577     SDValue ArgVal;
3578     bool needsLoad = false;
3579     EVT ObjectVT = Ins[ArgNo].VT;
3580     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3581     unsigned ArgSize = ObjSize;
3582     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3583     if (Ins[ArgNo].isOrigArg()) {
3584       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3585       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3586     }
3587     unsigned CurArgOffset = ArgOffset;
3588 
3589     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3590     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3591         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3592       if (isVarArg || isPPC64) {
3593         MinReservedArea = ((MinReservedArea+15)/16)*16;
3594         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3595                                                   Flags,
3596                                                   PtrByteSize);
3597       } else  nAltivecParamsAtEnd++;
3598     } else
3599       // Calculate min reserved area.
3600       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3601                                                 Flags,
3602                                                 PtrByteSize);
3603 
3604     // FIXME the codegen can be much improved in some cases.
3605     // We do not have to keep everything in memory.
3606     if (Flags.isByVal()) {
3607       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3608 
3609       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3610       ObjSize = Flags.getByValSize();
3611       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3612       // Objects of size 1 and 2 are right justified, everything else is
3613       // left justified.  This means the memory address is adjusted forwards.
3614       if (ObjSize==1 || ObjSize==2) {
3615         CurArgOffset = CurArgOffset + (4 - ObjSize);
3616       }
3617       // The value of the object is its address.
3618       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3619       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3620       InVals.push_back(FIN);
3621       if (ObjSize==1 || ObjSize==2) {
3622         if (GPR_idx != Num_GPR_Regs) {
3623           unsigned VReg;
3624           if (isPPC64)
3625             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3626           else
3627             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3628           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3629           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3630           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3631                                             MachinePointerInfo(&*FuncArg),
3632                                             ObjType, false, false, 0);
3633           MemOps.push_back(Store);
3634           ++GPR_idx;
3635         }
3636 
3637         ArgOffset += PtrByteSize;
3638 
3639         continue;
3640       }
3641       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3642         // Store whatever pieces of the object are in registers
3643         // to memory.  ArgOffset will be the address of the beginning
3644         // of the object.
3645         if (GPR_idx != Num_GPR_Regs) {
3646           unsigned VReg;
3647           if (isPPC64)
3648             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3649           else
3650             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3651           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3652           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3653           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3654           SDValue Store =
3655               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3656                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3657           MemOps.push_back(Store);
3658           ++GPR_idx;
3659           ArgOffset += PtrByteSize;
3660         } else {
3661           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3662           break;
3663         }
3664       }
3665       continue;
3666     }
3667 
3668     switch (ObjectVT.getSimpleVT().SimpleTy) {
3669     default: llvm_unreachable("Unhandled argument type!");
3670     case MVT::i1:
3671     case MVT::i32:
3672       if (!isPPC64) {
3673         if (GPR_idx != Num_GPR_Regs) {
3674           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3675           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3676 
3677           if (ObjectVT == MVT::i1)
3678             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3679 
3680           ++GPR_idx;
3681         } else {
3682           needsLoad = true;
3683           ArgSize = PtrByteSize;
3684         }
3685         // All int arguments reserve stack space in the Darwin ABI.
3686         ArgOffset += PtrByteSize;
3687         break;
3688       }
3689       // FALLTHROUGH
3690     case MVT::i64:  // PPC64
3691       if (GPR_idx != Num_GPR_Regs) {
3692         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3693         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3694 
3695         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3696           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3697           // value to MVT::i64 and then truncate to the correct register size.
3698           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3699 
3700         ++GPR_idx;
3701       } else {
3702         needsLoad = true;
3703         ArgSize = PtrByteSize;
3704       }
3705       // All int arguments reserve stack space in the Darwin ABI.
3706       ArgOffset += 8;
3707       break;
3708 
3709     case MVT::f32:
3710     case MVT::f64:
3711       // Every 4 bytes of argument space consumes one of the GPRs available for
3712       // argument passing.
3713       if (GPR_idx != Num_GPR_Regs) {
3714         ++GPR_idx;
3715         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3716           ++GPR_idx;
3717       }
3718       if (FPR_idx != Num_FPR_Regs) {
3719         unsigned VReg;
3720 
3721         if (ObjectVT == MVT::f32)
3722           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3723         else
3724           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3725 
3726         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3727         ++FPR_idx;
3728       } else {
3729         needsLoad = true;
3730       }
3731 
3732       // All FP arguments reserve stack space in the Darwin ABI.
3733       ArgOffset += isPPC64 ? 8 : ObjSize;
3734       break;
3735     case MVT::v4f32:
3736     case MVT::v4i32:
3737     case MVT::v8i16:
3738     case MVT::v16i8:
3739       // Note that vector arguments in registers don't reserve stack space,
3740       // except in varargs functions.
3741       if (VR_idx != Num_VR_Regs) {
3742         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3743         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3744         if (isVarArg) {
3745           while ((ArgOffset % 16) != 0) {
3746             ArgOffset += PtrByteSize;
3747             if (GPR_idx != Num_GPR_Regs)
3748               GPR_idx++;
3749           }
3750           ArgOffset += 16;
3751           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3752         }
3753         ++VR_idx;
3754       } else {
3755         if (!isVarArg && !isPPC64) {
3756           // Vectors go after all the nonvectors.
3757           CurArgOffset = VecArgOffset;
3758           VecArgOffset += 16;
3759         } else {
3760           // Vectors are aligned.
3761           ArgOffset = ((ArgOffset+15)/16)*16;
3762           CurArgOffset = ArgOffset;
3763           ArgOffset += 16;
3764         }
3765         needsLoad = true;
3766       }
3767       break;
3768     }
3769 
3770     // We need to load the argument to a virtual register if we determined above
3771     // that we ran out of physical registers of the appropriate type.
3772     if (needsLoad) {
3773       int FI = MFI->CreateFixedObject(ObjSize,
3774                                       CurArgOffset + (ArgSize - ObjSize),
3775                                       isImmutable);
3776       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3777       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3778                            false, false, false, 0);
3779     }
3780 
3781     InVals.push_back(ArgVal);
3782   }
3783 
3784   // Allow for Altivec parameters at the end, if needed.
3785   if (nAltivecParamsAtEnd) {
3786     MinReservedArea = ((MinReservedArea+15)/16)*16;
3787     MinReservedArea += 16*nAltivecParamsAtEnd;
3788   }
3789 
3790   // Area that is at least reserved in the caller of this function.
3791   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3792 
3793   // Set the size that is at least reserved in caller of this function.  Tail
3794   // call optimized functions' reserved stack space needs to be aligned so that
3795   // taking the difference between two stack areas will result in an aligned
3796   // stack.
3797   MinReservedArea =
3798       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3799   FuncInfo->setMinReservedArea(MinReservedArea);
3800 
3801   // If the function takes variable number of arguments, make a frame index for
3802   // the start of the first vararg value... for expansion of llvm.va_start.
3803   if (isVarArg) {
3804     int Depth = ArgOffset;
3805 
3806     FuncInfo->setVarArgsFrameIndex(
3807       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3808                              Depth, true));
3809     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3810 
3811     // If this function is vararg, store any remaining integer argument regs
3812     // to their spots on the stack so that they may be loaded by deferencing the
3813     // result of va_next.
3814     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3815       unsigned VReg;
3816 
3817       if (isPPC64)
3818         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3819       else
3820         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3821 
3822       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3823       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3824                                    MachinePointerInfo(), false, false, 0);
3825       MemOps.push_back(Store);
3826       // Increment the address by four for the next argument to store
3827       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3828       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3829     }
3830   }
3831 
3832   if (!MemOps.empty())
3833     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3834 
3835   return Chain;
3836 }
3837 
3838 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3839 /// adjusted to accommodate the arguments for the tailcall.
3840 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3841                                    unsigned ParamSize) {
3842 
3843   if (!isTailCall) return 0;
3844 
3845   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3846   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3847   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3848   // Remember only if the new adjustement is bigger.
3849   if (SPDiff < FI->getTailCallSPDelta())
3850     FI->setTailCallSPDelta(SPDiff);
3851 
3852   return SPDiff;
3853 }
3854 
3855 static bool isFunctionGlobalAddress(SDValue Callee);
3856 
3857 static bool
3858 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
3859   // If !G, Callee can be an external symbol.
3860   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3861   if (!G) return false;
3862 
3863   const GlobalValue *GV = G->getGlobal();
3864 
3865   if (GV->isDeclaration()) return false;
3866 
3867   switch(GV->getLinkage()) {
3868   default: llvm_unreachable("unknow linkage type");
3869   case GlobalValue::AvailableExternallyLinkage:
3870   case GlobalValue::ExternalWeakLinkage:
3871     return false;
3872 
3873   // Callee with weak linkage is allowed if it has hidden or protected
3874   // visibility
3875   case GlobalValue::LinkOnceAnyLinkage:
3876   case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
3877   case GlobalValue::WeakAnyLinkage:
3878   case GlobalValue::WeakODRLinkage:     // e.g. c++ template instantiation
3879     if (GV->hasDefaultVisibility())
3880       return false;
3881 
3882   case GlobalValue::ExternalLinkage:
3883   case GlobalValue::InternalLinkage:
3884   case GlobalValue::PrivateLinkage:
3885     break;
3886   }
3887 
3888   // With '-fPIC', calling default visiblity function need insert 'nop' after
3889   // function call, no matter that function resides in same module or not, so
3890   // we treat it as in different module.
3891   if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
3892     return false;
3893 
3894   return true;
3895 }
3896 
3897 static bool
3898 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
3899                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
3900   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
3901 
3902   const unsigned PtrByteSize = 8;
3903   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3904 
3905   static const MCPhysReg GPR[] = {
3906     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3907     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3908   };
3909   static const MCPhysReg VR[] = {
3910     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3911     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3912   };
3913 
3914   const unsigned NumGPRs = array_lengthof(GPR);
3915   const unsigned NumFPRs = 13;
3916   const unsigned NumVRs = array_lengthof(VR);
3917   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
3918 
3919   unsigned NumBytes = LinkageSize;
3920   unsigned AvailableFPRs = NumFPRs;
3921   unsigned AvailableVRs = NumVRs;
3922 
3923   for (const ISD::OutputArg& Param : Outs) {
3924     if (Param.Flags.isNest()) continue;
3925 
3926     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
3927                                PtrByteSize, LinkageSize, ParamAreaSize,
3928                                NumBytes, AvailableFPRs, AvailableVRs,
3929                                Subtarget.hasQPX()))
3930       return true;
3931   }
3932   return false;
3933 }
3934 
3935 static bool
3936 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
3937   if (CS->arg_size() != CallerFn->getArgumentList().size())
3938     return false;
3939 
3940   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
3941   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
3942   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
3943 
3944   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
3945     const Value* CalleeArg = *CalleeArgIter;
3946     const Value* CallerArg = &(*CallerArgIter);
3947     if (CalleeArg == CallerArg)
3948       continue;
3949 
3950     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
3951     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
3952     //      }
3953     // 1st argument of callee is undef and has the same type as caller.
3954     if (CalleeArg->getType() == CallerArg->getType() &&
3955         isa<UndefValue>(CalleeArg))
3956       continue;
3957 
3958     return false;
3959   }
3960 
3961   return true;
3962 }
3963 
3964 bool
3965 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
3966                                     SDValue Callee,
3967                                     CallingConv::ID CalleeCC,
3968                                     ImmutableCallSite *CS,
3969                                     bool isVarArg,
3970                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3971                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3972                                     SelectionDAG& DAG) const {
3973   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
3974 
3975   if (DisableSCO && !TailCallOpt) return false;
3976 
3977   // Variadic argument functions are not supported.
3978   if (isVarArg) return false;
3979 
3980   MachineFunction &MF = DAG.getMachineFunction();
3981   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3982 
3983   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
3984   // the same calling convention
3985   if (CallerCC != CalleeCC) return false;
3986 
3987   // SCO support C calling convention
3988   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
3989     return false;
3990 
3991   // Functions containing by val parameters are not supported.
3992   if (std::any_of(Ins.begin(), Ins.end(),
3993                   [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
3994     return false;
3995 
3996   // No TCO/SCO on indirect call because Caller have to restore its TOC
3997   if (!isFunctionGlobalAddress(Callee) &&
3998       !isa<ExternalSymbolSDNode>(Callee))
3999     return false;
4000 
4001   // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
4002   // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
4003   // module.
4004   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4005   if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
4006     return false;
4007 
4008   // TCO allows altering callee ABI, so we don't have to check further.
4009   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4010     return true;
4011 
4012   if (DisableSCO) return false;
4013 
4014   // If callee use the same argument list that caller is using, then we can
4015   // apply SCO on this case. If it is not, then we need to check if callee needs
4016   // stack for passing arguments.
4017   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4018       needStackSlotPassParameters(Subtarget, Outs)) {
4019     return false;
4020   }
4021 
4022   return true;
4023 }
4024 
4025 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4026 /// for tail call optimization. Targets which want to do tail call
4027 /// optimization should implement this function.
4028 bool
4029 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4030                                                      CallingConv::ID CalleeCC,
4031                                                      bool isVarArg,
4032                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4033                                                      SelectionDAG& DAG) const {
4034   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4035     return false;
4036 
4037   // Variable argument functions are not supported.
4038   if (isVarArg)
4039     return false;
4040 
4041   MachineFunction &MF = DAG.getMachineFunction();
4042   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4043   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4044     // Functions containing by val parameters are not supported.
4045     for (unsigned i = 0; i != Ins.size(); i++) {
4046        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4047        if (Flags.isByVal()) return false;
4048     }
4049 
4050     // Non-PIC/GOT tail calls are supported.
4051     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4052       return true;
4053 
4054     // At the moment we can only do local tail calls (in same module, hidden
4055     // or protected) if we are generating PIC.
4056     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4057       return G->getGlobal()->hasHiddenVisibility()
4058           || G->getGlobal()->hasProtectedVisibility();
4059   }
4060 
4061   return false;
4062 }
4063 
4064 /// isCallCompatibleAddress - Return the immediate to use if the specified
4065 /// 32-bit value is representable in the immediate field of a BxA instruction.
4066 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4067   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4068   if (!C) return nullptr;
4069 
4070   int Addr = C->getZExtValue();
4071   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4072       SignExtend32<26>(Addr) != Addr)
4073     return nullptr;  // Top 6 bits have to be sext of immediate.
4074 
4075   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
4076                          DAG.getTargetLoweringInfo().getPointerTy(
4077                              DAG.getDataLayout())).getNode();
4078 }
4079 
4080 namespace {
4081 
4082 struct TailCallArgumentInfo {
4083   SDValue Arg;
4084   SDValue FrameIdxOp;
4085   int       FrameIdx;
4086 
4087   TailCallArgumentInfo() : FrameIdx(0) {}
4088 };
4089 }
4090 
4091 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4092 static void
4093 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
4094                                            SDValue Chain,
4095                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4096                    SmallVectorImpl<SDValue> &MemOpChains,
4097                    SDLoc dl) {
4098   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4099     SDValue Arg = TailCallArgs[i].Arg;
4100     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4101     int FI = TailCallArgs[i].FrameIdx;
4102     // Store relative to framepointer.
4103     MemOpChains.push_back(DAG.getStore(
4104         Chain, dl, Arg, FIN,
4105         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
4106         false, 0));
4107   }
4108 }
4109 
4110 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4111 /// the appropriate stack slot for the tail call optimized function call.
4112 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
4113                                                MachineFunction &MF,
4114                                                SDValue Chain,
4115                                                SDValue OldRetAddr,
4116                                                SDValue OldFP,
4117                                                int SPDiff,
4118                                                bool isPPC64,
4119                                                bool isDarwinABI,
4120                                                SDLoc dl) {
4121   if (SPDiff) {
4122     // Calculate the new stack slot for the return address.
4123     int SlotSize = isPPC64 ? 8 : 4;
4124     const PPCFrameLowering *FL =
4125         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
4126     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4127     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
4128                                                           NewRetAddrLoc, true);
4129     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4130     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4131     Chain = DAG.getStore(
4132         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4133         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
4134         false, false, 0);
4135 
4136     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4137     // slot as the FP is never overwritten.
4138     if (isDarwinABI) {
4139       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4140       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
4141                                                           true);
4142       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4143       Chain = DAG.getStore(
4144           Chain, dl, OldFP, NewFramePtrIdx,
4145           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
4146           false, false, 0);
4147     }
4148   }
4149   return Chain;
4150 }
4151 
4152 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4153 /// the position of the argument.
4154 static void
4155 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4156                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4157                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4158   int Offset = ArgOffset + SPDiff;
4159   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
4160   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
4161   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4162   SDValue FIN = DAG.getFrameIndex(FI, VT);
4163   TailCallArgumentInfo Info;
4164   Info.Arg = Arg;
4165   Info.FrameIdxOp = FIN;
4166   Info.FrameIdx = FI;
4167   TailCallArguments.push_back(Info);
4168 }
4169 
4170 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4171 /// stack slot. Returns the chain as result and the loaded frame pointers in
4172 /// LROpOut/FPOpout. Used when tail calling.
4173 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
4174                                                         int SPDiff,
4175                                                         SDValue Chain,
4176                                                         SDValue &LROpOut,
4177                                                         SDValue &FPOpOut,
4178                                                         bool isDarwinABI,
4179                                                         SDLoc dl) const {
4180   if (SPDiff) {
4181     // Load the LR and FP stack slot for later adjusting.
4182     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4183     LROpOut = getReturnAddrFrameIndex(DAG);
4184     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4185                           false, false, false, 0);
4186     Chain = SDValue(LROpOut.getNode(), 1);
4187 
4188     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4189     // slot as the FP is never overwritten.
4190     if (isDarwinABI) {
4191       FPOpOut = getFramePointerFrameIndex(DAG);
4192       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4193                             false, false, false, 0);
4194       Chain = SDValue(FPOpOut.getNode(), 1);
4195     }
4196   }
4197   return Chain;
4198 }
4199 
4200 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4201 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4202 /// specified by the specific parameter attribute. The copy will be passed as
4203 /// a byval function parameter.
4204 /// Sometimes what we are copying is the end of a larger object, the part that
4205 /// does not fit in registers.
4206 static SDValue
4207 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
4208                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
4209                           SDLoc dl) {
4210   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4211   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4212                        false, false, false, MachinePointerInfo(),
4213                        MachinePointerInfo());
4214 }
4215 
4216 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4217 /// tail calls.
4218 static void
4219 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
4220                  SDValue Arg, SDValue PtrOff, int SPDiff,
4221                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
4222                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4223                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
4224                  SDLoc dl) {
4225   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4226   if (!isTailCall) {
4227     if (isVector) {
4228       SDValue StackPtr;
4229       if (isPPC64)
4230         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4231       else
4232         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4233       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4234                            DAG.getConstant(ArgOffset, dl, PtrVT));
4235     }
4236     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4237                                        MachinePointerInfo(), false, false, 0));
4238   // Calculate and remember argument location.
4239   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4240                                   TailCallArguments);
4241 }
4242 
4243 static
4244 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4245                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4246                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
4247                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4248   MachineFunction &MF = DAG.getMachineFunction();
4249 
4250   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4251   // might overwrite each other in case of tail call optimization.
4252   SmallVector<SDValue, 8> MemOpChains2;
4253   // Do not flag preceding copytoreg stuff together with the following stuff.
4254   InFlag = SDValue();
4255   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4256                                     MemOpChains2, dl);
4257   if (!MemOpChains2.empty())
4258     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4259 
4260   // Store the return address to the appropriate stack slot.
4261   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4262                                         isPPC64, isDarwinABI, dl);
4263 
4264   // Emit callseq_end just before tailcall node.
4265   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4266                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4267   InFlag = Chain.getValue(1);
4268 }
4269 
4270 // Is this global address that of a function that can be called by name? (as
4271 // opposed to something that must hold a descriptor for an indirect call).
4272 static bool isFunctionGlobalAddress(SDValue Callee) {
4273   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4274     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4275         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4276       return false;
4277 
4278     return G->getGlobal()->getValueType()->isFunctionTy();
4279   }
4280 
4281   return false;
4282 }
4283 
4284 static
4285 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
4286                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
4287                      bool isTailCall, bool IsPatchPoint, bool hasNest,
4288                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
4289                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4290                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4291 
4292   bool isPPC64 = Subtarget.isPPC64();
4293   bool isSVR4ABI = Subtarget.isSVR4ABI();
4294   bool isELFv2ABI = Subtarget.isELFv2ABI();
4295 
4296   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4297   NodeTys.push_back(MVT::Other);   // Returns a chain
4298   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4299 
4300   unsigned CallOpc = PPCISD::CALL;
4301 
4302   bool needIndirectCall = true;
4303   if (!isSVR4ABI || !isPPC64)
4304     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4305       // If this is an absolute destination address, use the munged value.
4306       Callee = SDValue(Dest, 0);
4307       needIndirectCall = false;
4308     }
4309 
4310   if (isFunctionGlobalAddress(Callee)) {
4311     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4312     // A call to a TLS address is actually an indirect call to a
4313     // thread-specific pointer.
4314     unsigned OpFlags = 0;
4315     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4316          (Subtarget.getTargetTriple().isMacOSX() &&
4317           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
4318          !G->getGlobal()->isStrongDefinitionForLinker()) ||
4319         (Subtarget.isTargetELF() && !isPPC64 &&
4320          !G->getGlobal()->hasLocalLinkage() &&
4321          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4322       // PC-relative references to external symbols should go through $stub,
4323       // unless we're building with the leopard linker or later, which
4324       // automatically synthesizes these stubs.
4325       OpFlags = PPCII::MO_PLT_OR_STUB;
4326     }
4327 
4328     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4329     // every direct call is) turn it into a TargetGlobalAddress /
4330     // TargetExternalSymbol node so that legalize doesn't hack it.
4331     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4332                                         Callee.getValueType(), 0, OpFlags);
4333     needIndirectCall = false;
4334   }
4335 
4336   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4337     unsigned char OpFlags = 0;
4338 
4339     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4340          (Subtarget.getTargetTriple().isMacOSX() &&
4341           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
4342         (Subtarget.isTargetELF() && !isPPC64 &&
4343          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4344       // PC-relative references to external symbols should go through $stub,
4345       // unless we're building with the leopard linker or later, which
4346       // automatically synthesizes these stubs.
4347       OpFlags = PPCII::MO_PLT_OR_STUB;
4348     }
4349 
4350     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4351                                          OpFlags);
4352     needIndirectCall = false;
4353   }
4354 
4355   if (IsPatchPoint) {
4356     // We'll form an invalid direct call when lowering a patchpoint; the full
4357     // sequence for an indirect call is complicated, and many of the
4358     // instructions introduced might have side effects (and, thus, can't be
4359     // removed later). The call itself will be removed as soon as the
4360     // argument/return lowering is complete, so the fact that it has the wrong
4361     // kind of operands should not really matter.
4362     needIndirectCall = false;
4363   }
4364 
4365   if (needIndirectCall) {
4366     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4367     // to do the call, we can't use PPCISD::CALL.
4368     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4369 
4370     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4371       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4372       // entry point, but to the function descriptor (the function entry point
4373       // address is part of the function descriptor though).
4374       // The function descriptor is a three doubleword structure with the
4375       // following fields: function entry point, TOC base address and
4376       // environment pointer.
4377       // Thus for a call through a function pointer, the following actions need
4378       // to be performed:
4379       //   1. Save the TOC of the caller in the TOC save area of its stack
4380       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4381       //   2. Load the address of the function entry point from the function
4382       //      descriptor.
4383       //   3. Load the TOC of the callee from the function descriptor into r2.
4384       //   4. Load the environment pointer from the function descriptor into
4385       //      r11.
4386       //   5. Branch to the function entry point address.
4387       //   6. On return of the callee, the TOC of the caller needs to be
4388       //      restored (this is done in FinishCall()).
4389       //
4390       // The loads are scheduled at the beginning of the call sequence, and the
4391       // register copies are flagged together to ensure that no other
4392       // operations can be scheduled in between. E.g. without flagging the
4393       // copies together, a TOC access in the caller could be scheduled between
4394       // the assignment of the callee TOC and the branch to the callee, which
4395       // results in the TOC access going through the TOC of the callee instead
4396       // of going through the TOC of the caller, which leads to incorrect code.
4397 
4398       // Load the address of the function entry point from the function
4399       // descriptor.
4400       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4401       if (LDChain.getValueType() == MVT::Glue)
4402         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4403 
4404       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4405 
4406       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4407       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4408                                         false, false, LoadsInv, 8);
4409 
4410       // Load environment pointer into r11.
4411       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4412       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4413       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4414                                        MPI.getWithOffset(16), false, false,
4415                                        LoadsInv, 8);
4416 
4417       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4418       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4419       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4420                                    MPI.getWithOffset(8), false, false,
4421                                    LoadsInv, 8);
4422 
4423       setUsesTOCBasePtr(DAG);
4424       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4425                                         InFlag);
4426       Chain = TOCVal.getValue(0);
4427       InFlag = TOCVal.getValue(1);
4428 
4429       // If the function call has an explicit 'nest' parameter, it takes the
4430       // place of the environment pointer.
4431       if (!hasNest) {
4432         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4433                                           InFlag);
4434 
4435         Chain = EnvVal.getValue(0);
4436         InFlag = EnvVal.getValue(1);
4437       }
4438 
4439       MTCTROps[0] = Chain;
4440       MTCTROps[1] = LoadFuncPtr;
4441       MTCTROps[2] = InFlag;
4442     }
4443 
4444     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4445                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4446     InFlag = Chain.getValue(1);
4447 
4448     NodeTys.clear();
4449     NodeTys.push_back(MVT::Other);
4450     NodeTys.push_back(MVT::Glue);
4451     Ops.push_back(Chain);
4452     CallOpc = PPCISD::BCTRL;
4453     Callee.setNode(nullptr);
4454     // Add use of X11 (holding environment pointer)
4455     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4456       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4457     // Add CTR register as callee so a bctr can be emitted later.
4458     if (isTailCall)
4459       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4460   }
4461 
4462   // If this is a direct call, pass the chain and the callee.
4463   if (Callee.getNode()) {
4464     Ops.push_back(Chain);
4465     Ops.push_back(Callee);
4466   }
4467   // If this is a tail call add stack pointer delta.
4468   if (isTailCall)
4469     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4470 
4471   // Add argument registers to the end of the list so that they are known live
4472   // into the call.
4473   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4474     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4475                                   RegsToPass[i].second.getValueType()));
4476 
4477   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4478   // into the call.
4479   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4480     setUsesTOCBasePtr(DAG);
4481     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4482   }
4483 
4484   return CallOpc;
4485 }
4486 
4487 static
4488 bool isLocalCall(const SDValue &Callee)
4489 {
4490   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4491     return G->getGlobal()->isStrongDefinitionForLinker();
4492   return false;
4493 }
4494 
4495 SDValue
4496 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4497                                    CallingConv::ID CallConv, bool isVarArg,
4498                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4499                                    SDLoc dl, SelectionDAG &DAG,
4500                                    SmallVectorImpl<SDValue> &InVals) const {
4501 
4502   SmallVector<CCValAssign, 16> RVLocs;
4503   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4504                     *DAG.getContext());
4505   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4506 
4507   // Copy all of the result registers out of their specified physreg.
4508   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4509     CCValAssign &VA = RVLocs[i];
4510     assert(VA.isRegLoc() && "Can only return in registers!");
4511 
4512     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4513                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4514     Chain = Val.getValue(1);
4515     InFlag = Val.getValue(2);
4516 
4517     switch (VA.getLocInfo()) {
4518     default: llvm_unreachable("Unknown loc info!");
4519     case CCValAssign::Full: break;
4520     case CCValAssign::AExt:
4521       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4522       break;
4523     case CCValAssign::ZExt:
4524       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4525                         DAG.getValueType(VA.getValVT()));
4526       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4527       break;
4528     case CCValAssign::SExt:
4529       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4530                         DAG.getValueType(VA.getValVT()));
4531       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4532       break;
4533     }
4534 
4535     InVals.push_back(Val);
4536   }
4537 
4538   return Chain;
4539 }
4540 
4541 SDValue
4542 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4543                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
4544                               bool hasNest, SelectionDAG &DAG,
4545                               SmallVector<std::pair<unsigned, SDValue>, 8>
4546                                 &RegsToPass,
4547                               SDValue InFlag, SDValue Chain,
4548                               SDValue CallSeqStart, SDValue &Callee,
4549                               int SPDiff, unsigned NumBytes,
4550                               const SmallVectorImpl<ISD::InputArg> &Ins,
4551                               SmallVectorImpl<SDValue> &InVals,
4552                               ImmutableCallSite *CS) const {
4553 
4554   std::vector<EVT> NodeTys;
4555   SmallVector<SDValue, 8> Ops;
4556   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4557                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4558                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4559 
4560   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4561   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4562     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4563 
4564   // When performing tail call optimization the callee pops its arguments off
4565   // the stack. Account for this here so these bytes can be pushed back on in
4566   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4567   int BytesCalleePops =
4568     (CallConv == CallingConv::Fast &&
4569      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4570 
4571   // Add a register mask operand representing the call-preserved registers.
4572   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4573   const uint32_t *Mask =
4574       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4575   assert(Mask && "Missing call preserved mask for calling convention");
4576   Ops.push_back(DAG.getRegisterMask(Mask));
4577 
4578   if (InFlag.getNode())
4579     Ops.push_back(InFlag);
4580 
4581   // Emit tail call.
4582   if (isTailCall) {
4583     assert(((Callee.getOpcode() == ISD::Register &&
4584              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4585             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4586             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4587             isa<ConstantSDNode>(Callee)) &&
4588     "Expecting an global address, external symbol, absolute value or register");
4589 
4590     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4591     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4592   }
4593 
4594   // Add a NOP immediately after the branch instruction when using the 64-bit
4595   // SVR4 ABI. At link time, if caller and callee are in a different module and
4596   // thus have a different TOC, the call will be replaced with a call to a stub
4597   // function which saves the current TOC, loads the TOC of the callee and
4598   // branches to the callee. The NOP will be replaced with a load instruction
4599   // which restores the TOC of the caller from the TOC save slot of the current
4600   // stack frame. If caller and callee belong to the same module (and have the
4601   // same TOC), the NOP will remain unchanged.
4602 
4603   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4604       !IsPatchPoint) {
4605     if (CallOpc == PPCISD::BCTRL) {
4606       // This is a call through a function pointer.
4607       // Restore the caller TOC from the save area into R2.
4608       // See PrepareCall() for more information about calls through function
4609       // pointers in the 64-bit SVR4 ABI.
4610       // We are using a target-specific load with r2 hard coded, because the
4611       // result of a target-independent load would never go directly into r2,
4612       // since r2 is a reserved register (which prevents the register allocator
4613       // from allocating it), resulting in an additional register being
4614       // allocated and an unnecessary move instruction being generated.
4615       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4616 
4617       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4618       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4619       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4620       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4621       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4622 
4623       // The address needs to go after the chain input but before the flag (or
4624       // any other variadic arguments).
4625       Ops.insert(std::next(Ops.begin()), AddTOC);
4626     } else if ((CallOpc == PPCISD::CALL) &&
4627                (!isLocalCall(Callee) ||
4628                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4629       // Otherwise insert NOP for non-local calls.
