1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCContext.h" 74 #include "llvm/MC/MCExpr.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCSymbolXCOFF.h" 77 #include "llvm/Support/AtomicOrdering.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CodeGen.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MachineValueType.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <list> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "ppc-lowering" 103 104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisableSCO("disable-ppc-sco", 114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 115 116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 118 119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 120 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 121 122 STATISTIC(NumTailCalls, "Number of tail calls"); 123 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 124 125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 126 127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 128 129 // FIXME: Remove this once the bug has been fixed! 130 extern cl::opt<bool> ANDIGlueBug; 131 132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 133 const PPCSubtarget &STI) 134 : TargetLowering(TM), Subtarget(STI) { 135 // Use _setjmp/_longjmp instead of setjmp/longjmp. 136 setUseUnderscoreSetJmp(true); 137 setUseUnderscoreLongJmp(true); 138 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 170 171 // PowerPC has pre-inc load and store's. 172 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 177 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 182 if (!Subtarget.hasSPE()) { 183 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 187 } 188 189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 190 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 191 for (MVT VT : ScalarIntVTs) { 192 setOperationAction(ISD::ADDC, VT, Legal); 193 setOperationAction(ISD::ADDE, VT, Legal); 194 setOperationAction(ISD::SUBC, VT, Legal); 195 setOperationAction(ISD::SUBE, VT, Legal); 196 } 197 198 if (Subtarget.useCRBits()) { 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 if (isPPC64 || Subtarget.hasFPCVT()) { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 203 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 204 isPPC64 ? MVT::i64 : MVT::i32); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 206 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 207 isPPC64 ? MVT::i64 : MVT::i32); 208 } else { 209 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 211 } 212 213 // PowerPC does not support direct load/store of condition registers. 214 setOperationAction(ISD::LOAD, MVT::i1, Custom); 215 setOperationAction(ISD::STORE, MVT::i1, Custom); 216 217 // FIXME: Remove this once the ANDI glue bug is fixed: 218 if (ANDIGlueBug) 219 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 220 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 224 setTruncStoreAction(VT, MVT::i1, Expand); 225 } 226 227 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 228 } 229 230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 231 // PPC (the libcall is not available). 232 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 233 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 234 235 // We do not currently implement these libm ops for PowerPC. 236 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 237 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 242 243 // PowerPC has no SREM/UREM instructions unless we are on P9 244 // On P9 we may use a hardware instruction to compute the remainder. 245 // The instructions are not legalized directly because in the cases where the 246 // result of both the remainder and the division is required it is more 247 // efficient to compute the remainder from the result of the division rather 248 // than use the remainder instruction. 249 if (Subtarget.isISA3_0()) { 250 setOperationAction(ISD::SREM, MVT::i32, Custom); 251 setOperationAction(ISD::UREM, MVT::i32, Custom); 252 setOperationAction(ISD::SREM, MVT::i64, Custom); 253 setOperationAction(ISD::UREM, MVT::i64, Custom); 254 } else { 255 setOperationAction(ISD::SREM, MVT::i32, Expand); 256 setOperationAction(ISD::UREM, MVT::i32, Expand); 257 setOperationAction(ISD::SREM, MVT::i64, Expand); 258 setOperationAction(ISD::UREM, MVT::i64, Expand); 259 } 260 261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 262 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 269 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 270 271 // We don't support sin/cos/sqrt/fmod/pow 272 setOperationAction(ISD::FSIN , MVT::f64, Expand); 273 setOperationAction(ISD::FCOS , MVT::f64, Expand); 274 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 275 setOperationAction(ISD::FREM , MVT::f64, Expand); 276 setOperationAction(ISD::FPOW , MVT::f64, Expand); 277 setOperationAction(ISD::FSIN , MVT::f32, Expand); 278 setOperationAction(ISD::FCOS , MVT::f32, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 280 setOperationAction(ISD::FREM , MVT::f32, Expand); 281 setOperationAction(ISD::FPOW , MVT::f32, Expand); 282 if (Subtarget.hasSPE()) { 283 setOperationAction(ISD::FMA , MVT::f64, Expand); 284 setOperationAction(ISD::FMA , MVT::f32, Expand); 285 } else { 286 setOperationAction(ISD::FMA , MVT::f64, Legal); 287 setOperationAction(ISD::FMA , MVT::f32, Legal); 288 } 289 290 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 291 292 // If we're enabling GP optimizations, use hardware square root 293 if (!Subtarget.hasFSQRT() && 294 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 295 Subtarget.hasFRE())) 296 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 297 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 300 Subtarget.hasFRES())) 301 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 302 303 if (Subtarget.hasFCPSGN()) { 304 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 305 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 306 } else { 307 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 308 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 313 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 314 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 315 setOperationAction(ISD::FROUND, MVT::f64, Legal); 316 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FROUND, MVT::f32, Legal); 321 } 322 323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 324 // to speed up scalar BSWAP64. 325 // CTPOP or CTTZ were introduced in P8/P9 respectively 326 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 327 if (Subtarget.hasP9Vector()) 328 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 329 else 330 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 331 if (Subtarget.isISA3_0()) { 332 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 334 } else { 335 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 336 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 337 } 338 339 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 342 } else { 343 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 344 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 345 } 346 347 // PowerPC does not have ROTR 348 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 349 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 350 351 if (!Subtarget.useCRBits()) { 352 // PowerPC does not have Select 353 setOperationAction(ISD::SELECT, MVT::i32, Expand); 354 setOperationAction(ISD::SELECT, MVT::i64, Expand); 355 setOperationAction(ISD::SELECT, MVT::f32, Expand); 356 setOperationAction(ISD::SELECT, MVT::f64, Expand); 357 } 358 359 // PowerPC wants to turn select_cc of FP into fsel when possible. 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 361 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 362 363 // PowerPC wants to optimize integer setcc a bit 364 if (!Subtarget.useCRBits()) 365 setOperationAction(ISD::SETCC, MVT::i32, Custom); 366 367 // PowerPC does not have BRCOND which requires SetCC 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 370 371 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 372 373 if (Subtarget.hasSPE()) { 374 // SPE has built-in conversions 375 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 378 } else { 379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 382 // PowerPC does not have [U|S]INT_TO_FP 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 385 } 386 387 if (Subtarget.hasDirectMove() && isPPC64) { 388 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 389 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 391 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 392 } else { 393 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 394 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 395 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 396 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 397 } 398 399 // We cannot sextinreg(i1). Expand to shifts. 400 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 401 402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 404 // support continuation, user-level threading, and etc.. As a result, no 405 // other SjLj exception interfaces are implemented and please don't build 406 // your own exception handling based on them. 407 // LLVM/Clang supports zero-cost DWARF exception handling. 408 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 409 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 410 411 // We want to legalize GlobalAddress and ConstantPool nodes into the 412 // appropriate instructions to materialize the address. 413 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 414 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 415 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 416 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 417 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 423 424 // TRAP is legal. 425 setOperationAction(ISD::TRAP, MVT::Other, Legal); 426 427 // TRAMPOLINE is custom lowered. 428 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 429 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 430 431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 432 setOperationAction(ISD::VASTART , MVT::Other, Custom); 433 434 if (Subtarget.is64BitELFABI()) { 435 // VAARG always uses double-word chunks, so promote anything smaller. 436 setOperationAction(ISD::VAARG, MVT::i1, Promote); 437 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::i8, Promote); 439 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 440 setOperationAction(ISD::VAARG, MVT::i16, Promote); 441 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::i32, Promote); 443 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 444 setOperationAction(ISD::VAARG, MVT::Other, Expand); 445 } else if (Subtarget.is32BitELFABI()) { 446 // VAARG is custom lowered with the 32-bit SVR4 ABI. 447 setOperationAction(ISD::VAARG, MVT::Other, Custom); 448 setOperationAction(ISD::VAARG, MVT::i64, Custom); 449 } else 450 setOperationAction(ISD::VAARG, MVT::Other, Expand); 451 452 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 453 if (Subtarget.is32BitELFABI()) 454 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 455 else 456 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 457 458 // Use the default implementation. 459 setOperationAction(ISD::VAEND , MVT::Other, Expand); 460 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 461 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 463 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 465 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 467 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 468 469 // We want to custom lower some of our intrinsics. 470 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 471 472 // To handle counter-based loop conditions. 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 474 475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 478 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 479 480 // Comparisons that require checking two conditions. 481 if (Subtarget.hasSPE()) { 482 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 483 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 484 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 486 } 487 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 499 500 if (Subtarget.has64BitSupport()) { 501 // They also have instructions for converting between i64 and fp. 502 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 503 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 504 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 505 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 506 // This is just the low 32 bits of a (signed) fp->i64 conversion. 507 // We cannot do this with Promote because i64 is not a legal type. 508 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 509 510 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 511 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 512 } else { 513 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 514 if (Subtarget.hasSPE()) 515 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 516 else 517 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 518 } 519 520 // With the instructions enabled under FPCVT, we can do everything. 521 if (Subtarget.hasFPCVT()) { 522 if (Subtarget.has64BitSupport()) { 523 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 524 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 525 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 526 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 527 } 528 529 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 530 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 531 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 532 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 533 } 534 535 if (Subtarget.use64BitRegs()) { 536 // 64-bit PowerPC implementations can support i64 types directly 537 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 538 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 539 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 540 // 64-bit PowerPC wants to expand i128 shifts itself. 541 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 542 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 543 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 544 } else { 545 // 32-bit PowerPC wants to expand i64 shifts itself. 546 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 547 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 548 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 549 } 550 551 if (Subtarget.hasAltivec()) { 552 // First set operation action for all vector types to expand. Then we 553 // will selectively turn on ones that can be effectively codegen'd. 554 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 555 // add/sub are legal for all supported vector VT's. 556 setOperationAction(ISD::ADD, VT, Legal); 557 setOperationAction(ISD::SUB, VT, Legal); 558 559 // For v2i64, these are only valid with P8Vector. This is corrected after 560 // the loop. 561 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 562 setOperationAction(ISD::SMAX, VT, Legal); 563 setOperationAction(ISD::SMIN, VT, Legal); 564 setOperationAction(ISD::UMAX, VT, Legal); 565 setOperationAction(ISD::UMIN, VT, Legal); 566 } 567 else { 568 setOperationAction(ISD::SMAX, VT, Expand); 569 setOperationAction(ISD::SMIN, VT, Expand); 570 setOperationAction(ISD::UMAX, VT, Expand); 571 setOperationAction(ISD::UMIN, VT, Expand); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM, VT, Legal); 576 setOperationAction(ISD::FMINNUM, VT, Legal); 577 } 578 579 // Vector instructions introduced in P8 580 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 581 setOperationAction(ISD::CTPOP, VT, Legal); 582 setOperationAction(ISD::CTLZ, VT, Legal); 583 } 584 else { 585 setOperationAction(ISD::CTPOP, VT, Expand); 586 setOperationAction(ISD::CTLZ, VT, Expand); 587 } 588 589 // Vector instructions introduced in P9 590 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 591 setOperationAction(ISD::CTTZ, VT, Legal); 592 else 593 setOperationAction(ISD::CTTZ, VT, Expand); 594 595 // We promote all shuffles to v16i8. 596 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 597 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 598 599 // We promote all non-typed operations to v4i32. 600 setOperationAction(ISD::AND , VT, Promote); 601 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 602 setOperationAction(ISD::OR , VT, Promote); 603 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 604 setOperationAction(ISD::XOR , VT, Promote); 605 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 606 setOperationAction(ISD::LOAD , VT, Promote); 607 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 608 setOperationAction(ISD::SELECT, VT, Promote); 609 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 610 setOperationAction(ISD::VSELECT, VT, Legal); 611 setOperationAction(ISD::SELECT_CC, VT, Promote); 612 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 613 setOperationAction(ISD::STORE, VT, Promote); 614 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 615 616 // No other operations are legal. 617 setOperationAction(ISD::MUL , VT, Expand); 618 setOperationAction(ISD::SDIV, VT, Expand); 619 setOperationAction(ISD::SREM, VT, Expand); 620 setOperationAction(ISD::UDIV, VT, Expand); 621 setOperationAction(ISD::UREM, VT, Expand); 622 setOperationAction(ISD::FDIV, VT, Expand); 623 setOperationAction(ISD::FREM, VT, Expand); 624 setOperationAction(ISD::FNEG, VT, Expand); 625 setOperationAction(ISD::FSQRT, VT, Expand); 626 setOperationAction(ISD::FLOG, VT, Expand); 627 setOperationAction(ISD::FLOG10, VT, Expand); 628 setOperationAction(ISD::FLOG2, VT, Expand); 629 setOperationAction(ISD::FEXP, VT, Expand); 630 setOperationAction(ISD::FEXP2, VT, Expand); 631 setOperationAction(ISD::FSIN, VT, Expand); 632 setOperationAction(ISD::FCOS, VT, Expand); 633 setOperationAction(ISD::FABS, VT, Expand); 634 setOperationAction(ISD::FFLOOR, VT, Expand); 635 setOperationAction(ISD::FCEIL, VT, Expand); 636 setOperationAction(ISD::FTRUNC, VT, Expand); 637 setOperationAction(ISD::FRINT, VT, Expand); 638 setOperationAction(ISD::FNEARBYINT, VT, Expand); 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 641 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 642 setOperationAction(ISD::MULHU, VT, Expand); 643 setOperationAction(ISD::MULHS, VT, Expand); 644 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 645 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 646 setOperationAction(ISD::UDIVREM, VT, Expand); 647 setOperationAction(ISD::SDIVREM, VT, Expand); 648 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 649 setOperationAction(ISD::FPOW, VT, Expand); 650 setOperationAction(ISD::BSWAP, VT, Expand); 651 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 652 setOperationAction(ISD::ROTL, VT, Expand); 653 setOperationAction(ISD::ROTR, VT, Expand); 654 655 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 656 setTruncStoreAction(VT, InnerVT, Expand); 657 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 658 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 659 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 660 } 661 } 662 if (!Subtarget.hasP8Vector()) { 663 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 664 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 665 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 666 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 667 } 668 669 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 670 setOperationAction(ISD::ABS, VT, Custom); 671 672 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 673 // with merges, splats, etc. 674 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 675 676 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 677 // are cheap, so handle them before they get expanded to scalar. 678 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 679 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 680 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 681 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 682 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 683 684 setOperationAction(ISD::AND , MVT::v4i32, Legal); 685 setOperationAction(ISD::OR , MVT::v4i32, Legal); 686 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 687 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 688 setOperationAction(ISD::SELECT, MVT::v4i32, 689 Subtarget.useCRBits() ? Legal : Expand); 690 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 691 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 692 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 693 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 694 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 695 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 696 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 697 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 698 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 699 700 // Without hasP8Altivec set, v2i64 SMAX isn't available. 701 // But ABS custom lowering requires SMAX support. 702 if (!Subtarget.hasP8Altivec()) 703 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 704 705 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 706 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 707 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 708 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 709 710 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 711 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 712 713 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 714 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 715 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 716 } 717 718 if (Subtarget.hasP8Altivec()) 719 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 720 else 721 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 722 723 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 724 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 725 726 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 727 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 728 729 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 730 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 731 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 732 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 733 734 // Altivec does not contain unordered floating-point compare instructions 735 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 736 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 737 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 738 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 739 740 if (Subtarget.hasVSX()) { 741 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 742 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 743 if (Subtarget.hasP8Vector()) { 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 746 } 747 if (Subtarget.hasDirectMove() && isPPC64) { 748 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 749 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 750 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 751 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 753 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 754 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 755 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 756 } 757 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 758 759 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 760 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 761 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 762 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 763 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 764 765 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 766 767 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 768 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 769 770 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 771 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 772 773 // Share the Altivec comparison restrictions. 774 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 775 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 776 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 777 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 778 779 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 780 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 781 782 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 783 784 if (Subtarget.hasP8Vector()) 785 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 786 787 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 788 789 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 790 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 791 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 792 793 if (Subtarget.hasP8Altivec()) { 794 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 795 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 796 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 797 798 // 128 bit shifts can be accomplished via 3 instructions for SHL and 799 // SRL, but not for SRA because of the instructions available: 800 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 801 // doing 802 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 803 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 804 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 805 806 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 807 } 808 else { 809 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 810 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 811 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 812 813 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 814 815 // VSX v2i64 only supports non-arithmetic operations. 816 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 817 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 818 } 819 820 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 821 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 822 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 823 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 824 825 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 826 827 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 828 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 829 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 830 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 831 832 // Custom handling for partial vectors of integers converted to 833 // floating point. We already have optimal handling for v2i32 through 834 // the DAG combine, so those aren't necessary. 835 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 836 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 837 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 838 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 839 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 840 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 841 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 842 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 843 844 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 845 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 846 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 847 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 848 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 849 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 850 851 if (Subtarget.hasDirectMove()) 852 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 853 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 854 855 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 856 } 857 858 if (Subtarget.hasP8Altivec()) { 859 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 860 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 861 } 862 863 if (Subtarget.hasP9Vector()) { 864 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 865 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 866 867 // 128 bit shifts can be accomplished via 3 instructions for SHL and 868 // SRL, but not for SRA because of the instructions available: 869 // VS{RL} and VS{RL}O. 870 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 871 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 872 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 873 874 if (EnableQuadPrecision) { 875 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 876 setOperationAction(ISD::FADD, MVT::f128, Legal); 877 setOperationAction(ISD::FSUB, MVT::f128, Legal); 878 setOperationAction(ISD::FDIV, MVT::f128, Legal); 879 setOperationAction(ISD::FMUL, MVT::f128, Legal); 880 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 881 // No extending loads to f128 on PPC. 882 for (MVT FPT : MVT::fp_valuetypes()) 883 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 884 setOperationAction(ISD::FMA, MVT::f128, Legal); 885 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 886 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 887 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 888 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 889 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 890 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 891 892 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 893 setOperationAction(ISD::FRINT, MVT::f128, Legal); 894 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 895 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 896 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 897 setOperationAction(ISD::FROUND, MVT::f128, Legal); 898 899 setOperationAction(ISD::SELECT, MVT::f128, Expand); 900 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 901 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 902 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 903 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 904 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 905 // No implementation for these ops for PowerPC. 906 setOperationAction(ISD::FSIN , MVT::f128, Expand); 907 setOperationAction(ISD::FCOS , MVT::f128, Expand); 908 setOperationAction(ISD::FPOW, MVT::f128, Expand); 909 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 910 setOperationAction(ISD::FREM, MVT::f128, Expand); 911 } 912 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 913 914 } 915 916 if (Subtarget.hasP9Altivec()) { 917 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 918 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 919 } 920 } 921 922 if (Subtarget.hasQPX()) { 923 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 924 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 925 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 926 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 927 928 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 929 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 930 931 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 932 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 933 934 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 935 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 936 937 if (!Subtarget.useCRBits()) 938 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 939 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 940 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 942 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 943 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 944 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 945 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 947 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 948 949 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 950 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 951 952 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 953 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 954 955 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 956 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 957 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 958 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 959 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 960 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 961 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 962 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 963 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 964 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 965 966 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 967 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 968 969 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 970 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 971 972 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 973 974 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 975 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 976 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 977 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 978 979 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 980 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 981 982 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 983 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 984 985 if (!Subtarget.useCRBits()) 986 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 987 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 988 989 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 990 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 991 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 992 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 993 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 994 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 995 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 996 997 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 998 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 999 1000 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1001 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1002 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1003 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1004 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1005 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1006 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1007 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1008 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1009 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1010 1011 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1012 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1013 1014 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1015 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1016 1017 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1018 1019 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1020 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1021 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1022 1023 if (!Subtarget.useCRBits()) 1024 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1025 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1026 1027 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1028 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1029 1030 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1031 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1032 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1033 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1034 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1035 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1036 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1037 1038 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1039 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1040 1041 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1042 1043 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1044 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1045 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1046 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1047 1048 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1049 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1050 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1051 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1052 1053 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1054 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1055 1056 // These need to set FE_INEXACT, and so cannot be vectorized here. 1057 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1058 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1059 1060 if (TM.Options.UnsafeFPMath) { 1061 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1062 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1063 1064 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1066 } else { 1067 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1068 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1069 1070 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1071 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1072 } 1073 } 1074 1075 if (Subtarget.has64BitSupport()) 1076 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1077 1078 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1079 1080 if (!isPPC64) { 1081 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1082 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1083 } 1084 1085 setBooleanContents(ZeroOrOneBooleanContent); 1086 1087 if (Subtarget.hasAltivec()) { 1088 // Altivec instructions set fields to all zeros or all ones. 1089 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1090 } 1091 1092 if (!isPPC64) { 1093 // These libcalls are not available in 32-bit. 1094 setLibcallName(RTLIB::SHL_I128, nullptr); 1095 setLibcallName(RTLIB::SRL_I128, nullptr); 1096 setLibcallName(RTLIB::SRA_I128, nullptr); 1097 } 1098 1099 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1100 1101 // We have target-specific dag combine patterns for the following nodes: 1102 setTargetDAGCombine(ISD::ADD); 1103 setTargetDAGCombine(ISD::SHL); 1104 setTargetDAGCombine(ISD::SRA); 1105 setTargetDAGCombine(ISD::SRL); 1106 setTargetDAGCombine(ISD::MUL); 1107 setTargetDAGCombine(ISD::SINT_TO_FP); 1108 setTargetDAGCombine(ISD::BUILD_VECTOR); 1109 if (Subtarget.hasFPCVT()) 1110 setTargetDAGCombine(ISD::UINT_TO_FP); 1111 setTargetDAGCombine(ISD::LOAD); 1112 setTargetDAGCombine(ISD::STORE); 1113 setTargetDAGCombine(ISD::BR_CC); 1114 if (Subtarget.useCRBits()) 1115 setTargetDAGCombine(ISD::BRCOND); 1116 setTargetDAGCombine(ISD::BSWAP); 1117 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1118 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1119 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1120 1121 setTargetDAGCombine(ISD::SIGN_EXTEND); 1122 setTargetDAGCombine(ISD::ZERO_EXTEND); 1123 setTargetDAGCombine(ISD::ANY_EXTEND); 1124 1125 setTargetDAGCombine(ISD::TRUNCATE); 1126 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1127 1128 1129 if (Subtarget.useCRBits()) { 1130 setTargetDAGCombine(ISD::TRUNCATE); 1131 setTargetDAGCombine(ISD::SETCC); 1132 setTargetDAGCombine(ISD::SELECT_CC); 1133 } 1134 1135 // Use reciprocal estimates. 1136 if (TM.Options.UnsafeFPMath) { 1137 setTargetDAGCombine(ISD::FDIV); 1138 setTargetDAGCombine(ISD::FSQRT); 1139 } 1140 1141 if (Subtarget.hasP9Altivec()) { 1142 setTargetDAGCombine(ISD::ABS); 1143 setTargetDAGCombine(ISD::VSELECT); 1144 } 1145 1146 // Darwin long double math library functions have $LDBL128 appended. 1147 if (Subtarget.isDarwin()) { 1148 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1149 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1150 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1151 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1152 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1153 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1154 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1155 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1156 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1157 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1158 } 1159 1160 if (EnableQuadPrecision) { 1161 setLibcallName(RTLIB::LOG_F128, "logf128"); 1162 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1163 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1164 setLibcallName(RTLIB::EXP_F128, "expf128"); 1165 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1166 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1167 setLibcallName(RTLIB::COS_F128, "cosf128"); 1168 setLibcallName(RTLIB::POW_F128, "powf128"); 1169 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1170 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1171 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1172 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1173 } 1174 1175 // With 32 condition bits, we don't need to sink (and duplicate) compares 1176 // aggressively in CodeGenPrep. 1177 if (Subtarget.useCRBits()) { 1178 setHasMultipleConditionRegisters(); 1179 setJumpIsExpensive(); 1180 } 1181 1182 setMinFunctionAlignment(Align(4)); 1183 if (Subtarget.isDarwin()) 1184 setPrefFunctionAlignment(Align(16)); 1185 1186 switch (Subtarget.getDarwinDirective()) { 1187 default: break; 1188 case PPC::DIR_970: 1189 case PPC::DIR_A2: 1190 case PPC::DIR_E500: 1191 case PPC::DIR_E500mc: 1192 case PPC::DIR_E5500: 1193 case PPC::DIR_PWR4: 1194 case PPC::DIR_PWR5: 1195 case PPC::DIR_PWR5X: 1196 case PPC::DIR_PWR6: 1197 case PPC::DIR_PWR6X: 1198 case PPC::DIR_PWR7: 1199 case PPC::DIR_PWR8: 1200 case PPC::DIR_PWR9: 1201 setPrefLoopAlignment(Align(16)); 1202 setPrefFunctionAlignment(Align(16)); 1203 break; 1204 } 1205 1206 if (Subtarget.enableMachineScheduler()) 1207 setSchedulingPreference(Sched::Source); 1208 else 1209 setSchedulingPreference(Sched::Hybrid); 1210 1211 computeRegisterProperties(STI.getRegisterInfo()); 1212 1213 // The Freescale cores do better with aggressive inlining of memcpy and 1214 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1215 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1216 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1217 MaxStoresPerMemset = 32; 1218 MaxStoresPerMemsetOptSize = 16; 1219 MaxStoresPerMemcpy = 32; 1220 MaxStoresPerMemcpyOptSize = 8; 1221 MaxStoresPerMemmove = 32; 1222 MaxStoresPerMemmoveOptSize = 8; 1223 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1224 // The A2 also benefits from (very) aggressive inlining of memcpy and 1225 // friends. The overhead of a the function call, even when warm, can be 1226 // over one hundred cycles. 1227 MaxStoresPerMemset = 128; 1228 MaxStoresPerMemcpy = 128; 1229 MaxStoresPerMemmove = 128; 1230 MaxLoadsPerMemcmp = 128; 1231 } else { 1232 MaxLoadsPerMemcmp = 8; 1233 MaxLoadsPerMemcmpOptSize = 4; 1234 } 1235 } 1236 1237 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1238 /// the desired ByVal argument alignment. 1239 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1240 unsigned MaxMaxAlign) { 1241 if (MaxAlign == MaxMaxAlign) 1242 return; 1243 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1244 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1245 MaxAlign = 32; 1246 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1247 MaxAlign = 16; 1248 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1249 unsigned EltAlign = 0; 1250 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1251 if (EltAlign > MaxAlign) 1252 MaxAlign = EltAlign; 1253 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1254 for (auto *EltTy : STy->elements()) { 1255 unsigned EltAlign = 0; 1256 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1257 if (EltAlign > MaxAlign) 1258 MaxAlign = EltAlign; 1259 if (MaxAlign == MaxMaxAlign) 1260 break; 1261 } 1262 } 1263 } 1264 1265 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1266 /// function arguments in the caller parameter area. 1267 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1268 const DataLayout &DL) const { 1269 // Darwin passes everything on 4 byte boundary. 1270 if (Subtarget.isDarwin()) 1271 return 4; 1272 1273 // 16byte and wider vectors are passed on 16byte boundary. 1274 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1275 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1276 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1277 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1278 return Align; 1279 } 1280 1281 bool PPCTargetLowering::useSoftFloat() const { 1282 return Subtarget.useSoftFloat(); 1283 } 1284 1285 bool PPCTargetLowering::hasSPE() const { 1286 return Subtarget.hasSPE(); 1287 } 1288 1289 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1290 return VT.isScalarInteger(); 1291 } 1292 1293 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1294 switch ((PPCISD::NodeType)Opcode) { 1295 case PPCISD::FIRST_NUMBER: break; 1296 case PPCISD::FSEL: return "PPCISD::FSEL"; 1297 case PPCISD::FCFID: return "PPCISD::FCFID"; 1298 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1299 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1300 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1301 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1302 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1303 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1304 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1305 case PPCISD::FP_TO_UINT_IN_VSR: 1306 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1307 case PPCISD::FP_TO_SINT_IN_VSR: 1308 return "PPCISD::FP_TO_SINT_IN_VSR"; 1309 case PPCISD::FRE: return "PPCISD::FRE"; 1310 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1311 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1312 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1313 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1314 case PPCISD::VPERM: return "PPCISD::VPERM"; 1315 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1316 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1317 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1318 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1319 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1320 case PPCISD::CMPB: return "PPCISD::CMPB"; 1321 case PPCISD::Hi: return "PPCISD::Hi"; 1322 case PPCISD::Lo: return "PPCISD::Lo"; 1323 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1324 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1325 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1326 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1327 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1328 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1329 case PPCISD::SRL: return "PPCISD::SRL"; 1330 case PPCISD::SRA: return "PPCISD::SRA"; 1331 case PPCISD::SHL: return "PPCISD::SHL"; 1332 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1333 case PPCISD::CALL: return "PPCISD::CALL"; 1334 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1335 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1336 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1337 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1338 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1339 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1340 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1341 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1342 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1343 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1344 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1345 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1346 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1347 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1348 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1349 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1350 case PPCISD::VCMP: return "PPCISD::VCMP"; 1351 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1352 case PPCISD::LBRX: return "PPCISD::LBRX"; 1353 case PPCISD::STBRX: return "PPCISD::STBRX"; 1354 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1355 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1356 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1357 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1358 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1359 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1360 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1361 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1362 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1363 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1364 case PPCISD::ST_VSR_SCAL_INT: 1365 return "PPCISD::ST_VSR_SCAL_INT"; 1366 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1367 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1368 case PPCISD::BDZ: return "PPCISD::BDZ"; 1369 case PPCISD::MFFS: return "PPCISD::MFFS"; 1370 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1371 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1372 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1373 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1374 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1375 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1376 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1377 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1378 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1379 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1380 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1381 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1382 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1383 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1384 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1385 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1386 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1387 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1388 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1389 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1390 case PPCISD::SC: return "PPCISD::SC"; 1391 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1392 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1393 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1394 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1395 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1396 case PPCISD::VABSD: return "PPCISD::VABSD"; 1397 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1398 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1399 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1400 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1401 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1402 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1403 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1404 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1405 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1406 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1407 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1408 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1409 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1410 } 1411 return nullptr; 1412 } 1413 1414 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1415 EVT VT) const { 1416 if (!VT.isVector()) 1417 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1418 1419 if (Subtarget.hasQPX()) 1420 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1421 1422 return VT.changeVectorElementTypeToInteger(); 1423 } 1424 1425 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1426 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1427 return true; 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // Node matching predicates, for use by the tblgen matching code. 1432 //===----------------------------------------------------------------------===// 1433 1434 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1435 static bool isFloatingPointZero(SDValue Op) { 1436 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1437 return CFP->getValueAPF().isZero(); 1438 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1439 // Maybe this has already been legalized into the constant pool? 1440 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1441 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1442 return CFP->getValueAPF().isZero(); 1443 } 1444 return false; 1445 } 1446 1447 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1448 /// true if Op is undef or if it matches the specified value. 1449 static bool isConstantOrUndef(int Op, int Val) { 1450 return Op < 0 || Op == Val; 1451 } 1452 1453 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1454 /// VPKUHUM instruction. 1455 /// The ShuffleKind distinguishes between big-endian operations with 1456 /// two different inputs (0), either-endian operations with two identical 1457 /// inputs (1), and little-endian operations with two different inputs (2). 1458 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1459 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1460 SelectionDAG &DAG) { 1461 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1462 if (ShuffleKind == 0) { 1463 if (IsLE) 1464 return false; 1465 for (unsigned i = 0; i != 16; ++i) 1466 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1467 return false; 1468 } else if (ShuffleKind == 2) { 1469 if (!IsLE) 1470 return false; 1471 for (unsigned i = 0; i != 16; ++i) 1472 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1473 return false; 1474 } else if (ShuffleKind == 1) { 1475 unsigned j = IsLE ? 0 : 1; 1476 for (unsigned i = 0; i != 8; ++i) 1477 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1478 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1479 return false; 1480 } 1481 return true; 1482 } 1483 1484 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1485 /// VPKUWUM instruction. 1486 /// The ShuffleKind distinguishes between big-endian operations with 1487 /// two different inputs (0), either-endian operations with two identical 1488 /// inputs (1), and little-endian operations with two different inputs (2). 1489 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1490 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1491 SelectionDAG &DAG) { 1492 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1493 if (ShuffleKind == 0) { 1494 if (IsLE) 1495 return false; 1496 for (unsigned i = 0; i != 16; i += 2) 1497 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1498 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1499 return false; 1500 } else if (ShuffleKind == 2) { 1501 if (!IsLE) 1502 return false; 1503 for (unsigned i = 0; i != 16; i += 2) 1504 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1505 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1506 return false; 1507 } else if (ShuffleKind == 1) { 1508 unsigned j = IsLE ? 0 : 2; 1509 for (unsigned i = 0; i != 8; i += 2) 1510 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1511 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1512 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1513 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1514 return false; 1515 } 1516 return true; 1517 } 1518 1519 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1520 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1521 /// current subtarget. 1522 /// 1523 /// The ShuffleKind distinguishes between big-endian operations with 1524 /// two different inputs (0), either-endian operations with two identical 1525 /// inputs (1), and little-endian operations with two different inputs (2). 1526 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1527 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1528 SelectionDAG &DAG) { 1529 const PPCSubtarget& Subtarget = 1530 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1531 if (!Subtarget.hasP8Vector()) 1532 return false; 1533 1534 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1535 if (ShuffleKind == 0) { 1536 if (IsLE) 1537 return false; 1538 for (unsigned i = 0; i != 16; i += 4) 1539 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1540 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1541 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1542 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1543 return false; 1544 } else if (ShuffleKind == 2) { 1545 if (!IsLE) 1546 return false; 1547 for (unsigned i = 0; i != 16; i += 4) 1548 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1549 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1550 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1551 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1552 return false; 1553 } else if (ShuffleKind == 1) { 1554 unsigned j = IsLE ? 0 : 4; 1555 for (unsigned i = 0; i != 8; i += 4) 1556 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1557 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1558 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1559 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1560 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1561 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1562 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1563 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1564 return false; 1565 } 1566 return true; 1567 } 1568 1569 /// isVMerge - Common function, used to match vmrg* shuffles. 1570 /// 1571 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1572 unsigned LHSStart, unsigned RHSStart) { 1573 if (N->getValueType(0) != MVT::v16i8) 1574 return false; 1575 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1576 "Unsupported merge size!"); 1577 1578 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1579 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1580 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1581 LHSStart+j+i*UnitSize) || 1582 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1583 RHSStart+j+i*UnitSize)) 1584 return false; 1585 } 1586 return true; 1587 } 1588 1589 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1590 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1591 /// The ShuffleKind distinguishes between big-endian merges with two 1592 /// different inputs (0), either-endian merges with two identical inputs (1), 1593 /// and little-endian merges with two different inputs (2). For the latter, 1594 /// the input operands are swapped (see PPCInstrAltivec.td). 1595 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1596 unsigned ShuffleKind, SelectionDAG &DAG) { 1597 if (DAG.getDataLayout().isLittleEndian()) { 1598 if (ShuffleKind == 1) // unary 1599 return isVMerge(N, UnitSize, 0, 0); 1600 else if (ShuffleKind == 2) // swapped 1601 return isVMerge(N, UnitSize, 0, 16); 1602 else 1603 return false; 1604 } else { 1605 if (ShuffleKind == 1) // unary 1606 return isVMerge(N, UnitSize, 8, 8); 1607 else if (ShuffleKind == 0) // normal 1608 return isVMerge(N, UnitSize, 8, 24); 1609 else 1610 return false; 1611 } 1612 } 1613 1614 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1615 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1616 /// The ShuffleKind distinguishes between big-endian merges with two 1617 /// different inputs (0), either-endian merges with two identical inputs (1), 1618 /// and little-endian merges with two different inputs (2). For the latter, 1619 /// the input operands are swapped (see PPCInstrAltivec.td). 1620 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1621 unsigned ShuffleKind, SelectionDAG &DAG) { 1622 if (DAG.getDataLayout().isLittleEndian()) { 1623 if (ShuffleKind == 1) // unary 1624 return isVMerge(N, UnitSize, 8, 8); 1625 else if (ShuffleKind == 2) // swapped 1626 return isVMerge(N, UnitSize, 8, 24); 1627 else 1628 return false; 1629 } else { 1630 if (ShuffleKind == 1) // unary 1631 return isVMerge(N, UnitSize, 0, 0); 1632 else if (ShuffleKind == 0) // normal 1633 return isVMerge(N, UnitSize, 0, 16); 1634 else 1635 return false; 1636 } 1637 } 1638 1639 /** 1640 * Common function used to match vmrgew and vmrgow shuffles 1641 * 1642 * The indexOffset determines whether to look for even or odd words in 1643 * the shuffle mask. This is based on the of the endianness of the target 1644 * machine. 1645 * - Little Endian: 1646 * - Use offset of 0 to check for odd elements 1647 * - Use offset of 4 to check for even elements 1648 * - Big Endian: 1649 * - Use offset of 0 to check for even elements 1650 * - Use offset of 4 to check for odd elements 1651 * A detailed description of the vector element ordering for little endian and 1652 * big endian can be found at 1653 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1654 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1655 * compiler differences mean to you 1656 * 1657 * The mask to the shuffle vector instruction specifies the indices of the 1658 * elements from the two input vectors to place in the result. The elements are 1659 * numbered in array-access order, starting with the first vector. These vectors 1660 * are always of type v16i8, thus each vector will contain 16 elements of size 1661 * 8. More info on the shuffle vector can be found in the 1662 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1663 * Language Reference. 1664 * 1665 * The RHSStartValue indicates whether the same input vectors are used (unary) 1666 * or two different input vectors are used, based on the following: 1667 * - If the instruction uses the same vector for both inputs, the range of the 1668 * indices will be 0 to 15. In this case, the RHSStart value passed should 1669 * be 0. 1670 * - If the instruction has two different vectors then the range of the 1671 * indices will be 0 to 31. In this case, the RHSStart value passed should 1672 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1673 * to 31 specify elements in the second vector). 1674 * 1675 * \param[in] N The shuffle vector SD Node to analyze 1676 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1677 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1678 * vector to the shuffle_vector instruction 1679 * \return true iff this shuffle vector represents an even or odd word merge 1680 */ 1681 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1682 unsigned RHSStartValue) { 1683 if (N->getValueType(0) != MVT::v16i8) 1684 return false; 1685 1686 for (unsigned i = 0; i < 2; ++i) 1687 for (unsigned j = 0; j < 4; ++j) 1688 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1689 i*RHSStartValue+j+IndexOffset) || 1690 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1691 i*RHSStartValue+j+IndexOffset+8)) 1692 return false; 1693 return true; 1694 } 1695 1696 /** 1697 * Determine if the specified shuffle mask is suitable for the vmrgew or 1698 * vmrgow instructions. 1699 * 1700 * \param[in] N The shuffle vector SD Node to analyze 1701 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1702 * \param[in] ShuffleKind Identify the type of merge: 1703 * - 0 = big-endian merge with two different inputs; 1704 * - 1 = either-endian merge with two identical inputs; 1705 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1706 * little-endian merges). 1707 * \param[in] DAG The current SelectionDAG 1708 * \return true iff this shuffle mask 1709 */ 1710 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1711 unsigned ShuffleKind, SelectionDAG &DAG) { 1712 if (DAG.getDataLayout().isLittleEndian()) { 1713 unsigned indexOffset = CheckEven ? 4 : 0; 1714 if (ShuffleKind == 1) // Unary 1715 return isVMerge(N, indexOffset, 0); 1716 else if (ShuffleKind == 2) // swapped 1717 return isVMerge(N, indexOffset, 16); 1718 else 1719 return false; 1720 } 1721 else { 1722 unsigned indexOffset = CheckEven ? 0 : 4; 1723 if (ShuffleKind == 1) // Unary 1724 return isVMerge(N, indexOffset, 0); 1725 else if (ShuffleKind == 0) // Normal 1726 return isVMerge(N, indexOffset, 16); 1727 else 1728 return false; 1729 } 1730 return false; 1731 } 1732 1733 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1734 /// amount, otherwise return -1. 1735 /// The ShuffleKind distinguishes between big-endian operations with two 1736 /// different inputs (0), either-endian operations with two identical inputs 1737 /// (1), and little-endian operations with two different inputs (2). For the 1738 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1739 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1740 SelectionDAG &DAG) { 1741 if (N->getValueType(0) != MVT::v16i8) 1742 return -1; 1743 1744 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1745 1746 // Find the first non-undef value in the shuffle mask. 1747 unsigned i; 1748 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1749 /*search*/; 1750 1751 if (i == 16) return -1; // all undef. 1752 1753 // Otherwise, check to see if the rest of the elements are consecutively 1754 // numbered from this value. 1755 unsigned ShiftAmt = SVOp->getMaskElt(i); 1756 if (ShiftAmt < i) return -1; 1757 1758 ShiftAmt -= i; 1759 bool isLE = DAG.getDataLayout().isLittleEndian(); 1760 1761 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1762 // Check the rest of the elements to see if they are consecutive. 1763 for (++i; i != 16; ++i) 1764 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1765 return -1; 1766 } else if (ShuffleKind == 1) { 1767 // Check the rest of the elements to see if they are consecutive. 1768 for (++i; i != 16; ++i) 1769 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1770 return -1; 1771 } else 1772 return -1; 1773 1774 if (isLE) 1775 ShiftAmt = 16 - ShiftAmt; 1776 1777 return ShiftAmt; 1778 } 1779 1780 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1781 /// specifies a splat of a single element that is suitable for input to 1782 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1783 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1784 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1785 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1786 1787 // The consecutive indices need to specify an element, not part of two 1788 // different elements. So abandon ship early if this isn't the case. 1789 if (N->getMaskElt(0) % EltSize != 0) 1790 return false; 1791 1792 // This is a splat operation if each element of the permute is the same, and 1793 // if the value doesn't reference the second vector. 