4630       CallOpc = PPCISD::CALL_NOP;
4631   }
4632 
4633   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4634   InFlag = Chain.getValue(1);
4635 
4636   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4637                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4638                              InFlag, dl);
4639   if (!Ins.empty())
4640     InFlag = Chain.getValue(1);
4641 
4642   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4643                          Ins, dl, DAG, InVals);
4644 }
4645 
4646 SDValue
4647 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4648                              SmallVectorImpl<SDValue> &InVals) const {
4649   SelectionDAG &DAG                     = CLI.DAG;
4650   SDLoc &dl                             = CLI.DL;
4651   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4652   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4653   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4654   SDValue Chain                         = CLI.Chain;
4655   SDValue Callee                        = CLI.Callee;
4656   bool &isTailCall                      = CLI.IsTailCall;
4657   CallingConv::ID CallConv              = CLI.CallConv;
4658   bool isVarArg                         = CLI.IsVarArg;
4659   bool IsPatchPoint                     = CLI.IsPatchPoint;
4660   ImmutableCallSite *CS                 = CLI.CS;
4661 
4662   if (isTailCall) {
4663     if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4664       isTailCall =
4665         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4666                                                  isVarArg, Outs, Ins, DAG);
4667     else
4668       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4669                                                      Ins, DAG);
4670     if (isTailCall) {
4671       ++NumTailCalls;
4672       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4673         ++NumSiblingCalls;
4674 
4675       assert(isa<GlobalAddressSDNode>(Callee) &&
4676              "Callee should be an llvm::Function object.");
4677       DEBUG(
4678         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4679         const unsigned Width = 80 - strlen("TCO caller: ")
4680                                   - strlen(", callee linkage: 0, 0");
4681         dbgs() << "TCO caller: "
4682                << left_justify(DAG.getMachineFunction().getName(), Width)
4683                << ", callee linkage: "
4684                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4685       );
4686     }
4687   }
4688 
4689   if (!isTailCall && CS && CS->isMustTailCall())
4690     report_fatal_error("failed to perform tail call elimination on a call "
4691                        "site marked musttail");
4692 
4693   if (Subtarget.isSVR4ABI()) {
4694     if (Subtarget.isPPC64())
4695       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4696                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4697                               dl, DAG, InVals, CS);
4698     else
4699       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4700                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4701                               dl, DAG, InVals, CS);
4702   }
4703 
4704   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4705                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4706                           dl, DAG, InVals, CS);
4707 }
4708 
4709 SDValue
4710 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4711                                     CallingConv::ID CallConv, bool isVarArg,
4712                                     bool isTailCall, bool IsPatchPoint,
4713                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4714                                     const SmallVectorImpl<SDValue> &OutVals,
4715                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4716                                     SDLoc dl, SelectionDAG &DAG,
4717                                     SmallVectorImpl<SDValue> &InVals,
4718                                     ImmutableCallSite *CS) const {
4719   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4720   // of the 32-bit SVR4 ABI stack frame layout.
4721 
4722   assert((CallConv == CallingConv::C ||
4723           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4724 
4725   unsigned PtrByteSize = 4;
4726 
4727   MachineFunction &MF = DAG.getMachineFunction();
4728 
4729   // Mark this function as potentially containing a function that contains a
4730   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4731   // and restoring the callers stack pointer in this functions epilog. This is
4732   // done because by tail calling the called function might overwrite the value
4733   // in this function's (MF) stack pointer stack slot 0(SP).
4734   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4735       CallConv == CallingConv::Fast)
4736     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4737 
4738   // Count how many bytes are to be pushed on the stack, including the linkage
4739   // area, parameter list area and the part of the local variable space which
4740   // contains copies of aggregates which are passed by value.
4741 
4742   // Assign locations to all of the outgoing arguments.
4743   SmallVector<CCValAssign, 16> ArgLocs;
4744   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4745                  *DAG.getContext());
4746 
4747   // Reserve space for the linkage area on the stack.
4748   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4749                        PtrByteSize);
4750 
4751   if (isVarArg) {
4752     // Handle fixed and variable vector arguments differently.
4753     // Fixed vector arguments go into registers as long as registers are
4754     // available. Variable vector arguments always go into memory.
4755     unsigned NumArgs = Outs.size();
4756 
4757     for (unsigned i = 0; i != NumArgs; ++i) {
4758       MVT ArgVT = Outs[i].VT;
4759       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4760       bool Result;
4761 
4762       if (Outs[i].IsFixed) {
4763         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4764                                CCInfo);
4765       } else {
4766         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4767                                       ArgFlags, CCInfo);
4768       }
4769 
4770       if (Result) {
4771 #ifndef NDEBUG
4772         errs() << "Call operand #" << i << " has unhandled type "
4773              << EVT(ArgVT).getEVTString() << "\n";
4774 #endif
4775         llvm_unreachable(nullptr);
4776       }
4777     }
4778   } else {
4779     // All arguments are treated the same.
4780     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4781   }
4782 
4783   // Assign locations to all of the outgoing aggregate by value arguments.
4784   SmallVector<CCValAssign, 16> ByValArgLocs;
4785   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4786                       ByValArgLocs, *DAG.getContext());
4787 
4788   // Reserve stack space for the allocations in CCInfo.
4789   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4790 
4791   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4792 
4793   // Size of the linkage area, parameter list area and the part of the local
4794   // space variable where copies of aggregates which are passed by value are
4795   // stored.
4796   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4797 
4798   // Calculate by how many bytes the stack has to be adjusted in case of tail
4799   // call optimization.
4800   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4801 
4802   // Adjust the stack pointer for the new arguments...
4803   // These operations are automatically eliminated by the prolog/epilog pass
4804   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4805                                dl);
4806   SDValue CallSeqStart = Chain;
4807 
4808   // Load the return address and frame pointer so it can be moved somewhere else
4809   // later.
4810   SDValue LROp, FPOp;
4811   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4812                                        dl);
4813 
4814   // Set up a copy of the stack pointer for use loading and storing any
4815   // arguments that may not fit in the registers available for argument
4816   // passing.
4817   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4818 
4819   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4820   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4821   SmallVector<SDValue, 8> MemOpChains;
4822 
4823   bool seenFloatArg = false;
4824   // Walk the register/memloc assignments, inserting copies/loads.
4825   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4826        i != e;
4827        ++i) {
4828     CCValAssign &VA = ArgLocs[i];
4829     SDValue Arg = OutVals[i];
4830     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4831 
4832     if (Flags.isByVal()) {
4833       // Argument is an aggregate which is passed by value, thus we need to
4834       // create a copy of it in the local variable space of the current stack
4835       // frame (which is the stack frame of the caller) and pass the address of
4836       // this copy to the callee.
4837       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4838       CCValAssign &ByValVA = ByValArgLocs[j++];
4839       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4840 
4841       // Memory reserved in the local variable space of the callers stack frame.
4842       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4843 
4844       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4845       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4846                            StackPtr, PtrOff);
4847 
4848       // Create a copy of the argument in the local area of the current
4849       // stack frame.
4850       SDValue MemcpyCall =
4851         CreateCopyOfByValArgument(Arg, PtrOff,
4852                                   CallSeqStart.getNode()->getOperand(0),
4853                                   Flags, DAG, dl);
4854 
4855       // This must go outside the CALLSEQ_START..END.
4856       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4857                            CallSeqStart.getNode()->getOperand(1),
4858                            SDLoc(MemcpyCall));
4859       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4860                              NewCallSeqStart.getNode());
4861       Chain = CallSeqStart = NewCallSeqStart;
4862 
4863       // Pass the address of the aggregate copy on the stack either in a
4864       // physical register or in the parameter list area of the current stack
4865       // frame to the callee.
4866       Arg = PtrOff;
4867     }
4868 
4869     if (VA.isRegLoc()) {
4870       if (Arg.getValueType() == MVT::i1)
4871         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4872 
4873       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4874       // Put argument in a physical register.
4875       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4876     } else {
4877       // Put argument in the parameter list area of the current stack frame.
4878       assert(VA.isMemLoc());
4879       unsigned LocMemOffset = VA.getLocMemOffset();
4880 
4881       if (!isTailCall) {
4882         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4883         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4884                              StackPtr, PtrOff);
4885 
4886         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4887                                            MachinePointerInfo(),
4888                                            false, false, 0));
4889       } else {
4890         // Calculate and remember argument location.
4891         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4892                                  TailCallArguments);
4893       }
4894     }
4895   }
4896 
4897   if (!MemOpChains.empty())
4898     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4899 
4900   // Build a sequence of copy-to-reg nodes chained together with token chain
4901   // and flag operands which copy the outgoing args into the appropriate regs.
4902   SDValue InFlag;
4903   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4904     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4905                              RegsToPass[i].second, InFlag);
4906     InFlag = Chain.getValue(1);
4907   }
4908 
4909   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4910   // registers.
4911   if (isVarArg) {
4912     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4913     SDValue Ops[] = { Chain, InFlag };
4914 
4915     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4916                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4917 
4918     InFlag = Chain.getValue(1);
4919   }
4920 
4921   if (isTailCall)
4922     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4923                     false, TailCallArguments);
4924 
4925   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4926                     /* unused except on PPC64 ELFv1 */ false, DAG,
4927                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4928                     NumBytes, Ins, InVals, CS);
4929 }
4930 
4931 // Copy an argument into memory, being careful to do this outside the
4932 // call sequence for the call to which the argument belongs.
4933 SDValue
4934 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4935                                               SDValue CallSeqStart,
4936                                               ISD::ArgFlagsTy Flags,
4937                                               SelectionDAG &DAG,
4938                                               SDLoc dl) const {
4939   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4940                         CallSeqStart.getNode()->getOperand(0),
4941                         Flags, DAG, dl);
4942   // The MEMCPY must go outside the CALLSEQ_START..END.
4943   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4944                              CallSeqStart.getNode()->getOperand(1),
4945                              SDLoc(MemcpyCall));
4946   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4947                          NewCallSeqStart.getNode());
4948   return NewCallSeqStart;
4949 }
4950 
4951 SDValue
4952 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4953                                     CallingConv::ID CallConv, bool isVarArg,
4954                                     bool isTailCall, bool IsPatchPoint,
4955                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4956                                     const SmallVectorImpl<SDValue> &OutVals,
4957                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4958                                     SDLoc dl, SelectionDAG &DAG,
4959                                     SmallVectorImpl<SDValue> &InVals,
4960                                     ImmutableCallSite *CS) const {
4961 
4962   bool isELFv2ABI = Subtarget.isELFv2ABI();
4963   bool isLittleEndian = Subtarget.isLittleEndian();
4964   unsigned NumOps = Outs.size();
4965   bool hasNest = false;
4966   bool IsSibCall = false;
4967 
4968   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4969   unsigned PtrByteSize = 8;
4970 
4971   MachineFunction &MF = DAG.getMachineFunction();
4972 
4973   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
4974     IsSibCall = true;
4975 
4976   // Mark this function as potentially containing a function that contains a
4977   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4978   // and restoring the callers stack pointer in this functions epilog. This is
4979   // done because by tail calling the called function might overwrite the value
4980   // in this function's (MF) stack pointer stack slot 0(SP).
4981   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4982       CallConv == CallingConv::Fast)
4983     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4984 
4985   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4986          "fastcc not supported on varargs functions");
4987 
4988   // Count how many bytes are to be pushed on the stack, including the linkage
4989   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4990   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4991   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4992   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4993   unsigned NumBytes = LinkageSize;
4994   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4995   unsigned &QFPR_idx = FPR_idx;
4996 
4997   static const MCPhysReg GPR[] = {
4998     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4999     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5000   };
5001   static const MCPhysReg VR[] = {
5002     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5003     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5004   };
5005   static const MCPhysReg VSRH[] = {
5006     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
5007     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
5008   };
5009 
5010   const unsigned NumGPRs = array_lengthof(GPR);
5011   const unsigned NumFPRs = 13;
5012   const unsigned NumVRs  = array_lengthof(VR);
5013   const unsigned NumQFPRs = NumFPRs;
5014 
5015   // When using the fast calling convention, we don't provide backing for
5016   // arguments that will be in registers.
5017   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5018 
5019   // Add up all the space actually used.
5020   for (unsigned i = 0; i != NumOps; ++i) {
5021     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5022     EVT ArgVT = Outs[i].VT;
5023     EVT OrigVT = Outs[i].ArgVT;
5024 
5025     if (Flags.isNest())
5026       continue;
5027 
5028     if (CallConv == CallingConv::Fast) {
5029       if (Flags.isByVal())
5030         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5031       else
5032         switch (ArgVT.getSimpleVT().SimpleTy) {
5033         default: llvm_unreachable("Unexpected ValueType for argument!");
5034         case MVT::i1:
5035         case MVT::i32:
5036         case MVT::i64:
5037           if (++NumGPRsUsed <= NumGPRs)
5038             continue;
5039           break;
5040         case MVT::v4i32:
5041         case MVT::v8i16:
5042         case MVT::v16i8:
5043         case MVT::v2f64:
5044         case MVT::v2i64:
5045         case MVT::v1i128:
5046           if (++NumVRsUsed <= NumVRs)
5047             continue;
5048           break;
5049         case MVT::v4f32:
5050           // When using QPX, this is handled like a FP register, otherwise, it
5051           // is an Altivec register.
5052           if (Subtarget.hasQPX()) {
5053             if (++NumFPRsUsed <= NumFPRs)
5054               continue;
5055           } else {
5056             if (++NumVRsUsed <= NumVRs)
5057               continue;
5058           }
5059           break;
5060         case MVT::f32:
5061         case MVT::f64:
5062         case MVT::v4f64: // QPX
5063         case MVT::v4i1:  // QPX
5064           if (++NumFPRsUsed <= NumFPRs)
5065             continue;
5066           break;
5067         }
5068     }
5069 
5070     /* Respect alignment of argument on the stack.  */
5071     unsigned Align =
5072       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5073     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5074 
5075     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5076     if (Flags.isInConsecutiveRegsLast())
5077       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5078   }
5079 
5080   unsigned NumBytesActuallyUsed = NumBytes;
5081 
5082   // The prolog code of the callee may store up to 8 GPR argument registers to
5083   // the stack, allowing va_start to index over them in memory if its varargs.
5084   // Because we cannot tell if this is needed on the caller side, we have to
5085   // conservatively assume that it is needed.  As such, make sure we have at
5086   // least enough stack space for the caller to store the 8 GPRs.
5087   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5088   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5089 
5090   // Tail call needs the stack to be aligned.
5091   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5092       CallConv == CallingConv::Fast)
5093     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5094 
5095   int SPDiff = 0;
5096 
5097   // Calculate by how many bytes the stack has to be adjusted in case of tail
5098   // call optimization.
5099   if (!IsSibCall)
5100     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5101 
5102   // To protect arguments on the stack from being clobbered in a tail call,
5103   // force all the loads to happen before doing any other lowering.
5104   if (isTailCall)
5105     Chain = DAG.getStackArgumentTokenFactor(Chain);
5106 
5107   // Adjust the stack pointer for the new arguments...
5108   // These operations are automatically eliminated by the prolog/epilog pass
5109   if (!IsSibCall)
5110     Chain = DAG.getCALLSEQ_START(Chain,
5111                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5112   SDValue CallSeqStart = Chain;
5113 
5114   // Load the return address and frame pointer so it can be move somewhere else
5115   // later.
5116   SDValue LROp, FPOp;
5117   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5118                                        dl);
5119 
5120   // Set up a copy of the stack pointer for use loading and storing any
5121   // arguments that may not fit in the registers available for argument
5122   // passing.
5123   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5124 
5125   // Figure out which arguments are going to go in registers, and which in
5126   // memory.  Also, if this is a vararg function, floating point operations
5127   // must be stored to our stack, and loaded into integer regs as well, if
5128   // any integer regs are available for argument passing.
5129   unsigned ArgOffset = LinkageSize;
5130 
5131   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5132   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5133 
5134   SmallVector<SDValue, 8> MemOpChains;
5135   for (unsigned i = 0; i != NumOps; ++i) {
5136     SDValue Arg = OutVals[i];
5137     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5138     EVT ArgVT = Outs[i].VT;
5139     EVT OrigVT = Outs[i].ArgVT;
5140 
5141     // PtrOff will be used to store the current argument to the stack if a
5142     // register cannot be found for it.
5143     SDValue PtrOff;
5144 
5145     // We re-align the argument offset for each argument, except when using the
5146     // fast calling convention, when we need to make sure we do that only when
5147     // we'll actually use a stack slot.
5148     auto ComputePtrOff = [&]() {
5149       /* Respect alignment of argument on the stack.  */
5150       unsigned Align =
5151         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5152       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5153 
5154       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5155 
5156       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5157     };
5158 
5159     if (CallConv != CallingConv::Fast) {
5160       ComputePtrOff();
5161 
5162       /* Compute GPR index associated with argument offset.  */
5163       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5164       GPR_idx = std::min(GPR_idx, NumGPRs);
5165     }
5166 
5167     // Promote integers to 64-bit values.
5168     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5169       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5170       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5171       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5172     }
5173 
5174     // FIXME memcpy is used way more than necessary.  Correctness first.
5175     // Note: "by value" is code for passing a structure by value, not
5176     // basic types.
5177     if (Flags.isByVal()) {
5178       // Note: Size includes alignment padding, so
5179       //   struct x { short a; char b; }
5180       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5181       // These are the proper values we need for right-justifying the
5182       // aggregate in a parameter register.
5183       unsigned Size = Flags.getByValSize();
5184 
5185       // An empty aggregate parameter takes up no storage and no
5186       // registers.
5187       if (Size == 0)
5188         continue;
5189 
5190       if (CallConv == CallingConv::Fast)
5191         ComputePtrOff();
5192 
5193       // All aggregates smaller than 8 bytes must be passed right-justified.
5194       if (Size==1 || Size==2 || Size==4) {
5195         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5196         if (GPR_idx != NumGPRs) {
5197           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5198                                         MachinePointerInfo(), VT,
5199                                         false, false, false, 0);
5200           MemOpChains.push_back(Load.getValue(1));
5201           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5202 
5203           ArgOffset += PtrByteSize;
5204           continue;
5205         }
5206       }
5207 
5208       if (GPR_idx == NumGPRs && Size < 8) {
5209         SDValue AddPtr = PtrOff;
5210         if (!isLittleEndian) {
5211           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5212                                           PtrOff.getValueType());
5213           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5214         }
5215         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5216                                                           CallSeqStart,
5217                                                           Flags, DAG, dl);
5218         ArgOffset += PtrByteSize;
5219         continue;
5220       }
5221       // Copy entire object into memory.  There are cases where gcc-generated
5222       // code assumes it is there, even if it could be put entirely into
5223       // registers.  (This is not what the doc says.)
5224 
5225       // FIXME: The above statement is likely due to a misunderstanding of the
5226       // documents.  All arguments must be copied into the parameter area BY
5227       // THE CALLEE in the event that the callee takes the address of any
5228       // formal argument.  That has not yet been implemented.  However, it is
5229       // reasonable to use the stack area as a staging area for the register
5230       // load.
5231 
5232       // Skip this for small aggregates, as we will use the same slot for a
5233       // right-justified copy, below.
5234       if (Size >= 8)
5235         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5236                                                           CallSeqStart,
5237                                                           Flags, DAG, dl);
5238 
5239       // When a register is available, pass a small aggregate right-justified.
5240       if (Size < 8 && GPR_idx != NumGPRs) {
5241         // The easiest way to get this right-justified in a register
5242         // is to copy the structure into the rightmost portion of a
5243         // local variable slot, then load the whole slot into the
5244         // register.
5245         // FIXME: The memcpy seems to produce pretty awful code for
5246         // small aggregates, particularly for packed ones.
5247         // FIXME: It would be preferable to use the slot in the
5248         // parameter save area instead of a new local variable.
5249         SDValue AddPtr = PtrOff;
5250         if (!isLittleEndian) {
5251           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5252           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5253         }
5254         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5255                                                           CallSeqStart,
5256                                                           Flags, DAG, dl);
5257 
5258         // Load the slot into the register.
5259         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5260                                    MachinePointerInfo(),
5261                                    false, false, false, 0);
5262         MemOpChains.push_back(Load.getValue(1));
5263         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5264 
5265         // Done with this argument.
5266         ArgOffset += PtrByteSize;
5267         continue;
5268       }
5269 
5270       // For aggregates larger than PtrByteSize, copy the pieces of the
5271       // object that fit into registers from the parameter save area.
5272       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5273         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5274         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5275         if (GPR_idx != NumGPRs) {
5276           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5277                                      MachinePointerInfo(),
5278                                      false, false, false, 0);
5279           MemOpChains.push_back(Load.getValue(1));
5280           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5281           ArgOffset += PtrByteSize;
5282         } else {
5283           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5284           break;
5285         }
5286       }
5287       continue;
5288     }
5289 
5290     switch (Arg.getSimpleValueType().SimpleTy) {
5291     default: llvm_unreachable("Unexpected ValueType for argument!");
5292     case MVT::i1:
5293     case MVT::i32:
5294     case MVT::i64:
5295       if (Flags.isNest()) {
5296         // The 'nest' parameter, if any, is passed in R11.
5297         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5298         hasNest = true;
5299         break;
5300       }
5301 
5302       // These can be scalar arguments or elements of an integer array type
5303       // passed directly.  Clang may use those instead of "byval" aggregate
5304       // types to avoid forcing arguments to memory unnecessarily.
5305       if (GPR_idx != NumGPRs) {
5306         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5307       } else {
5308         if (CallConv == CallingConv::Fast)
5309           ComputePtrOff();
5310 
5311         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5312                          true, isTailCall, false, MemOpChains,
5313                          TailCallArguments, dl);
5314         if (CallConv == CallingConv::Fast)
5315           ArgOffset += PtrByteSize;
5316       }
5317       if (CallConv != CallingConv::Fast)
5318         ArgOffset += PtrByteSize;
5319       break;
5320     case MVT::f32:
5321     case MVT::f64: {
5322       // These can be scalar arguments or elements of a float array type
5323       // passed directly.  The latter are used to implement ELFv2 homogenous
5324       // float aggregates.
5325 
5326       // Named arguments go into FPRs first, and once they overflow, the
5327       // remaining arguments go into GPRs and then the parameter save area.
5328       // Unnamed arguments for vararg functions always go to GPRs and
5329       // then the parameter save area.  For now, put all arguments to vararg
5330       // routines always in both locations (FPR *and* GPR or stack slot).
5331       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5332       bool NeededLoad = false;
5333 
5334       // First load the argument into the next available FPR.
5335       if (FPR_idx != NumFPRs)
5336         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5337 
5338       // Next, load the argument into GPR or stack slot if needed.
5339       if (!NeedGPROrStack)
5340         ;
5341       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5342         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5343         // once we support fp <-> gpr moves.
5344 
5345         // In the non-vararg case, this can only ever happen in the
5346         // presence of f32 array types, since otherwise we never run
5347         // out of FPRs before running out of GPRs.
5348         SDValue ArgVal;
5349 
5350         // Double values are always passed in a single GPR.
5351         if (Arg.getValueType() != MVT::f32) {
5352           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5353 
5354         // Non-array float values are extended and passed in a GPR.
5355         } else if (!Flags.isInConsecutiveRegs()) {
5356           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5357           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5358 
5359         // If we have an array of floats, we collect every odd element
5360         // together with its predecessor into one GPR.
5361         } else if (ArgOffset % PtrByteSize != 0) {
5362           SDValue Lo, Hi;
5363           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5364           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5365           if (!isLittleEndian)
5366             std::swap(Lo, Hi);
5367           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5368 
5369         // The final element, if even, goes into the first half of a GPR.
5370         } else if (Flags.isInConsecutiveRegsLast()) {
5371           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5372           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5373           if (!isLittleEndian)
5374             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5375                                  DAG.getConstant(32, dl, MVT::i32));
5376 
5377         // Non-final even elements are skipped; they will be handled
5378         // together the with subsequent argument on the next go-around.
5379         } else
5380           ArgVal = SDValue();
5381 
5382         if (ArgVal.getNode())
5383           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5384       } else {
5385         if (CallConv == CallingConv::Fast)
5386           ComputePtrOff();
5387 
5388         // Single-precision floating-point values are mapped to the
5389         // second (rightmost) word of the stack doubleword.
5390         if (Arg.getValueType() == MVT::f32 &&
5391             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5392           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5393           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5394         }
5395 
5396         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5397                          true, isTailCall, false, MemOpChains,
5398                          TailCallArguments, dl);
5399 
5400         NeededLoad = true;
5401       }
5402       // When passing an array of floats, the array occupies consecutive
5403       // space in the argument area; only round up to the next doubleword
5404       // at the end of the array.  Otherwise, each float takes 8 bytes.
5405       if (CallConv != CallingConv::Fast || NeededLoad) {
5406         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5407                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5408         if (Flags.isInConsecutiveRegsLast())
5409           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5410       }
5411       break;
5412     }
5413     case MVT::v4f32:
5414     case MVT::v4i32:
5415     case MVT::v8i16:
5416     case MVT::v16i8:
5417     case MVT::v2f64:
5418     case MVT::v2i64:
5419     case MVT::v1i128:
5420       if (!Subtarget.hasQPX()) {
5421       // These can be scalar arguments or elements of a vector array type
5422       // passed directly.  The latter are used to implement ELFv2 homogenous
5423       // vector aggregates.
5424 
5425       // For a varargs call, named arguments go into VRs or on the stack as
5426       // usual; unnamed arguments always go to the stack or the corresponding
5427       // GPRs when within range.  For now, we always put the value in both
5428       // locations (or even all three).
5429       if (isVarArg) {
5430         // We could elide this store in the case where the object fits
5431         // entirely in R registers.  Maybe later.
5432         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5433                                      MachinePointerInfo(), false, false, 0);
5434         MemOpChains.push_back(Store);
5435         if (VR_idx != NumVRs) {
5436           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5437                                      MachinePointerInfo(),
5438                                      false, false, false, 0);
5439           MemOpChains.push_back(Load.getValue(1));
5440 
5441           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5442                            Arg.getSimpleValueType() == MVT::v2i64) ?
5443                           VSRH[VR_idx] : VR[VR_idx];
5444           ++VR_idx;
5445 
5446           RegsToPass.push_back(std::make_pair(VReg, Load));
5447         }
5448         ArgOffset += 16;
5449         for (unsigned i=0; i<16; i+=PtrByteSize) {
5450           if (GPR_idx == NumGPRs)
5451             break;
5452           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5453                                    DAG.getConstant(i, dl, PtrVT));
5454           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5455                                      false, false, false, 0);
5456           MemOpChains.push_back(Load.getValue(1));
5457           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5458         }
5459         break;
5460       }
5461 
5462       // Non-varargs Altivec params go into VRs or on the stack.
5463       if (VR_idx != NumVRs) {
5464         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5465                          Arg.getSimpleValueType() == MVT::v2i64) ?
5466                         VSRH[VR_idx] : VR[VR_idx];
5467         ++VR_idx;
5468 
5469         RegsToPass.push_back(std::make_pair(VReg, Arg));
5470       } else {
5471         if (CallConv == CallingConv::Fast)
5472           ComputePtrOff();
5473 
5474         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5475                          true, isTailCall, true, MemOpChains,
5476                          TailCallArguments, dl);
5477         if (CallConv == CallingConv::Fast)
5478           ArgOffset += 16;
5479       }
5480 
5481       if (CallConv != CallingConv::Fast)
5482         ArgOffset += 16;
5483       break;
5484       } // not QPX
5485 
5486       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5487              "Invalid QPX parameter type");
5488 
5489       /* fall through */
5490     case MVT::v4f64:
5491     case MVT::v4i1: {
5492       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5493       if (isVarArg) {
5494         // We could elide this store in the case where the object fits
5495         // entirely in R registers.  Maybe later.
5496         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5497                                      MachinePointerInfo(), false, false, 0);
5498         MemOpChains.push_back(Store);
5499         if (QFPR_idx != NumQFPRs) {
5500           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5501                                      Store, PtrOff, MachinePointerInfo(),
5502                                      false, false, false, 0);
5503           MemOpChains.push_back(Load.getValue(1));
5504           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5505         }
5506         ArgOffset += (IsF32 ? 16 : 32);
5507         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5508           if (GPR_idx == NumGPRs)
5509             break;
5510           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5511                                    DAG.getConstant(i, dl, PtrVT));
5512           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5513                                      false, false, false, 0);
5514           MemOpChains.push_back(Load.getValue(1));
5515           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5516         }
5517         break;
5518       }
5519 
5520       // Non-varargs QPX params go into registers or on the stack.
5521       if (QFPR_idx != NumQFPRs) {
5522         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5523       } else {
5524         if (CallConv == CallingConv::Fast)
5525           ComputePtrOff();
5526 
5527         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5528                          true, isTailCall, true, MemOpChains,
5529                          TailCallArguments, dl);
5530         if (CallConv == CallingConv::Fast)
5531           ArgOffset += (IsF32 ? 16 : 32);
5532       }
5533 
5534       if (CallConv != CallingConv::Fast)
5535         ArgOffset += (IsF32 ? 16 : 32);
5536       break;
5537       }
5538     }
5539   }
5540 
5541   assert(NumBytesActuallyUsed == ArgOffset);
5542   (void)NumBytesActuallyUsed;
5543 
5544   if (!MemOpChains.empty())
5545     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5546 
5547   // Check if this is an indirect call (MTCTR/BCTRL).
5548   // See PrepareCall() for more information about calls through function
5549   // pointers in the 64-bit SVR4 ABI.
5550   if (!isTailCall && !IsPatchPoint &&
5551       !isFunctionGlobalAddress(Callee) &&
5552       !isa<ExternalSymbolSDNode>(Callee)) {
5553     // Load r2 into a virtual register and store it to the TOC save area.
5554     setUsesTOCBasePtr(DAG);
5555     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5556     // TOC save area offset.
5557     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5558     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5559     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5560     Chain = DAG.getStore(
5561         Val.getValue(1), dl, Val, AddPtr,
5562         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5563         false, false, 0);
5564     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5565     // This does not mean the MTCTR instruction must use R12; it's easier
5566     // to model this as an extra parameter, so do that.
5567     if (isELFv2ABI && !IsPatchPoint)
5568       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5569   }
5570 
5571   // Build a sequence of copy-to-reg nodes chained together with token chain
5572   // and flag operands which copy the outgoing args into the appropriate regs.
5573   SDValue InFlag;
5574   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5575     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5576                              RegsToPass[i].second, InFlag);
5577     InFlag = Chain.getValue(1);
5578   }
5579 
5580   if (isTailCall && !IsSibCall)
5581     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5582                     FPOp, true, TailCallArguments);
5583 
5584   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
5585                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5586                     SPDiff, NumBytes, Ins, InVals, CS);
5587 }
5588 
5589 SDValue
5590 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5591                                     CallingConv::ID CallConv, bool isVarArg,
5592                                     bool isTailCall, bool IsPatchPoint,
5593                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
5594                                     const SmallVectorImpl<SDValue> &OutVals,
5595                                     const SmallVectorImpl<ISD::InputArg> &Ins,
5596                                     SDLoc dl, SelectionDAG &DAG,
5597                                     SmallVectorImpl<SDValue> &InVals,
5598                                     ImmutableCallSite *CS) const {
5599 
5600   unsigned NumOps = Outs.size();
5601 
5602   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5603   bool isPPC64 = PtrVT == MVT::i64;
5604   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5605 
5606   MachineFunction &MF = DAG.getMachineFunction();
5607 
5608   // Mark this function as potentially containing a function that contains a
5609   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5610   // and restoring the callers stack pointer in this functions epilog. This is
5611   // done because by tail calling the called function might overwrite the value
5612   // in this function's (MF) stack pointer stack slot 0(SP).
5613   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5614       CallConv == CallingConv::Fast)
5615     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5616 
5617   // Count how many bytes are to be pushed on the stack, including the linkage
5618   // area, and parameter passing area.  We start with 24/48 bytes, which is
5619   // prereserved space for [SP][CR][LR][3 x unused].
5620   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5621   unsigned NumBytes = LinkageSize;
5622 
5623   // Add up all the space actually used.
5624   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5625   // they all go in registers, but we must reserve stack space for them for
5626   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5627   // assigned stack space in order, with padding so Altivec parameters are
5628   // 16-byte aligned.
5629   unsigned nAltivecParamsAtEnd = 0;
5630   for (unsigned i = 0; i != NumOps; ++i) {
5631     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5632     EVT ArgVT = Outs[i].VT;
5633     // Varargs Altivec parameters are padded to a 16 byte boundary.
5634     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5635         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5636         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5637       if (!isVarArg && !isPPC64) {
5638         // Non-varargs Altivec parameters go after all the non-Altivec
5639         // parameters; handle those later so we know how much padding we need.
5640         nAltivecParamsAtEnd++;
5641         continue;
5642       }
5643       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5644       NumBytes = ((NumBytes+15)/16)*16;
5645     }
5646     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5647   }
5648 
5649   // Allow for Altivec parameters at the end, if needed.
5650   if (nAltivecParamsAtEnd) {
5651     NumBytes = ((NumBytes+15)/16)*16;
5652     NumBytes += 16*nAltivecParamsAtEnd;
5653   }
5654 
5655   // The prolog code of the callee may store up to 8 GPR argument registers to
5656   // the stack, allowing va_start to index over them in memory if its varargs.
5657   // Because we cannot tell if this is needed on the caller side, we have to
5658   // conservatively assume that it is needed.  As such, make sure we have at
5659   // least enough stack space for the caller to store the 8 GPRs.
5660   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5661 
5662   // Tail call needs the stack to be aligned.
5663   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5664       CallConv == CallingConv::Fast)
5665     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5666 
5667   // Calculate by how many bytes the stack has to be adjusted in case of tail
5668   // call optimization.
5669   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5670 
5671   // To protect arguments on the stack from being clobbered in a tail call,
5672   // force all the loads to happen before doing any other lowering.
5673   if (isTailCall)
5674     Chain = DAG.getStackArgumentTokenFactor(Chain);
5675 
5676   // Adjust the stack pointer for the new arguments...
5677   // These operations are automatically eliminated by the prolog/epilog pass
5678   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5679                                dl);
5680   SDValue CallSeqStart = Chain;
5681 
5682   // Load the return address and frame pointer so it can be move somewhere else
5683   // later.
5684   SDValue LROp, FPOp;
5685   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5686                                        dl);
5687 
5688   // Set up a copy of the stack pointer for use loading and storing any
5689   // arguments that may not fit in the registers available for argument
5690   // passing.
5691   SDValue StackPtr;
5692   if (isPPC64)
5693     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5694   else
5695     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5696 
5697   // Figure out which arguments are going to go in registers, and which in
5698   // memory.  Also, if this is a vararg function, floating point operations
5699   // must be stored to our stack, and loaded into integer regs as well, if
5700   // any integer regs are available for argument passing.
5701   unsigned ArgOffset = LinkageSize;
5702   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5703 
5704   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5705     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5706     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5707   };
5708   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5709     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5710     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5711   };
5712   static const MCPhysReg VR[] = {
5713     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5714     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5715   };
5716   const unsigned NumGPRs = array_lengthof(GPR_32);
5717   const unsigned NumFPRs = 13;
5718   const unsigned NumVRs  = array_lengthof(VR);
5719 
5720   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5721 
5722   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5723   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5724 
5725   SmallVector<SDValue, 8> MemOpChains;
5726   for (unsigned i = 0; i != NumOps; ++i) {
5727     SDValue Arg = OutVals[i];
5728     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5729 
5730     // PtrOff will be used to store the current argument to the stack if a
5731     // register cannot be found for it.
5732     SDValue PtrOff;
5733 
5734     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5735 
5736     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5737 
5738     // On PPC64, promote integers to 64-bit values.
5739     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5740       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5741       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5742       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5743     }
5744 
5745     // FIXME memcpy is used way more than necessary.  Correctness first.
5746     // Note: "by value" is code for passing a structure by value, not
5747     // basic types.
5748     if (Flags.isByVal()) {
5749       unsigned Size = Flags.getByValSize();
5750       // Very small objects are passed right-justified.  Everything else is
5751       // passed left-justified.
5752       if (Size==1 || Size==2) {
5753         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5754         if (GPR_idx != NumGPRs) {
5755           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5756                                         MachinePointerInfo(), VT,
5757                                         false, false, false, 0);
5758           MemOpChains.push_back(Load.getValue(1));
5759           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5760 
5761           ArgOffset += PtrByteSize;
5762         } else {
5763           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5764                                           PtrOff.getValueType());
5765           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5766           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5767                                                             CallSeqStart,
5768                                                             Flags, DAG, dl);
5769           ArgOffset += PtrByteSize;
5770         }
5771         continue;
5772       }
5773       // Copy entire object into memory.  There are cases where gcc-generated
5774       // code assumes it is there, even if it could be put entirely into
5775       // registers.  (This is not what the doc says.)
5776       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5777                                                         CallSeqStart,
5778                                                         Flags, DAG, dl);
5779 
5780       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5781       // copy the pieces of the object that fit into registers from the
5782       // parameter save area.
5783       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5784         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5785         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5786         if (GPR_idx != NumGPRs) {
5787           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5788                                      MachinePointerInfo(),
5789                                      false, false, false, 0);
5790           MemOpChains.push_back(Load.getValue(1));
5791           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5792           ArgOffset += PtrByteSize;
5793         } else {
5794           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5795           break;
5796         }
5797       }
5798       continue;
5799     }
5800 
5801     switch (Arg.getSimpleValueType().SimpleTy) {
5802     default: llvm_unreachable("Unexpected ValueType for argument!");
5803     case MVT::i1:
5804     case MVT::i32:
5805     case MVT::i64:
5806       if (GPR_idx != NumGPRs) {
5807         if (Arg.getValueType() == MVT::i1)
5808           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5809 
5810         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5811       } else {
5812         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5813                          isPPC64, isTailCall, false, MemOpChains,
5814                          TailCallArguments, dl);
5815       }
5816       ArgOffset += PtrByteSize;
5817       break;
5818     case MVT::f32:
5819     case MVT::f64:
5820       if (FPR_idx != NumFPRs) {
5821         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5822 
5823         if (isVarArg) {
5824           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5825                                        MachinePointerInfo(), false, false, 0);
5826           MemOpChains.push_back(Store);
5827 
5828           // Float varargs are always shadowed in available integer registers
5829           if (GPR_idx != NumGPRs) {
5830             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5831                                        MachinePointerInfo(), false, false,
5832                                        false, 0);
5833             MemOpChains.push_back(Load.getValue(1));
5834             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5835           }
5836           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5837             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5838             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5839             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5840                                        MachinePointerInfo(),
5841                                        false, false, false, 0);
5842             MemOpChains.push_back(Load.getValue(1));
5843             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5844           }
5845         } else {
5846           // If we have any FPRs remaining, we may also have GPRs remaining.
5847           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5848           // GPRs.
5849           if (GPR_idx != NumGPRs)
5850             ++GPR_idx;
5851           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5852               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5853             ++GPR_idx;
5854         }
5855       } else
5856         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5857                          isPPC64, isTailCall, false, MemOpChains,
5858                          TailCallArguments, dl);
5859       if (isPPC64)
5860         ArgOffset += 8;
5861       else
5862         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5863       break;
5864     case MVT::v4f32:
5865     case MVT::v4i32:
5866     case MVT::v8i16:
5867     case MVT::v16i8:
5868       if (isVarArg) {
5869         // These go aligned on the stack, or in the corresponding R registers
5870         // when within range.  The Darwin PPC ABI doc claims they also go in
5871         // V registers; in fact gcc does this only for arguments that are
5872         // prototyped, not for those that match the ...  We do it for all
5873         // arguments, seems to work.
5874         while (ArgOffset % 16 !=0) {
5875           ArgOffset += PtrByteSize;
5876           if (GPR_idx != NumGPRs)
5877             GPR_idx++;
5878         }
5879         // We could elide this store in the case where the object fits
5880         // entirely in R registers.  Maybe later.
5881         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5882                              DAG.getConstant(ArgOffset, dl, PtrVT));
5883         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5884                                      MachinePointerInfo(), false, false, 0);
5885         MemOpChains.push_back(Store);
5886         if (VR_idx != NumVRs) {
5887           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5888                                      MachinePointerInfo(),
5889                                      false, false, false, 0);
5890           MemOpChains.push_back(Load.getValue(1));
5891           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5892         }
5893         ArgOffset += 16;
5894         for (unsigned i=0; i<16; i+=PtrByteSize) {
5895           if (GPR_idx == NumGPRs)
5896             break;
5897           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5898                                    DAG.getConstant(i, dl, PtrVT));
5899           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5900                                      false, false, false, 0);
5901           MemOpChains.push_back(Load.getValue(1));
5902           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5903         }
5904         break;
5905       }
5906 
5907       // Non-varargs Altivec params generally go in registers, but have
5908       // stack space allocated at the end.
5909       if (VR_idx != NumVRs) {
5910         // Doesn't have GPR space allocated.
5911         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5912       } else if (nAltivecParamsAtEnd==0) {
5913         // We are emitting Altivec params in order.
5914         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5915                          isPPC64, isTailCall, true, MemOpChains,
5916                          TailCallArguments, dl);
5917         ArgOffset += 16;
5918       }
5919       break;
5920     }
5921   }
5922   // If all Altivec parameters fit in registers, as they usually do,
5923   // they get stack space following the non-Altivec parameters.  We
5924   // don't track this here because nobody below needs it.
5925   // If there are more Altivec parameters than fit in registers emit
5926   // the stores here.
5927   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5928     unsigned j = 0;
5929     // Offset is aligned; skip 1st 12 params which go in V registers.
5930     ArgOffset = ((ArgOffset+15)/16)*16;
5931     ArgOffset += 12*16;
5932     for (unsigned i = 0; i != NumOps; ++i) {
5933       SDValue Arg = OutVals[i];
5934       EVT ArgType = Outs[i].VT;
5935       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5936           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5937         if (++j > NumVRs) {
5938           SDValue PtrOff;
5939           // We are emitting Altivec params in order.
5940           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5941                            isPPC64, isTailCall, true, MemOpChains,
5942                            TailCallArguments, dl);
5943           ArgOffset += 16;
5944         }
5945       }
5946     }
5947   }
5948 
5949   if (!MemOpChains.empty())
5950     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5951 
5952   // On Darwin, R12 must contain the address of an indirect callee.  This does
5953   // not mean the MTCTR instruction must use R12; it's easier to model this as
5954   // an extra parameter, so do that.
5955   if (!isTailCall &&
5956       !isFunctionGlobalAddress(Callee) &&
5957       !isa<ExternalSymbolSDNode>(Callee) &&
5958       !isBLACompatibleAddress(Callee, DAG))
5959     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5960                                                    PPC::R12), Callee));
5961 
5962   // Build a sequence of copy-to-reg nodes chained together with token chain
5963   // and flag operands which copy the outgoing args into the appropriate regs.
5964   SDValue InFlag;
5965   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5966     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5967                              RegsToPass[i].second, InFlag);
5968     InFlag = Chain.getValue(1);
5969   }
5970 
5971   if (isTailCall)
5972     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5973                     FPOp, true, TailCallArguments);
5974 
5975   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5976                     /* unused except on PPC64 ELFv1 */ false, DAG,
5977                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5978                     NumBytes, Ins, InVals, CS);
5979 }
5980 
5981 bool
5982 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5983                                   MachineFunction &MF, bool isVarArg,
5984                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5985                                   LLVMContext &Context) const {
5986   SmallVector<CCValAssign, 16> RVLocs;
5987   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5988   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5989 }
5990 
5991 SDValue
5992 PPCTargetLowering::LowerReturn(SDValue Chain,
5993                                CallingConv::ID CallConv, bool isVarArg,
5994                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5995                                const SmallVectorImpl<SDValue> &OutVals,
5996                                SDLoc dl, SelectionDAG &DAG) const {
5997 
5998   SmallVector<CCValAssign, 16> RVLocs;
5999   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6000                  *DAG.getContext());
6001   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6002 
6003   SDValue Flag;
6004   SmallVector<SDValue, 4> RetOps(1, Chain);
6005 
6006   // Copy the result values into the output registers.
6007   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6008     CCValAssign &VA = RVLocs[i];
6009     assert(VA.isRegLoc() && "Can only return in registers!");
6010 
6011     SDValue Arg = OutVals[i];
6012 
6013     switch (VA.getLocInfo()) {
6014     default: llvm_unreachable("Unknown loc info!");
6015     case CCValAssign::Full: break;
6016     case CCValAssign::AExt:
6017       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6018       break;
6019     case CCValAssign::ZExt:
6020       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6021       break;
6022     case CCValAssign::SExt:
6023       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6024       break;
6025     }
6026 
6027     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6028     Flag = Chain.getValue(1);
6029     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6030   }
6031 
6032   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6033   const MCPhysReg *I =
6034     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6035   if (I) {
6036     for (; *I; ++I) {
6037 
6038       if (PPC::G8RCRegClass.contains(*I))
6039         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6040       else if (PPC::F8RCRegClass.contains(*I))
6041         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6042       else if (PPC::CRRCRegClass.contains(*I))
6043         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6044       else if (PPC::VRRCRegClass.contains(*I))
6045         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6046       else
6047         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6048     }
6049   }
6050 
6051   RetOps[0] = Chain;  // Update chain.
6052 
6053   // Add the flag if we have it.
6054   if (Flag.getNode())
6055     RetOps.push_back(Flag);
6056 
6057   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6058 }
6059 
6060 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
6061     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
6062   SDLoc dl(Op);
6063 
6064   // Get the corect type for integers.
6065   EVT IntVT = Op.getValueType();
6066 
6067   // Get the inputs.
6068   SDValue Chain = Op.getOperand(0);
6069   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6070   // Build a DYNAREAOFFSET node.
6071   SDValue Ops[2] = {Chain, FPSIdx};
6072   SDVTList VTs = DAG.getVTList(IntVT);
6073   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6074 }
6075 
6076 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
6077                                    const PPCSubtarget &Subtarget) const {
6078   // When we pop the dynamic allocation we need to restore the SP link.
6079   SDLoc dl(Op);
6080 
6081   // Get the corect type for pointers.
6082   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6083 
6084   // Construct the stack pointer operand.
6085   bool isPPC64 = Subtarget.isPPC64();
6086   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6087   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6088 
6089   // Get the operands for the STACKRESTORE.
6090   SDValue Chain = Op.getOperand(0);
6091   SDValue SaveSP = Op.getOperand(1);
6092 
6093   // Load the old link SP.
6094   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
6095                                    MachinePointerInfo(),
6096                                    false, false, false, 0);
6097 
6098   // Restore the stack pointer.
6099   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6100 
6101   // Store the old link SP.
6102   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
6103                       false, false, 0);
6104 }
6105 
6106 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6107   MachineFunction &MF = DAG.getMachineFunction();
6108   bool isPPC64 = Subtarget.isPPC64();
6109   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6110 
6111   // Get current frame pointer save index.  The users of this index will be
6112   // primarily DYNALLOC instructions.
6113   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6114   int RASI = FI->getReturnAddrSaveIndex();
6115 
6116   // If the frame pointer save index hasn't been defined yet.
6117   if (!RASI) {
6118     // Find out what the fix offset of the frame pointer save area.
6119     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6120     // Allocate the frame index for frame pointer save area.
6121     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6122     // Save the result.
6123     FI->setReturnAddrSaveIndex(RASI);
6124   }
6125   return DAG.getFrameIndex(RASI, PtrVT);
6126 }
6127 
6128 SDValue
6129 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6130   MachineFunction &MF = DAG.getMachineFunction();
6131   bool isPPC64 = Subtarget.isPPC64();
6132   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6133 
6134   // Get current frame pointer save index.  The users of this index will be
6135   // primarily DYNALLOC instructions.
6136   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6137   int FPSI = FI->getFramePointerSaveIndex();
6138 
6139   // If the frame pointer save index hasn't been defined yet.
6140   if (!FPSI) {
6141     // Find out what the fix offset of the frame pointer save area.
6142     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6143     // Allocate the frame index for frame pointer save area.
6144     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6145     // Save the result.
6146     FI->setFramePointerSaveIndex(FPSI);
6147   }
6148   return DAG.getFrameIndex(FPSI, PtrVT);
6149 }
6150 
6151 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6152                                          SelectionDAG &DAG,
6153                                          const PPCSubtarget &Subtarget) const {
6154   // Get the inputs.
6155   SDValue Chain = Op.getOperand(0);
6156   SDValue Size  = Op.getOperand(1);
6157   SDLoc dl(Op);
6158 
6159   // Get the corect type for pointers.
6160   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6161   // Negate the size.
6162   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6163                                 DAG.getConstant(0, dl, PtrVT), Size);
6164   // Construct a node for the frame pointer save index.
6165   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6166   // Build a DYNALLOC node.
6167   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6168   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6169   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6170 }
6171 
6172 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6173                                                SelectionDAG &DAG) const {
6174   SDLoc DL(Op);
6175   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6176                      DAG.getVTList(MVT::i32, MVT::Other),
6177                      Op.getOperand(0), Op.getOperand(1));
6178 }
6179 
6180 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6181                                                 SelectionDAG &DAG) const {
6182   SDLoc DL(Op);
6183   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6184                      Op.getOperand(0), Op.getOperand(1));
6185 }
6186 
6187 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6188   if (Op.getValueType().isVector())
6189     return LowerVectorLoad(Op, DAG);
6190 
6191   assert(Op.getValueType() == MVT::i1 &&
6192          "Custom lowering only for i1 loads");
6193 
6194   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6195 
6196   SDLoc dl(Op);
6197   LoadSDNode *LD = cast<LoadSDNode>(Op);
6198 
6199   SDValue Chain = LD->getChain();
6200   SDValue BasePtr = LD->getBasePtr();
6201   MachineMemOperand *MMO = LD->getMemOperand();
6202 
6203   SDValue NewLD =
6204       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6205                      BasePtr, MVT::i8, MMO);
6206   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6207 
6208   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6209   return DAG.getMergeValues(Ops, dl);
6210 }
6211 
6212 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6213   if (Op.getOperand(1).getValueType().isVector())
6214     return LowerVectorStore(Op, DAG);
6215 
6216   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6217          "Custom lowering only for i1 stores");
6218 
6219   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6220 
6221   SDLoc dl(Op);
6222   StoreSDNode *ST = cast<StoreSDNode>(Op);
6223 
6224   SDValue Chain = ST->getChain();
6225   SDValue BasePtr = ST->getBasePtr();
6226   SDValue Value = ST->getValue();
6227   MachineMemOperand *MMO = ST->getMemOperand();
6228 
6229   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6230                       Value);
6231   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6232 }
6233 
6234 // FIXME: Remove this once the ANDI glue bug is fixed:
6235 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6236   assert(Op.getValueType() == MVT::i1 &&
6237          "Custom lowering only for i1 results");
6238 
6239   SDLoc DL(Op);
6240   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6241                      Op.getOperand(0));
6242 }
6243 
6244 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6245 /// possible.
6246 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6247   // Not FP? Not a fsel.
6248   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6249       !Op.getOperand(2).getValueType().isFloatingPoint())
6250     return Op;
6251 
6252   // We might be able to do better than this under some circumstances, but in
6253   // general, fsel-based lowering of select is a finite-math-only optimization.
6254   // For more information, see section F.3 of the 2.06 ISA specification.
6255   if (!DAG.getTarget().Options.NoInfsFPMath ||
6256       !DAG.getTarget().Options.NoNaNsFPMath)
6257     return Op;
6258   // TODO: Propagate flags from the select rather than global settings.
6259   SDNodeFlags Flags;
6260   Flags.setNoInfs(true);
6261   Flags.setNoNaNs(true);
6262 
6263   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6264 
6265   EVT ResVT = Op.getValueType();
6266   EVT CmpVT = Op.getOperand(0).getValueType();
6267   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6268   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6269   SDLoc dl(Op);
6270 
6271   // If the RHS of the comparison is a 0.0, we don't need to do the
6272   // subtraction at all.
6273   SDValue Sel1;
6274   if (isFloatingPointZero(RHS))
6275     switch (CC) {
6276     default: break;       // SETUO etc aren't handled by fsel.
6277     case ISD::SETNE:
6278       std::swap(TV, FV);
6279     case ISD::SETEQ:
6280       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6281         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6282       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6283       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6284         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6285       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6286                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6287     case ISD::SETULT:
6288     case ISD::SETLT:
6289       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6290     case ISD::SETOGE:
6291     case ISD::SETGE:
6292       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6293         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6294       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6295     case ISD::SETUGT:
6296     case ISD::SETGT:
6297       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6298     case ISD::SETOLE:
6299     case ISD::SETLE:
6300       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6301         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6302       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6303                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6304     }
6305 
6306   SDValue Cmp;
6307   switch (CC) {
6308   default: break;       // SETUO etc aren't handled by fsel.
6309   case ISD::SETNE:
6310     std::swap(TV, FV);
6311   case ISD::SETEQ:
6312     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6313     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6314       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6315     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6316     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6317       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6318     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6319                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6320   case ISD::SETULT:
6321   case ISD::SETLT:
6322     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6323     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6324       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6325     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6326   case ISD::SETOGE:
6327   case ISD::SETGE:
6328     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6329     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6330       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6331     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6332   case ISD::SETUGT:
6333   case ISD::SETGT:
6334     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6335     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6336       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6337     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6338   case ISD::SETOLE:
6339   case ISD::SETLE:
6340     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6341     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6342       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6343     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6344   }
6345   return Op;
6346 }
6347 
6348 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6349                                                SelectionDAG &DAG,
6350                                                SDLoc dl) const {
6351   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6352   SDValue Src = Op.getOperand(0);
6353   if (Src.getValueType() == MVT::f32)
6354     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6355 
6356   SDValue Tmp;
6357   switch (Op.getSimpleValueType().SimpleTy) {
6358   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6359   case MVT::i32:
6360     Tmp = DAG.getNode(
6361         Op.getOpcode() == ISD::FP_TO_SINT
6362             ? PPCISD::FCTIWZ
6363             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6364         dl, MVT::f64, Src);
6365     break;
6366   case MVT::i64:
6367     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6368            "i64 FP_TO_UINT is supported only with FPCVT");
6369     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6370                                                         PPCISD::FCTIDUZ,
6371                       dl, MVT::f64, Src);
6372     break;
6373   }
6374 
6375   // Convert the FP value to an int value through memory.
6376   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6377     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6378   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6379   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6380   MachinePointerInfo MPI =
6381       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6382 
6383   // Emit a store to the stack slot.
6384   SDValue Chain;
6385   if (i32Stack) {
6386     MachineFunction &MF = DAG.getMachineFunction();
6387     MachineMemOperand *MMO =
6388       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6389     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6390     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6391               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6392   } else
6393     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6394                          MPI, false, false, 0);
6395 
6396   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6397   // add in a bias on big endian.
6398   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6399     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6400                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6401     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6402   }
6403 
6404   RLI.Chain = Chain;
6405   RLI.Ptr = FIPtr;
6406   RLI.MPI = MPI;
6407 }
6408 
6409 /// \brief Custom lowers floating point to integer conversions to use
6410 /// the direct move instructions available in ISA 2.07 to avoid the
6411 /// need for load/store combinations.
6412 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6413                                                     SelectionDAG &DAG,
6414                                                     SDLoc dl) const {
6415   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6416   SDValue Src = Op.getOperand(0);
6417 
6418   if (Src.getValueType() == MVT::f32)
6419     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6420 
6421   SDValue Tmp;
6422   switch (Op.getSimpleValueType().SimpleTy) {
6423   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6424   case MVT::i32:
6425     Tmp = DAG.getNode(
6426         Op.getOpcode() == ISD::FP_TO_SINT
6427             ? PPCISD::FCTIWZ
6428             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6429         dl, MVT::f64, Src);
6430     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6431     break;
6432   case MVT::i64:
6433     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6434            "i64 FP_TO_UINT is supported only with FPCVT");
6435     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6436                                                         PPCISD::FCTIDUZ,
6437                       dl, MVT::f64, Src);
6438     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6439     break;
6440   }
6441   return Tmp;
6442 }
6443 
6444 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6445                                           SDLoc dl) const {
6446   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6447     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6448 
6449   ReuseLoadInfo RLI;
6450   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6451 
6452   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6453                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6454                      RLI.Ranges);
6455 }
6456 
6457 // We're trying to insert a regular store, S, and then a load, L. If the
6458 // incoming value, O, is a load, we might just be able to have our load use the
6459 // address used by O. However, we don't know if anything else will store to
6460 // that address before we can load from it. To prevent this situation, we need
6461 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6462 // the same chain operand as O, we create a token factor from the chain results
6463 // of O and L, and we replace all uses of O's chain result with that token
6464 // factor (see spliceIntoChain below for this last part).
6465 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6466                                             ReuseLoadInfo &RLI,
6467                                             SelectionDAG &DAG,
6468                                             ISD::LoadExtType ET) const {
6469   SDLoc dl(Op);
6470   if (ET == ISD::NON_EXTLOAD &&
6471       (Op.getOpcode() == ISD::FP_TO_UINT ||
6472        Op.getOpcode() == ISD::FP_TO_SINT) &&
6473       isOperationLegalOrCustom(Op.getOpcode(),
6474                                Op.getOperand(0).getValueType())) {
6475 
6476     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6477     return true;
6478   }
6479 
6480   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6481   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6482       LD->isNonTemporal())
6483     return false;
6484   if (LD->getMemoryVT() != MemVT)
6485     return false;
6486 
6487   RLI.Ptr = LD->getBasePtr();
6488   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6489     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6490            "Non-pre-inc AM on PPC?");
6491     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6492                           LD->getOffset());
6493   }
6494 
6495   RLI.Chain = LD->getChain();
6496   RLI.MPI = LD->getPointerInfo();
6497   RLI.IsInvariant = LD->isInvariant();
6498   RLI.Alignment = LD->getAlignment();
6499   RLI.AAInfo = LD->getAAInfo();
6500   RLI.Ranges = LD->getRanges();
6501 
6502   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6503   return true;
6504 }
6505 
6506 // Given the head of the old chain, ResChain, insert a token factor containing
6507 // it and NewResChain, and make users of ResChain now be users of that token
6508 // factor.
6509 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6510                                         SDValue NewResChain,
6511                                         SelectionDAG &DAG) const {
6512   if (!ResChain)
6513     return;
6514 
6515   SDLoc dl(NewResChain);
6516 
6517   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6518                            NewResChain, DAG.getUNDEF(MVT::Other));
6519   assert(TF.getNode() != NewResChain.getNode() &&
6520          "A new TF really is required here");
6521 
6522   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6523   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6524 }
6525 
6526 /// \brief Analyze profitability of direct move
6527 /// prefer float load to int load plus direct move
6528 /// when there is no integer use of int load
6529 static bool directMoveIsProfitable(const SDValue &Op) {
6530   SDNode *Origin = Op.getOperand(0).getNode();
6531   if (Origin->getOpcode() != ISD::LOAD)
6532     return true;
6533 
6534   for (SDNode::use_iterator UI = Origin->use_begin(),
6535                             UE = Origin->use_end();
6536        UI != UE; ++UI) {
6537 
6538     // Only look at the users of the loaded value.
6539     if (UI.getUse().get().getResNo() != 0)
6540       continue;
6541 
6542     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6543         UI->getOpcode() != ISD::UINT_TO_FP)
6544       return true;
6545   }
6546 
6547   return false;
6548 }
6549 
6550 /// \brief Custom lowers integer to floating point conversions to use
6551 /// the direct move instructions available in ISA 2.07 to avoid the
6552 /// need for load/store combinations.
6553 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6554                                                     SelectionDAG &DAG,
6555                                                     SDLoc dl) const {
6556   assert((Op.getValueType() == MVT::f32 ||
6557           Op.getValueType() == MVT::f64) &&
6558          "Invalid floating point type as target of conversion");
6559   assert(Subtarget.hasFPCVT() &&
6560          "Int to FP conversions with direct moves require FPCVT");
6561   SDValue FP;
6562   SDValue Src = Op.getOperand(0);
6563   bool SinglePrec = Op.getValueType() == MVT::f32;
6564   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6565   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6566   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6567                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6568 
6569   if (WordInt) {
6570     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6571                      dl, MVT::f64, Src);
6572     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6573   }
6574   else {
6575     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6576     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6577   }
6578 
6579   return FP;
6580 }
6581 
6582 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6583                                           SelectionDAG &DAG) const {
6584   SDLoc dl(Op);
6585 
6586   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6587     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6588       return SDValue();
6589 
6590     SDValue Value = Op.getOperand(0);
6591     // The values are now known to be -1 (false) or 1 (true). To convert this
6592     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6593     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6594     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6595 
6596     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6597 
6598     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6599 
6600     if (Op.getValueType() != MVT::v4f64)
6601       Value = DAG.getNode(ISD::FP_ROUND, dl,
6602                           Op.getValueType(), Value,
6603                           DAG.getIntPtrConstant(1, dl));
6604     return Value;
6605   }
6606 
6607   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6608   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6609     return SDValue();
6610 
6611   if (Op.getOperand(0).getValueType() == MVT::i1)
6612     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6613                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6614                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6615 
6616   // If we have direct moves, we can do all the conversion, skip the store/load
6617   // however, without FPCVT we can't do most conversions.
6618   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6619       Subtarget.isPPC64() && Subtarget.hasFPCVT())
6620     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6621 
6622   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6623          "UINT_TO_FP is supported only with FPCVT");
6624 
6625   // If we have FCFIDS, then use it when converting to single-precision.
6626   // Otherwise, convert to double-precision and then round.
6627   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6628                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6629                                                             : PPCISD::FCFIDS)
6630                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6631                                                             : PPCISD::FCFID);
6632   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6633                   ? MVT::f32
6634                   : MVT::f64;
6635 
6636   if (Op.getOperand(0).getValueType() == MVT::i64) {
6637     SDValue SINT = Op.getOperand(0);
6638     // When converting to single-precision, we actually need to convert
6639     // to double-precision first and then round to single-precision.
6640     // To avoid double-rounding effects during that operation, we have
6641     // to prepare the input operand.  Bits that might be truncated when
6642     // converting to double-precision are replaced by a bit that won't
6643     // be lost at this stage, but is below the single-precision rounding
6644     // position.
6645     //
6646     // However, if -enable-unsafe-fp-math is in effect, accept double
6647     // rounding to avoid the extra overhead.
6648     if (Op.getValueType() == MVT::f32 &&
6649         !Subtarget.hasFPCVT() &&
6650         !DAG.getTarget().Options.UnsafeFPMath) {
6651 
6652       // Twiddle input to make sure the low 11 bits are zero.  (If this
6653       // is the case, we are guaranteed the value will fit into the 53 bit
6654       // mantissa of an IEEE double-precision value without rounding.)
6655       // If any of those low 11 bits were not zero originally, make sure
6656       // bit 12 (value 2048) is set instead, so that the final rounding
6657       // to single-precision gets the correct result.
6658       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6659                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6660       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6661                           Round, DAG.getConstant(2047, dl, MVT::i64));
6662       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6663       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6664                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6665 
6666       // However, we cannot use that value unconditionally: if the magnitude
6667       // of the input value is small, the bit-twiddling we did above might
6668       // end up visibly changing the output.  Fortunately, in that case, we
6669       // don't need to twiddle bits since the original input will convert
6670       // exactly to double-precision floating-point already.  Therefore,
6671       // construct a conditional to use the original value if the top 11
6672       // bits are all sign-bit copies, and use the rounded value computed
6673       // above otherwise.
6674       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6675                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6676       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6677                          Cond, DAG.getConstant(1, dl, MVT::i64));
6678       Cond = DAG.getSetCC(dl, MVT::i32,
6679                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6680 
6681       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6682     }
6683 
6684     ReuseLoadInfo RLI;
6685     SDValue Bits;
6686 
6687     MachineFunction &MF = DAG.getMachineFunction();
6688     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6689       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6690                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6691                          RLI.Ranges);
6692       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6693     } else if (Subtarget.hasLFIWAX() &&
6694                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6695       MachineMemOperand *MMO =
6696         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6697                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6698       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6699       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6700                                      DAG.getVTList(MVT::f64, MVT::Other),
6701                                      Ops, MVT::i32, MMO);
6702       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6703     } else if (Subtarget.hasFPCVT() &&
6704                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6705       MachineMemOperand *MMO =
6706         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6707                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6708       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6709       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6710                                      DAG.getVTList(MVT::f64, MVT::Other),
6711                                      Ops, MVT::i32, MMO);
6712       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6713     } else if (((Subtarget.hasLFIWAX() &&
6714                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6715                 (Subtarget.hasFPCVT() &&
6716                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6717                SINT.getOperand(0).getValueType() == MVT::i32) {
6718       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6719       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6720 
6721       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6722       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6723 
6724       SDValue Store = DAG.getStore(
6725           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6726           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6727           false, false, 0);
6728 
6729       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6730              "Expected an i32 store");
6731 
6732       RLI.Ptr = FIdx;
6733       RLI.Chain = Store;
6734       RLI.MPI =
6735           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6736       RLI.Alignment = 4;
6737 
6738       MachineMemOperand *MMO =
6739         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6740                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6741       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6742       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6743                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6744                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6745                                      Ops, MVT::i32, MMO);
6746     } else
6747       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6748 
6749     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6750 
6751     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6752       FP = DAG.getNode(ISD::FP_ROUND, dl,
6753                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6754     return FP;
6755   }
6756 
6757   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6758          "Unhandled INT_TO_FP type in custom expander!");
6759   // Since we only generate this in 64-bit mode, we can take advantage of
6760   // 64-bit registers.  In particular, sign extend the input value into the
6761   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6762   // then lfd it and fcfid it.