1794 unsigned ElementBase = N->getMaskElt(0); 1795 1796 // FIXME: Handle UNDEF elements too! 1797 if (ElementBase >= 16) 1798 return false; 1799 1800 // Check that the indices are consecutive, in the case of a multi-byte element 1801 // splatted with a v16i8 mask. 1802 for (unsigned i = 1; i != EltSize; ++i) 1803 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1804 return false; 1805 1806 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1807 if (N->getMaskElt(i) < 0) continue; 1808 for (unsigned j = 0; j != EltSize; ++j) 1809 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1810 return false; 1811 } 1812 return true; 1813 } 1814 1815 /// Check that the mask is shuffling N byte elements. Within each N byte 1816 /// element of the mask, the indices could be either in increasing or 1817 /// decreasing order as long as they are consecutive. 1818 /// \param[in] N the shuffle vector SD Node to analyze 1819 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1820 /// Word/DoubleWord/QuadWord). 1821 /// \param[in] StepLen the delta indices number among the N byte element, if 1822 /// the mask is in increasing/decreasing order then it is 1/-1. 1823 /// \return true iff the mask is shuffling N byte elements. 1824 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1825 int StepLen) { 1826 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1827 "Unexpected element width."); 1828 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1829 1830 unsigned NumOfElem = 16 / Width; 1831 unsigned MaskVal[16]; // Width is never greater than 16 1832 for (unsigned i = 0; i < NumOfElem; ++i) { 1833 MaskVal[0] = N->getMaskElt(i * Width); 1834 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1835 return false; 1836 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1837 return false; 1838 } 1839 1840 for (unsigned int j = 1; j < Width; ++j) { 1841 MaskVal[j] = N->getMaskElt(i * Width + j); 1842 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1843 return false; 1844 } 1845 } 1846 } 1847 1848 return true; 1849 } 1850 1851 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1852 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1853 if (!isNByteElemShuffleMask(N, 4, 1)) 1854 return false; 1855 1856 // Now we look at mask elements 0,4,8,12 1857 unsigned M0 = N->getMaskElt(0) / 4; 1858 unsigned M1 = N->getMaskElt(4) / 4; 1859 unsigned M2 = N->getMaskElt(8) / 4; 1860 unsigned M3 = N->getMaskElt(12) / 4; 1861 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1862 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1863 1864 // Below, let H and L be arbitrary elements of the shuffle mask 1865 // where H is in the range [4,7] and L is in the range [0,3]. 1866 // H, 1, 2, 3 or L, 5, 6, 7 1867 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1868 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1869 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1870 InsertAtByte = IsLE ? 12 : 0; 1871 Swap = M0 < 4; 1872 return true; 1873 } 1874 // 0, H, 2, 3 or 4, L, 6, 7 1875 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1876 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1877 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1878 InsertAtByte = IsLE ? 8 : 4; 1879 Swap = M1 < 4; 1880 return true; 1881 } 1882 // 0, 1, H, 3 or 4, 5, L, 7 1883 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1884 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1885 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1886 InsertAtByte = IsLE ? 4 : 8; 1887 Swap = M2 < 4; 1888 return true; 1889 } 1890 // 0, 1, 2, H or 4, 5, 6, L 1891 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1892 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1893 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1894 InsertAtByte = IsLE ? 0 : 12; 1895 Swap = M3 < 4; 1896 return true; 1897 } 1898 1899 // If both vector operands for the shuffle are the same vector, the mask will 1900 // contain only elements from the first one and the second one will be undef. 1901 if (N->getOperand(1).isUndef()) { 1902 ShiftElts = 0; 1903 Swap = true; 1904 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1905 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1906 InsertAtByte = IsLE ? 12 : 0; 1907 return true; 1908 } 1909 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1910 InsertAtByte = IsLE ? 8 : 4; 1911 return true; 1912 } 1913 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1914 InsertAtByte = IsLE ? 4 : 8; 1915 return true; 1916 } 1917 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1918 InsertAtByte = IsLE ? 0 : 12; 1919 return true; 1920 } 1921 } 1922 1923 return false; 1924 } 1925 1926 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1927 bool &Swap, bool IsLE) { 1928 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1929 // Ensure each byte index of the word is consecutive. 1930 if (!isNByteElemShuffleMask(N, 4, 1)) 1931 return false; 1932 1933 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1934 unsigned M0 = N->getMaskElt(0) / 4; 1935 unsigned M1 = N->getMaskElt(4) / 4; 1936 unsigned M2 = N->getMaskElt(8) / 4; 1937 unsigned M3 = N->getMaskElt(12) / 4; 1938 1939 // If both vector operands for the shuffle are the same vector, the mask will 1940 // contain only elements from the first one and the second one will be undef. 1941 if (N->getOperand(1).isUndef()) { 1942 assert(M0 < 4 && "Indexing into an undef vector?"); 1943 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1944 return false; 1945 1946 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1947 Swap = false; 1948 return true; 1949 } 1950 1951 // Ensure each word index of the ShuffleVector Mask is consecutive. 1952 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1953 return false; 1954 1955 if (IsLE) { 1956 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1957 // Input vectors don't need to be swapped if the leading element 1958 // of the result is one of the 3 left elements of the second vector 1959 // (or if there is no shift to be done at all). 1960 Swap = false; 1961 ShiftElts = (8 - M0) % 8; 1962 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1963 // Input vectors need to be swapped if the leading element 1964 // of the result is one of the 3 left elements of the first vector 1965 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1966 Swap = true; 1967 ShiftElts = (4 - M0) % 4; 1968 } 1969 1970 return true; 1971 } else { // BE 1972 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1973 // Input vectors don't need to be swapped if the leading element 1974 // of the result is one of the 4 elements of the first vector. 1975 Swap = false; 1976 ShiftElts = M0; 1977 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1978 // Input vectors need to be swapped if the leading element 1979 // of the result is one of the 4 elements of the right vector. 1980 Swap = true; 1981 ShiftElts = M0 - 4; 1982 } 1983 1984 return true; 1985 } 1986 } 1987 1988 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1989 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1990 1991 if (!isNByteElemShuffleMask(N, Width, -1)) 1992 return false; 1993 1994 for (int i = 0; i < 16; i += Width) 1995 if (N->getMaskElt(i) != i + Width - 1) 1996 return false; 1997 1998 return true; 1999 } 2000 2001 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2002 return isXXBRShuffleMaskHelper(N, 2); 2003 } 2004 2005 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2006 return isXXBRShuffleMaskHelper(N, 4); 2007 } 2008 2009 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2010 return isXXBRShuffleMaskHelper(N, 8); 2011 } 2012 2013 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2014 return isXXBRShuffleMaskHelper(N, 16); 2015 } 2016 2017 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2018 /// if the inputs to the instruction should be swapped and set \p DM to the 2019 /// value for the immediate. 2020 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2021 /// AND element 0 of the result comes from the first input (LE) or second input 2022 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2023 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2024 /// mask. 2025 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2026 bool &Swap, bool IsLE) { 2027 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2028 2029 // Ensure each byte index of the double word is consecutive. 2030 if (!isNByteElemShuffleMask(N, 8, 1)) 2031 return false; 2032 2033 unsigned M0 = N->getMaskElt(0) / 8; 2034 unsigned M1 = N->getMaskElt(8) / 8; 2035 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2036 2037 // If both vector operands for the shuffle are the same vector, the mask will 2038 // contain only elements from the first one and the second one will be undef. 2039 if (N->getOperand(1).isUndef()) { 2040 if ((M0 | M1) < 2) { 2041 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2042 Swap = false; 2043 return true; 2044 } else 2045 return false; 2046 } 2047 2048 if (IsLE) { 2049 if (M0 > 1 && M1 < 2) { 2050 Swap = false; 2051 } else if (M0 < 2 && M1 > 1) { 2052 M0 = (M0 + 2) % 4; 2053 M1 = (M1 + 2) % 4; 2054 Swap = true; 2055 } else 2056 return false; 2057 2058 // Note: if control flow comes here that means Swap is already set above 2059 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2060 return true; 2061 } else { // BE 2062 if (M0 < 2 && M1 > 1) { 2063 Swap = false; 2064 } else if (M0 > 1 && M1 < 2) { 2065 M0 = (M0 + 2) % 4; 2066 M1 = (M1 + 2) % 4; 2067 Swap = true; 2068 } else 2069 return false; 2070 2071 // Note: if control flow comes here that means Swap is already set above 2072 DM = (M0 << 1) + (M1 & 1); 2073 return true; 2074 } 2075 } 2076 2077 2078 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2079 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2080 /// elements are counted from the left of the vector register). 2081 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2082 SelectionDAG &DAG) { 2083 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2084 assert(isSplatShuffleMask(SVOp, EltSize)); 2085 if (DAG.getDataLayout().isLittleEndian()) 2086 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2087 else 2088 return SVOp->getMaskElt(0) / EltSize; 2089 } 2090 2091 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2092 /// by using a vspltis[bhw] instruction of the specified element size, return 2093 /// the constant being splatted. The ByteSize field indicates the number of 2094 /// bytes of each element [124] -> [bhw]. 2095 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2096 SDValue OpVal(nullptr, 0); 2097 2098 // If ByteSize of the splat is bigger than the element size of the 2099 // build_vector, then we have a case where we are checking for a splat where 2100 // multiple elements of the buildvector are folded together into a single 2101 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2102 unsigned EltSize = 16/N->getNumOperands(); 2103 if (EltSize < ByteSize) { 2104 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2105 SDValue UniquedVals[4]; 2106 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2107 2108 // See if all of the elements in the buildvector agree across. 2109 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2110 if (N->getOperand(i).isUndef()) continue; 2111 // If the element isn't a constant, bail fully out. 2112 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2113 2114 if (!UniquedVals[i&(Multiple-1)].getNode()) 2115 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2116 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2117 return SDValue(); // no match. 2118 } 2119 2120 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2121 // either constant or undef values that are identical for each chunk. See 2122 // if these chunks can form into a larger vspltis*. 2123 2124 // Check to see if all of the leading entries are either 0 or -1. If 2125 // neither, then this won't fit into the immediate field. 2126 bool LeadingZero = true; 2127 bool LeadingOnes = true; 2128 for (unsigned i = 0; i != Multiple-1; ++i) { 2129 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2130 2131 LeadingZero &= isNullConstant(UniquedVals[i]); 2132 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2133 } 2134 // Finally, check the least significant entry. 2135 if (LeadingZero) { 2136 if (!UniquedVals[Multiple-1].getNode()) 2137 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2138 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2139 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2140 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2141 } 2142 if (LeadingOnes) { 2143 if (!UniquedVals[Multiple-1].getNode()) 2144 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2145 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2146 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2147 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2148 } 2149 2150 return SDValue(); 2151 } 2152 2153 // Check to see if this buildvec has a single non-undef value in its elements. 2154 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2155 if (N->getOperand(i).isUndef()) continue; 2156 if (!OpVal.getNode()) 2157 OpVal = N->getOperand(i); 2158 else if (OpVal != N->getOperand(i)) 2159 return SDValue(); 2160 } 2161 2162 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2163 2164 unsigned ValSizeInBytes = EltSize; 2165 uint64_t Value = 0; 2166 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2167 Value = CN->getZExtValue(); 2168 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2169 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2170 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2171 } 2172 2173 // If the splat value is larger than the element value, then we can never do 2174 // this splat. The only case that we could fit the replicated bits into our 2175 // immediate field for would be zero, and we prefer to use vxor for it. 2176 if (ValSizeInBytes < ByteSize) return SDValue(); 2177 2178 // If the element value is larger than the splat value, check if it consists 2179 // of a repeated bit pattern of size ByteSize. 2180 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2181 return SDValue(); 2182 2183 // Properly sign extend the value. 2184 int MaskVal = SignExtend32(Value, ByteSize * 8); 2185 2186 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2187 if (MaskVal == 0) return SDValue(); 2188 2189 // Finally, if this value fits in a 5 bit sext field, return it 2190 if (SignExtend32<5>(MaskVal) == MaskVal) 2191 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2192 return SDValue(); 2193 } 2194 2195 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2196 /// amount, otherwise return -1. 2197 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2198 EVT VT = N->getValueType(0); 2199 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2200 return -1; 2201 2202 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2203 2204 // Find the first non-undef value in the shuffle mask. 2205 unsigned i; 2206 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2207 /*search*/; 2208 2209 if (i == 4) return -1; // all undef. 2210 2211 // Otherwise, check to see if the rest of the elements are consecutively 2212 // numbered from this value. 2213 unsigned ShiftAmt = SVOp->getMaskElt(i); 2214 if (ShiftAmt < i) return -1; 2215 ShiftAmt -= i; 2216 2217 // Check the rest of the elements to see if they are consecutive. 2218 for (++i; i != 4; ++i) 2219 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2220 return -1; 2221 2222 return ShiftAmt; 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // Addressing Mode Selection 2227 //===----------------------------------------------------------------------===// 2228 2229 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2230 /// or 64-bit immediate, and if the value can be accurately represented as a 2231 /// sign extension from a 16-bit value. If so, this returns true and the 2232 /// immediate. 2233 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2234 if (!isa<ConstantSDNode>(N)) 2235 return false; 2236 2237 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2238 if (N->getValueType(0) == MVT::i32) 2239 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2240 else 2241 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2242 } 2243 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2244 return isIntS16Immediate(Op.getNode(), Imm); 2245 } 2246 2247 2248 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2249 /// be represented as an indexed [r+r] operation. 2250 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2251 SDValue &Index, 2252 SelectionDAG &DAG) const { 2253 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2254 UI != E; ++UI) { 2255 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2256 if (Memop->getMemoryVT() == MVT::f64) { 2257 Base = N.getOperand(0); 2258 Index = N.getOperand(1); 2259 return true; 2260 } 2261 } 2262 } 2263 return false; 2264 } 2265 2266 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2267 /// can be represented as an indexed [r+r] operation. Returns false if it 2268 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2269 /// non-zero and N can be represented by a base register plus a signed 16-bit 2270 /// displacement, make a more precise judgement by checking (displacement % \p 2271 /// EncodingAlignment). 2272 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2273 SDValue &Index, SelectionDAG &DAG, 2274 unsigned EncodingAlignment) const { 2275 int16_t imm = 0; 2276 if (N.getOpcode() == ISD::ADD) { 2277 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2278 // SPE load/store can only handle 8-bit offsets. 2279 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2280 return true; 2281 if (isIntS16Immediate(N.getOperand(1), imm) && 2282 (!EncodingAlignment || !(imm % EncodingAlignment))) 2283 return false; // r+i 2284 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2285 return false; // r+i 2286 2287 Base = N.getOperand(0); 2288 Index = N.getOperand(1); 2289 return true; 2290 } else if (N.getOpcode() == ISD::OR) { 2291 if (isIntS16Immediate(N.getOperand(1), imm) && 2292 (!EncodingAlignment || !(imm % EncodingAlignment))) 2293 return false; // r+i can fold it if we can. 2294 2295 // If this is an or of disjoint bitfields, we can codegen this as an add 2296 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2297 // disjoint. 2298 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2299 2300 if (LHSKnown.Zero.getBoolValue()) { 2301 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2302 // If all of the bits are known zero on the LHS or RHS, the add won't 2303 // carry. 2304 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2305 Base = N.getOperand(0); 2306 Index = N.getOperand(1); 2307 return true; 2308 } 2309 } 2310 } 2311 2312 return false; 2313 } 2314 2315 // If we happen to be doing an i64 load or store into a stack slot that has 2316 // less than a 4-byte alignment, then the frame-index elimination may need to 2317 // use an indexed load or store instruction (because the offset may not be a 2318 // multiple of 4). The extra register needed to hold the offset comes from the 2319 // register scavenger, and it is possible that the scavenger will need to use 2320 // an emergency spill slot. As a result, we need to make sure that a spill slot 2321 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2322 // stack slot. 2323 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2324 // FIXME: This does not handle the LWA case. 2325 if (VT != MVT::i64) 2326 return; 2327 2328 // NOTE: We'll exclude negative FIs here, which come from argument 2329 // lowering, because there are no known test cases triggering this problem 2330 // using packed structures (or similar). We can remove this exclusion if 2331 // we find such a test case. The reason why this is so test-case driven is 2332 // because this entire 'fixup' is only to prevent crashes (from the 2333 // register scavenger) on not-really-valid inputs. For example, if we have: 2334 // %a = alloca i1 2335 // %b = bitcast i1* %a to i64* 2336 // store i64* a, i64 b 2337 // then the store should really be marked as 'align 1', but is not. If it 2338 // were marked as 'align 1' then the indexed form would have been 2339 // instruction-selected initially, and the problem this 'fixup' is preventing 2340 // won't happen regardless. 2341 if (FrameIdx < 0) 2342 return; 2343 2344 MachineFunction &MF = DAG.getMachineFunction(); 2345 MachineFrameInfo &MFI = MF.getFrameInfo(); 2346 2347 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2348 if (Align >= 4) 2349 return; 2350 2351 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2352 FuncInfo->setHasNonRISpills(); 2353 } 2354 2355 /// Returns true if the address N can be represented by a base register plus 2356 /// a signed 16-bit displacement [r+imm], and if it is not better 2357 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2358 /// displacements that are multiples of that value. 2359 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2360 SDValue &Base, 2361 SelectionDAG &DAG, 2362 unsigned EncodingAlignment) const { 2363 // FIXME dl should come from parent load or store, not from address 2364 SDLoc dl(N); 2365 // If this can be more profitably realized as r+r, fail. 2366 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2367 return false; 2368 2369 if (N.getOpcode() == ISD::ADD) { 2370 int16_t imm = 0; 2371 if (isIntS16Immediate(N.getOperand(1), imm) && 2372 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2373 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2374 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2375 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2376 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2377 } else { 2378 Base = N.getOperand(0); 2379 } 2380 return true; // [r+i] 2381 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2382 // Match LOAD (ADD (X, Lo(G))). 2383 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2384 && "Cannot handle constant offsets yet!"); 2385 Disp = N.getOperand(1).getOperand(0); // The global address. 2386 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2387 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2388 Disp.getOpcode() == ISD::TargetConstantPool || 2389 Disp.getOpcode() == ISD::TargetJumpTable); 2390 Base = N.getOperand(0); 2391 return true; // [&g+r] 2392 } 2393 } else if (N.getOpcode() == ISD::OR) { 2394 int16_t imm = 0; 2395 if (isIntS16Immediate(N.getOperand(1), imm) && 2396 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2397 // If this is an or of disjoint bitfields, we can codegen this as an add 2398 // (for better address arithmetic) if the LHS and RHS of the OR are 2399 // provably disjoint. 2400 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2401 2402 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2403 // If all of the bits are known zero on the LHS or RHS, the add won't 2404 // carry. 2405 if (FrameIndexSDNode *FI = 2406 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2407 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2408 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2409 } else { 2410 Base = N.getOperand(0); 2411 } 2412 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2413 return true; 2414 } 2415 } 2416 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2417 // Loading from a constant address. 2418 2419 // If this address fits entirely in a 16-bit sext immediate field, codegen 2420 // this as "d, 0" 2421 int16_t Imm; 2422 if (isIntS16Immediate(CN, Imm) && 2423 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2424 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2425 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2426 CN->getValueType(0)); 2427 return true; 2428 } 2429 2430 // Handle 32-bit sext immediates with LIS + addr mode. 2431 if ((CN->getValueType(0) == MVT::i32 || 2432 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2433 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2434 int Addr = (int)CN->getZExtValue(); 2435 2436 // Otherwise, break this down into an LIS + disp. 2437 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2438 2439 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2440 MVT::i32); 2441 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2442 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2443 return true; 2444 } 2445 } 2446 2447 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2448 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2449 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2450 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2451 } else 2452 Base = N; 2453 return true; // [r+0] 2454 } 2455 2456 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2457 /// represented as an indexed [r+r] operation. 2458 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2459 SDValue &Index, 2460 SelectionDAG &DAG) const { 2461 // Check to see if we can easily represent this as an [r+r] address. This 2462 // will fail if it thinks that the address is more profitably represented as 2463 // reg+imm, e.g. where imm = 0. 2464 if (SelectAddressRegReg(N, Base, Index, DAG)) 2465 return true; 2466 2467 // If the address is the result of an add, we will utilize the fact that the 2468 // address calculation includes an implicit add. However, we can reduce 2469 // register pressure if we do not materialize a constant just for use as the 2470 // index register. We only get rid of the add if it is not an add of a 2471 // value and a 16-bit signed constant and both have a single use. 2472 int16_t imm = 0; 2473 if (N.getOpcode() == ISD::ADD && 2474 (!isIntS16Immediate(N.getOperand(1), imm) || 2475 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2476 Base = N.getOperand(0); 2477 Index = N.getOperand(1); 2478 return true; 2479 } 2480 2481 // Otherwise, do it the hard way, using R0 as the base register. 2482 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2483 N.getValueType()); 2484 Index = N; 2485 return true; 2486 } 2487 2488 /// Returns true if we should use a direct load into vector instruction 2489 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2490 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2491 2492 // If there are any other uses other than scalar to vector, then we should 2493 // keep it as a scalar load -> direct move pattern to prevent multiple 2494 // loads. 2495 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2496 if (!LD) 2497 return false; 2498 2499 EVT MemVT = LD->getMemoryVT(); 2500 if (!MemVT.isSimple()) 2501 return false; 2502 switch(MemVT.getSimpleVT().SimpleTy) { 2503 case MVT::i64: 2504 break; 2505 case MVT::i32: 2506 if (!ST.hasP8Vector()) 2507 return false; 2508 break; 2509 case MVT::i16: 2510 case MVT::i8: 2511 if (!ST.hasP9Vector()) 2512 return false; 2513 break; 2514 default: 2515 return false; 2516 } 2517 2518 SDValue LoadedVal(N, 0); 2519 if (!LoadedVal.hasOneUse()) 2520 return false; 2521 2522 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2523 UI != UE; ++UI) 2524 if (UI.getUse().get().getResNo() == 0 && 2525 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2526 return false; 2527 2528 return true; 2529 } 2530 2531 /// getPreIndexedAddressParts - returns true by value, base pointer and 2532 /// offset pointer and addressing mode by reference if the node's address 2533 /// can be legally represented as pre-indexed load / store address. 2534 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2535 SDValue &Offset, 2536 ISD::MemIndexedMode &AM, 2537 SelectionDAG &DAG) const { 2538 if (DisablePPCPreinc) return false; 2539 2540 bool isLoad = true; 2541 SDValue Ptr; 2542 EVT VT; 2543 unsigned Alignment; 2544 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2545 Ptr = LD->getBasePtr(); 2546 VT = LD->getMemoryVT(); 2547 Alignment = LD->getAlignment(); 2548 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2549 Ptr = ST->getBasePtr(); 2550 VT = ST->getMemoryVT(); 2551 Alignment = ST->getAlignment(); 2552 isLoad = false; 2553 } else 2554 return false; 2555 2556 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2557 // instructions because we can fold these into a more efficient instruction 2558 // instead, (such as LXSD). 2559 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2560 return false; 2561 } 2562 2563 // PowerPC doesn't have preinc load/store instructions for vectors (except 2564 // for QPX, which does have preinc r+r forms). 2565 if (VT.isVector()) { 2566 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2567 return false; 2568 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2569 AM = ISD::PRE_INC; 2570 return true; 2571 } 2572 } 2573 2574 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2575 // Common code will reject creating a pre-inc form if the base pointer 2576 // is a frame index, or if N is a store and the base pointer is either 2577 // the same as or a predecessor of the value being stored. Check for 2578 // those situations here, and try with swapped Base/Offset instead. 2579 bool Swap = false; 2580 2581 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2582 Swap = true; 2583 else if (!isLoad) { 2584 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2585 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2586 Swap = true; 2587 } 2588 2589 if (Swap) 2590 std::swap(Base, Offset); 2591 2592 AM = ISD::PRE_INC; 2593 return true; 2594 } 2595 2596 // LDU/STU can only handle immediates that are a multiple of 4. 2597 if (VT != MVT::i64) { 2598 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2599 return false; 2600 } else { 2601 // LDU/STU need an address with at least 4-byte alignment. 2602 if (Alignment < 4) 2603 return false; 2604 2605 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2606 return false; 2607 } 2608 2609 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2610 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2611 // sext i32 to i64 when addr mode is r+i. 2612 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2613 LD->getExtensionType() == ISD::SEXTLOAD && 2614 isa<ConstantSDNode>(Offset)) 2615 return false; 2616 } 2617 2618 AM = ISD::PRE_INC; 2619 return true; 2620 } 2621 2622 //===----------------------------------------------------------------------===// 2623 // LowerOperation implementation 2624 //===----------------------------------------------------------------------===// 2625 2626 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2627 /// and LoOpFlags to the target MO flags. 2628 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2629 unsigned &HiOpFlags, unsigned &LoOpFlags, 2630 const GlobalValue *GV = nullptr) { 2631 HiOpFlags = PPCII::MO_HA; 2632 LoOpFlags = PPCII::MO_LO; 2633 2634 // Don't use the pic base if not in PIC relocation model. 2635 if (IsPIC) { 2636 HiOpFlags |= PPCII::MO_PIC_FLAG; 2637 LoOpFlags |= PPCII::MO_PIC_FLAG; 2638 } 2639 2640 // If this is a reference to a global value that requires a non-lazy-ptr, make 2641 // sure that instruction lowering adds it. 2642 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2643 HiOpFlags |= PPCII::MO_NLP_FLAG; 2644 LoOpFlags |= PPCII::MO_NLP_FLAG; 2645 2646 if (GV->hasHiddenVisibility()) { 2647 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2648 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2649 } 2650 } 2651 } 2652 2653 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2654 SelectionDAG &DAG) { 2655 SDLoc DL(HiPart); 2656 EVT PtrVT = HiPart.getValueType(); 2657 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2658 2659 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2660 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2661 2662 // With PIC, the first instruction is actually "GR+hi(&G)". 2663 if (isPIC) 2664 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2665 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2666 2667 // Generate non-pic code that has direct accesses to the constant pool. 2668 // The address of the global is just (hi(&g)+lo(&g)). 2669 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2670 } 2671 2672 static void setUsesTOCBasePtr(MachineFunction &MF) { 2673 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2674 FuncInfo->setUsesTOCBasePtr(); 2675 } 2676 2677 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2678 setUsesTOCBasePtr(DAG.getMachineFunction()); 2679 } 2680 2681 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2682 SDValue GA) const { 2683 const bool Is64Bit = Subtarget.isPPC64(); 2684 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2685 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2686 : Subtarget.isAIXABI() 2687 ? DAG.getRegister(PPC::R2, VT) 2688 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2689 SDValue Ops[] = { GA, Reg }; 2690 return DAG.getMemIntrinsicNode( 2691 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2692 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2693 MachineMemOperand::MOLoad); 2694 } 2695 2696 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2697 SelectionDAG &DAG) const { 2698 EVT PtrVT = Op.getValueType(); 2699 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2700 const Constant *C = CP->getConstVal(); 2701 2702 // 64-bit SVR4 ABI code is always position-independent. 2703 // The actual address of the GlobalValue is stored in the TOC. 2704 if (Subtarget.is64BitELFABI()) { 2705 setUsesTOCBasePtr(DAG); 2706 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2707 return getTOCEntry(DAG, SDLoc(CP), GA); 2708 } 2709 2710 unsigned MOHiFlag, MOLoFlag; 2711 bool IsPIC = isPositionIndependent(); 2712 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2713 2714 if (IsPIC && Subtarget.isSVR4ABI()) { 2715 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2716 PPCII::MO_PIC_FLAG); 2717 return getTOCEntry(DAG, SDLoc(CP), GA); 2718 } 2719 2720 SDValue CPIHi = 2721 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2722 SDValue CPILo = 2723 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2724 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2725 } 2726 2727 // For 64-bit PowerPC, prefer the more compact relative encodings. 2728 // This trades 32 bits per jump table entry for one or two instructions 2729 // on the jump site. 2730 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2731 if (isJumpTableRelative()) 2732 return MachineJumpTableInfo::EK_LabelDifference32; 2733 2734 return TargetLowering::getJumpTableEncoding(); 2735 } 2736 2737 bool PPCTargetLowering::isJumpTableRelative() const { 2738 if (Subtarget.isPPC64()) 2739 return true; 2740 return TargetLowering::isJumpTableRelative(); 2741 } 2742 2743 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2744 SelectionDAG &DAG) const { 2745 if (!Subtarget.isPPC64()) 2746 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2747 2748 switch (getTargetMachine().getCodeModel()) { 2749 case CodeModel::Small: 2750 case CodeModel::Medium: 2751 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2752 default: 2753 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2754 getPointerTy(DAG.getDataLayout())); 2755 } 2756 } 2757 2758 const MCExpr * 2759 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2760 unsigned JTI, 2761 MCContext &Ctx) const { 2762 if (!Subtarget.isPPC64()) 2763 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2764 2765 switch (getTargetMachine().getCodeModel()) { 2766 case CodeModel::Small: 2767 case CodeModel::Medium: 2768 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2769 default: 2770 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2771 } 2772 } 2773 2774 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2775 EVT PtrVT = Op.getValueType(); 2776 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2777 2778 // 64-bit SVR4 ABI code is always position-independent. 2779 // The actual address of the GlobalValue is stored in the TOC. 2780 if (Subtarget.is64BitELFABI()) { 2781 setUsesTOCBasePtr(DAG); 2782 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2783 return getTOCEntry(DAG, SDLoc(JT), GA); 2784 } 2785 2786 unsigned MOHiFlag, MOLoFlag; 2787 bool IsPIC = isPositionIndependent(); 2788 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2789 2790 if (IsPIC && Subtarget.isSVR4ABI()) { 2791 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2792 PPCII::MO_PIC_FLAG); 2793 return getTOCEntry(DAG, SDLoc(GA), GA); 2794 } 2795 2796 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2797 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2798 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2799 } 2800 2801 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2802 SelectionDAG &DAG) const { 2803 EVT PtrVT = Op.getValueType(); 2804 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2805 const BlockAddress *BA = BASDN->getBlockAddress(); 2806 2807 // 64-bit SVR4 ABI code is always position-independent. 2808 // The actual BlockAddress is stored in the TOC. 2809 if (Subtarget.is64BitELFABI()) { 2810 setUsesTOCBasePtr(DAG); 2811 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2812 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2813 } 2814 2815 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2816 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2817 return getTOCEntry( 2818 DAG, SDLoc(BASDN), 2819 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2820 2821 unsigned MOHiFlag, MOLoFlag; 2822 bool IsPIC = isPositionIndependent(); 2823 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2824 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2825 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2826 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2827 } 2828 2829 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2830 SelectionDAG &DAG) const { 2831 // FIXME: TLS addresses currently use medium model code sequences, 2832 // which is the most useful form. Eventually support for small and 2833 // large models could be added if users need it, at the cost of 2834 // additional complexity. 2835 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2836 if (DAG.getTarget().useEmulatedTLS()) 2837 return LowerToTLSEmulatedModel(GA, DAG); 2838 2839 SDLoc dl(GA); 2840 const GlobalValue *GV = GA->getGlobal(); 2841 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2842 bool is64bit = Subtarget.isPPC64(); 2843 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2844 PICLevel::Level picLevel = M->getPICLevel(); 2845 2846 const TargetMachine &TM = getTargetMachine(); 2847 TLSModel::Model Model = TM.getTLSModel(GV); 2848 2849 if (Model == TLSModel::LocalExec) { 2850 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2851 PPCII::MO_TPREL_HA); 2852 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2853 PPCII::MO_TPREL_LO); 2854 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2855 : DAG.getRegister(PPC::R2, MVT::i32); 2856 2857 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2858 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2859 } 2860 2861 if (Model == TLSModel::InitialExec) { 2862 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2863 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2864 PPCII::MO_TLS); 2865 SDValue GOTPtr; 2866 if (is64bit) { 2867 setUsesTOCBasePtr(DAG); 2868 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2869 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2870 PtrVT, GOTReg, TGA); 2871 } else { 2872 if (!TM.isPositionIndependent()) 2873 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2874 else if (picLevel == PICLevel::SmallPIC) 2875 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2876 else 2877 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2878 } 2879 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2880 PtrVT, TGA, GOTPtr); 2881 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2882 } 2883 2884 if (Model == TLSModel::GeneralDynamic) { 2885 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2886 SDValue GOTPtr; 2887 if (is64bit) { 2888 setUsesTOCBasePtr(DAG); 2889 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2890 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2891 GOTReg, TGA); 2892 } else { 2893 if (picLevel == PICLevel::SmallPIC) 2894 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2895 else 2896 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2897 } 2898 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2899 GOTPtr, TGA, TGA); 2900 } 2901 2902 if (Model == TLSModel::LocalDynamic) { 2903 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2904 SDValue GOTPtr; 2905 if (is64bit) { 2906 setUsesTOCBasePtr(DAG); 2907 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2908 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2909 GOTReg, TGA); 2910 } else { 2911 if (picLevel == PICLevel::SmallPIC) 2912 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2913 else 2914 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2915 } 2916 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2917 PtrVT, GOTPtr, TGA, TGA); 2918 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2919 PtrVT, TLSAddr, TGA); 2920 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2921 } 2922 2923 llvm_unreachable("Unknown TLS model!"); 2924 } 2925 2926 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2927 SelectionDAG &DAG) const { 2928 EVT PtrVT = Op.getValueType(); 2929 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2930 SDLoc DL(GSDN); 2931 const GlobalValue *GV = GSDN->getGlobal(); 2932 2933 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2934 // The actual address of the GlobalValue is stored in the TOC. 2935 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2936 setUsesTOCBasePtr(DAG); 2937 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2938 return getTOCEntry(DAG, DL, GA); 2939 } 2940 2941 unsigned MOHiFlag, MOLoFlag; 2942 bool IsPIC = isPositionIndependent(); 2943 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2944 2945 if (IsPIC && Subtarget.isSVR4ABI()) { 2946 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2947 GSDN->getOffset(), 2948 PPCII::MO_PIC_FLAG); 2949 return getTOCEntry(DAG, DL, GA); 2950 } 2951 2952 SDValue GAHi = 2953 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2954 SDValue GALo = 2955 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2956 2957 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2958 2959 // If the global reference is actually to a non-lazy-pointer, we have to do an 2960 // extra load to get the address of the global. 2961 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2962 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2963 return Ptr; 2964 } 2965 2966 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2967 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2968 SDLoc dl(Op); 2969 2970 if (Op.getValueType() == MVT::v2i64) { 2971 // When the operands themselves are v2i64 values, we need to do something 2972 // special because VSX has no underlying comparison operations for these. 2973 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2974 // Equality can be handled by casting to the legal type for Altivec 2975 // comparisons, everything else needs to be expanded. 2976 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2977 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2978 DAG.getSetCC(dl, MVT::v4i32, 2979 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2980 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2981 CC)); 2982 } 2983 2984 return SDValue(); 2985 } 2986 2987 // We handle most of these in the usual way. 2988 return Op; 2989 } 2990 2991 // If we're comparing for equality to zero, expose the fact that this is 2992 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2993 // fold the new nodes. 2994 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2995 return V; 2996 2997 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2998 // Leave comparisons against 0 and -1 alone for now, since they're usually 2999 // optimized. FIXME: revisit this when we can custom lower all setcc 3000 // optimizations. 3001 if (C->isAllOnesValue() || C->isNullValue()) 3002 return SDValue(); 3003 } 3004 3005 // If we have an integer seteq/setne, turn it into a compare against zero 3006 // by xor'ing the rhs with the lhs, which is faster than setting a 3007 // condition register, reading it back out, and masking the correct bit. The 3008 // normal approach here uses sub to do this instead of xor. Using xor exposes 3009 // the result to other bit-twiddling opportunities. 3010 EVT LHSVT = Op.getOperand(0).getValueType(); 3011 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3012 EVT VT = Op.getValueType(); 3013 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3014 Op.getOperand(1)); 3015 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3016 } 3017 return SDValue(); 3018 } 3019 3020 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3021 SDNode *Node = Op.getNode(); 3022 EVT VT = Node->getValueType(0); 3023 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3024 SDValue InChain = Node->getOperand(0); 3025 SDValue VAListPtr = Node->getOperand(1); 3026 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3027 SDLoc dl(Node); 3028 3029 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3030 3031 // gpr_index 3032 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3033 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3034 InChain = GprIndex.getValue(1); 3035 3036 if (VT == MVT::i64) { 3037 // Check if GprIndex is even 3038 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3039 DAG.getConstant(1, dl, MVT::i32)); 3040 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3041 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3042 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3043 DAG.getConstant(1, dl, MVT::i32)); 3044 // Align GprIndex to be even if it isn't 3045 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3046 GprIndex); 3047 } 3048 3049 // fpr index is 1 byte after gpr 3050 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3051 DAG.getConstant(1, dl, MVT::i32)); 3052 3053 // fpr 3054 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3055 FprPtr, MachinePointerInfo(SV), MVT::i8); 3056 InChain = FprIndex.getValue(1); 3057 3058 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3059 DAG.getConstant(8, dl, MVT::i32)); 3060 3061 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3062 DAG.getConstant(4, dl, MVT::i32)); 3063 3064 // areas 3065 SDValue OverflowArea = 3066 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3067 InChain = OverflowArea.getValue(1); 3068 3069 SDValue RegSaveArea = 3070 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3071 InChain = RegSaveArea.getValue(1); 3072 3073 // select overflow_area if index > 8 3074 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3075 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3076 3077 // adjustment constant gpr_index * 4/8 3078 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3079 VT.isInteger() ? GprIndex : FprIndex, 3080 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3081 MVT::i32)); 3082 3083 // OurReg = RegSaveArea + RegConstant 3084 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3085 RegConstant); 3086 3087 // Floating types are 32 bytes into RegSaveArea 3088 if (VT.isFloatingPoint()) 3089 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3090 DAG.getConstant(32, dl, MVT::i32)); 3091 3092 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3093 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3094 VT.isInteger() ? GprIndex : FprIndex, 3095 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3096 MVT::i32)); 3097 3098 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3099 VT.isInteger() ? VAListPtr : FprPtr, 3100 MachinePointerInfo(SV), MVT::i8); 3101 3102 // determine if we should load from reg_save_area or overflow_area 3103 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3104 3105 // increase overflow_area by 4/8 if gpr/fpr > 8 3106 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3107 DAG.getConstant(VT.isInteger() ? 4 : 8, 3108 dl, MVT::i32)); 3109 3110 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3111 OverflowAreaPlusN); 3112 3113 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3114 MachinePointerInfo(), MVT::i32); 3115 3116 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3117 } 3118 3119 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3120 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3121 3122 // We have to copy the entire va_list struct: 3123 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3124 return DAG.getMemcpy(Op.getOperand(0), Op, 3125 Op.getOperand(1), Op.getOperand(2), 3126 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3127 false, MachinePointerInfo(), MachinePointerInfo()); 3128 } 3129 3130 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3131 SelectionDAG &DAG) const { 3132 return Op.getOperand(0); 3133 } 3134 3135 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3136 SelectionDAG &DAG) const { 3137 SDValue Chain = Op.getOperand(0); 3138 SDValue Trmp = Op.getOperand(1); // trampoline 3139 SDValue FPtr = Op.getOperand(2); // nested function 3140 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3141 SDLoc dl(Op); 3142 3143 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3144 bool isPPC64 = (PtrVT == MVT::i64); 3145 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3146 3147 TargetLowering::ArgListTy Args; 3148 TargetLowering::ArgListEntry Entry; 3149 3150 Entry.Ty = IntPtrTy; 3151 Entry.Node = Trmp; Args.push_back(Entry); 3152 3153 // TrampSize == (isPPC64 ? 48 : 40); 3154 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3155 isPPC64 ? MVT::i64 : MVT::i32); 3156 Args.push_back(Entry); 3157 3158 Entry.Node = FPtr; Args.push_back(Entry); 3159 Entry.Node = Nest; Args.push_back(Entry); 3160 3161 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3162 TargetLowering::CallLoweringInfo CLI(DAG); 3163 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3164 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3165 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3166 3167 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3168 return CallResult.second; 3169 } 3170 3171 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3172 MachineFunction &MF = DAG.getMachineFunction(); 3173 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3174 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3175 3176 SDLoc dl(Op); 3177 3178 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3179 // vastart just stores the address of the VarArgsFrameIndex slot into the 3180 // memory location argument. 3181 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3182 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3183 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3184 MachinePointerInfo(SV)); 3185 } 3186 3187 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3188 // We suppose the given va_list is already allocated. 3189 // 3190 // typedef struct { 3191 // char gpr; /* index into the array of 8 GPRs 3192 // * stored in the register save area 3193 // * gpr=0 corresponds to r3, 3194 // * gpr=1 to r4, etc. 3195 // */ 3196 // char fpr; /* index into the array of 8 FPRs 3197 // * stored in the register save area 3198 // * fpr=0 corresponds to f1, 3199 // * fpr=1 to f2, etc. 3200 // */ 3201 // char *overflow_arg_area; 3202 // /* location on stack that holds 3203 // * the next overflow argument 3204 // */ 3205 // char *reg_save_area; 3206 // /* where r3:r10 and f1:f8 (if saved) 3207 // * are stored 3208 // */ 3209 // } va_list[1]; 3210 3211 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3212 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3213 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3214 PtrVT); 3215 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3216 PtrVT); 3217 3218 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3219 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3220 3221 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3222 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3223 3224 uint64_t FPROffset = 1; 3225 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3226 3227 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3228 3229 // Store first byte : number of int regs 3230 SDValue firstStore = 3231 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3232 MachinePointerInfo(SV), MVT::i8); 3233 uint64_t nextOffset = FPROffset; 3234 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3235 ConstFPROffset); 3236 3237 // Store second byte : number of float regs 3238 SDValue secondStore = 3239 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3240 MachinePointerInfo(SV, nextOffset), MVT::i8); 3241 nextOffset += StackOffset; 3242 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3243 3244 // Store second word : arguments given on stack 3245 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3246 MachinePointerInfo(SV, nextOffset)); 3247 nextOffset += FrameOffset; 3248 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3249 3250 // Store third word : arguments given in registers 3251 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3252 MachinePointerInfo(SV, nextOffset)); 3253 } 3254 3255 /// FPR - The set of FP registers that should be allocated for arguments 3256 /// on Darwin and AIX. 3257 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3258 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3259 PPC::F11, PPC::F12, PPC::F13}; 3260 3261 /// QFPR - The set of QPX registers that should be allocated for arguments. 3262 static const MCPhysReg QFPR[] = { 3263 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3264 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3265 3266 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3267 /// the stack. 3268 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3269 unsigned PtrByteSize) { 3270 unsigned ArgSize = ArgVT.getStoreSize(); 3271 if (Flags.isByVal()) 3272 ArgSize = Flags.getByValSize(); 3273 3274 // Round up to multiples of the pointer size, except for array members, 3275 // which are always packed. 3276 if (!Flags.isInConsecutiveRegs()) 3277 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3278 3279 return ArgSize; 3280 } 3281 3282 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3283 /// on the stack. 3284 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3285 ISD::ArgFlagsTy Flags, 3286 unsigned PtrByteSize) { 3287 unsigned Align = PtrByteSize; 3288 3289 // Altivec parameters are padded to a 16 byte boundary. 3290 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3291 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3292 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3293 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3294 Align = 16; 3295 // QPX vector types stored in double-precision are padded to a 32 byte 3296 // boundary. 3297 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3298 Align = 32; 3299 3300 // ByVal parameters are aligned as requested. 3301 if (Flags.isByVal()) { 3302 unsigned BVAlign = Flags.getByValAlign(); 3303 if (BVAlign > PtrByteSize) { 3304 if (BVAlign % PtrByteSize != 0) 3305 llvm_unreachable( 3306 "ByVal alignment is not a multiple of the pointer size"); 3307 3308 Align = BVAlign; 3309 } 3310 } 3311 3312 // Array members are always packed to their original alignment. 3313 if (Flags.isInConsecutiveRegs()) { 3314 // If the array member was split into multiple registers, the first 3315 // needs to be aligned to the size of the full type. (Except for 3316 // ppcf128, which is only aligned as its f64 components.) 3317 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3318 Align = OrigVT.getStoreSize(); 3319 else 3320 Align = ArgVT.getStoreSize(); 3321 } 3322 3323 return Align; 3324 } 3325 3326 /// CalculateStackSlotUsed - Return whether this argument will use its 3327 /// stack slot (instead of being passed in registers). ArgOffset, 3328 /// AvailableFPRs, and AvailableVRs must hold the current argument 3329 /// position, and will be updated to account for this argument. 3330 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3331 ISD::ArgFlagsTy Flags, 3332 unsigned PtrByteSize, 3333 unsigned LinkageSize, 3334 unsigned ParamAreaSize, 3335 unsigned &ArgOffset, 3336 unsigned &AvailableFPRs, 3337 unsigned &AvailableVRs, bool HasQPX) { 3338 bool UseMemory = false; 3339 3340 // Respect alignment of argument on the stack. 3341 unsigned Align = 3342 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3343 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3344 // If there's no space left in the argument save area, we must 3345 // use memory (this check also catches zero-sized arguments). 3346 if (ArgOffset >= LinkageSize + ParamAreaSize) 3347 UseMemory = true; 3348 3349 // Allocate argument on the stack. 3350 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3351 if (Flags.isInConsecutiveRegsLast()) 3352 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3353 // If we overran the argument save area, we must use memory 3354 // (this check catches arguments passed partially in memory) 3355 if (ArgOffset > LinkageSize + ParamAreaSize) 3356 UseMemory = true; 3357 3358 // However, if the argument is actually passed in an FPR or a VR, 3359 // we don't use memory after all. 3360 if (!Flags.isByVal()) { 3361 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3362 // QPX registers overlap with the scalar FP registers. 3363 (HasQPX && (ArgVT == MVT::v4f32 || 3364 ArgVT == MVT::v4f64 || 3365 ArgVT == MVT::v4i1))) 3366 if (AvailableFPRs > 0) { 3367 --AvailableFPRs; 3368 return false; 3369 } 3370 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3371 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3372 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3373 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3374 if (AvailableVRs > 0) { 3375 --AvailableVRs; 3376 return false; 3377 } 3378 } 3379 3380 return UseMemory; 3381 } 3382 3383 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3384 /// ensure minimum alignment required for target. 3385 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3386 unsigned NumBytes) { 3387 unsigned TargetAlign = Lowering->getStackAlignment(); 3388 unsigned AlignMask = TargetAlign - 1; 3389 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3390 return NumBytes; 3391 } 3392 3393 SDValue PPCTargetLowering::LowerFormalArguments( 3394 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3395 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3396 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3397 if (Subtarget.is64BitELFABI()) 3398 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3399 InVals); 3400 else if (Subtarget.is32BitELFABI()) 3401 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3402 InVals); 3403 3404 // FIXME: We are using this for both AIX and Darwin. We should add appropriate 3405 // AIX testing, and rename it appropriately. 3406 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3407 InVals); 3408 } 3409 3410 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3411 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3412 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3413 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3414 3415 // 32-bit SVR4 ABI Stack Frame Layout: 3416 // +-----------------------------------+ 3417 // +--> | Back chain | 3418 // | +-----------------------------------+ 3419 // | | Floating-point register save area | 3420 // | +-----------------------------------+ 3421 // | | General register save area | 3422 // | +-----------------------------------+ 3423 // | | CR save word | 3424 // | +-----------------------------------+ 3425 // | | VRSAVE save word | 3426 // | +-----------------------------------+ 3427 // | | Alignment padding | 3428 // | +-----------------------------------+ 3429 // | | Vector register save area | 3430 // | +-----------------------------------+ 3431 // | | Local variable space | 3432 // | +-----------------------------------+ 3433 // | | Parameter list area | 3434 // | +-----------------------------------+ 3435 // | | LR save word | 3436 // | +-----------------------------------+ 3437 // SP--> +--- | Back chain | 3438 // +-----------------------------------+ 3439 // 3440 // Specifications: 3441 // System V Application Binary Interface PowerPC Processor Supplement 3442 // AltiVec Technology Programming Interface Manual 3443 3444 MachineFunction &MF = DAG.getMachineFunction(); 3445 MachineFrameInfo &MFI = MF.getFrameInfo(); 3446 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3447 3448 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3449 // Potential tail calls could cause overwriting of argument stack slots. 3450 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3451 (CallConv == CallingConv::Fast)); 3452 unsigned PtrByteSize = 4; 3453 3454 // Assign locations to all of the incoming arguments. 3455 SmallVector<CCValAssign, 16> ArgLocs; 3456 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3457 *DAG.getContext()); 3458 3459 // Reserve space for the linkage area on the stack. 3460 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3461 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3462 if (useSoftFloat()) 3463 CCInfo.PreAnalyzeFormalArguments(Ins); 3464 3465 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3466 CCInfo.clearWasPPCF128(); 3467 3468 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3469 CCValAssign &VA = ArgLocs[i]; 3470 3471 // Arguments stored in registers. 3472 if (VA.isRegLoc()) { 3473 const TargetRegisterClass *RC; 3474 EVT ValVT = VA.getValVT(); 3475 3476 switch (ValVT.getSimpleVT().SimpleTy) { 3477 default: 3478 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3479 case MVT::i1: 3480 case MVT::i32: 3481 RC = &PPC::GPRCRegClass; 3482 break; 3483 case MVT::f32: 3484 if (Subtarget.hasP8Vector()) 3485 RC = &PPC::VSSRCRegClass; 3486 else if (Subtarget.hasSPE()) 3487 RC = &PPC::GPRCRegClass; 3488 else 3489 RC = &PPC::F4RCRegClass; 3490 break; 3491 case MVT::f64: 3492 if (Subtarget.hasVSX()) 3493 RC = &PPC::VSFRCRegClass; 3494 else if (Subtarget.hasSPE()) 3495 // SPE passes doubles in GPR pairs. 3496 RC = &PPC::GPRCRegClass; 3497 else 3498 RC = &PPC::F8RCRegClass; 3499 break; 3500 case MVT::v16i8: 3501 case MVT::v8i16: 3502 case MVT::v4i32: 3503 RC = &PPC::VRRCRegClass; 3504 break; 3505 case MVT::v4f32: 3506 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3507 break; 3508 case MVT::v2f64: 3509 case MVT::v2i64: 3510 RC = &PPC::VRRCRegClass; 3511 break; 3512 case MVT::v4f64: 3513 RC = &PPC::QFRCRegClass; 3514 break; 3515 case MVT::v4i1: 3516 RC = &PPC::QBRCRegClass; 3517 break; 3518 } 3519 3520 SDValue ArgValue; 3521 // Transform the arguments stored in physical registers into 3522 // virtual ones. 3523 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3524 assert(i + 1 < e && "No second half of double precision argument"); 3525 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3526 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3527 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3528 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3529 if (!Subtarget.isLittleEndian()) 3530 std::swap (ArgValueLo, ArgValueHi); 3531 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3532 ArgValueHi); 3533 } else { 3534 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3535 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3536 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3537 if (ValVT == MVT::i1) 3538 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3539 } 3540 3541 InVals.push_back(ArgValue); 3542 } else { 3543 // Argument stored in memory. 3544 assert(VA.isMemLoc()); 3545 3546 // Get the extended size of the argument type in stack 3547 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3548 // Get the actual size of the argument type 3549 unsigned ObjSize = VA.getValVT().getStoreSize(); 3550 unsigned ArgOffset = VA.getLocMemOffset(); 3551 // Stack objects in PPC32 are right justified. 3552 ArgOffset += ArgSize - ObjSize; 3553 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3554 3555 // Create load nodes to retrieve arguments from the stack. 3556 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3557 InVals.push_back( 3558 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3559 } 3560 } 3561 3562 // Assign locations to all of the incoming aggregate by value arguments. 3563 // Aggregates passed by value are stored in the local variable space of the 3564 // caller's stack frame, right above the parameter list area. 3565 SmallVector<CCValAssign, 16> ByValArgLocs; 3566 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3567 ByValArgLocs, *DAG.getContext()); 3568 3569 // Reserve stack space for the allocations in CCInfo. 3570 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3571 3572 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3573 3574 // Area that is at least reserved in the caller of this function. 3575 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3576 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3577 3578 // Set the size that is at least reserved in caller of this function. Tail 3579 // call optimized function's reserved stack space needs to be aligned so that 3580 // taking the difference between two stack areas will result in an aligned 3581 // stack. 3582 MinReservedArea = 3583 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3584 FuncInfo->setMinReservedArea(MinReservedArea); 3585 3586 SmallVector<SDValue, 8> MemOps; 3587 3588 // If the function takes variable number of arguments, make a frame index for 3589 // the start of the first vararg value... for expansion of llvm.va_start. 3590 if (isVarArg) { 3591 static const MCPhysReg GPArgRegs[] = { 3592 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3593 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3594 }; 3595 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3596 3597 static const MCPhysReg FPArgRegs[] = { 3598 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3599 PPC::F8 3600 }; 3601 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3602 3603 if (useSoftFloat() || hasSPE()) 3604 NumFPArgRegs = 0; 3605 3606 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3607 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3608 3609 // Make room for NumGPArgRegs and NumFPArgRegs. 3610 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3611 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3612 3613 FuncInfo->setVarArgsStackOffset( 3614 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3615 CCInfo.getNextStackOffset(), true)); 3616 3617 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3618 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3619 3620 // The fixed integer arguments of a variadic function are stored to the 3621 // VarArgsFrameIndex on the stack so that they may be loaded by 3622 // dereferencing the result of va_next. 3623 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3624 // Get an existing live-in vreg, or add a new one. 3625 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3626 if (!VReg) 3627 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3628 3629 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3630 SDValue Store = 3631 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3632 MemOps.push_back(Store); 3633 // Increment the address by four for the next argument to store 3634 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3635 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3636 } 3637 3638 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3639 // is set. 3640 // The double arguments are stored to the VarArgsFrameIndex 3641 // on the stack. 3642 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3643 // Get an existing live-in vreg, or add a new one. 3644 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3645 if (!VReg) 3646 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3647 3648 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3649 SDValue Store = 3650 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3651 MemOps.push_back(Store); 3652 // Increment the address by eight for the next argument to store 3653 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3654 PtrVT); 3655 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3656 } 3657 } 3658 3659 if (!MemOps.empty()) 3660 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3661 3662 return Chain; 3663 } 3664 3665 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3666 // value to MVT::i64 and then truncate to the correct register size. 3667 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3668 EVT ObjectVT, SelectionDAG &DAG, 3669 SDValue ArgVal, 3670 const SDLoc &dl) const { 3671 if (Flags.isSExt()) 3672 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3673 DAG.getValueType(ObjectVT)); 3674 else if (Flags.isZExt()) 3675 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3676 DAG.getValueType(ObjectVT)); 3677 3678 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3679 } 3680 3681 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3682 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3683 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3684 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3685 // TODO: add description of PPC stack frame format, or at least some docs. 3686 // 3687 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3688 bool isLittleEndian = Subtarget.isLittleEndian(); 3689 MachineFunction &MF = DAG.getMachineFunction(); 3690 MachineFrameInfo &MFI = MF.getFrameInfo(); 3691 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3692 3693 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3694 "fastcc not supported on varargs functions"); 3695 3696 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3697 // Potential tail calls could cause overwriting of argument stack slots. 3698 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3699 (CallConv == CallingConv::Fast)); 3700 unsigned PtrByteSize = 8; 3701 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3702 3703 static const MCPhysReg GPR[] = { 3704 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3705 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3706 }; 3707 static const MCPhysReg VR[] = { 3708 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3709 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3710 }; 3711 3712 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3713 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3714 const unsigned Num_VR_Regs = array_lengthof(VR); 3715 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3716 3717 // Do a first pass over the arguments to determine whether the ABI 3718 // guarantees that our caller has allocated the parameter save area 3719 // on its stack frame. In the ELFv1 ABI, this is always the case; 3720 // in the ELFv2 ABI, it is true if this is a vararg function or if 3721 // any parameter is located in a stack slot. 3722 3723 bool HasParameterArea = !isELFv2ABI || isVarArg; 3724 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3725 unsigned NumBytes = LinkageSize; 3726 unsigned AvailableFPRs = Num_FPR_Regs; 3727 unsigned AvailableVRs = Num_VR_Regs; 3728 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3729 if (Ins[i].Flags.isNest()) 3730 continue; 3731 3732 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3733 PtrByteSize, LinkageSize, ParamAreaSize, 3734 NumBytes, AvailableFPRs, AvailableVRs, 3735 Subtarget.hasQPX())) 3736 HasParameterArea = true; 3737 } 3738 3739 // Add DAG nodes to load the arguments or copy them out of registers. On 3740 // entry to a function on PPC, the arguments start after the linkage area, 3741 // although the first ones are often in registers. 3742 3743 unsigned ArgOffset = LinkageSize; 3744 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3745 unsigned &QFPR_idx = FPR_idx; 3746 SmallVector<SDValue, 8> MemOps; 3747 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3748 unsigned CurArgIdx = 0; 3749 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3750 SDValue ArgVal; 3751 bool needsLoad = false; 3752 EVT ObjectVT = Ins[ArgNo].VT; 3753 EVT OrigVT = Ins[ArgNo].ArgVT; 3754 unsigned ObjSize = ObjectVT.getStoreSize(); 3755 unsigned ArgSize = ObjSize; 3756 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3757 if (Ins[ArgNo].isOrigArg()) { 3758 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3759 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3760 } 3761 // We re-align the argument offset for each argument, except when using the 3762 // fast calling convention, when we need to make sure we do that only when 3763 // we'll actually use a stack slot. 3764 unsigned CurArgOffset, Align; 3765 auto ComputeArgOffset = [&]() { 3766 /* Respect alignment of argument on the stack. */ 3767 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3768 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3769 CurArgOffset = ArgOffset; 3770 }; 3771 3772 if (CallConv != CallingConv::Fast) { 3773 ComputeArgOffset(); 3774 3775 /* Compute GPR index associated with argument offset. */ 3776 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3777 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3778 } 3779 3780 // FIXME the codegen can be much improved in some cases. 3781 // We do not have to keep everything in memory. 3782 if (Flags.isByVal()) { 3783 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3784 3785 if (CallConv == CallingConv::Fast) 3786 ComputeArgOffset(); 3787 3788 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3789 ObjSize = Flags.getByValSize(); 3790 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3791 // Empty aggregate parameters do not take up registers. Examples: 3792 // struct { } a; 3793 // union { } b; 3794 // int c[0]; 3795 // etc. However, we have to provide a place-holder in InVals, so 3796 // pretend we have an 8-byte item at the current address for that 3797 // purpose. 3798 if (!ObjSize) { 3799 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3800 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3801 InVals.push_back(FIN); 3802 continue; 3803 } 3804 3805 // Create a stack object covering all stack doublewords occupied 3806 // by the argument. If the argument is (fully or partially) on 3807 // the stack, or if the argument is fully in registers but the 3808 // caller has allocated the parameter save anyway, we can refer 3809 // directly to the caller's stack frame. Otherwise, create a 3810 // local copy in our own frame. 3811 int FI; 3812 if (HasParameterArea || 3813 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3814 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3815 else 3816 FI = MFI.CreateStackObject(ArgSize, Align, false); 3817 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3818 3819 // Handle aggregates smaller than 8 bytes. 3820 if (ObjSize < PtrByteSize) { 3821 // The value of the object is its address, which differs from the 3822 // address of the enclosing doubleword on big-endian systems. 3823 SDValue Arg = FIN; 3824 if (!isLittleEndian) { 3825 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3826 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3827 } 3828 InVals.push_back(Arg); 3829 3830 if (GPR_idx != Num_GPR_Regs) { 3831 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3832 FuncInfo->addLiveInAttr(VReg, Flags); 3833 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3834 SDValue Store; 3835 3836 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3837 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3838 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3839 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3840 MachinePointerInfo(&*FuncArg), ObjType); 3841 } else { 3842 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3843 // store the whole register as-is to the parameter save area 3844 // slot. 3845 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3846 MachinePointerInfo(&*FuncArg)); 3847 } 3848 3849 MemOps.push_back(Store); 3850 } 3851 // Whether we copied from a register or not, advance the offset 3852 // into the parameter save area by a full doubleword. 3853 ArgOffset += PtrByteSize; 3854 continue; 3855 } 3856 3857 // The value of the object is its address, which is the address of 3858 // its first stack doubleword. 3859 InVals.push_back(FIN); 3860 3861 // Store whatever pieces of the object are in registers to memory. 3862 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3863 if (GPR_idx == Num_GPR_Regs) 3864 break; 3865 3866 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3867 FuncInfo->addLiveInAttr(VReg, Flags); 3868 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3869 SDValue Addr = FIN; 3870 if (j) { 3871 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3872 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3873 } 3874 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3875 MachinePointerInfo(&*FuncArg, j)); 3876 MemOps.push_back(Store); 3877 ++GPR_idx; 3878 } 3879 ArgOffset += ArgSize; 3880 continue; 3881 } 3882 3883 switch (ObjectVT.getSimpleVT().SimpleTy) { 3884 default: llvm_unreachable("Unhandled argument type!"); 3885 case MVT::i1: 3886 case MVT::i32: 3887 case MVT::i64: 3888 if (Flags.isNest()) { 3889 // The 'nest' parameter, if any, is passed in R11. 3890 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3891 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3892 3893 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3894 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3895 3896 break; 3897 } 3898 3899 // These can be scalar arguments or elements of an integer array type 3900 // passed directly. Clang may use those instead of "byval" aggregate 3901 // types to avoid forcing arguments to memory unnecessarily. 3902 if (GPR_idx != Num_GPR_Regs) { 3903 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3904 FuncInfo->addLiveInAttr(VReg, Flags); 3905 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3906 3907 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3908 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3909 // value to MVT::i64 and then truncate to the correct register size. 3910 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3911 } else { 3912 if (CallConv == CallingConv::Fast) 3913 ComputeArgOffset(); 3914 3915 needsLoad = true; 3916 ArgSize = PtrByteSize; 3917 } 3918 if (CallConv != CallingConv::Fast || needsLoad) 3919 ArgOffset += 8; 3920 break; 3921 3922 case MVT::f32: 3923 case MVT::f64: 3924 // These can be scalar arguments or elements of a float array type 3925 // passed directly. The latter are used to implement ELFv2 homogenous 3926 // float aggregates. 3927 if (FPR_idx != Num_FPR_Regs) { 3928 unsigned VReg; 3929 3930 if (ObjectVT == MVT::f32) 3931 VReg = MF.addLiveIn(FPR[FPR_idx], 3932 Subtarget.hasP8Vector() 3933 ? &PPC::VSSRCRegClass 3934 : &PPC::F4RCRegClass); 3935 else 3936 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3937 ? &PPC::VSFRCRegClass 3938 : &PPC::F8RCRegClass); 3939 3940 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3941 ++FPR_idx; 3942 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3943 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3944 // once we support fp <-> gpr moves. 3945 3946 // This can only ever happen in the presence of f32 array types, 3947 // since otherwise we never run out of FPRs before running out 3948 // of GPRs. 3949 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3950 FuncInfo->addLiveInAttr(VReg, Flags); 3951 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3952 3953 if (ObjectVT == MVT::f32) { 3954 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3955 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3956 DAG.getConstant(32, dl, MVT::i32)); 3957 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3958 } 3959 3960 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3961 } else { 3962 if (CallConv == CallingConv::Fast) 3963 ComputeArgOffset(); 3964 3965 needsLoad = true; 3966 } 3967 3968 // When passing an array of floats, the array occupies consecutive 3969 // space in the argument area; only round up to the next doubleword 3970 // at the end of the array. Otherwise, each float takes 8 bytes. 3971 if (CallConv != CallingConv::Fast || needsLoad) { 3972 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3973 ArgOffset += ArgSize; 3974 if (Flags.isInConsecutiveRegsLast()) 3975 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3976 } 3977 break; 3978 case MVT::v4f32: 3979 case MVT::v4i32: 3980 case MVT::v8i16: 3981 case MVT::v16i8: 3982 case MVT::v2f64: 3983 case MVT::v2i64: 3984 case MVT::v1i128: 3985 case MVT::f128: 3986 if (!Subtarget.hasQPX()) { 3987 // These can be scalar arguments or elements of a vector array type 3988 // passed directly. The latter are used to implement ELFv2 homogenous 3989 // vector aggregates. 3990 if (VR_idx != Num_VR_Regs) { 3991 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3992 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3993 ++VR_idx; 3994 } else { 3995 if (CallConv == CallingConv::Fast) 3996 ComputeArgOffset(); 3997 needsLoad = true; 3998 } 3999 if (CallConv != CallingConv::Fast || needsLoad) 4000 ArgOffset += 16; 4001 break; 4002 } // not QPX 4003 4004 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4005 "Invalid QPX parameter type"); 4006 LLVM_FALLTHROUGH; 4007 4008 case MVT::v4f64: 4009 case MVT::v4i1: 4010 // QPX vectors are treated like their scalar floating-point subregisters 4011 // (except that they're larger). 4012 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4013 if (QFPR_idx != Num_QFPR_Regs) { 4014 const TargetRegisterClass *RC; 4015 switch (ObjectVT.getSimpleVT().SimpleTy) { 4016 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4017 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4018 default: RC = &PPC::QBRCRegClass; break; 4019 } 4020 4021 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4022 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4023 ++QFPR_idx; 4024 } else { 4025 if (CallConv == CallingConv::Fast) 4026 ComputeArgOffset(); 4027 needsLoad = true; 4028 } 4029 if (CallConv != CallingConv::Fast || needsLoad) 4030 ArgOffset += Sz; 4031 break; 4032 } 4033 4034 // We need to load the argument to a virtual register if we determined 4035 // above that we ran out of physical registers of the appropriate type. 4036 if (needsLoad) { 4037 if (ObjSize < ArgSize && !isLittleEndian) 4038 CurArgOffset += ArgSize - ObjSize; 4039 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4040 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4041 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4042 } 4043 4044 InVals.push_back(ArgVal); 4045 } 4046 4047 // Area that is at least reserved in the caller of this function. 4048 unsigned MinReservedArea; 4049 if (HasParameterArea) 4050 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4051 else 4052 MinReservedArea = LinkageSize; 4053 4054 // Set the size that is at least reserved in caller of this function. Tail 4055 // call optimized functions' reserved stack space needs to be aligned so that 4056 // taking the difference between two stack areas will result in an aligned 4057 // stack. 4058 MinReservedArea = 4059 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4060 FuncInfo->setMinReservedArea(MinReservedArea); 4061 4062 // If the function takes variable number of arguments, make a frame index for 4063 // the start of the first vararg value... for expansion of llvm.va_start. 4064 if (isVarArg) { 4065 int Depth = ArgOffset; 4066 4067 FuncInfo->setVarArgsFrameIndex( 4068 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4069 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4070 4071 // If this function is vararg, store any remaining integer argument regs 4072 // to their spots on the stack so that they may be loaded by dereferencing 4073 // the result of va_next. 4074 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4075 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4076 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4077 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4078 SDValue Store = 4079 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4080 MemOps.push_back(Store); 4081 // Increment the address by four for the next argument to store 4082 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4083 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4084 } 4085 } 4086 4087 if (!MemOps.empty()) 4088 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4089 4090 return Chain; 4091 } 4092 4093 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4094 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4095 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4096 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4097 // TODO: add description of PPC stack frame format, or at least some docs. 4098 // 4099 MachineFunction &MF = DAG.getMachineFunction(); 4100 MachineFrameInfo &MFI = MF.getFrameInfo(); 4101 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4102 4103 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4104 bool isPPC64 = PtrVT == MVT::i64; 4105 // Potential tail calls could cause overwriting of argument stack slots. 4106 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4107 (CallConv == CallingConv::Fast)); 4108 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4109 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4110 unsigned ArgOffset = LinkageSize; 4111 // Area that is at least reserved in caller of this function. 4112 unsigned MinReservedArea = ArgOffset; 4113 4114 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4115 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4116 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4117 }; 4118 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4119 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4120 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4121 }; 4122 static const MCPhysReg VR[] = { 4123 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4124 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4125 }; 4126 4127 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4128 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4129 const unsigned Num_VR_Regs = array_lengthof( VR); 4130 4131 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4132 4133 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4134 4135 // In 32-bit non-varargs functions, the stack space for vectors is after the 4136 // stack space for non-vectors. We do not use this space unless we have 4137 // too many vectors to fit in registers, something that only occurs in 4138 // constructed examples:), but we have to walk the arglist to figure 4139 // that out...for the pathological case, compute VecArgOffset as the 4140 // start of the vector parameter area. Computing VecArgOffset is the 4141 // entire point of the following loop. 4142 unsigned VecArgOffset = ArgOffset; 4143 if (!isVarArg && !isPPC64) { 4144 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4145 ++ArgNo) { 4146 EVT ObjectVT = Ins[ArgNo].VT; 4147 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4148 4149 if (Flags.isByVal()) { 4150 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4151 unsigned ObjSize = Flags.getByValSize(); 4152 unsigned ArgSize = 4153 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4154 VecArgOffset += ArgSize; 4155 continue; 4156 } 4157 4158 switch(ObjectVT.getSimpleVT().SimpleTy) { 4159 default: llvm_unreachable("Unhandled argument type!"); 4160 case MVT::i1: 4161 case MVT::i32: 4162 case MVT::f32: 4163 VecArgOffset += 4; 4164 break; 4165 case MVT::i64: // PPC64 4166 case MVT::f64: 4167 // FIXME: We are guaranteed to be !isPPC64 at this point. 4168 // Does MVT::i64 apply? 4169 VecArgOffset += 8; 4170 break; 4171 case MVT::v4f32: 4172 case MVT::v4i32: 4173 case MVT::v8i16: 4174 case MVT::v16i8: 4175 // Nothing to do, we're only looking at Nonvector args here. 4176 break; 4177 } 4178 } 4179 } 4180 // We've found where the vector parameter area in memory is. Skip the 4181 // first 12 parameters; these don't use that memory. 4182 VecArgOffset = ((VecArgOffset+15)/16)*16; 4183 VecArgOffset += 12*16; 4184 4185 // Add DAG nodes to load the arguments or copy them out of registers. On 4186 // entry to a function on PPC, the arguments start after the linkage area, 4187 // although the first ones are often in registers. 4188 4189 SmallVector<SDValue, 8> MemOps; 4190 unsigned nAltivecParamsAtEnd = 0; 4191 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4192 unsigned CurArgIdx = 0; 4193 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4194 SDValue ArgVal; 4195 bool needsLoad = false; 4196 EVT ObjectVT = Ins[ArgNo].VT; 4197 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4198 unsigned ArgSize = ObjSize; 4199 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4200 if (Ins[ArgNo].isOrigArg()) { 4201 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4202 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4203 } 4204 unsigned CurArgOffset = ArgOffset; 4205 4206 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4207 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4208 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4209 if (isVarArg || isPPC64) { 4210 MinReservedArea = ((MinReservedArea+15)/16)*16; 4211 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4212 Flags, 4213 PtrByteSize); 4214 } else nAltivecParamsAtEnd++; 4215 } else 4216 // Calculate min reserved area. 4217 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4218 Flags, 4219 PtrByteSize); 4220 4221 // FIXME the codegen can be much improved in some cases. 4222 // We do not have to keep everything in memory. 4223 if (Flags.isByVal()) { 4224 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4225 4226 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4227 ObjSize = Flags.getByValSize(); 4228 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4229 // Objects of size 1 and 2 are right justified, everything else is 4230 // left justified. This means the memory address is adjusted forwards. 4231 if (ObjSize==1 || ObjSize==2) { 4232 CurArgOffset = CurArgOffset + (4 - ObjSize); 4233 } 4234 // The value of the object is its address. 4235 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4236 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4237 InVals.push_back(FIN); 4238 if (ObjSize==1 || ObjSize==2) { 4239 if (GPR_idx != Num_GPR_Regs) { 4240 unsigned VReg; 4241 if (isPPC64) 4242 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4243 else 4244 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4245 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4246 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4247 SDValue Store = 4248 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4249 MachinePointerInfo(&*FuncArg), ObjType); 4250 MemOps.push_back(Store); 4251 ++GPR_idx; 4252 } 4253 4254 ArgOffset += PtrByteSize; 4255 4256 continue; 4257 } 4258 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4259 // Store whatever pieces of the object are in registers 4260 // to memory. ArgOffset will be the address of the beginning 4261 // of the object. 4262 if (GPR_idx != Num_GPR_Regs) { 4263 unsigned VReg; 4264 if (isPPC64) 4265 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4266 else 4267 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4268 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4269 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4270 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4271 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4272 MachinePointerInfo(&*FuncArg, j)); 4273 MemOps.push_back(Store); 4274 ++GPR_idx; 4275 ArgOffset += PtrByteSize; 4276 } else { 4277 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4278 break; 4279 } 4280 } 4281 continue; 4282 } 4283 4284 switch (ObjectVT.getSimpleVT().SimpleTy) { 4285 default: llvm_unreachable("Unhandled argument type!"); 4286 case MVT::i1: 4287 case MVT::i32: 4288 if (!isPPC64) { 4289 if (GPR_idx != Num_GPR_Regs) { 4290 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4291 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4292 4293 if (ObjectVT == MVT::i1) 4294 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4295 4296 ++GPR_idx; 4297 } else { 4298 needsLoad = true; 4299 ArgSize = PtrByteSize; 4300 } 4301 // All int arguments reserve stack space in the Darwin ABI. 4302 ArgOffset += PtrByteSize; 4303 break; 4304 } 4305 LLVM_FALLTHROUGH; 4306 case MVT::i64: // PPC64 4307 if (GPR_idx != Num_GPR_Regs) { 4308 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4309 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4310 4311 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4312 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4313 // value to MVT::i64 and then truncate to the correct register size. 4314 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4315 4316 ++GPR_idx; 4317 } else { 4318 needsLoad = true; 4319 ArgSize = PtrByteSize; 4320 } 4321 // All int arguments reserve stack space in the Darwin ABI. 4322 ArgOffset += 8; 4323 break; 4324 4325 case MVT::f32: 4326 case MVT::f64: 4327 // Every 4 bytes of argument space consumes one of the GPRs available for 4328 // argument passing. 4329 if (GPR_idx != Num_GPR_Regs) { 4330 ++GPR_idx; 4331 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4332 ++GPR_idx; 4333 } 4334 if (FPR_idx != Num_FPR_Regs) { 4335 unsigned VReg; 4336 4337 if (ObjectVT == MVT::f32) 4338 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4339 else 4340 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4341 4342 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4343 ++FPR_idx; 4344 } else { 4345 needsLoad = true; 4346 } 4347 4348 // All FP arguments reserve stack space in the Darwin ABI. 4349 ArgOffset += isPPC64 ? 8 : ObjSize; 4350 break; 4351 case MVT::v4f32: 4352 case MVT::v4i32: 4353 case MVT::v8i16: 4354 case MVT::v16i8: 4355 // Note that vector arguments in registers don't reserve stack space, 4356 // except in varargs functions. 4357 if (VR_idx != Num_VR_Regs) { 4358 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4359 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4360 if (isVarArg) { 4361 while ((ArgOffset % 16) != 0) { 4362 ArgOffset += PtrByteSize; 4363 if (GPR_idx != Num_GPR_Regs) 4364 GPR_idx++; 4365 } 4366 ArgOffset += 16; 4367 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4368 } 4369 ++VR_idx; 4370 } else { 4371 if (!isVarArg && !isPPC64) { 4372 // Vectors go after all the nonvectors. 4373 CurArgOffset = VecArgOffset; 4374 VecArgOffset += 16; 4375 } else { 4376 // Vectors are aligned. 4377 ArgOffset = ((ArgOffset+15)/16)*16; 4378 CurArgOffset = ArgOffset; 4379 ArgOffset += 16; 4380 } 4381 needsLoad = true; 4382 } 4383 break; 4384 } 4385 4386 // We need to load the argument to a virtual register if we determined above 4387 // that we ran out of physical registers of the appropriate type. 4388 if (needsLoad) { 4389 int FI = MFI.CreateFixedObject(ObjSize, 4390 CurArgOffset + (ArgSize - ObjSize), 4391 isImmutable); 4392 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4393 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4394 } 4395 4396 InVals.push_back(ArgVal); 4397 } 4398 4399 // Allow for Altivec parameters at the end, if needed. 4400 if (nAltivecParamsAtEnd) { 4401 MinReservedArea = ((MinReservedArea+15)/16)*16; 4402 MinReservedArea += 16*nAltivecParamsAtEnd; 4403 } 4404 4405 // Area that is at least reserved in the caller of this function. 4406 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4407 4408 // Set the size that is at least reserved in caller of this function. Tail 4409 // call optimized functions' reserved stack space needs to be aligned so that 4410 // taking the difference between two stack areas will result in an aligned 4411 // stack. 4412 MinReservedArea = 4413 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4414 FuncInfo->setMinReservedArea(MinReservedArea); 4415 4416 // If the function takes variable number of arguments, make a frame index for 4417 // the start of the first vararg value... for expansion of llvm.va_start. 4418 if (isVarArg) { 4419 int Depth = ArgOffset; 4420 4421 FuncInfo->setVarArgsFrameIndex( 4422 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4423 Depth, true)); 4424 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4425 4426 // If this function is vararg, store any remaining integer argument regs 4427 // to their spots on the stack so that they may be loaded by dereferencing 4428 // the result of va_next. 4429 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4430 unsigned VReg; 4431 4432 if (isPPC64) 4433 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4434 else 4435 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4436 4437 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4438 SDValue Store = 4439 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4440 MemOps.push_back(Store); 4441 // Increment the address by four for the next argument to store 4442 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4443 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4444 } 4445 } 4446 4447 if (!MemOps.empty()) 4448 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4449 4450 return Chain; 4451 } 4452 4453 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4454 /// adjusted to accommodate the arguments for the tailcall. 4455 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4456 unsigned ParamSize) { 4457 4458 if (!isTailCall) return 0; 4459 4460 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4461 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4462 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4463 // Remember only if the new adjustment is bigger. 4464 if (SPDiff < FI->getTailCallSPDelta()) 4465 FI->setTailCallSPDelta(SPDiff); 4466 4467 return SPDiff; 4468 } 4469 4470 static bool isFunctionGlobalAddress(SDValue Callee); 4471 4472 static bool 4473 callsShareTOCBase(const Function *Caller, SDValue Callee, 4474 const TargetMachine &TM) { 4475 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4476 // don't have enough information to determine if the caller and calle share 4477 // the same TOC base, so we have to pessimistically assume they don't for 4478 // correctness. 4479 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4480 if (!G) 4481 return false; 4482 4483 const GlobalValue *GV = G->getGlobal(); 4484 // The medium and large code models are expected to provide a sufficiently 4485 // large TOC to provide all data addressing needs of a module with a 4486 // single TOC. Since each module will be addressed with a single TOC then we 4487 // only need to check that caller and callee don't cross dso boundaries. 4488 if (CodeModel::Medium == TM.getCodeModel() || 4489 CodeModel::Large == TM.getCodeModel()) 4490 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4491 4492 // Otherwise we need to ensure callee and caller are in the same section, 4493 // since the linker may allocate multiple TOCs, and we don't know which 4494 // sections will belong to the same TOC base. 4495 4496 if (!GV->isStrongDefinitionForLinker()) 4497 return false; 4498 4499 // Any explicitly-specified sections and section prefixes must also match. 4500 // Also, if we're using -ffunction-sections, then each function is always in 4501 // a different section (the same is true for COMDAT functions). 4502 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4503 GV->getSection() != Caller->getSection()) 4504 return false; 4505 if (const auto *F = dyn_cast<Function>(GV)) { 4506 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4507 return false; 4508 } 4509 4510 // If the callee might be interposed, then we can't assume the ultimate call 4511 // target will be in the same section. Even in cases where we can assume that 4512 // interposition won't happen, in any case where the linker might insert a 4513 // stub to allow for interposition, we must generate code as though 4514 // interposition might occur. To understand why this matters, consider a 4515 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4516 // in the same section, but a is in a different module (i.e. has a different 4517 // TOC base pointer). If the linker allows for interposition between b and c, 4518 // then it will generate a stub for the call edge between b and c which will 4519 // save the TOC pointer into the designated stack slot allocated by b. If we 4520 // return true here, and therefore allow a tail call between b and c, that 4521 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4522 // pointer into the stack slot allocated by a (where the a -> b stub saved 4523 // a's TOC base pointer). If we're not considering a tail call, but rather, 4524 // whether a nop is needed after the call instruction in b, because the linker 4525 // will insert a stub, it might complain about a missing nop if we omit it 4526 // (although many don't complain in this case). 4527 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4528 return false; 4529 4530 return true; 4531 } 4532 4533 static bool 4534 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4535 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4536 assert(Subtarget.is64BitELFABI()); 4537 4538 const unsigned PtrByteSize = 8; 4539 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4540 4541 static const MCPhysReg GPR[] = { 4542 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4543 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4544 }; 4545 static const MCPhysReg VR[] = { 4546 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4547 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4548 }; 4549 4550 const unsigned NumGPRs = array_lengthof(GPR); 4551 const unsigned NumFPRs = 13; 4552 const unsigned NumVRs = array_lengthof(VR); 4553 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4554 4555 unsigned NumBytes = LinkageSize; 4556 unsigned AvailableFPRs = NumFPRs; 4557 unsigned AvailableVRs = NumVRs; 4558 4559 for (const ISD::OutputArg& Param : Outs) { 4560 if (Param.Flags.isNest()) continue; 4561 4562 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4563 PtrByteSize, LinkageSize, ParamAreaSize, 4564 NumBytes, AvailableFPRs, AvailableVRs, 4565 Subtarget.hasQPX())) 4566 return true; 4567 } 4568 return false; 4569 } 4570 4571 static bool 4572 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4573 if (CS.arg_size() != CallerFn->arg_size()) 4574 return false; 4575 4576 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4577 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4578 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4579 4580 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4581 const Value* CalleeArg = *CalleeArgIter; 4582 const Value* CallerArg = &(*CallerArgIter); 4583 if (CalleeArg == CallerArg) 4584 continue; 4585 4586 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4587 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4588 // } 4589 // 1st argument of callee is undef and has the same type as caller. 4590 if (CalleeArg->getType() == CallerArg->getType() && 4591 isa<UndefValue>(CalleeArg)) 4592 continue; 4593 4594 return false; 4595 } 4596 4597 return true; 4598 } 4599 4600 // Returns true if TCO is possible between the callers and callees 4601 // calling conventions. 4602 static bool 4603 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4604 CallingConv::ID CalleeCC) { 4605 // Tail calls are possible with fastcc and ccc. 4606 auto isTailCallableCC = [] (CallingConv::ID CC){ 4607 return CC == CallingConv::C || CC == CallingConv::Fast; 4608 }; 4609 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4610 return false; 4611 4612 // We can safely tail call both fastcc and ccc callees from a c calling 4613 // convention caller. If the caller is fastcc, we may have less stack space 4614 // than a non-fastcc caller with the same signature so disable tail-calls in 4615 // that case. 4616 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4617 } 4618 4619 bool 4620 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4621 SDValue Callee, 4622 CallingConv::ID CalleeCC, 4623 ImmutableCallSite CS, 4624 bool isVarArg, 4625 const SmallVectorImpl<ISD::OutputArg> &Outs, 4626 const SmallVectorImpl<ISD::InputArg> &Ins, 4627 SelectionDAG& DAG) const { 4628 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4629 4630 if (DisableSCO && !TailCallOpt) return false; 4631 4632 // Variadic argument functions are not supported. 4633 if (isVarArg) return false; 4634 4635 auto &Caller = DAG.getMachineFunction().getFunction(); 4636 // Check that the calling conventions are compatible for tco. 4637 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4638 return false; 4639 4640 // Caller contains any byval parameter is not supported. 4641 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4642 return false; 4643 4644 // Callee contains any byval parameter is not supported, too. 4645 // Note: This is a quick work around, because in some cases, e.g. 4646 // caller's stack size > callee's stack size, we are still able to apply 4647 // sibling call optimization. For example, gcc is able to do SCO for caller1 4648 // in the following example, but not for caller2. 4649 // struct test { 4650 // long int a; 4651 // char ary[56]; 4652 // } gTest; 4653 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4654 // b->a = v.a; 4655 // return 0; 4656 // } 4657 // void caller1(struct test a, struct test c, struct test *b) { 4658 // callee(gTest, b); } 4659 // void caller2(struct test *b) { callee(gTest, b); } 4660 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4661 return false; 4662 4663 // If callee and caller use different calling conventions, we cannot pass 4664 // parameters on stack since offsets for the parameter area may be different. 4665 if (Caller.getCallingConv() != CalleeCC && 4666 needStackSlotPassParameters(Subtarget, Outs)) 4667 return false; 4668 4669 // No TCO/SCO on indirect call because Caller have to restore its TOC 4670 if (!isFunctionGlobalAddress(Callee) && 4671 !isa<ExternalSymbolSDNode>(Callee)) 4672 return false; 4673 4674 // If the caller and callee potentially have different TOC bases then we 4675 // cannot tail call since we need to restore the TOC pointer after the call. 4676 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4677 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4678 return false; 4679 4680 // TCO allows altering callee ABI, so we don't have to check further. 4681 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4682 return true; 4683 4684 if (DisableSCO) return false; 4685 4686 // If callee use the same argument list that caller is using, then we can 4687 // apply SCO on this case. If it is not, then we need to check if callee needs 4688 // stack for passing arguments. 4689 if (!hasSameArgumentList(&Caller, CS) && 4690 needStackSlotPassParameters(Subtarget, Outs)) { 4691 return false; 4692 } 4693 4694 return true; 4695 } 4696 4697 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4698 /// for tail call optimization. Targets which want to do tail call 4699 /// optimization should implement this function. 4700 bool 4701 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4702 CallingConv::ID CalleeCC, 4703 bool isVarArg, 4704 const SmallVectorImpl<ISD::InputArg> &Ins, 4705 SelectionDAG& DAG) const { 4706 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4707 return false; 4708 4709 // Variable argument functions are not supported. 4710 if (isVarArg) 4711 return false; 4712 4713 MachineFunction &MF = DAG.getMachineFunction(); 4714 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4715 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4716 // Functions containing by val parameters are not supported. 4717 for (unsigned i = 0; i != Ins.size(); i++) { 4718 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4719 if (Flags.isByVal()) return false; 4720 } 4721 4722 // Non-PIC/GOT tail calls are supported. 4723 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4724 return true; 4725 4726 // At the moment we can only do local tail calls (in same module, hidden 4727 // or protected) if we are generating PIC. 4728 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4729 return G->getGlobal()->hasHiddenVisibility() 4730 || G->getGlobal()->hasProtectedVisibility(); 4731 } 4732 4733 return false; 4734 } 4735 4736 /// isCallCompatibleAddress - Return the immediate to use if the specified 4737 /// 32-bit value is representable in the immediate field of a BxA instruction. 4738 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4739 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4740 if (!C) return nullptr; 4741 4742 int Addr = C->getZExtValue(); 4743 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4744 SignExtend32<26>(Addr) != Addr) 4745 return nullptr; // Top 6 bits have to be sext of immediate. 4746 4747 return DAG 4748 .getConstant( 4749 (int)C->getZExtValue() >> 2, SDLoc(Op), 4750 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4751 .getNode(); 4752 } 4753 4754 namespace { 4755 4756 struct TailCallArgumentInfo { 4757 SDValue Arg; 4758 SDValue FrameIdxOp; 4759 int FrameIdx = 0; 4760 4761 TailCallArgumentInfo() = default; 4762 }; 4763 4764 } // end anonymous namespace 4765 4766 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4767 static void StoreTailCallArgumentsToStackSlot( 4768 SelectionDAG &DAG, SDValue Chain, 4769 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4770 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4771 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4772 SDValue Arg = TailCallArgs[i].Arg; 4773 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4774 int FI = TailCallArgs[i].FrameIdx; 4775 // Store relative to framepointer. 4776 MemOpChains.push_back(DAG.getStore( 4777 Chain, dl, Arg, FIN, 4778 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4779 } 4780 } 4781 4782 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4783 /// the appropriate stack slot for the tail call optimized function call. 4784 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4785 SDValue OldRetAddr, SDValue OldFP, 4786 int SPDiff, const SDLoc &dl) { 4787 if (SPDiff) { 4788 // Calculate the new stack slot for the return address. 4789 MachineFunction &MF = DAG.getMachineFunction(); 4790 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4791 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4792 bool isPPC64 = Subtarget.isPPC64(); 4793 int SlotSize = isPPC64 ? 8 : 4; 4794 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4795 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4796 NewRetAddrLoc, true); 4797 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4798 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4799 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4800 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4801 4802 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4803 // slot as the FP is never overwritten. 4804 if (Subtarget.isDarwinABI()) { 4805 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4806 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4807 true); 4808 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4809 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4810 MachinePointerInfo::getFixedStack( 4811 DAG.getMachineFunction(), NewFPIdx)); 4812 } 4813 } 4814 return Chain; 4815 } 4816 4817 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4818 /// the position of the argument. 4819 static void 4820 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4821 SDValue Arg, int SPDiff, unsigned ArgOffset, 4822 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4823 int Offset = ArgOffset + SPDiff; 4824 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4825 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4826 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4827 SDValue FIN = DAG.getFrameIndex(FI, VT); 4828 TailCallArgumentInfo Info; 4829 Info.Arg = Arg; 4830 Info.FrameIdxOp = FIN; 4831 Info.FrameIdx = FI; 4832 TailCallArguments.push_back(Info); 4833 } 4834 4835 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4836 /// stack slot. Returns the chain as result and the loaded frame pointers in 4837 /// LROpOut/FPOpout. Used when tail calling. 4838 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4839 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4840 SDValue &FPOpOut, const SDLoc &dl) const { 4841 if (SPDiff) { 4842 // Load the LR and FP stack slot for later adjusting. 4843 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4844 LROpOut = getReturnAddrFrameIndex(DAG); 4845 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4846 Chain = SDValue(LROpOut.getNode(), 1); 4847 4848 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4849 // slot as the FP is never overwritten. 4850 if (Subtarget.isDarwinABI()) { 4851 FPOpOut = getFramePointerFrameIndex(DAG); 4852 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4853 Chain = SDValue(FPOpOut.getNode(), 1); 4854 } 4855 } 4856 return Chain; 4857 } 4858 4859 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4860 /// by "Src" to address "Dst" of size "Size". Alignment information is 4861 /// specified by the specific parameter attribute. The copy will be passed as 4862 /// a byval function parameter. 4863 /// Sometimes what we are copying is the end of a larger object, the part that 4864 /// does not fit in registers. 4865 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4866 SDValue Chain, ISD::ArgFlagsTy Flags, 4867 SelectionDAG &DAG, const SDLoc &dl) { 4868 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4869 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4870 false, false, false, MachinePointerInfo(), 4871 MachinePointerInfo()); 4872 } 4873 4874 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4875 /// tail calls. 4876 static void LowerMemOpCallTo( 4877 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4878 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4879 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4880 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4881 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4882 if (!isTailCall) { 4883 if (isVector) { 4884 SDValue StackPtr; 4885 if (isPPC64) 4886 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4887 else 4888 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4889 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4890 DAG.getConstant(ArgOffset, dl, PtrVT)); 4891 } 4892 MemOpChains.push_back( 4893 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4894 // Calculate and remember argument location. 4895 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4896 TailCallArguments); 4897 } 4898 4899 static void 4900 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4901 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4902 SDValue FPOp, 4903 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4904 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4905 // might overwrite each other in case of tail call optimization. 4906 SmallVector<SDValue, 8> MemOpChains2; 4907 // Do not flag preceding copytoreg stuff together with the following stuff. 4908 InFlag = SDValue(); 4909 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4910 MemOpChains2, dl); 4911 if (!MemOpChains2.empty()) 4912 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4913 4914 // Store the return address to the appropriate stack slot. 4915 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4916 4917 // Emit callseq_end just before tailcall node. 4918 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4919 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4920 InFlag = Chain.getValue(1); 4921 } 4922 4923 // Is this global address that of a function that can be called by name? (as 4924 // opposed to something that must hold a descriptor for an indirect call). 4925 static bool isFunctionGlobalAddress(SDValue Callee) { 4926 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4927 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4928 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4929 return false; 4930 4931 return G->getGlobal()->getValueType()->isFunctionTy(); 4932 } 4933 4934 return false; 4935 } 4936 4937 static unsigned 4938 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4939 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4940 bool isPatchPoint, bool hasNest, 4941 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4942 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4943 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4944 bool isPPC64 = Subtarget.isPPC64(); 4945 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4946 bool is64BitELFv1ABI = isPPC64 && isSVR4ABI && !Subtarget.isELFv2ABI(); 4947 bool isAIXABI = Subtarget.isAIXABI(); 4948 4949 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4950 NodeTys.push_back(MVT::Other); // Returns a chain 4951 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4952 4953 unsigned CallOpc = PPCISD::CALL; 4954 4955 bool needIndirectCall = true; 4956 if (!isSVR4ABI || !isPPC64) 4957 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4958 // If this is an absolute destination address, use the munged value. 4959 Callee = SDValue(Dest, 0); 4960 needIndirectCall = false; 4961 } 4962 4963 // PC-relative references to external symbols should go through $stub, unless 4964 // we're building with the leopard linker or later, which automatically 4965 // synthesizes these stubs. 4966 const TargetMachine &TM = DAG.getTarget(); 4967 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4968 const GlobalValue *GV = nullptr; 4969 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4970 GV = G->getGlobal(); 4971 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4972 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4973 4974 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4975 // every direct call is) turn it into a TargetGlobalAddress / 4976 // TargetExternalSymbol node so that legalize doesn't hack it. 4977 if (isFunctionGlobalAddress(Callee)) { 4978 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4979 4980 // A call to a TLS address is actually an indirect call to a 4981 // thread-specific pointer. 4982 unsigned OpFlags = 0; 4983 if (UsePlt) 4984 OpFlags = PPCII::MO_PLT; 4985 4986 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4987 Callee.getValueType(), 0, OpFlags); 4988 needIndirectCall = false; 4989 } 4990 4991 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4992 unsigned char OpFlags = 0; 4993 4994 if (UsePlt) 4995 OpFlags = PPCII::MO_PLT; 4996 4997 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4998 OpFlags); 4999 needIndirectCall = false; 5000 } 5001 5002 if (isPatchPoint) { 5003 // We'll form an invalid direct call when lowering a patchpoint; the full 5004 // sequence for an indirect call is complicated, and many of the 5005 // instructions introduced might have side effects (and, thus, can't be 5006 // removed later). The call itself will be removed as soon as the 5007 // argument/return lowering is complete, so the fact that it has the wrong 5008 // kind of operands should not really matter. 5009 needIndirectCall = false; 5010 } 5011 5012 if (needIndirectCall) { 5013 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 5014 // to do the call, we can't use PPCISD::CALL. 5015 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 5016 5017 if (is64BitELFv1ABI) { 5018 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5019 // entry point, but to the function descriptor (the function entry point 5020 // address is part of the function descriptor though). 5021 // The function descriptor is a three doubleword structure with the 5022 // following fields: function entry point, TOC base address and 5023 // environment pointer. 5024 // Thus for a call through a function pointer, the following actions need 5025 // to be performed: 5026 // 1. Save the TOC of the caller in the TOC save area of its stack 5027 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5028 // 2. Load the address of the function entry point from the function 5029 // descriptor. 5030 // 3. Load the TOC of the callee from the function descriptor into r2. 5031 // 4. Load the environment pointer from the function descriptor into 5032 // r11. 5033 // 5. Branch to the function entry point address. 5034 // 6. On return of the callee, the TOC of the caller needs to be 5035 // restored (this is done in FinishCall()). 5036 // 5037 // The loads are scheduled at the beginning of the call sequence, and the 5038 // register copies are flagged together to ensure that no other 5039 // operations can be scheduled in between. E.g. without flagging the 5040 // copies together, a TOC access in the caller could be scheduled between 5041 // the assignment of the callee TOC and the branch to the callee, which 5042 // results in the TOC access going through the TOC of the callee instead 5043 // of going through the TOC of the caller, which leads to incorrect code. 5044 5045 // Load the address of the function entry point from the function 5046 // descriptor. 5047 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5048 if (LDChain.getValueType() == MVT::Glue) 5049 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5050 5051 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5052 ? (MachineMemOperand::MODereferenceable | 5053 MachineMemOperand::MOInvariant) 5054 : MachineMemOperand::MONone; 5055 5056 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5057 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5058 /* Alignment = */ 8, MMOFlags); 5059 5060 // Load environment pointer into r11. 5061 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5062 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5063 SDValue LoadEnvPtr = 5064 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5065 /* Alignment = */ 8, MMOFlags); 5066 5067 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5068 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5069 SDValue TOCPtr = 5070 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5071 /* Alignment = */ 8, MMOFlags); 5072 5073 setUsesTOCBasePtr(DAG); 5074 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5075 InFlag); 5076 Chain = TOCVal.getValue(0); 5077 InFlag = TOCVal.getValue(1); 5078 5079 // If the function call has an explicit 'nest' parameter, it takes the 5080 // place of the environment pointer. 5081 if (!hasNest) { 5082 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5083 InFlag); 5084 5085 Chain = EnvVal.getValue(0); 5086 InFlag = EnvVal.getValue(1); 5087 } 5088 5089 MTCTROps[0] = Chain; 5090 MTCTROps[1] = LoadFuncPtr; 5091 MTCTROps[2] = InFlag; 5092 } 5093 5094 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5095 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5096 InFlag = Chain.getValue(1); 5097 5098 NodeTys.clear(); 5099 NodeTys.push_back(MVT::Other); 5100 NodeTys.push_back(MVT::Glue); 5101 Ops.push_back(Chain); 5102 CallOpc = PPCISD::BCTRL; 5103 Callee.setNode(nullptr); 5104 // Add use of X11 (holding environment pointer) 5105 if (is64BitELFv1ABI && !hasNest) 5106 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5107 // Add CTR register as callee so a bctr can be emitted later. 5108 if (isTailCall) 5109 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5110 } 5111 5112 // If this is a direct call, pass the chain and the callee. 5113 if (Callee.getNode()) { 5114 Ops.push_back(Chain); 5115 Ops.push_back(Callee); 5116 } 5117 // If this is a tail call add stack pointer delta. 5118 if (isTailCall) 5119 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5120 5121 // Add argument registers to the end of the list so that they are known live 5122 // into the call. 5123 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5124 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5125 RegsToPass[i].second.getValueType())); 5126 5127 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register 5128 // live into the call. 5129 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT. 5130 if ((isSVR4ABI && isPPC64) || isAIXABI) { 5131 setUsesTOCBasePtr(DAG); 5132 5133 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5134 // no way to mark dependencies as implicit here. 5135 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5136 if (!isPatchPoint) 5137 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2 5138 : PPC::R2, PtrVT)); 5139 } 5140 5141 return CallOpc; 5142 } 5143 5144 SDValue PPCTargetLowering::LowerCallResult( 5145 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5146 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5147 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5148 SmallVector<CCValAssign, 16> RVLocs; 5149 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5150 *DAG.getContext()); 5151 5152 CCRetInfo.AnalyzeCallResult( 5153 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5154 ? RetCC_PPC_Cold 5155 : RetCC_PPC); 5156 5157 // Copy all of the result registers out of their specified physreg. 5158 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5159 CCValAssign &VA = RVLocs[i]; 5160 assert(VA.isRegLoc() && "Can only return in registers!"); 5161 5162 SDValue Val; 5163 5164 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5165 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5166 InFlag); 5167 Chain = Lo.getValue(1); 5168 InFlag = Lo.getValue(2); 5169 VA = RVLocs[++i]; // skip ahead to next loc 5170 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5171 InFlag); 5172 Chain = Hi.getValue(1); 5173 InFlag = Hi.getValue(2); 5174 if (!Subtarget.isLittleEndian()) 5175 std::swap (Lo, Hi); 5176 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5177 } else { 5178 Val = DAG.getCopyFromReg(Chain, dl, 5179 VA.getLocReg(), VA.getLocVT(), InFlag); 5180 Chain = Val.getValue(1); 5181 InFlag = Val.getValue(2); 5182 } 5183 5184 switch (VA.getLocInfo()) { 5185 default: llvm_unreachable("Unknown loc info!"); 5186 case CCValAssign::Full: break; 5187 case CCValAssign::AExt: 5188 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5189 break; 5190 case CCValAssign::ZExt: 5191 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5192 DAG.getValueType(VA.getValVT())); 5193 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5194 break; 5195 case CCValAssign::SExt: 5196 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5197 DAG.getValueType(VA.getValVT())); 5198 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5199 break; 5200 } 5201 5202 InVals.push_back(Val); 5203 } 5204 5205 return Chain; 5206 } 5207 5208 SDValue PPCTargetLowering::FinishCall( 5209 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5210 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5211 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5212 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5213 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5214 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5215 std::vector<EVT> NodeTys; 5216 SmallVector<SDValue, 8> Ops; 5217 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5218 SPDiff, isTailCall, isPatchPoint, hasNest, 5219 RegsToPass, Ops, NodeTys, CS, Subtarget); 5220 5221 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5222 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5223 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5224 5225 // When performing tail call optimization the callee pops its arguments off 5226 // the stack. Account for this here so these bytes can be pushed back on in 5227 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5228 int BytesCalleePops = 5229 (CallConv == CallingConv::Fast && 5230 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5231 5232 // Add a register mask operand representing the call-preserved registers. 5233 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5234 const uint32_t *Mask = 5235 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5236 assert(Mask && "Missing call preserved mask for calling convention"); 5237 Ops.push_back(DAG.getRegisterMask(Mask)); 5238 5239 if (InFlag.getNode()) 5240 Ops.push_back(InFlag); 5241 5242 // Emit tail call. 5243 if (isTailCall) { 5244 assert(((Callee.getOpcode() == ISD::Register && 5245 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5246 Callee.getOpcode() == ISD::TargetExternalSymbol || 5247 Callee.getOpcode() == ISD::TargetGlobalAddress || 5248 isa<ConstantSDNode>(Callee)) && 5249 "Expecting an global address, external symbol, absolute value or register"); 5250 5251 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5252 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5253 } 5254 5255 // Add a NOP immediately after the branch instruction when using the 64-bit 5256 // SVR4 or the AIX ABI. 5257 // At link time, if caller and callee are in a different module and 5258 // thus have a different TOC, the call will be replaced with a call to a stub 5259 // function which saves the current TOC, loads the TOC of the callee and 5260 // branches to the callee. The NOP will be replaced with a load instruction 5261 // which restores the TOC of the caller from the TOC save slot of the current 5262 // stack frame. If caller and callee belong to the same module (and have the 5263 // same TOC), the NOP will remain unchanged, or become some other NOP. 5264 5265 MachineFunction &MF = DAG.getMachineFunction(); 5266 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5267 if (!isTailCall && !isPatchPoint && 5268 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5269 Subtarget.isAIXABI())) { 5270 if (CallOpc == PPCISD::BCTRL) { 5271 if (Subtarget.isAIXABI()) 5272 report_fatal_error("Indirect call on AIX is not implemented."); 5273 5274 // This is a call through a function pointer. 5275 // Restore the caller TOC from the save area into R2. 5276 // See PrepareCall() for more information about calls through function 5277 // pointers in the 64-bit SVR4 ABI. 5278 // We are using a target-specific load with r2 hard coded, because the 5279 // result of a target-independent load would never go directly into r2, 5280 // since r2 is a reserved register (which prevents the register allocator 5281 // from allocating it), resulting in an additional register being 5282 // allocated and an unnecessary move instruction being generated. 5283 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5284 5285 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5286 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5287 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5288 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5289 5290 // The address needs to go after the chain input but before the flag (or 5291 // any other variadic arguments). 5292 Ops.insert(std::next(Ops.begin()), AddTOC); 5293 } else if (CallOpc == PPCISD::CALL && 5294 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5295 // Otherwise insert NOP for non-local calls. 5296 CallOpc = PPCISD::CALL_NOP; 5297 } 5298 } 5299 5300 if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) { 5301 // On AIX, direct function calls reference the symbol for the function's 5302 // entry point, which is named by inserting a "." before the function's 5303 // C-linkage name. 5304 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5305 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5306 MCSymbol *S = Context.getOrCreateSymbol(Twine(".") + 5307 Twine(G->getGlobal()->getName())); 5308 Callee = DAG.getMCSymbol(S, PtrVT); 5309 // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode. 5310 Ops[1] = Callee; 5311 } 5312 5313 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5314 InFlag = Chain.getValue(1); 5315 5316 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5317 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5318 InFlag, dl); 5319 if (!Ins.empty()) 5320 InFlag = Chain.getValue(1); 5321 5322 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5323 Ins, dl, DAG, InVals); 5324 } 5325 5326 SDValue 5327 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5328 SmallVectorImpl<SDValue> &InVals) const { 5329 SelectionDAG &DAG = CLI.DAG; 5330 SDLoc &dl = CLI.DL; 5331 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5332 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5333 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5334 SDValue Chain = CLI.Chain; 5335 SDValue Callee = CLI.Callee; 5336 bool &isTailCall = CLI.IsTailCall; 5337 CallingConv::ID CallConv = CLI.CallConv; 5338 bool isVarArg = CLI.IsVarArg; 5339 bool isPatchPoint = CLI.IsPatchPoint; 5340 ImmutableCallSite CS = CLI.CS; 5341 5342 if (isTailCall) { 5343 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5344 isTailCall = false; 5345 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5346 isTailCall = 5347 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5348 isVarArg, Outs, Ins, DAG); 5349 else 5350 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5351 Ins, DAG); 5352 if (isTailCall) { 5353 ++NumTailCalls; 5354 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5355 ++NumSiblingCalls; 5356 5357 assert(isa<GlobalAddressSDNode>(Callee) && 5358 "Callee should be an llvm::Function object."); 5359 LLVM_DEBUG( 5360 const GlobalValue *GV = 5361 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5362 const unsigned Width = 5363 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5364 dbgs() << "TCO caller: " 5365 << left_justify(DAG.getMachineFunction().getName(), Width) 5366 << ", callee linkage: " << GV->getVisibility() << ", " 5367 << GV->getLinkage() << "\n"); 5368 } 5369 } 5370 5371 if (!isTailCall && CS && CS.isMustTailCall()) 5372 report_fatal_error("failed to perform tail call elimination on a call " 5373 "site marked musttail"); 5374 5375 // When long calls (i.e. indirect calls) are always used, calls are always 5376 // made via function pointer. If we have a function name, first translate it 5377 // into a pointer. 