6763   MachineFunction &MF = DAG.getMachineFunction();
6764   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6765   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6766 
6767   SDValue Ld;
6768   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6769     ReuseLoadInfo RLI;
6770     bool ReusingLoad;
6771     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6772                                             DAG))) {
6773       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6774       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6775 
6776       SDValue Store = DAG.getStore(
6777           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6778           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6779           false, false, 0);
6780 
6781       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6782              "Expected an i32 store");
6783 
6784       RLI.Ptr = FIdx;
6785       RLI.Chain = Store;
6786       RLI.MPI =
6787           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6788       RLI.Alignment = 4;
6789     }
6790 
6791     MachineMemOperand *MMO =
6792       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6793                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6794     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6795     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6796                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6797                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6798                                  Ops, MVT::i32, MMO);
6799     if (ReusingLoad)
6800       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6801   } else {
6802     assert(Subtarget.isPPC64() &&
6803            "i32->FP without LFIWAX supported only on PPC64");
6804 
6805     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6806     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6807 
6808     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6809                                 Op.getOperand(0));
6810 
6811     // STD the extended value into the stack slot.
6812     SDValue Store = DAG.getStore(
6813         DAG.getEntryNode(), dl, Ext64, FIdx,
6814         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6815         false, false, 0);
6816 
6817     // Load the value as a double.
6818     Ld = DAG.getLoad(
6819         MVT::f64, dl, Store, FIdx,
6820         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6821         false, false, false, 0);
6822   }
6823 
6824   // FCFID it and return it.
6825   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6826   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6827     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6828                      DAG.getIntPtrConstant(0, dl));
6829   return FP;
6830 }
6831 
6832 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6833                                             SelectionDAG &DAG) const {
6834   SDLoc dl(Op);
6835   /*
6836    The rounding mode is in bits 30:31 of FPSR, and has the following
6837    settings:
6838      00 Round to nearest
6839      01 Round to 0
6840      10 Round to +inf
6841      11 Round to -inf
6842 
6843   FLT_ROUNDS, on the other hand, expects the following:
6844     -1 Undefined
6845      0 Round to 0
6846      1 Round to nearest
6847      2 Round to +inf
6848      3 Round to -inf
6849 
6850   To perform the conversion, we do:
6851     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6852   */
6853 
6854   MachineFunction &MF = DAG.getMachineFunction();
6855   EVT VT = Op.getValueType();
6856   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6857 
6858   // Save FP Control Word to register
6859   EVT NodeTys[] = {
6860     MVT::f64,    // return register
6861     MVT::Glue    // unused in this context
6862   };
6863   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6864 
6865   // Save FP register to stack slot
6866   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6867   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6868   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6869                                StackSlot, MachinePointerInfo(), false, false,0);
6870 
6871   // Load FP Control Word from low 32 bits of stack slot.
6872   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6873   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6874   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6875                             false, false, false, 0);
6876 
6877   // Transform as necessary
6878   SDValue CWD1 =
6879     DAG.getNode(ISD::AND, dl, MVT::i32,
6880                 CWD, DAG.getConstant(3, dl, MVT::i32));
6881   SDValue CWD2 =
6882     DAG.getNode(ISD::SRL, dl, MVT::i32,
6883                 DAG.getNode(ISD::AND, dl, MVT::i32,
6884                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6885                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6886                             DAG.getConstant(3, dl, MVT::i32)),
6887                 DAG.getConstant(1, dl, MVT::i32));
6888 
6889   SDValue RetVal =
6890     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6891 
6892   return DAG.getNode((VT.getSizeInBits() < 16 ?
6893                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6894 }
6895 
6896 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6897   EVT VT = Op.getValueType();
6898   unsigned BitWidth = VT.getSizeInBits();
6899   SDLoc dl(Op);
6900   assert(Op.getNumOperands() == 3 &&
6901          VT == Op.getOperand(1).getValueType() &&
6902          "Unexpected SHL!");
6903 
6904   // Expand into a bunch of logical ops.  Note that these ops
6905   // depend on the PPC behavior for oversized shift amounts.
6906   SDValue Lo = Op.getOperand(0);
6907   SDValue Hi = Op.getOperand(1);
6908   SDValue Amt = Op.getOperand(2);
6909   EVT AmtVT = Amt.getValueType();
6910 
6911   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6912                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6913   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6914   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6915   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6916   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6917                              DAG.getConstant(-BitWidth, dl, AmtVT));
6918   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6919   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6920   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6921   SDValue OutOps[] = { OutLo, OutHi };
6922   return DAG.getMergeValues(OutOps, dl);
6923 }
6924 
6925 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6926   EVT VT = Op.getValueType();
6927   SDLoc dl(Op);
6928   unsigned BitWidth = VT.getSizeInBits();
6929   assert(Op.getNumOperands() == 3 &&
6930          VT == Op.getOperand(1).getValueType() &&
6931          "Unexpected SRL!");
6932 
6933   // Expand into a bunch of logical ops.  Note that these ops
6934   // depend on the PPC behavior for oversized shift amounts.
6935   SDValue Lo = Op.getOperand(0);
6936   SDValue Hi = Op.getOperand(1);
6937   SDValue Amt = Op.getOperand(2);
6938   EVT AmtVT = Amt.getValueType();
6939 
6940   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6941                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6942   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6943   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6944   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6945   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6946                              DAG.getConstant(-BitWidth, dl, AmtVT));
6947   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6948   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6949   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6950   SDValue OutOps[] = { OutLo, OutHi };
6951   return DAG.getMergeValues(OutOps, dl);
6952 }
6953 
6954 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6955   SDLoc dl(Op);
6956   EVT VT = Op.getValueType();
6957   unsigned BitWidth = VT.getSizeInBits();
6958   assert(Op.getNumOperands() == 3 &&
6959          VT == Op.getOperand(1).getValueType() &&
6960          "Unexpected SRA!");
6961 
6962   // Expand into a bunch of logical ops, followed by a select_cc.
6963   SDValue Lo = Op.getOperand(0);
6964   SDValue Hi = Op.getOperand(1);
6965   SDValue Amt = Op.getOperand(2);
6966   EVT AmtVT = Amt.getValueType();
6967 
6968   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6969                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6970   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6971   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6972   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6973   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6974                              DAG.getConstant(-BitWidth, dl, AmtVT));
6975   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6976   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6977   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6978                                   Tmp4, Tmp6, ISD::SETLE);
6979   SDValue OutOps[] = { OutLo, OutHi };
6980   return DAG.getMergeValues(OutOps, dl);
6981 }
6982 
6983 //===----------------------------------------------------------------------===//
6984 // Vector related lowering.
6985 //
6986 
6987 /// BuildSplatI - Build a canonical splati of Val with an element size of
6988 /// SplatSize.  Cast the result to VT.
6989 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6990                              SelectionDAG &DAG, SDLoc dl) {
6991   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6992 
6993   static const MVT VTys[] = { // canonical VT to use for each size.
6994     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6995   };
6996 
6997   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6998 
6999   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7000   if (Val == -1)
7001     SplatSize = 1;
7002 
7003   EVT CanonicalVT = VTys[SplatSize-1];
7004 
7005   // Build a canonical splat for this value.
7006   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7007 }
7008 
7009 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7010 /// specified intrinsic ID.
7011 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
7012                                 SelectionDAG &DAG, SDLoc dl,
7013                                 EVT DestVT = MVT::Other) {
7014   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7015   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7016                      DAG.getConstant(IID, dl, MVT::i32), Op);
7017 }
7018 
7019 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7020 /// specified intrinsic ID.
7021 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7022                                 SelectionDAG &DAG, SDLoc dl,
7023                                 EVT DestVT = MVT::Other) {
7024   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7025   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7026                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7027 }
7028 
7029 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7030 /// specified intrinsic ID.
7031 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7032                                 SDValue Op2, SelectionDAG &DAG,
7033                                 SDLoc dl, EVT DestVT = MVT::Other) {
7034   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7035   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7036                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7037 }
7038 
7039 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7040 /// amount.  The result has the specified value type.
7041 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
7042                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
7043   // Force LHS/RHS to be the right type.
7044   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7045   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7046 
7047   int Ops[16];
7048   for (unsigned i = 0; i != 16; ++i)
7049     Ops[i] = i + Amt;
7050   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7051   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7052 }
7053 
7054 // If this is a case we can't handle, return null and let the default
7055 // expansion code take care of it.  If we CAN select this case, and if it
7056 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7057 // this case more efficiently than a constant pool load, lower it to the
7058 // sequence of ops that should be used.
7059 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7060                                              SelectionDAG &DAG) const {
7061   SDLoc dl(Op);
7062   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7063   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7064 
7065   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7066     // We first build an i32 vector, load it into a QPX register,
7067     // then convert it to a floating-point vector and compare it
7068     // to a zero vector to get the boolean result.
7069     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7070     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7071     MachinePointerInfo PtrInfo =
7072         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7073     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7074     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7075 
7076     assert(BVN->getNumOperands() == 4 &&
7077       "BUILD_VECTOR for v4i1 does not have 4 operands");
7078 
7079     bool IsConst = true;
7080     for (unsigned i = 0; i < 4; ++i) {
7081       if (BVN->getOperand(i).isUndef()) continue;
7082       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7083         IsConst = false;
7084         break;
7085       }
7086     }
7087 
7088     if (IsConst) {
7089       Constant *One =
7090         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7091       Constant *NegOne =
7092         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7093 
7094       SmallVector<Constant*, 4> CV(4, NegOne);
7095       for (unsigned i = 0; i < 4; ++i) {
7096         if (BVN->getOperand(i).isUndef())
7097           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7098         else if (isNullConstant(BVN->getOperand(i)))
7099           continue;
7100         else
7101           CV[i] = One;
7102       }
7103 
7104       Constant *CP = ConstantVector::get(CV);
7105       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7106                                           16 /* alignment */);
7107 
7108       SmallVector<SDValue, 2> Ops;
7109       Ops.push_back(DAG.getEntryNode());
7110       Ops.push_back(CPIdx);
7111 
7112       SmallVector<EVT, 2> ValueVTs;
7113       ValueVTs.push_back(MVT::v4i1);
7114       ValueVTs.push_back(MVT::Other); // chain
7115       SDVTList VTs = DAG.getVTList(ValueVTs);
7116 
7117       return DAG.getMemIntrinsicNode(
7118           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7119           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7120     }
7121 
7122     SmallVector<SDValue, 4> Stores;
7123     for (unsigned i = 0; i < 4; ++i) {
7124       if (BVN->getOperand(i).isUndef()) continue;
7125 
7126       unsigned Offset = 4*i;
7127       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7128       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7129 
7130       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7131       if (StoreSize > 4) {
7132         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
7133                                            BVN->getOperand(i), Idx,
7134                                            PtrInfo.getWithOffset(Offset),
7135                                            MVT::i32, false, false, 0));
7136       } else {
7137         SDValue StoreValue = BVN->getOperand(i);
7138         if (StoreSize < 4)
7139           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7140 
7141         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
7142                                       StoreValue, Idx,
7143                                       PtrInfo.getWithOffset(Offset),
7144                                       false, false, 0));
7145       }
7146     }
7147 
7148     SDValue StoreChain;
7149     if (!Stores.empty())
7150       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7151     else
7152       StoreChain = DAG.getEntryNode();
7153 
7154     // Now load from v4i32 into the QPX register; this will extend it to
7155     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7156     // is typed as v4f64 because the QPX register integer states are not
7157     // explicitly represented.
7158 
7159     SmallVector<SDValue, 2> Ops;
7160     Ops.push_back(StoreChain);
7161     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
7162     Ops.push_back(FIdx);
7163 
7164     SmallVector<EVT, 2> ValueVTs;
7165     ValueVTs.push_back(MVT::v4f64);
7166     ValueVTs.push_back(MVT::Other); // chain
7167     SDVTList VTs = DAG.getVTList(ValueVTs);
7168 
7169     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7170       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7171     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7172       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7173       LoadedVect);
7174 
7175     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7176 
7177     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7178   }
7179 
7180   // All other QPX vectors are handled by generic code.
7181   if (Subtarget.hasQPX())
7182     return SDValue();
7183 
7184   // Check if this is a splat of a constant value.
7185   APInt APSplatBits, APSplatUndef;
7186   unsigned SplatBitSize;
7187   bool HasAnyUndefs;
7188   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7189                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7190       SplatBitSize > 32)
7191     return SDValue();
7192 
7193   unsigned SplatBits = APSplatBits.getZExtValue();
7194   unsigned SplatUndef = APSplatUndef.getZExtValue();
7195   unsigned SplatSize = SplatBitSize / 8;
7196 
7197   // First, handle single instruction cases.
7198 
7199   // All zeros?
7200   if (SplatBits == 0) {
7201     // Canonicalize all zero vectors to be v4i32.
7202     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7203       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7204       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7205     }
7206     return Op;
7207   }
7208 
7209   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7210   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7211                     (32-SplatBitSize));
7212   if (SextVal >= -16 && SextVal <= 15)
7213     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7214 
7215   // Two instruction sequences.
7216 
7217   // If this value is in the range [-32,30] and is even, use:
7218   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7219   // If this value is in the range [17,31] and is odd, use:
7220   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7221   // If this value is in the range [-31,-17] and is odd, use:
7222   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7223   // Note the last two are three-instruction sequences.
7224   if (SextVal >= -32 && SextVal <= 31) {
7225     // To avoid having these optimizations undone by constant folding,
7226     // we convert to a pseudo that will be expanded later into one of
7227     // the above forms.
7228     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7229     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7230               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7231     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7232     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7233     if (VT == Op.getValueType())
7234       return RetVal;
7235     else
7236       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7237   }
7238 
7239   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7240   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7241   // for fneg/fabs.
7242   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7243     // Make -1 and vspltisw -1:
7244     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7245 
7246     // Make the VSLW intrinsic, computing 0x8000_0000.
7247     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7248                                    OnesV, DAG, dl);
7249 
7250     // xor by OnesV to invert it.
7251     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7252     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7253   }
7254 
7255   // Check to see if this is a wide variety of vsplti*, binop self cases.
7256   static const signed char SplatCsts[] = {
7257     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7258     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7259   };
7260 
7261   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7262     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7263     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7264     int i = SplatCsts[idx];
7265 
7266     // Figure out what shift amount will be used by altivec if shifted by i in
7267     // this splat size.
7268     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7269 
7270     // vsplti + shl self.
7271     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7272       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7273       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7274         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7275         Intrinsic::ppc_altivec_vslw
7276       };
7277       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7278       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7279     }
7280 
7281     // vsplti + srl self.
7282     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7283       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7284       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7285         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7286         Intrinsic::ppc_altivec_vsrw
7287       };
7288       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7289       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7290     }
7291 
7292     // vsplti + sra self.
7293     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7294       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7295       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7296         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7297         Intrinsic::ppc_altivec_vsraw
7298       };
7299       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7300       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7301     }
7302 
7303     // vsplti + rol self.
7304     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7305                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7306       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7307       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7308         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7309         Intrinsic::ppc_altivec_vrlw
7310       };
7311       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7312       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7313     }
7314 
7315     // t = vsplti c, result = vsldoi t, t, 1
7316     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7317       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7318       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7319       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7320     }
7321     // t = vsplti c, result = vsldoi t, t, 2
7322     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7323       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7324       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7325       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7326     }
7327     // t = vsplti c, result = vsldoi t, t, 3
7328     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7329       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7330       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7331       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7332     }
7333   }
7334 
7335   return SDValue();
7336 }
7337 
7338 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7339 /// the specified operations to build the shuffle.
7340 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7341                                       SDValue RHS, SelectionDAG &DAG,
7342                                       SDLoc dl) {
7343   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7344   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7345   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7346 
7347   enum {
7348     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7349     OP_VMRGHW,
7350     OP_VMRGLW,
7351     OP_VSPLTISW0,
7352     OP_VSPLTISW1,
7353     OP_VSPLTISW2,
7354     OP_VSPLTISW3,
7355     OP_VSLDOI4,
7356     OP_VSLDOI8,
7357     OP_VSLDOI12
7358   };
7359 
7360   if (OpNum == OP_COPY) {
7361     if (LHSID == (1*9+2)*9+3) return LHS;
7362     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7363     return RHS;
7364   }
7365 
7366   SDValue OpLHS, OpRHS;
7367   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7368   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7369 
7370   int ShufIdxs[16];
7371   switch (OpNum) {
7372   default: llvm_unreachable("Unknown i32 permute!");
7373   case OP_VMRGHW:
7374     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7375     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7376     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7377     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7378     break;
7379   case OP_VMRGLW:
7380     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7381     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7382     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7383     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7384     break;
7385   case OP_VSPLTISW0:
7386     for (unsigned i = 0; i != 16; ++i)
7387       ShufIdxs[i] = (i&3)+0;
7388     break;
7389   case OP_VSPLTISW1:
7390     for (unsigned i = 0; i != 16; ++i)
7391       ShufIdxs[i] = (i&3)+4;
7392     break;
7393   case OP_VSPLTISW2:
7394     for (unsigned i = 0; i != 16; ++i)
7395       ShufIdxs[i] = (i&3)+8;
7396     break;
7397   case OP_VSPLTISW3:
7398     for (unsigned i = 0; i != 16; ++i)
7399       ShufIdxs[i] = (i&3)+12;
7400     break;
7401   case OP_VSLDOI4:
7402     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7403   case OP_VSLDOI8:
7404     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7405   case OP_VSLDOI12:
7406     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7407   }
7408   EVT VT = OpLHS.getValueType();
7409   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7410   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7411   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7412   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7413 }
7414 
7415 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7416 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7417 /// return the code it can be lowered into.  Worst case, it can always be
7418 /// lowered into a vperm.
7419 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7420                                                SelectionDAG &DAG) const {
7421   SDLoc dl(Op);
7422   SDValue V1 = Op.getOperand(0);
7423   SDValue V2 = Op.getOperand(1);
7424   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7425   EVT VT = Op.getValueType();
7426   bool isLittleEndian = Subtarget.isLittleEndian();
7427 
7428   if (Subtarget.hasQPX()) {
7429     if (VT.getVectorNumElements() != 4)
7430       return SDValue();
7431 
7432     if (V2.isUndef()) V2 = V1;
7433 
7434     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7435     if (AlignIdx != -1) {
7436       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7437                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7438     } else if (SVOp->isSplat()) {
7439       int SplatIdx = SVOp->getSplatIndex();
7440       if (SplatIdx >= 4) {
7441         std::swap(V1, V2);
7442         SplatIdx -= 4;
7443       }
7444 
7445       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7446                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7447     }
7448 
7449     // Lower this into a qvgpci/qvfperm pair.
7450 
7451     // Compute the qvgpci literal
7452     unsigned idx = 0;
7453     for (unsigned i = 0; i < 4; ++i) {
7454       int m = SVOp->getMaskElt(i);
7455       unsigned mm = m >= 0 ? (unsigned) m : i;
7456       idx |= mm << (3-i)*3;
7457     }
7458 
7459     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7460                              DAG.getConstant(idx, dl, MVT::i32));
7461     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7462   }
7463 
7464   // Cases that are handled by instructions that take permute immediates
7465   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7466   // selected by the instruction selector.
7467   if (V2.isUndef()) {
7468     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7469         PPC::isSplatShuffleMask(SVOp, 2) ||
7470         PPC::isSplatShuffleMask(SVOp, 4) ||
7471         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7472         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7473         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7474         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7475         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7476         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7477         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7478         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7479         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7480         (Subtarget.hasP8Altivec() && (
7481          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7482          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7483          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7484       return Op;
7485     }
7486   }
7487 
7488   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7489   // and produce a fixed permutation.  If any of these match, do not lower to
7490   // VPERM.
7491   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7492   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7493       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7494       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7495       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7496       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7497       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7498       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7499       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7500       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7501       (Subtarget.hasP8Altivec() && (
7502        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7503        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7504        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7505     return Op;
7506 
7507   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7508   // perfect shuffle table to emit an optimal matching sequence.
7509   ArrayRef<int> PermMask = SVOp->getMask();
7510 
7511   unsigned PFIndexes[4];
7512   bool isFourElementShuffle = true;
7513   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7514     unsigned EltNo = 8;   // Start out undef.
7515     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7516       if (PermMask[i*4+j] < 0)
7517         continue;   // Undef, ignore it.
7518 
7519       unsigned ByteSource = PermMask[i*4+j];
7520       if ((ByteSource & 3) != j) {
7521         isFourElementShuffle = false;
7522         break;
7523       }
7524 
7525       if (EltNo == 8) {
7526         EltNo = ByteSource/4;
7527       } else if (EltNo != ByteSource/4) {
7528         isFourElementShuffle = false;
7529         break;
7530       }
7531     }
7532     PFIndexes[i] = EltNo;
7533   }
7534 
7535   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7536   // perfect shuffle vector to determine if it is cost effective to do this as
7537   // discrete instructions, or whether we should use a vperm.
7538   // For now, we skip this for little endian until such time as we have a
7539   // little-endian perfect shuffle table.
7540   if (isFourElementShuffle && !isLittleEndian) {
7541     // Compute the index in the perfect shuffle table.
7542     unsigned PFTableIndex =
7543       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7544 
7545     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7546     unsigned Cost  = (PFEntry >> 30);
7547 
7548     // Determining when to avoid vperm is tricky.  Many things affect the cost
7549     // of vperm, particularly how many times the perm mask needs to be computed.
7550     // For example, if the perm mask can be hoisted out of a loop or is already
7551     // used (perhaps because there are multiple permutes with the same shuffle
7552     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7553     // the loop requires an extra register.
7554     //
7555     // As a compromise, we only emit discrete instructions if the shuffle can be
7556     // generated in 3 or fewer operations.  When we have loop information
7557     // available, if this block is within a loop, we should avoid using vperm
7558     // for 3-operation perms and use a constant pool load instead.
7559     if (Cost < 3)
7560       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7561   }
7562 
7563   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7564   // vector that will get spilled to the constant pool.
7565   if (V2.isUndef()) V2 = V1;
7566 
7567   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7568   // that it is in input element units, not in bytes.  Convert now.
7569 
7570   // For little endian, the order of the input vectors is reversed, and
7571   // the permutation mask is complemented with respect to 31.  This is
7572   // necessary to produce proper semantics with the big-endian-biased vperm
7573   // instruction.
7574   EVT EltVT = V1.getValueType().getVectorElementType();
7575   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7576 
7577   SmallVector<SDValue, 16> ResultMask;
7578   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7579     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7580 
7581     for (unsigned j = 0; j != BytesPerElement; ++j)
7582       if (isLittleEndian)
7583         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7584                                              dl, MVT::i32));
7585       else
7586         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7587                                              MVT::i32));
7588   }
7589 
7590   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7591                                   ResultMask);
7592   if (isLittleEndian)
7593     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7594                        V2, V1, VPermMask);
7595   else
7596     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7597                        V1, V2, VPermMask);
7598 }
7599 
7600 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7601 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7602 /// information about the intrinsic.
7603 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7604                                  bool &isDot, const PPCSubtarget &Subtarget) {
7605   unsigned IntrinsicID =
7606     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7607   CompareOpc = -1;
7608   isDot = false;
7609   switch (IntrinsicID) {
7610   default: return false;
7611     // Comparison predicates.
7612   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7613   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7614   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7615   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7616   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7617   case Intrinsic::ppc_altivec_vcmpequd_p:
7618     if (Subtarget.hasP8Altivec()) {
7619       CompareOpc = 199;
7620       isDot = 1;
7621     } else
7622       return false;
7623 
7624     break;
7625   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7626   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7627   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7628   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7629   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7630   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7631     if (Subtarget.hasP8Altivec()) {
7632       CompareOpc = 967;
7633       isDot = 1;
7634     } else
7635       return false;
7636 
7637     break;
7638   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7639   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7640   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7641   case Intrinsic::ppc_altivec_vcmpgtud_p:
7642     if (Subtarget.hasP8Altivec()) {
7643       CompareOpc = 711;
7644       isDot = 1;
7645     } else
7646       return false;
7647 
7648     break;
7649     // VSX predicate comparisons use the same infrastructure
7650   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7651   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7652   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7653   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7654   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7655   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7656     if (Subtarget.hasVSX()) {
7657       switch (IntrinsicID) {
7658       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7659       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7660       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7661       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7662       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7663       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7664       }
7665       isDot = 1;
7666     }
7667     else
7668       return false;
7669 
7670     break;
7671 
7672     // Normal Comparisons.
7673   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7674   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7675   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7676   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7677   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7678   case Intrinsic::ppc_altivec_vcmpequd:
7679     if (Subtarget.hasP8Altivec()) {
7680       CompareOpc = 199;
7681       isDot = 0;
7682     } else
7683       return false;
7684 
7685     break;
7686   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7687   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7688   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7689   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7690   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7691   case Intrinsic::ppc_altivec_vcmpgtsd:
7692     if (Subtarget.hasP8Altivec()) {
7693       CompareOpc = 967;
7694       isDot = 0;
7695     } else
7696       return false;
7697 
7698     break;
7699   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7700   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7701   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7702   case Intrinsic::ppc_altivec_vcmpgtud:
7703     if (Subtarget.hasP8Altivec()) {
7704       CompareOpc = 711;
7705       isDot = 0;
7706     } else
7707       return false;
7708 
7709     break;
7710   }
7711   return true;
7712 }
7713 
7714 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7715 /// lower, do it, otherwise return null.
7716 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7717                                                    SelectionDAG &DAG) const {
7718   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7719   // opcode number of the comparison.
7720   SDLoc dl(Op);
7721   int CompareOpc;
7722   bool isDot;
7723   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7724     return SDValue();    // Don't custom lower most intrinsics.
7725 
7726   // If this is a non-dot comparison, make the VCMP node and we are done.
7727   if (!isDot) {
7728     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7729                               Op.getOperand(1), Op.getOperand(2),
7730                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7731     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7732   }
7733 
7734   // Create the PPCISD altivec 'dot' comparison node.
7735   SDValue Ops[] = {
7736     Op.getOperand(2),  // LHS
7737     Op.getOperand(3),  // RHS
7738     DAG.getConstant(CompareOpc, dl, MVT::i32)
7739   };
7740   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7741   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7742 
7743   // Now that we have the comparison, emit a copy from the CR to a GPR.
7744   // This is flagged to the above dot comparison.
7745   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7746                                 DAG.getRegister(PPC::CR6, MVT::i32),
7747                                 CompNode.getValue(1));
7748 
7749   // Unpack the result based on how the target uses it.
7750   unsigned BitNo;   // Bit # of CR6.
7751   bool InvertBit;   // Invert result?
7752   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7753   default:  // Can't happen, don't crash on invalid number though.
7754   case 0:   // Return the value of the EQ bit of CR6.
7755     BitNo = 0; InvertBit = false;
7756     break;
7757   case 1:   // Return the inverted value of the EQ bit of CR6.
7758     BitNo = 0; InvertBit = true;
7759     break;
7760   case 2:   // Return the value of the LT bit of CR6.
7761     BitNo = 2; InvertBit = false;
7762     break;
7763   case 3:   // Return the inverted value of the LT bit of CR6.
7764     BitNo = 2; InvertBit = true;
7765     break;
7766   }
7767 
7768   // Shift the bit into the low position.
7769   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7770                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7771   // Isolate the bit.
7772   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7773                       DAG.getConstant(1, dl, MVT::i32));
7774 
7775   // If we are supposed to, toggle the bit.
7776   if (InvertBit)
7777     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7778                         DAG.getConstant(1, dl, MVT::i32));
7779   return Flags;
7780 }
7781 
7782 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7783                                                   SelectionDAG &DAG) const {
7784   SDLoc dl(Op);
7785   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7786   // instructions), but for smaller types, we need to first extend up to v2i32
7787   // before doing going farther.
7788   if (Op.getValueType() == MVT::v2i64) {
7789     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7790     if (ExtVT != MVT::v2i32) {
7791       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7792       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7793                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7794                                         ExtVT.getVectorElementType(), 4)));
7795       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7796       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7797                        DAG.getValueType(MVT::v2i32));
7798     }
7799 
7800     return Op;
7801   }
7802 
7803   return SDValue();
7804 }
7805 
7806 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7807                                                    SelectionDAG &DAG) const {
7808   SDLoc dl(Op);
7809   // Create a stack slot that is 16-byte aligned.
7810   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7811   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7812   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7813   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7814 
7815   // Store the input value into Value#0 of the stack slot.
7816   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7817                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7818                                false, false, 0);
7819   // Load it out.
7820   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7821                      false, false, false, 0);
7822 }
7823 
7824 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7825                                                    SelectionDAG &DAG) const {
7826   SDLoc dl(Op);
7827   SDNode *N = Op.getNode();
7828 
7829   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7830          "Unknown extract_vector_elt type");
7831 
7832   SDValue Value = N->getOperand(0);
7833 
7834   // The first part of this is like the store lowering except that we don't
7835   // need to track the chain.
7836 
7837   // The values are now known to be -1 (false) or 1 (true). To convert this
7838   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7839   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7840   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7841 
7842   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7843   // understand how to form the extending load.
7844   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7845 
7846   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7847 
7848   // Now convert to an integer and store.
7849   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7850     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7851     Value);
7852 
7853   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7854   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7855   MachinePointerInfo PtrInfo =
7856       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7857   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7858   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7859 
7860   SDValue StoreChain = DAG.getEntryNode();
7861   SmallVector<SDValue, 2> Ops;
7862   Ops.push_back(StoreChain);
7863   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7864   Ops.push_back(Value);
7865   Ops.push_back(FIdx);
7866 
7867   SmallVector<EVT, 2> ValueVTs;
7868   ValueVTs.push_back(MVT::Other); // chain
7869   SDVTList VTs = DAG.getVTList(ValueVTs);
7870 
7871   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7872     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7873 
7874   // Extract the value requested.
7875   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7876   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7877   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7878 
7879   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7880                                PtrInfo.getWithOffset(Offset),
7881                                false, false, false, 0);
7882 
7883   if (!Subtarget.useCRBits())
7884     return IntVal;
7885 
7886   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7887 }
7888 
7889 /// Lowering for QPX v4i1 loads
7890 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7891                                            SelectionDAG &DAG) const {
7892   SDLoc dl(Op);
7893   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7894   SDValue LoadChain = LN->getChain();
7895   SDValue BasePtr = LN->getBasePtr();
7896 
7897   if (Op.getValueType() == MVT::v4f64 ||
7898       Op.getValueType() == MVT::v4f32) {
7899     EVT MemVT = LN->getMemoryVT();
7900     unsigned Alignment = LN->getAlignment();
7901 
7902     // If this load is properly aligned, then it is legal.
7903     if (Alignment >= MemVT.getStoreSize())
7904       return Op;
7905 
7906     EVT ScalarVT = Op.getValueType().getScalarType(),
7907         ScalarMemVT = MemVT.getScalarType();
7908     unsigned Stride = ScalarMemVT.getStoreSize();
7909 
7910     SmallVector<SDValue, 8> Vals, LoadChains;
7911     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7912       SDValue Load;
7913       if (ScalarVT != ScalarMemVT)
7914         Load =
7915           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7916                          BasePtr,
7917                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7918                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7919                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7920                          LN->getAAInfo());
7921       else
7922         Load =
7923           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7924                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7925                        LN->isVolatile(), LN->isNonTemporal(),
7926                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7927                        LN->getAAInfo());
7928 
7929       if (Idx == 0 && LN->isIndexed()) {
7930         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7931                "Unknown addressing mode on vector load");
7932         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7933                                   LN->getAddressingMode());
7934       }
7935 
7936       Vals.push_back(Load);
7937       LoadChains.push_back(Load.getValue(1));
7938 
7939       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7940                             DAG.getConstant(Stride, dl,
7941                                             BasePtr.getValueType()));
7942     }
7943 
7944     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7945     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7946                                 Op.getValueType(), Vals);
7947 
7948     if (LN->isIndexed()) {
7949       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7950       return DAG.getMergeValues(RetOps, dl);
7951     }
7952 
7953     SDValue RetOps[] = { Value, TF };
7954     return DAG.getMergeValues(RetOps, dl);
7955   }
7956 
7957   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7958   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7959 
7960   // To lower v4i1 from a byte array, we load the byte elements of the
7961   // vector and then reuse the BUILD_VECTOR logic.
7962 
7963   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7964   for (unsigned i = 0; i < 4; ++i) {
7965     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7966     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7967 
7968     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7969                         dl, MVT::i32, LoadChain, Idx,
7970                         LN->getPointerInfo().getWithOffset(i),
7971                         MVT::i8 /* memory type */,
7972                         LN->isVolatile(), LN->isNonTemporal(),
7973                         LN->isInvariant(),
7974                         1 /* alignment */, LN->getAAInfo()));
7975     VectElmtChains.push_back(VectElmts[i].getValue(1));
7976   }
7977 
7978   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7979   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7980 
7981   SDValue RVals[] = { Value, LoadChain };
7982   return DAG.getMergeValues(RVals, dl);
7983 }
7984 
7985 /// Lowering for QPX v4i1 stores
7986 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7987                                             SelectionDAG &DAG) const {
7988   SDLoc dl(Op);
7989   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7990   SDValue StoreChain = SN->getChain();
7991   SDValue BasePtr = SN->getBasePtr();
7992   SDValue Value = SN->getValue();
7993 
7994   if (Value.getValueType() == MVT::v4f64 ||
7995       Value.getValueType() == MVT::v4f32) {
7996     EVT MemVT = SN->getMemoryVT();
7997     unsigned Alignment = SN->getAlignment();
7998 
7999     // If this store is properly aligned, then it is legal.
8000     if (Alignment >= MemVT.getStoreSize())
8001       return Op;
8002 
8003     EVT ScalarVT = Value.getValueType().getScalarType(),
8004         ScalarMemVT = MemVT.getScalarType();
8005     unsigned Stride = ScalarMemVT.getStoreSize();
8006 
8007     SmallVector<SDValue, 8> Stores;
8008     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8009       SDValue Ex = DAG.getNode(
8010           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8011           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8012       SDValue Store;
8013       if (ScalarVT != ScalarMemVT)
8014         Store =
8015           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8016                             SN->getPointerInfo().getWithOffset(Idx*Stride),
8017                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
8018                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8019       else
8020         Store =
8021           DAG.getStore(StoreChain, dl, Ex, BasePtr,
8022                        SN->getPointerInfo().getWithOffset(Idx*Stride),
8023                        SN->isVolatile(), SN->isNonTemporal(),
8024                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8025 
8026       if (Idx == 0 && SN->isIndexed()) {
8027         assert(SN->getAddressingMode() == ISD::PRE_INC &&
8028                "Unknown addressing mode on vector store");
8029         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8030                                     SN->getAddressingMode());
8031       }
8032 
8033       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8034                             DAG.getConstant(Stride, dl,
8035                                             BasePtr.getValueType()));
8036       Stores.push_back(Store);
8037     }
8038 
8039     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8040 
8041     if (SN->isIndexed()) {
8042       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8043       return DAG.getMergeValues(RetOps, dl);
8044     }
8045 
8046     return TF;
8047   }
8048 
8049   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8050   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8051 
8052   // The values are now known to be -1 (false) or 1 (true). To convert this
8053   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8054   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8055   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8056 
8057   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8058   // understand how to form the extending load.
8059   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8060 
8061   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8062 
8063   // Now convert to an integer and store.
8064   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8065     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8066     Value);
8067 
8068   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
8069   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
8070   MachinePointerInfo PtrInfo =
8071       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8072   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8073   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8074 
8075   SmallVector<SDValue, 2> Ops;
8076   Ops.push_back(StoreChain);
8077   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
8078   Ops.push_back(Value);
8079   Ops.push_back(FIdx);
8080 
8081   SmallVector<EVT, 2> ValueVTs;
8082   ValueVTs.push_back(MVT::Other); // chain
8083   SDVTList VTs = DAG.getVTList(ValueVTs);
8084 
8085   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8086     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8087 
8088   // Move data into the byte array.
8089   SmallVector<SDValue, 4> Loads, LoadChains;
8090   for (unsigned i = 0; i < 4; ++i) {
8091     unsigned Offset = 4*i;
8092     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8093     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8094 
8095     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8096                                    PtrInfo.getWithOffset(Offset),
8097                                    false, false, false, 0));
8098     LoadChains.push_back(Loads[i].getValue(1));
8099   }
8100 
8101   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8102 
8103   SmallVector<SDValue, 4> Stores;
8104   for (unsigned i = 0; i < 4; ++i) {
8105     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8106     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8107 
8108     Stores.push_back(DAG.getTruncStore(
8109         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8110         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
8111         1 /* alignment */, SN->getAAInfo()));
8112   }
8113 
8114   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8115 
8116   return StoreChain;
8117 }
8118 
8119 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8120   SDLoc dl(Op);
8121   if (Op.getValueType() == MVT::v4i32) {
8122     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8123 
8124     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8125     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8126 
8127     SDValue RHSSwap =   // = vrlw RHS, 16
8128       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8129 
8130     // Shrinkify inputs to v8i16.
8131     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8132     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8133     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8134 
8135     // Low parts multiplied together, generating 32-bit results (we ignore the
8136     // top parts).
8137     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8138                                         LHS, RHS, DAG, dl, MVT::v4i32);
8139 
8140     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8141                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8142     // Shift the high parts up 16 bits.
8143     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8144                               Neg16, DAG, dl);
8145     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8146   } else if (Op.getValueType() == MVT::v8i16) {
8147     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8148 
8149     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8150 
8151     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8152                             LHS, RHS, Zero, DAG, dl);
8153   } else if (Op.getValueType() == MVT::v16i8) {
8154     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8155     bool isLittleEndian = Subtarget.isLittleEndian();
8156 
8157     // Multiply the even 8-bit parts, producing 16-bit sums.
8158     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8159                                            LHS, RHS, DAG, dl, MVT::v8i16);
8160     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8161 
8162     // Multiply the odd 8-bit parts, producing 16-bit sums.
8163     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8164                                           LHS, RHS, DAG, dl, MVT::v8i16);
8165     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8166 
8167     // Merge the results together.  Because vmuleub and vmuloub are
8168     // instructions with a big-endian bias, we must reverse the
8169     // element numbering and reverse the meaning of "odd" and "even"
8170     // when generating little endian code.
8171     int Ops[16];
8172     for (unsigned i = 0; i != 8; ++i) {
8173       if (isLittleEndian) {
8174         Ops[i*2  ] = 2*i;
8175         Ops[i*2+1] = 2*i+16;
8176       } else {
8177         Ops[i*2  ] = 2*i+1;
8178         Ops[i*2+1] = 2*i+1+16;
8179       }
8180     }
8181     if (isLittleEndian)
8182       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8183     else
8184       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8185   } else {
8186     llvm_unreachable("Unknown mul to lower!");
8187   }
8188 }
8189 
8190 /// LowerOperation - Provide custom lowering hooks for some operations.
8191 ///
8192 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8193   switch (Op.getOpcode()) {
8194   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8195   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8196   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8197   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8198   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8199   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8200   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8201   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8202   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8203   case ISD::VASTART:
8204     return LowerVASTART(Op, DAG, Subtarget);
8205 
8206   case ISD::VAARG:
8207     return LowerVAARG(Op, DAG, Subtarget);
8208 
8209   case ISD::VACOPY:
8210     return LowerVACOPY(Op, DAG, Subtarget);
8211 
8212   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
8213   case ISD::DYNAMIC_STACKALLOC:
8214     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
8215   case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget);
8216 
8217   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8218   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8219 
8220   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8221   case ISD::STORE:              return LowerSTORE(Op, DAG);
8222   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8223   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8224   case ISD::FP_TO_UINT:
8225   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8226                                                       SDLoc(Op));
8227   case ISD::UINT_TO_FP:
8228   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8229   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8230 
8231   // Lower 64-bit shifts.
8232   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
8233   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
8234   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
8235 
8236   // Vector-related lowering.
8237   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8238   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8239   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8240   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8241   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
8242   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8243   case ISD::MUL:                return LowerMUL(Op, DAG);
8244 
8245   // For counter-based loop handling.
8246   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8247 
8248   // Frame & Return address.
8249   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8250   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8251   }
8252 }
8253 
8254 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8255                                            SmallVectorImpl<SDValue>&Results,
8256                                            SelectionDAG &DAG) const {
8257   SDLoc dl(N);
8258   switch (N->getOpcode()) {
8259   default:
8260     llvm_unreachable("Do not know how to custom type legalize this operation!");
8261   case ISD::READCYCLECOUNTER: {
8262     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8263     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8264 
8265     Results.push_back(RTB);
8266     Results.push_back(RTB.getValue(1));
8267     Results.push_back(RTB.getValue(2));
8268     break;
8269   }
8270   case ISD::INTRINSIC_W_CHAIN: {
8271     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8272         Intrinsic::ppc_is_decremented_ctr_nonzero)
8273       break;
8274 
8275     assert(N->getValueType(0) == MVT::i1 &&
8276            "Unexpected result type for CTR decrement intrinsic");
8277     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8278                                  N->getValueType(0));
8279     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8280     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8281                                  N->getOperand(1));
8282 
8283     Results.push_back(NewInt);
8284     Results.push_back(NewInt.getValue(1));
8285     break;
8286   }
8287   case ISD::VAARG: {
8288     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8289       return;
8290 
8291     EVT VT = N->getValueType(0);
8292 
8293     if (VT == MVT::i64) {
8294       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
8295 
8296       Results.push_back(NewNode);
8297       Results.push_back(NewNode.getValue(1));
8298     }
8299     return;
8300   }
8301   case ISD::FP_ROUND_INREG: {
8302     assert(N->getValueType(0) == MVT::ppcf128);
8303     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8304     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8305                              MVT::f64, N->getOperand(0),
8306                              DAG.getIntPtrConstant(0, dl));
8307     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8308                              MVT::f64, N->getOperand(0),
8309                              DAG.getIntPtrConstant(1, dl));
8310 
8311     // Add the two halves of the long double in round-to-zero mode.
8312     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8313 
8314     // We know the low half is about to be thrown away, so just use something
8315     // convenient.
8316     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8317                                 FPreg, FPreg));
8318     return;
8319   }
8320   case ISD::FP_TO_SINT:
8321   case ISD::FP_TO_UINT:
8322     // LowerFP_TO_INT() can only handle f32 and f64.
8323     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8324       return;
8325     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8326     return;
8327   }
8328 }
8329 
8330 //===----------------------------------------------------------------------===//
8331 //  Other Lowering Code
8332 //===----------------------------------------------------------------------===//
8333 
8334 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8335   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8336   Function *Func = Intrinsic::getDeclaration(M, Id);
8337   return Builder.CreateCall(Func, {});
8338 }
8339 
8340 // The mappings for emitLeading/TrailingFence is taken from
8341 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8342 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8343                                          AtomicOrdering Ord, bool IsStore,
8344                                          bool IsLoad) const {
8345   if (Ord == AtomicOrdering::SequentiallyConsistent)
8346     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8347   if (isReleaseOrStronger(Ord))
8348     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8349   return nullptr;
8350 }
8351 
8352 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8353                                           AtomicOrdering Ord, bool IsStore,
8354                                           bool IsLoad) const {
8355   if (IsLoad && isAcquireOrStronger(Ord))
8356     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8357   // FIXME: this is too conservative, a dependent branch + isync is enough.
8358   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8359   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8360   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8361   return nullptr;
8362 }
8363 
8364 MachineBasicBlock *
8365 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8366                                     unsigned AtomicSize,
8367                                     unsigned BinOpcode) const {
8368   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8369   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8370 
8371   auto LoadMnemonic = PPC::LDARX;
8372   auto StoreMnemonic = PPC::STDCX;
8373   switch (AtomicSize) {
8374   default:
8375     llvm_unreachable("Unexpected size of atomic entity");
8376   case 1:
8377     LoadMnemonic = PPC::LBARX;
8378     StoreMnemonic = PPC::STBCX;
8379     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8380     break;
8381   case 2:
8382     LoadMnemonic = PPC::LHARX;
8383     StoreMnemonic = PPC::STHCX;
8384     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8385     break;
8386   case 4:
8387     LoadMnemonic = PPC::LWARX;
8388     StoreMnemonic = PPC::STWCX;
8389     break;
8390   case 8:
8391     LoadMnemonic = PPC::LDARX;
8392     StoreMnemonic = PPC::STDCX;
8393     break;
8394   }
8395 
8396   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8397   MachineFunction *F = BB->getParent();
8398   MachineFunction::iterator It = ++BB->getIterator();
8399 
8400   unsigned dest = MI->getOperand(0).getReg();
8401   unsigned ptrA = MI->getOperand(1).getReg();
8402   unsigned ptrB = MI->getOperand(2).getReg();
8403   unsigned incr = MI->getOperand(3).getReg();
8404   DebugLoc dl = MI->getDebugLoc();
8405 
8406   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8407   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8408   F->insert(It, loopMBB);
8409   F->insert(It, exitMBB);
8410   exitMBB->splice(exitMBB->begin(), BB,
8411                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8412   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8413 
8414   MachineRegisterInfo &RegInfo = F->getRegInfo();
8415   unsigned TmpReg = (!BinOpcode) ? incr :
8416     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8417                                            : &PPC::GPRCRegClass);
8418 
8419   //  thisMBB:
8420   //   ...
8421   //   fallthrough --> loopMBB
8422   BB->addSuccessor(loopMBB);
8423 
8424   //  loopMBB:
8425   //   l[wd]arx dest, ptr
8426   //   add r0, dest, incr
8427   //   st[wd]cx. r0, ptr
8428   //   bne- loopMBB
8429   //   fallthrough --> exitMBB
8430   BB = loopMBB;
8431   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8432     .addReg(ptrA).addReg(ptrB);
8433   if (BinOpcode)
8434     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8435   BuildMI(BB, dl, TII->get(StoreMnemonic))
8436     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8437   BuildMI(BB, dl, TII->get(PPC::BCC))
8438     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8439   BB->addSuccessor(loopMBB);
8440   BB->addSuccessor(exitMBB);
8441 
8442   //  exitMBB:
8443   //   ...
8444   BB = exitMBB;
8445   return BB;
8446 }
8447 
8448 MachineBasicBlock *
8449 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8450                                             MachineBasicBlock *BB,
8451                                             bool is8bit,    // operation
8452                                             unsigned BinOpcode) const {
8453   // If we support part-word atomic mnemonics, just use them
8454   if (Subtarget.hasPartwordAtomics())
8455     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8456 
8457   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8458   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8459   // In 64 bit mode we have to use 64 bits for addresses, even though the
8460   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8461   // registers without caring whether they're 32 or 64, but here we're
8462   // doing actual arithmetic on the addresses.
8463   bool is64bit = Subtarget.isPPC64();
8464   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8465 
8466   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8467   MachineFunction *F = BB->getParent();
8468   MachineFunction::iterator It = ++BB->getIterator();
8469 
8470   unsigned dest = MI->getOperand(0).getReg();
8471   unsigned ptrA = MI->getOperand(1).getReg();
8472   unsigned ptrB = MI->getOperand(2).getReg();
8473   unsigned incr = MI->getOperand(3).getReg();
8474   DebugLoc dl = MI->getDebugLoc();
8475 
8476   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8477   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8478   F->insert(It, loopMBB);
8479   F->insert(It, exitMBB);
8480   exitMBB->splice(exitMBB->begin(), BB,
8481                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8482   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8483 
8484   MachineRegisterInfo &RegInfo = F->getRegInfo();
8485   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8486                                           : &PPC::GPRCRegClass;
8487   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8488   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8489   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8490   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8491   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8492   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8493   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8494   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8495   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8496   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8497   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8498   unsigned Ptr1Reg;
8499   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8500 
8501   //  thisMBB:
8502   //   ...
8503   //   fallthrough --> loopMBB
8504   BB->addSuccessor(loopMBB);
8505 
8506   // The 4-byte load must be aligned, while a char or short may be
8507   // anywhere in the word.  Hence all this nasty bookkeeping code.
8508   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8509   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8510   //   xori shift, shift1, 24 [16]
8511   //   rlwinm ptr, ptr1, 0, 0, 29
8512   //   slw incr2, incr, shift
8513   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8514   //   slw mask, mask2, shift
8515   //  loopMBB:
8516   //   lwarx tmpDest, ptr
8517   //   add tmp, tmpDest, incr2
8518   //   andc tmp2, tmpDest, mask
8519   //   and tmp3, tmp, mask
8520   //   or tmp4, tmp3, tmp2
8521   //   stwcx. tmp4, ptr
8522   //   bne- loopMBB
8523   //   fallthrough --> exitMBB
8524   //   srw dest, tmpDest, shift
8525   if (ptrA != ZeroReg) {
8526     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8527     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8528       .addReg(ptrA).addReg(ptrB);
8529   } else {
8530     Ptr1Reg = ptrB;
8531   }
8532   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8533       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8534   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8535       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8536   if (is64bit)
8537     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8538       .addReg(Ptr1Reg).addImm(0).addImm(61);
8539   else
8540     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8541       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8542   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8543       .addReg(incr).addReg(ShiftReg);
8544   if (is8bit)
8545     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8546   else {
8547     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8548     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8549   }
8550   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8551       .addReg(Mask2Reg).addReg(ShiftReg);
8552 
8553   BB = loopMBB;
8554   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8555     .addReg(ZeroReg).addReg(PtrReg);
8556   if (BinOpcode)
8557     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8558       .addReg(Incr2Reg).addReg(TmpDestReg);
8559   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8560     .addReg(TmpDestReg).addReg(MaskReg);
8561   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8562     .addReg(TmpReg).addReg(MaskReg);
8563   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8564     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8565   BuildMI(BB, dl, TII->get(PPC::STWCX))
8566     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8567   BuildMI(BB, dl, TII->get(PPC::BCC))
8568     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8569   BB->addSuccessor(loopMBB);
8570   BB->addSuccessor(exitMBB);
8571 
8572   //  exitMBB:
8573   //   ...
8574   BB = exitMBB;
8575   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8576     .addReg(ShiftReg);
8577   return BB;
8578 }
8579 
8580 llvm::MachineBasicBlock*
8581 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8582                                     MachineBasicBlock *MBB) const {
8583   DebugLoc DL = MI->getDebugLoc();
8584   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8585 
8586   MachineFunction *MF = MBB->getParent();
8587   MachineRegisterInfo &MRI = MF->getRegInfo();
8588 
8589   const BasicBlock *BB = MBB->getBasicBlock();
8590   MachineFunction::iterator I = ++MBB->getIterator();
8591 
8592   // Memory Reference
8593   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8594   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8595 
8596   unsigned DstReg = MI->getOperand(0).getReg();
8597   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8598   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8599   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8600   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8601 
8602   MVT PVT = getPointerTy(MF->getDataLayout());
8603   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8604          "Invalid Pointer Size!");
8605   // For v = setjmp(buf), we generate
8606   //
8607   // thisMBB:
8608   //  SjLjSetup mainMBB
8609   //  bl mainMBB
8610   //  v_restore = 1
8611   //  b sinkMBB
8612   //
8613   // mainMBB:
8614   //  buf[LabelOffset] = LR
8615   //  v_main = 0
8616   //
8617   // sinkMBB:
8618   //  v = phi(main, restore)
8619   //
8620 
8621   MachineBasicBlock *thisMBB = MBB;
8622   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8623   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8624   MF->insert(I, mainMBB);
8625   MF->insert(I, sinkMBB);
8626 
8627   MachineInstrBuilder MIB;
8628 
8629   // Transfer the remainder of BB and its successor edges to sinkMBB.
8630   sinkMBB->splice(sinkMBB->begin(), MBB,
8631                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8632   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8633 
8634   // Note that the structure of the jmp_buf used here is not compatible
8635   // with that used by libc, and is not designed to be. Specifically, it
8636   // stores only those 'reserved' registers that LLVM does not otherwise
8637   // understand how to spill. Also, by convention, by the time this
8638   // intrinsic is called, Clang has already stored the frame address in the
8639   // first slot of the buffer and stack address in the third. Following the
8640   // X86 target code, we'll store the jump address in the second slot. We also
8641   // need to save the TOC pointer (R2) to handle jumps between shared
8642   // libraries, and that will be stored in the fourth slot. The thread
8643   // identifier (R13) is not affected.
8644 
8645   // thisMBB:
8646   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8647   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8648   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8649 
8650   // Prepare IP either in reg.
8651   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8652   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8653   unsigned BufReg = MI->getOperand(1).getReg();
8654 
8655   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8656     setUsesTOCBasePtr(*MBB->getParent());
8657     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8658             .addReg(PPC::X2)
8659             .addImm(TOCOffset)
8660             .addReg(BufReg);
8661     MIB.setMemRefs(MMOBegin, MMOEnd);
8662   }
8663 
8664   // Naked functions never have a base pointer, and so we use r1. For all
8665   // other functions, this decision must be delayed until during PEI.
8666   unsigned BaseReg;
8667   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8668     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8669   else
8670     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8671 
8672   MIB = BuildMI(*thisMBB, MI, DL,
8673                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8674             .addReg(BaseReg)
8675             .addImm(BPOffset)
8676             .addReg(BufReg);
8677   MIB.setMemRefs(MMOBegin, MMOEnd);
8678 
8679   // Setup
8680   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8681   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8682   MIB.addRegMask(TRI->getNoPreservedMask());
8683 
8684   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8685 
8686   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8687           .addMBB(mainMBB);
8688   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8689 
8690   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8691   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8692 
8693   // mainMBB:
8694   //  mainDstReg = 0
8695   MIB =
8696       BuildMI(mainMBB, DL,
8697               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8698 
8699   // Store IP
8700   if (Subtarget.isPPC64()) {
8701     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8702             .addReg(LabelReg)
8703             .addImm(LabelOffset)
8704             .addReg(BufReg);
8705   } else {
8706     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8707             .addReg(LabelReg)
8708             .addImm(LabelOffset)
8709             .addReg(BufReg);
8710   }
8711 
8712   MIB.setMemRefs(MMOBegin, MMOEnd);
8713 
8714   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8715   mainMBB->addSuccessor(sinkMBB);
8716 
8717   // sinkMBB:
8718   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8719           TII->get(PPC::PHI), DstReg)
8720     .addReg(mainDstReg).addMBB(mainMBB)
8721     .addReg(restoreDstReg).addMBB(thisMBB);
8722 
8723   MI->eraseFromParent();
8724   return sinkMBB;
8725 }
8726 
8727 MachineBasicBlock *
8728 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8729                                      MachineBasicBlock *MBB) const {
8730   DebugLoc DL = MI->getDebugLoc();
8731   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8732 
8733   MachineFunction *MF = MBB->getParent();
8734   MachineRegisterInfo &MRI = MF->getRegInfo();
8735 
8736   // Memory Reference
8737   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8738   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8739 
8740   MVT PVT = getPointerTy(MF->getDataLayout());
8741   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8742          "Invalid Pointer Size!");
8743 
8744   const TargetRegisterClass *RC =
8745     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8746   unsigned Tmp = MRI.createVirtualRegister(RC);
8747   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8748   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8749   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8750   unsigned BP =
8751       (PVT == MVT::i64)
8752           ? PPC::X30
8753           : (Subtarget.isSVR4ABI() &&
8754                      MF->getTarget().getRelocationModel() == Reloc::PIC_
8755                  ? PPC::R29
8756                  : PPC::R30);
8757 
8758   MachineInstrBuilder MIB;
8759 
8760   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8761   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8762   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8763   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8764 
8765   unsigned BufReg = MI->getOperand(0).getReg();
8766 
8767   // Reload FP (the jumped-to function may not have had a
8768   // frame pointer, and if so, then its r31 will be restored
8769   // as necessary).
8770   if (PVT == MVT::i64) {
8771     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8772             .addImm(0)
8773             .addReg(BufReg);
8774   } else {
8775     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8776             .addImm(0)
8777             .addReg(BufReg);
8778   }
8779   MIB.setMemRefs(MMOBegin, MMOEnd);
8780 
8781   // Reload IP
8782   if (PVT == MVT::i64) {
8783     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8784             .addImm(LabelOffset)
8785             .addReg(BufReg);
8786   } else {
8787     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8788             .addImm(LabelOffset)
8789             .addReg(BufReg);
8790   }
8791   MIB.setMemRefs(MMOBegin, MMOEnd);
8792 
8793   // Reload SP
8794   if (PVT == MVT::i64) {
8795     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8796             .addImm(SPOffset)
8797             .addReg(BufReg);
8798   } else {
8799     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8800             .addImm(SPOffset)
8801             .addReg(BufReg);
8802   }
8803   MIB.setMemRefs(MMOBegin, MMOEnd);
8804 
8805   // Reload BP
8806   if (PVT == MVT::i64) {
8807     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8808             .addImm(BPOffset)
8809             .addReg(BufReg);
8810   } else {
8811     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8812             .addImm(BPOffset)
8813             .addReg(BufReg);
8814   }
8815   MIB.setMemRefs(MMOBegin, MMOEnd);
8816 
8817   // Reload TOC
8818   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8819     setUsesTOCBasePtr(*MBB->getParent());
8820     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8821             .addImm(TOCOffset)
8822             .addReg(BufReg);
8823 
8824     MIB.setMemRefs(MMOBegin, MMOEnd);
8825   }
8826 
8827   // Jump
8828   BuildMI(*MBB, MI, DL,
8829           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8830   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8831 
8832   MI->eraseFromParent();
8833   return MBB;
8834 }
8835 
8836 MachineBasicBlock *
8837 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8838                                                MachineBasicBlock *BB) const {
8839   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8840       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8841     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8842         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8843       // Call lowering should have added an r2 operand to indicate a dependence
8844       // on the TOC base pointer value. It can't however, because there is no
8845       // way to mark the dependence as implicit there, and so the stackmap code
8846       // will confuse it with a regular operand. Instead, add the dependence
8847       // here.
8848       setUsesTOCBasePtr(*BB->getParent());
8849       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8850     }
8851 
8852     return emitPatchPoint(MI, BB);
8853   }
8854 
8855   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8856       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8857     return emitEHSjLjSetJmp(MI, BB);
8858   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8859              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8860     return emitEHSjLjLongJmp(MI, BB);
8861   }
8862 
8863   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8864 
8865   // To "insert" these instructions we actually have to insert their
8866   // control-flow patterns.
8867   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8868   MachineFunction::iterator It = ++BB->getIterator();
8869 
8870   MachineFunction *F = BB->getParent();
8871 
8872   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8873                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8874                               MI->getOpcode() == PPC::SELECT_I4 ||
8875                               MI->getOpcode() == PPC::SELECT_I8)) {
8876     SmallVector<MachineOperand, 2> Cond;
8877     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8878         MI->getOpcode() == PPC::SELECT_CC_I8)
8879       Cond.push_back(MI->getOperand(4));
8880     else
8881       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8882     Cond.push_back(MI->getOperand(1));
8883 
8884     DebugLoc dl = MI->getDebugLoc();
8885     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8886                       Cond, MI->getOperand(2).getReg(),
8887                       MI->getOperand(3).getReg());
8888   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8889              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8890              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8891              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8892              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8893              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8894              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8895              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8896              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8897              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8898              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8899              MI->getOpcode() == PPC::SELECT_I4 ||
8900              MI->getOpcode() == PPC::SELECT_I8 ||
8901              MI->getOpcode() == PPC::SELECT_F4 ||
8902              MI->getOpcode() == PPC::SELECT_F8 ||
8903              MI->getOpcode() == PPC::SELECT_QFRC ||
8904              MI->getOpcode() == PPC::SELECT_QSRC ||
8905              MI->getOpcode() == PPC::SELECT_QBRC ||
8906              MI->getOpcode() == PPC::SELECT_VRRC ||
8907              MI->getOpcode() == PPC::SELECT_VSFRC ||
8908              MI->getOpcode() == PPC::SELECT_VSSRC ||
8909              MI->getOpcode() == PPC::SELECT_VSRC) {
8910     // The incoming instruction knows the destination vreg to set, the
8911     // condition code register to branch on, the true/false values to
8912     // select between, and a branch opcode to use.
8913 
8914     //  thisMBB:
8915     //  ...
8916     //   TrueVal = ...
8917     //   cmpTY ccX, r1, r2
8918     //   bCC copy1MBB
8919     //   fallthrough --> copy0MBB
8920     MachineBasicBlock *thisMBB = BB;
8921     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8922     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8923     DebugLoc dl = MI->getDebugLoc();
8924     F->insert(It, copy0MBB);
8925     F->insert(It, sinkMBB);
8926 
8927     // Transfer the remainder of BB and its successor edges to sinkMBB.
8928     sinkMBB->splice(sinkMBB->begin(), BB,
8929                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8930     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8931 
8932     // Next, add the true and fallthrough blocks as its successors.
8933     BB->addSuccessor(copy0MBB);
8934     BB->addSuccessor(sinkMBB);
8935 
8936     if (MI->getOpcode() == PPC::SELECT_I4 ||
8937         MI->getOpcode() == PPC::SELECT_I8 ||
8938         MI->getOpcode() == PPC::SELECT_F4 ||
8939         MI->getOpcode() == PPC::SELECT_F8 ||
8940         MI->getOpcode() == PPC::SELECT_QFRC ||
8941         MI->getOpcode() == PPC::SELECT_QSRC ||
8942         MI->getOpcode() == PPC::SELECT_QBRC ||
8943         MI->getOpcode() == PPC::SELECT_VRRC ||
8944         MI->getOpcode() == PPC::SELECT_VSFRC ||
8945         MI->getOpcode() == PPC::SELECT_VSSRC ||
8946         MI->getOpcode() == PPC::SELECT_VSRC) {
8947       BuildMI(BB, dl, TII->get(PPC::BC))
8948         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8949     } else {
8950       unsigned SelectPred = MI->getOperand(4).getImm();
8951       BuildMI(BB, dl, TII->get(PPC::BCC))
8952         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8953     }
8954 
8955     //  copy0MBB:
8956     //   %FalseValue = ...
8957     //   # fallthrough to sinkMBB
8958     BB = copy0MBB;
8959 
8960     // Update machine-CFG edges
8961     BB->addSuccessor(sinkMBB);
8962 
8963     //  sinkMBB:
8964     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8965     //  ...
8966     BB = sinkMBB;
8967     BuildMI(*BB, BB->begin(), dl,
8968             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8969       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8970       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8971   } else if (MI->getOpcode() == PPC::ReadTB) {
8972     // To read the 64-bit time-base register on a 32-bit target, we read the
8973     // two halves. Should the counter have wrapped while it was being read, we
8974     // need to try again.
8975     // ...
8976     // readLoop:
8977     // mfspr Rx,TBU # load from TBU
8978     // mfspr Ry,TB  # load from TB
8979     // mfspr Rz,TBU # load from TBU
8980     // cmpw crX,Rx,Rz # check if 'old'='new'
8981     // bne readLoop   # branch if they're not equal
8982     // ...
8983 
8984     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8985     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8986     DebugLoc dl = MI->getDebugLoc();
8987     F->insert(It, readMBB);
8988     F->insert(It, sinkMBB);
8989 
8990     // Transfer the remainder of BB and its successor edges to sinkMBB.
8991     sinkMBB->splice(sinkMBB->begin(), BB,
8992                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8993     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8994 
8995     BB->addSuccessor(readMBB);
8996     BB = readMBB;
8997 
8998     MachineRegisterInfo &RegInfo = F->getRegInfo();
8999     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9000     unsigned LoReg = MI->getOperand(0).getReg();
9001     unsigned HiReg = MI->getOperand(1).getReg();
9002 
9003     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9004     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9005     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9006 
9007     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9008 
9009     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9010       .addReg(HiReg).addReg(ReadAgainReg);
9011     BuildMI(BB, dl, TII->get(PPC::BCC))
9012       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9013 
9014     BB->addSuccessor(readMBB);
9015     BB->addSuccessor(sinkMBB);
9016   }
9017   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9018     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9019   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9020     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9021   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9022     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9023   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9024     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9025 
9026   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9027     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9028   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9029     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9030   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9031     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9032   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9033     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9034 
9035   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9036     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9037   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9038     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9039   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9040     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9041   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9042     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9043 
9044   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9045     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9046   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9047     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9048   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9049     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9050   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9051     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9052 
9053   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9054     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9055   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9056     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9057   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9058     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9059   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9060     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9061 
9062   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9063     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9064   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9065     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9066   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9067     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9068   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9069     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9070 
9071   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
9072     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9073   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
9074     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9075   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
9076     BB = EmitAtomicBinary(MI, BB, 4, 0);
9077   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
9078     BB = EmitAtomicBinary(MI, BB, 8, 0);
9079 
9080   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9081            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9082            (Subtarget.hasPartwordAtomics() &&
9083             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9084            (Subtarget.hasPartwordAtomics() &&
9085             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9086     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9087 
9088     auto LoadMnemonic = PPC::LDARX;
9089     auto StoreMnemonic = PPC::STDCX;
9090     switch(MI->getOpcode()) {
9091     default:
9092       llvm_unreachable("Compare and swap of unknown size");
9093     case PPC::ATOMIC_CMP_SWAP_I8:
9094       LoadMnemonic = PPC::LBARX;
9095       StoreMnemonic = PPC::STBCX;
9096       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9097       break;
9098     case PPC::ATOMIC_CMP_SWAP_I16:
9099       LoadMnemonic = PPC::LHARX;
9100       StoreMnemonic = PPC::STHCX;
9101       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9102       break;
9103     case PPC::ATOMIC_CMP_SWAP_I32:
9104       LoadMnemonic = PPC::LWARX;
9105       StoreMnemonic = PPC::STWCX;
9106       break;
9107     case PPC::ATOMIC_CMP_SWAP_I64:
9108       LoadMnemonic = PPC::LDARX;
9109       StoreMnemonic = PPC::STDCX;
9110       break;
9111     }
9112     unsigned dest   = MI->getOperand(0).getReg();
9113     unsigned ptrA   = MI->getOperand(1).getReg();
9114     unsigned ptrB   = MI->getOperand(2).getReg();
9115     unsigned oldval = MI->getOperand(3).getReg();
9116     unsigned newval = MI->getOperand(4).getReg();
9117     DebugLoc dl     = MI->getDebugLoc();
9118 
9119     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9120     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9121     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9122     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9123     F->insert(It, loop1MBB);
9124     F->insert(It, loop2MBB);
9125     F->insert(It, midMBB);
9126     F->insert(It, exitMBB);
9127     exitMBB->splice(exitMBB->begin(), BB,
9128                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9129     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9130 
9131     //  thisMBB:
9132     //   ...