5378 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5379 !isTailCall) 5380 Callee = LowerGlobalAddress(Callee, DAG); 5381 5382 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5383 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5384 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5385 dl, DAG, InVals, CS); 5386 5387 if (Subtarget.isSVR4ABI()) 5388 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5389 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5390 dl, DAG, InVals, CS); 5391 5392 if (Subtarget.isAIXABI()) 5393 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5394 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5395 dl, DAG, InVals, CS); 5396 5397 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5398 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5399 dl, DAG, InVals, CS); 5400 } 5401 5402 SDValue PPCTargetLowering::LowerCall_32SVR4( 5403 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5404 bool isTailCall, bool isPatchPoint, 5405 const SmallVectorImpl<ISD::OutputArg> &Outs, 5406 const SmallVectorImpl<SDValue> &OutVals, 5407 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5408 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5409 ImmutableCallSite CS) const { 5410 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5411 // of the 32-bit SVR4 ABI stack frame layout. 5412 5413 assert((CallConv == CallingConv::C || 5414 CallConv == CallingConv::Cold || 5415 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5416 5417 unsigned PtrByteSize = 4; 5418 5419 MachineFunction &MF = DAG.getMachineFunction(); 5420 5421 // Mark this function as potentially containing a function that contains a 5422 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5423 // and restoring the callers stack pointer in this functions epilog. This is 5424 // done because by tail calling the called function might overwrite the value 5425 // in this function's (MF) stack pointer stack slot 0(SP). 5426 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5427 CallConv == CallingConv::Fast) 5428 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5429 5430 // Count how many bytes are to be pushed on the stack, including the linkage 5431 // area, parameter list area and the part of the local variable space which 5432 // contains copies of aggregates which are passed by value. 5433 5434 // Assign locations to all of the outgoing arguments. 5435 SmallVector<CCValAssign, 16> ArgLocs; 5436 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5437 5438 // Reserve space for the linkage area on the stack. 5439 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5440 PtrByteSize); 5441 if (useSoftFloat()) 5442 CCInfo.PreAnalyzeCallOperands(Outs); 5443 5444 if (isVarArg) { 5445 // Handle fixed and variable vector arguments differently. 5446 // Fixed vector arguments go into registers as long as registers are 5447 // available. Variable vector arguments always go into memory. 5448 unsigned NumArgs = Outs.size(); 5449 5450 for (unsigned i = 0; i != NumArgs; ++i) { 5451 MVT ArgVT = Outs[i].VT; 5452 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5453 bool Result; 5454 5455 if (Outs[i].IsFixed) { 5456 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5457 CCInfo); 5458 } else { 5459 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5460 ArgFlags, CCInfo); 5461 } 5462 5463 if (Result) { 5464 #ifndef NDEBUG 5465 errs() << "Call operand #" << i << " has unhandled type " 5466 << EVT(ArgVT).getEVTString() << "\n"; 5467 #endif 5468 llvm_unreachable(nullptr); 5469 } 5470 } 5471 } else { 5472 // All arguments are treated the same. 5473 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5474 } 5475 CCInfo.clearWasPPCF128(); 5476 5477 // Assign locations to all of the outgoing aggregate by value arguments. 5478 SmallVector<CCValAssign, 16> ByValArgLocs; 5479 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5480 5481 // Reserve stack space for the allocations in CCInfo. 5482 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5483 5484 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5485 5486 // Size of the linkage area, parameter list area and the part of the local 5487 // space variable where copies of aggregates which are passed by value are 5488 // stored. 5489 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5490 5491 // Calculate by how many bytes the stack has to be adjusted in case of tail 5492 // call optimization. 5493 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5494 5495 // Adjust the stack pointer for the new arguments... 5496 // These operations are automatically eliminated by the prolog/epilog pass 5497 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5498 SDValue CallSeqStart = Chain; 5499 5500 // Load the return address and frame pointer so it can be moved somewhere else 5501 // later. 5502 SDValue LROp, FPOp; 5503 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5504 5505 // Set up a copy of the stack pointer for use loading and storing any 5506 // arguments that may not fit in the registers available for argument 5507 // passing. 5508 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5509 5510 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5511 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5512 SmallVector<SDValue, 8> MemOpChains; 5513 5514 bool seenFloatArg = false; 5515 // Walk the register/memloc assignments, inserting copies/loads. 5516 // i - Tracks the index into the list of registers allocated for the call 5517 // RealArgIdx - Tracks the index into the list of actual function arguments 5518 // j - Tracks the index into the list of byval arguments 5519 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5520 i != e; 5521 ++i, ++RealArgIdx) { 5522 CCValAssign &VA = ArgLocs[i]; 5523 SDValue Arg = OutVals[RealArgIdx]; 5524 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5525 5526 if (Flags.isByVal()) { 5527 // Argument is an aggregate which is passed by value, thus we need to 5528 // create a copy of it in the local variable space of the current stack 5529 // frame (which is the stack frame of the caller) and pass the address of 5530 // this copy to the callee. 5531 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5532 CCValAssign &ByValVA = ByValArgLocs[j++]; 5533 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5534 5535 // Memory reserved in the local variable space of the callers stack frame. 5536 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5537 5538 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5539 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5540 StackPtr, PtrOff); 5541 5542 // Create a copy of the argument in the local area of the current 5543 // stack frame. 5544 SDValue MemcpyCall = 5545 CreateCopyOfByValArgument(Arg, PtrOff, 5546 CallSeqStart.getNode()->getOperand(0), 5547 Flags, DAG, dl); 5548 5549 // This must go outside the CALLSEQ_START..END. 5550 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5551 SDLoc(MemcpyCall)); 5552 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5553 NewCallSeqStart.getNode()); 5554 Chain = CallSeqStart = NewCallSeqStart; 5555 5556 // Pass the address of the aggregate copy on the stack either in a 5557 // physical register or in the parameter list area of the current stack 5558 // frame to the callee. 5559 Arg = PtrOff; 5560 } 5561 5562 // When useCRBits() is true, there can be i1 arguments. 5563 // It is because getRegisterType(MVT::i1) => MVT::i1, 5564 // and for other integer types getRegisterType() => MVT::i32. 5565 // Extend i1 and ensure callee will get i32. 5566 if (Arg.getValueType() == MVT::i1) 5567 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5568 dl, MVT::i32, Arg); 5569 5570 if (VA.isRegLoc()) { 5571 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5572 // Put argument in a physical register. 5573 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5574 bool IsLE = Subtarget.isLittleEndian(); 5575 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5576 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5577 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5578 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5579 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5580 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5581 SVal.getValue(0))); 5582 } else 5583 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5584 } else { 5585 // Put argument in the parameter list area of the current stack frame. 5586 assert(VA.isMemLoc()); 5587 unsigned LocMemOffset = VA.getLocMemOffset(); 5588 5589 if (!isTailCall) { 5590 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5591 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5592 StackPtr, PtrOff); 5593 5594 MemOpChains.push_back( 5595 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5596 } else { 5597 // Calculate and remember argument location. 5598 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5599 TailCallArguments); 5600 } 5601 } 5602 } 5603 5604 if (!MemOpChains.empty()) 5605 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5606 5607 // Build a sequence of copy-to-reg nodes chained together with token chain 5608 // and flag operands which copy the outgoing args into the appropriate regs. 5609 SDValue InFlag; 5610 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5611 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5612 RegsToPass[i].second, InFlag); 5613 InFlag = Chain.getValue(1); 5614 } 5615 5616 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5617 // registers. 5618 if (isVarArg) { 5619 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5620 SDValue Ops[] = { Chain, InFlag }; 5621 5622 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5623 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5624 5625 InFlag = Chain.getValue(1); 5626 } 5627 5628 if (isTailCall) 5629 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5630 TailCallArguments); 5631 5632 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5633 /* unused except on PPC64 ELFv1 */ false, DAG, 5634 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5635 NumBytes, Ins, InVals, CS); 5636 } 5637 5638 // Copy an argument into memory, being careful to do this outside the 5639 // call sequence for the call to which the argument belongs. 5640 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5641 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5642 SelectionDAG &DAG, const SDLoc &dl) const { 5643 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5644 CallSeqStart.getNode()->getOperand(0), 5645 Flags, DAG, dl); 5646 // The MEMCPY must go outside the CALLSEQ_START..END. 5647 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5648 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5649 SDLoc(MemcpyCall)); 5650 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5651 NewCallSeqStart.getNode()); 5652 return NewCallSeqStart; 5653 } 5654 5655 SDValue PPCTargetLowering::LowerCall_64SVR4( 5656 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5657 bool isTailCall, bool isPatchPoint, 5658 const SmallVectorImpl<ISD::OutputArg> &Outs, 5659 const SmallVectorImpl<SDValue> &OutVals, 5660 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5661 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5662 ImmutableCallSite CS) const { 5663 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5664 bool isLittleEndian = Subtarget.isLittleEndian(); 5665 unsigned NumOps = Outs.size(); 5666 bool hasNest = false; 5667 bool IsSibCall = false; 5668 5669 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5670 unsigned PtrByteSize = 8; 5671 5672 MachineFunction &MF = DAG.getMachineFunction(); 5673 5674 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5675 IsSibCall = true; 5676 5677 // Mark this function as potentially containing a function that contains a 5678 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5679 // and restoring the callers stack pointer in this functions epilog. This is 5680 // done because by tail calling the called function might overwrite the value 5681 // in this function's (MF) stack pointer stack slot 0(SP). 5682 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5683 CallConv == CallingConv::Fast) 5684 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5685 5686 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5687 "fastcc not supported on varargs functions"); 5688 5689 // Count how many bytes are to be pushed on the stack, including the linkage 5690 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5691 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5692 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5693 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5694 unsigned NumBytes = LinkageSize; 5695 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5696 unsigned &QFPR_idx = FPR_idx; 5697 5698 static const MCPhysReg GPR[] = { 5699 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5700 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5701 }; 5702 static const MCPhysReg VR[] = { 5703 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5704 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5705 }; 5706 5707 const unsigned NumGPRs = array_lengthof(GPR); 5708 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5709 const unsigned NumVRs = array_lengthof(VR); 5710 const unsigned NumQFPRs = NumFPRs; 5711 5712 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5713 // can be passed to the callee in registers. 5714 // For the fast calling convention, there is another check below. 5715 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5716 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5717 if (!HasParameterArea) { 5718 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5719 unsigned AvailableFPRs = NumFPRs; 5720 unsigned AvailableVRs = NumVRs; 5721 unsigned NumBytesTmp = NumBytes; 5722 for (unsigned i = 0; i != NumOps; ++i) { 5723 if (Outs[i].Flags.isNest()) continue; 5724 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5725 PtrByteSize, LinkageSize, ParamAreaSize, 5726 NumBytesTmp, AvailableFPRs, AvailableVRs, 5727 Subtarget.hasQPX())) 5728 HasParameterArea = true; 5729 } 5730 } 5731 5732 // When using the fast calling convention, we don't provide backing for 5733 // arguments that will be in registers. 5734 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5735 5736 // Avoid allocating parameter area for fastcc functions if all the arguments 5737 // can be passed in the registers. 5738 if (CallConv == CallingConv::Fast) 5739 HasParameterArea = false; 5740 5741 // Add up all the space actually used. 5742 for (unsigned i = 0; i != NumOps; ++i) { 5743 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5744 EVT ArgVT = Outs[i].VT; 5745 EVT OrigVT = Outs[i].ArgVT; 5746 5747 if (Flags.isNest()) 5748 continue; 5749 5750 if (CallConv == CallingConv::Fast) { 5751 if (Flags.isByVal()) { 5752 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5753 if (NumGPRsUsed > NumGPRs) 5754 HasParameterArea = true; 5755 } else { 5756 switch (ArgVT.getSimpleVT().SimpleTy) { 5757 default: llvm_unreachable("Unexpected ValueType for argument!"); 5758 case MVT::i1: 5759 case MVT::i32: 5760 case MVT::i64: 5761 if (++NumGPRsUsed <= NumGPRs) 5762 continue; 5763 break; 5764 case MVT::v4i32: 5765 case MVT::v8i16: 5766 case MVT::v16i8: 5767 case MVT::v2f64: 5768 case MVT::v2i64: 5769 case MVT::v1i128: 5770 case MVT::f128: 5771 if (++NumVRsUsed <= NumVRs) 5772 continue; 5773 break; 5774 case MVT::v4f32: 5775 // When using QPX, this is handled like a FP register, otherwise, it 5776 // is an Altivec register. 5777 if (Subtarget.hasQPX()) { 5778 if (++NumFPRsUsed <= NumFPRs) 5779 continue; 5780 } else { 5781 if (++NumVRsUsed <= NumVRs) 5782 continue; 5783 } 5784 break; 5785 case MVT::f32: 5786 case MVT::f64: 5787 case MVT::v4f64: // QPX 5788 case MVT::v4i1: // QPX 5789 if (++NumFPRsUsed <= NumFPRs) 5790 continue; 5791 break; 5792 } 5793 HasParameterArea = true; 5794 } 5795 } 5796 5797 /* Respect alignment of argument on the stack. */ 5798 unsigned Align = 5799 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5800 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5801 5802 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5803 if (Flags.isInConsecutiveRegsLast()) 5804 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5805 } 5806 5807 unsigned NumBytesActuallyUsed = NumBytes; 5808 5809 // In the old ELFv1 ABI, 5810 // the prolog code of the callee may store up to 8 GPR argument registers to 5811 // the stack, allowing va_start to index over them in memory if its varargs. 5812 // Because we cannot tell if this is needed on the caller side, we have to 5813 // conservatively assume that it is needed. As such, make sure we have at 5814 // least enough stack space for the caller to store the 8 GPRs. 5815 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5816 // really requires memory operands, e.g. a vararg function. 5817 if (HasParameterArea) 5818 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5819 else 5820 NumBytes = LinkageSize; 5821 5822 // Tail call needs the stack to be aligned. 5823 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5824 CallConv == CallingConv::Fast) 5825 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5826 5827 int SPDiff = 0; 5828 5829 // Calculate by how many bytes the stack has to be adjusted in case of tail 5830 // call optimization. 5831 if (!IsSibCall) 5832 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5833 5834 // To protect arguments on the stack from being clobbered in a tail call, 5835 // force all the loads to happen before doing any other lowering. 5836 if (isTailCall) 5837 Chain = DAG.getStackArgumentTokenFactor(Chain); 5838 5839 // Adjust the stack pointer for the new arguments... 5840 // These operations are automatically eliminated by the prolog/epilog pass 5841 if (!IsSibCall) 5842 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5843 SDValue CallSeqStart = Chain; 5844 5845 // Load the return address and frame pointer so it can be move somewhere else 5846 // later. 5847 SDValue LROp, FPOp; 5848 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5849 5850 // Set up a copy of the stack pointer for use loading and storing any 5851 // arguments that may not fit in the registers available for argument 5852 // passing. 5853 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5854 5855 // Figure out which arguments are going to go in registers, and which in 5856 // memory. Also, if this is a vararg function, floating point operations 5857 // must be stored to our stack, and loaded into integer regs as well, if 5858 // any integer regs are available for argument passing. 5859 unsigned ArgOffset = LinkageSize; 5860 5861 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5862 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5863 5864 SmallVector<SDValue, 8> MemOpChains; 5865 for (unsigned i = 0; i != NumOps; ++i) { 5866 SDValue Arg = OutVals[i]; 5867 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5868 EVT ArgVT = Outs[i].VT; 5869 EVT OrigVT = Outs[i].ArgVT; 5870 5871 // PtrOff will be used to store the current argument to the stack if a 5872 // register cannot be found for it. 5873 SDValue PtrOff; 5874 5875 // We re-align the argument offset for each argument, except when using the 5876 // fast calling convention, when we need to make sure we do that only when 5877 // we'll actually use a stack slot. 5878 auto ComputePtrOff = [&]() { 5879 /* Respect alignment of argument on the stack. */ 5880 unsigned Align = 5881 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5882 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5883 5884 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5885 5886 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5887 }; 5888 5889 if (CallConv != CallingConv::Fast) { 5890 ComputePtrOff(); 5891 5892 /* Compute GPR index associated with argument offset. */ 5893 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5894 GPR_idx = std::min(GPR_idx, NumGPRs); 5895 } 5896 5897 // Promote integers to 64-bit values. 5898 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5899 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5900 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5901 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5902 } 5903 5904 // FIXME memcpy is used way more than necessary. Correctness first. 5905 // Note: "by value" is code for passing a structure by value, not 5906 // basic types. 5907 if (Flags.isByVal()) { 5908 // Note: Size includes alignment padding, so 5909 // struct x { short a; char b; } 5910 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5911 // These are the proper values we need for right-justifying the 5912 // aggregate in a parameter register. 5913 unsigned Size = Flags.getByValSize(); 5914 5915 // An empty aggregate parameter takes up no storage and no 5916 // registers. 5917 if (Size == 0) 5918 continue; 5919 5920 if (CallConv == CallingConv::Fast) 5921 ComputePtrOff(); 5922 5923 // All aggregates smaller than 8 bytes must be passed right-justified. 5924 if (Size==1 || Size==2 || Size==4) { 5925 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5926 if (GPR_idx != NumGPRs) { 5927 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5928 MachinePointerInfo(), VT); 5929 MemOpChains.push_back(Load.getValue(1)); 5930 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5931 5932 ArgOffset += PtrByteSize; 5933 continue; 5934 } 5935 } 5936 5937 if (GPR_idx == NumGPRs && Size < 8) { 5938 SDValue AddPtr = PtrOff; 5939 if (!isLittleEndian) { 5940 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5941 PtrOff.getValueType()); 5942 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5943 } 5944 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5945 CallSeqStart, 5946 Flags, DAG, dl); 5947 ArgOffset += PtrByteSize; 5948 continue; 5949 } 5950 // Copy entire object into memory. There are cases where gcc-generated 5951 // code assumes it is there, even if it could be put entirely into 5952 // registers. (This is not what the doc says.) 5953 5954 // FIXME: The above statement is likely due to a misunderstanding of the 5955 // documents. All arguments must be copied into the parameter area BY 5956 // THE CALLEE in the event that the callee takes the address of any 5957 // formal argument. That has not yet been implemented. However, it is 5958 // reasonable to use the stack area as a staging area for the register 5959 // load. 5960 5961 // Skip this for small aggregates, as we will use the same slot for a 5962 // right-justified copy, below. 5963 if (Size >= 8) 5964 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5965 CallSeqStart, 5966 Flags, DAG, dl); 5967 5968 // When a register is available, pass a small aggregate right-justified. 5969 if (Size < 8 && GPR_idx != NumGPRs) { 5970 // The easiest way to get this right-justified in a register 5971 // is to copy the structure into the rightmost portion of a 5972 // local variable slot, then load the whole slot into the 5973 // register. 5974 // FIXME: The memcpy seems to produce pretty awful code for 5975 // small aggregates, particularly for packed ones. 5976 // FIXME: It would be preferable to use the slot in the 5977 // parameter save area instead of a new local variable. 5978 SDValue AddPtr = PtrOff; 5979 if (!isLittleEndian) { 5980 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5981 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5982 } 5983 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5984 CallSeqStart, 5985 Flags, DAG, dl); 5986 5987 // Load the slot into the register. 5988 SDValue Load = 5989 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5990 MemOpChains.push_back(Load.getValue(1)); 5991 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5992 5993 // Done with this argument. 5994 ArgOffset += PtrByteSize; 5995 continue; 5996 } 5997 5998 // For aggregates larger than PtrByteSize, copy the pieces of the 5999 // object that fit into registers from the parameter save area. 6000 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6001 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6002 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6003 if (GPR_idx != NumGPRs) { 6004 SDValue Load = 6005 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6006 MemOpChains.push_back(Load.getValue(1)); 6007 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6008 ArgOffset += PtrByteSize; 6009 } else { 6010 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6011 break; 6012 } 6013 } 6014 continue; 6015 } 6016 6017 switch (Arg.getSimpleValueType().SimpleTy) { 6018 default: llvm_unreachable("Unexpected ValueType for argument!"); 6019 case MVT::i1: 6020 case MVT::i32: 6021 case MVT::i64: 6022 if (Flags.isNest()) { 6023 // The 'nest' parameter, if any, is passed in R11. 6024 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6025 hasNest = true; 6026 break; 6027 } 6028 6029 // These can be scalar arguments or elements of an integer array type 6030 // passed directly. Clang may use those instead of "byval" aggregate 6031 // types to avoid forcing arguments to memory unnecessarily. 6032 if (GPR_idx != NumGPRs) { 6033 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6034 } else { 6035 if (CallConv == CallingConv::Fast) 6036 ComputePtrOff(); 6037 6038 assert(HasParameterArea && 6039 "Parameter area must exist to pass an argument in memory."); 6040 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6041 true, isTailCall, false, MemOpChains, 6042 TailCallArguments, dl); 6043 if (CallConv == CallingConv::Fast) 6044 ArgOffset += PtrByteSize; 6045 } 6046 if (CallConv != CallingConv::Fast) 6047 ArgOffset += PtrByteSize; 6048 break; 6049 case MVT::f32: 6050 case MVT::f64: { 6051 // These can be scalar arguments or elements of a float array type 6052 // passed directly. The latter are used to implement ELFv2 homogenous 6053 // float aggregates. 6054 6055 // Named arguments go into FPRs first, and once they overflow, the 6056 // remaining arguments go into GPRs and then the parameter save area. 6057 // Unnamed arguments for vararg functions always go to GPRs and 6058 // then the parameter save area. For now, put all arguments to vararg 6059 // routines always in both locations (FPR *and* GPR or stack slot). 6060 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6061 bool NeededLoad = false; 6062 6063 // First load the argument into the next available FPR. 6064 if (FPR_idx != NumFPRs) 6065 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6066 6067 // Next, load the argument into GPR or stack slot if needed. 6068 if (!NeedGPROrStack) 6069 ; 6070 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6071 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6072 // once we support fp <-> gpr moves. 6073 6074 // In the non-vararg case, this can only ever happen in the 6075 // presence of f32 array types, since otherwise we never run 6076 // out of FPRs before running out of GPRs. 6077 SDValue ArgVal; 6078 6079 // Double values are always passed in a single GPR. 6080 if (Arg.getValueType() != MVT::f32) { 6081 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6082 6083 // Non-array float values are extended and passed in a GPR. 6084 } else if (!Flags.isInConsecutiveRegs()) { 6085 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6086 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6087 6088 // If we have an array of floats, we collect every odd element 6089 // together with its predecessor into one GPR. 6090 } else if (ArgOffset % PtrByteSize != 0) { 6091 SDValue Lo, Hi; 6092 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6093 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6094 if (!isLittleEndian) 6095 std::swap(Lo, Hi); 6096 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6097 6098 // The final element, if even, goes into the first half of a GPR. 6099 } else if (Flags.isInConsecutiveRegsLast()) { 6100 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6101 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6102 if (!isLittleEndian) 6103 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6104 DAG.getConstant(32, dl, MVT::i32)); 6105 6106 // Non-final even elements are skipped; they will be handled 6107 // together the with subsequent argument on the next go-around. 6108 } else 6109 ArgVal = SDValue(); 6110 6111 if (ArgVal.getNode()) 6112 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6113 } else { 6114 if (CallConv == CallingConv::Fast) 6115 ComputePtrOff(); 6116 6117 // Single-precision floating-point values are mapped to the 6118 // second (rightmost) word of the stack doubleword. 6119 if (Arg.getValueType() == MVT::f32 && 6120 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6121 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6122 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6123 } 6124 6125 assert(HasParameterArea && 6126 "Parameter area must exist to pass an argument in memory."); 6127 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6128 true, isTailCall, false, MemOpChains, 6129 TailCallArguments, dl); 6130 6131 NeededLoad = true; 6132 } 6133 // When passing an array of floats, the array occupies consecutive 6134 // space in the argument area; only round up to the next doubleword 6135 // at the end of the array. Otherwise, each float takes 8 bytes. 6136 if (CallConv != CallingConv::Fast || NeededLoad) { 6137 ArgOffset += (Arg.getValueType() == MVT::f32 && 6138 Flags.isInConsecutiveRegs()) ? 4 : 8; 6139 if (Flags.isInConsecutiveRegsLast()) 6140 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6141 } 6142 break; 6143 } 6144 case MVT::v4f32: 6145 case MVT::v4i32: 6146 case MVT::v8i16: 6147 case MVT::v16i8: 6148 case MVT::v2f64: 6149 case MVT::v2i64: 6150 case MVT::v1i128: 6151 case MVT::f128: 6152 if (!Subtarget.hasQPX()) { 6153 // These can be scalar arguments or elements of a vector array type 6154 // passed directly. The latter are used to implement ELFv2 homogenous 6155 // vector aggregates. 6156 6157 // For a varargs call, named arguments go into VRs or on the stack as 6158 // usual; unnamed arguments always go to the stack or the corresponding 6159 // GPRs when within range. For now, we always put the value in both 6160 // locations (or even all three). 6161 if (isVarArg) { 6162 assert(HasParameterArea && 6163 "Parameter area must exist if we have a varargs call."); 6164 // We could elide this store in the case where the object fits 6165 // entirely in R registers. Maybe later. 6166 SDValue Store = 6167 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6168 MemOpChains.push_back(Store); 6169 if (VR_idx != NumVRs) { 6170 SDValue Load = 6171 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6172 MemOpChains.push_back(Load.getValue(1)); 6173 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6174 } 6175 ArgOffset += 16; 6176 for (unsigned i=0; i<16; i+=PtrByteSize) { 6177 if (GPR_idx == NumGPRs) 6178 break; 6179 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6180 DAG.getConstant(i, dl, PtrVT)); 6181 SDValue Load = 6182 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6183 MemOpChains.push_back(Load.getValue(1)); 6184 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6185 } 6186 break; 6187 } 6188 6189 // Non-varargs Altivec params go into VRs or on the stack. 6190 if (VR_idx != NumVRs) { 6191 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6192 } else { 6193 if (CallConv == CallingConv::Fast) 6194 ComputePtrOff(); 6195 6196 assert(HasParameterArea && 6197 "Parameter area must exist to pass an argument in memory."); 6198 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6199 true, isTailCall, true, MemOpChains, 6200 TailCallArguments, dl); 6201 if (CallConv == CallingConv::Fast) 6202 ArgOffset += 16; 6203 } 6204 6205 if (CallConv != CallingConv::Fast) 6206 ArgOffset += 16; 6207 break; 6208 } // not QPX 6209 6210 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6211 "Invalid QPX parameter type"); 6212 6213 LLVM_FALLTHROUGH; 6214 case MVT::v4f64: 6215 case MVT::v4i1: { 6216 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6217 if (isVarArg) { 6218 assert(HasParameterArea && 6219 "Parameter area must exist if we have a varargs call."); 6220 // We could elide this store in the case where the object fits 6221 // entirely in R registers. Maybe later. 6222 SDValue Store = 6223 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6224 MemOpChains.push_back(Store); 6225 if (QFPR_idx != NumQFPRs) { 6226 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6227 PtrOff, MachinePointerInfo()); 6228 MemOpChains.push_back(Load.getValue(1)); 6229 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6230 } 6231 ArgOffset += (IsF32 ? 16 : 32); 6232 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6233 if (GPR_idx == NumGPRs) 6234 break; 6235 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6236 DAG.getConstant(i, dl, PtrVT)); 6237 SDValue Load = 6238 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6239 MemOpChains.push_back(Load.getValue(1)); 6240 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6241 } 6242 break; 6243 } 6244 6245 // Non-varargs QPX params go into registers or on the stack. 6246 if (QFPR_idx != NumQFPRs) { 6247 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6248 } else { 6249 if (CallConv == CallingConv::Fast) 6250 ComputePtrOff(); 6251 6252 assert(HasParameterArea && 6253 "Parameter area must exist to pass an argument in memory."); 6254 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6255 true, isTailCall, true, MemOpChains, 6256 TailCallArguments, dl); 6257 if (CallConv == CallingConv::Fast) 6258 ArgOffset += (IsF32 ? 16 : 32); 6259 } 6260 6261 if (CallConv != CallingConv::Fast) 6262 ArgOffset += (IsF32 ? 16 : 32); 6263 break; 6264 } 6265 } 6266 } 6267 6268 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6269 "mismatch in size of parameter area"); 6270 (void)NumBytesActuallyUsed; 6271 6272 if (!MemOpChains.empty()) 6273 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6274 6275 // Check if this is an indirect call (MTCTR/BCTRL). 6276 // See PrepareCall() for more information about calls through function 6277 // pointers in the 64-bit SVR4 ABI. 6278 if (!isTailCall && !isPatchPoint && 6279 !isFunctionGlobalAddress(Callee) && 6280 !isa<ExternalSymbolSDNode>(Callee)) { 6281 // Load r2 into a virtual register and store it to the TOC save area. 6282 setUsesTOCBasePtr(DAG); 6283 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6284 // TOC save area offset. 6285 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6286 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6287 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6288 Chain = DAG.getStore( 6289 Val.getValue(1), dl, Val, AddPtr, 6290 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6291 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6292 // This does not mean the MTCTR instruction must use R12; it's easier 6293 // to model this as an extra parameter, so do that. 6294 if (isELFv2ABI && !isPatchPoint) 6295 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6296 } 6297 6298 // Build a sequence of copy-to-reg nodes chained together with token chain 6299 // and flag operands which copy the outgoing args into the appropriate regs. 6300 SDValue InFlag; 6301 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6302 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6303 RegsToPass[i].second, InFlag); 6304 InFlag = Chain.getValue(1); 6305 } 6306 6307 if (isTailCall && !IsSibCall) 6308 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6309 TailCallArguments); 6310 6311 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6312 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6313 SPDiff, NumBytes, Ins, InVals, CS); 6314 } 6315 6316 SDValue PPCTargetLowering::LowerCall_Darwin( 6317 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6318 bool isTailCall, bool isPatchPoint, 6319 const SmallVectorImpl<ISD::OutputArg> &Outs, 6320 const SmallVectorImpl<SDValue> &OutVals, 6321 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6322 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6323 ImmutableCallSite CS) const { 6324 unsigned NumOps = Outs.size(); 6325 6326 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6327 bool isPPC64 = PtrVT == MVT::i64; 6328 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6329 6330 MachineFunction &MF = DAG.getMachineFunction(); 6331 6332 // Mark this function as potentially containing a function that contains a 6333 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6334 // and restoring the callers stack pointer in this functions epilog. This is 6335 // done because by tail calling the called function might overwrite the value 6336 // in this function's (MF) stack pointer stack slot 0(SP). 6337 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6338 CallConv == CallingConv::Fast) 6339 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6340 6341 // Count how many bytes are to be pushed on the stack, including the linkage 6342 // area, and parameter passing area. We start with 24/48 bytes, which is 6343 // prereserved space for [SP][CR][LR][3 x unused]. 6344 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6345 unsigned NumBytes = LinkageSize; 6346 6347 // Add up all the space actually used. 6348 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6349 // they all go in registers, but we must reserve stack space for them for 6350 // possible use by the caller. In varargs or 64-bit calls, parameters are 6351 // assigned stack space in order, with padding so Altivec parameters are 6352 // 16-byte aligned. 6353 unsigned nAltivecParamsAtEnd = 0; 6354 for (unsigned i = 0; i != NumOps; ++i) { 6355 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6356 EVT ArgVT = Outs[i].VT; 6357 // Varargs Altivec parameters are padded to a 16 byte boundary. 6358 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6359 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6360 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6361 if (!isVarArg && !isPPC64) { 6362 // Non-varargs Altivec parameters go after all the non-Altivec 6363 // parameters; handle those later so we know how much padding we need. 6364 nAltivecParamsAtEnd++; 6365 continue; 6366 } 6367 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6368 NumBytes = ((NumBytes+15)/16)*16; 6369 } 6370 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6371 } 6372 6373 // Allow for Altivec parameters at the end, if needed. 6374 if (nAltivecParamsAtEnd) { 6375 NumBytes = ((NumBytes+15)/16)*16; 6376 NumBytes += 16*nAltivecParamsAtEnd; 6377 } 6378 6379 // The prolog code of the callee may store up to 8 GPR argument registers to 6380 // the stack, allowing va_start to index over them in memory if its varargs. 6381 // Because we cannot tell if this is needed on the caller side, we have to 6382 // conservatively assume that it is needed. As such, make sure we have at 6383 // least enough stack space for the caller to store the 8 GPRs. 6384 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6385 6386 // Tail call needs the stack to be aligned. 6387 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6388 CallConv == CallingConv::Fast) 6389 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6390 6391 // Calculate by how many bytes the stack has to be adjusted in case of tail 6392 // call optimization. 6393 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6394 6395 // To protect arguments on the stack from being clobbered in a tail call, 6396 // force all the loads to happen before doing any other lowering. 6397 if (isTailCall) 6398 Chain = DAG.getStackArgumentTokenFactor(Chain); 6399 6400 // Adjust the stack pointer for the new arguments... 6401 // These operations are automatically eliminated by the prolog/epilog pass 6402 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6403 SDValue CallSeqStart = Chain; 6404 6405 // Load the return address and frame pointer so it can be move somewhere else 6406 // later. 6407 SDValue LROp, FPOp; 6408 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6409 6410 // Set up a copy of the stack pointer for use loading and storing any 6411 // arguments that may not fit in the registers available for argument 6412 // passing. 6413 SDValue StackPtr; 6414 if (isPPC64) 6415 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6416 else 6417 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6418 6419 // Figure out which arguments are going to go in registers, and which in 6420 // memory. Also, if this is a vararg function, floating point operations 6421 // must be stored to our stack, and loaded into integer regs as well, if 6422 // any integer regs are available for argument passing. 6423 unsigned ArgOffset = LinkageSize; 6424 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6425 6426 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6427 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6428 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6429 }; 6430 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6431 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6432 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6433 }; 6434 static const MCPhysReg VR[] = { 6435 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6436 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6437 }; 6438 const unsigned NumGPRs = array_lengthof(GPR_32); 6439 const unsigned NumFPRs = 13; 6440 const unsigned NumVRs = array_lengthof(VR); 6441 6442 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6443 6444 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6445 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6446 6447 SmallVector<SDValue, 8> MemOpChains; 6448 for (unsigned i = 0; i != NumOps; ++i) { 6449 SDValue Arg = OutVals[i]; 6450 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6451 6452 // PtrOff will be used to store the current argument to the stack if a 6453 // register cannot be found for it. 6454 SDValue PtrOff; 6455 6456 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6457 6458 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6459 6460 // On PPC64, promote integers to 64-bit values. 6461 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6462 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6463 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6464 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6465 } 6466 6467 // FIXME memcpy is used way more than necessary. Correctness first. 6468 // Note: "by value" is code for passing a structure by value, not 6469 // basic types. 6470 if (Flags.isByVal()) { 6471 unsigned Size = Flags.getByValSize(); 6472 // Very small objects are passed right-justified. Everything else is 6473 // passed left-justified. 6474 if (Size==1 || Size==2) { 6475 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6476 if (GPR_idx != NumGPRs) { 6477 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6478 MachinePointerInfo(), VT); 6479 MemOpChains.push_back(Load.getValue(1)); 6480 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6481 6482 ArgOffset += PtrByteSize; 6483 } else { 6484 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6485 PtrOff.getValueType()); 6486 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6487 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6488 CallSeqStart, 6489 Flags, DAG, dl); 6490 ArgOffset += PtrByteSize; 6491 } 6492 continue; 6493 } 6494 // Copy entire object into memory. There are cases where gcc-generated 6495 // code assumes it is there, even if it could be put entirely into 6496 // registers. (This is not what the doc says.) 6497 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6498 CallSeqStart, 6499 Flags, DAG, dl); 6500 6501 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6502 // copy the pieces of the object that fit into registers from the 6503 // parameter save area. 6504 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6505 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6506 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6507 if (GPR_idx != NumGPRs) { 6508 SDValue Load = 6509 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6510 MemOpChains.push_back(Load.getValue(1)); 6511 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6512 ArgOffset += PtrByteSize; 6513 } else { 6514 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6515 break; 6516 } 6517 } 6518 continue; 6519 } 6520 6521 switch (Arg.getSimpleValueType().SimpleTy) { 6522 default: llvm_unreachable("Unexpected ValueType for argument!"); 6523 case MVT::i1: 6524 case MVT::i32: 6525 case MVT::i64: 6526 if (GPR_idx != NumGPRs) { 6527 if (Arg.getValueType() == MVT::i1) 6528 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6529 6530 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6531 } else { 6532 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6533 isPPC64, isTailCall, false, MemOpChains, 6534 TailCallArguments, dl); 6535 } 6536 ArgOffset += PtrByteSize; 6537 break; 6538 case MVT::f32: 6539 case MVT::f64: 6540 if (FPR_idx != NumFPRs) { 6541 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6542 6543 if (isVarArg) { 6544 SDValue Store = 6545 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6546 MemOpChains.push_back(Store); 6547 6548 // Float varargs are always shadowed in available integer registers 6549 if (GPR_idx != NumGPRs) { 6550 SDValue Load = 6551 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6552 MemOpChains.push_back(Load.getValue(1)); 6553 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6554 } 6555 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6556 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6557 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6558 SDValue Load = 6559 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6560 MemOpChains.push_back(Load.getValue(1)); 6561 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6562 } 6563 } else { 6564 // If we have any FPRs remaining, we may also have GPRs remaining. 6565 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6566 // GPRs. 6567 if (GPR_idx != NumGPRs) 6568 ++GPR_idx; 6569 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6570 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6571 ++GPR_idx; 6572 } 6573 } else 6574 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6575 isPPC64, isTailCall, false, MemOpChains, 6576 TailCallArguments, dl); 6577 if (isPPC64) 6578 ArgOffset += 8; 6579 else 6580 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6581 break; 6582 case MVT::v4f32: 6583 case MVT::v4i32: 6584 case MVT::v8i16: 6585 case MVT::v16i8: 6586 if (isVarArg) { 6587 // These go aligned on the stack, or in the corresponding R registers 6588 // when within range. The Darwin PPC ABI doc claims they also go in 6589 // V registers; in fact gcc does this only for arguments that are 6590 // prototyped, not for those that match the ... We do it for all 6591 // arguments, seems to work. 6592 while (ArgOffset % 16 !=0) { 6593 ArgOffset += PtrByteSize; 6594 if (GPR_idx != NumGPRs) 6595 GPR_idx++; 6596 } 6597 // We could elide this store in the case where the object fits 6598 // entirely in R registers. Maybe later. 6599 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6600 DAG.getConstant(ArgOffset, dl, PtrVT)); 6601 SDValue Store = 6602 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6603 MemOpChains.push_back(Store); 6604 if (VR_idx != NumVRs) { 6605 SDValue Load = 6606 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6607 MemOpChains.push_back(Load.getValue(1)); 6608 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6609 } 6610 ArgOffset += 16; 6611 for (unsigned i=0; i<16; i+=PtrByteSize) { 6612 if (GPR_idx == NumGPRs) 6613 break; 6614 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6615 DAG.getConstant(i, dl, PtrVT)); 6616 SDValue Load = 6617 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6618 MemOpChains.push_back(Load.getValue(1)); 6619 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6620 } 6621 break; 6622 } 6623 6624 // Non-varargs Altivec params generally go in registers, but have 6625 // stack space allocated at the end. 6626 if (VR_idx != NumVRs) { 6627 // Doesn't have GPR space allocated. 6628 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6629 } else if (nAltivecParamsAtEnd==0) { 6630 // We are emitting Altivec params in order. 6631 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6632 isPPC64, isTailCall, true, MemOpChains, 6633 TailCallArguments, dl); 6634 ArgOffset += 16; 6635 } 6636 break; 6637 } 6638 } 6639 // If all Altivec parameters fit in registers, as they usually do, 6640 // they get stack space following the non-Altivec parameters. We 6641 // don't track this here because nobody below needs it. 6642 // If there are more Altivec parameters than fit in registers emit 6643 // the stores here. 6644 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6645 unsigned j = 0; 6646 // Offset is aligned; skip 1st 12 params which go in V registers. 6647 ArgOffset = ((ArgOffset+15)/16)*16; 6648 ArgOffset += 12*16; 6649 for (unsigned i = 0; i != NumOps; ++i) { 6650 SDValue Arg = OutVals[i]; 6651 EVT ArgType = Outs[i].VT; 6652 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6653 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6654 if (++j > NumVRs) { 6655 SDValue PtrOff; 6656 // We are emitting Altivec params in order. 6657 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6658 isPPC64, isTailCall, true, MemOpChains, 6659 TailCallArguments, dl); 6660 ArgOffset += 16; 6661 } 6662 } 6663 } 6664 } 6665 6666 if (!MemOpChains.empty()) 6667 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6668 6669 // On Darwin, R12 must contain the address of an indirect callee. This does 6670 // not mean the MTCTR instruction must use R12; it's easier to model this as 6671 // an extra parameter, so do that. 6672 if (!isTailCall && 6673 !isFunctionGlobalAddress(Callee) && 6674 !isa<ExternalSymbolSDNode>(Callee) && 6675 !isBLACompatibleAddress(Callee, DAG)) 6676 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6677 PPC::R12), Callee)); 6678 6679 // Build a sequence of copy-to-reg nodes chained together with token chain 6680 // and flag operands which copy the outgoing args into the appropriate regs. 6681 SDValue InFlag; 6682 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6683 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6684 RegsToPass[i].second, InFlag); 6685 InFlag = Chain.getValue(1); 6686 } 6687 6688 if (isTailCall) 6689 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6690 TailCallArguments); 6691 6692 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6693 /* unused except on PPC64 ELFv1 */ false, DAG, 6694 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6695 NumBytes, Ins, InVals, CS); 6696 } 6697 6698 6699 SDValue PPCTargetLowering::LowerCall_AIX( 6700 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6701 bool isTailCall, bool isPatchPoint, 6702 const SmallVectorImpl<ISD::OutputArg> &Outs, 6703 const SmallVectorImpl<SDValue> &OutVals, 6704 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6705 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6706 ImmutableCallSite CS) const { 6707 6708 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6709 "Unimplemented calling convention!"); 6710 if (isVarArg || isPatchPoint) 6711 report_fatal_error("This call type is unimplemented on AIX."); 6712 6713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6714 bool isPPC64 = PtrVT == MVT::i64; 6715 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6716 unsigned NumOps = Outs.size(); 6717 6718 6719 // Count how many bytes are to be pushed on the stack, including the linkage 6720 // area, parameter list area. 6721 // On XCOFF, we start with 24/48, which is reserved space for 6722 // [SP][CR][LR][2 x reserved][TOC]. 6723 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6724 6725 // The prolog code of the callee may store up to 8 GPR argument registers to 6726 // the stack, allowing va_start to index over them in memory if the callee 6727 // is variadic. 6728 // Because we cannot tell if this is needed on the caller side, we have to 6729 // conservatively assume that it is needed. As such, make sure we have at 6730 // least enough stack space for the caller to store the 8 GPRs. 6731 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6732 6733 // Adjust the stack pointer for the new arguments... 6734 // These operations are automatically eliminated by the prolog/epilog 6735 // inserter pass. 6736 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6737 SDValue CallSeqStart = Chain; 6738 6739 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6740 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6741 PPC::R7, PPC::R8, PPC::R9, PPC::R10 6742 }; 6743 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6744 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6745 PPC::X7, PPC::X8, PPC::X9, PPC::X10 6746 }; 6747 6748 const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64) 6749 : array_lengthof(GPR_32); 6750 const unsigned NumFPRs = array_lengthof(FPR); 6751 assert(NumFPRs == 13 && "Only FPR 1-13 could be used for parameter passing " 6752 "on AIX"); 6753 6754 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6755 unsigned GPR_idx = 0, FPR_idx = 0; 6756 6757 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6758 6759 if (isTailCall) 6760 report_fatal_error("Handling of tail call is unimplemented!"); 6761 int SPDiff = 0; 6762 6763 for (unsigned i = 0; i != NumOps; ++i) { 6764 SDValue Arg = OutVals[i]; 6765 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6766 6767 // Promote integers if needed. 6768 if (Arg.getValueType() == MVT::i1 || 6769 (isPPC64 && Arg.getValueType() == MVT::i32)) { 6770 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6771 Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg); 6772 } 6773 6774 // Note: "by value" is code for passing a structure by value, not 6775 // basic types. 6776 if (Flags.isByVal()) 6777 report_fatal_error("Passing structure by value is unimplemented!"); 6778 6779 switch (Arg.getSimpleValueType().SimpleTy) { 6780 default: llvm_unreachable("Unexpected ValueType for argument!"); 6781 case MVT::i1: 6782 case MVT::i32: 6783 case MVT::i64: 6784 if (GPR_idx != NumGPRs) 6785 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6786 else 6787 report_fatal_error("Handling of placing parameters on the stack is " 6788 "unimplemented!"); 6789 break; 6790 case MVT::f32: 6791 case MVT::f64: 6792 if (FPR_idx != NumFPRs) { 6793 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6794 6795 // If we have any FPRs remaining, we may also have GPRs remaining. 6796 // Args passed in FPRs consume 1 or 2 (f64 in 32 bit mode) available 6797 // GPRs. 6798 if (GPR_idx != NumGPRs) 6799 ++GPR_idx; 6800 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) 6801 ++GPR_idx; 6802 } else 6803 report_fatal_error("Handling of placing parameters on the stack is " 6804 "unimplemented!"); 6805 break; 6806 case MVT::v4f32: 6807 case MVT::v4i32: 6808 case MVT::v8i16: 6809 case MVT::v16i8: 6810 case MVT::v2f64: 6811 case MVT::v2i64: 6812 case MVT::v1i128: 6813 case MVT::f128: 6814 case MVT::v4f64: 6815 case MVT::v4i1: 6816 report_fatal_error("Handling of this parameter type is unimplemented!"); 6817 } 6818 } 6819 6820 if (!isFunctionGlobalAddress(Callee) && 6821 !isa<ExternalSymbolSDNode>(Callee)) 6822 report_fatal_error("Handling of indirect call is unimplemented!"); 6823 6824 // Build a sequence of copy-to-reg nodes chained together with token chain 6825 // and flag operands which copy the outgoing args into the appropriate regs. 6826 SDValue InFlag; 6827 for (auto Reg : RegsToPass) { 6828 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 6829 InFlag = Chain.getValue(1); 6830 } 6831 6832 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6833 /* unused except on PPC64 ELFv1 */ false, DAG, 6834 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6835 NumBytes, Ins, InVals, CS); 6836 } 6837 6838 bool 6839 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6840 MachineFunction &MF, bool isVarArg, 6841 const SmallVectorImpl<ISD::OutputArg> &Outs, 6842 LLVMContext &Context) const { 6843 SmallVector<CCValAssign, 16> RVLocs; 6844 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6845 return CCInfo.CheckReturn( 6846 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6847 ? RetCC_PPC_Cold 6848 : RetCC_PPC); 6849 } 6850 6851 SDValue 6852 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6853 bool isVarArg, 6854 const SmallVectorImpl<ISD::OutputArg> &Outs, 6855 const SmallVectorImpl<SDValue> &OutVals, 6856 const SDLoc &dl, SelectionDAG &DAG) const { 6857 SmallVector<CCValAssign, 16> RVLocs; 6858 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6859 *DAG.getContext()); 6860 CCInfo.AnalyzeReturn(Outs, 6861 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6862 ? RetCC_PPC_Cold 6863 : RetCC_PPC); 6864 6865 SDValue Flag; 6866 SmallVector<SDValue, 4> RetOps(1, Chain); 6867 6868 // Copy the result values into the output registers. 6869 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 6870 CCValAssign &VA = RVLocs[i]; 6871 assert(VA.isRegLoc() && "Can only return in registers!"); 6872 6873 SDValue Arg = OutVals[RealResIdx]; 6874 6875 switch (VA.getLocInfo()) { 6876 default: llvm_unreachable("Unknown loc info!"); 6877 case CCValAssign::Full: break; 6878 case CCValAssign::AExt: 6879 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6880 break; 6881 case CCValAssign::ZExt: 6882 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6883 break; 6884 case CCValAssign::SExt: 6885 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6886 break; 6887 } 6888 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 6889 bool isLittleEndian = Subtarget.isLittleEndian(); 6890 // Legalize ret f64 -> ret 2 x i32. 6891 SDValue SVal = 6892 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6893 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 6894 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6895 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6896 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6897 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 6898 Flag = Chain.getValue(1); 6899 VA = RVLocs[++i]; // skip ahead to next loc 6900 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6901 } else 6902 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6903 Flag = Chain.getValue(1); 6904 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6905 } 6906 6907 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6908 const MCPhysReg *I = 6909 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6910 if (I) { 6911 for (; *I; ++I) { 6912 6913 if (PPC::G8RCRegClass.contains(*I)) 6914 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6915 else if (PPC::F8RCRegClass.contains(*I)) 6916 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6917 else if (PPC::CRRCRegClass.contains(*I)) 6918 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6919 else if (PPC::VRRCRegClass.contains(*I)) 6920 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6921 else 6922 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6923 } 6924 } 6925 6926 RetOps[0] = Chain; // Update chain. 6927 6928 // Add the flag if we have it. 6929 if (Flag.getNode()) 6930 RetOps.push_back(Flag); 6931 6932 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6933 } 6934 6935 SDValue 6936 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6937 SelectionDAG &DAG) const { 6938 SDLoc dl(Op); 6939 6940 // Get the correct type for integers. 6941 EVT IntVT = Op.getValueType(); 6942 6943 // Get the inputs. 6944 SDValue Chain = Op.getOperand(0); 6945 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6946 // Build a DYNAREAOFFSET node. 6947 SDValue Ops[2] = {Chain, FPSIdx}; 6948 SDVTList VTs = DAG.getVTList(IntVT); 6949 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6950 } 6951 6952 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6953 SelectionDAG &DAG) const { 6954 // When we pop the dynamic allocation we need to restore the SP link. 6955 SDLoc dl(Op); 6956 6957 // Get the correct type for pointers. 6958 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6959 6960 // Construct the stack pointer operand. 6961 bool isPPC64 = Subtarget.isPPC64(); 6962 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6963 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6964 6965 // Get the operands for the STACKRESTORE. 6966 SDValue Chain = Op.getOperand(0); 6967 SDValue SaveSP = Op.getOperand(1); 6968 6969 // Load the old link SP. 6970 SDValue LoadLinkSP = 6971 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6972 6973 // Restore the stack pointer. 6974 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6975 6976 // Store the old link SP. 6977 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6978 } 6979 6980 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6981 MachineFunction &MF = DAG.getMachineFunction(); 6982 bool isPPC64 = Subtarget.isPPC64(); 6983 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6984 6985 // Get current frame pointer save index. The users of this index will be 6986 // primarily DYNALLOC instructions. 6987 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6988 int RASI = FI->getReturnAddrSaveIndex(); 6989 6990 // If the frame pointer save index hasn't been defined yet. 6991 if (!RASI) { 6992 // Find out what the fix offset of the frame pointer save area. 6993 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6994 // Allocate the frame index for frame pointer save area. 6995 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6996 // Save the result. 6997 FI->setReturnAddrSaveIndex(RASI); 6998 } 6999 return DAG.getFrameIndex(RASI, PtrVT); 7000 } 7001 7002 SDValue 7003 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7004 MachineFunction &MF = DAG.getMachineFunction(); 7005 bool isPPC64 = Subtarget.isPPC64(); 7006 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7007 7008 // Get current frame pointer save index. The users of this index will be 7009 // primarily DYNALLOC instructions. 7010 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7011 int FPSI = FI->getFramePointerSaveIndex(); 7012 7013 // If the frame pointer save index hasn't been defined yet. 7014 if (!FPSI) { 7015 // Find out what the fix offset of the frame pointer save area. 7016 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7017 // Allocate the frame index for frame pointer save area. 7018 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7019 // Save the result. 7020 FI->setFramePointerSaveIndex(FPSI); 7021 } 7022 return DAG.getFrameIndex(FPSI, PtrVT); 7023 } 7024 7025 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7026 SelectionDAG &DAG) const { 7027 // Get the inputs. 7028 SDValue Chain = Op.getOperand(0); 7029 SDValue Size = Op.getOperand(1); 7030 SDLoc dl(Op); 7031 7032 // Get the correct type for pointers. 7033 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7034 // Negate the size. 7035 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7036 DAG.getConstant(0, dl, PtrVT), Size); 7037 // Construct a node for the frame pointer save index. 7038 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7039 // Build a DYNALLOC node. 7040 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7041 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7042 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7043 } 7044 7045 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7046 SelectionDAG &DAG) const { 7047 MachineFunction &MF = DAG.getMachineFunction(); 7048 7049 bool isPPC64 = Subtarget.isPPC64(); 7050 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7051 7052 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7053 return DAG.getFrameIndex(FI, PtrVT); 7054 } 7055 7056 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7057 SelectionDAG &DAG) const { 7058 SDLoc DL(Op); 7059 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7060 DAG.getVTList(MVT::i32, MVT::Other), 7061 Op.getOperand(0), Op.getOperand(1)); 7062 } 7063 7064 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7065 SelectionDAG &DAG) const { 7066 SDLoc DL(Op); 7067 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7068 Op.getOperand(0), Op.getOperand(1)); 7069 } 7070 7071 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7072 if (Op.getValueType().isVector()) 7073 return LowerVectorLoad(Op, DAG); 7074 7075 assert(Op.getValueType() == MVT::i1 && 7076 "Custom lowering only for i1 loads"); 7077 7078 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7079 7080 SDLoc dl(Op); 7081 LoadSDNode *LD = cast<LoadSDNode>(Op); 7082 7083 SDValue Chain = LD->getChain(); 7084 SDValue BasePtr = LD->getBasePtr(); 7085 MachineMemOperand *MMO = LD->getMemOperand(); 7086 7087 SDValue NewLD = 7088 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7089 BasePtr, MVT::i8, MMO); 7090 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7091 7092 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7093 return DAG.getMergeValues(Ops, dl); 7094 } 7095 7096 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7097 if (Op.getOperand(1).getValueType().isVector()) 7098 return LowerVectorStore(Op, DAG); 7099 7100 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7101 "Custom lowering only for i1 stores"); 7102 7103 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7104 7105 SDLoc dl(Op); 7106 StoreSDNode *ST = cast<StoreSDNode>(Op); 7107 7108 SDValue Chain = ST->getChain(); 7109 SDValue BasePtr = ST->getBasePtr(); 7110 SDValue Value = ST->getValue(); 7111 MachineMemOperand *MMO = ST->getMemOperand(); 7112 7113 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7114 Value); 7115 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7116 } 7117 7118 // FIXME: Remove this once the ANDI glue bug is fixed: 7119 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7120 assert(Op.getValueType() == MVT::i1 && 7121 "Custom lowering only for i1 results"); 7122 7123 SDLoc DL(Op); 7124 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7125 Op.getOperand(0)); 7126 } 7127 7128 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7129 SelectionDAG &DAG) const { 7130 7131 // Implements a vector truncate that fits in a vector register as a shuffle. 