9133     //   fallthrough --> loopMBB
9134     BB->addSuccessor(loop1MBB);
9135 
9136     // loop1MBB:
9137     //   l[bhwd]arx dest, ptr
9138     //   cmp[wd] dest, oldval
9139     //   bne- midMBB
9140     // loop2MBB:
9141     //   st[bhwd]cx. newval, ptr
9142     //   bne- loopMBB
9143     //   b exitBB
9144     // midMBB:
9145     //   st[bhwd]cx. dest, ptr
9146     // exitBB:
9147     BB = loop1MBB;
9148     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9149       .addReg(ptrA).addReg(ptrB);
9150     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9151       .addReg(oldval).addReg(dest);
9152     BuildMI(BB, dl, TII->get(PPC::BCC))
9153       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9154     BB->addSuccessor(loop2MBB);
9155     BB->addSuccessor(midMBB);
9156 
9157     BB = loop2MBB;
9158     BuildMI(BB, dl, TII->get(StoreMnemonic))
9159       .addReg(newval).addReg(ptrA).addReg(ptrB);
9160     BuildMI(BB, dl, TII->get(PPC::BCC))
9161       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9162     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9163     BB->addSuccessor(loop1MBB);
9164     BB->addSuccessor(exitMBB);
9165 
9166     BB = midMBB;
9167     BuildMI(BB, dl, TII->get(StoreMnemonic))
9168       .addReg(dest).addReg(ptrA).addReg(ptrB);
9169     BB->addSuccessor(exitMBB);
9170 
9171     //  exitMBB:
9172     //   ...
9173     BB = exitMBB;
9174   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9175              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9176     // We must use 64-bit registers for addresses when targeting 64-bit,
9177     // since we're actually doing arithmetic on them.  Other registers
9178     // can be 32-bit.
9179     bool is64bit = Subtarget.isPPC64();
9180     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9181 
9182     unsigned dest   = MI->getOperand(0).getReg();
9183     unsigned ptrA   = MI->getOperand(1).getReg();
9184     unsigned ptrB   = MI->getOperand(2).getReg();
9185     unsigned oldval = MI->getOperand(3).getReg();
9186     unsigned newval = MI->getOperand(4).getReg();
9187     DebugLoc dl     = MI->getDebugLoc();
9188 
9189     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9190     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9191     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9192     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9193     F->insert(It, loop1MBB);
9194     F->insert(It, loop2MBB);
9195     F->insert(It, midMBB);
9196     F->insert(It, exitMBB);
9197     exitMBB->splice(exitMBB->begin(), BB,
9198                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9199     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9200 
9201     MachineRegisterInfo &RegInfo = F->getRegInfo();
9202     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9203                                             : &PPC::GPRCRegClass;
9204     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9205     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9206     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
9207     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9208     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9209     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9210     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9211     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9212     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9213     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9214     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9215     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9216     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9217     unsigned Ptr1Reg;
9218     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9219     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9220     //  thisMBB:
9221     //   ...
9222     //   fallthrough --> loopMBB
9223     BB->addSuccessor(loop1MBB);
9224 
9225     // The 4-byte load must be aligned, while a char or short may be
9226     // anywhere in the word.  Hence all this nasty bookkeeping code.
9227     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9228     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9229     //   xori shift, shift1, 24 [16]
9230     //   rlwinm ptr, ptr1, 0, 0, 29
9231     //   slw newval2, newval, shift
9232     //   slw oldval2, oldval,shift
9233     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9234     //   slw mask, mask2, shift
9235     //   and newval3, newval2, mask
9236     //   and oldval3, oldval2, mask
9237     // loop1MBB:
9238     //   lwarx tmpDest, ptr
9239     //   and tmp, tmpDest, mask
9240     //   cmpw tmp, oldval3
9241     //   bne- midMBB
9242     // loop2MBB:
9243     //   andc tmp2, tmpDest, mask
9244     //   or tmp4, tmp2, newval3
9245     //   stwcx. tmp4, ptr
9246     //   bne- loop1MBB
9247     //   b exitBB
9248     // midMBB:
9249     //   stwcx. tmpDest, ptr
9250     // exitBB:
9251     //   srw dest, tmpDest, shift
9252     if (ptrA != ZeroReg) {
9253       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9254       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9255         .addReg(ptrA).addReg(ptrB);
9256     } else {
9257       Ptr1Reg = ptrB;
9258     }
9259     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9260         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9261     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9262         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9263     if (is64bit)
9264       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9265         .addReg(Ptr1Reg).addImm(0).addImm(61);
9266     else
9267       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9268         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9269     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9270         .addReg(newval).addReg(ShiftReg);
9271     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9272         .addReg(oldval).addReg(ShiftReg);
9273     if (is8bit)
9274       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9275     else {
9276       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9277       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9278         .addReg(Mask3Reg).addImm(65535);
9279     }
9280     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9281         .addReg(Mask2Reg).addReg(ShiftReg);
9282     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9283         .addReg(NewVal2Reg).addReg(MaskReg);
9284     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9285         .addReg(OldVal2Reg).addReg(MaskReg);
9286 
9287     BB = loop1MBB;
9288     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9289         .addReg(ZeroReg).addReg(PtrReg);
9290     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9291         .addReg(TmpDestReg).addReg(MaskReg);
9292     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9293         .addReg(TmpReg).addReg(OldVal3Reg);
9294     BuildMI(BB, dl, TII->get(PPC::BCC))
9295         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9296     BB->addSuccessor(loop2MBB);
9297     BB->addSuccessor(midMBB);
9298 
9299     BB = loop2MBB;
9300     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9301         .addReg(TmpDestReg).addReg(MaskReg);
9302     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9303         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9304     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9305         .addReg(ZeroReg).addReg(PtrReg);
9306     BuildMI(BB, dl, TII->get(PPC::BCC))
9307       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9308     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9309     BB->addSuccessor(loop1MBB);
9310     BB->addSuccessor(exitMBB);
9311 
9312     BB = midMBB;
9313     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9314       .addReg(ZeroReg).addReg(PtrReg);
9315     BB->addSuccessor(exitMBB);
9316 
9317     //  exitMBB:
9318     //   ...
9319     BB = exitMBB;
9320     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9321       .addReg(ShiftReg);
9322   } else if (MI->getOpcode() == PPC::FADDrtz) {
9323     // This pseudo performs an FADD with rounding mode temporarily forced
9324     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9325     // is not modeled at the SelectionDAG level.
9326     unsigned Dest = MI->getOperand(0).getReg();
9327     unsigned Src1 = MI->getOperand(1).getReg();
9328     unsigned Src2 = MI->getOperand(2).getReg();
9329     DebugLoc dl   = MI->getDebugLoc();
9330 
9331     MachineRegisterInfo &RegInfo = F->getRegInfo();
9332     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9333 
9334     // Save FPSCR value.
9335     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9336 
9337     // Set rounding mode to round-to-zero.
9338     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9339     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9340 
9341     // Perform addition.
9342     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9343 
9344     // Restore FPSCR value.
9345     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9346   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9347              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9348              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9349              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9350     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9351                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9352                       PPC::ANDIo8 : PPC::ANDIo;
9353     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9354                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9355 
9356     MachineRegisterInfo &RegInfo = F->getRegInfo();
9357     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9358                                                   &PPC::GPRCRegClass :
9359                                                   &PPC::G8RCRegClass);
9360 
9361     DebugLoc dl   = MI->getDebugLoc();
9362     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9363       .addReg(MI->getOperand(1).getReg()).addImm(1);
9364     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9365             MI->getOperand(0).getReg())
9366       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9367   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9368     DebugLoc Dl = MI->getDebugLoc();
9369     MachineRegisterInfo &RegInfo = F->getRegInfo();
9370     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9371     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9372     return BB;
9373   } else {
9374     llvm_unreachable("Unexpected instr type to insert");
9375   }
9376 
9377   MI->eraseFromParent();   // The pseudo instruction is gone now.
9378   return BB;
9379 }
9380 
9381 //===----------------------------------------------------------------------===//
9382 // Target Optimization Hooks
9383 //===----------------------------------------------------------------------===//
9384 
9385 static std::string getRecipOp(const char *Base, EVT VT) {
9386   std::string RecipOp(Base);
9387   if (VT.getScalarType() == MVT::f64)
9388     RecipOp += "d";
9389   else
9390     RecipOp += "f";
9391 
9392   if (VT.isVector())
9393     RecipOp = "vec-" + RecipOp;
9394 
9395   return RecipOp;
9396 }
9397 
9398 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9399                                             DAGCombinerInfo &DCI,
9400                                             unsigned &RefinementSteps,
9401                                             bool &UseOneConstNR) const {
9402   EVT VT = Operand.getValueType();
9403   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9404       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9405       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9406       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9407       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9408       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9409     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9410     std::string RecipOp = getRecipOp("sqrt", VT);
9411     if (!Recips.isEnabled(RecipOp))
9412       return SDValue();
9413 
9414     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9415     UseOneConstNR = true;
9416     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9417   }
9418   return SDValue();
9419 }
9420 
9421 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9422                                             DAGCombinerInfo &DCI,
9423                                             unsigned &RefinementSteps) const {
9424   EVT VT = Operand.getValueType();
9425   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9426       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9427       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9428       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9429       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9430       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9431     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9432     std::string RecipOp = getRecipOp("div", VT);
9433     if (!Recips.isEnabled(RecipOp))
9434       return SDValue();
9435 
9436     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9437     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9438   }
9439   return SDValue();
9440 }
9441 
9442 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9443   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9444   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9445   // enabled for division), this functionality is redundant with the default
9446   // combiner logic (once the division -> reciprocal/multiply transformation
9447   // has taken place). As a result, this matters more for older cores than for
9448   // newer ones.
9449 
9450   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9451   // reciprocal if there are two or more FDIVs (for embedded cores with only
9452   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9453   switch (Subtarget.getDarwinDirective()) {
9454   default:
9455     return 3;
9456   case PPC::DIR_440:
9457   case PPC::DIR_A2:
9458   case PPC::DIR_E500mc:
9459   case PPC::DIR_E5500:
9460     return 2;
9461   }
9462 }
9463 
9464 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9465 // collapsed, and so we need to look through chains of them.
9466 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9467                                      int64_t& Offset, SelectionDAG &DAG) {
9468   if (DAG.isBaseWithConstantOffset(Loc)) {
9469     Base = Loc.getOperand(0);
9470     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9471 
9472     // The base might itself be a base plus an offset, and if so, accumulate
9473     // that as well.
9474     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9475   }
9476 }
9477 
9478 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9479                             unsigned Bytes, int Dist,
9480                             SelectionDAG &DAG) {
9481   if (VT.getSizeInBits() / 8 != Bytes)
9482     return false;
9483 
9484   SDValue BaseLoc = Base->getBasePtr();
9485   if (Loc.getOpcode() == ISD::FrameIndex) {
9486     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9487       return false;
9488     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9489     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9490     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9491     int FS  = MFI->getObjectSize(FI);
9492     int BFS = MFI->getObjectSize(BFI);
9493     if (FS != BFS || FS != (int)Bytes) return false;
9494     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9495   }
9496 
9497   SDValue Base1 = Loc, Base2 = BaseLoc;
9498   int64_t Offset1 = 0, Offset2 = 0;
9499   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9500   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9501   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9502     return true;
9503 
9504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9505   const GlobalValue *GV1 = nullptr;
9506   const GlobalValue *GV2 = nullptr;
9507   Offset1 = 0;
9508   Offset2 = 0;
9509   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9510   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9511   if (isGA1 && isGA2 && GV1 == GV2)
9512     return Offset1 == (Offset2 + Dist*Bytes);
9513   return false;
9514 }
9515 
9516 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9517 // not enforce equality of the chain operands.
9518 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9519                             unsigned Bytes, int Dist,
9520                             SelectionDAG &DAG) {
9521   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9522     EVT VT = LS->getMemoryVT();
9523     SDValue Loc = LS->getBasePtr();
9524     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9525   }
9526 
9527   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9528     EVT VT;
9529     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9530     default: return false;
9531     case Intrinsic::ppc_qpx_qvlfd:
9532     case Intrinsic::ppc_qpx_qvlfda:
9533       VT = MVT::v4f64;
9534       break;
9535     case Intrinsic::ppc_qpx_qvlfs:
9536     case Intrinsic::ppc_qpx_qvlfsa:
9537       VT = MVT::v4f32;
9538       break;
9539     case Intrinsic::ppc_qpx_qvlfcd:
9540     case Intrinsic::ppc_qpx_qvlfcda:
9541       VT = MVT::v2f64;
9542       break;
9543     case Intrinsic::ppc_qpx_qvlfcs:
9544     case Intrinsic::ppc_qpx_qvlfcsa:
9545       VT = MVT::v2f32;
9546       break;
9547     case Intrinsic::ppc_qpx_qvlfiwa:
9548     case Intrinsic::ppc_qpx_qvlfiwz:
9549     case Intrinsic::ppc_altivec_lvx:
9550     case Intrinsic::ppc_altivec_lvxl:
9551     case Intrinsic::ppc_vsx_lxvw4x:
9552       VT = MVT::v4i32;
9553       break;
9554     case Intrinsic::ppc_vsx_lxvd2x:
9555       VT = MVT::v2f64;
9556       break;
9557     case Intrinsic::ppc_altivec_lvebx:
9558       VT = MVT::i8;
9559       break;
9560     case Intrinsic::ppc_altivec_lvehx:
9561       VT = MVT::i16;
9562       break;
9563     case Intrinsic::ppc_altivec_lvewx:
9564       VT = MVT::i32;
9565       break;
9566     }
9567 
9568     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9569   }
9570 
9571   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9572     EVT VT;
9573     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9574     default: return false;
9575     case Intrinsic::ppc_qpx_qvstfd:
9576     case Intrinsic::ppc_qpx_qvstfda:
9577       VT = MVT::v4f64;
9578       break;
9579     case Intrinsic::ppc_qpx_qvstfs:
9580     case Intrinsic::ppc_qpx_qvstfsa:
9581       VT = MVT::v4f32;
9582       break;
9583     case Intrinsic::ppc_qpx_qvstfcd:
9584     case Intrinsic::ppc_qpx_qvstfcda:
9585       VT = MVT::v2f64;
9586       break;
9587     case Intrinsic::ppc_qpx_qvstfcs:
9588     case Intrinsic::ppc_qpx_qvstfcsa:
9589       VT = MVT::v2f32;
9590       break;
9591     case Intrinsic::ppc_qpx_qvstfiw:
9592     case Intrinsic::ppc_qpx_qvstfiwa:
9593     case Intrinsic::ppc_altivec_stvx:
9594     case Intrinsic::ppc_altivec_stvxl:
9595     case Intrinsic::ppc_vsx_stxvw4x:
9596       VT = MVT::v4i32;
9597       break;
9598     case Intrinsic::ppc_vsx_stxvd2x:
9599       VT = MVT::v2f64;
9600       break;
9601     case Intrinsic::ppc_altivec_stvebx:
9602       VT = MVT::i8;
9603       break;
9604     case Intrinsic::ppc_altivec_stvehx:
9605       VT = MVT::i16;
9606       break;
9607     case Intrinsic::ppc_altivec_stvewx:
9608       VT = MVT::i32;
9609       break;
9610     }
9611 
9612     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9613   }
9614 
9615   return false;
9616 }
9617 
9618 // Return true is there is a nearyby consecutive load to the one provided
9619 // (regardless of alignment). We search up and down the chain, looking though
9620 // token factors and other loads (but nothing else). As a result, a true result
9621 // indicates that it is safe to create a new consecutive load adjacent to the
9622 // load provided.
9623 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9624   SDValue Chain = LD->getChain();
9625   EVT VT = LD->getMemoryVT();
9626 
9627   SmallSet<SDNode *, 16> LoadRoots;
9628   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9629   SmallSet<SDNode *, 16> Visited;
9630 
9631   // First, search up the chain, branching to follow all token-factor operands.
9632   // If we find a consecutive load, then we're done, otherwise, record all
9633   // nodes just above the top-level loads and token factors.
9634   while (!Queue.empty()) {
9635     SDNode *ChainNext = Queue.pop_back_val();
9636     if (!Visited.insert(ChainNext).second)
9637       continue;
9638 
9639     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9640       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9641         return true;
9642 
9643       if (!Visited.count(ChainLD->getChain().getNode()))
9644         Queue.push_back(ChainLD->getChain().getNode());
9645     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9646       for (const SDUse &O : ChainNext->ops())
9647         if (!Visited.count(O.getNode()))
9648           Queue.push_back(O.getNode());
9649     } else
9650       LoadRoots.insert(ChainNext);
9651   }
9652 
9653   // Second, search down the chain, starting from the top-level nodes recorded
9654   // in the first phase. These top-level nodes are the nodes just above all
9655   // loads and token factors. Starting with their uses, recursively look though
9656   // all loads (just the chain uses) and token factors to find a consecutive
9657   // load.
9658   Visited.clear();
9659   Queue.clear();
9660 
9661   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9662        IE = LoadRoots.end(); I != IE; ++I) {
9663     Queue.push_back(*I);
9664 
9665     while (!Queue.empty()) {
9666       SDNode *LoadRoot = Queue.pop_back_val();
9667       if (!Visited.insert(LoadRoot).second)
9668         continue;
9669 
9670       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9671         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9672           return true;
9673 
9674       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9675            UE = LoadRoot->use_end(); UI != UE; ++UI)
9676         if (((isa<MemSDNode>(*UI) &&
9677             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9678             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9679           Queue.push_back(*UI);
9680     }
9681   }
9682 
9683   return false;
9684 }
9685 
9686 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9687                                                   DAGCombinerInfo &DCI) const {
9688   SelectionDAG &DAG = DCI.DAG;
9689   SDLoc dl(N);
9690 
9691   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9692   // If we're tracking CR bits, we need to be careful that we don't have:
9693   //   trunc(binary-ops(zext(x), zext(y)))
9694   // or
9695   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9696   // such that we're unnecessarily moving things into GPRs when it would be
9697   // better to keep them in CR bits.
9698 
9699   // Note that trunc here can be an actual i1 trunc, or can be the effective
9700   // truncation that comes from a setcc or select_cc.
9701   if (N->getOpcode() == ISD::TRUNCATE &&
9702       N->getValueType(0) != MVT::i1)
9703     return SDValue();
9704 
9705   if (N->getOperand(0).getValueType() != MVT::i32 &&
9706       N->getOperand(0).getValueType() != MVT::i64)
9707     return SDValue();
9708 
9709   if (N->getOpcode() == ISD::SETCC ||
9710       N->getOpcode() == ISD::SELECT_CC) {
9711     // If we're looking at a comparison, then we need to make sure that the
9712     // high bits (all except for the first) don't matter the result.
9713     ISD::CondCode CC =
9714       cast<CondCodeSDNode>(N->getOperand(
9715         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9716     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9717 
9718     if (ISD::isSignedIntSetCC(CC)) {
9719       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9720           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9721         return SDValue();
9722     } else if (ISD::isUnsignedIntSetCC(CC)) {
9723       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9724                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9725           !DAG.MaskedValueIsZero(N->getOperand(1),
9726                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9727         return SDValue();
9728     } else {
9729       // This is neither a signed nor an unsigned comparison, just make sure
9730       // that the high bits are equal.
9731       APInt Op1Zero, Op1One;
9732       APInt Op2Zero, Op2One;
9733       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9734       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9735 
9736       // We don't really care about what is known about the first bit (if
9737       // anything), so clear it in all masks prior to comparing them.
9738       Op1Zero.clearBit(0); Op1One.clearBit(0);
9739       Op2Zero.clearBit(0); Op2One.clearBit(0);
9740 
9741       if (Op1Zero != Op2Zero || Op1One != Op2One)
9742         return SDValue();
9743     }
9744   }
9745 
9746   // We now know that the higher-order bits are irrelevant, we just need to
9747   // make sure that all of the intermediate operations are bit operations, and
9748   // all inputs are extensions.
9749   if (N->getOperand(0).getOpcode() != ISD::AND &&
9750       N->getOperand(0).getOpcode() != ISD::OR  &&
9751       N->getOperand(0).getOpcode() != ISD::XOR &&
9752       N->getOperand(0).getOpcode() != ISD::SELECT &&
9753       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9754       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9755       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9756       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9757       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9758     return SDValue();
9759 
9760   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9761       N->getOperand(1).getOpcode() != ISD::AND &&
9762       N->getOperand(1).getOpcode() != ISD::OR  &&
9763       N->getOperand(1).getOpcode() != ISD::XOR &&
9764       N->getOperand(1).getOpcode() != ISD::SELECT &&
9765       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9766       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9767       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9768       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9769       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9770     return SDValue();
9771 
9772   SmallVector<SDValue, 4> Inputs;
9773   SmallVector<SDValue, 8> BinOps, PromOps;
9774   SmallPtrSet<SDNode *, 16> Visited;
9775 
9776   for (unsigned i = 0; i < 2; ++i) {
9777     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9778           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9779           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9780           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9781         isa<ConstantSDNode>(N->getOperand(i)))
9782       Inputs.push_back(N->getOperand(i));
9783     else
9784       BinOps.push_back(N->getOperand(i));
9785 
9786     if (N->getOpcode() == ISD::TRUNCATE)
9787       break;
9788   }
9789 
9790   // Visit all inputs, collect all binary operations (and, or, xor and
9791   // select) that are all fed by extensions.
9792   while (!BinOps.empty()) {
9793     SDValue BinOp = BinOps.back();
9794     BinOps.pop_back();
9795 
9796     if (!Visited.insert(BinOp.getNode()).second)
9797       continue;
9798 
9799     PromOps.push_back(BinOp);
9800 
9801     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9802       // The condition of the select is not promoted.
9803       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9804         continue;
9805       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9806         continue;
9807 
9808       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9809             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9810             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9811            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9812           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9813         Inputs.push_back(BinOp.getOperand(i));
9814       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9815                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9816                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9817                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9818                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9819                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9820                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9821                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9822                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9823         BinOps.push_back(BinOp.getOperand(i));
9824       } else {
9825         // We have an input that is not an extension or another binary
9826         // operation; we'll abort this transformation.
9827         return SDValue();
9828       }
9829     }
9830   }
9831 
9832   // Make sure that this is a self-contained cluster of operations (which
9833   // is not quite the same thing as saying that everything has only one
9834   // use).
9835   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9836     if (isa<ConstantSDNode>(Inputs[i]))
9837       continue;
9838 
9839     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9840                               UE = Inputs[i].getNode()->use_end();
9841          UI != UE; ++UI) {
9842       SDNode *User = *UI;
9843       if (User != N && !Visited.count(User))
9844         return SDValue();
9845 
9846       // Make sure that we're not going to promote the non-output-value
9847       // operand(s) or SELECT or SELECT_CC.
9848       // FIXME: Although we could sometimes handle this, and it does occur in
9849       // practice that one of the condition inputs to the select is also one of
9850       // the outputs, we currently can't deal with this.
9851       if (User->getOpcode() == ISD::SELECT) {
9852         if (User->getOperand(0) == Inputs[i])
9853           return SDValue();
9854       } else if (User->getOpcode() == ISD::SELECT_CC) {
9855         if (User->getOperand(0) == Inputs[i] ||
9856             User->getOperand(1) == Inputs[i])
9857           return SDValue();
9858       }
9859     }
9860   }
9861 
9862   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9863     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9864                               UE = PromOps[i].getNode()->use_end();
9865          UI != UE; ++UI) {
9866       SDNode *User = *UI;
9867       if (User != N && !Visited.count(User))
9868         return SDValue();
9869 
9870       // Make sure that we're not going to promote the non-output-value
9871       // operand(s) or SELECT or SELECT_CC.
9872       // FIXME: Although we could sometimes handle this, and it does occur in
9873       // practice that one of the condition inputs to the select is also one of
9874       // the outputs, we currently can't deal with this.
9875       if (User->getOpcode() == ISD::SELECT) {
9876         if (User->getOperand(0) == PromOps[i])
9877           return SDValue();
9878       } else if (User->getOpcode() == ISD::SELECT_CC) {
9879         if (User->getOperand(0) == PromOps[i] ||
9880             User->getOperand(1) == PromOps[i])
9881           return SDValue();
9882       }
9883     }
9884   }
9885 
9886   // Replace all inputs with the extension operand.
9887   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9888     // Constants may have users outside the cluster of to-be-promoted nodes,
9889     // and so we need to replace those as we do the promotions.
9890     if (isa<ConstantSDNode>(Inputs[i]))
9891       continue;
9892     else
9893       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9894   }
9895 
9896   // Replace all operations (these are all the same, but have a different
9897   // (i1) return type). DAG.getNode will validate that the types of
9898   // a binary operator match, so go through the list in reverse so that
9899   // we've likely promoted both operands first. Any intermediate truncations or
9900   // extensions disappear.
9901   while (!PromOps.empty()) {
9902     SDValue PromOp = PromOps.back();
9903     PromOps.pop_back();
9904 
9905     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9906         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9907         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9908         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9909       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9910           PromOp.getOperand(0).getValueType() != MVT::i1) {
9911         // The operand is not yet ready (see comment below).
9912         PromOps.insert(PromOps.begin(), PromOp);
9913         continue;
9914       }
9915 
9916       SDValue RepValue = PromOp.getOperand(0);
9917       if (isa<ConstantSDNode>(RepValue))
9918         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9919 
9920       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9921       continue;
9922     }
9923 
9924     unsigned C;
9925     switch (PromOp.getOpcode()) {
9926     default:             C = 0; break;
9927     case ISD::SELECT:    C = 1; break;
9928     case ISD::SELECT_CC: C = 2; break;
9929     }
9930 
9931     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9932          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9933         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9934          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9935       // The to-be-promoted operands of this node have not yet been
9936       // promoted (this should be rare because we're going through the
9937       // list backward, but if one of the operands has several users in
9938       // this cluster of to-be-promoted nodes, it is possible).
9939       PromOps.insert(PromOps.begin(), PromOp);
9940       continue;
9941     }
9942 
9943     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9944                                 PromOp.getNode()->op_end());
9945 
9946     // If there are any constant inputs, make sure they're replaced now.
9947     for (unsigned i = 0; i < 2; ++i)
9948       if (isa<ConstantSDNode>(Ops[C+i]))
9949         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9950 
9951     DAG.ReplaceAllUsesOfValueWith(PromOp,
9952       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9953   }
9954 
9955   // Now we're left with the initial truncation itself.
9956   if (N->getOpcode() == ISD::TRUNCATE)
9957     return N->getOperand(0);
9958 
9959   // Otherwise, this is a comparison. The operands to be compared have just
9960   // changed type (to i1), but everything else is the same.
9961   return SDValue(N, 0);
9962 }
9963 
9964 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9965                                                   DAGCombinerInfo &DCI) const {
9966   SelectionDAG &DAG = DCI.DAG;
9967   SDLoc dl(N);
9968 
9969   // If we're tracking CR bits, we need to be careful that we don't have:
9970   //   zext(binary-ops(trunc(x), trunc(y)))
9971   // or
9972   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9973   // such that we're unnecessarily moving things into CR bits that can more
9974   // efficiently stay in GPRs. Note that if we're not certain that the high
9975   // bits are set as required by the final extension, we still may need to do
9976   // some masking to get the proper behavior.
9977 
9978   // This same functionality is important on PPC64 when dealing with
9979   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9980   // the return values of functions. Because it is so similar, it is handled
9981   // here as well.
9982 
9983   if (N->getValueType(0) != MVT::i32 &&
9984       N->getValueType(0) != MVT::i64)
9985     return SDValue();
9986 
9987   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9988         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9989     return SDValue();
9990 
9991   if (N->getOperand(0).getOpcode() != ISD::AND &&
9992       N->getOperand(0).getOpcode() != ISD::OR  &&
9993       N->getOperand(0).getOpcode() != ISD::XOR &&
9994       N->getOperand(0).getOpcode() != ISD::SELECT &&
9995       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9996     return SDValue();
9997 
9998   SmallVector<SDValue, 4> Inputs;
9999   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10000   SmallPtrSet<SDNode *, 16> Visited;
10001 
10002   // Visit all inputs, collect all binary operations (and, or, xor and
10003   // select) that are all fed by truncations.
10004   while (!BinOps.empty()) {
10005     SDValue BinOp = BinOps.back();
10006     BinOps.pop_back();
10007 
10008     if (!Visited.insert(BinOp.getNode()).second)
10009       continue;
10010 
10011     PromOps.push_back(BinOp);
10012 
10013     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10014       // The condition of the select is not promoted.
10015       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10016         continue;
10017       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10018         continue;
10019 
10020       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10021           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10022         Inputs.push_back(BinOp.getOperand(i));
10023       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10024                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10025                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10026                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10027                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10028         BinOps.push_back(BinOp.getOperand(i));
10029       } else {
10030         // We have an input that is not a truncation or another binary
10031         // operation; we'll abort this transformation.
10032         return SDValue();
10033       }
10034     }
10035   }
10036 
10037   // The operands of a select that must be truncated when the select is
10038   // promoted because the operand is actually part of the to-be-promoted set.
10039   DenseMap<SDNode *, EVT> SelectTruncOp[2];
10040 
10041   // Make sure that this is a self-contained cluster of operations (which
10042   // is not quite the same thing as saying that everything has only one
10043   // use).
10044   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10045     if (isa<ConstantSDNode>(Inputs[i]))
10046       continue;
10047 
10048     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10049                               UE = Inputs[i].getNode()->use_end();
10050          UI != UE; ++UI) {
10051       SDNode *User = *UI;
10052       if (User != N && !Visited.count(User))
10053         return SDValue();
10054 
10055       // If we're going to promote the non-output-value operand(s) or SELECT or
10056       // SELECT_CC, record them for truncation.
10057       if (User->getOpcode() == ISD::SELECT) {
10058         if (User->getOperand(0) == Inputs[i])
10059           SelectTruncOp[0].insert(std::make_pair(User,
10060                                     User->getOperand(0).getValueType()));
10061       } else if (User->getOpcode() == ISD::SELECT_CC) {
10062         if (User->getOperand(0) == Inputs[i])
10063           SelectTruncOp[0].insert(std::make_pair(User,
10064                                     User->getOperand(0).getValueType()));
10065         if (User->getOperand(1) == Inputs[i])
10066           SelectTruncOp[1].insert(std::make_pair(User,
10067                                     User->getOperand(1).getValueType()));
10068       }
10069     }
10070   }
10071 
10072   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10073     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10074                               UE = PromOps[i].getNode()->use_end();
10075          UI != UE; ++UI) {
10076       SDNode *User = *UI;
10077       if (User != N && !Visited.count(User))
10078         return SDValue();
10079 
10080       // If we're going to promote the non-output-value operand(s) or SELECT or
10081       // SELECT_CC, record them for truncation.
10082       if (User->getOpcode() == ISD::SELECT) {
10083         if (User->getOperand(0) == PromOps[i])
10084           SelectTruncOp[0].insert(std::make_pair(User,
10085                                     User->getOperand(0).getValueType()));
10086       } else if (User->getOpcode() == ISD::SELECT_CC) {
10087         if (User->getOperand(0) == PromOps[i])
10088           SelectTruncOp[0].insert(std::make_pair(User,
10089                                     User->getOperand(0).getValueType()));
10090         if (User->getOperand(1) == PromOps[i])
10091           SelectTruncOp[1].insert(std::make_pair(User,
10092                                     User->getOperand(1).getValueType()));
10093       }
10094     }
10095   }
10096 
10097   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10098   bool ReallyNeedsExt = false;
10099   if (N->getOpcode() != ISD::ANY_EXTEND) {
10100     // If all of the inputs are not already sign/zero extended, then
10101     // we'll still need to do that at the end.
10102     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10103       if (isa<ConstantSDNode>(Inputs[i]))
10104         continue;
10105 
10106       unsigned OpBits =
10107         Inputs[i].getOperand(0).getValueSizeInBits();
10108       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10109 
10110       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10111            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10112                                   APInt::getHighBitsSet(OpBits,
10113                                                         OpBits-PromBits))) ||
10114           (N->getOpcode() == ISD::SIGN_EXTEND &&
10115            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10116              (OpBits-(PromBits-1)))) {
10117         ReallyNeedsExt = true;
10118         break;
10119       }
10120     }
10121   }
10122 
10123   // Replace all inputs, either with the truncation operand, or a
10124   // truncation or extension to the final output type.
10125   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10126     // Constant inputs need to be replaced with the to-be-promoted nodes that
10127     // use them because they might have users outside of the cluster of
10128     // promoted nodes.
10129     if (isa<ConstantSDNode>(Inputs[i]))
10130       continue;
10131 
10132     SDValue InSrc = Inputs[i].getOperand(0);
10133     if (Inputs[i].getValueType() == N->getValueType(0))
10134       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10135     else if (N->getOpcode() == ISD::SIGN_EXTEND)
10136       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10137         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10138     else if (N->getOpcode() == ISD::ZERO_EXTEND)
10139       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10140         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10141     else
10142       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10143         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10144   }
10145 
10146   // Replace all operations (these are all the same, but have a different
10147   // (promoted) return type). DAG.getNode will validate that the types of
10148   // a binary operator match, so go through the list in reverse so that
10149   // we've likely promoted both operands first.
10150   while (!PromOps.empty()) {
10151     SDValue PromOp = PromOps.back();
10152     PromOps.pop_back();
10153 
10154     unsigned C;
10155     switch (PromOp.getOpcode()) {
10156     default:             C = 0; break;
10157     case ISD::SELECT:    C = 1; break;
10158     case ISD::SELECT_CC: C = 2; break;
10159     }
10160 
10161     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10162          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10163         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10164          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10165       // The to-be-promoted operands of this node have not yet been
10166       // promoted (this should be rare because we're going through the
10167       // list backward, but if one of the operands has several users in
10168       // this cluster of to-be-promoted nodes, it is possible).
10169       PromOps.insert(PromOps.begin(), PromOp);
10170       continue;
10171     }
10172 
10173     // For SELECT and SELECT_CC nodes, we do a similar check for any
10174     // to-be-promoted comparison inputs.
10175     if (PromOp.getOpcode() == ISD::SELECT ||
10176         PromOp.getOpcode() == ISD::SELECT_CC) {
10177       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10178            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10179           (SelectTruncOp[1].count(PromOp.getNode()) &&
10180            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10181         PromOps.insert(PromOps.begin(), PromOp);
10182         continue;
10183       }
10184     }
10185 
10186     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10187                                 PromOp.getNode()->op_end());
10188 
10189     // If this node has constant inputs, then they'll need to be promoted here.
10190     for (unsigned i = 0; i < 2; ++i) {
10191       if (!isa<ConstantSDNode>(Ops[C+i]))
10192         continue;
10193       if (Ops[C+i].getValueType() == N->getValueType(0))
10194         continue;
10195 
10196       if (N->getOpcode() == ISD::SIGN_EXTEND)
10197         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10198       else if (N->getOpcode() == ISD::ZERO_EXTEND)
10199         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10200       else
10201         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10202     }
10203 
10204     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10205     // truncate them again to the original value type.
10206     if (PromOp.getOpcode() == ISD::SELECT ||
10207         PromOp.getOpcode() == ISD::SELECT_CC) {
10208       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10209       if (SI0 != SelectTruncOp[0].end())
10210         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10211       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10212       if (SI1 != SelectTruncOp[1].end())
10213         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10214     }
10215 
10216     DAG.ReplaceAllUsesOfValueWith(PromOp,
10217       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10218   }
10219 
10220   // Now we're left with the initial extension itself.
10221   if (!ReallyNeedsExt)
10222     return N->getOperand(0);
10223 
10224   // To zero extend, just mask off everything except for the first bit (in the
10225   // i1 case).
10226   if (N->getOpcode() == ISD::ZERO_EXTEND)
10227     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10228                        DAG.getConstant(APInt::getLowBitsSet(
10229                                          N->getValueSizeInBits(0), PromBits),
10230                                        dl, N->getValueType(0)));
10231 
10232   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10233          "Invalid extension type");
10234   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10235   SDValue ShiftCst =
10236       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10237   return DAG.getNode(
10238       ISD::SRA, dl, N->getValueType(0),
10239       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10240       ShiftCst);
10241 }
10242 
10243 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10244                                               DAGCombinerInfo &DCI) const {
10245   assert((N->getOpcode() == ISD::SINT_TO_FP ||
10246           N->getOpcode() == ISD::UINT_TO_FP) &&
10247          "Need an int -> FP conversion node here");
10248 
10249   if (!Subtarget.has64BitSupport())
10250     return SDValue();
10251 
10252   SelectionDAG &DAG = DCI.DAG;
10253   SDLoc dl(N);
10254   SDValue Op(N, 0);
10255 
10256   // Don't handle ppc_fp128 here or i1 conversions.
10257   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10258     return SDValue();
10259   if (Op.getOperand(0).getValueType() == MVT::i1)
10260     return SDValue();
10261 
10262   // For i32 intermediate values, unfortunately, the conversion functions
10263   // leave the upper 32 bits of the value are undefined. Within the set of
10264   // scalar instructions, we have no method for zero- or sign-extending the
10265   // value. Thus, we cannot handle i32 intermediate values here.
10266   if (Op.getOperand(0).getValueType() == MVT::i32)
10267     return SDValue();
10268 
10269   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10270          "UINT_TO_FP is supported only with FPCVT");
10271 
10272   // If we have FCFIDS, then use it when converting to single-precision.
10273   // Otherwise, convert to double-precision and then round.
10274   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10275                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10276                                                             : PPCISD::FCFIDS)
10277                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10278                                                             : PPCISD::FCFID);
10279   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10280                   ? MVT::f32
10281                   : MVT::f64;
10282 
10283   // If we're converting from a float, to an int, and back to a float again,
10284   // then we don't need the store/load pair at all.
10285   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10286        Subtarget.hasFPCVT()) ||
10287       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10288     SDValue Src = Op.getOperand(0).getOperand(0);
10289     if (Src.getValueType() == MVT::f32) {
10290       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10291       DCI.AddToWorklist(Src.getNode());
10292     } else if (Src.getValueType() != MVT::f64) {
10293       // Make sure that we don't pick up a ppc_fp128 source value.
10294       return SDValue();
10295     }
10296 
10297     unsigned FCTOp =
10298       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10299                                                         PPCISD::FCTIDUZ;
10300 
10301     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10302     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10303 
10304     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10305       FP = DAG.getNode(ISD::FP_ROUND, dl,
10306                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10307       DCI.AddToWorklist(FP.getNode());
10308     }
10309 
10310     return FP;
10311   }
10312 
10313   return SDValue();
10314 }
10315 
10316 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10317 // builtins) into loads with swaps.
10318 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10319                                               DAGCombinerInfo &DCI) const {
10320   SelectionDAG &DAG = DCI.DAG;
10321   SDLoc dl(N);
10322   SDValue Chain;
10323   SDValue Base;
10324   MachineMemOperand *MMO;
10325 
10326   switch (N->getOpcode()) {
10327   default:
10328     llvm_unreachable("Unexpected opcode for little endian VSX load");
10329   case ISD::LOAD: {
10330     LoadSDNode *LD = cast<LoadSDNode>(N);
10331     Chain = LD->getChain();
10332     Base = LD->getBasePtr();
10333     MMO = LD->getMemOperand();
10334     // If the MMO suggests this isn't a load of a full vector, leave
10335     // things alone.  For a built-in, we have to make the change for
10336     // correctness, so if there is a size problem that will be a bug.
10337     if (MMO->getSize() < 16)
10338       return SDValue();
10339     break;
10340   }
10341   case ISD::INTRINSIC_W_CHAIN: {
10342     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10343     Chain = Intrin->getChain();
10344     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10345     // us what we want. Get operand 2 instead.
10346     Base = Intrin->getOperand(2);
10347     MMO = Intrin->getMemOperand();
10348     break;
10349   }
10350   }
10351 
10352   MVT VecTy = N->getValueType(0).getSimpleVT();
10353   SDValue LoadOps[] = { Chain, Base };
10354   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10355                                          DAG.getVTList(VecTy, MVT::Other),
10356                                          LoadOps, VecTy, MMO);
10357   DCI.AddToWorklist(Load.getNode());
10358   Chain = Load.getValue(1);
10359   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10360                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
10361   DCI.AddToWorklist(Swap.getNode());
10362   return Swap;
10363 }
10364 
10365 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10366 // builtins) into stores with swaps.
10367 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10368                                                DAGCombinerInfo &DCI) const {
10369   SelectionDAG &DAG = DCI.DAG;
10370   SDLoc dl(N);
10371   SDValue Chain;
10372   SDValue Base;
10373   unsigned SrcOpnd;
10374   MachineMemOperand *MMO;
10375 
10376   switch (N->getOpcode()) {
10377   default:
10378     llvm_unreachable("Unexpected opcode for little endian VSX store");
10379   case ISD::STORE: {
10380     StoreSDNode *ST = cast<StoreSDNode>(N);
10381     Chain = ST->getChain();
10382     Base = ST->getBasePtr();
10383     MMO = ST->getMemOperand();
10384     SrcOpnd = 1;
10385     // If the MMO suggests this isn't a store of a full vector, leave
10386     // things alone.  For a built-in, we have to make the change for
10387     // correctness, so if there is a size problem that will be a bug.
10388     if (MMO->getSize() < 16)
10389       return SDValue();
10390     break;
10391   }
10392   case ISD::INTRINSIC_VOID: {
10393     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10394     Chain = Intrin->getChain();
10395     // Intrin->getBasePtr() oddly does not get what we want.
10396     Base = Intrin->getOperand(3);
10397     MMO = Intrin->getMemOperand();
10398     SrcOpnd = 2;
10399     break;
10400   }
10401   }
10402 
10403   SDValue Src = N->getOperand(SrcOpnd);
10404   MVT VecTy = Src.getValueType().getSimpleVT();
10405   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10406                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
10407   DCI.AddToWorklist(Swap.getNode());
10408   Chain = Swap.getValue(1);
10409   SDValue StoreOps[] = { Chain, Swap, Base };
10410   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10411                                           DAG.getVTList(MVT::Other),
10412                                           StoreOps, VecTy, MMO);
10413   DCI.AddToWorklist(Store.getNode());
10414   return Store;
10415 }
10416 
10417 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10418                                              DAGCombinerInfo &DCI) const {
10419   SelectionDAG &DAG = DCI.DAG;
10420   SDLoc dl(N);
10421   switch (N->getOpcode()) {
10422   default: break;
10423   case PPCISD::SHL:
10424     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10425         return N->getOperand(0);
10426     break;
10427   case PPCISD::SRL:
10428     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10429         return N->getOperand(0);
10430     break;
10431   case PPCISD::SRA:
10432     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10433       if (C->isNullValue() ||   //  0 >>s V -> 0.
10434           C->isAllOnesValue())    // -1 >>s V -> -1.
10435         return N->getOperand(0);
10436     }
10437     break;
10438   case ISD::SIGN_EXTEND:
10439   case ISD::ZERO_EXTEND:
10440   case ISD::ANY_EXTEND:
10441     return DAGCombineExtBoolTrunc(N, DCI);
10442   case ISD::TRUNCATE:
10443   case ISD::SETCC:
10444   case ISD::SELECT_CC:
10445     return DAGCombineTruncBoolExt(N, DCI);
10446   case ISD::SINT_TO_FP:
10447   case ISD::UINT_TO_FP:
10448     return combineFPToIntToFP(N, DCI);
10449   case ISD::STORE: {
10450     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10451     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10452         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10453         N->getOperand(1).getValueType() == MVT::i32 &&
10454         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10455       SDValue Val = N->getOperand(1).getOperand(0);
10456       if (Val.getValueType() == MVT::f32) {
10457         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10458         DCI.AddToWorklist(Val.getNode());
10459       }
10460       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10461       DCI.AddToWorklist(Val.getNode());
10462 
10463       SDValue Ops[] = {
10464         N->getOperand(0), Val, N->getOperand(2),
10465         DAG.getValueType(N->getOperand(1).getValueType())
10466       };
10467 
10468       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10469               DAG.getVTList(MVT::Other), Ops,
10470               cast<StoreSDNode>(N)->getMemoryVT(),
10471               cast<StoreSDNode>(N)->getMemOperand());
10472       DCI.AddToWorklist(Val.getNode());
10473       return Val;
10474     }
10475 
10476     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10477     if (cast<StoreSDNode>(N)->isUnindexed() &&
10478         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10479         N->getOperand(1).getNode()->hasOneUse() &&
10480         (N->getOperand(1).getValueType() == MVT::i32 ||
10481          N->getOperand(1).getValueType() == MVT::i16 ||
10482          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10483           N->getOperand(1).getValueType() == MVT::i64))) {
10484       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10485       // Do an any-extend to 32-bits if this is a half-word input.
10486       if (BSwapOp.getValueType() == MVT::i16)
10487         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10488 
10489       SDValue Ops[] = {
10490         N->getOperand(0), BSwapOp, N->getOperand(2),
10491         DAG.getValueType(N->getOperand(1).getValueType())
10492       };
10493       return
10494         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10495                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10496                                 cast<StoreSDNode>(N)->getMemOperand());
10497     }
10498 
10499     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10500     EVT VT = N->getOperand(1).getValueType();
10501     if (VT.isSimple()) {
10502       MVT StoreVT = VT.getSimpleVT();
10503       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10504           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10505            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10506         return expandVSXStoreForLE(N, DCI);
10507     }
10508     break;
10509   }
10510   case ISD::LOAD: {
10511     LoadSDNode *LD = cast<LoadSDNode>(N);
10512     EVT VT = LD->getValueType(0);
10513 
10514     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10515     if (VT.isSimple()) {
10516       MVT LoadVT = VT.getSimpleVT();
10517       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10518           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10519            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10520         return expandVSXLoadForLE(N, DCI);
10521     }
10522 
10523     // We sometimes end up with a 64-bit integer load, from which we extract
10524     // two single-precision floating-point numbers. This happens with
10525     // std::complex<float>, and other similar structures, because of the way we
10526     // canonicalize structure copies. However, if we lack direct moves,
10527     // then the final bitcasts from the extracted integer values to the
10528     // floating-point numbers turn into store/load pairs. Even with direct moves,
10529     // just loading the two floating-point numbers is likely better.
10530     auto ReplaceTwoFloatLoad = [&]() {
10531       if (VT != MVT::i64)
10532         return false;
10533 
10534       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
10535           LD->isVolatile())
10536         return false;
10537 
10538       //  We're looking for a sequence like this:
10539       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
10540       //      t16: i64 = srl t13, Constant:i32<32>
10541       //    t17: i32 = truncate t16
10542       //  t18: f32 = bitcast t17
10543       //    t19: i32 = truncate t13
10544       //  t20: f32 = bitcast t19
10545 
10546       if (!LD->hasNUsesOfValue(2, 0))
10547         return false;
10548 
10549       auto UI = LD->use_begin();
10550       while (UI.getUse().getResNo() != 0) ++UI;
10551       SDNode *Trunc = *UI++;
10552       while (UI.getUse().getResNo() != 0) ++UI;
10553       SDNode *RightShift = *UI;
10554       if (Trunc->getOpcode() != ISD::TRUNCATE)
10555         std::swap(Trunc, RightShift);
10556 
10557       if (Trunc->getOpcode() != ISD::TRUNCATE ||
10558           Trunc->getValueType(0) != MVT::i32 ||
10559           !Trunc->hasOneUse())
10560         return false;
10561       if (RightShift->getOpcode() != ISD::SRL ||
10562           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
10563           RightShift->getConstantOperandVal(1) != 32 ||
10564           !RightShift->hasOneUse())
10565         return false;
10566 
10567       SDNode *Trunc2 = *RightShift->use_begin();
10568       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
10569           Trunc2->getValueType(0) != MVT::i32 ||
10570           !Trunc2->hasOneUse())
10571         return false;
10572 
10573       SDNode *Bitcast = *Trunc->use_begin();
10574       SDNode *Bitcast2 = *Trunc2->use_begin();
10575 
10576       if (Bitcast->getOpcode() != ISD::BITCAST ||
10577           Bitcast->getValueType(0) != MVT::f32)
10578         return false;
10579       if (Bitcast2->getOpcode() != ISD::BITCAST ||
10580           Bitcast2->getValueType(0) != MVT::f32)
10581         return false;
10582 
10583       if (Subtarget.isLittleEndian())
10584         std::swap(Bitcast, Bitcast2);
10585 
10586       // Bitcast has the second float (in memory-layout order) and Bitcast2
10587       // has the first one.
10588 
10589       SDValue BasePtr = LD->getBasePtr();
10590       if (LD->isIndexed()) {
10591         assert(LD->getAddressingMode() == ISD::PRE_INC &&
10592                "Non-pre-inc AM on PPC?");
10593         BasePtr =
10594           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10595                       LD->getOffset());
10596       }
10597 
10598       SDValue FloatLoad =
10599         DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
10600                     LD->getPointerInfo(), false, LD->isNonTemporal(),
10601                     LD->isInvariant(), LD->getAlignment(), LD->getAAInfo());
10602       SDValue AddPtr =
10603         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
10604                     BasePtr, DAG.getIntPtrConstant(4, dl));
10605       SDValue FloatLoad2 =
10606         DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
10607                     LD->getPointerInfo().getWithOffset(4), false,
10608                     LD->isNonTemporal(), LD->isInvariant(),
10609                     MinAlign(LD->getAlignment(), 4), LD->getAAInfo());
10610 
10611       if (LD->isIndexed()) {
10612 	// Note that DAGCombine should re-form any pre-increment load(s) from
10613 	// what is produced here if that makes sense.
10614         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
10615       }
10616 
10617       DCI.CombineTo(Bitcast2, FloatLoad);
10618       DCI.CombineTo(Bitcast, FloatLoad2);
10619 
10620       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
10621                                     SDValue(FloatLoad2.getNode(), 1));
10622       return true;
10623     };
10624 
10625     if (ReplaceTwoFloatLoad())
10626       return SDValue(N, 0);
10627 
10628     EVT MemVT = LD->getMemoryVT();
10629     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10630     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10631     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10632     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10633     if (LD->isUnindexed() && VT.isVector() &&
10634         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10635           // P8 and later hardware should just use LOAD.
10636           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10637                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10638          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10639           LD->getAlignment() >= ScalarABIAlignment)) &&
10640         LD->getAlignment() < ABIAlignment) {
10641       // This is a type-legal unaligned Altivec or QPX load.
10642       SDValue Chain = LD->getChain();
10643       SDValue Ptr = LD->getBasePtr();
10644       bool isLittleEndian = Subtarget.isLittleEndian();
10645 
10646       // This implements the loading of unaligned vectors as described in
10647       // the venerable Apple Velocity Engine overview. Specifically:
10648       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10649       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10650       //
10651       // The general idea is to expand a sequence of one or more unaligned
10652       // loads into an alignment-based permutation-control instruction (lvsl
10653       // or lvsr), a series of regular vector loads (which always truncate
10654       // their input address to an aligned address), and a series of
10655       // permutations.  The results of these permutations are the requested
10656       // loaded values.  The trick is that the last "extra" load is not taken
10657       // from the address you might suspect (sizeof(vector) bytes after the
10658       // last requested load), but rather sizeof(vector) - 1 bytes after the
10659       // last requested vector. The point of this is to avoid a page fault if
10660       // the base address happened to be aligned. This works because if the
10661       // base address is aligned, then adding less than a full vector length
10662       // will cause the last vector in the sequence to be (re)loaded.
10663       // Otherwise, the next vector will be fetched as you might suspect was
10664       // necessary.
10665 
10666       // We might be able to reuse the permutation generation from
10667       // a different base address offset from this one by an aligned amount.
10668       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10669       // optimization later.
10670       Intrinsic::ID Intr, IntrLD, IntrPerm;
10671       MVT PermCntlTy, PermTy, LDTy;
10672       if (Subtarget.hasAltivec()) {
10673         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10674                                  Intrinsic::ppc_altivec_lvsl;
10675         IntrLD = Intrinsic::ppc_altivec_lvx;
10676         IntrPerm = Intrinsic::ppc_altivec_vperm;
10677         PermCntlTy = MVT::v16i8;
10678         PermTy = MVT::v4i32;
10679         LDTy = MVT::v4i32;
10680       } else {
10681         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10682                                        Intrinsic::ppc_qpx_qvlpcls;
10683         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10684                                        Intrinsic::ppc_qpx_qvlfs;
10685         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10686         PermCntlTy = MVT::v4f64;
10687         PermTy = MVT::v4f64;
10688         LDTy = MemVT.getSimpleVT();
10689       }
10690 
10691       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10692 
10693       // Create the new MMO for the new base load. It is like the original MMO,
10694       // but represents an area in memory almost twice the vector size centered
10695       // on the original address. If the address is unaligned, we might start
10696       // reading up to (sizeof(vector)-1) bytes below the address of the
10697       // original unaligned load.
10698       MachineFunction &MF = DAG.getMachineFunction();
10699       MachineMemOperand *BaseMMO =
10700         MF.getMachineMemOperand(LD->getMemOperand(),
10701                                 -(long)MemVT.getStoreSize()+1,
10702                                 2*MemVT.getStoreSize()-1);
10703 
10704       // Create the new base load.
10705       SDValue LDXIntID =
10706           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10707       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10708       SDValue BaseLoad =
10709         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10710                                 DAG.getVTList(PermTy, MVT::Other),
10711                                 BaseLoadOps, LDTy, BaseMMO);
10712 
10713       // Note that the value of IncOffset (which is provided to the next
10714       // load's pointer info offset value, and thus used to calculate the
10715       // alignment), and the value of IncValue (which is actually used to
10716       // increment the pointer value) are different! This is because we
10717       // require the next load to appear to be aligned, even though it
10718       // is actually offset from the base pointer by a lesser amount.
10719       int IncOffset = VT.getSizeInBits() / 8;
10720       int IncValue = IncOffset;
10721 
10722       // Walk (both up and down) the chain looking for another load at the real
10723       // (aligned) offset (the alignment of the other load does not matter in
10724       // this case). If found, then do not use the offset reduction trick, as
10725       // that will prevent the loads from being later combined (as they would
10726       // otherwise be duplicates).
10727       if (!findConsecutiveLoad(LD, DAG))
10728         --IncValue;
10729 
10730       SDValue Increment =
10731           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10732       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10733 
10734       MachineMemOperand *ExtraMMO =
10735         MF.getMachineMemOperand(LD->getMemOperand(),
10736                                 1, 2*MemVT.getStoreSize()-1);
10737       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10738       SDValue ExtraLoad =
10739         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10740                                 DAG.getVTList(PermTy, MVT::Other),
10741                                 ExtraLoadOps, LDTy, ExtraMMO);
10742 
10743       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10744         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10745 
10746       // Because vperm has a big-endian bias, we must reverse the order
10747       // of the input vectors and complement the permute control vector
10748       // when generating little endian code.  We have already handled the
10749       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10750       // and ExtraLoad here.
10751       SDValue Perm;
10752       if (isLittleEndian)
10753         Perm = BuildIntrinsicOp(IntrPerm,
10754                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10755       else
10756         Perm = BuildIntrinsicOp(IntrPerm,
10757                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10758 
10759       if (VT != PermTy)
10760         Perm = Subtarget.hasAltivec() ?
10761                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10762                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10763                                DAG.getTargetConstant(1, dl, MVT::i64));
10764                                // second argument is 1 because this rounding
10765                                // is always exact.
10766 
10767       // The output of the permutation is our loaded result, the TokenFactor is
10768       // our new chain.
10769       DCI.CombineTo(N, Perm, TF);
10770       return SDValue(N, 0);
10771     }
10772     }
10773     break;
10774     case ISD::INTRINSIC_WO_CHAIN: {
10775       bool isLittleEndian = Subtarget.isLittleEndian();
10776       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10777       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10778                                            : Intrinsic::ppc_altivec_lvsl);
10779       if ((IID == Intr ||
10780            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10781            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10782         N->getOperand(1)->getOpcode() == ISD::ADD) {
10783         SDValue Add = N->getOperand(1);
10784 
10785         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10786                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10787 
10788         if (DAG.MaskedValueIsZero(
10789                 Add->getOperand(1),
10790                 APInt::getAllOnesValue(Bits /* alignment */)
10791                     .zext(
10792                         Add.getValueType().getScalarType().getSizeInBits()))) {
10793           SDNode *BasePtr = Add->getOperand(0).getNode();
10794           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10795                                     UE = BasePtr->use_end();
10796                UI != UE; ++UI) {
10797             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10798                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10799               // We've found another LVSL/LVSR, and this address is an aligned
10800               // multiple of that one. The results will be the same, so use the
10801               // one we've just found instead.
10802 
10803               return SDValue(*UI, 0);
10804             }
10805           }
10806         }
10807 
10808         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10809           SDNode *BasePtr = Add->getOperand(0).getNode();
10810           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10811                UE = BasePtr->use_end(); UI != UE; ++UI) {
10812             if (UI->getOpcode() == ISD::ADD &&
10813                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10814                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10815                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10816                 (1ULL << Bits) == 0) {
10817               SDNode *OtherAdd = *UI;
10818               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10819                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10820                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10821                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10822                   return SDValue(*VI, 0);
10823                 }
10824               }
10825             }
10826           }
10827         }
10828       }
10829     }
10830 
10831     break;
10832   case ISD::INTRINSIC_W_CHAIN: {
10833     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10834     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10835       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10836       default:
10837         break;
10838       case Intrinsic::ppc_vsx_lxvw4x:
10839       case Intrinsic::ppc_vsx_lxvd2x:
10840         return expandVSXLoadForLE(N, DCI);
10841       }
10842     }
10843     break;
10844   }
10845   case ISD::INTRINSIC_VOID: {
10846     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10847     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10848       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10849       default:
10850         break;
10851       case Intrinsic::ppc_vsx_stxvw4x:
10852       case Intrinsic::ppc_vsx_stxvd2x:
10853         return expandVSXStoreForLE(N, DCI);
10854       }
10855     }
10856     break;
10857   }
10858   case ISD::BSWAP:
10859     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10860     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10861         N->getOperand(0).hasOneUse() &&
10862         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10863          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10864           N->getValueType(0) == MVT::i64))) {
10865       SDValue Load = N->getOperand(0);
10866       LoadSDNode *LD = cast<LoadSDNode>(Load);
10867       // Create the byte-swapping load.
10868       SDValue Ops[] = {
10869         LD->getChain(),    // Chain
10870         LD->getBasePtr(),  // Ptr
10871         DAG.getValueType(N->getValueType(0)) // VT
10872       };
10873       SDValue BSLoad =
10874         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10875                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10876                                               MVT::i64 : MVT::i32, MVT::Other),
10877                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10878 
10879       // If this is an i16 load, insert the truncate.
10880       SDValue ResVal = BSLoad;
10881       if (N->getValueType(0) == MVT::i16)
10882         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10883 
10884       // First, combine the bswap away.  This makes the value produced by the
10885       // load dead.
10886       DCI.CombineTo(N, ResVal);
10887 
10888       // Next, combine the load away, we give it a bogus result value but a real
10889       // chain result.  The result value is dead because the bswap is dead.
10890       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10891 
10892       // Return N so it doesn't get rechecked!
10893       return SDValue(N, 0);
10894     }
10895 
10896     break;
10897   case PPCISD::VCMP: {
10898     // If a VCMPo node already exists with exactly the same operands as this
10899     // node, use its result instead of this node (VCMPo computes both a CR6 and
10900     // a normal output).
10901     //
10902     if (!N->getOperand(0).hasOneUse() &&
10903         !N->getOperand(1).hasOneUse() &&
10904         !N->getOperand(2).hasOneUse()) {
10905 
10906       // Scan all of the users of the LHS, looking for VCMPo's that match.
10907       SDNode *VCMPoNode = nullptr;
10908 
10909       SDNode *LHSN = N->getOperand(0).getNode();
10910       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10911            UI != E; ++UI)
10912         if (UI->getOpcode() == PPCISD::VCMPo &&
10913             UI->getOperand(1) == N->getOperand(1) &&
10914             UI->getOperand(2) == N->getOperand(2) &&
10915             UI->getOperand(0) == N->getOperand(0)) {
10916           VCMPoNode = *UI;
10917           break;
10918         }
10919 
10920       // If there is no VCMPo node, or if the flag value has a single use, don't
10921       // transform this.
10922       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10923         break;
10924 
10925       // Look at the (necessarily single) use of the flag value.  If it has a
10926       // chain, this transformation is more complex.  Note that multiple things
10927       // could use the value result, which we should ignore.
10928       SDNode *FlagUser = nullptr;
10929       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10930            FlagUser == nullptr; ++UI) {
10931         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10932         SDNode *User = *UI;
10933         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10934           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10935             FlagUser = User;
10936             break;
10937           }
10938         }
10939       }
10940 
10941       // If the user is a MFOCRF instruction, we know this is safe.
10942       // Otherwise we give up for right now.
10943       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10944         return SDValue(VCMPoNode, 0);
10945     }
10946     break;
10947   }
10948   case ISD::BRCOND: {
10949     SDValue Cond = N->getOperand(1);
10950     SDValue Target = N->getOperand(2);
10951 
10952     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10953         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10954           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10955 
10956       // We now need to make the intrinsic dead (it cannot be instruction
10957       // selected).
10958       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10959       assert(Cond.getNode()->hasOneUse() &&
10960              "Counter decrement has more than one use");
10961 
10962       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10963                          N->getOperand(0), Target);
10964     }
10965   }
10966   break;
10967   case ISD::BR_CC: {
10968     // If this is a branch on an altivec predicate comparison, lower this so
10969     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10970     // lowering is done pre-legalize, because the legalizer lowers the predicate
10971     // compare down to code that is difficult to reassemble.
10972     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10973     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10974 
10975     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10976     // value. If so, pass-through the AND to get to the intrinsic.
10977     if (LHS.getOpcode() == ISD::AND &&
10978         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10979         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10980           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10981         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10982         !isNullConstant(LHS.getOperand(1)))
10983       LHS = LHS.getOperand(0);
10984 
10985     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10986         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10987           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10988         isa<ConstantSDNode>(RHS)) {
10989       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10990              "Counter decrement comparison is not EQ or NE");
10991 
10992       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10993       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10994                     (CC == ISD::SETNE && !Val);
10995 
10996       // We now need to make the intrinsic dead (it cannot be instruction
10997       // selected).
10998       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10999       assert(LHS.getNode()->hasOneUse() &&
11000              "Counter decrement has more than one use");
11001 
11002       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
11003                          N->getOperand(0), N->getOperand(4));
11004     }
11005 
11006     int CompareOpc;
11007     bool isDot;
11008 
11009     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11010         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
11011         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
11012       assert(isDot && "Can't compare against a vector result!");
11013 
11014       // If this is a comparison against something other than 0/1, then we know
11015       // that the condition is never/always true.
11016       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11017       if (Val != 0 && Val != 1) {
11018         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
11019           return N->getOperand(0);
11020         // Always !=, turn it into an unconditional branch.
11021         return DAG.getNode(ISD::BR, dl, MVT::Other,
11022                            N->getOperand(0), N->getOperand(4));
11023       }
11024 
11025       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
11026 
11027       // Create the PPCISD altivec 'dot' comparison node.
11028       SDValue Ops[] = {
11029         LHS.getOperand(2),  // LHS of compare
11030         LHS.getOperand(3),  // RHS of compare
11031         DAG.getConstant(CompareOpc, dl, MVT::i32)
11032       };
11033       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
11034       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
11035 
11036       // Unpack the result based on how the target uses it.