7132 // We want to legalize vector truncates down to where the source fits in 7133 // a vector register (and target is therefore smaller than vector register 7134 // size). At that point legalization will try to custom lower the sub-legal 7135 // result and get here - where we can contain the truncate as a single target 7136 // operation. 7137 7138 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7139 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7140 // 7141 // We will implement it for big-endian ordering as this (where x denotes 7142 // undefined): 7143 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7144 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7145 // 7146 // The same operation in little-endian ordering will be: 7147 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7148 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7149 7150 assert(Op.getValueType().isVector() && "Vector type expected."); 7151 7152 SDLoc DL(Op); 7153 SDValue N1 = Op.getOperand(0); 7154 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7155 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7156 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7157 7158 EVT TrgVT = Op.getValueType(); 7159 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7160 EVT EltVT = TrgVT.getVectorElementType(); 7161 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7162 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7163 7164 // First list the elements we want to keep. 7165 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7166 SmallVector<int, 16> ShuffV; 7167 if (Subtarget.isLittleEndian()) 7168 for (unsigned i = 0; i < TrgNumElts; ++i) 7169 ShuffV.push_back(i * SizeMult); 7170 else 7171 for (unsigned i = 1; i <= TrgNumElts; ++i) 7172 ShuffV.push_back(i * SizeMult - 1); 7173 7174 // Populate the remaining elements with undefs. 7175 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7176 // ShuffV.push_back(i + WideNumElts); 7177 ShuffV.push_back(WideNumElts + 1); 7178 7179 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7180 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7181 } 7182 7183 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7184 /// possible. 7185 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7186 // Not FP? Not a fsel. 7187 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7188 !Op.getOperand(2).getValueType().isFloatingPoint()) 7189 return Op; 7190 7191 // We might be able to do better than this under some circumstances, but in 7192 // general, fsel-based lowering of select is a finite-math-only optimization. 7193 // For more information, see section F.3 of the 2.06 ISA specification. 7194 if (!DAG.getTarget().Options.NoInfsFPMath || 7195 !DAG.getTarget().Options.NoNaNsFPMath) 7196 return Op; 7197 // TODO: Propagate flags from the select rather than global settings. 7198 SDNodeFlags Flags; 7199 Flags.setNoInfs(true); 7200 Flags.setNoNaNs(true); 7201 7202 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7203 7204 EVT ResVT = Op.getValueType(); 7205 EVT CmpVT = Op.getOperand(0).getValueType(); 7206 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7207 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7208 SDLoc dl(Op); 7209 7210 // If the RHS of the comparison is a 0.0, we don't need to do the 7211 // subtraction at all. 7212 SDValue Sel1; 7213 if (isFloatingPointZero(RHS)) 7214 switch (CC) { 7215 default: break; // SETUO etc aren't handled by fsel. 7216 case ISD::SETNE: 7217 std::swap(TV, FV); 7218 LLVM_FALLTHROUGH; 7219 case ISD::SETEQ: 7220 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7221 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7222 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7223 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7224 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7225 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7226 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7227 case ISD::SETULT: 7228 case ISD::SETLT: 7229 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7230 LLVM_FALLTHROUGH; 7231 case ISD::SETOGE: 7232 case ISD::SETGE: 7233 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7234 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7235 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7236 case ISD::SETUGT: 7237 case ISD::SETGT: 7238 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7239 LLVM_FALLTHROUGH; 7240 case ISD::SETOLE: 7241 case ISD::SETLE: 7242 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7243 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7244 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7245 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7246 } 7247 7248 SDValue Cmp; 7249 switch (CC) { 7250 default: break; // SETUO etc aren't handled by fsel. 7251 case ISD::SETNE: 7252 std::swap(TV, FV); 7253 LLVM_FALLTHROUGH; 7254 case ISD::SETEQ: 7255 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7256 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7257 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7258 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7259 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7260 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7261 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7262 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7263 case ISD::SETULT: 7264 case ISD::SETLT: 7265 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7266 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7267 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7268 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7269 case ISD::SETOGE: 7270 case ISD::SETGE: 7271 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7272 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7273 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7274 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7275 case ISD::SETUGT: 7276 case ISD::SETGT: 7277 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7278 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7279 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7280 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7281 case ISD::SETOLE: 7282 case ISD::SETLE: 7283 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7284 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7285 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7286 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7287 } 7288 return Op; 7289 } 7290 7291 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7292 SelectionDAG &DAG, 7293 const SDLoc &dl) const { 7294 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7295 SDValue Src = Op.getOperand(0); 7296 if (Src.getValueType() == MVT::f32) 7297 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7298 7299 SDValue Tmp; 7300 switch (Op.getSimpleValueType().SimpleTy) { 7301 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7302 case MVT::i32: 7303 Tmp = DAG.getNode( 7304 Op.getOpcode() == ISD::FP_TO_SINT 7305 ? PPCISD::FCTIWZ 7306 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7307 dl, MVT::f64, Src); 7308 break; 7309 case MVT::i64: 7310 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7311 "i64 FP_TO_UINT is supported only with FPCVT"); 7312 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7313 PPCISD::FCTIDUZ, 7314 dl, MVT::f64, Src); 7315 break; 7316 } 7317 7318 // Convert the FP value to an int value through memory. 7319 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7320 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7321 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7322 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7323 MachinePointerInfo MPI = 7324 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7325 7326 // Emit a store to the stack slot. 7327 SDValue Chain; 7328 if (i32Stack) { 7329 MachineFunction &MF = DAG.getMachineFunction(); 7330 MachineMemOperand *MMO = 7331 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7332 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7333 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7334 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7335 } else 7336 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7337 7338 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7339 // add in a bias on big endian. 7340 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7341 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7342 DAG.getConstant(4, dl, FIPtr.getValueType())); 7343 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7344 } 7345 7346 RLI.Chain = Chain; 7347 RLI.Ptr = FIPtr; 7348 RLI.MPI = MPI; 7349 } 7350 7351 /// Custom lowers floating point to integer conversions to use 7352 /// the direct move instructions available in ISA 2.07 to avoid the 7353 /// need for load/store combinations. 7354 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7355 SelectionDAG &DAG, 7356 const SDLoc &dl) const { 7357 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7358 SDValue Src = Op.getOperand(0); 7359 7360 if (Src.getValueType() == MVT::f32) 7361 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7362 7363 SDValue Tmp; 7364 switch (Op.getSimpleValueType().SimpleTy) { 7365 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7366 case MVT::i32: 7367 Tmp = DAG.getNode( 7368 Op.getOpcode() == ISD::FP_TO_SINT 7369 ? PPCISD::FCTIWZ 7370 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7371 dl, MVT::f64, Src); 7372 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7373 break; 7374 case MVT::i64: 7375 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7376 "i64 FP_TO_UINT is supported only with FPCVT"); 7377 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7378 PPCISD::FCTIDUZ, 7379 dl, MVT::f64, Src); 7380 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7381 break; 7382 } 7383 return Tmp; 7384 } 7385 7386 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7387 const SDLoc &dl) const { 7388 7389 // FP to INT conversions are legal for f128. 7390 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7391 return Op; 7392 7393 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7394 // PPC (the libcall is not available). 7395 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7396 if (Op.getValueType() == MVT::i32) { 7397 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7398 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7399 MVT::f64, Op.getOperand(0), 7400 DAG.getIntPtrConstant(0, dl)); 7401 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7402 MVT::f64, Op.getOperand(0), 7403 DAG.getIntPtrConstant(1, dl)); 7404 7405 // Add the two halves of the long double in round-to-zero mode. 7406 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7407 7408 // Now use a smaller FP_TO_SINT. 7409 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7410 } 7411 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7412 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7413 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7414 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7415 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7416 // FIXME: generated code sucks. 7417 // TODO: Are there fast-math-flags to propagate to this FSUB? 7418 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7419 Op.getOperand(0), Tmp); 7420 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7421 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7422 DAG.getConstant(0x80000000, dl, MVT::i32)); 7423 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7424 Op.getOperand(0)); 7425 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7426 ISD::SETGE); 7427 } 7428 } 7429 7430 return SDValue(); 7431 } 7432 7433 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7434 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7435 7436 ReuseLoadInfo RLI; 7437 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7438 7439 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7440 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7441 } 7442 7443 // We're trying to insert a regular store, S, and then a load, L. If the 7444 // incoming value, O, is a load, we might just be able to have our load use the 7445 // address used by O. However, we don't know if anything else will store to 7446 // that address before we can load from it. To prevent this situation, we need 7447 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7448 // the same chain operand as O, we create a token factor from the chain results 7449 // of O and L, and we replace all uses of O's chain result with that token 7450 // factor (see spliceIntoChain below for this last part). 7451 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7452 ReuseLoadInfo &RLI, 7453 SelectionDAG &DAG, 7454 ISD::LoadExtType ET) const { 7455 SDLoc dl(Op); 7456 if (ET == ISD::NON_EXTLOAD && 7457 (Op.getOpcode() == ISD::FP_TO_UINT || 7458 Op.getOpcode() == ISD::FP_TO_SINT) && 7459 isOperationLegalOrCustom(Op.getOpcode(), 7460 Op.getOperand(0).getValueType())) { 7461 7462 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7463 return true; 7464 } 7465 7466 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7467 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7468 LD->isNonTemporal()) 7469 return false; 7470 if (LD->getMemoryVT() != MemVT) 7471 return false; 7472 7473 RLI.Ptr = LD->getBasePtr(); 7474 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7475 assert(LD->getAddressingMode() == ISD::PRE_INC && 7476 "Non-pre-inc AM on PPC?"); 7477 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7478 LD->getOffset()); 7479 } 7480 7481 RLI.Chain = LD->getChain(); 7482 RLI.MPI = LD->getPointerInfo(); 7483 RLI.IsDereferenceable = LD->isDereferenceable(); 7484 RLI.IsInvariant = LD->isInvariant(); 7485 RLI.Alignment = LD->getAlignment(); 7486 RLI.AAInfo = LD->getAAInfo(); 7487 RLI.Ranges = LD->getRanges(); 7488 7489 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7490 return true; 7491 } 7492 7493 // Given the head of the old chain, ResChain, insert a token factor containing 7494 // it and NewResChain, and make users of ResChain now be users of that token 7495 // factor. 7496 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7497 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7498 SDValue NewResChain, 7499 SelectionDAG &DAG) const { 7500 if (!ResChain) 7501 return; 7502 7503 SDLoc dl(NewResChain); 7504 7505 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7506 NewResChain, DAG.getUNDEF(MVT::Other)); 7507 assert(TF.getNode() != NewResChain.getNode() && 7508 "A new TF really is required here"); 7509 7510 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7511 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7512 } 7513 7514 /// Analyze profitability of direct move 7515 /// prefer float load to int load plus direct move 7516 /// when there is no integer use of int load 7517 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7518 SDNode *Origin = Op.getOperand(0).getNode(); 7519 if (Origin->getOpcode() != ISD::LOAD) 7520 return true; 7521 7522 // If there is no LXSIBZX/LXSIHZX, like Power8, 7523 // prefer direct move if the memory size is 1 or 2 bytes. 7524 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7525 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7526 return true; 7527 7528 for (SDNode::use_iterator UI = Origin->use_begin(), 7529 UE = Origin->use_end(); 7530 UI != UE; ++UI) { 7531 7532 // Only look at the users of the loaded value. 7533 if (UI.getUse().get().getResNo() != 0) 7534 continue; 7535 7536 if (UI->getOpcode() != ISD::SINT_TO_FP && 7537 UI->getOpcode() != ISD::UINT_TO_FP) 7538 return true; 7539 } 7540 7541 return false; 7542 } 7543 7544 /// Custom lowers integer to floating point conversions to use 7545 /// the direct move instructions available in ISA 2.07 to avoid the 7546 /// need for load/store combinations. 7547 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7548 SelectionDAG &DAG, 7549 const SDLoc &dl) const { 7550 assert((Op.getValueType() == MVT::f32 || 7551 Op.getValueType() == MVT::f64) && 7552 "Invalid floating point type as target of conversion"); 7553 assert(Subtarget.hasFPCVT() && 7554 "Int to FP conversions with direct moves require FPCVT"); 7555 SDValue FP; 7556 SDValue Src = Op.getOperand(0); 7557 bool SinglePrec = Op.getValueType() == MVT::f32; 7558 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7559 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7560 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7561 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7562 7563 if (WordInt) { 7564 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7565 dl, MVT::f64, Src); 7566 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7567 } 7568 else { 7569 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7570 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7571 } 7572 7573 return FP; 7574 } 7575 7576 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7577 7578 EVT VecVT = Vec.getValueType(); 7579 assert(VecVT.isVector() && "Expected a vector type."); 7580 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7581 7582 EVT EltVT = VecVT.getVectorElementType(); 7583 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7584 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7585 7586 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7587 SmallVector<SDValue, 16> Ops(NumConcat); 7588 Ops[0] = Vec; 7589 SDValue UndefVec = DAG.getUNDEF(VecVT); 7590 for (unsigned i = 1; i < NumConcat; ++i) 7591 Ops[i] = UndefVec; 7592 7593 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7594 } 7595 7596 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7597 const SDLoc &dl) const { 7598 7599 unsigned Opc = Op.getOpcode(); 7600 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7601 "Unexpected conversion type"); 7602 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7603 "Supports conversions to v2f64/v4f32 only."); 7604 7605 bool SignedConv = Opc == ISD::SINT_TO_FP; 7606 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7607 7608 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7609 EVT WideVT = Wide.getValueType(); 7610 unsigned WideNumElts = WideVT.getVectorNumElements(); 7611 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7612 7613 SmallVector<int, 16> ShuffV; 7614 for (unsigned i = 0; i < WideNumElts; ++i) 7615 ShuffV.push_back(i + WideNumElts); 7616 7617 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7618 int SaveElts = FourEltRes ? 4 : 2; 7619 if (Subtarget.isLittleEndian()) 7620 for (int i = 0; i < SaveElts; i++) 7621 ShuffV[i * Stride] = i; 7622 else 7623 for (int i = 1; i <= SaveElts; i++) 7624 ShuffV[i * Stride - 1] = i - 1; 7625 7626 SDValue ShuffleSrc2 = 7627 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7628 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7629 unsigned ExtendOp = 7630 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7631 7632 SDValue Extend; 7633 if (!Subtarget.hasP9Altivec() && SignedConv) { 7634 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7635 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7636 DAG.getValueType(Op.getOperand(0).getValueType())); 7637 } else 7638 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7639 7640 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7641 } 7642 7643 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7644 SelectionDAG &DAG) const { 7645 SDLoc dl(Op); 7646 7647 EVT InVT = Op.getOperand(0).getValueType(); 7648 EVT OutVT = Op.getValueType(); 7649 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7650 isOperationCustom(Op.getOpcode(), InVT)) 7651 return LowerINT_TO_FPVector(Op, DAG, dl); 7652 7653 // Conversions to f128 are legal. 7654 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7655 return Op; 7656 7657 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7658 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7659 return SDValue(); 7660 7661 SDValue Value = Op.getOperand(0); 7662 // The values are now known to be -1 (false) or 1 (true). To convert this 7663 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7664 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7665 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7666 7667 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7668 7669 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7670 7671 if (Op.getValueType() != MVT::v4f64) 7672 Value = DAG.getNode(ISD::FP_ROUND, dl, 7673 Op.getValueType(), Value, 7674 DAG.getIntPtrConstant(1, dl)); 7675 return Value; 7676 } 7677 7678 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7679 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7680 return SDValue(); 7681 7682 if (Op.getOperand(0).getValueType() == MVT::i1) 7683 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7684 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7685 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7686 7687 // If we have direct moves, we can do all the conversion, skip the store/load 7688 // however, without FPCVT we can't do most conversions. 7689 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7690 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7691 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7692 7693 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7694 "UINT_TO_FP is supported only with FPCVT"); 7695 7696 // If we have FCFIDS, then use it when converting to single-precision. 7697 // Otherwise, convert to double-precision and then round. 7698 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7699 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7700 : PPCISD::FCFIDS) 7701 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7702 : PPCISD::FCFID); 7703 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7704 ? MVT::f32 7705 : MVT::f64; 7706 7707 if (Op.getOperand(0).getValueType() == MVT::i64) { 7708 SDValue SINT = Op.getOperand(0); 7709 // When converting to single-precision, we actually need to convert 7710 // to double-precision first and then round to single-precision. 7711 // To avoid double-rounding effects during that operation, we have 7712 // to prepare the input operand. Bits that might be truncated when 7713 // converting to double-precision are replaced by a bit that won't 7714 // be lost at this stage, but is below the single-precision rounding 7715 // position. 7716 // 7717 // However, if -enable-unsafe-fp-math is in effect, accept double 7718 // rounding to avoid the extra overhead. 7719 if (Op.getValueType() == MVT::f32 && 7720 !Subtarget.hasFPCVT() && 7721 !DAG.getTarget().Options.UnsafeFPMath) { 7722 7723 // Twiddle input to make sure the low 11 bits are zero. (If this 7724 // is the case, we are guaranteed the value will fit into the 53 bit 7725 // mantissa of an IEEE double-precision value without rounding.) 7726 // If any of those low 11 bits were not zero originally, make sure 7727 // bit 12 (value 2048) is set instead, so that the final rounding 7728 // to single-precision gets the correct result. 7729 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7730 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7731 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7732 Round, DAG.getConstant(2047, dl, MVT::i64)); 7733 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7734 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7735 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7736 7737 // However, we cannot use that value unconditionally: if the magnitude 7738 // of the input value is small, the bit-twiddling we did above might 7739 // end up visibly changing the output. Fortunately, in that case, we 7740 // don't need to twiddle bits since the original input will convert 7741 // exactly to double-precision floating-point already. Therefore, 7742 // construct a conditional to use the original value if the top 11 7743 // bits are all sign-bit copies, and use the rounded value computed 7744 // above otherwise. 7745 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7746 SINT, DAG.getConstant(53, dl, MVT::i32)); 7747 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7748 Cond, DAG.getConstant(1, dl, MVT::i64)); 7749 Cond = DAG.getSetCC(dl, MVT::i32, 7750 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7751 7752 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7753 } 7754 7755 ReuseLoadInfo RLI; 7756 SDValue Bits; 7757 7758 MachineFunction &MF = DAG.getMachineFunction(); 7759 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7760 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7761 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7762 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7763 } else if (Subtarget.hasLFIWAX() && 7764 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7765 MachineMemOperand *MMO = 7766 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7767 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7768 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7769 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7770 DAG.getVTList(MVT::f64, MVT::Other), 7771 Ops, MVT::i32, MMO); 7772 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7773 } else if (Subtarget.hasFPCVT() && 7774 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7775 MachineMemOperand *MMO = 7776 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7777 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7778 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7779 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7780 DAG.getVTList(MVT::f64, MVT::Other), 7781 Ops, MVT::i32, MMO); 7782 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7783 } else if (((Subtarget.hasLFIWAX() && 7784 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7785 (Subtarget.hasFPCVT() && 7786 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7787 SINT.getOperand(0).getValueType() == MVT::i32) { 7788 MachineFrameInfo &MFI = MF.getFrameInfo(); 7789 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7790 7791 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7792 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7793 7794 SDValue Store = 7795 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7796 MachinePointerInfo::getFixedStack( 7797 DAG.getMachineFunction(), FrameIdx)); 7798 7799 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7800 "Expected an i32 store"); 7801 7802 RLI.Ptr = FIdx; 7803 RLI.Chain = Store; 7804 RLI.MPI = 7805 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7806 RLI.Alignment = 4; 7807 7808 MachineMemOperand *MMO = 7809 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7810 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7811 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7812 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7813 PPCISD::LFIWZX : PPCISD::LFIWAX, 7814 dl, DAG.getVTList(MVT::f64, MVT::Other), 7815 Ops, MVT::i32, MMO); 7816 } else 7817 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7818 7819 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7820 7821 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7822 FP = DAG.getNode(ISD::FP_ROUND, dl, 7823 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7824 return FP; 7825 } 7826 7827 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7828 "Unhandled INT_TO_FP type in custom expander!"); 7829 // Since we only generate this in 64-bit mode, we can take advantage of 7830 // 64-bit registers. In particular, sign extend the input value into the 7831 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7832 // then lfd it and fcfid it. 7833 MachineFunction &MF = DAG.getMachineFunction(); 7834 MachineFrameInfo &MFI = MF.getFrameInfo(); 7835 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7836 7837 SDValue Ld; 7838 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7839 ReuseLoadInfo RLI; 7840 bool ReusingLoad; 7841 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7842 DAG))) { 7843 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7844 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7845 7846 SDValue Store = 7847 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7848 MachinePointerInfo::getFixedStack( 7849 DAG.getMachineFunction(), FrameIdx)); 7850 7851 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7852 "Expected an i32 store"); 7853 7854 RLI.Ptr = FIdx; 7855 RLI.Chain = Store; 7856 RLI.MPI = 7857 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7858 RLI.Alignment = 4; 7859 } 7860 7861 MachineMemOperand *MMO = 7862 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7863 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7864 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7865 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7866 PPCISD::LFIWZX : PPCISD::LFIWAX, 7867 dl, DAG.getVTList(MVT::f64, MVT::Other), 7868 Ops, MVT::i32, MMO); 7869 if (ReusingLoad) 7870 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7871 } else { 7872 assert(Subtarget.isPPC64() && 7873 "i32->FP without LFIWAX supported only on PPC64"); 7874 7875 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7876 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7877 7878 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7879 Op.getOperand(0)); 7880 7881 // STD the extended value into the stack slot. 7882 SDValue Store = DAG.getStore( 7883 DAG.getEntryNode(), dl, Ext64, FIdx, 7884 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7885 7886 // Load the value as a double. 7887 Ld = DAG.getLoad( 7888 MVT::f64, dl, Store, FIdx, 7889 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7890 } 7891 7892 // FCFID it and return it. 7893 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7894 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7895 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7896 DAG.getIntPtrConstant(0, dl)); 7897 return FP; 7898 } 7899 7900 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7901 SelectionDAG &DAG) const { 7902 SDLoc dl(Op); 7903 /* 7904 The rounding mode is in bits 30:31 of FPSR, and has the following 7905 settings: 7906 00 Round to nearest 7907 01 Round to 0 7908 10 Round to +inf 7909 11 Round to -inf 7910 7911 FLT_ROUNDS, on the other hand, expects the following: 7912 -1 Undefined 7913 0 Round to 0 7914 1 Round to nearest 7915 2 Round to +inf 7916 3 Round to -inf 7917 7918 To perform the conversion, we do: 7919 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7920 */ 7921 7922 MachineFunction &MF = DAG.getMachineFunction(); 7923 EVT VT = Op.getValueType(); 7924 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7925 7926 // Save FP Control Word to register 7927 EVT NodeTys[] = { 7928 MVT::f64, // return register 7929 MVT::Glue // unused in this context 7930 }; 7931 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7932 7933 // Save FP register to stack slot 7934 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7935 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7936 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7937 MachinePointerInfo()); 7938 7939 // Load FP Control Word from low 32 bits of stack slot. 7940 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7941 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7942 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7943 7944 // Transform as necessary 7945 SDValue CWD1 = 7946 DAG.getNode(ISD::AND, dl, MVT::i32, 7947 CWD, DAG.getConstant(3, dl, MVT::i32)); 7948 SDValue CWD2 = 7949 DAG.getNode(ISD::SRL, dl, MVT::i32, 7950 DAG.getNode(ISD::AND, dl, MVT::i32, 7951 DAG.getNode(ISD::XOR, dl, MVT::i32, 7952 CWD, DAG.getConstant(3, dl, MVT::i32)), 7953 DAG.getConstant(3, dl, MVT::i32)), 7954 DAG.getConstant(1, dl, MVT::i32)); 7955 7956 SDValue RetVal = 7957 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7958 7959 return DAG.getNode((VT.getSizeInBits() < 16 ? 7960 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7961 } 7962 7963 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7964 EVT VT = Op.getValueType(); 7965 unsigned BitWidth = VT.getSizeInBits(); 7966 SDLoc dl(Op); 7967 assert(Op.getNumOperands() == 3 && 7968 VT == Op.getOperand(1).getValueType() && 7969 "Unexpected SHL!"); 7970 7971 // Expand into a bunch of logical ops. Note that these ops 7972 // depend on the PPC behavior for oversized shift amounts. 7973 SDValue Lo = Op.getOperand(0); 7974 SDValue Hi = Op.getOperand(1); 7975 SDValue Amt = Op.getOperand(2); 7976 EVT AmtVT = Amt.getValueType(); 7977 7978 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7979 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7980 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7981 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7982 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7983 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7984 DAG.getConstant(-BitWidth, dl, AmtVT)); 7985 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7986 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7987 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7988 SDValue OutOps[] = { OutLo, OutHi }; 7989 return DAG.getMergeValues(OutOps, dl); 7990 } 7991 7992 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7993 EVT VT = Op.getValueType(); 7994 SDLoc dl(Op); 7995 unsigned BitWidth = VT.getSizeInBits(); 7996 assert(Op.getNumOperands() == 3 && 7997 VT == Op.getOperand(1).getValueType() && 7998 "Unexpected SRL!"); 7999 8000 // Expand into a bunch of logical ops. Note that these ops 8001 // depend on the PPC behavior for oversized shift amounts. 8002 SDValue Lo = Op.getOperand(0); 8003 SDValue Hi = Op.getOperand(1); 8004 SDValue Amt = Op.getOperand(2); 8005 EVT AmtVT = Amt.getValueType(); 8006 8007 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8008 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8009 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8010 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8011 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8012 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8013 DAG.getConstant(-BitWidth, dl, AmtVT)); 8014 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8015 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8016 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8017 SDValue OutOps[] = { OutLo, OutHi }; 8018 return DAG.getMergeValues(OutOps, dl); 8019 } 8020 8021 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8022 SDLoc dl(Op); 8023 EVT VT = Op.getValueType(); 8024 unsigned BitWidth = VT.getSizeInBits(); 8025 assert(Op.getNumOperands() == 3 && 8026 VT == Op.getOperand(1).getValueType() && 8027 "Unexpected SRA!"); 8028 8029 // Expand into a bunch of logical ops, followed by a select_cc. 8030 SDValue Lo = Op.getOperand(0); 8031 SDValue Hi = Op.getOperand(1); 8032 SDValue Amt = Op.getOperand(2); 8033 EVT AmtVT = Amt.getValueType(); 8034 8035 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8036 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8037 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8038 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8039 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8040 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8041 DAG.getConstant(-BitWidth, dl, AmtVT)); 8042 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8043 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8044 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8045 Tmp4, Tmp6, ISD::SETLE); 8046 SDValue OutOps[] = { OutLo, OutHi }; 8047 return DAG.getMergeValues(OutOps, dl); 8048 } 8049 8050 //===----------------------------------------------------------------------===// 8051 // Vector related lowering. 8052 // 8053 8054 /// BuildSplatI - Build a canonical splati of Val with an element size of 8055 /// SplatSize. Cast the result to VT. 8056 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8057 SelectionDAG &DAG, const SDLoc &dl) { 8058 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8059 8060 static const MVT VTys[] = { // canonical VT to use for each size. 8061 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8062 }; 8063 8064 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8065 8066 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8067 if (Val == -1) 8068 SplatSize = 1; 8069 8070 EVT CanonicalVT = VTys[SplatSize-1]; 8071 8072 // Build a canonical splat for this value. 8073 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8074 } 8075 8076 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8077 /// specified intrinsic ID. 8078 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8079 const SDLoc &dl, EVT DestVT = MVT::Other) { 8080 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8081 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8082 DAG.getConstant(IID, dl, MVT::i32), Op); 8083 } 8084 8085 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8086 /// specified intrinsic ID. 8087 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8088 SelectionDAG &DAG, const SDLoc &dl, 8089 EVT DestVT = MVT::Other) { 8090 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8091 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8092 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8093 } 8094 8095 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8096 /// specified intrinsic ID. 8097 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8098 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8099 EVT DestVT = MVT::Other) { 8100 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8101 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8102 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8103 } 8104 8105 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8106 /// amount. The result has the specified value type. 8107 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8108 SelectionDAG &DAG, const SDLoc &dl) { 8109 // Force LHS/RHS to be the right type. 8110 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8111 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8112 8113 int Ops[16]; 8114 for (unsigned i = 0; i != 16; ++i) 8115 Ops[i] = i + Amt; 8116 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8117 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8118 } 8119 8120 /// Do we have an efficient pattern in a .td file for this node? 8121 /// 8122 /// \param V - pointer to the BuildVectorSDNode being matched 8123 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8124 /// 8125 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8126 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8127 /// the opposite is true (expansion is beneficial) are: 8128 /// - The node builds a vector out of integers that are not 32 or 64-bits 8129 /// - The node builds a vector out of constants 8130 /// - The node is a "load-and-splat" 8131 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8132 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8133 bool HasDirectMove, 8134 bool HasP8Vector) { 8135 EVT VecVT = V->getValueType(0); 8136 bool RightType = VecVT == MVT::v2f64 || 8137 (HasP8Vector && VecVT == MVT::v4f32) || 8138 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8139 if (!RightType) 8140 return false; 8141 8142 bool IsSplat = true; 8143 bool IsLoad = false; 8144 SDValue Op0 = V->getOperand(0); 8145 8146 // This function is called in a block that confirms the node is not a constant 8147 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8148 // different constants. 8149 if (V->isConstant()) 8150 return false; 8151 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8152 if (V->getOperand(i).isUndef()) 8153 return false; 8154 // We want to expand nodes that represent load-and-splat even if the 8155 // loaded value is a floating point truncation or conversion to int. 8156 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8157 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8158 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8159 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8160 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8161 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8162 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8163 IsLoad = true; 8164 // If the operands are different or the input is not a load and has more 8165 // uses than just this BV node, then it isn't a splat. 8166 if (V->getOperand(i) != Op0 || 8167 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8168 IsSplat = false; 8169 } 8170 return !(IsSplat && IsLoad); 8171 } 8172 8173 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8174 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8175 8176 SDLoc dl(Op); 8177 SDValue Op0 = Op->getOperand(0); 8178 8179 if (!EnableQuadPrecision || 8180 (Op.getValueType() != MVT::f128 ) || 8181 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8182 (Op0.getOperand(0).getValueType() != MVT::i64) || 8183 (Op0.getOperand(1).getValueType() != MVT::i64)) 8184 return SDValue(); 8185 8186 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8187 Op0.getOperand(1)); 8188 } 8189 8190 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8191 const SDValue *InputLoad = &Op; 8192 if (InputLoad->getOpcode() == ISD::BITCAST) 8193 InputLoad = &InputLoad->getOperand(0); 8194 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8195 InputLoad = &InputLoad->getOperand(0); 8196 if (InputLoad->getOpcode() != ISD::LOAD) 8197 return nullptr; 8198 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8199 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8200 } 8201 8202 // If this is a case we can't handle, return null and let the default 8203 // expansion code take care of it. If we CAN select this case, and if it 8204 // selects to a single instruction, return Op. Otherwise, if we can codegen 8205 // this case more efficiently than a constant pool load, lower it to the 8206 // sequence of ops that should be used. 8207 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8208 SelectionDAG &DAG) const { 8209 SDLoc dl(Op); 8210 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8211 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8212 8213 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8214 // We first build an i32 vector, load it into a QPX register, 8215 // then convert it to a floating-point vector and compare it 8216 // to a zero vector to get the boolean result. 8217 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8218 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8219 MachinePointerInfo PtrInfo = 8220 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8221 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8222 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8223 8224 assert(BVN->getNumOperands() == 4 && 8225 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8226 8227 bool IsConst = true; 8228 for (unsigned i = 0; i < 4; ++i) { 8229 if (BVN->getOperand(i).isUndef()) continue; 8230 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8231 IsConst = false; 8232 break; 8233 } 8234 } 8235 8236 if (IsConst) { 8237 Constant *One = 8238 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8239 Constant *NegOne = 8240 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8241 8242 Constant *CV[4]; 8243 for (unsigned i = 0; i < 4; ++i) { 8244 if (BVN->getOperand(i).isUndef()) 8245 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8246 else if (isNullConstant(BVN->getOperand(i))) 8247 CV[i] = NegOne; 8248 else 8249 CV[i] = One; 8250 } 8251 8252 Constant *CP = ConstantVector::get(CV); 8253 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8254 16 /* alignment */); 8255 8256 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8257 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8258 return DAG.getMemIntrinsicNode( 8259 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8260 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8261 } 8262 8263 SmallVector<SDValue, 4> Stores; 8264 for (unsigned i = 0; i < 4; ++i) { 8265 if (BVN->getOperand(i).isUndef()) continue; 8266 8267 unsigned Offset = 4*i; 8268 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8269 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8270 8271 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8272 if (StoreSize > 4) { 8273 Stores.push_back( 8274 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8275 PtrInfo.getWithOffset(Offset), MVT::i32)); 8276 } else { 8277 SDValue StoreValue = BVN->getOperand(i); 8278 if (StoreSize < 4) 8279 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8280 8281 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8282 PtrInfo.getWithOffset(Offset))); 8283 } 8284 } 8285 8286 SDValue StoreChain; 8287 if (!Stores.empty()) 8288 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8289 else 8290 StoreChain = DAG.getEntryNode(); 8291 8292 // Now load from v4i32 into the QPX register; this will extend it to 8293 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8294 // is typed as v4f64 because the QPX register integer states are not 8295 // explicitly represented. 8296 8297 SDValue Ops[] = {StoreChain, 8298 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8299 FIdx}; 8300 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8301 8302 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8303 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8304 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8305 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8306 LoadedVect); 8307 8308 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8309 8310 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8311 } 8312 8313 // All other QPX vectors are handled by generic code. 8314 if (Subtarget.hasQPX()) 8315 return SDValue(); 8316 8317 // Check if this is a splat of a constant value. 8318 APInt APSplatBits, APSplatUndef; 8319 unsigned SplatBitSize; 8320 bool HasAnyUndefs; 8321 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8322 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8323 SplatBitSize > 32) { 8324 8325 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8326 // Handle load-and-splat patterns as we have instructions that will do this 8327 // in one go. 8328 if (InputLoad && DAG.isSplatValue(Op, true)) { 8329 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8330 8331 // We have handling for 4 and 8 byte elements. 8332 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8333 8334 // Checking for a single use of this load, we have to check for vector 8335 // width (128 bits) / ElementSize uses (since each operand of the 8336 // BUILD_VECTOR is a separate use of the value. 8337 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8338 ((Subtarget.hasVSX() && ElementSize == 64) || 8339 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8340 SDValue Ops[] = { 8341 LD->getChain(), // Chain 8342 LD->getBasePtr(), // Ptr 8343 DAG.getValueType(Op.getValueType()) // VT 8344 }; 8345 return 8346 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8347 DAG.getVTList(Op.getValueType(), MVT::Other), 8348 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8349 } 8350 } 8351 8352 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8353 // lowered to VSX instructions under certain conditions. 8354 // Without VSX, there is no pattern more efficient than expanding the node. 8355 if (Subtarget.hasVSX() && 8356 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8357 Subtarget.hasP8Vector())) 8358 return Op; 8359 return SDValue(); 8360 } 8361 8362 unsigned SplatBits = APSplatBits.getZExtValue(); 8363 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8364 unsigned SplatSize = SplatBitSize / 8; 8365 8366 // First, handle single instruction cases. 8367 8368 // All zeros? 8369 if (SplatBits == 0) { 8370 // Canonicalize all zero vectors to be v4i32. 8371 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8372 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8373 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8374 } 8375 return Op; 8376 } 8377 8378 // We have XXSPLTIB for constant splats one byte wide 8379 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8380 // This is a splat of 1-byte elements with some elements potentially undef. 8381 // Rather than trying to match undef in the SDAG patterns, ensure that all 8382 // elements are the same constant. 8383 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8384 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8385 dl, MVT::i32)); 8386 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8387 if (Op.getValueType() != MVT::v16i8) 8388 return DAG.getBitcast(Op.getValueType(), NewBV); 8389 return NewBV; 8390 } 8391 8392 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8393 // detect that constant splats like v8i16: 0xABAB are really just splats 8394 // of a 1-byte constant. In this case, we need to convert the node to a 8395 // splat of v16i8 and a bitcast. 8396 if (Op.getValueType() != MVT::v16i8) 8397 return DAG.getBitcast(Op.getValueType(), 8398 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8399 8400 return Op; 8401 } 8402 8403 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8404 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8405 (32-SplatBitSize)); 8406 if (SextVal >= -16 && SextVal <= 15) 8407 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8408 8409 // Two instruction sequences. 8410 8411 // If this value is in the range [-32,30] and is even, use: 8412 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8413 // If this value is in the range [17,31] and is odd, use: 8414 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8415 // If this value is in the range [-31,-17] and is odd, use: 8416 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8417 // Note the last two are three-instruction sequences. 8418 if (SextVal >= -32 && SextVal <= 31) { 8419 // To avoid having these optimizations undone by constant folding, 8420 // we convert to a pseudo that will be expanded later into one of 8421 // the above forms. 8422 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8423 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8424 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8425 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8426 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8427 if (VT == Op.getValueType()) 8428 return RetVal; 8429 else 8430 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8431 } 8432 8433 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8434 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8435 // for fneg/fabs. 8436 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8437 // Make -1 and vspltisw -1: 8438 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8439 8440 // Make the VSLW intrinsic, computing 0x8000_0000. 8441 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8442 OnesV, DAG, dl); 8443 8444 // xor by OnesV to invert it. 8445 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8446 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8447 } 8448 8449 // Check to see if this is a wide variety of vsplti*, binop self cases. 8450 static const signed char SplatCsts[] = { 8451 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8452 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8453 }; 8454 8455 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8456 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8457 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8458 int i = SplatCsts[idx]; 8459 8460 // Figure out what shift amount will be used by altivec if shifted by i in 8461 // this splat size. 8462 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8463 8464 // vsplti + shl self. 8465 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8466 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8467 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8468 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8469 Intrinsic::ppc_altivec_vslw 8470 }; 8471 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8472 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8473 } 8474 8475 // vsplti + srl self. 8476 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8477 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8478 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8479 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8480 Intrinsic::ppc_altivec_vsrw 8481 }; 8482 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8483 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8484 } 8485 8486 // vsplti + sra self. 8487 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8488 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8489 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8490 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8491 Intrinsic::ppc_altivec_vsraw 8492 }; 8493 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8494 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8495 } 8496 8497 // vsplti + rol self. 8498 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8499 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8500 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8501 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8502 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8503 Intrinsic::ppc_altivec_vrlw 8504 }; 8505 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8506 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8507 } 8508 8509 // t = vsplti c, result = vsldoi t, t, 1 8510 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8511 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8512 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8513 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8514 } 8515 // t = vsplti c, result = vsldoi t, t, 2 8516 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8517 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8518 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8519 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8520 } 8521 // t = vsplti c, result = vsldoi t, t, 3 8522 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8523 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8524 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8525 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8526 } 8527 } 8528 8529 return SDValue(); 8530 } 8531 8532 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8533 /// the specified operations to build the shuffle. 8534 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8535 SDValue RHS, SelectionDAG &DAG, 8536 const SDLoc &dl) { 8537 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8538 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8539 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8540 8541 enum { 8542 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8543 OP_VMRGHW, 8544 OP_VMRGLW, 8545 OP_VSPLTISW0, 8546 OP_VSPLTISW1, 8547 OP_VSPLTISW2, 8548 OP_VSPLTISW3, 8549 OP_VSLDOI4, 8550 OP_VSLDOI8, 8551 OP_VSLDOI12 8552 }; 8553 8554 if (OpNum == OP_COPY) { 8555 if (LHSID == (1*9+2)*9+3) return LHS; 8556 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8557 return RHS; 8558 } 8559 8560 SDValue OpLHS, OpRHS; 8561 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8562 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8563 8564 int ShufIdxs[16]; 8565 switch (OpNum) { 8566 default: llvm_unreachable("Unknown i32 permute!"); 8567 case OP_VMRGHW: 8568 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8569 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8570 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8571 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8572 break; 8573 case OP_VMRGLW: 8574 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8575 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8576 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8577 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8578 break; 8579 case OP_VSPLTISW0: 8580 for (unsigned i = 0; i != 16; ++i) 8581 ShufIdxs[i] = (i&3)+0; 8582 break; 8583 case OP_VSPLTISW1: 8584 for (unsigned i = 0; i != 16; ++i) 8585 ShufIdxs[i] = (i&3)+4; 8586 break; 8587 case OP_VSPLTISW2: 8588 for (unsigned i = 0; i != 16; ++i) 8589 ShufIdxs[i] = (i&3)+8; 8590 break; 8591 case OP_VSPLTISW3: 8592 for (unsigned i = 0; i != 16; ++i) 8593 ShufIdxs[i] = (i&3)+12; 8594 break; 8595 case OP_VSLDOI4: 8596 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8597 case OP_VSLDOI8: 8598 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8599 case OP_VSLDOI12: 8600 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8601 } 8602 EVT VT = OpLHS.getValueType(); 8603 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8604 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8605 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8606 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8607 } 8608 8609 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8610 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8611 /// SDValue. 8612 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8613 SelectionDAG &DAG) const { 8614 const unsigned BytesInVector = 16; 8615 bool IsLE = Subtarget.isLittleEndian(); 8616 SDLoc dl(N); 8617 SDValue V1 = N->getOperand(0); 8618 SDValue V2 = N->getOperand(1); 8619 unsigned ShiftElts = 0, InsertAtByte = 0; 8620 bool Swap = false; 8621 8622 // Shifts required to get the byte we want at element 7. 8623 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8624 0, 15, 14, 13, 12, 11, 10, 9}; 8625 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8626 1, 2, 3, 4, 5, 6, 7, 8}; 8627 8628 ArrayRef<int> Mask = N->getMask(); 8629 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8630 8631 // For each mask element, find out if we're just inserting something 8632 // from V2 into V1 or vice versa. 8633 // Possible permutations inserting an element from V2 into V1: 8634 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8635 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8636 // ... 8637 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8638 // Inserting from V1 into V2 will be similar, except mask range will be 8639 // [16,31]. 8640 8641 bool FoundCandidate = false; 8642 // If both vector operands for the shuffle are the same vector, the mask 8643 // will contain only elements from the first one and the second one will be 8644 // undef. 8645 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8646 // Go through the mask of half-words to find an element that's being moved 8647 // from one vector to the other. 8648 for (unsigned i = 0; i < BytesInVector; ++i) { 8649 unsigned CurrentElement = Mask[i]; 8650 // If 2nd operand is undefined, we should only look for element 7 in the 8651 // Mask. 8652 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8653 continue; 8654 8655 bool OtherElementsInOrder = true; 8656 // Examine the other elements in the Mask to see if they're in original 8657 // order. 8658 for (unsigned j = 0; j < BytesInVector; ++j) { 8659 if (j == i) 8660 continue; 8661 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8662 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8663 // in which we always assume we're always picking from the 1st operand. 8664 int MaskOffset = 8665 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8666 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8667 OtherElementsInOrder = false; 8668 break; 8669 } 8670 } 8671 // If other elements are in original order, we record the number of shifts 8672 // we need to get the element we want into element 7. Also record which byte 8673 // in the vector we should insert into. 8674 if (OtherElementsInOrder) { 8675 // If 2nd operand is undefined, we assume no shifts and no swapping. 8676 if (V2.isUndef()) { 8677 ShiftElts = 0; 8678 Swap = false; 8679 } else { 8680 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8681 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8682 : BigEndianShifts[CurrentElement & 0xF]; 8683 Swap = CurrentElement < BytesInVector; 8684 } 8685 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8686 FoundCandidate = true; 8687 break; 8688 } 8689 } 8690 8691 if (!FoundCandidate) 8692 return SDValue(); 8693 8694 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8695 // optionally with VECSHL if shift is required. 8696 if (Swap) 8697 std::swap(V1, V2); 8698 if (V2.isUndef()) 8699 V2 = V1; 8700 if (ShiftElts) { 8701 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8702 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8703 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8704 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8705 } 8706 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8707 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8708 } 8709 8710 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8711 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8712 /// SDValue. 8713 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8714 SelectionDAG &DAG) const { 8715 const unsigned NumHalfWords = 8; 8716 const unsigned BytesInVector = NumHalfWords * 2; 8717 // Check that the shuffle is on half-words. 8718 if (!isNByteElemShuffleMask(N, 2, 1)) 8719 return SDValue(); 8720 8721 bool IsLE = Subtarget.isLittleEndian(); 8722 SDLoc dl(N); 8723 SDValue V1 = N->getOperand(0); 8724 SDValue V2 = N->getOperand(1); 8725 unsigned ShiftElts = 0, InsertAtByte = 0; 8726 bool Swap = false; 8727 8728 // Shifts required to get the half-word we want at element 3. 8729 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8730 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8731 8732 uint32_t Mask = 0; 8733 uint32_t OriginalOrderLow = 0x1234567; 8734 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8735 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8736 // 32-bit space, only need 4-bit nibbles per element. 8737 for (unsigned i = 0; i < NumHalfWords; ++i) { 8738 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8739 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8740 } 8741 8742 // For each mask element, find out if we're just inserting something 8743 // from V2 into V1 or vice versa. Possible permutations inserting an element 8744 // from V2 into V1: 8745 // X, 1, 2, 3, 4, 5, 6, 7 8746 // 0, X, 2, 3, 4, 5, 6, 7 8747 // 0, 1, X, 3, 4, 5, 6, 7 8748 // 0, 1, 2, X, 4, 5, 6, 7 8749 // 0, 1, 2, 3, X, 5, 6, 7 8750 // 0, 1, 2, 3, 4, X, 6, 7 8751 // 0, 1, 2, 3, 4, 5, X, 7 8752 // 0, 1, 2, 3, 4, 5, 6, X 8753 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8754 8755 bool FoundCandidate = false; 8756 // Go through the mask of half-words to find an element that's being moved 8757 // from one vector to the other. 8758 for (unsigned i = 0; i < NumHalfWords; ++i) { 8759 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8760 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8761 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8762 uint32_t TargetOrder = 0x0; 8763 8764 // If both vector operands for the shuffle are the same vector, the mask 8765 // will contain only elements from the first one and the second one will be 8766 // undef. 8767 if (V2.isUndef()) { 8768 ShiftElts = 0; 8769 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8770 TargetOrder = OriginalOrderLow; 8771 Swap = false; 8772 // Skip if not the correct element or mask of other elements don't equal 8773 // to our expected order. 8774 if (MaskOneElt == VINSERTHSrcElem && 8775 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8776 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8777 FoundCandidate = true; 8778 break; 8779 } 8780 } else { // If both operands are defined. 8781 // Target order is [8,15] if the current mask is between [0,7]. 8782 TargetOrder = 8783 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8784 // Skip if mask of other elements don't equal our expected order. 8785 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8786 // We only need the last 3 bits for the number of shifts. 8787 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8788 : BigEndianShifts[MaskOneElt & 0x7]; 8789 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8790 Swap = MaskOneElt < NumHalfWords; 8791 FoundCandidate = true; 8792 break; 8793 } 8794 } 8795 } 8796 8797 if (!FoundCandidate) 8798 return SDValue(); 8799 8800 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8801 // optionally with VECSHL if shift is required. 8802 if (Swap) 8803 std::swap(V1, V2); 8804 if (V2.isUndef()) 8805 V2 = V1; 8806 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8807 if (ShiftElts) { 8808 // Double ShiftElts because we're left shifting on v16i8 type. 8809 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8810 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8811 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8812 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8813 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8814 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8815 } 8816 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8817 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8818 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8819 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8820 } 8821 8822 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8823 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8824 /// return the code it can be lowered into. Worst case, it can always be 8825 /// lowered into a vperm. 