11037       PPC::Predicate CompOpc;
11038       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11039       default:  // Can't happen, don't crash on invalid number though.
11040       case 0:   // Branch on the value of the EQ bit of CR6.
11041         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11042         break;
11043       case 1:   // Branch on the inverted value of the EQ bit of CR6.
11044         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11045         break;
11046       case 2:   // Branch on the value of the LT bit of CR6.
11047         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11048         break;
11049       case 3:   // Branch on the inverted value of the LT bit of CR6.
11050         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11051         break;
11052       }
11053 
11054       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11055                          DAG.getConstant(CompOpc, dl, MVT::i32),
11056                          DAG.getRegister(PPC::CR6, MVT::i32),
11057                          N->getOperand(4), CompNode.getValue(1));
11058     }
11059     break;
11060   }
11061   }
11062 
11063   return SDValue();
11064 }
11065 
11066 SDValue
11067 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11068                                   SelectionDAG &DAG,
11069                                   std::vector<SDNode *> *Created) const {
11070   // fold (sdiv X, pow2)
11071   EVT VT = N->getValueType(0);
11072   if (VT == MVT::i64 && !Subtarget.isPPC64())
11073     return SDValue();
11074   if ((VT != MVT::i32 && VT != MVT::i64) ||
11075       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11076     return SDValue();
11077 
11078   SDLoc DL(N);
11079   SDValue N0 = N->getOperand(0);
11080 
11081   bool IsNegPow2 = (-Divisor).isPowerOf2();
11082   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11083   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11084 
11085   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11086   if (Created)
11087     Created->push_back(Op.getNode());
11088 
11089   if (IsNegPow2) {
11090     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11091     if (Created)
11092       Created->push_back(Op.getNode());
11093   }
11094 
11095   return Op;
11096 }
11097 
11098 //===----------------------------------------------------------------------===//
11099 // Inline Assembly Support
11100 //===----------------------------------------------------------------------===//
11101 
11102 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11103                                                       APInt &KnownZero,
11104                                                       APInt &KnownOne,
11105                                                       const SelectionDAG &DAG,
11106                                                       unsigned Depth) const {
11107   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11108   switch (Op.getOpcode()) {
11109   default: break;
11110   case PPCISD::LBRX: {
11111     // lhbrx is known to have the top bits cleared out.
11112     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11113       KnownZero = 0xFFFF0000;
11114     break;
11115   }
11116   case ISD::INTRINSIC_WO_CHAIN: {
11117     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11118     default: break;
11119     case Intrinsic::ppc_altivec_vcmpbfp_p:
11120     case Intrinsic::ppc_altivec_vcmpeqfp_p:
11121     case Intrinsic::ppc_altivec_vcmpequb_p:
11122     case Intrinsic::ppc_altivec_vcmpequh_p:
11123     case Intrinsic::ppc_altivec_vcmpequw_p:
11124     case Intrinsic::ppc_altivec_vcmpequd_p:
11125     case Intrinsic::ppc_altivec_vcmpgefp_p:
11126     case Intrinsic::ppc_altivec_vcmpgtfp_p:
11127     case Intrinsic::ppc_altivec_vcmpgtsb_p:
11128     case Intrinsic::ppc_altivec_vcmpgtsh_p:
11129     case Intrinsic::ppc_altivec_vcmpgtsw_p:
11130     case Intrinsic::ppc_altivec_vcmpgtsd_p:
11131     case Intrinsic::ppc_altivec_vcmpgtub_p:
11132     case Intrinsic::ppc_altivec_vcmpgtuh_p:
11133     case Intrinsic::ppc_altivec_vcmpgtuw_p:
11134     case Intrinsic::ppc_altivec_vcmpgtud_p:
11135       KnownZero = ~1U;  // All bits but the low one are known to be zero.
11136       break;
11137     }
11138   }
11139   }
11140 }
11141 
11142 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11143   switch (Subtarget.getDarwinDirective()) {
11144   default: break;
11145   case PPC::DIR_970:
11146   case PPC::DIR_PWR4:
11147   case PPC::DIR_PWR5:
11148   case PPC::DIR_PWR5X:
11149   case PPC::DIR_PWR6:
11150   case PPC::DIR_PWR6X:
11151   case PPC::DIR_PWR7:
11152   case PPC::DIR_PWR8: {
11153     if (!ML)
11154       break;
11155 
11156     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11157 
11158     // For small loops (between 5 and 8 instructions), align to a 32-byte
11159     // boundary so that the entire loop fits in one instruction-cache line.
11160     uint64_t LoopSize = 0;
11161     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
11162       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
11163         LoopSize += TII->GetInstSizeInBytes(J);
11164         if (LoopSize > 32)
11165           break;
11166       }
11167 
11168     if (LoopSize > 16 && LoopSize <= 32)
11169       return 5;
11170 
11171     break;
11172   }
11173   }
11174 
11175   return TargetLowering::getPrefLoopAlignment(ML);
11176 }
11177 
11178 /// getConstraintType - Given a constraint, return the type of
11179 /// constraint it is for this target.
11180 PPCTargetLowering::ConstraintType
11181 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
11182   if (Constraint.size() == 1) {
11183     switch (Constraint[0]) {
11184     default: break;
11185     case 'b':
11186     case 'r':
11187     case 'f':
11188     case 'd':
11189     case 'v':
11190     case 'y':
11191       return C_RegisterClass;
11192     case 'Z':
11193       // FIXME: While Z does indicate a memory constraint, it specifically
11194       // indicates an r+r address (used in conjunction with the 'y' modifier
11195       // in the replacement string). Currently, we're forcing the base
11196       // register to be r0 in the asm printer (which is interpreted as zero)
11197       // and forming the complete address in the second register. This is
11198       // suboptimal.
11199       return C_Memory;
11200     }
11201   } else if (Constraint == "wc") { // individual CR bits.
11202     return C_RegisterClass;
11203   } else if (Constraint == "wa" || Constraint == "wd" ||
11204              Constraint == "wf" || Constraint == "ws") {
11205     return C_RegisterClass; // VSX registers.
11206   }
11207   return TargetLowering::getConstraintType(Constraint);
11208 }
11209 
11210 /// Examine constraint type and operand type and determine a weight value.
11211 /// This object must already have been set up with the operand type
11212 /// and the current alternative constraint selected.
11213 TargetLowering::ConstraintWeight
11214 PPCTargetLowering::getSingleConstraintMatchWeight(
11215     AsmOperandInfo &info, const char *constraint) const {
11216   ConstraintWeight weight = CW_Invalid;
11217   Value *CallOperandVal = info.CallOperandVal;
11218     // If we don't have a value, we can't do a match,
11219     // but allow it at the lowest weight.
11220   if (!CallOperandVal)
11221     return CW_Default;
11222   Type *type = CallOperandVal->getType();
11223 
11224   // Look at the constraint type.
11225   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
11226     return CW_Register; // an individual CR bit.
11227   else if ((StringRef(constraint) == "wa" ||
11228             StringRef(constraint) == "wd" ||
11229             StringRef(constraint) == "wf") &&
11230            type->isVectorTy())
11231     return CW_Register;
11232   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
11233     return CW_Register;
11234 
11235   switch (*constraint) {
11236   default:
11237     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11238     break;
11239   case 'b':
11240     if (type->isIntegerTy())
11241       weight = CW_Register;
11242     break;
11243   case 'f':
11244     if (type->isFloatTy())
11245       weight = CW_Register;
11246     break;
11247   case 'd':
11248     if (type->isDoubleTy())
11249       weight = CW_Register;
11250     break;
11251   case 'v':
11252     if (type->isVectorTy())
11253       weight = CW_Register;
11254     break;
11255   case 'y':
11256     weight = CW_Register;
11257     break;
11258   case 'Z':
11259     weight = CW_Memory;
11260     break;
11261   }
11262   return weight;
11263 }
11264 
11265 std::pair<unsigned, const TargetRegisterClass *>
11266 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11267                                                 StringRef Constraint,
11268                                                 MVT VT) const {
11269   if (Constraint.size() == 1) {
11270     // GCC RS6000 Constraint Letters
11271     switch (Constraint[0]) {
11272     case 'b':   // R1-R31
11273       if (VT == MVT::i64 && Subtarget.isPPC64())
11274         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
11275       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
11276     case 'r':   // R0-R31
11277       if (VT == MVT::i64 && Subtarget.isPPC64())
11278         return std::make_pair(0U, &PPC::G8RCRegClass);
11279       return std::make_pair(0U, &PPC::GPRCRegClass);
11280     // 'd' and 'f' constraints are both defined to be "the floating point
11281     // registers", where one is for 32-bit and the other for 64-bit. We don't
11282     // really care overly much here so just give them all the same reg classes.
11283     case 'd':
11284     case 'f':
11285       if (VT == MVT::f32 || VT == MVT::i32)
11286         return std::make_pair(0U, &PPC::F4RCRegClass);
11287       if (VT == MVT::f64 || VT == MVT::i64)
11288         return std::make_pair(0U, &PPC::F8RCRegClass);
11289       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11290         return std::make_pair(0U, &PPC::QFRCRegClass);
11291       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11292         return std::make_pair(0U, &PPC::QSRCRegClass);
11293       break;
11294     case 'v':
11295       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11296         return std::make_pair(0U, &PPC::QFRCRegClass);
11297       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11298         return std::make_pair(0U, &PPC::QSRCRegClass);
11299       if (Subtarget.hasAltivec())
11300         return std::make_pair(0U, &PPC::VRRCRegClass);
11301     case 'y':   // crrc
11302       return std::make_pair(0U, &PPC::CRRCRegClass);
11303     }
11304   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
11305     // An individual CR bit.
11306     return std::make_pair(0U, &PPC::CRBITRCRegClass);
11307   } else if ((Constraint == "wa" || Constraint == "wd" ||
11308              Constraint == "wf") && Subtarget.hasVSX()) {
11309     return std::make_pair(0U, &PPC::VSRCRegClass);
11310   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
11311     if (VT == MVT::f32 && Subtarget.hasP8Vector())
11312       return std::make_pair(0U, &PPC::VSSRCRegClass);
11313     else
11314       return std::make_pair(0U, &PPC::VSFRCRegClass);
11315   }
11316 
11317   std::pair<unsigned, const TargetRegisterClass *> R =
11318       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11319 
11320   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
11321   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
11322   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
11323   // register.
11324   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
11325   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
11326   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
11327       PPC::GPRCRegClass.contains(R.first))
11328     return std::make_pair(TRI->getMatchingSuperReg(R.first,
11329                             PPC::sub_32, &PPC::G8RCRegClass),
11330                           &PPC::G8RCRegClass);
11331 
11332   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
11333   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
11334     R.first = PPC::CR0;
11335     R.second = &PPC::CRRCRegClass;
11336   }
11337 
11338   return R;
11339 }
11340 
11341 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11342 /// vector.  If it is invalid, don't add anything to Ops.
11343 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11344                                                      std::string &Constraint,
11345                                                      std::vector<SDValue>&Ops,
11346                                                      SelectionDAG &DAG) const {
11347   SDValue Result;
11348 
11349   // Only support length 1 constraints.
11350   if (Constraint.length() > 1) return;
11351 
11352   char Letter = Constraint[0];
11353   switch (Letter) {
11354   default: break;
11355   case 'I':
11356   case 'J':
11357   case 'K':
11358   case 'L':
11359   case 'M':
11360   case 'N':
11361   case 'O':
11362   case 'P': {
11363     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11364     if (!CST) return; // Must be an immediate to match.
11365     SDLoc dl(Op);
11366     int64_t Value = CST->getSExtValue();
11367     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11368                          // numbers are printed as such.
11369     switch (Letter) {
11370     default: llvm_unreachable("Unknown constraint letter!");
11371     case 'I':  // "I" is a signed 16-bit constant.
11372       if (isInt<16>(Value))
11373         Result = DAG.getTargetConstant(Value, dl, TCVT);
11374       break;
11375     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11376       if (isShiftedUInt<16, 16>(Value))
11377         Result = DAG.getTargetConstant(Value, dl, TCVT);
11378       break;
11379     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11380       if (isShiftedInt<16, 16>(Value))
11381         Result = DAG.getTargetConstant(Value, dl, TCVT);
11382       break;
11383     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11384       if (isUInt<16>(Value))
11385         Result = DAG.getTargetConstant(Value, dl, TCVT);
11386       break;
11387     case 'M':  // "M" is a constant that is greater than 31.
11388       if (Value > 31)
11389         Result = DAG.getTargetConstant(Value, dl, TCVT);
11390       break;
11391     case 'N':  // "N" is a positive constant that is an exact power of two.
11392       if (Value > 0 && isPowerOf2_64(Value))
11393         Result = DAG.getTargetConstant(Value, dl, TCVT);
11394       break;
11395     case 'O':  // "O" is the constant zero.
11396       if (Value == 0)
11397         Result = DAG.getTargetConstant(Value, dl, TCVT);
11398       break;
11399     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11400       if (isInt<16>(-Value))
11401         Result = DAG.getTargetConstant(Value, dl, TCVT);
11402       break;
11403     }
11404     break;
11405   }
11406   }
11407 
11408   if (Result.getNode()) {
11409     Ops.push_back(Result);
11410     return;
11411   }
11412 
11413   // Handle standard constraint letters.
11414   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11415 }
11416 
11417 // isLegalAddressingMode - Return true if the addressing mode represented
11418 // by AM is legal for this target, for a load/store of the specified type.
11419 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11420                                               const AddrMode &AM, Type *Ty,
11421                                               unsigned AS) const {
11422   // PPC does not allow r+i addressing modes for vectors!
11423   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11424     return false;
11425 
11426   // PPC allows a sign-extended 16-bit immediate field.
11427   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11428     return false;
11429 
11430   // No global is ever allowed as a base.
11431   if (AM.BaseGV)
11432     return false;
11433 
11434   // PPC only support r+r,
11435   switch (AM.Scale) {
11436   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11437     break;
11438   case 1:
11439     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11440       return false;
11441     // Otherwise we have r+r or r+i.
11442     break;
11443   case 2:
11444     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11445       return false;
11446     // Allow 2*r as r+r.
11447     break;
11448   default:
11449     // No other scales are supported.
11450     return false;
11451   }
11452 
11453   return true;
11454 }
11455 
11456 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11457                                            SelectionDAG &DAG) const {
11458   MachineFunction &MF = DAG.getMachineFunction();
11459   MachineFrameInfo *MFI = MF.getFrameInfo();
11460   MFI->setReturnAddressIsTaken(true);
11461 
11462   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11463     return SDValue();
11464 
11465   SDLoc dl(Op);
11466   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11467 
11468   // Make sure the function does not optimize away the store of the RA to
11469   // the stack.
11470   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11471   FuncInfo->setLRStoreRequired();
11472   bool isPPC64 = Subtarget.isPPC64();
11473   auto PtrVT = getPointerTy(MF.getDataLayout());
11474 
11475   if (Depth > 0) {
11476     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11477     SDValue Offset =
11478         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11479                         isPPC64 ? MVT::i64 : MVT::i32);
11480     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11481                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11482                        MachinePointerInfo(), false, false, false, 0);
11483   }
11484 
11485   // Just load the return address off the stack.
11486   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11487   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11488                      MachinePointerInfo(), false, false, false, 0);
11489 }
11490 
11491 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11492                                           SelectionDAG &DAG) const {
11493   SDLoc dl(Op);
11494   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11495 
11496   MachineFunction &MF = DAG.getMachineFunction();
11497   MachineFrameInfo *MFI = MF.getFrameInfo();
11498   MFI->setFrameAddressIsTaken(true);
11499 
11500   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11501   bool isPPC64 = PtrVT == MVT::i64;
11502 
11503   // Naked functions never have a frame pointer, and so we use r1. For all
11504   // other functions, this decision must be delayed until during PEI.
11505   unsigned FrameReg;
11506   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11507     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11508   else
11509     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11510 
11511   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11512                                          PtrVT);
11513   while (Depth--)
11514     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11515                             FrameAddr, MachinePointerInfo(), false, false,
11516                             false, 0);
11517   return FrameAddr;
11518 }
11519 
11520 // FIXME? Maybe this could be a TableGen attribute on some registers and
11521 // this table could be generated automatically from RegInfo.
11522 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11523                                               SelectionDAG &DAG) const {
11524   bool isPPC64 = Subtarget.isPPC64();
11525   bool isDarwinABI = Subtarget.isDarwinABI();
11526 
11527   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11528       (!isPPC64 && VT != MVT::i32))
11529     report_fatal_error("Invalid register global variable type");
11530 
11531   bool is64Bit = isPPC64 && VT == MVT::i64;
11532   unsigned Reg = StringSwitch<unsigned>(RegName)
11533                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11534                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11535                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11536                                   (is64Bit ? PPC::X13 : PPC::R13))
11537                    .Default(0);
11538 
11539   if (Reg)
11540     return Reg;
11541   report_fatal_error("Invalid register name global variable");
11542 }
11543 
11544 bool
11545 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11546   // The PowerPC target isn't yet aware of offsets.
11547   return false;
11548 }
11549 
11550 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11551                                            const CallInst &I,
11552                                            unsigned Intrinsic) const {
11553 
11554   switch (Intrinsic) {
11555   case Intrinsic::ppc_qpx_qvlfd:
11556   case Intrinsic::ppc_qpx_qvlfs:
11557   case Intrinsic::ppc_qpx_qvlfcd:
11558   case Intrinsic::ppc_qpx_qvlfcs:
11559   case Intrinsic::ppc_qpx_qvlfiwa:
11560   case Intrinsic::ppc_qpx_qvlfiwz:
11561   case Intrinsic::ppc_altivec_lvx:
11562   case Intrinsic::ppc_altivec_lvxl:
11563   case Intrinsic::ppc_altivec_lvebx:
11564   case Intrinsic::ppc_altivec_lvehx:
11565   case Intrinsic::ppc_altivec_lvewx:
11566   case Intrinsic::ppc_vsx_lxvd2x:
11567   case Intrinsic::ppc_vsx_lxvw4x: {
11568     EVT VT;
11569     switch (Intrinsic) {
11570     case Intrinsic::ppc_altivec_lvebx:
11571       VT = MVT::i8;
11572       break;
11573     case Intrinsic::ppc_altivec_lvehx:
11574       VT = MVT::i16;
11575       break;
11576     case Intrinsic::ppc_altivec_lvewx:
11577       VT = MVT::i32;
11578       break;
11579     case Intrinsic::ppc_vsx_lxvd2x:
11580       VT = MVT::v2f64;
11581       break;
11582     case Intrinsic::ppc_qpx_qvlfd:
11583       VT = MVT::v4f64;
11584       break;
11585     case Intrinsic::ppc_qpx_qvlfs:
11586       VT = MVT::v4f32;
11587       break;
11588     case Intrinsic::ppc_qpx_qvlfcd:
11589       VT = MVT::v2f64;
11590       break;
11591     case Intrinsic::ppc_qpx_qvlfcs:
11592       VT = MVT::v2f32;
11593       break;
11594     default:
11595       VT = MVT::v4i32;
11596       break;
11597     }
11598 
11599     Info.opc = ISD::INTRINSIC_W_CHAIN;
11600     Info.memVT = VT;
11601     Info.ptrVal = I.getArgOperand(0);
11602     Info.offset = -VT.getStoreSize()+1;
11603     Info.size = 2*VT.getStoreSize()-1;
11604     Info.align = 1;
11605     Info.vol = false;
11606     Info.readMem = true;
11607     Info.writeMem = false;
11608     return true;
11609   }
11610   case Intrinsic::ppc_qpx_qvlfda:
11611   case Intrinsic::ppc_qpx_qvlfsa:
11612   case Intrinsic::ppc_qpx_qvlfcda:
11613   case Intrinsic::ppc_qpx_qvlfcsa:
11614   case Intrinsic::ppc_qpx_qvlfiwaa:
11615   case Intrinsic::ppc_qpx_qvlfiwza: {
11616     EVT VT;
11617     switch (Intrinsic) {
11618     case Intrinsic::ppc_qpx_qvlfda:
11619       VT = MVT::v4f64;
11620       break;
11621     case Intrinsic::ppc_qpx_qvlfsa:
11622       VT = MVT::v4f32;
11623       break;
11624     case Intrinsic::ppc_qpx_qvlfcda:
11625       VT = MVT::v2f64;
11626       break;
11627     case Intrinsic::ppc_qpx_qvlfcsa:
11628       VT = MVT::v2f32;
11629       break;
11630     default:
11631       VT = MVT::v4i32;
11632       break;
11633     }
11634 
11635     Info.opc = ISD::INTRINSIC_W_CHAIN;
11636     Info.memVT = VT;
11637     Info.ptrVal = I.getArgOperand(0);
11638     Info.offset = 0;
11639     Info.size = VT.getStoreSize();
11640     Info.align = 1;
11641     Info.vol = false;
11642     Info.readMem = true;
11643     Info.writeMem = false;
11644     return true;
11645   }
11646   case Intrinsic::ppc_qpx_qvstfd:
11647   case Intrinsic::ppc_qpx_qvstfs:
11648   case Intrinsic::ppc_qpx_qvstfcd:
11649   case Intrinsic::ppc_qpx_qvstfcs:
11650   case Intrinsic::ppc_qpx_qvstfiw:
11651   case Intrinsic::ppc_altivec_stvx:
11652   case Intrinsic::ppc_altivec_stvxl:
11653   case Intrinsic::ppc_altivec_stvebx:
11654   case Intrinsic::ppc_altivec_stvehx:
11655   case Intrinsic::ppc_altivec_stvewx:
11656   case Intrinsic::ppc_vsx_stxvd2x:
11657   case Intrinsic::ppc_vsx_stxvw4x: {
11658     EVT VT;
11659     switch (Intrinsic) {
11660     case Intrinsic::ppc_altivec_stvebx:
11661       VT = MVT::i8;
11662       break;
11663     case Intrinsic::ppc_altivec_stvehx:
11664       VT = MVT::i16;
11665       break;
11666     case Intrinsic::ppc_altivec_stvewx:
11667       VT = MVT::i32;
11668       break;
11669     case Intrinsic::ppc_vsx_stxvd2x:
11670       VT = MVT::v2f64;
11671       break;
11672     case Intrinsic::ppc_qpx_qvstfd:
11673       VT = MVT::v4f64;
11674       break;
11675     case Intrinsic::ppc_qpx_qvstfs:
11676       VT = MVT::v4f32;
11677       break;
11678     case Intrinsic::ppc_qpx_qvstfcd:
11679       VT = MVT::v2f64;
11680       break;
11681     case Intrinsic::ppc_qpx_qvstfcs:
11682       VT = MVT::v2f32;
11683       break;
11684     default:
11685       VT = MVT::v4i32;
11686       break;
11687     }
11688 
11689     Info.opc = ISD::INTRINSIC_VOID;
11690     Info.memVT = VT;
11691     Info.ptrVal = I.getArgOperand(1);
11692     Info.offset = -VT.getStoreSize()+1;
11693     Info.size = 2*VT.getStoreSize()-1;
11694     Info.align = 1;
11695     Info.vol = false;
11696     Info.readMem = false;
11697     Info.writeMem = true;
11698     return true;
11699   }
11700   case Intrinsic::ppc_qpx_qvstfda:
11701   case Intrinsic::ppc_qpx_qvstfsa:
11702   case Intrinsic::ppc_qpx_qvstfcda:
11703   case Intrinsic::ppc_qpx_qvstfcsa:
11704   case Intrinsic::ppc_qpx_qvstfiwa: {
11705     EVT VT;
11706     switch (Intrinsic) {
11707     case Intrinsic::ppc_qpx_qvstfda:
11708       VT = MVT::v4f64;
11709       break;
11710     case Intrinsic::ppc_qpx_qvstfsa:
11711       VT = MVT::v4f32;
11712       break;
11713     case Intrinsic::ppc_qpx_qvstfcda:
11714       VT = MVT::v2f64;
11715       break;
11716     case Intrinsic::ppc_qpx_qvstfcsa:
11717       VT = MVT::v2f32;
11718       break;
11719     default:
11720       VT = MVT::v4i32;
11721       break;
11722     }
11723 
11724     Info.opc = ISD::INTRINSIC_VOID;
11725     Info.memVT = VT;
11726     Info.ptrVal = I.getArgOperand(1);
11727     Info.offset = 0;
11728     Info.size = VT.getStoreSize();
11729     Info.align = 1;
11730     Info.vol = false;
11731     Info.readMem = false;
11732     Info.writeMem = true;
11733     return true;
11734   }
11735   default:
11736     break;
11737   }
11738 
11739   return false;
11740 }
11741 
11742 /// getOptimalMemOpType - Returns the target specific optimal type for load
11743 /// and store operations as a result of memset, memcpy, and memmove
11744 /// lowering. If DstAlign is zero that means it's safe to destination
11745 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11746 /// means there isn't a need to check it against alignment requirement,
11747 /// probably because the source does not need to be loaded. If 'IsMemset' is
11748 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11749 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11750 /// source is constant so it does not need to be loaded.
11751 /// It returns EVT::Other if the type should be determined using generic
11752 /// target-independent logic.
11753 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11754                                            unsigned DstAlign, unsigned SrcAlign,
11755                                            bool IsMemset, bool ZeroMemset,
11756                                            bool MemcpyStrSrc,
11757                                            MachineFunction &MF) const {
11758   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11759     const Function *F = MF.getFunction();
11760     // When expanding a memset, require at least two QPX instructions to cover
11761     // the cost of loading the value to be stored from the constant pool.
11762     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11763        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11764         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11765       return MVT::v4f64;
11766     }
11767 
11768     // We should use Altivec/VSX loads and stores when available. For unaligned
11769     // addresses, unaligned VSX loads are only fast starting with the P8.
11770     if (Subtarget.hasAltivec() && Size >= 16 &&
11771         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11772          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11773       return MVT::v4i32;
11774   }
11775 
11776   if (Subtarget.isPPC64()) {
11777     return MVT::i64;
11778   }
11779 
11780   return MVT::i32;
11781 }
11782 
11783 /// \brief Returns true if it is beneficial to convert a load of a constant
11784 /// to just the constant itself.
11785 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11786                                                           Type *Ty) const {
11787   assert(Ty->isIntegerTy());
11788 
11789   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11790   return !(BitSize == 0 || BitSize > 64);
11791 }
11792 
11793 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11794   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11795     return false;
11796   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11797   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11798   return NumBits1 == 64 && NumBits2 == 32;
11799 }
11800 
11801 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11802   if (!VT1.isInteger() || !VT2.isInteger())
11803     return false;
11804   unsigned NumBits1 = VT1.getSizeInBits();
11805   unsigned NumBits2 = VT2.getSizeInBits();
11806   return NumBits1 == 64 && NumBits2 == 32;
11807 }
11808 
11809 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11810   // Generally speaking, zexts are not free, but they are free when they can be
11811   // folded with other operations.
11812   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11813     EVT MemVT = LD->getMemoryVT();
11814     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11815          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11816         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11817          LD->getExtensionType() == ISD::ZEXTLOAD))
11818       return true;
11819   }
11820 
11821   // FIXME: Add other cases...
11822   //  - 32-bit shifts with a zext to i64
11823   //  - zext after ctlz, bswap, etc.
11824   //  - zext after and by a constant mask
11825 
11826   return TargetLowering::isZExtFree(Val, VT2);
11827 }
11828 
11829 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11830   assert(VT.isFloatingPoint());
11831   return true;
11832 }
11833 
11834 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11835   return isInt<16>(Imm) || isUInt<16>(Imm);
11836 }
11837 
11838 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11839   return isInt<16>(Imm) || isUInt<16>(Imm);
11840 }
11841 
11842 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11843                                                        unsigned,
11844                                                        unsigned,
11845                                                        bool *Fast) const {
11846   if (DisablePPCUnaligned)
11847     return false;
11848 
11849   // PowerPC supports unaligned memory access for simple non-vector types.
11850   // Although accessing unaligned addresses is not as efficient as accessing
11851   // aligned addresses, it is generally more efficient than manual expansion,
11852   // and generally only traps for software emulation when crossing page
11853   // boundaries.
11854 
11855   if (!VT.isSimple())
11856     return false;
11857 
11858   if (VT.getSimpleVT().isVector()) {
11859     if (Subtarget.hasVSX()) {
11860       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11861           VT != MVT::v4f32 && VT != MVT::v4i32)
11862         return false;
11863     } else {
11864       return false;
11865     }
11866   }
11867 
11868   if (VT == MVT::ppcf128)
11869     return false;
11870 
11871   if (Fast)
11872     *Fast = true;
11873 
11874   return true;
11875 }
11876 
11877 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11878   VT = VT.getScalarType();
11879 
11880   if (!VT.isSimple())
11881     return false;
11882 
11883   switch (VT.getSimpleVT().SimpleTy) {
11884   case MVT::f32:
11885   case MVT::f64:
11886     return true;
11887   default:
11888     break;
11889   }
11890 
11891   return false;
11892 }
11893 
11894 const MCPhysReg *
11895 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11896   // LR is a callee-save register, but we must treat it as clobbered by any call
11897   // site. Hence we include LR in the scratch registers, which are in turn added
11898   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11899   // to CTR, which is used by any indirect call.
11900   static const MCPhysReg ScratchRegs[] = {
11901     PPC::X12, PPC::LR8, PPC::CTR8, 0
11902   };
11903 
11904   return ScratchRegs;
11905 }
11906 
11907 unsigned PPCTargetLowering::getExceptionPointerRegister(
11908     const Constant *PersonalityFn) const {
11909   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
11910 }
11911 
11912 unsigned PPCTargetLowering::getExceptionSelectorRegister(
11913     const Constant *PersonalityFn) const {
11914   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
11915 }
11916 
11917 bool
11918 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11919                      EVT VT , unsigned DefinedValues) const {
11920   if (VT == MVT::v2i64)
11921     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
11922 
11923   if (Subtarget.hasQPX()) {
11924     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11925       return true;
11926   }
11927 
11928   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11929 }
11930 
11931 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11932   if (DisableILPPref || Subtarget.enableMachineScheduler())
11933     return TargetLowering::getSchedulingPreference(N);
11934 
11935   return Sched::ILP;
11936 }
11937 
11938 // Create a fast isel object.
11939 FastISel *
11940 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11941                                   const TargetLibraryInfo *LibInfo) const {
11942   return PPC::createFastISel(FuncInfo, LibInfo);
11943 }
11944 
11945 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
11946   if (Subtarget.isDarwinABI()) return;
11947   if (!Subtarget.isPPC64()) return;
11948 
11949   // Update IsSplitCSR in PPCFunctionInfo
11950   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
11951   PFI->setIsSplitCSR(true);
11952 }
11953 
11954 void PPCTargetLowering::insertCopiesSplitCSR(
11955   MachineBasicBlock *Entry,
11956   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
11957   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11958   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
11959   if (!IStart)
11960     return;
11961 
11962   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11963   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
11964   MachineBasicBlock::iterator MBBI = Entry->begin();
11965   for (const MCPhysReg *I = IStart; *I; ++I) {
11966     const TargetRegisterClass *RC = nullptr;
11967     if (PPC::G8RCRegClass.contains(*I))
11968       RC = &PPC::G8RCRegClass;
11969     else if (PPC::F8RCRegClass.contains(*I))
11970       RC = &PPC::F8RCRegClass;
11971     else if (PPC::CRRCRegClass.contains(*I))
11972       RC = &PPC::CRRCRegClass;
11973     else if (PPC::VRRCRegClass.contains(*I))
11974       RC = &PPC::VRRCRegClass;
11975     else
11976       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
11977 
11978     unsigned NewVR = MRI->createVirtualRegister(RC);
11979     // Create copy from CSR to a virtual register.
11980     // FIXME: this currently does not emit CFI pseudo-instructions, it works
11981     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
11982     // nounwind. If we want to generalize this later, we may need to emit
11983     // CFI pseudo-instructions.
11984     assert(Entry->getParent()->getFunction()->hasFnAttribute(
11985              Attribute::NoUnwind) &&
11986            "Function should be nounwind in insertCopiesSplitCSR!");
11987     Entry->addLiveIn(*I);
11988     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
11989       .addReg(*I);
11990 
11991     // Insert the copy-back instructions right before the terminator
11992     for (auto *Exit : Exits)
11993       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
11994               TII->get(TargetOpcode::COPY), *I)
11995         .addReg(NewVR);
11996   }
11997 }
11998