8826 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8827 SelectionDAG &DAG) const { 8828 SDLoc dl(Op); 8829 SDValue V1 = Op.getOperand(0); 8830 SDValue V2 = Op.getOperand(1); 8831 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8832 EVT VT = Op.getValueType(); 8833 bool isLittleEndian = Subtarget.isLittleEndian(); 8834 8835 unsigned ShiftElts, InsertAtByte; 8836 bool Swap = false; 8837 8838 // If this is a load-and-splat, we can do that with a single instruction 8839 // in some cases. However if the load has multiple uses, we don't want to 8840 // combine it because that will just produce multiple loads. 8841 const SDValue *InputLoad = getNormalLoadInput(V1); 8842 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 8843 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 8844 InputLoad->hasOneUse()) { 8845 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 8846 int SplatIdx = 8847 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 8848 8849 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8850 // For 4-byte load-and-splat, we need Power9. 8851 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 8852 uint64_t Offset = 0; 8853 if (IsFourByte) 8854 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 8855 else 8856 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 8857 SDValue BasePtr = LD->getBasePtr(); 8858 if (Offset != 0) 8859 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 8860 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 8861 SDValue Ops[] = { 8862 LD->getChain(), // Chain 8863 BasePtr, // BasePtr 8864 DAG.getValueType(Op.getValueType()) // VT 8865 }; 8866 SDVTList VTL = 8867 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 8868 SDValue LdSplt = 8869 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 8870 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8871 if (LdSplt.getValueType() != SVOp->getValueType(0)) 8872 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 8873 return LdSplt; 8874 } 8875 } 8876 if (Subtarget.hasP9Vector() && 8877 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8878 isLittleEndian)) { 8879 if (Swap) 8880 std::swap(V1, V2); 8881 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8882 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8883 if (ShiftElts) { 8884 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8885 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8886 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8887 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8888 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8889 } 8890 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8891 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8892 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8893 } 8894 8895 if (Subtarget.hasP9Altivec()) { 8896 SDValue NewISDNode; 8897 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8898 return NewISDNode; 8899 8900 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8901 return NewISDNode; 8902 } 8903 8904 if (Subtarget.hasVSX() && 8905 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8906 if (Swap) 8907 std::swap(V1, V2); 8908 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8909 SDValue Conv2 = 8910 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8911 8912 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8913 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8914 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8915 } 8916 8917 if (Subtarget.hasVSX() && 8918 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8919 if (Swap) 8920 std::swap(V1, V2); 8921 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8922 SDValue Conv2 = 8923 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8924 8925 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8926 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8927 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8928 } 8929 8930 if (Subtarget.hasP9Vector()) { 8931 if (PPC::isXXBRHShuffleMask(SVOp)) { 8932 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8933 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8934 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8935 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8936 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8937 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8938 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8939 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8940 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8941 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8942 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8943 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8944 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8945 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8946 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8947 } 8948 } 8949 8950 if (Subtarget.hasVSX()) { 8951 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8952 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 8953 8954 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8955 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8956 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8957 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8958 } 8959 8960 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8961 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8962 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8963 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8964 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8965 } 8966 } 8967 8968 if (Subtarget.hasQPX()) { 8969 if (VT.getVectorNumElements() != 4) 8970 return SDValue(); 8971 8972 if (V2.isUndef()) V2 = V1; 8973 8974 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8975 if (AlignIdx != -1) { 8976 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8977 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8978 } else if (SVOp->isSplat()) { 8979 int SplatIdx = SVOp->getSplatIndex(); 8980 if (SplatIdx >= 4) { 8981 std::swap(V1, V2); 8982 SplatIdx -= 4; 8983 } 8984 8985 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8986 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8987 } 8988 8989 // Lower this into a qvgpci/qvfperm pair. 8990 8991 // Compute the qvgpci literal 8992 unsigned idx = 0; 8993 for (unsigned i = 0; i < 4; ++i) { 8994 int m = SVOp->getMaskElt(i); 8995 unsigned mm = m >= 0 ? (unsigned) m : i; 8996 idx |= mm << (3-i)*3; 8997 } 8998 8999 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9000 DAG.getConstant(idx, dl, MVT::i32)); 9001 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9002 } 9003 9004 // Cases that are handled by instructions that take permute immediates 9005 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9006 // selected by the instruction selector. 9007 if (V2.isUndef()) { 9008 if (PPC::isSplatShuffleMask(SVOp, 1) || 9009 PPC::isSplatShuffleMask(SVOp, 2) || 9010 PPC::isSplatShuffleMask(SVOp, 4) || 9011 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9012 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9013 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9014 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9015 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9016 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9017 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9018 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9019 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9020 (Subtarget.hasP8Altivec() && ( 9021 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9022 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9023 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9024 return Op; 9025 } 9026 } 9027 9028 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9029 // and produce a fixed permutation. If any of these match, do not lower to 9030 // VPERM. 9031 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9032 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9033 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9034 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9035 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9036 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9037 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9038 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9039 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9040 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9041 (Subtarget.hasP8Altivec() && ( 9042 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9043 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9044 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9045 return Op; 9046 9047 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9048 // perfect shuffle table to emit an optimal matching sequence. 9049 ArrayRef<int> PermMask = SVOp->getMask(); 9050 9051 unsigned PFIndexes[4]; 9052 bool isFourElementShuffle = true; 9053 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9054 unsigned EltNo = 8; // Start out undef. 9055 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9056 if (PermMask[i*4+j] < 0) 9057 continue; // Undef, ignore it. 9058 9059 unsigned ByteSource = PermMask[i*4+j]; 9060 if ((ByteSource & 3) != j) { 9061 isFourElementShuffle = false; 9062 break; 9063 } 9064 9065 if (EltNo == 8) { 9066 EltNo = ByteSource/4; 9067 } else if (EltNo != ByteSource/4) { 9068 isFourElementShuffle = false; 9069 break; 9070 } 9071 } 9072 PFIndexes[i] = EltNo; 9073 } 9074 9075 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9076 // perfect shuffle vector to determine if it is cost effective to do this as 9077 // discrete instructions, or whether we should use a vperm. 9078 // For now, we skip this for little endian until such time as we have a 9079 // little-endian perfect shuffle table. 9080 if (isFourElementShuffle && !isLittleEndian) { 9081 // Compute the index in the perfect shuffle table. 9082 unsigned PFTableIndex = 9083 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9084 9085 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9086 unsigned Cost = (PFEntry >> 30); 9087 9088 // Determining when to avoid vperm is tricky. Many things affect the cost 9089 // of vperm, particularly how many times the perm mask needs to be computed. 9090 // For example, if the perm mask can be hoisted out of a loop or is already 9091 // used (perhaps because there are multiple permutes with the same shuffle 9092 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9093 // the loop requires an extra register. 9094 // 9095 // As a compromise, we only emit discrete instructions if the shuffle can be 9096 // generated in 3 or fewer operations. When we have loop information 9097 // available, if this block is within a loop, we should avoid using vperm 9098 // for 3-operation perms and use a constant pool load instead. 9099 if (Cost < 3) 9100 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9101 } 9102 9103 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9104 // vector that will get spilled to the constant pool. 9105 if (V2.isUndef()) V2 = V1; 9106 9107 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9108 // that it is in input element units, not in bytes. Convert now. 9109 9110 // For little endian, the order of the input vectors is reversed, and 9111 // the permutation mask is complemented with respect to 31. This is 9112 // necessary to produce proper semantics with the big-endian-biased vperm 9113 // instruction. 9114 EVT EltVT = V1.getValueType().getVectorElementType(); 9115 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9116 9117 SmallVector<SDValue, 16> ResultMask; 9118 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9119 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9120 9121 for (unsigned j = 0; j != BytesPerElement; ++j) 9122 if (isLittleEndian) 9123 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9124 dl, MVT::i32)); 9125 else 9126 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9127 MVT::i32)); 9128 } 9129 9130 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9131 if (isLittleEndian) 9132 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9133 V2, V1, VPermMask); 9134 else 9135 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9136 V1, V2, VPermMask); 9137 } 9138 9139 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9140 /// vector comparison. If it is, return true and fill in Opc/isDot with 9141 /// information about the intrinsic. 9142 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9143 bool &isDot, const PPCSubtarget &Subtarget) { 9144 unsigned IntrinsicID = 9145 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9146 CompareOpc = -1; 9147 isDot = false; 9148 switch (IntrinsicID) { 9149 default: 9150 return false; 9151 // Comparison predicates. 9152 case Intrinsic::ppc_altivec_vcmpbfp_p: 9153 CompareOpc = 966; 9154 isDot = true; 9155 break; 9156 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9157 CompareOpc = 198; 9158 isDot = true; 9159 break; 9160 case Intrinsic::ppc_altivec_vcmpequb_p: 9161 CompareOpc = 6; 9162 isDot = true; 9163 break; 9164 case Intrinsic::ppc_altivec_vcmpequh_p: 9165 CompareOpc = 70; 9166 isDot = true; 9167 break; 9168 case Intrinsic::ppc_altivec_vcmpequw_p: 9169 CompareOpc = 134; 9170 isDot = true; 9171 break; 9172 case Intrinsic::ppc_altivec_vcmpequd_p: 9173 if (Subtarget.hasP8Altivec()) { 9174 CompareOpc = 199; 9175 isDot = true; 9176 } else 9177 return false; 9178 break; 9179 case Intrinsic::ppc_altivec_vcmpneb_p: 9180 case Intrinsic::ppc_altivec_vcmpneh_p: 9181 case Intrinsic::ppc_altivec_vcmpnew_p: 9182 case Intrinsic::ppc_altivec_vcmpnezb_p: 9183 case Intrinsic::ppc_altivec_vcmpnezh_p: 9184 case Intrinsic::ppc_altivec_vcmpnezw_p: 9185 if (Subtarget.hasP9Altivec()) { 9186 switch (IntrinsicID) { 9187 default: 9188 llvm_unreachable("Unknown comparison intrinsic."); 9189 case Intrinsic::ppc_altivec_vcmpneb_p: 9190 CompareOpc = 7; 9191 break; 9192 case Intrinsic::ppc_altivec_vcmpneh_p: 9193 CompareOpc = 71; 9194 break; 9195 case Intrinsic::ppc_altivec_vcmpnew_p: 9196 CompareOpc = 135; 9197 break; 9198 case Intrinsic::ppc_altivec_vcmpnezb_p: 9199 CompareOpc = 263; 9200 break; 9201 case Intrinsic::ppc_altivec_vcmpnezh_p: 9202 CompareOpc = 327; 9203 break; 9204 case Intrinsic::ppc_altivec_vcmpnezw_p: 9205 CompareOpc = 391; 9206 break; 9207 } 9208 isDot = true; 9209 } else 9210 return false; 9211 break; 9212 case Intrinsic::ppc_altivec_vcmpgefp_p: 9213 CompareOpc = 454; 9214 isDot = true; 9215 break; 9216 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9217 CompareOpc = 710; 9218 isDot = true; 9219 break; 9220 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9221 CompareOpc = 774; 9222 isDot = true; 9223 break; 9224 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9225 CompareOpc = 838; 9226 isDot = true; 9227 break; 9228 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9229 CompareOpc = 902; 9230 isDot = true; 9231 break; 9232 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9233 if (Subtarget.hasP8Altivec()) { 9234 CompareOpc = 967; 9235 isDot = true; 9236 } else 9237 return false; 9238 break; 9239 case Intrinsic::ppc_altivec_vcmpgtub_p: 9240 CompareOpc = 518; 9241 isDot = true; 9242 break; 9243 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9244 CompareOpc = 582; 9245 isDot = true; 9246 break; 9247 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9248 CompareOpc = 646; 9249 isDot = true; 9250 break; 9251 case Intrinsic::ppc_altivec_vcmpgtud_p: 9252 if (Subtarget.hasP8Altivec()) { 9253 CompareOpc = 711; 9254 isDot = true; 9255 } else 9256 return false; 9257 break; 9258 9259 // VSX predicate comparisons use the same infrastructure 9260 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9261 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9262 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9263 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9264 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9265 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9266 if (Subtarget.hasVSX()) { 9267 switch (IntrinsicID) { 9268 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9269 CompareOpc = 99; 9270 break; 9271 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9272 CompareOpc = 115; 9273 break; 9274 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9275 CompareOpc = 107; 9276 break; 9277 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9278 CompareOpc = 67; 9279 break; 9280 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9281 CompareOpc = 83; 9282 break; 9283 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9284 CompareOpc = 75; 9285 break; 9286 } 9287 isDot = true; 9288 } else 9289 return false; 9290 break; 9291 9292 // Normal Comparisons. 9293 case Intrinsic::ppc_altivec_vcmpbfp: 9294 CompareOpc = 966; 9295 break; 9296 case Intrinsic::ppc_altivec_vcmpeqfp: 9297 CompareOpc = 198; 9298 break; 9299 case Intrinsic::ppc_altivec_vcmpequb: 9300 CompareOpc = 6; 9301 break; 9302 case Intrinsic::ppc_altivec_vcmpequh: 9303 CompareOpc = 70; 9304 break; 9305 case Intrinsic::ppc_altivec_vcmpequw: 9306 CompareOpc = 134; 9307 break; 9308 case Intrinsic::ppc_altivec_vcmpequd: 9309 if (Subtarget.hasP8Altivec()) 9310 CompareOpc = 199; 9311 else 9312 return false; 9313 break; 9314 case Intrinsic::ppc_altivec_vcmpneb: 9315 case Intrinsic::ppc_altivec_vcmpneh: 9316 case Intrinsic::ppc_altivec_vcmpnew: 9317 case Intrinsic::ppc_altivec_vcmpnezb: 9318 case Intrinsic::ppc_altivec_vcmpnezh: 9319 case Intrinsic::ppc_altivec_vcmpnezw: 9320 if (Subtarget.hasP9Altivec()) 9321 switch (IntrinsicID) { 9322 default: 9323 llvm_unreachable("Unknown comparison intrinsic."); 9324 case Intrinsic::ppc_altivec_vcmpneb: 9325 CompareOpc = 7; 9326 break; 9327 case Intrinsic::ppc_altivec_vcmpneh: 9328 CompareOpc = 71; 9329 break; 9330 case Intrinsic::ppc_altivec_vcmpnew: 9331 CompareOpc = 135; 9332 break; 9333 case Intrinsic::ppc_altivec_vcmpnezb: 9334 CompareOpc = 263; 9335 break; 9336 case Intrinsic::ppc_altivec_vcmpnezh: 9337 CompareOpc = 327; 9338 break; 9339 case Intrinsic::ppc_altivec_vcmpnezw: 9340 CompareOpc = 391; 9341 break; 9342 } 9343 else 9344 return false; 9345 break; 9346 case Intrinsic::ppc_altivec_vcmpgefp: 9347 CompareOpc = 454; 9348 break; 9349 case Intrinsic::ppc_altivec_vcmpgtfp: 9350 CompareOpc = 710; 9351 break; 9352 case Intrinsic::ppc_altivec_vcmpgtsb: 9353 CompareOpc = 774; 9354 break; 9355 case Intrinsic::ppc_altivec_vcmpgtsh: 9356 CompareOpc = 838; 9357 break; 9358 case Intrinsic::ppc_altivec_vcmpgtsw: 9359 CompareOpc = 902; 9360 break; 9361 case Intrinsic::ppc_altivec_vcmpgtsd: 9362 if (Subtarget.hasP8Altivec()) 9363 CompareOpc = 967; 9364 else 9365 return false; 9366 break; 9367 case Intrinsic::ppc_altivec_vcmpgtub: 9368 CompareOpc = 518; 9369 break; 9370 case Intrinsic::ppc_altivec_vcmpgtuh: 9371 CompareOpc = 582; 9372 break; 9373 case Intrinsic::ppc_altivec_vcmpgtuw: 9374 CompareOpc = 646; 9375 break; 9376 case Intrinsic::ppc_altivec_vcmpgtud: 9377 if (Subtarget.hasP8Altivec()) 9378 CompareOpc = 711; 9379 else 9380 return false; 9381 break; 9382 } 9383 return true; 9384 } 9385 9386 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9387 /// lower, do it, otherwise return null. 9388 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9389 SelectionDAG &DAG) const { 9390 unsigned IntrinsicID = 9391 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9392 9393 SDLoc dl(Op); 9394 9395 if (IntrinsicID == Intrinsic::thread_pointer) { 9396 // Reads the thread pointer register, used for __builtin_thread_pointer. 9397 if (Subtarget.isPPC64()) 9398 return DAG.getRegister(PPC::X13, MVT::i64); 9399 return DAG.getRegister(PPC::R2, MVT::i32); 9400 } 9401 9402 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9403 // opcode number of the comparison. 9404 int CompareOpc; 9405 bool isDot; 9406 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9407 return SDValue(); // Don't custom lower most intrinsics. 9408 9409 // If this is a non-dot comparison, make the VCMP node and we are done. 9410 if (!isDot) { 9411 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9412 Op.getOperand(1), Op.getOperand(2), 9413 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9414 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9415 } 9416 9417 // Create the PPCISD altivec 'dot' comparison node. 9418 SDValue Ops[] = { 9419 Op.getOperand(2), // LHS 9420 Op.getOperand(3), // RHS 9421 DAG.getConstant(CompareOpc, dl, MVT::i32) 9422 }; 9423 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9424 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9425 9426 // Now that we have the comparison, emit a copy from the CR to a GPR. 9427 // This is flagged to the above dot comparison. 9428 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9429 DAG.getRegister(PPC::CR6, MVT::i32), 9430 CompNode.getValue(1)); 9431 9432 // Unpack the result based on how the target uses it. 9433 unsigned BitNo; // Bit # of CR6. 9434 bool InvertBit; // Invert result? 9435 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9436 default: // Can't happen, don't crash on invalid number though. 9437 case 0: // Return the value of the EQ bit of CR6. 9438 BitNo = 0; InvertBit = false; 9439 break; 9440 case 1: // Return the inverted value of the EQ bit of CR6. 9441 BitNo = 0; InvertBit = true; 9442 break; 9443 case 2: // Return the value of the LT bit of CR6. 9444 BitNo = 2; InvertBit = false; 9445 break; 9446 case 3: // Return the inverted value of the LT bit of CR6. 9447 BitNo = 2; InvertBit = true; 9448 break; 9449 } 9450 9451 // Shift the bit into the low position. 9452 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9453 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9454 // Isolate the bit. 9455 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9456 DAG.getConstant(1, dl, MVT::i32)); 9457 9458 // If we are supposed to, toggle the bit. 9459 if (InvertBit) 9460 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9461 DAG.getConstant(1, dl, MVT::i32)); 9462 return Flags; 9463 } 9464 9465 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9466 SelectionDAG &DAG) const { 9467 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9468 // the beginning of the argument list. 9469 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9470 SDLoc DL(Op); 9471 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9472 case Intrinsic::ppc_cfence: { 9473 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9474 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9475 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9476 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9477 Op.getOperand(ArgStart + 1)), 9478 Op.getOperand(0)), 9479 0); 9480 } 9481 default: 9482 break; 9483 } 9484 return SDValue(); 9485 } 9486 9487 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9488 // Check for a DIV with the same operands as this REM. 9489 for (auto UI : Op.getOperand(1)->uses()) { 9490 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9491 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9492 if (UI->getOperand(0) == Op.getOperand(0) && 9493 UI->getOperand(1) == Op.getOperand(1)) 9494 return SDValue(); 9495 } 9496 return Op; 9497 } 9498 9499 // Lower scalar BSWAP64 to xxbrd. 9500 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9501 SDLoc dl(Op); 9502 // MTVSRDD 9503 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9504 Op.getOperand(0)); 9505 // XXBRD 9506 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9507 // MFVSRD 9508 int VectorIndex = 0; 9509 if (Subtarget.isLittleEndian()) 9510 VectorIndex = 1; 9511 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9512 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9513 return Op; 9514 } 9515 9516 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9517 // compared to a value that is atomically loaded (atomic loads zero-extend). 9518 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9519 SelectionDAG &DAG) const { 9520 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9521 "Expecting an atomic compare-and-swap here."); 9522 SDLoc dl(Op); 9523 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9524 EVT MemVT = AtomicNode->getMemoryVT(); 9525 if (MemVT.getSizeInBits() >= 32) 9526 return Op; 9527 9528 SDValue CmpOp = Op.getOperand(2); 9529 // If this is already correctly zero-extended, leave it alone. 9530 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9531 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9532 return Op; 9533 9534 // Clear the high bits of the compare operand. 9535 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9536 SDValue NewCmpOp = 9537 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9538 DAG.getConstant(MaskVal, dl, MVT::i32)); 9539 9540 // Replace the existing compare operand with the properly zero-extended one. 9541 SmallVector<SDValue, 4> Ops; 9542 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9543 Ops.push_back(AtomicNode->getOperand(i)); 9544 Ops[2] = NewCmpOp; 9545 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9546 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9547 auto NodeTy = 9548 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9549 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9550 } 9551 9552 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9553 SelectionDAG &DAG) const { 9554 SDLoc dl(Op); 9555 // Create a stack slot that is 16-byte aligned. 9556 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9557 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9558 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9559 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9560 9561 // Store the input value into Value#0 of the stack slot. 9562 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9563 MachinePointerInfo()); 9564 // Load it out. 9565 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9566 } 9567 9568 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9569 SelectionDAG &DAG) const { 9570 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9571 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9572 9573 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9574 // We have legal lowering for constant indices but not for variable ones. 9575 if (!C) 9576 return SDValue(); 9577 9578 EVT VT = Op.getValueType(); 9579 SDLoc dl(Op); 9580 SDValue V1 = Op.getOperand(0); 9581 SDValue V2 = Op.getOperand(1); 9582 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9583 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9584 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9585 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9586 unsigned InsertAtElement = C->getZExtValue(); 9587 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9588 if (Subtarget.isLittleEndian()) { 9589 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9590 } 9591 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9592 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9593 } 9594 return Op; 9595 } 9596 9597 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9598 SelectionDAG &DAG) const { 9599 SDLoc dl(Op); 9600 SDNode *N = Op.getNode(); 9601 9602 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9603 "Unknown extract_vector_elt type"); 9604 9605 SDValue Value = N->getOperand(0); 9606 9607 // The first part of this is like the store lowering except that we don't 9608 // need to track the chain. 9609 9610 // The values are now known to be -1 (false) or 1 (true). To convert this 9611 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9612 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9613 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9614 9615 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9616 // understand how to form the extending load. 9617 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9618 9619 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9620 9621 // Now convert to an integer and store. 9622 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9623 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9624 Value); 9625 9626 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9627 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9628 MachinePointerInfo PtrInfo = 9629 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9630 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9631 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9632 9633 SDValue StoreChain = DAG.getEntryNode(); 9634 SDValue Ops[] = {StoreChain, 9635 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9636 Value, FIdx}; 9637 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9638 9639 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9640 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9641 9642 // Extract the value requested. 9643 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9644 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9645 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9646 9647 SDValue IntVal = 9648 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9649 9650 if (!Subtarget.useCRBits()) 9651 return IntVal; 9652 9653 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9654 } 9655 9656 /// Lowering for QPX v4i1 loads 9657 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9658 SelectionDAG &DAG) const { 9659 SDLoc dl(Op); 9660 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9661 SDValue LoadChain = LN->getChain(); 9662 SDValue BasePtr = LN->getBasePtr(); 9663 9664 if (Op.getValueType() == MVT::v4f64 || 9665 Op.getValueType() == MVT::v4f32) { 9666 EVT MemVT = LN->getMemoryVT(); 9667 unsigned Alignment = LN->getAlignment(); 9668 9669 // If this load is properly aligned, then it is legal. 9670 if (Alignment >= MemVT.getStoreSize()) 9671 return Op; 9672 9673 EVT ScalarVT = Op.getValueType().getScalarType(), 9674 ScalarMemVT = MemVT.getScalarType(); 9675 unsigned Stride = ScalarMemVT.getStoreSize(); 9676 9677 SDValue Vals[4], LoadChains[4]; 9678 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9679 SDValue Load; 9680 if (ScalarVT != ScalarMemVT) 9681 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9682 BasePtr, 9683 LN->getPointerInfo().getWithOffset(Idx * Stride), 9684 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9685 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9686 else 9687 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9688 LN->getPointerInfo().getWithOffset(Idx * Stride), 9689 MinAlign(Alignment, Idx * Stride), 9690 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9691 9692 if (Idx == 0 && LN->isIndexed()) { 9693 assert(LN->getAddressingMode() == ISD::PRE_INC && 9694 "Unknown addressing mode on vector load"); 9695 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9696 LN->getAddressingMode()); 9697 } 9698 9699 Vals[Idx] = Load; 9700 LoadChains[Idx] = Load.getValue(1); 9701 9702 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9703 DAG.getConstant(Stride, dl, 9704 BasePtr.getValueType())); 9705 } 9706 9707 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9708 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9709 9710 if (LN->isIndexed()) { 9711 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9712 return DAG.getMergeValues(RetOps, dl); 9713 } 9714 9715 SDValue RetOps[] = { Value, TF }; 9716 return DAG.getMergeValues(RetOps, dl); 9717 } 9718 9719 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9720 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9721 9722 // To lower v4i1 from a byte array, we load the byte elements of the 9723 // vector and then reuse the BUILD_VECTOR logic. 9724 9725 SDValue VectElmts[4], VectElmtChains[4]; 9726 for (unsigned i = 0; i < 4; ++i) { 9727 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9728 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9729 9730 VectElmts[i] = DAG.getExtLoad( 9731 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9732 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9733 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9734 VectElmtChains[i] = VectElmts[i].getValue(1); 9735 } 9736 9737 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9738 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9739 9740 SDValue RVals[] = { Value, LoadChain }; 9741 return DAG.getMergeValues(RVals, dl); 9742 } 9743 9744 /// Lowering for QPX v4i1 stores 9745 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9746 SelectionDAG &DAG) const { 9747 SDLoc dl(Op); 9748 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9749 SDValue StoreChain = SN->getChain(); 9750 SDValue BasePtr = SN->getBasePtr(); 9751 SDValue Value = SN->getValue(); 9752 9753 if (Value.getValueType() == MVT::v4f64 || 9754 Value.getValueType() == MVT::v4f32) { 9755 EVT MemVT = SN->getMemoryVT(); 9756 unsigned Alignment = SN->getAlignment(); 9757 9758 // If this store is properly aligned, then it is legal. 9759 if (Alignment >= MemVT.getStoreSize()) 9760 return Op; 9761 9762 EVT ScalarVT = Value.getValueType().getScalarType(), 9763 ScalarMemVT = MemVT.getScalarType(); 9764 unsigned Stride = ScalarMemVT.getStoreSize(); 9765 9766 SDValue Stores[4]; 9767 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9768 SDValue Ex = DAG.getNode( 9769 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9770 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9771 SDValue Store; 9772 if (ScalarVT != ScalarMemVT) 9773 Store = 9774 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9775 SN->getPointerInfo().getWithOffset(Idx * Stride), 9776 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9777 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9778 else 9779 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9780 SN->getPointerInfo().getWithOffset(Idx * Stride), 9781 MinAlign(Alignment, Idx * Stride), 9782 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9783 9784 if (Idx == 0 && SN->isIndexed()) { 9785 assert(SN->getAddressingMode() == ISD::PRE_INC && 9786 "Unknown addressing mode on vector store"); 9787 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9788 SN->getAddressingMode()); 9789 } 9790 9791 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9792 DAG.getConstant(Stride, dl, 9793 BasePtr.getValueType())); 9794 Stores[Idx] = Store; 9795 } 9796 9797 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9798 9799 if (SN->isIndexed()) { 9800 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9801 return DAG.getMergeValues(RetOps, dl); 9802 } 9803 9804 return TF; 9805 } 9806 9807 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9808 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9809 9810 // The values are now known to be -1 (false) or 1 (true). To convert this 9811 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9812 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9813 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9814 9815 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9816 // understand how to form the extending load. 9817 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9818 9819 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9820 9821 // Now convert to an integer and store. 9822 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9823 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9824 Value); 9825 9826 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9827 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9828 MachinePointerInfo PtrInfo = 9829 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9830 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9831 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9832 9833 SDValue Ops[] = {StoreChain, 9834 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9835 Value, FIdx}; 9836 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9837 9838 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9839 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9840 9841 // Move data into the byte array. 9842 SDValue Loads[4], LoadChains[4]; 9843 for (unsigned i = 0; i < 4; ++i) { 9844 unsigned Offset = 4*i; 9845 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9846 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9847 9848 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9849 PtrInfo.getWithOffset(Offset)); 9850 LoadChains[i] = Loads[i].getValue(1); 9851 } 9852 9853 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9854 9855 SDValue Stores[4]; 9856 for (unsigned i = 0; i < 4; ++i) { 9857 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9858 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9859 9860 Stores[i] = DAG.getTruncStore( 9861 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9862 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9863 SN->getAAInfo()); 9864 } 9865 9866 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9867 9868 return StoreChain; 9869 } 9870 9871 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9872 SDLoc dl(Op); 9873 if (Op.getValueType() == MVT::v4i32) { 9874 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9875 9876 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9877 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9878 9879 SDValue RHSSwap = // = vrlw RHS, 16 9880 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9881 9882 // Shrinkify inputs to v8i16. 9883 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9884 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9885 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9886 9887 // Low parts multiplied together, generating 32-bit results (we ignore the 9888 // top parts). 9889 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9890 LHS, RHS, DAG, dl, MVT::v4i32); 9891 9892 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9893 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9894 // Shift the high parts up 16 bits. 9895 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9896 Neg16, DAG, dl); 9897 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9898 } else if (Op.getValueType() == MVT::v8i16) { 9899 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9900 9901 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9902 9903 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9904 LHS, RHS, Zero, DAG, dl); 9905 } else if (Op.getValueType() == MVT::v16i8) { 9906 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9907 bool isLittleEndian = Subtarget.isLittleEndian(); 9908 9909 // Multiply the even 8-bit parts, producing 16-bit sums. 9910 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9911 LHS, RHS, DAG, dl, MVT::v8i16); 9912 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9913 9914 // Multiply the odd 8-bit parts, producing 16-bit sums. 9915 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9916 LHS, RHS, DAG, dl, MVT::v8i16); 9917 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9918 9919 // Merge the results together. Because vmuleub and vmuloub are 9920 // instructions with a big-endian bias, we must reverse the 9921 // element numbering and reverse the meaning of "odd" and "even" 9922 // when generating little endian code. 9923 int Ops[16]; 9924 for (unsigned i = 0; i != 8; ++i) { 9925 if (isLittleEndian) { 9926 Ops[i*2 ] = 2*i; 9927 Ops[i*2+1] = 2*i+16; 9928 } else { 9929 Ops[i*2 ] = 2*i+1; 9930 Ops[i*2+1] = 2*i+1+16; 9931 } 9932 } 9933 if (isLittleEndian) 9934 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9935 else 9936 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9937 } else { 9938 llvm_unreachable("Unknown mul to lower!"); 9939 } 9940 } 9941 9942 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9943 9944 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9945 9946 EVT VT = Op.getValueType(); 9947 assert(VT.isVector() && 9948 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9949 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9950 VT == MVT::v16i8) && 9951 "Unexpected vector element type!"); 9952 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9953 "Current subtarget doesn't support smax v2i64!"); 9954 9955 // For vector abs, it can be lowered to: 9956 // abs x 9957 // ==> 9958 // y = -x 9959 // smax(x, y) 9960 9961 SDLoc dl(Op); 9962 SDValue X = Op.getOperand(0); 9963 SDValue Zero = DAG.getConstant(0, dl, VT); 9964 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9965 9966 // SMAX patch https://reviews.llvm.org/D47332 9967 // hasn't landed yet, so use intrinsic first here. 9968 // TODO: Should use SMAX directly once SMAX patch landed 9969 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9970 if (VT == MVT::v2i64) 9971 BifID = Intrinsic::ppc_altivec_vmaxsd; 9972 else if (VT == MVT::v8i16) 9973 BifID = Intrinsic::ppc_altivec_vmaxsh; 9974 else if (VT == MVT::v16i8) 9975 BifID = Intrinsic::ppc_altivec_vmaxsb; 9976 9977 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9978 } 9979 9980 // Custom lowering for fpext vf32 to v2f64 9981 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9982 9983 assert(Op.getOpcode() == ISD::FP_EXTEND && 9984 "Should only be called for ISD::FP_EXTEND"); 9985 9986 // We only want to custom lower an extend from v2f32 to v2f64. 9987 if (Op.getValueType() != MVT::v2f64 || 9988 Op.getOperand(0).getValueType() != MVT::v2f32) 9989 return SDValue(); 9990 9991 SDLoc dl(Op); 9992 SDValue Op0 = Op.getOperand(0); 9993 9994 switch (Op0.getOpcode()) { 9995 default: 9996 return SDValue(); 9997 case ISD::EXTRACT_SUBVECTOR: { 9998 assert(Op0.getNumOperands() == 2 && 9999 isa<ConstantSDNode>(Op0->getOperand(1)) && 10000 "Node should have 2 operands with second one being a constant!"); 10001 10002 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10003 return SDValue(); 10004 10005 // Custom lower is only done for high or low doubleword. 10006 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10007 if (Idx % 2 != 0) 10008 return SDValue(); 10009 10010 // Since input is v4f32, at this point Idx is either 0 or 2. 10011 // Shift to get the doubleword position we want. 10012 int DWord = Idx >> 1; 10013 10014 // High and low word positions are different on little endian. 10015 if (Subtarget.isLittleEndian()) 10016 DWord ^= 0x1; 10017 10018 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10019 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10020 } 10021 case ISD::FADD: 10022 case ISD::FMUL: 10023 case ISD::FSUB: { 10024 SDValue NewLoad[2]; 10025 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10026 // Ensure both input are loads. 10027 SDValue LdOp = Op0.getOperand(i); 10028 if (LdOp.getOpcode() != ISD::LOAD) 10029 return SDValue(); 10030 // Generate new load node. 10031 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10032 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10033 NewLoad[i] = DAG.getMemIntrinsicNode( 10034 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10035 LD->getMemoryVT(), LD->getMemOperand()); 10036 } 10037 SDValue NewOp = 10038 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10039 NewLoad[1], Op0.getNode()->getFlags()); 10040 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10041 DAG.getConstant(0, dl, MVT::i32)); 10042 } 10043 case ISD::LOAD: { 10044 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10045 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10046 SDValue NewLd = DAG.getMemIntrinsicNode( 10047 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10048 LD->getMemoryVT(), LD->getMemOperand()); 10049 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10050 DAG.getConstant(0, dl, MVT::i32)); 10051 } 10052 } 10053 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10054 } 10055 10056 /// LowerOperation - Provide custom lowering hooks for some operations. 10057 /// 10058 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10059 switch (Op.getOpcode()) { 10060 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10061 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10062 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10063 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10064 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10065 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10066 case ISD::SETCC: return LowerSETCC(Op, DAG); 10067 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10068 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10069 10070 // Variable argument lowering. 10071 case ISD::VASTART: return LowerVASTART(Op, DAG); 10072 case ISD::VAARG: return LowerVAARG(Op, DAG); 10073 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10074 10075 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10076 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10077 case ISD::GET_DYNAMIC_AREA_OFFSET: 10078 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10079 10080 // Exception handling lowering. 10081 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10082 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10083 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10084 10085 case ISD::LOAD: return LowerLOAD(Op, DAG); 10086 case ISD::STORE: return LowerSTORE(Op, DAG); 10087 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10088 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10089 case ISD::FP_TO_UINT: 10090 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10091 case ISD::UINT_TO_FP: 10092 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10093 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10094 10095 // Lower 64-bit shifts. 10096 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10097 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10098 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10099 10100 // Vector-related lowering. 10101 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10102 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10103 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10104 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10105 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10106 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10107 case ISD::MUL: return LowerMUL(Op, DAG); 10108 case ISD::ABS: return LowerABS(Op, DAG); 10109 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10110 10111 // For counter-based loop handling. 10112 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10113 10114 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10115 10116 // Frame & Return address. 10117 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10118 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10119 10120 case ISD::INTRINSIC_VOID: 10121 return LowerINTRINSIC_VOID(Op, DAG); 10122 case ISD::SREM: 10123 case ISD::UREM: 10124 return LowerREM(Op, DAG); 10125 case ISD::BSWAP: 10126 return LowerBSWAP(Op, DAG); 10127 case ISD::ATOMIC_CMP_SWAP: 10128 return LowerATOMIC_CMP_SWAP(Op, DAG); 10129 } 10130 } 10131 10132 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10133 SmallVectorImpl<SDValue>&Results, 10134 SelectionDAG &DAG) const { 10135 SDLoc dl(N); 10136 switch (N->getOpcode()) { 10137 default: 10138 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10139 case ISD::READCYCLECOUNTER: { 10140 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10141 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10142 10143 Results.push_back(RTB); 10144 Results.push_back(RTB.getValue(1)); 10145 Results.push_back(RTB.getValue(2)); 10146 break; 10147 } 10148 case ISD::INTRINSIC_W_CHAIN: { 10149 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10150 Intrinsic::loop_decrement) 10151 break; 10152 10153 assert(N->getValueType(0) == MVT::i1 && 10154 "Unexpected result type for CTR decrement intrinsic"); 10155 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10156 N->getValueType(0)); 10157 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10158 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10159 N->getOperand(1)); 10160 10161 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10162 Results.push_back(NewInt.getValue(1)); 10163 break; 10164 } 10165 case ISD::VAARG: { 10166 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10167 return; 10168 10169 EVT VT = N->getValueType(0); 10170 10171 if (VT == MVT::i64) { 10172 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10173 10174 Results.push_back(NewNode); 10175 Results.push_back(NewNode.getValue(1)); 10176 } 10177 return; 10178 } 10179 case ISD::FP_TO_SINT: 10180 case ISD::FP_TO_UINT: 10181 // LowerFP_TO_INT() can only handle f32 and f64. 10182 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10183 return; 10184 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10185 return; 10186 case ISD::TRUNCATE: { 10187 EVT TrgVT = N->getValueType(0); 10188 EVT OpVT = N->getOperand(0).getValueType(); 10189 if (TrgVT.isVector() && 10190 isOperationCustom(N->getOpcode(), TrgVT) && 10191 OpVT.getSizeInBits() <= 128 && 10192 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10193 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10194 return; 10195 } 10196 case ISD::BITCAST: 10197 // Don't handle bitcast here. 10198 return; 10199 } 10200 } 10201 10202 //===----------------------------------------------------------------------===// 10203 // Other Lowering Code 10204 //===----------------------------------------------------------------------===// 10205 10206 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10207 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10208 Function *Func = Intrinsic::getDeclaration(M, Id); 10209 return Builder.CreateCall(Func, {}); 10210 } 10211 10212 // The mappings for emitLeading/TrailingFence is taken from 10213 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10214 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10215 Instruction *Inst, 10216 AtomicOrdering Ord) const { 10217 if (Ord == AtomicOrdering::SequentiallyConsistent) 10218 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10219 if (isReleaseOrStronger(Ord)) 10220 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10221 return nullptr; 10222 } 10223 10224 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10225 Instruction *Inst, 10226 AtomicOrdering Ord) const { 10227 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10228 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10229 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10230 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10231 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10232 return Builder.CreateCall( 10233 Intrinsic::getDeclaration( 10234 Builder.GetInsertBlock()->getParent()->getParent(), 10235 Intrinsic::ppc_cfence, {Inst->getType()}), 10236 {Inst}); 10237 // FIXME: Can use isync for rmw operation. 10238 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10239 } 10240 return nullptr; 10241 } 10242 10243 MachineBasicBlock * 10244 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10245 unsigned AtomicSize, 10246 unsigned BinOpcode, 10247 unsigned CmpOpcode, 10248 unsigned CmpPred) const { 10249 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10250 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10251 10252 auto LoadMnemonic = PPC::LDARX; 10253 auto StoreMnemonic = PPC::STDCX; 10254 switch (AtomicSize) { 10255 default: 10256 llvm_unreachable("Unexpected size of atomic entity"); 10257 case 1: 10258 LoadMnemonic = PPC::LBARX; 10259 StoreMnemonic = PPC::STBCX; 10260 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10261 break; 10262 case 2: 10263 LoadMnemonic = PPC::LHARX; 10264 StoreMnemonic = PPC::STHCX; 10265 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10266 break; 10267 case 4: 10268 LoadMnemonic = PPC::LWARX; 10269 StoreMnemonic = PPC::STWCX; 10270 break; 10271 case 8: 10272 LoadMnemonic = PPC::LDARX; 10273 StoreMnemonic = PPC::STDCX; 10274 break; 10275 } 10276 10277 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10278 MachineFunction *F = BB->getParent(); 10279 MachineFunction::iterator It = ++BB->getIterator(); 10280 10281 Register dest = MI.getOperand(0).getReg(); 10282 Register ptrA = MI.getOperand(1).getReg(); 10283 Register ptrB = MI.getOperand(2).getReg(); 10284 Register incr = MI.getOperand(3).getReg(); 10285 DebugLoc dl = MI.getDebugLoc(); 10286 10287 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10288 MachineBasicBlock *loop2MBB = 10289 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10290 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10291 F->insert(It, loopMBB); 10292 if (CmpOpcode) 10293 F->insert(It, loop2MBB); 10294 F->insert(It, exitMBB); 10295 exitMBB->splice(exitMBB->begin(), BB, 10296 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10297 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10298 10299 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10300 Register TmpReg = (!BinOpcode) ? incr : 10301 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10302 : &PPC::GPRCRegClass); 10303 10304 // thisMBB: 10305 // ... 10306 // fallthrough --> loopMBB 10307 BB->addSuccessor(loopMBB); 10308 10309 // loopMBB: 10310 // l[wd]arx dest, ptr 10311 // add r0, dest, incr 10312 // st[wd]cx. r0, ptr 10313 // bne- loopMBB 10314 // fallthrough --> exitMBB 10315 10316 // For max/min... 10317 // loopMBB: 10318 // l[wd]arx dest, ptr 10319 // cmpl?[wd] incr, dest 10320 // bgt exitMBB 10321 // loop2MBB: 10322 // st[wd]cx. dest, ptr 10323 // bne- loopMBB 10324 // fallthrough --> exitMBB 10325 10326 BB = loopMBB; 10327 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10328 .addReg(ptrA).addReg(ptrB); 10329 if (BinOpcode) 10330 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10331 if (CmpOpcode) { 10332 // Signed comparisons of byte or halfword values must be sign-extended. 10333 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10334 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10335 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10336 ExtReg).addReg(dest); 10337 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10338 .addReg(incr).addReg(ExtReg); 10339 } else 10340 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10341 .addReg(incr).addReg(dest); 10342 10343 BuildMI(BB, dl, TII->get(PPC::BCC)) 10344 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10345 BB->addSuccessor(loop2MBB); 10346 BB->addSuccessor(exitMBB); 10347 BB = loop2MBB; 10348 } 10349 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10350 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10351 BuildMI(BB, dl, TII->get(PPC::BCC)) 10352 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10353 BB->addSuccessor(loopMBB); 10354 BB->addSuccessor(exitMBB); 10355 10356 // exitMBB: 10357 // ... 10358 BB = exitMBB; 10359 return BB; 10360 } 10361 10362 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10363 MachineInstr &MI, MachineBasicBlock *BB, 10364 bool is8bit, // operation 10365 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10366 // If we support part-word atomic mnemonics, just use them 10367 if (Subtarget.hasPartwordAtomics()) 10368 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10369 CmpPred); 10370 10371 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10372 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10373 // In 64 bit mode we have to use 64 bits for addresses, even though the 10374 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10375 // registers without caring whether they're 32 or 64, but here we're 10376 // doing actual arithmetic on the addresses. 10377 bool is64bit = Subtarget.isPPC64(); 10378 bool isLittleEndian = Subtarget.isLittleEndian(); 10379 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10380 10381 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10382 MachineFunction *F = BB->getParent(); 10383 MachineFunction::iterator It = ++BB->getIterator(); 10384 10385 Register dest = MI.getOperand(0).getReg(); 10386 Register ptrA = MI.getOperand(1).getReg(); 10387 Register ptrB = MI.getOperand(2).getReg(); 10388 Register incr = MI.getOperand(3).getReg(); 10389 DebugLoc dl = MI.getDebugLoc(); 10390 10391 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10392 MachineBasicBlock *loop2MBB = 10393 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10394 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10395 F->insert(It, loopMBB); 10396 if (CmpOpcode) 10397 F->insert(It, loop2MBB); 10398 F->insert(It, exitMBB); 10399 exitMBB->splice(exitMBB->begin(), BB, 10400 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10401 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10402 10403 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10404 const TargetRegisterClass *RC = 10405 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10406 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10407 10408 Register PtrReg = RegInfo.createVirtualRegister(RC); 10409 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10410 Register ShiftReg = 10411 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10412 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10413 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10414 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10415 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10416 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10417 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10418 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10419 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10420 Register Ptr1Reg; 10421 Register TmpReg = 10422 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10423 10424 // thisMBB: 10425 // ... 10426 // fallthrough --> loopMBB 10427 BB->addSuccessor(loopMBB); 10428 10429 // The 4-byte load must be aligned, while a char or short may be 10430 // anywhere in the word. Hence all this nasty bookkeeping code. 10431 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10432 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10433 // xori shift, shift1, 24 [16] 10434 // rlwinm ptr, ptr1, 0, 0, 29 10435 // slw incr2, incr, shift 10436 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10437 // slw mask, mask2, shift 10438 // loopMBB: 10439 // lwarx tmpDest, ptr 10440 // add tmp, tmpDest, incr2 10441 // andc tmp2, tmpDest, mask 10442 // and tmp3, tmp, mask 10443 // or tmp4, tmp3, tmp2 10444 // stwcx. tmp4, ptr 10445 // bne- loopMBB 10446 // fallthrough --> exitMBB 10447 // srw dest, tmpDest, shift 10448 if (ptrA != ZeroReg) { 10449 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10450 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10451 .addReg(ptrA) 10452 .addReg(ptrB); 10453 } else { 10454 Ptr1Reg = ptrB; 10455 } 10456 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10457 // mode. 10458 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10459 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10460 .addImm(3) 10461 .addImm(27) 10462 .addImm(is8bit ? 28 : 27); 10463 if (!isLittleEndian) 10464 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10465 .addReg(Shift1Reg) 10466 .addImm(is8bit ? 24 : 16); 10467 if (is64bit) 10468 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10469 .addReg(Ptr1Reg) 10470 .addImm(0) 10471 .addImm(61); 10472 else 10473 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10474 .addReg(Ptr1Reg) 10475 .addImm(0) 10476 .addImm(0) 10477 .addImm(29); 10478 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10479 if (is8bit) 10480 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10481 else { 10482 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10483 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10484 .addReg(Mask3Reg) 10485 .addImm(65535); 10486 } 10487 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10488 .addReg(Mask2Reg) 10489 .addReg(ShiftReg); 10490 10491 BB = loopMBB; 10492 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10493 .addReg(ZeroReg) 10494 .addReg(PtrReg); 10495 if (BinOpcode) 10496 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10497 .addReg(Incr2Reg) 10498 .addReg(TmpDestReg); 10499 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10500 .addReg(TmpDestReg) 10501 .addReg(MaskReg); 10502 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10503 if (CmpOpcode) { 10504 // For unsigned comparisons, we can directly compare the shifted values. 10505 // For signed comparisons we shift and sign extend. 10506 Register SReg = RegInfo.createVirtualRegister(GPRC); 10507 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10508 .addReg(TmpDestReg) 10509 .addReg(MaskReg); 10510 unsigned ValueReg = SReg; 10511 unsigned CmpReg = Incr2Reg; 10512 if (CmpOpcode == PPC::CMPW) { 10513 ValueReg = RegInfo.createVirtualRegister(GPRC); 10514 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10515 .addReg(SReg) 10516 .addReg(ShiftReg); 10517 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10518 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10519 .addReg(ValueReg); 10520 ValueReg = ValueSReg; 10521 CmpReg = incr; 10522 } 10523 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10524 .addReg(CmpReg) 10525 .addReg(ValueReg); 10526 BuildMI(BB, dl, TII->get(PPC::BCC)) 10527 .addImm(CmpPred) 10528 .addReg(PPC::CR0) 10529 .addMBB(exitMBB); 10530 BB->addSuccessor(loop2MBB); 10531 BB->addSuccessor(exitMBB); 10532 BB = loop2MBB; 10533 } 10534 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10535 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10536 .addReg(Tmp4Reg) 10537 .addReg(ZeroReg) 10538 .addReg(PtrReg); 10539 BuildMI(BB, dl, TII->get(PPC::BCC)) 10540 .addImm(PPC::PRED_NE) 10541 .addReg(PPC::CR0) 10542 .addMBB(loopMBB); 10543 BB->addSuccessor(loopMBB); 10544 BB->addSuccessor(exitMBB); 10545 10546 // exitMBB: 10547 // ... 10548 BB = exitMBB; 10549 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10550 .addReg(TmpDestReg) 10551 .addReg(ShiftReg); 10552 return BB; 10553 } 10554 10555 llvm::MachineBasicBlock * 10556 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10557 MachineBasicBlock *MBB) const { 10558 DebugLoc DL = MI.getDebugLoc(); 10559 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10560 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10561 10562 MachineFunction *MF = MBB->getParent(); 10563 MachineRegisterInfo &MRI = MF->getRegInfo(); 10564 10565 const BasicBlock *BB = MBB->getBasicBlock(); 10566 MachineFunction::iterator I = ++MBB->getIterator(); 10567 10568 Register DstReg = MI.getOperand(0).getReg(); 10569 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10570 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10571 Register mainDstReg = MRI.createVirtualRegister(RC); 10572 Register restoreDstReg = MRI.createVirtualRegister(RC); 10573 10574 MVT PVT = getPointerTy(MF->getDataLayout()); 10575 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10576 "Invalid Pointer Size!"); 10577 // For v = setjmp(buf), we generate 10578 // 10579 // thisMBB: 10580 // SjLjSetup mainMBB 10581 // bl mainMBB 10582 // v_restore = 1 10583 // b sinkMBB 10584 // 10585 // mainMBB: 10586 // buf[LabelOffset] = LR 10587 // v_main = 0 10588 // 10589 // sinkMBB: 10590 // v = phi(main, restore) 10591 // 10592 10593 MachineBasicBlock *thisMBB = MBB; 10594 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10595 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10596 MF->insert(I, mainMBB); 10597 MF->insert(I, sinkMBB); 10598 10599 MachineInstrBuilder MIB; 10600 10601 // Transfer the remainder of BB and its successor edges to sinkMBB. 10602 sinkMBB->splice(sinkMBB->begin(), MBB, 10603 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10604 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10605 10606 // Note that the structure of the jmp_buf used here is not compatible 10607 // with that used by libc, and is not designed to be. Specifically, it 10608 // stores only those 'reserved' registers that LLVM does not otherwise 10609 // understand how to spill. Also, by convention, by the time this 10610 // intrinsic is called, Clang has already stored the frame address in the 10611 // first slot of the buffer and stack address in the third. Following the 10612 // X86 target code, we'll store the jump address in the second slot. We also 10613 // need to save the TOC pointer (R2) to handle jumps between shared 10614 // libraries, and that will be stored in the fourth slot. The thread 10615 // identifier (R13) is not affected. 10616 10617 // thisMBB: 10618 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10619 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10620 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10621 10622 // Prepare IP either in reg. 10623 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10624 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10625 Register BufReg = MI.getOperand(1).getReg(); 10626 10627 if (Subtarget.is64BitELFABI()) { 10628 setUsesTOCBasePtr(*MBB->getParent()); 10629 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10630 .addReg(PPC::X2) 10631 .addImm(TOCOffset) 10632 .addReg(BufReg) 10633 .cloneMemRefs(MI); 10634 } 10635 10636 // Naked functions never have a base pointer, and so we use r1. For all 10637 // other functions, this decision must be delayed until during PEI. 10638 unsigned BaseReg; 10639 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10640 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10641 else 10642 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10643 10644 MIB = BuildMI(*thisMBB, MI, DL, 10645 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10646 .addReg(BaseReg) 10647 .addImm(BPOffset) 10648 .addReg(BufReg) 10649 .cloneMemRefs(MI); 10650 10651 // Setup 10652 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10653 MIB.addRegMask(TRI->getNoPreservedMask()); 10654 10655 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10656 10657 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10658 .addMBB(mainMBB); 10659 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10660 10661 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10662 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10663 10664 // mainMBB: 10665 // mainDstReg = 0 10666 MIB = 10667 BuildMI(mainMBB, DL, 10668 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10669 10670 // Store IP 10671 if (Subtarget.isPPC64()) { 10672 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10673 .addReg(LabelReg) 10674 .addImm(LabelOffset) 10675 .addReg(BufReg); 10676 } else { 10677 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10678 .addReg(LabelReg) 10679 .addImm(LabelOffset) 10680 .addReg(BufReg); 10681 } 10682 MIB.cloneMemRefs(MI); 10683 10684 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10685 mainMBB->addSuccessor(sinkMBB); 10686 10687 // sinkMBB: 10688 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10689 TII->get(PPC::PHI), DstReg) 10690 .addReg(mainDstReg).addMBB(mainMBB) 10691 .addReg(restoreDstReg).addMBB(thisMBB); 10692 10693 MI.eraseFromParent(); 10694 return sinkMBB; 10695 } 10696 10697 MachineBasicBlock * 10698 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10699 MachineBasicBlock *MBB) const { 10700 DebugLoc DL = MI.getDebugLoc(); 10701 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10702 10703 MachineFunction *MF = MBB->getParent(); 10704 MachineRegisterInfo &MRI = MF->getRegInfo(); 10705 10706 MVT PVT = getPointerTy(MF->getDataLayout()); 10707 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10708 "Invalid Pointer Size!"); 10709 10710 const TargetRegisterClass *RC = 10711 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10712 Register Tmp = MRI.createVirtualRegister(RC); 10713 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10714 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10715 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10716 unsigned BP = 10717 (PVT == MVT::i64) 10718 ? PPC::X30 10719 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10720 : PPC::R30); 10721 10722 MachineInstrBuilder MIB; 10723 10724 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10725 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10726 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10727 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10728 10729 Register BufReg = MI.getOperand(0).getReg(); 10730 10731 // Reload FP (the jumped-to function may not have had a 10732 // frame pointer, and if so, then its r31 will be restored 10733 // as necessary). 10734 if (PVT == MVT::i64) { 10735 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10736 .addImm(0) 10737 .addReg(BufReg); 10738 } else { 10739 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10740 .addImm(0) 10741 .addReg(BufReg); 10742 } 10743 MIB.cloneMemRefs(MI); 10744 10745 // Reload IP 10746 if (PVT == MVT::i64) { 10747 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10748 .addImm(LabelOffset) 10749 .addReg(BufReg); 10750 } else { 10751 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10752 .addImm(LabelOffset) 10753 .addReg(BufReg); 10754 } 10755 MIB.cloneMemRefs(MI); 10756 10757 // Reload SP 10758 if (PVT == MVT::i64) { 10759 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10760 .addImm(SPOffset) 10761 .addReg(BufReg); 10762 } else { 10763 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10764 .addImm(SPOffset) 10765 .addReg(BufReg); 10766 } 10767 MIB.cloneMemRefs(MI); 10768 10769 // Reload BP 10770 if (PVT == MVT::i64) { 10771 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10772 .addImm(BPOffset) 10773 .addReg(BufReg); 10774 } else { 10775 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10776 .addImm(BPOffset) 10777 .addReg(BufReg); 10778 } 10779 MIB.cloneMemRefs(MI); 10780 10781 // Reload TOC 10782 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10783 setUsesTOCBasePtr(*MBB->getParent()); 10784 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10785 .addImm(TOCOffset) 10786 .addReg(BufReg) 10787 .cloneMemRefs(MI); 10788 } 10789 10790 // Jump 10791 BuildMI(*MBB, MI, DL, 10792 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10793 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10794 10795 MI.eraseFromParent(); 10796 return MBB; 10797 } 10798 10799 MachineBasicBlock * 10800 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10801 MachineBasicBlock *BB) const { 10802 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10803 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10804 if (Subtarget.is64BitELFABI() && 10805 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10806 // Call lowering should have added an r2 operand to indicate a dependence 10807 // on the TOC base pointer value. It can't however, because there is no 10808 // way to mark the dependence as implicit there, and so the stackmap code 10809 // will confuse it with a regular operand. Instead, add the dependence 10810 // here. 10811 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10812 } 10813 10814 return emitPatchPoint(MI, BB); 10815 } 10816 10817 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10818 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10819 return emitEHSjLjSetJmp(MI, BB); 10820 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10821 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10822 return emitEHSjLjLongJmp(MI, BB); 10823 } 10824 10825 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10826 10827 // To "insert" these instructions we actually have to insert their 10828 // control-flow patterns. 10829 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10830 MachineFunction::iterator It = ++BB->getIterator(); 10831 10832 MachineFunction *F = BB->getParent(); 10833 10834 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10835 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10836 MI.getOpcode() == PPC::SELECT_I8) { 10837 SmallVector<MachineOperand, 2> Cond; 10838 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10839 MI.getOpcode() == PPC::SELECT_CC_I8) 10840 Cond.push_back(MI.getOperand(4)); 10841 else 10842 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10843 Cond.push_back(MI.getOperand(1)); 10844 10845 DebugLoc dl = MI.getDebugLoc(); 10846 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10847 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10848 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10849 MI.getOpcode() == PPC::SELECT_CC_I8 || 10850 MI.getOpcode() == PPC::SELECT_CC_F4 || 10851 MI.getOpcode() == PPC::SELECT_CC_F8 || 10852 MI.getOpcode() == PPC::SELECT_CC_F16 || 10853 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10854 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10855 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10856 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10857 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10858 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10859 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10860 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10861 MI.getOpcode() == PPC::SELECT_CC_SPE || 10862 MI.getOpcode() == PPC::SELECT_I4 || 10863 MI.getOpcode() == PPC::SELECT_I8 || 10864 MI.getOpcode() == PPC::SELECT_F4 || 10865 MI.getOpcode() == PPC::SELECT_F8 || 10866 MI.getOpcode() == PPC::SELECT_F16 || 10867 MI.getOpcode() == PPC::SELECT_QFRC || 10868 MI.getOpcode() == PPC::SELECT_QSRC || 10869 MI.getOpcode() == PPC::SELECT_QBRC || 10870 MI.getOpcode() == PPC::SELECT_SPE || 10871 MI.getOpcode() == PPC::SELECT_SPE4 || 10872 MI.getOpcode() == PPC::SELECT_VRRC || 10873 MI.getOpcode() == PPC::SELECT_VSFRC || 10874 MI.getOpcode() == PPC::SELECT_VSSRC || 10875 MI.getOpcode() == PPC::SELECT_VSRC) { 10876 // The incoming instruction knows the destination vreg to set, the 10877 // condition code register to branch on, the true/false values to 10878 // select between, and a branch opcode to use. 10879 10880 // thisMBB: 10881 // ... 10882 // TrueVal = ... 10883 // cmpTY ccX, r1, r2 10884 // bCC copy1MBB 10885 // fallthrough --> copy0MBB 10886 MachineBasicBlock *thisMBB = BB; 10887 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10888 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10889 DebugLoc dl = MI.getDebugLoc(); 10890 F->insert(It, copy0MBB); 10891 F->insert(It, sinkMBB); 10892 10893 // Transfer the remainder of BB and its successor edges to sinkMBB. 10894 sinkMBB->splice(sinkMBB->begin(), BB, 10895 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10896 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10897 10898 // Next, add the true and fallthrough blocks as its successors. 10899 BB->addSuccessor(copy0MBB); 10900 BB->addSuccessor(sinkMBB); 10901 10902 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10903 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10904 MI.getOpcode() == PPC::SELECT_F16 || 10905 MI.getOpcode() == PPC::SELECT_SPE4 || 10906 MI.getOpcode() == PPC::SELECT_SPE || 10907 MI.getOpcode() == PPC::SELECT_QFRC || 10908 MI.getOpcode() == PPC::SELECT_QSRC || 10909 MI.getOpcode() == PPC::SELECT_QBRC || 10910 MI.getOpcode() == PPC::SELECT_VRRC || 10911 MI.getOpcode() == PPC::SELECT_VSFRC || 10912 MI.getOpcode() == PPC::SELECT_VSSRC || 10913 MI.getOpcode() == PPC::SELECT_VSRC) { 10914 BuildMI(BB, dl, TII->get(PPC::BC)) 10915 .addReg(MI.getOperand(1).getReg()) 10916 .addMBB(sinkMBB); 10917 } else { 10918 unsigned SelectPred = MI.getOperand(4).getImm(); 10919 BuildMI(BB, dl, TII->get(PPC::BCC)) 10920 .addImm(SelectPred) 10921 .addReg(MI.getOperand(1).getReg()) 10922 .addMBB(sinkMBB); 10923 } 10924 10925 // copy0MBB: 10926 // %FalseValue = ... 10927 // # fallthrough to sinkMBB 10928 BB = copy0MBB; 10929 10930 // Update machine-CFG edges 10931 BB->addSuccessor(sinkMBB); 10932 10933 // sinkMBB: 10934 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10935 // ... 10936 BB = sinkMBB; 10937 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10938 .addReg(MI.getOperand(3).getReg()) 10939 .addMBB(copy0MBB) 10940 .addReg(MI.getOperand(2).getReg()) 10941 .addMBB(thisMBB); 10942 } else if (MI.getOpcode() == PPC::ReadTB) { 10943 // To read the 64-bit time-base register on a 32-bit target, we read the 10944 // two halves. Should the counter have wrapped while it was being read, we 10945 // need to try again. 10946 // ... 10947 // readLoop: 10948 // mfspr Rx,TBU # load from TBU 10949 // mfspr Ry,TB # load from TB 10950 // mfspr Rz,TBU # load from TBU 10951 // cmpw crX,Rx,Rz # check if 'old'='new' 10952 // bne readLoop # branch if they're not equal 10953 // ... 10954 10955 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10956 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10957 DebugLoc dl = MI.getDebugLoc(); 10958 F->insert(It, readMBB); 10959 F->insert(It, sinkMBB); 10960 10961 // Transfer the remainder of BB and its successor edges to sinkMBB. 10962 sinkMBB->splice(sinkMBB->begin(), BB, 10963 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10964 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10965 10966 BB->addSuccessor(readMBB); 10967 BB = readMBB; 10968 10969 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10970 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10971 Register LoReg = MI.getOperand(0).getReg(); 10972 Register HiReg = MI.getOperand(1).getReg(); 10973 10974 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10975 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10976 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10977 10978 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10979 10980 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10981 .addReg(HiReg) 10982 .addReg(ReadAgainReg); 10983 BuildMI(BB, dl, TII->get(PPC::BCC)) 10984 .addImm(PPC::PRED_NE) 10985 .addReg(CmpReg) 10986 .addMBB(readMBB); 10987 10988 BB->addSuccessor(readMBB); 10989 BB->addSuccessor(sinkMBB); 10990 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10991 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10992 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10993 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10994 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10995 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10996 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10997 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10998 10999 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11000 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11001 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11002 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11003 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11004 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11005 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11006 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11007 11008 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11009 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11010 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11011 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11012 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11013 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11014 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11015 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11016 11017 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11018 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11019 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11020 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11021 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11022 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11023 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11024 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11025 11026 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11027 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11028 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11029 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11030 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11031 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11032 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11033 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11034 11035 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11036 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11037 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11038 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11039 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11040 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11041 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11042 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11043 11044 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11045 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11046 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11047 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11048 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11049 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11050 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11051 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11052 11053 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11054 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11055 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11056 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11057 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11058 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11059 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11060 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11061 11062 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11063 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11064 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11065 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11066 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11067 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11068 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11069 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11070 11071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11072 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11074 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11076 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11077 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11078 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11079 11080 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11081 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11082 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11083 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11084 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11085 BB = EmitAtomicBinary(MI, BB, 4, 0); 11086 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11087 BB = EmitAtomicBinary(MI, BB, 8, 0); 11088 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11089 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11090 (Subtarget.hasPartwordAtomics() && 11091 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11092 (Subtarget.hasPartwordAtomics() && 11093 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11094 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11095 11096 auto LoadMnemonic = PPC::LDARX; 11097 auto StoreMnemonic = PPC::STDCX; 11098 switch (MI.getOpcode()) { 11099 default: 11100 llvm_unreachable("Compare and swap of unknown size"); 11101 case PPC::ATOMIC_CMP_SWAP_I8: 11102 LoadMnemonic = PPC::LBARX; 11103 StoreMnemonic = PPC::STBCX; 11104 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11105 break; 11106 case PPC::ATOMIC_CMP_SWAP_I16: 11107 LoadMnemonic = PPC::LHARX; 11108 StoreMnemonic = PPC::STHCX; 11109 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11110 break; 11111 case PPC::ATOMIC_CMP_SWAP_I32: 11112 LoadMnemonic = PPC::LWARX; 11113 StoreMnemonic = PPC::STWCX; 11114 break; 11115 case PPC::ATOMIC_CMP_SWAP_I64: 11116 LoadMnemonic = PPC::LDARX; 11117 StoreMnemonic = PPC::STDCX; 11118 break; 11119 } 11120 Register dest = MI.getOperand(0).getReg(); 11121 Register ptrA = MI.getOperand(1).getReg(); 11122 Register ptrB = MI.getOperand(2).getReg(); 11123 Register oldval = MI.getOperand(3).getReg(); 11124 Register newval = MI.getOperand(4).getReg(); 11125 DebugLoc dl = MI.getDebugLoc(); 11126 11127 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11128 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11129 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11130 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11131 F->insert(It, loop1MBB); 11132 F->insert(It, loop2MBB); 11133 F->insert(It, midMBB); 11134 F->insert(It, exitMBB); 11135 exitMBB->splice(exitMBB->begin(), BB, 11136 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11137 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11138 11139 // thisMBB: 11140 // ... 11141 // fallthrough --> loopMBB 11142 BB->addSuccessor(loop1MBB); 11143 11144 // loop1MBB: 11145 // l[bhwd]arx dest, ptr 11146 // cmp[wd] dest, oldval 11147 // bne- midMBB 11148 // loop2MBB: 11149 // st[bhwd]cx. newval, ptr 11150 // bne- loopMBB 11151 // b exitBB 11152 // midMBB: 11153 // st[bhwd]cx. dest, ptr 11154 // exitBB: 11155 BB = loop1MBB; 11156 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11157 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11158 .addReg(oldval) 11159 .addReg(dest); 11160 BuildMI(BB, dl, TII->get(PPC::BCC)) 11161 .addImm(PPC::PRED_NE) 11162 .addReg(PPC::CR0) 11163 .addMBB(midMBB); 11164 BB->addSuccessor(loop2MBB); 11165 BB->addSuccessor(midMBB); 11166 11167 BB = loop2MBB; 11168 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11169 .addReg(newval) 11170 .addReg(ptrA) 11171 .addReg(ptrB); 11172 BuildMI(BB, dl, TII->get(PPC::BCC)) 11173 .addImm(PPC::PRED_NE) 11174 .addReg(PPC::CR0) 11175 .addMBB(loop1MBB); 11176 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11177 BB->addSuccessor(loop1MBB); 11178 BB->addSuccessor(exitMBB); 11179 11180 BB = midMBB; 11181 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11182 .addReg(dest) 11183 .addReg(ptrA) 11184 .addReg(ptrB); 11185 BB->addSuccessor(exitMBB); 11186 11187 // exitMBB: 11188 // ... 11189 BB = exitMBB; 11190 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11191 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11192 // We must use 64-bit registers for addresses when targeting 64-bit, 11193 // since we're actually doing arithmetic on them. Other registers 11194 // can be 32-bit. 11195 bool is64bit = Subtarget.isPPC64(); 11196 bool isLittleEndian = Subtarget.isLittleEndian(); 11197 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11198 11199 Register dest = MI.getOperand(0).getReg(); 11200 Register ptrA = MI.getOperand(1).getReg(); 11201 Register ptrB = MI.getOperand(2).getReg(); 11202 Register oldval = MI.getOperand(3).getReg(); 11203 Register newval = MI.getOperand(4).getReg(); 11204 DebugLoc dl = MI.getDebugLoc(); 11205 11206 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11207 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11208 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11209 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11210 F->insert(It, loop1MBB); 11211 F->insert(It, loop2MBB); 11212 F->insert(It, midMBB); 11213 F->insert(It, exitMBB); 11214 exitMBB->splice(exitMBB->begin(), BB, 11215 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11216 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11217 11218 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11219 const TargetRegisterClass *RC = 11220 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11221 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11222 11223 Register PtrReg = RegInfo.createVirtualRegister(RC); 11224 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11225 Register ShiftReg = 11226 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11227 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11228 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11229 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11230 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11231 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11232 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11233 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11234 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11235 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11236 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11237 Register Ptr1Reg; 11238 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11239 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11240 // thisMBB: 11241 // ... 11242 // fallthrough --> loopMBB 11243 BB->addSuccessor(loop1MBB); 11244 11245 // The 4-byte load must be aligned, while a char or short may be 11246 // anywhere in the word. Hence all this nasty bookkeeping code. 11247 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11248 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11249 // xori shift, shift1, 24 [16] 11250 // rlwinm ptr, ptr1, 0, 0, 29 11251 // slw newval2, newval, shift 11252 // slw oldval2, oldval,shift 11253 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11254 // slw mask, mask2, shift 11255 // and newval3, newval2, mask 11256 // and oldval3, oldval2, mask 11257 // loop1MBB: 11258 // lwarx tmpDest, ptr 11259 // and tmp, tmpDest, mask 11260 // cmpw tmp, oldval3 11261 // bne- midMBB 11262 // loop2MBB: 11263 // andc tmp2, tmpDest, mask 11264 // or tmp4, tmp2, newval3 11265 // stwcx. tmp4, ptr 11266 // bne- loop1MBB 11267 // b exitBB 11268 // midMBB: 11269 // stwcx. tmpDest, ptr 11270 // exitBB: 11271 // srw dest, tmpDest, shift 11272 if (ptrA != ZeroReg) { 11273 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11274 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11275 .addReg(ptrA) 11276 .addReg(ptrB); 11277 } else { 11278 Ptr1Reg = ptrB; 11279 } 11280 11281 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11282 // mode. 11283 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11284 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11285 .addImm(3) 11286 .addImm(27) 11287 .addImm(is8bit ? 28 : 27); 11288 if (!isLittleEndian) 11289 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11290 .addReg(Shift1Reg) 11291 .addImm(is8bit ? 24 : 16); 11292 if (is64bit) 11293 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11294 .addReg(Ptr1Reg) 11295 .addImm(0) 11296 .addImm(61); 11297 else 11298 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11299 .addReg(Ptr1Reg) 11300 .addImm(0) 11301 .addImm(0) 11302 .addImm(29); 11303 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11304 .addReg(newval) 11305 .addReg(ShiftReg); 11306 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11307 .addReg(oldval) 11308 .addReg(ShiftReg); 11309 if (is8bit) 11310 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11311 else { 11312 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11313 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11314 .addReg(Mask3Reg) 11315 .addImm(65535); 11316 } 11317 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11318 .addReg(Mask2Reg) 11319 .addReg(ShiftReg); 11320 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11321 .addReg(NewVal2Reg) 11322 .addReg(MaskReg); 11323 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11324 .addReg(OldVal2Reg) 11325 .addReg(MaskReg); 11326 11327 BB = loop1MBB; 11328 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11329 .addReg(ZeroReg) 11330 .addReg(PtrReg); 11331 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11332 .addReg(TmpDestReg) 11333 .addReg(MaskReg); 11334 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11335 .addReg(TmpReg) 11336 .addReg(OldVal3Reg); 11337 BuildMI(BB, dl, TII->get(PPC::BCC)) 11338 .addImm(PPC::PRED_NE) 11339 .addReg(PPC::CR0) 11340 .addMBB(midMBB); 11341 BB->addSuccessor(loop2MBB); 11342 BB->addSuccessor(midMBB); 11343 11344 BB = loop2MBB; 11345 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11346 .addReg(TmpDestReg) 11347 .addReg(MaskReg); 11348 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11349 .addReg(Tmp2Reg) 11350 .addReg(NewVal3Reg); 11351 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11352 .addReg(Tmp4Reg) 11353 .addReg(ZeroReg) 11354 .addReg(PtrReg); 11355 BuildMI(BB, dl, TII->get(PPC::BCC)) 11356 .addImm(PPC::PRED_NE) 11357 .addReg(PPC::CR0) 11358 .addMBB(loop1MBB); 11359 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11360 BB->addSuccessor(loop1MBB); 11361 BB->addSuccessor(exitMBB); 11362 11363 BB = midMBB; 11364 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11365 .addReg(TmpDestReg) 11366 .addReg(ZeroReg) 11367 .addReg(PtrReg); 11368 BB->addSuccessor(exitMBB); 11369 11370 // exitMBB: 11371 // ... 11372 BB = exitMBB; 11373 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11374 .addReg(TmpReg) 11375 .addReg(ShiftReg); 11376 } else if (MI.getOpcode() == PPC::FADDrtz) { 11377 // This pseudo performs an FADD with rounding mode temporarily forced 11378 // to round-to-zero. We emit this via custom inserter since the FPSCR 11379 // is not modeled at the SelectionDAG level. 11380 Register Dest = MI.getOperand(0).getReg(); 11381 Register Src1 = MI.getOperand(1).getReg(); 11382 Register Src2 = MI.getOperand(2).getReg(); 11383 DebugLoc dl = MI.getDebugLoc(); 11384 11385 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11386 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11387 11388 // Save FPSCR value. 11389 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11390 11391 // Set rounding mode to round-to-zero. 11392 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11393 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11394 11395 // Perform addition. 11396 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11397 11398 // Restore FPSCR value. 11399 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11400 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11401 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11402 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11403 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11404 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11405 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11406 ? PPC::ANDIo8 11407 : PPC::ANDIo; 11408 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11409 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11410 11411 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11412 Register Dest = RegInfo.createVirtualRegister( 11413 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11414 11415 DebugLoc dl = MI.getDebugLoc(); 11416 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11417 .addReg(MI.getOperand(1).getReg()) 11418 .addImm(1); 11419 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11420 MI.getOperand(0).getReg()) 11421 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11422 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11423 DebugLoc Dl = MI.getDebugLoc(); 11424 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11425 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11426 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11427 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11428 MI.getOperand(0).getReg()) 11429 .addReg(CRReg); 11430 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11431 DebugLoc Dl = MI.getDebugLoc(); 11432 unsigned Imm = MI.getOperand(1).getImm(); 11433 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11434 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11435 MI.getOperand(0).getReg()) 11436 .addReg(PPC::CR0EQ); 11437 } else if (MI.getOpcode() == PPC::SETRNDi) { 11438 DebugLoc dl = MI.getDebugLoc(); 11439 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11440 11441 // Save FPSCR value. 11442 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11443 11444 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11445 // the following settings: 11446 // 00 Round to nearest 11447 // 01 Round to 0 11448 // 10 Round to +inf 11449 // 11 Round to -inf 11450 11451 // When the operand is immediate, using the two least significant bits of 11452 // the immediate to set the bits 62:63 of FPSCR. 11453 unsigned Mode = MI.getOperand(1).getImm(); 11454 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11455 .addImm(31); 11456 11457 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11458 .addImm(30); 11459 } else if (MI.getOpcode() == PPC::SETRND) { 11460 DebugLoc dl = MI.getDebugLoc(); 11461 11462 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11463 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11464 // If the target doesn't have DirectMove, we should use stack to do the 11465 // conversion, because the target doesn't have the instructions like mtvsrd 11466 // or mfvsrd to do this conversion directly. 11467 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11468 if (Subtarget.hasDirectMove()) { 11469 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11470 .addReg(SrcReg); 11471 } else { 11472 // Use stack to do the register copy. 11473 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11474 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11475 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11476 if (RC == &PPC::F8RCRegClass) { 11477 // Copy register from F8RCRegClass to G8RCRegclass. 11478 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11479 "Unsupported RegClass."); 11480 11481 StoreOp = PPC::STFD; 11482 LoadOp = PPC::LD; 11483 } else { 11484 // Copy register from G8RCRegClass to F8RCRegclass. 11485 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11486 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11487 "Unsupported RegClass."); 11488 } 11489 11490 MachineFrameInfo &MFI = F->getFrameInfo(); 11491 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11492 11493 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11494 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11495 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11496 MFI.getObjectAlignment(FrameIdx)); 11497 11498 // Store the SrcReg into the stack. 11499 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11500 .addReg(SrcReg) 11501 .addImm(0) 11502 .addFrameIndex(FrameIdx) 11503 .addMemOperand(MMOStore); 11504 11505 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11506 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11507 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11508 MFI.getObjectAlignment(FrameIdx)); 11509 11510 // Load from the stack where SrcReg is stored, and save to DestReg, 11511 // so we have done the RegClass conversion from RegClass::SrcReg to 11512 // RegClass::DestReg. 11513 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11514 .addImm(0) 11515 .addFrameIndex(FrameIdx) 11516 .addMemOperand(MMOLoad); 11517 } 11518 }; 11519 11520 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11521 11522 // Save FPSCR value. 11523 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11524 11525 // When the operand is gprc register, use two least significant bits of the 11526 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11527 // 11528 // copy OldFPSCRTmpReg, OldFPSCRReg 11529 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11530 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11531 // copy NewFPSCRReg, NewFPSCRTmpReg 11532 // mtfsf 255, NewFPSCRReg 11533 MachineOperand SrcOp = MI.getOperand(1); 11534 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11535 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11536 11537 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11538 11539 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11540 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11541 11542 // The first operand of INSERT_SUBREG should be a register which has 11543 // subregisters, we only care about its RegClass, so we should use an 11544 // IMPLICIT_DEF register. 11545 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11546 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11547 .addReg(ImDefReg) 11548 .add(SrcOp) 11549 .addImm(1); 11550 11551 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11552 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11553 .addReg(OldFPSCRTmpReg) 11554 .addReg(ExtSrcReg) 11555 .addImm(0) 11556 .addImm(62); 11557 11558 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11559 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11560 11561 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11562 // bits of FPSCR. 11563 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11564 .addImm(255) 11565 .addReg(NewFPSCRReg) 11566 .addImm(0) 11567 .addImm(0); 11568 } else { 11569 llvm_unreachable("Unexpected instr type to insert"); 11570 } 11571 11572 MI.eraseFromParent(); // The pseudo instruction is gone now. 11573 return BB; 11574 } 11575 11576 //===----------------------------------------------------------------------===// 11577 // Target Optimization Hooks 11578 //===----------------------------------------------------------------------===// 11579 11580 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11581 // For the estimates, convergence is quadratic, so we essentially double the 11582 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11583 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11584 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11585 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11586 if (VT.getScalarType() == MVT::f64) 11587 RefinementSteps++; 11588 return RefinementSteps; 11589 } 11590 11591 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11592 int Enabled, int &RefinementSteps, 11593 bool &UseOneConstNR, 11594 bool Reciprocal) const { 11595 EVT VT = Operand.getValueType(); 11596 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11597 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11598 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11599 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11600 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11601 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11602 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11603 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11604 11605 // The Newton-Raphson computation with a single constant does not provide 11606 // enough accuracy on some CPUs. 11607 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11608 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11609 } 11610 return SDValue(); 11611 } 11612 11613 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11614 int Enabled, 11615 int &RefinementSteps) const { 11616 EVT VT = Operand.getValueType(); 11617 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11618 (VT == MVT::f64 && Subtarget.hasFRE()) || 11619 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11620 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11621 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11622 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11623 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11624 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11625 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11626 } 11627 return SDValue(); 11628 } 11629 11630 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11631 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11632 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11633 // enabled for division), this functionality is redundant with the default 11634 // combiner logic (once the division -> reciprocal/multiply transformation 11635 // has taken place). As a result, this matters more for older cores than for 11636 // newer ones. 11637 11638 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11639 // reciprocal if there are two or more FDIVs (for embedded cores with only 11640 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11641 switch (Subtarget.getDarwinDirective()) { 11642 default: 11643 return 3; 11644 case PPC::DIR_440: 11645 case PPC::DIR_A2: 11646 case PPC::DIR_E500: 11647 case PPC::DIR_E500mc: 11648 case PPC::DIR_E5500: 11649 return 2; 11650 } 11651 } 11652 11653 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11654 // collapsed, and so we need to look through chains of them. 11655 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11656 int64_t& Offset, SelectionDAG &DAG) { 11657 if (DAG.isBaseWithConstantOffset(Loc)) { 11658 Base = Loc.getOperand(0); 11659 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11660 11661 // The base might itself be a base plus an offset, and if so, accumulate 11662 // that as well. 11663 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11664 } 11665 } 11666 11667 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11668 unsigned Bytes, int Dist, 11669 SelectionDAG &DAG) { 11670 if (VT.getSizeInBits() / 8 != Bytes) 11671 return false; 11672 11673 SDValue BaseLoc = Base->getBasePtr(); 11674 if (Loc.getOpcode() == ISD::FrameIndex) { 11675 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11676 return false; 11677 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11678 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11679 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11680 int FS = MFI.getObjectSize(FI); 11681 int BFS = MFI.getObjectSize(BFI); 11682 if (FS != BFS || FS != (int)Bytes) return false; 11683 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11684 } 11685 11686 SDValue Base1 = Loc, Base2 = BaseLoc; 11687 int64_t Offset1 = 0, Offset2 = 0; 11688 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11689 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11690 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11691 return true; 11692 11693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11694 const GlobalValue *GV1 = nullptr; 11695 const GlobalValue *GV2 = nullptr; 11696 Offset1 = 0; 11697 Offset2 = 0; 11698 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11699 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11700 if (isGA1 && isGA2 && GV1 == GV2) 11701 return Offset1 == (Offset2 + Dist*Bytes); 11702 return false; 11703 } 11704 11705 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11706 // not enforce equality of the chain operands. 11707 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11708 unsigned Bytes, int Dist, 11709 SelectionDAG &DAG) { 11710 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11711 EVT VT = LS->getMemoryVT(); 11712 SDValue Loc = LS->getBasePtr(); 11713 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11714 } 11715 11716 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11717 EVT VT; 11718 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11719 default: return false; 11720 case Intrinsic::ppc_qpx_qvlfd: 11721 case Intrinsic::ppc_qpx_qvlfda: 11722 VT = MVT::v4f64; 11723 break; 11724 case Intrinsic::ppc_qpx_qvlfs: 11725 case Intrinsic::ppc_qpx_qvlfsa: 11726 VT = MVT::v4f32; 11727 break; 11728 case Intrinsic::ppc_qpx_qvlfcd: 11729 case Intrinsic::ppc_qpx_qvlfcda: 11730 VT = MVT::v2f64; 11731 break; 11732 case Intrinsic::ppc_qpx_qvlfcs: 11733 case Intrinsic::ppc_qpx_qvlfcsa: 11734 VT = MVT::v2f32; 11735 break; 11736 case Intrinsic::ppc_qpx_qvlfiwa: 11737 case Intrinsic::ppc_qpx_qvlfiwz: 11738 case Intrinsic::ppc_altivec_lvx: 11739 case Intrinsic::ppc_altivec_lvxl: 11740 case Intrinsic::ppc_vsx_lxvw4x: 11741 case Intrinsic::ppc_vsx_lxvw4x_be: 11742 VT = MVT::v4i32; 11743 break; 11744 case Intrinsic::ppc_vsx_lxvd2x: 11745 case Intrinsic::ppc_vsx_lxvd2x_be: 11746 VT = MVT::v2f64; 11747 break; 11748 case Intrinsic::ppc_altivec_lvebx: 11749 VT = MVT::i8; 11750 break; 11751 case Intrinsic::ppc_altivec_lvehx: 11752 VT = MVT::i16; 11753 break; 11754 case Intrinsic::ppc_altivec_lvewx: 11755 VT = MVT::i32; 11756 break; 11757 } 11758 11759 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11760 } 11761 11762 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11763 EVT VT; 11764 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11765 default: return false; 11766 case Intrinsic::ppc_qpx_qvstfd: 11767 case Intrinsic::ppc_qpx_qvstfda: 11768 VT = MVT::v4f64; 11769 break; 11770 case Intrinsic::ppc_qpx_qvstfs: 11771 case Intrinsic::ppc_qpx_qvstfsa: 11772 VT = MVT::v4f32; 11773 break; 11774 case Intrinsic::ppc_qpx_qvstfcd: 11775 case Intrinsic::ppc_qpx_qvstfcda: 11776 VT = MVT::v2f64; 11777 break; 11778 case Intrinsic::ppc_qpx_qvstfcs: 11779 case Intrinsic::ppc_qpx_qvstfcsa: 11780 VT = MVT::v2f32; 11781 break; 11782 case Intrinsic::ppc_qpx_qvstfiw: 11783 case Intrinsic::ppc_qpx_qvstfiwa: 11784 case Intrinsic::ppc_altivec_stvx: 11785 case Intrinsic::ppc_altivec_stvxl: 11786 case Intrinsic::ppc_vsx_stxvw4x: 11787 VT = MVT::v4i32; 11788 break; 11789 case Intrinsic::ppc_vsx_stxvd2x: 11790 VT = MVT::v2f64; 11791 break; 11792 case Intrinsic::ppc_vsx_stxvw4x_be: 11793 VT = MVT::v4i32; 11794 break; 11795 case Intrinsic::ppc_vsx_stxvd2x_be: 11796 VT = MVT::v2f64; 11797 break; 11798 case Intrinsic::ppc_altivec_stvebx: 11799 VT = MVT::i8; 11800 break; 11801 case Intrinsic::ppc_altivec_stvehx: 11802 VT = MVT::i16; 11803 break; 11804 case Intrinsic::ppc_altivec_stvewx: 11805 VT = MVT::i32; 11806 break; 11807 } 11808 11809 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11810 } 11811 11812 return false; 11813 } 11814 11815 // Return true is there is a nearyby consecutive load to the one provided 11816 // (regardless of alignment). We search up and down the chain, looking though 11817 // token factors and other loads (but nothing else). As a result, a true result 11818 // indicates that it is safe to create a new consecutive load adjacent to the 11819 // load provided. 11820 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11821 SDValue Chain = LD->getChain(); 11822 EVT VT = LD->getMemoryVT(); 11823 11824 SmallSet<SDNode *, 16> LoadRoots; 11825 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11826 SmallSet<SDNode *, 16> Visited; 11827 11828 // First, search up the chain, branching to follow all token-factor operands. 11829 // If we find a consecutive load, then we're done, otherwise, record all 11830 // nodes just above the top-level loads and token factors. 11831 while (!Queue.empty()) { 11832 SDNode *ChainNext = Queue.pop_back_val(); 11833 if (!Visited.insert(ChainNext).second) 11834 continue; 11835 11836 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11837 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11838 return true; 11839 11840 if (!Visited.count(ChainLD->getChain().getNode())) 11841 Queue.push_back(ChainLD->getChain().getNode()); 11842 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11843 for (const SDUse &O : ChainNext->ops()) 11844 if (!Visited.count(O.getNode())) 11845 Queue.push_back(O.getNode()); 11846 } else 11847 LoadRoots.insert(ChainNext); 11848 } 11849 11850 // Second, search down the chain, starting from the top-level nodes recorded 11851 // in the first phase. These top-level nodes are the nodes just above all 11852 // loads and token factors. Starting with their uses, recursively look though 11853 // all loads (just the chain uses) and token factors to find a consecutive 11854 // load. 11855 Visited.clear(); 11856 Queue.clear(); 11857 11858 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11859 IE = LoadRoots.end(); I != IE; ++I) { 11860 Queue.push_back(*I); 11861 11862 while (!Queue.empty()) { 11863 SDNode *LoadRoot = Queue.pop_back_val(); 11864 if (!Visited.insert(LoadRoot).second) 11865 continue; 11866 11867 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11868 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11869 return true; 11870 11871 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11872 UE = LoadRoot->use_end(); UI != UE; ++UI) 11873 if (((isa<MemSDNode>(*UI) && 11874 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11875 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11876 Queue.push_back(*UI); 11877 } 11878 } 11879 11880 return false; 11881 } 11882 11883 /// This function is called when we have proved that a SETCC node can be replaced 11884 /// by subtraction (and other supporting instructions) so that the result of 11885 /// comparison is kept in a GPR instead of CR. This function is purely for 11886 /// codegen purposes and has some flags to guide the codegen process. 11887 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11888 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11889 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11890 11891 // Zero extend the operands to the largest legal integer. Originally, they 11892 // must be of a strictly smaller size. 11893 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11894 DAG.getConstant(Size, DL, MVT::i32)); 11895 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11896 DAG.getConstant(Size, DL, MVT::i32)); 11897 11898 // Swap if needed. Depends on the condition code. 11899 if (Swap) 11900 std::swap(Op0, Op1); 11901 11902 // Subtract extended integers. 11903 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11904 11905 // Move the sign bit to the least significant position and zero out the rest. 11906 // Now the least significant bit carries the result of original comparison. 11907 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11908 DAG.getConstant(Size - 1, DL, MVT::i32)); 11909 auto Final = Shifted; 11910 11911 // Complement the result if needed. Based on the condition code. 11912 if (Complement) 11913 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11914 DAG.getConstant(1, DL, MVT::i64)); 11915 11916 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11917 } 11918 11919 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11920 DAGCombinerInfo &DCI) const { 11921 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11922 11923 SelectionDAG &DAG = DCI.DAG; 11924 SDLoc DL(N); 11925 11926 // Size of integers being compared has a critical role in the following 11927 // analysis, so we prefer to do this when all types are legal. 11928 if (!DCI.isAfterLegalizeDAG()) 11929 return SDValue(); 11930 11931 // If all users of SETCC extend its value to a legal integer type 11932 // then we replace SETCC with a subtraction 11933 for (SDNode::use_iterator UI = N->use_begin(), 11934 UE = N->use_end(); UI != UE; ++UI) { 11935 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11936 return SDValue(); 11937 } 11938 11939 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11940 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11941 11942 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11943 11944 if (OpSize < Size) { 11945 switch (CC) { 11946 default: break; 11947 case ISD::SETULT: 11948 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11949 case ISD::SETULE: 11950 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11951 case ISD::SETUGT: 11952 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11953 case ISD::SETUGE: 11954 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11955 } 11956 } 11957 11958 return SDValue(); 11959 } 11960 11961 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11962 DAGCombinerInfo &DCI) const { 11963 SelectionDAG &DAG = DCI.DAG; 11964 SDLoc dl(N); 11965 11966 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11967 // If we're tracking CR bits, we need to be careful that we don't have: 11968 // trunc(binary-ops(zext(x), zext(y))) 11969 // or 11970 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11971 // such that we're unnecessarily moving things into GPRs when it would be 11972 // better to keep them in CR bits. 11973 11974 // Note that trunc here can be an actual i1 trunc, or can be the effective 11975 // truncation that comes from a setcc or select_cc. 11976 if (N->getOpcode() == ISD::TRUNCATE && 11977 N->getValueType(0) != MVT::i1) 11978 return SDValue(); 11979 11980 if (N->getOperand(0).getValueType() != MVT::i32 && 11981 N->getOperand(0).getValueType() != MVT::i64) 11982 return SDValue(); 11983 11984 if (N->getOpcode() == ISD::SETCC || 11985 N->getOpcode() == ISD::SELECT_CC) { 11986 // If we're looking at a comparison, then we need to make sure that the 11987 // high bits (all except for the first) don't matter the result. 11988 ISD::CondCode CC = 11989 cast<CondCodeSDNode>(N->getOperand( 11990 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11991 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11992 11993 if (ISD::isSignedIntSetCC(CC)) { 11994 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11995 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11996 return SDValue(); 11997 } else if (ISD::isUnsignedIntSetCC(CC)) { 11998 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11999 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12000 !DAG.MaskedValueIsZero(N->getOperand(1), 12001 APInt::getHighBitsSet(OpBits, OpBits-1))) 12002 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12003 : SDValue()); 12004 } else { 12005 // This is neither a signed nor an unsigned comparison, just make sure 12006 // that the high bits are equal. 12007 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12008 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12009 12010 // We don't really care about what is known about the first bit (if 12011 // anything), so clear it in all masks prior to comparing them. 12012 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12013 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12014 12015 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12016 return SDValue(); 12017 } 12018 } 12019 12020 // We now know that the higher-order bits are irrelevant, we just need to 12021 // make sure that all of the intermediate operations are bit operations, and 12022 // all inputs are extensions. 12023 if (N->getOperand(0).getOpcode() != ISD::AND && 12024 N->getOperand(0).getOpcode() != ISD::OR && 12025 N->getOperand(0).getOpcode() != ISD::XOR && 12026 N->getOperand(0).getOpcode() != ISD::SELECT && 12027 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12028 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12029 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12030 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12031 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12032 return SDValue(); 12033 12034 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12035 N->getOperand(1).getOpcode() != ISD::AND && 12036 N->getOperand(1).getOpcode() != ISD::OR && 12037 N->getOperand(1).getOpcode() != ISD::XOR && 12038 N->getOperand(1).getOpcode() != ISD::SELECT && 12039 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12040 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12041 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12042 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12043 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12044 return SDValue(); 12045 12046 SmallVector<SDValue, 4> Inputs; 12047 SmallVector<SDValue, 8> BinOps, PromOps; 12048 SmallPtrSet<SDNode *, 16> Visited; 12049 12050 for (unsigned i = 0; i < 2; ++i) { 12051 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12052 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12053 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12054 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12055 isa<ConstantSDNode>(N->getOperand(i))) 12056 Inputs.push_back(N->getOperand(i)); 12057 else 12058 BinOps.push_back(N->getOperand(i)); 12059 12060 if (N->getOpcode() == ISD::TRUNCATE) 12061 break; 12062 } 12063 12064 // Visit all inputs, collect all binary operations (and, or, xor and 12065 // select) that are all fed by extensions. 12066 while (!BinOps.empty()) { 12067 SDValue BinOp = BinOps.back(); 12068 BinOps.pop_back(); 12069 12070 if (!Visited.insert(BinOp.getNode()).second) 12071 continue; 12072 12073 PromOps.push_back(BinOp); 12074 12075 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12076 // The condition of the select is not promoted. 12077 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12078 continue; 12079 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12080 continue; 12081 12082 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12083 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12084 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12085 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12086 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12087 Inputs.push_back(BinOp.getOperand(i)); 12088 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12089 BinOp.getOperand(i).getOpcode() == ISD::OR || 12090 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12091 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12092 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12093 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12094 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12095 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12096 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12097 BinOps.push_back(BinOp.getOperand(i)); 12098 } else { 12099 // We have an input that is not an extension or another binary 12100 // operation; we'll abort this transformation. 12101 return SDValue(); 12102 } 12103 } 12104 } 12105 12106 // Make sure that this is a self-contained cluster of operations (which 12107 // is not quite the same thing as saying that everything has only one 12108 // use). 12109 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12110 if (isa<ConstantSDNode>(Inputs[i])) 12111 continue; 12112 12113 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12114 UE = Inputs[i].getNode()->use_end(); 12115 UI != UE; ++UI) { 12116 SDNode *User = *UI; 12117 if (User != N && !Visited.count(User)) 12118 return SDValue(); 12119 12120 // Make sure that we're not going to promote the non-output-value 12121 // operand(s) or SELECT or SELECT_CC. 12122 // FIXME: Although we could sometimes handle this, and it does occur in 12123 // practice that one of the condition inputs to the select is also one of 12124 // the outputs, we currently can't deal with this. 12125 if (User->getOpcode() == ISD::SELECT) { 12126 if (User->getOperand(0) == Inputs[i]) 12127 return SDValue(); 12128 } else if (User->getOpcode() == ISD::SELECT_CC) { 12129 if (User->getOperand(0) == Inputs[i] || 12130 User->getOperand(1) == Inputs[i]) 12131 return SDValue(); 12132 } 12133 } 12134 } 12135 12136 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12137 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12138 UE = PromOps[i].getNode()->use_end(); 12139 UI != UE; ++UI) { 12140 SDNode *User = *UI; 12141 if (User != N && !Visited.count(User)) 12142 return SDValue(); 12143 12144 // Make sure that we're not going to promote the non-output-value 12145 // operand(s) or SELECT or SELECT_CC. 12146 // FIXME: Although we could sometimes handle this, and it does occur in 12147 // practice that one of the condition inputs to the select is also one of 12148 // the outputs, we currently can't deal with this. 12149 if (User->getOpcode() == ISD::SELECT) { 12150 if (User->getOperand(0) == PromOps[i]) 12151 return SDValue(); 12152 } else if (User->getOpcode() == ISD::SELECT_CC) { 12153 if (User->getOperand(0) == PromOps[i] || 12154 User->getOperand(1) == PromOps[i]) 12155 return SDValue(); 12156 } 12157 } 12158 } 12159 12160 // Replace all inputs with the extension operand. 12161 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12162 // Constants may have users outside the cluster of to-be-promoted nodes, 12163 // and so we need to replace those as we do the promotions. 12164 if (isa<ConstantSDNode>(Inputs[i])) 12165 continue; 12166 else 12167 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12168 } 12169 12170 std::list<HandleSDNode> PromOpHandles; 12171 for (auto &PromOp : PromOps) 12172 PromOpHandles.emplace_back(PromOp); 12173 12174 // Replace all operations (these are all the same, but have a different 12175 // (i1) return type). DAG.getNode will validate that the types of 12176 // a binary operator match, so go through the list in reverse so that 12177 // we've likely promoted both operands first. Any intermediate truncations or 12178 // extensions disappear. 12179 while (!PromOpHandles.empty()) { 12180 SDValue PromOp = PromOpHandles.back().getValue(); 12181 PromOpHandles.pop_back(); 12182 12183 if (PromOp.getOpcode() == ISD::TRUNCATE || 12184 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12185 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12186 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12187 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12188 PromOp.getOperand(0).getValueType() != MVT::i1) { 12189 // The operand is not yet ready (see comment below). 12190 PromOpHandles.emplace_front(PromOp); 12191 continue; 12192 } 12193 12194 SDValue RepValue = PromOp.getOperand(0); 12195 if (isa<ConstantSDNode>(RepValue)) 12196 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12197 12198 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12199 continue; 12200 } 12201 12202 unsigned C; 12203 switch (PromOp.getOpcode()) { 12204 default: C = 0; break; 12205 case ISD::SELECT: C = 1; break; 12206 case ISD::SELECT_CC: C = 2; break; 12207 } 12208 12209 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12210 PromOp.getOperand(C).getValueType() != MVT::i1) || 12211 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12212 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12213 // The to-be-promoted operands of this node have not yet been 12214 // promoted (this should be rare because we're going through the 12215 // list backward, but if one of the operands has several users in 12216 // this cluster of to-be-promoted nodes, it is possible). 12217 PromOpHandles.emplace_front(PromOp); 12218 continue; 12219 } 12220 12221 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12222 PromOp.getNode()->op_end()); 12223 12224 // If there are any constant inputs, make sure they're replaced now. 12225 for (unsigned i = 0; i < 2; ++i) 12226 if (isa<ConstantSDNode>(Ops[C+i])) 12227 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12228 12229 DAG.ReplaceAllUsesOfValueWith(PromOp, 12230 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12231 } 12232 12233 // Now we're left with the initial truncation itself. 12234 if (N->getOpcode() == ISD::TRUNCATE) 12235 return N->getOperand(0); 12236 12237 // Otherwise, this is a comparison. The operands to be compared have just 12238 // changed type (to i1), but everything else is the same. 12239 return SDValue(N, 0); 12240 } 12241 12242 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12243 DAGCombinerInfo &DCI) const { 12244 SelectionDAG &DAG = DCI.DAG; 12245 SDLoc dl(N); 12246 12247 // If we're tracking CR bits, we need to be careful that we don't have: 12248 // zext(binary-ops(trunc(x), trunc(y))) 12249 // or 12250 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12251 // such that we're unnecessarily moving things into CR bits that can more 12252 // efficiently stay in GPRs. Note that if we're not certain that the high 12253 // bits are set as required by the final extension, we still may need to do 12254 // some masking to get the proper behavior. 12255 12256 // This same functionality is important on PPC64 when dealing with 12257 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12258 // the return values of functions. Because it is so similar, it is handled 12259 // here as well. 12260 12261 if (N->getValueType(0) != MVT::i32 && 12262 N->getValueType(0) != MVT::i64) 12263 return SDValue(); 12264 12265 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12266 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12267 return SDValue(); 12268 12269 if (N->getOperand(0).getOpcode() != ISD::AND && 12270 N->getOperand(0).getOpcode() != ISD::OR && 12271 N->getOperand(0).getOpcode() != ISD::XOR && 12272 N->getOperand(0).getOpcode() != ISD::SELECT && 12273 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12274 return SDValue(); 12275 12276 SmallVector<SDValue, 4> Inputs; 12277 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12278 SmallPtrSet<SDNode *, 16> Visited; 12279 12280 // Visit all inputs, collect all binary operations (and, or, xor and 12281 // select) that are all fed by truncations. 12282 while (!BinOps.empty()) { 12283 SDValue BinOp = BinOps.back(); 12284 BinOps.pop_back(); 12285 12286 if (!Visited.insert(BinOp.getNode()).second) 12287 continue; 12288 12289 PromOps.push_back(BinOp); 12290 12291 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12292 // The condition of the select is not promoted. 12293 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12294 continue; 12295 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12296 continue; 12297 12298 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12299 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12300 Inputs.push_back(BinOp.getOperand(i)); 12301 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12302 BinOp.getOperand(i).getOpcode() == ISD::OR || 12303 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12304 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12305 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12306 BinOps.push_back(BinOp.getOperand(i)); 12307 } else { 12308 // We have an input that is not a truncation or another binary 12309 // operation; we'll abort this transformation. 12310 return SDValue(); 12311 } 12312 } 12313 } 12314 12315 // The operands of a select that must be truncated when the select is 12316 // promoted because the operand is actually part of the to-be-promoted set. 12317 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12318 12319 // Make sure that this is a self-contained cluster of operations (which 12320 // is not quite the same thing as saying that everything has only one 12321 // use). 12322 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12323 if (isa<ConstantSDNode>(Inputs[i])) 12324 continue; 12325 12326 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12327 UE = Inputs[i].getNode()->use_end(); 12328 UI != UE; ++UI) { 12329 SDNode *User = *UI; 12330 if (User != N && !Visited.count(User)) 12331 return SDValue(); 12332 12333 // If we're going to promote the non-output-value operand(s) or SELECT or 12334 // SELECT_CC, record them for truncation. 12335 if (User->getOpcode() == ISD::SELECT) { 12336 if (User->getOperand(0) == Inputs[i]) 12337 SelectTruncOp[0].insert(std::make_pair(User, 12338 User->getOperand(0).getValueType())); 12339 } else if (User->getOpcode() == ISD::SELECT_CC) { 12340 if (User->getOperand(0) == Inputs[i]) 12341 SelectTruncOp[0].insert(std::make_pair(User, 12342 User->getOperand(0).getValueType())); 12343 if (User->getOperand(1) == Inputs[i]) 12344 SelectTruncOp[1].insert(std::make_pair(User, 12345 User->getOperand(1).getValueType())); 12346 } 12347 } 12348 } 12349 12350 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12351 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12352 UE = PromOps[i].getNode()->use_end(); 12353 UI != UE; ++UI) { 12354 SDNode *User = *UI; 12355 if (User != N && !Visited.count(User)) 12356 return SDValue(); 12357 12358 // If we're going to promote the non-output-value operand(s) or SELECT or 12359 // SELECT_CC, record them for truncation. 12360 if (User->getOpcode() == ISD::SELECT) { 12361 if (User->getOperand(0) == PromOps[i]) 12362 SelectTruncOp[0].insert(std::make_pair(User, 12363 User->getOperand(0).getValueType())); 12364 } else if (User->getOpcode() == ISD::SELECT_CC) { 12365 if (User->getOperand(0) == PromOps[i]) 12366 SelectTruncOp[0].insert(std::make_pair(User, 12367 User->getOperand(0).getValueType())); 12368 if (User->getOperand(1) == PromOps[i]) 12369 SelectTruncOp[1].insert(std::make_pair(User, 12370 User->getOperand(1).getValueType())); 12371 } 12372 } 12373 } 12374 12375 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12376 bool ReallyNeedsExt = false; 12377 if (N->getOpcode() != ISD::ANY_EXTEND) { 12378 // If all of the inputs are not already sign/zero extended, then 12379 // we'll still need to do that at the end. 12380 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12381 if (isa<ConstantSDNode>(Inputs[i])) 12382 continue; 12383 12384 unsigned OpBits = 12385 Inputs[i].getOperand(0).getValueSizeInBits(); 12386 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12387 12388 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12389 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12390 APInt::getHighBitsSet(OpBits, 12391 OpBits-PromBits))) || 12392 (N->getOpcode() == ISD::SIGN_EXTEND && 12393 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12394 (OpBits-(PromBits-1)))) { 12395 ReallyNeedsExt = true; 12396 break; 12397 } 12398 } 12399 } 12400 12401 // Replace all inputs, either with the truncation operand, or a 12402 // truncation or extension to the final output type. 12403 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12404 // Constant inputs need to be replaced with the to-be-promoted nodes that 12405 // use them because they might have users outside of the cluster of 12406 // promoted nodes. 12407 if (isa<ConstantSDNode>(Inputs[i])) 12408 continue; 12409 12410 SDValue InSrc = Inputs[i].getOperand(0); 12411 if (Inputs[i].getValueType() == N->getValueType(0)) 12412 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12413 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12414 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12415 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12416 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12417 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12418 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12419 else 12420 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12421 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12422 } 12423 12424 std::list<HandleSDNode> PromOpHandles; 12425 for (auto &PromOp : PromOps) 12426 PromOpHandles.emplace_back(PromOp); 12427 12428 // Replace all operations (these are all the same, but have a different 12429 // (promoted) return type). DAG.getNode will validate that the types of 12430 // a binary operator match, so go through the list in reverse so that 12431 // we've likely promoted both operands first. 12432 while (!PromOpHandles.empty()) { 12433 SDValue PromOp = PromOpHandles.back().getValue(); 12434 PromOpHandles.pop_back(); 12435 12436 unsigned C; 12437 switch (PromOp.getOpcode()) { 12438 default: C = 0; break; 12439 case ISD::SELECT: C = 1; break; 12440 case ISD::SELECT_CC: C = 2; break; 12441 } 12442 12443 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12444 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12445 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12446 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12447 // The to-be-promoted operands of this node have not yet been 12448 // promoted (this should be rare because we're going through the 12449 // list backward, but if one of the operands has several users in 12450 // this cluster of to-be-promoted nodes, it is possible). 12451 PromOpHandles.emplace_front(PromOp); 12452 continue; 12453 } 12454 12455 // For SELECT and SELECT_CC nodes, we do a similar check for any 12456 // to-be-promoted comparison inputs. 12457 if (PromOp.getOpcode() == ISD::SELECT || 12458 PromOp.getOpcode() == ISD::SELECT_CC) { 12459 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12460 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12461 (SelectTruncOp[1].count(PromOp.getNode()) && 12462 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12463 PromOpHandles.emplace_front(PromOp); 12464 continue; 12465 } 12466 } 12467 12468 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12469 PromOp.getNode()->op_end()); 12470 12471 // If this node has constant inputs, then they'll need to be promoted here. 12472 for (unsigned i = 0; i < 2; ++i) { 12473 if (!isa<ConstantSDNode>(Ops[C+i])) 12474 continue; 12475 if (Ops[C+i].getValueType() == N->getValueType(0)) 12476 continue; 12477 12478 if (N->getOpcode() == ISD::SIGN_EXTEND) 12479 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12480 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12481 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12482 else 12483 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12484 } 12485 12486 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12487 // truncate them again to the original value type. 12488 if (PromOp.getOpcode() == ISD::SELECT || 12489 PromOp.getOpcode() == ISD::SELECT_CC) { 12490 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12491 if (SI0 != SelectTruncOp[0].end()) 12492 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12493 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12494 if (SI1 != SelectTruncOp[1].end()) 12495 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12496 } 12497 12498 DAG.ReplaceAllUsesOfValueWith(PromOp, 12499 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12500 } 12501 12502 // Now we're left with the initial extension itself. 12503 if (!ReallyNeedsExt) 12504 return N->getOperand(0); 12505 12506 // To zero extend, just mask off everything except for the first bit (in the 12507 // i1 case). 12508 if (N->getOpcode() == ISD::ZERO_EXTEND) 12509 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12510 DAG.getConstant(APInt::getLowBitsSet( 12511 N->getValueSizeInBits(0), PromBits), 12512 dl, N->getValueType(0))); 12513 12514 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12515 "Invalid extension type"); 12516 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12517 SDValue ShiftCst = 12518 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12519 return DAG.getNode( 12520 ISD::SRA, dl, N->getValueType(0), 12521 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12522 ShiftCst); 12523 } 12524 12525 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12526 DAGCombinerInfo &DCI) const { 12527 assert(N->getOpcode() == ISD::SETCC && 12528 "Should be called with a SETCC node"); 12529 12530 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12531 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12532 SDValue LHS = N->getOperand(0); 12533 SDValue RHS = N->getOperand(1); 12534 12535 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12536 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12537 LHS.hasOneUse()) 12538 std::swap(LHS, RHS); 12539 12540 // x == 0-y --> x+y == 0 12541 // x != 0-y --> x+y != 0 12542 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12543 RHS.hasOneUse()) { 12544 SDLoc DL(N); 12545 SelectionDAG &DAG = DCI.DAG; 12546 EVT VT = N->getValueType(0); 12547 EVT OpVT = LHS.getValueType(); 12548 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12549 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12550 } 12551 } 12552 12553 return DAGCombineTruncBoolExt(N, DCI); 12554 } 12555 12556 // Is this an extending load from an f32 to an f64? 12557 static bool isFPExtLoad(SDValue Op) { 12558 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12559 return LD->getExtensionType() == ISD::EXTLOAD && 12560 Op.getValueType() == MVT::f64; 12561 return false; 12562 } 12563 12564 /// Reduces the number of fp-to-int conversion when building a vector. 12565 /// 12566 /// If this vector is built out of floating to integer conversions, 12567 /// transform it to a vector built out of floating point values followed by a 12568 /// single floating to integer conversion of the vector. 12569 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12570 /// becomes (fptosi (build_vector ($A, $B, ...))) 12571 SDValue PPCTargetLowering:: 12572 combineElementTruncationToVectorTruncation(SDNode *N, 12573 DAGCombinerInfo &DCI) const { 12574 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12575 "Should be called with a BUILD_VECTOR node"); 12576 12577 SelectionDAG &DAG = DCI.DAG; 12578 SDLoc dl(N); 12579 12580 SDValue FirstInput = N->getOperand(0); 12581 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12582 "The input operand must be an fp-to-int conversion."); 12583 12584 // This combine happens after legalization so the fp_to_[su]i nodes are 12585 // already converted to PPCSISD nodes. 12586 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12587 if (FirstConversion == PPCISD::FCTIDZ || 12588 FirstConversion == PPCISD::FCTIDUZ || 12589 FirstConversion == PPCISD::FCTIWZ || 12590 FirstConversion == PPCISD::FCTIWUZ) { 12591 bool IsSplat = true; 12592 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12593 FirstConversion == PPCISD::FCTIWUZ; 12594 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12595 SmallVector<SDValue, 4> Ops; 12596 EVT TargetVT = N->getValueType(0); 12597 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12598 SDValue NextOp = N->getOperand(i); 12599 if (NextOp.getOpcode() != PPCISD::MFVSR) 12600 return SDValue(); 12601 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12602 if (NextConversion != FirstConversion) 12603 return SDValue(); 12604 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12605 // This is not valid if the input was originally double precision. It is 12606 // also not profitable to do unless this is an extending load in which 12607 // case doing this combine will allow us to combine consecutive loads. 12608 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12609 return SDValue(); 12610 if (N->getOperand(i) != FirstInput) 12611 IsSplat = false; 12612 } 12613 12614 // If this is a splat, we leave it as-is since there will be only a single 12615 // fp-to-int conversion followed by a splat of the integer. This is better 12616 // for 32-bit and smaller ints and neutral for 64-bit ints. 12617 if (IsSplat) 12618 return SDValue(); 12619 12620 // Now that we know we have the right type of node, get its operands 12621 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12622 SDValue In = N->getOperand(i).getOperand(0); 12623 if (Is32Bit) { 12624 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12625 // here, we know that all inputs are extending loads so this is safe). 12626 if (In.isUndef()) 12627 Ops.push_back(DAG.getUNDEF(SrcVT)); 12628 else { 12629 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12630 MVT::f32, In.getOperand(0), 12631 DAG.getIntPtrConstant(1, dl)); 12632 Ops.push_back(Trunc); 12633 } 12634 } else 12635 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12636 } 12637 12638 unsigned Opcode; 12639 if (FirstConversion == PPCISD::FCTIDZ || 12640 FirstConversion == PPCISD::FCTIWZ) 12641 Opcode = ISD::FP_TO_SINT; 12642 else 12643 Opcode = ISD::FP_TO_UINT; 12644 12645 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12646 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12647 return DAG.getNode(Opcode, dl, TargetVT, BV); 12648 } 12649 return SDValue(); 12650 } 12651 12652 /// Reduce the number of loads when building a vector. 12653 /// 12654 /// Building a vector out of multiple loads can be converted to a load 12655 /// of the vector type if the loads are consecutive. If the loads are 12656 /// consecutive but in descending order, a shuffle is added at the end 12657 /// to reorder the vector. 12658 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12659 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12660 "Should be called with a BUILD_VECTOR node"); 12661 12662 SDLoc dl(N); 12663 12664 // Return early for non byte-sized type, as they can't be consecutive. 12665 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12666 return SDValue(); 12667 12668 bool InputsAreConsecutiveLoads = true; 12669 bool InputsAreReverseConsecutive = true; 12670 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12671 SDValue FirstInput = N->getOperand(0); 12672 bool IsRoundOfExtLoad = false; 12673 12674 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12675 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12676 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12677 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12678 } 12679 // Not a build vector of (possibly fp_rounded) loads. 12680 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12681 N->getNumOperands() == 1) 12682 return SDValue(); 12683 12684 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12685 // If any inputs are fp_round(extload), they all must be. 12686 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12687 return SDValue(); 12688 12689 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12690 N->getOperand(i); 12691 if (NextInput.getOpcode() != ISD::LOAD) 12692 return SDValue(); 12693 12694 SDValue PreviousInput = 12695 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12696 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12697 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12698 12699 // If any inputs are fp_round(extload), they all must be. 12700 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12701 return SDValue(); 12702 12703 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12704 InputsAreConsecutiveLoads = false; 12705 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12706 InputsAreReverseConsecutive = false; 12707 12708 // Exit early if the loads are neither consecutive nor reverse consecutive. 12709 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12710 return SDValue(); 12711 } 12712 12713 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12714 "The loads cannot be both consecutive and reverse consecutive."); 12715 12716 SDValue FirstLoadOp = 12717 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12718 SDValue LastLoadOp = 12719 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12720 N->getOperand(N->getNumOperands()-1); 12721 12722 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12723 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12724 if (InputsAreConsecutiveLoads) { 12725 assert(LD1 && "Input needs to be a LoadSDNode."); 12726 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12727 LD1->getBasePtr(), LD1->getPointerInfo(), 12728 LD1->getAlignment()); 12729 } 12730 if (InputsAreReverseConsecutive) { 12731 assert(LDL && "Input needs to be a LoadSDNode."); 12732 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12733 LDL->getBasePtr(), LDL->getPointerInfo(), 12734 LDL->getAlignment()); 12735 SmallVector<int, 16> Ops; 12736 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12737 Ops.push_back(i); 12738 12739 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12740 DAG.getUNDEF(N->getValueType(0)), Ops); 12741 } 12742 return SDValue(); 12743 } 12744 12745 // This function adds the required vector_shuffle needed to get 12746 // the elements of the vector extract in the correct position 12747 // as specified by the CorrectElems encoding. 12748 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12749 SDValue Input, uint64_t Elems, 12750 uint64_t CorrectElems) { 12751 SDLoc dl(N); 12752 12753 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12754 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12755 12756 // Knowing the element indices being extracted from the original 12757 // vector and the order in which they're being inserted, just put 12758 // them at element indices required for the instruction. 12759 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12760 if (DAG.getDataLayout().isLittleEndian()) 12761 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12762 else 12763 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12764 CorrectElems = CorrectElems >> 8; 12765 Elems = Elems >> 8; 12766 } 12767 12768 SDValue Shuffle = 12769 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12770 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12771 12772 EVT Ty = N->getValueType(0); 12773 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12774 return BV; 12775 } 12776 12777 // Look for build vector patterns where input operands come from sign 12778 // extended vector_extract elements of specific indices. If the correct indices 12779 // aren't used, add a vector shuffle to fix up the indices and create a new 12780 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12781 // during instruction selection. 12782 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12783 // This array encodes the indices that the vector sign extend instructions 12784 // extract from when extending from one type to another for both BE and LE. 12785 // The right nibble of each byte corresponds to the LE incides. 12786 // and the left nibble of each byte corresponds to the BE incides. 12787 // For example: 0x3074B8FC byte->word 12788 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12789 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12790 // For example: 0x000070F8 byte->double word 12791 // For LE: the allowed indices are: 0x0,0x8 12792 // For BE: the allowed indices are: 0x7,0xF 12793 uint64_t TargetElems[] = { 12794 0x3074B8FC, // b->w 12795 0x000070F8, // b->d 12796 0x10325476, // h->w 12797 0x00003074, // h->d 12798 0x00001032, // w->d 12799 }; 12800 12801 uint64_t Elems = 0; 12802 int Index; 12803 SDValue Input; 12804 12805 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12806 if (!Op) 12807 return false; 12808 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12809 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12810 return false; 12811 12812 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12813 // of the right width. 12814 SDValue Extract = Op.getOperand(0); 12815 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12816 Extract = Extract.getOperand(0); 12817 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12818 return false; 12819 12820 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12821 if (!ExtOp) 12822 return false; 12823 12824 Index = ExtOp->getZExtValue(); 12825 if (Input && Input != Extract.getOperand(0)) 12826 return false; 12827 12828 if (!Input) 12829 Input = Extract.getOperand(0); 12830 12831 Elems = Elems << 8; 12832 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12833 Elems |= Index; 12834 12835 return true; 12836 }; 12837 12838 // If the build vector operands aren't sign extended vector extracts, 12839 // of the same input vector, then return. 12840 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12841 if (!isSExtOfVecExtract(N->getOperand(i))) { 12842 return SDValue(); 12843 } 12844 } 12845 12846 // If the vector extract indicies are not correct, add the appropriate 12847 // vector_shuffle. 12848 int TgtElemArrayIdx; 12849 int InputSize = Input.getValueType().getScalarSizeInBits(); 12850 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12851 if (InputSize + OutputSize == 40) 12852 TgtElemArrayIdx = 0; 12853 else if (InputSize + OutputSize == 72) 12854 TgtElemArrayIdx = 1; 12855 else if (InputSize + OutputSize == 48) 12856 TgtElemArrayIdx = 2; 12857 else if (InputSize + OutputSize == 80) 12858 TgtElemArrayIdx = 3; 12859 else if (InputSize + OutputSize == 96) 12860 TgtElemArrayIdx = 4; 12861 else 12862 return SDValue(); 12863 12864 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12865 CorrectElems = DAG.getDataLayout().isLittleEndian() 12866 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12867 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12868 if (Elems != CorrectElems) { 12869 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12870 } 12871 12872 // Regular lowering will catch cases where a shuffle is not needed. 12873 return SDValue(); 12874 } 12875 12876 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12877 DAGCombinerInfo &DCI) const { 12878 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12879 "Should be called with a BUILD_VECTOR node"); 12880 12881 SelectionDAG &DAG = DCI.DAG; 12882 SDLoc dl(N); 12883 12884 if (!Subtarget.hasVSX()) 12885 return SDValue(); 12886 12887 // The target independent DAG combiner will leave a build_vector of 12888 // float-to-int conversions intact. We can generate MUCH better code for 12889 // a float-to-int conversion of a vector of floats. 12890 SDValue FirstInput = N->getOperand(0); 12891 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12892 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12893 if (Reduced) 12894 return Reduced; 12895 } 12896 12897 // If we're building a vector out of consecutive loads, just load that 12898 // vector type. 12899 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12900 if (Reduced) 12901 return Reduced; 12902 12903 // If we're building a vector out of extended elements from another vector 12904 // we have P9 vector integer extend instructions. The code assumes legal 12905 // input types (i.e. it can't handle things like v4i16) so do not run before 12906 // legalization. 12907 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12908 Reduced = combineBVOfVecSExt(N, DAG); 12909 if (Reduced) 12910 return Reduced; 12911 } 12912 12913 12914 if (N->getValueType(0) != MVT::v2f64) 12915 return SDValue(); 12916 12917 // Looking for: 12918 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12919 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12920 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12921 return SDValue(); 12922 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12923 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12924 return SDValue(); 12925 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12926 return SDValue(); 12927 12928 SDValue Ext1 = FirstInput.getOperand(0); 12929 SDValue Ext2 = N->getOperand(1).getOperand(0); 12930 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12931 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12932 return SDValue(); 12933 12934 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12935 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12936 if (!Ext1Op || !Ext2Op) 12937 return SDValue(); 12938 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12939 Ext1.getOperand(0) != Ext2.getOperand(0)) 12940 return SDValue(); 12941 12942 int FirstElem = Ext1Op->getZExtValue(); 12943 int SecondElem = Ext2Op->getZExtValue(); 12944 int SubvecIdx; 12945 if (FirstElem == 0 && SecondElem == 1) 12946 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12947 else if (FirstElem == 2 && SecondElem == 3) 12948 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12949 else 12950 return SDValue(); 12951 12952 SDValue SrcVec = Ext1.getOperand(0); 12953 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12954 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12955 return DAG.getNode(NodeType, dl, MVT::v2f64, 12956 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12957 } 12958 12959 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12960 DAGCombinerInfo &DCI) const { 12961 assert((N->getOpcode() == ISD::SINT_TO_FP || 12962 N->getOpcode() == ISD::UINT_TO_FP) && 12963 "Need an int -> FP conversion node here"); 12964 12965 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12966 return SDValue(); 12967 12968 SelectionDAG &DAG = DCI.DAG; 12969 SDLoc dl(N); 12970 SDValue Op(N, 0); 12971 12972 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12973 // from the hardware. 12974 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12975 return SDValue(); 12976 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12977 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12978 return SDValue(); 12979 12980 SDValue FirstOperand(Op.getOperand(0)); 12981 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12982 (FirstOperand.getValueType() == MVT::i8 || 12983 FirstOperand.getValueType() == MVT::i16); 12984 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12985 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12986 bool DstDouble = Op.getValueType() == MVT::f64; 12987 unsigned ConvOp = Signed ? 12988 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12989 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12990 SDValue WidthConst = 12991 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12992 dl, false); 12993 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12994 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12995 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12996 DAG.getVTList(MVT::f64, MVT::Other), 12997 Ops, MVT::i8, LDN->getMemOperand()); 12998 12999 // For signed conversion, we need to sign-extend the value in the VSR 13000 if (Signed) { 13001 SDValue ExtOps[] = { Ld, WidthConst }; 13002 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13003 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13004 } else 13005 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13006 } 13007 13008 13009 // For i32 intermediate values, unfortunately, the conversion functions 13010 // leave the upper 32 bits of the value are undefined. Within the set of 13011 // scalar instructions, we have no method for zero- or sign-extending the 13012 // value. Thus, we cannot handle i32 intermediate values here. 13013 if (Op.getOperand(0).getValueType() == MVT::i32) 13014 return SDValue(); 13015 13016 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13017 "UINT_TO_FP is supported only with FPCVT"); 13018 13019 // If we have FCFIDS, then use it when converting to single-precision. 13020 // Otherwise, convert to double-precision and then round. 13021 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13022 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13023 : PPCISD::FCFIDS) 13024 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13025 : PPCISD::FCFID); 13026 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13027 ? MVT::f32 13028 : MVT::f64; 13029 13030 // If we're converting from a float, to an int, and back to a float again, 13031 // then we don't need the store/load pair at all. 13032 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13033 Subtarget.hasFPCVT()) || 13034 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13035 SDValue Src = Op.getOperand(0).getOperand(0); 13036 if (Src.getValueType() == MVT::f32) { 13037 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13038 DCI.AddToWorklist(Src.getNode()); 13039 } else if (Src.getValueType() != MVT::f64) { 13040 // Make sure that we don't pick up a ppc_fp128 source value. 13041 return SDValue(); 13042 } 13043 13044 unsigned FCTOp = 13045 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13046 PPCISD::FCTIDUZ; 13047 13048 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13049 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13050 13051 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13052 FP = DAG.getNode(ISD::FP_ROUND, dl, 13053 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13054 DCI.AddToWorklist(FP.getNode()); 13055 } 13056 13057 return FP; 13058 } 13059 13060 return SDValue(); 13061 } 13062 13063 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13064 // builtins) into loads with swaps. 13065 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13066 DAGCombinerInfo &DCI) const { 13067 SelectionDAG &DAG = DCI.DAG; 13068 SDLoc dl(N); 13069 SDValue Chain; 13070 SDValue Base; 13071 MachineMemOperand *MMO; 13072 13073 switch (N->getOpcode()) { 13074 default: 13075 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13076 case ISD::LOAD: { 13077 LoadSDNode *LD = cast<LoadSDNode>(N); 13078 Chain = LD->getChain(); 13079 Base = LD->getBasePtr(); 13080 MMO = LD->getMemOperand(); 13081 // If the MMO suggests this isn't a load of a full vector, leave 13082 // things alone. For a built-in, we have to make the change for 13083 // correctness, so if there is a size problem that will be a bug. 13084 if (MMO->getSize() < 16) 13085 return SDValue(); 13086 break; 13087 } 13088 case ISD::INTRINSIC_W_CHAIN: { 13089 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13090 Chain = Intrin->getChain(); 13091 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13092 // us what we want. Get operand 2 instead. 13093 Base = Intrin->getOperand(2); 13094 MMO = Intrin->getMemOperand(); 13095 break; 13096 } 13097 } 13098 13099 MVT VecTy = N->getValueType(0).getSimpleVT(); 13100 13101 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13102 // aligned and the type is a vector with elements up to 4 bytes 13103 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13104 && VecTy.getScalarSizeInBits() <= 32 ) { 13105 return SDValue(); 13106 } 13107 13108 SDValue LoadOps[] = { Chain, Base }; 13109 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13110 DAG.getVTList(MVT::v2f64, MVT::Other), 13111 LoadOps, MVT::v2f64, MMO); 13112 13113 DCI.AddToWorklist(Load.getNode()); 13114 Chain = Load.getValue(1); 13115 SDValue Swap = DAG.getNode( 13116 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13117 DCI.AddToWorklist(Swap.getNode()); 13118 13119 // Add a bitcast if the resulting load type doesn't match v2f64. 13120 if (VecTy != MVT::v2f64) { 13121 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13122 DCI.AddToWorklist(N.getNode()); 13123 // Package {bitcast value, swap's chain} to match Load's shape. 13124 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13125 N, Swap.getValue(1)); 13126 } 13127 13128 return Swap; 13129 } 13130 13131 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13132 // builtins) into stores with swaps. 13133 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13134 DAGCombinerInfo &DCI) const { 13135 SelectionDAG &DAG = DCI.DAG; 13136 SDLoc dl(N); 13137 SDValue Chain; 13138 SDValue Base; 13139 unsigned SrcOpnd; 13140 MachineMemOperand *MMO; 13141 13142 switch (N->getOpcode()) { 13143 default: 13144 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13145 case ISD::STORE: { 13146 StoreSDNode *ST = cast<StoreSDNode>(N); 13147 Chain = ST->getChain(); 13148 Base = ST->getBasePtr(); 13149 MMO = ST->getMemOperand(); 13150 SrcOpnd = 1; 13151 // If the MMO suggests this isn't a store of a full vector, leave 13152 // things alone. For a built-in, we have to make the change for 13153 // correctness, so if there is a size problem that will be a bug. 13154 if (MMO->getSize() < 16) 13155 return SDValue(); 13156 break; 13157 } 13158 case ISD::INTRINSIC_VOID: { 13159 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13160 Chain = Intrin->getChain(); 13161 // Intrin->getBasePtr() oddly does not get what we want. 13162 Base = Intrin->getOperand(3); 13163 MMO = Intrin->getMemOperand(); 13164 SrcOpnd = 2; 13165 break; 13166 } 13167 } 13168 13169 SDValue Src = N->getOperand(SrcOpnd); 13170 MVT VecTy = Src.getValueType().getSimpleVT(); 13171 13172 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13173 // aligned and the type is a vector with elements up to 4 bytes 13174 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13175 && VecTy.getScalarSizeInBits() <= 32 ) { 13176 return SDValue(); 13177 } 13178 13179 // All stores are done as v2f64 and possible bit cast. 13180 if (VecTy != MVT::v2f64) { 13181 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13182 DCI.AddToWorklist(Src.getNode()); 13183 } 13184 13185 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13186 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13187 DCI.AddToWorklist(Swap.getNode()); 13188 Chain = Swap.getValue(1); 13189 SDValue StoreOps[] = { Chain, Swap, Base }; 13190 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13191 DAG.getVTList(MVT::Other), 13192 StoreOps, VecTy, MMO); 13193 DCI.AddToWorklist(Store.getNode()); 13194 return Store; 13195 } 13196 13197 // Handle DAG combine for STORE (FP_TO_INT F). 13198 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13199 DAGCombinerInfo &DCI) const { 13200 13201 SelectionDAG &DAG = DCI.DAG; 13202 SDLoc dl(N); 13203 unsigned Opcode = N->getOperand(1).getOpcode(); 13204 13205 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13206 && "Not a FP_TO_INT Instruction!"); 13207 13208 SDValue Val = N->getOperand(1).getOperand(0); 13209 EVT Op1VT = N->getOperand(1).getValueType(); 13210 EVT ResVT = Val.getValueType(); 13211 13212 // Floating point types smaller than 32 bits are not legal on Power. 13213 if (ResVT.getScalarSizeInBits() < 32) 13214 return SDValue(); 13215 13216 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13217 bool ValidTypeForStoreFltAsInt = 13218 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13219 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13220 13221 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13222 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13223 return SDValue(); 13224 13225 // Extend f32 values to f64 13226 if (ResVT.getScalarSizeInBits() == 32) { 13227 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13228 DCI.AddToWorklist(Val.getNode()); 13229 } 13230 13231 // Set signed or unsigned conversion opcode. 13232 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13233 PPCISD::FP_TO_SINT_IN_VSR : 13234 PPCISD::FP_TO_UINT_IN_VSR; 13235 13236 Val = DAG.getNode(ConvOpcode, 13237 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13238 DCI.AddToWorklist(Val.getNode()); 13239 13240 // Set number of bytes being converted. 13241 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13242 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13243 DAG.getIntPtrConstant(ByteSize, dl, false), 13244 DAG.getValueType(Op1VT) }; 13245 13246 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13247 DAG.getVTList(MVT::Other), Ops, 13248 cast<StoreSDNode>(N)->getMemoryVT(), 13249 cast<StoreSDNode>(N)->getMemOperand()); 13250 13251 DCI.AddToWorklist(Val.getNode()); 13252 return Val; 13253 } 13254 13255 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13256 LSBaseSDNode *LSBase, 13257 DAGCombinerInfo &DCI) const { 13258 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13259 "Not a reverse memop pattern!"); 13260 13261 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13262 auto Mask = SVN->getMask(); 13263 int i = 0; 13264 auto I = Mask.rbegin(); 13265 auto E = Mask.rend(); 13266 13267 for (; I != E; ++I) { 13268 if (*I != i) 13269 return false; 13270 i++; 13271 } 13272 return true; 13273 }; 13274 13275 SelectionDAG &DAG = DCI.DAG; 13276 EVT VT = SVN->getValueType(0); 13277 13278 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13279 return SDValue(); 13280 13281 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13282 // See comment in PPCVSXSwapRemoval.cpp. 13283 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13284 if (!Subtarget.hasP9Vector()) 13285 return SDValue(); 13286 13287 if(!IsElementReverse(SVN)) 13288 return SDValue(); 13289 13290 if (LSBase->getOpcode() == ISD::LOAD) { 13291 SDLoc dl(SVN); 13292 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13293 return DAG.getMemIntrinsicNode( 13294 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13295 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13296 } 13297 13298 if (LSBase->getOpcode() == ISD::STORE) { 13299 SDLoc dl(LSBase); 13300 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13301 LSBase->getBasePtr()}; 13302 return DAG.getMemIntrinsicNode( 13303 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13304 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13305 } 13306 13307 llvm_unreachable("Expected a load or store node here"); 13308 } 13309 13310 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13311 DAGCombinerInfo &DCI) const { 13312 SelectionDAG &DAG = DCI.DAG; 13313 SDLoc dl(N); 13314 switch (N->getOpcode()) { 13315 default: break; 13316 case ISD::ADD: 13317 return combineADD(N, DCI); 13318 case ISD::SHL: 13319 return combineSHL(N, DCI); 13320 case ISD::SRA: 13321 return combineSRA(N, DCI); 13322 case ISD::SRL: 13323 return combineSRL(N, DCI); 13324 case ISD::MUL: 13325 return combineMUL(N, DCI); 13326 case PPCISD::SHL: 13327 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13328 return N->getOperand(0); 13329 break; 13330 case PPCISD::SRL: 13331 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13332 return N->getOperand(0); 13333 break; 13334 case PPCISD::SRA: 13335 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13336 if (C->isNullValue() || // 0 >>s V -> 0. 13337 C->isAllOnesValue()) // -1 >>s V -> -1. 13338 return N->getOperand(0); 13339 } 13340 break; 13341 case ISD::SIGN_EXTEND: 13342 case ISD::ZERO_EXTEND: 13343 case ISD::ANY_EXTEND: 13344 return DAGCombineExtBoolTrunc(N, DCI); 13345 case ISD::TRUNCATE: 13346 return combineTRUNCATE(N, DCI); 13347 case ISD::SETCC: 13348 if (SDValue CSCC = combineSetCC(N, DCI)) 13349 return CSCC; 13350 LLVM_FALLTHROUGH; 13351 case ISD::SELECT_CC: 13352 return DAGCombineTruncBoolExt(N, DCI); 13353 case ISD::SINT_TO_FP: 13354 case ISD::UINT_TO_FP: 13355 return combineFPToIntToFP(N, DCI); 13356 case ISD::VECTOR_SHUFFLE: 13357 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13358 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13359 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13360 } 13361 break; 13362 case ISD::STORE: { 13363 13364 EVT Op1VT = N->getOperand(1).getValueType(); 13365 unsigned Opcode = N->getOperand(1).getOpcode(); 13366 13367 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13368 SDValue Val= combineStoreFPToInt(N, DCI); 13369 if (Val) 13370 return Val; 13371 } 13372 13373 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13374 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13375 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13376 if (Val) 13377 return Val; 13378 } 13379 13380 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13381 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13382 N->getOperand(1).getNode()->hasOneUse() && 13383 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13384 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13385 13386 // STBRX can only handle simple types and it makes no sense to store less 13387 // two bytes in byte-reversed order. 13388 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13389 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13390 break; 13391 13392 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13393 // Do an any-extend to 32-bits if this is a half-word input. 13394 if (BSwapOp.getValueType() == MVT::i16) 13395 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13396 13397 // If the type of BSWAP operand is wider than stored memory width 13398 // it need to be shifted to the right side before STBRX. 13399 if (Op1VT.bitsGT(mVT)) { 13400 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13401 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13402 DAG.getConstant(Shift, dl, MVT::i32)); 13403 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13404 if (Op1VT == MVT::i64) 13405 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13406 } 13407 13408 SDValue Ops[] = { 13409 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13410 }; 13411 return 13412 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13413 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13414 cast<StoreSDNode>(N)->getMemOperand()); 13415 } 13416 13417 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13418 // So it can increase the chance of CSE constant construction. 13419 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13420 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13421 // Need to sign-extended to 64-bits to handle negative values. 13422 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13423 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13424 MemVT.getSizeInBits()); 13425 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13426 13427 // DAG.getTruncStore() can't be used here because it doesn't accept 13428 // the general (base + offset) addressing mode. 13429 // So we use UpdateNodeOperands and setTruncatingStore instead. 13430 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13431 N->getOperand(3)); 13432 cast<StoreSDNode>(N)->setTruncatingStore(true); 13433 return SDValue(N, 0); 13434 } 13435 13436 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13437 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13438 if (Op1VT.isSimple()) { 13439 MVT StoreVT = Op1VT.getSimpleVT(); 13440 if (Subtarget.needsSwapsForVSXMemOps() && 13441 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13442 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13443 return expandVSXStoreForLE(N, DCI); 13444 } 13445 break; 13446 } 13447 case ISD::LOAD: { 13448 LoadSDNode *LD = cast<LoadSDNode>(N); 13449 EVT VT = LD->getValueType(0); 13450 13451 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13452 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13453 if (VT.isSimple()) { 13454 MVT LoadVT = VT.getSimpleVT(); 13455 if (Subtarget.needsSwapsForVSXMemOps() && 13456 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13457 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13458 return expandVSXLoadForLE(N, DCI); 13459 } 13460 13461 // We sometimes end up with a 64-bit integer load, from which we extract 13462 // two single-precision floating-point numbers. This happens with 13463 // std::complex<float>, and other similar structures, because of the way we 13464 // canonicalize structure copies. However, if we lack direct moves, 13465 // then the final bitcasts from the extracted integer values to the 13466 // floating-point numbers turn into store/load pairs. Even with direct moves, 13467 // just loading the two floating-point numbers is likely better. 13468 auto ReplaceTwoFloatLoad = [&]() { 13469 if (VT != MVT::i64) 13470 return false; 13471 13472 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13473 LD->isVolatile()) 13474 return false; 13475 13476 // We're looking for a sequence like this: 13477 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13478 // t16: i64 = srl t13, Constant:i32<32> 13479 // t17: i32 = truncate t16 13480 // t18: f32 = bitcast t17 13481 // t19: i32 = truncate t13 13482 // t20: f32 = bitcast t19 13483 13484 if (!LD->hasNUsesOfValue(2, 0)) 13485 return false; 13486 13487 auto UI = LD->use_begin(); 13488 while (UI.getUse().getResNo() != 0) ++UI; 13489 SDNode *Trunc = *UI++; 13490 while (UI.getUse().getResNo() != 0) ++UI; 13491 SDNode *RightShift = *UI; 13492 if (Trunc->getOpcode() != ISD::TRUNCATE) 13493 std::swap(Trunc, RightShift); 13494 13495 if (Trunc->getOpcode() != ISD::TRUNCATE || 13496 Trunc->getValueType(0) != MVT::i32 || 13497 !Trunc->hasOneUse()) 13498 return false; 13499 if (RightShift->getOpcode() != ISD::SRL || 13500 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13501 RightShift->getConstantOperandVal(1) != 32 || 13502 !RightShift->hasOneUse()) 13503 return false; 13504 13505 SDNode *Trunc2 = *RightShift->use_begin(); 13506 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13507 Trunc2->getValueType(0) != MVT::i32 || 13508 !Trunc2->hasOneUse()) 13509 return false; 13510 13511 SDNode *Bitcast = *Trunc->use_begin(); 13512 SDNode *Bitcast2 = *Trunc2->use_begin(); 13513 13514 if (Bitcast->getOpcode() != ISD::BITCAST || 13515 Bitcast->getValueType(0) != MVT::f32) 13516 return false; 13517 if (Bitcast2->getOpcode() != ISD::BITCAST || 13518 Bitcast2->getValueType(0) != MVT::f32) 13519 return false; 13520 13521 if (Subtarget.isLittleEndian()) 13522 std::swap(Bitcast, Bitcast2); 13523 13524 // Bitcast has the second float (in memory-layout order) and Bitcast2 13525 // has the first one. 13526 13527 SDValue BasePtr = LD->getBasePtr(); 13528 if (LD->isIndexed()) { 13529 assert(LD->getAddressingMode() == ISD::PRE_INC && 13530 "Non-pre-inc AM on PPC?"); 13531 BasePtr = 13532 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13533 LD->getOffset()); 13534 } 13535 13536 auto MMOFlags = 13537 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13538 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13539 LD->getPointerInfo(), LD->getAlignment(), 13540 MMOFlags, LD->getAAInfo()); 13541 SDValue AddPtr = 13542 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13543 BasePtr, DAG.getIntPtrConstant(4, dl)); 13544 SDValue FloatLoad2 = DAG.getLoad( 13545 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13546 LD->getPointerInfo().getWithOffset(4), 13547 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13548 13549 if (LD->isIndexed()) { 13550 // Note that DAGCombine should re-form any pre-increment load(s) from 13551 // what is produced here if that makes sense. 13552 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13553 } 13554 13555 DCI.CombineTo(Bitcast2, FloatLoad); 13556 DCI.CombineTo(Bitcast, FloatLoad2); 13557 13558 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13559 SDValue(FloatLoad2.getNode(), 1)); 13560 return true; 13561 }; 13562 13563 if (ReplaceTwoFloatLoad()) 13564 return SDValue(N, 0); 13565 13566 EVT MemVT = LD->getMemoryVT(); 13567 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13568 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13569 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13570 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13571 if (LD->isUnindexed() && VT.isVector() && 13572 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13573 // P8 and later hardware should just use LOAD. 13574 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13575 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13576 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13577 LD->getAlignment() >= ScalarABIAlignment)) && 13578 LD->getAlignment() < ABIAlignment) { 13579 // This is a type-legal unaligned Altivec or QPX load. 13580 SDValue Chain = LD->getChain(); 13581 SDValue Ptr = LD->getBasePtr(); 13582 bool isLittleEndian = Subtarget.isLittleEndian(); 13583 13584 // This implements the loading of unaligned vectors as described in 13585 // the venerable Apple Velocity Engine overview. Specifically: 13586 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13587 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13588 // 13589 // The general idea is to expand a sequence of one or more unaligned 13590 // loads into an alignment-based permutation-control instruction (lvsl 13591 // or lvsr), a series of regular vector loads (which always truncate 13592 // their input address to an aligned address), and a series of 13593 // permutations. The results of these permutations are the requested 13594 // loaded values. The trick is that the last "extra" load is not taken 13595 // from the address you might suspect (sizeof(vector) bytes after the 13596 // last requested load), but rather sizeof(vector) - 1 bytes after the 13597 // last requested vector. The point of this is to avoid a page fault if 13598 // the base address happened to be aligned. This works because if the 13599 // base address is aligned, then adding less than a full vector length 13600 // will cause the last vector in the sequence to be (re)loaded. 13601 // Otherwise, the next vector will be fetched as you might suspect was 13602 // necessary. 13603 13604 // We might be able to reuse the permutation generation from 13605 // a different base address offset from this one by an aligned amount. 13606 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13607 // optimization later. 13608 Intrinsic::ID Intr, IntrLD, IntrPerm; 13609 MVT PermCntlTy, PermTy, LDTy; 13610 if (Subtarget.hasAltivec()) { 13611 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13612 Intrinsic::ppc_altivec_lvsl; 13613 IntrLD = Intrinsic::ppc_altivec_lvx; 13614 IntrPerm = Intrinsic::ppc_altivec_vperm; 13615 PermCntlTy = MVT::v16i8; 13616 PermTy = MVT::v4i32; 13617 LDTy = MVT::v4i32; 13618 } else { 13619 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13620 Intrinsic::ppc_qpx_qvlpcls; 13621 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13622 Intrinsic::ppc_qpx_qvlfs; 13623 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13624 PermCntlTy = MVT::v4f64; 13625 PermTy = MVT::v4f64; 13626 LDTy = MemVT.getSimpleVT(); 13627 } 13628 13629 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13630 13631 // Create the new MMO for the new base load. It is like the original MMO, 13632 // but represents an area in memory almost twice the vector size centered 13633 // on the original address. If the address is unaligned, we might start 13634 // reading up to (sizeof(vector)-1) bytes below the address of the 13635 // original unaligned load. 13636 MachineFunction &MF = DAG.getMachineFunction(); 13637 MachineMemOperand *BaseMMO = 13638 MF.getMachineMemOperand(LD->getMemOperand(), 13639 -(long)MemVT.getStoreSize()+1, 13640 2*MemVT.getStoreSize()-1); 13641 13642 // Create the new base load. 13643 SDValue LDXIntID = 13644 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13645 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13646 SDValue BaseLoad = 13647 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13648 DAG.getVTList(PermTy, MVT::Other), 13649 BaseLoadOps, LDTy, BaseMMO); 13650 13651 // Note that the value of IncOffset (which is provided to the next 13652 // load's pointer info offset value, and thus used to calculate the 13653 // alignment), and the value of IncValue (which is actually used to 13654 // increment the pointer value) are different! This is because we 13655 // require the next load to appear to be aligned, even though it 13656 // is actually offset from the base pointer by a lesser amount. 13657 int IncOffset = VT.getSizeInBits() / 8; 13658 int IncValue = IncOffset; 13659 13660 // Walk (both up and down) the chain looking for another load at the real 13661 // (aligned) offset (the alignment of the other load does not matter in 13662 // this case). If found, then do not use the offset reduction trick, as 13663 // that will prevent the loads from being later combined (as they would 13664 // otherwise be duplicates). 13665 if (!findConsecutiveLoad(LD, DAG)) 13666 --IncValue; 13667 13668 SDValue Increment = 13669 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13670 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13671 13672 MachineMemOperand *ExtraMMO = 13673 MF.getMachineMemOperand(LD->getMemOperand(), 13674 1, 2*MemVT.getStoreSize()-1); 13675 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13676 SDValue ExtraLoad = 13677 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13678 DAG.getVTList(PermTy, MVT::Other), 13679 ExtraLoadOps, LDTy, ExtraMMO); 13680 13681 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13682 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13683 13684 // Because vperm has a big-endian bias, we must reverse the order 13685 // of the input vectors and complement the permute control vector 13686 // when generating little endian code. We have already handled the 13687 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13688 // and ExtraLoad here. 13689 SDValue Perm; 13690 if (isLittleEndian) 13691 Perm = BuildIntrinsicOp(IntrPerm, 13692 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13693 else 13694 Perm = BuildIntrinsicOp(IntrPerm, 13695 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13696 13697 if (VT != PermTy) 13698 Perm = Subtarget.hasAltivec() ? 13699 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13700 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13701 DAG.getTargetConstant(1, dl, MVT::i64)); 13702 // second argument is 1 because this rounding 13703 // is always exact. 13704 13705 // The output of the permutation is our loaded result, the TokenFactor is 13706 // our new chain. 13707 DCI.CombineTo(N, Perm, TF); 13708 return SDValue(N, 0); 13709 } 13710 } 13711 break; 13712 case ISD::INTRINSIC_WO_CHAIN: { 13713 bool isLittleEndian = Subtarget.isLittleEndian(); 13714 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13715 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13716 : Intrinsic::ppc_altivec_lvsl); 13717 if ((IID == Intr || 13718 IID == Intrinsic::ppc_qpx_qvlpcld || 13719 IID == Intrinsic::ppc_qpx_qvlpcls) && 13720 N->getOperand(1)->getOpcode() == ISD::ADD) { 13721 SDValue Add = N->getOperand(1); 13722 13723 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13724 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13725 13726 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13727 APInt::getAllOnesValue(Bits /* alignment */) 13728 .zext(Add.getScalarValueSizeInBits()))) { 13729 SDNode *BasePtr = Add->getOperand(0).getNode(); 13730 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13731 UE = BasePtr->use_end(); 13732 UI != UE; ++UI) { 13733 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13734 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13735 // We've found another LVSL/LVSR, and this address is an aligned 13736 // multiple of that one. The results will be the same, so use the 13737 // one we've just found instead. 13738 13739 return SDValue(*UI, 0); 13740 } 13741 } 13742 } 13743 13744 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13745 SDNode *BasePtr = Add->getOperand(0).getNode(); 13746 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13747 UE = BasePtr->use_end(); UI != UE; ++UI) { 13748 if (UI->getOpcode() == ISD::ADD && 13749 isa<ConstantSDNode>(UI->getOperand(1)) && 13750 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13751 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13752 (1ULL << Bits) == 0) { 13753 SDNode *OtherAdd = *UI; 13754 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13755 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13756 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13757 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13758 return SDValue(*VI, 0); 13759 } 13760 } 13761 } 13762 } 13763 } 13764 } 13765 13766 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13767 // Expose the vabsduw/h/b opportunity for down stream 13768 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13769 (IID == Intrinsic::ppc_altivec_vmaxsw || 13770 IID == Intrinsic::ppc_altivec_vmaxsh || 13771 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13772 SDValue V1 = N->getOperand(1); 13773 SDValue V2 = N->getOperand(2); 13774 if ((V1.getSimpleValueType() == MVT::v4i32 || 13775 V1.getSimpleValueType() == MVT::v8i16 || 13776 V1.getSimpleValueType() == MVT::v16i8) && 13777 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13778 // (0-a, a) 13779 if (V1.getOpcode() == ISD::SUB && 13780 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13781 V1.getOperand(1) == V2) { 13782 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13783 } 13784 // (a, 0-a) 13785 if (V2.getOpcode() == ISD::SUB && 13786 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13787 V2.getOperand(1) == V1) { 13788 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13789 } 13790 // (x-y, y-x) 13791 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13792 V1.getOperand(0) == V2.getOperand(1) && 13793 V1.getOperand(1) == V2.getOperand(0)) { 13794 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13795 } 13796 } 13797 } 13798 } 13799 13800 break; 13801 case ISD::INTRINSIC_W_CHAIN: 13802 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13803 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13804 if (Subtarget.needsSwapsForVSXMemOps()) { 13805 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13806 default: 13807 break; 13808 case Intrinsic::ppc_vsx_lxvw4x: 13809 case Intrinsic::ppc_vsx_lxvd2x: 13810 return expandVSXLoadForLE(N, DCI); 13811 } 13812 } 13813 break; 13814 case ISD::INTRINSIC_VOID: 13815 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13816 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13817 if (Subtarget.needsSwapsForVSXMemOps()) { 13818 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13819 default: 13820 break; 13821 case Intrinsic::ppc_vsx_stxvw4x: 13822 case Intrinsic::ppc_vsx_stxvd2x: 13823 return expandVSXStoreForLE(N, DCI); 13824 } 13825 } 13826 break; 13827 case ISD::BSWAP: 13828 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13829 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13830 N->getOperand(0).hasOneUse() && 13831 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13832 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13833 N->getValueType(0) == MVT::i64))) { 13834 SDValue Load = N->getOperand(0); 13835 LoadSDNode *LD = cast<LoadSDNode>(Load); 13836 // Create the byte-swapping load. 13837 SDValue Ops[] = { 13838 LD->getChain(), // Chain 13839 LD->getBasePtr(), // Ptr 13840 DAG.getValueType(N->getValueType(0)) // VT 13841 }; 13842 SDValue BSLoad = 13843 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13844 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13845 MVT::i64 : MVT::i32, MVT::Other), 13846 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13847 13848 // If this is an i16 load, insert the truncate. 13849 SDValue ResVal = BSLoad; 13850 if (N->getValueType(0) == MVT::i16) 13851 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13852 13853 // First, combine the bswap away. This makes the value produced by the 13854 // load dead. 13855 DCI.CombineTo(N, ResVal); 13856 13857 // Next, combine the load away, we give it a bogus result value but a real 13858 // chain result. The result value is dead because the bswap is dead. 13859 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13860 13861 // Return N so it doesn't get rechecked! 13862 return SDValue(N, 0); 13863 } 13864 break; 13865 case PPCISD::VCMP: 13866 // If a VCMPo node already exists with exactly the same operands as this 13867 // node, use its result instead of this node (VCMPo computes both a CR6 and 13868 // a normal output). 13869 // 13870 if (!N->getOperand(0).hasOneUse() && 13871 !N->getOperand(1).hasOneUse() && 13872 !N->getOperand(2).hasOneUse()) { 13873 13874 // Scan all of the users of the LHS, looking for VCMPo's that match. 13875 SDNode *VCMPoNode = nullptr; 13876 13877 SDNode *LHSN = N->getOperand(0).getNode(); 13878 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13879 UI != E; ++UI) 13880 if (UI->getOpcode() == PPCISD::VCMPo && 13881 UI->getOperand(1) == N->getOperand(1) && 13882 UI->getOperand(2) == N->getOperand(2) && 13883 UI->getOperand(0) == N->getOperand(0)) { 13884 VCMPoNode = *UI; 13885 break; 13886 } 13887 13888 // If there is no VCMPo node, or if the flag value has a single use, don't 13889 // transform this. 13890 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13891 break; 13892 13893 // Look at the (necessarily single) use of the flag value. If it has a 13894 // chain, this transformation is more complex. Note that multiple things 13895 // could use the value result, which we should ignore. 13896 SDNode *FlagUser = nullptr; 13897 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13898 FlagUser == nullptr; ++UI) { 13899 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13900 SDNode *User = *UI; 13901 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13902 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13903 FlagUser = User; 13904 break; 13905 } 13906 } 13907 } 13908 13909 // If the user is a MFOCRF instruction, we know this is safe. 13910 // Otherwise we give up for right now. 13911 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13912 return SDValue(VCMPoNode, 0); 13913 } 13914 break; 13915 case ISD::BRCOND: { 13916 SDValue Cond = N->getOperand(1); 13917 SDValue Target = N->getOperand(2); 13918 13919 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13920 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13921 Intrinsic::loop_decrement) { 13922 13923 // We now need to make the intrinsic dead (it cannot be instruction 13924 // selected). 13925 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13926 assert(Cond.getNode()->hasOneUse() && 13927 "Counter decrement has more than one use"); 13928 13929 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13930 N->getOperand(0), Target); 13931 } 13932 } 13933 break; 13934 case ISD::BR_CC: { 13935 // If this is a branch on an altivec predicate comparison, lower this so 13936 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13937 // lowering is done pre-legalize, because the legalizer lowers the predicate 13938 // compare down to code that is difficult to reassemble. 13939 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13940 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13941 13942 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13943 // value. If so, pass-through the AND to get to the intrinsic. 13944 if (LHS.getOpcode() == ISD::AND && 13945 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13946 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13947 Intrinsic::loop_decrement && 13948 isa<ConstantSDNode>(LHS.getOperand(1)) && 13949 !isNullConstant(LHS.getOperand(1))) 13950 LHS = LHS.getOperand(0); 13951 13952 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13953 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13954 Intrinsic::loop_decrement && 13955 isa<ConstantSDNode>(RHS)) { 13956 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13957 "Counter decrement comparison is not EQ or NE"); 13958 13959 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13960 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13961 (CC == ISD::SETNE && !Val); 13962 13963 // We now need to make the intrinsic dead (it cannot be instruction 13964 // selected). 13965 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13966 assert(LHS.getNode()->hasOneUse() && 13967 "Counter decrement has more than one use"); 13968 13969 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13970 N->getOperand(0), N->getOperand(4)); 13971 } 13972 13973 int CompareOpc; 13974 bool isDot; 13975 13976 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13977 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13978 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13979 assert(isDot && "Can't compare against a vector result!"); 13980 13981 // If this is a comparison against something other than 0/1, then we know 13982 // that the condition is never/always true. 13983 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13984 if (Val != 0 && Val != 1) { 13985 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13986 return N->getOperand(0); 13987 // Always !=, turn it into an unconditional branch. 13988 return DAG.getNode(ISD::BR, dl, MVT::Other, 13989 N->getOperand(0), N->getOperand(4)); 13990 } 13991 13992 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13993 13994 // Create the PPCISD altivec 'dot' comparison node. 13995 SDValue Ops[] = { 13996 LHS.getOperand(2), // LHS of compare 13997 LHS.getOperand(3), // RHS of compare 13998 DAG.getConstant(CompareOpc, dl, MVT::i32) 13999 }; 14000 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14001 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14002 14003 // Unpack the result based on how the target uses it. 14004 PPC::Predicate CompOpc; 14005 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14006 default: // Can't happen, don't crash on invalid number though. 14007 case 0: // Branch on the value of the EQ bit of CR6. 14008 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14009 break; 14010 case 1: // Branch on the inverted value of the EQ bit of CR6. 14011 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14012 break; 14013 case 2: // Branch on the value of the LT bit of CR6. 14014 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14015 break; 14016 case 3: // Branch on the inverted value of the LT bit of CR6. 14017 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14018 break; 14019 } 14020 14021 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14022 DAG.getConstant(CompOpc, dl, MVT::i32), 14023 DAG.getRegister(PPC::CR6, MVT::i32), 14024 N->getOperand(4), CompNode.getValue(1)); 14025 } 14026 break; 14027 } 14028 case ISD::BUILD_VECTOR: 14029 return DAGCombineBuildVector(N, DCI); 14030 case ISD::ABS: 14031 return combineABS(N, DCI); 14032 case ISD::VSELECT: 14033 return combineVSelect(N, DCI); 14034 } 14035 14036 return SDValue(); 14037 } 14038 14039 SDValue 14040 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14041 SelectionDAG &DAG, 14042 SmallVectorImpl<SDNode *> &Created) const { 14043 // fold (sdiv X, pow2) 14044 EVT VT = N->getValueType(0); 14045 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14046 return SDValue(); 14047 if ((VT != MVT::i32 && VT != MVT::i64) || 14048 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14049 return SDValue(); 14050 14051 SDLoc DL(N); 14052 SDValue N0 = N->getOperand(0); 14053 14054 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14055 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14056 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14057 14058 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14059 Created.push_back(Op.getNode()); 14060 14061 if (IsNegPow2) { 14062 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14063 Created.push_back(Op.getNode()); 14064 } 14065 14066 return Op; 14067 } 14068 14069 //===----------------------------------------------------------------------===// 14070 // Inline Assembly Support 14071 //===----------------------------------------------------------------------===// 14072 14073 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14074 KnownBits &Known, 14075 const APInt &DemandedElts, 14076 const SelectionDAG &DAG, 14077 unsigned Depth) const { 14078 Known.resetAll(); 14079 switch (Op.getOpcode()) { 14080 default: break; 14081 case PPCISD::LBRX: { 14082 // lhbrx is known to have the top bits cleared out. 14083 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14084 Known.Zero = 0xFFFF0000; 14085 break; 14086 } 14087 case ISD::INTRINSIC_WO_CHAIN: { 14088 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14089 default: break; 14090 case Intrinsic::ppc_altivec_vcmpbfp_p: 14091 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14092 case Intrinsic::ppc_altivec_vcmpequb_p: 14093 case Intrinsic::ppc_altivec_vcmpequh_p: 14094 case Intrinsic::ppc_altivec_vcmpequw_p: 14095 case Intrinsic::ppc_altivec_vcmpequd_p: 14096 case Intrinsic::ppc_altivec_vcmpgefp_p: 14097 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14098 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14099 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14100 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14101 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14102 case Intrinsic::ppc_altivec_vcmpgtub_p: 14103 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14104 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14105 case Intrinsic::ppc_altivec_vcmpgtud_p: 14106 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14107 break; 14108 } 14109 } 14110 } 14111 } 14112 14113 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14114 switch (Subtarget.getDarwinDirective()) { 14115 default: break; 14116 case PPC::DIR_970: 14117 case PPC::DIR_PWR4: 14118 case PPC::DIR_PWR5: 14119 case PPC::DIR_PWR5X: 14120 case PPC::DIR_PWR6: 14121 case PPC::DIR_PWR6X: 14122 case PPC::DIR_PWR7: 14123 case PPC::DIR_PWR8: 14124 case PPC::DIR_PWR9: { 14125 if (!ML) 14126 break; 14127 14128 if (!DisableInnermostLoopAlign32) { 14129 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14130 // so that we can decrease cache misses and branch-prediction misses. 14131 // Actual alignment of the loop will depend on the hotness check and other 14132 // logic in alignBlocks. 14133 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14134 return Align(32); 14135 } 14136 14137 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14138 14139 // For small loops (between 5 and 8 instructions), align to a 32-byte 14140 // boundary so that the entire loop fits in one instruction-cache line. 14141 uint64_t LoopSize = 0; 14142 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14143 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14144 LoopSize += TII->getInstSizeInBytes(*J); 14145 if (LoopSize > 32) 14146 break; 14147 } 14148 14149 if (LoopSize > 16 && LoopSize <= 32) 14150 return Align(32); 14151 14152 break; 14153 } 14154 } 14155 14156 return TargetLowering::getPrefLoopAlignment(ML); 14157 } 14158 14159 /// getConstraintType - Given a constraint, return the type of 14160 /// constraint it is for this target. 14161 PPCTargetLowering::ConstraintType 14162 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14163 if (Constraint.size() == 1) { 14164 switch (Constraint[0]) { 14165 default: break; 14166 case 'b': 14167 case 'r': 14168 case 'f': 14169 case 'd': 14170 case 'v': 14171 case 'y': 14172 return C_RegisterClass; 14173 case 'Z': 14174 // FIXME: While Z does indicate a memory constraint, it specifically 14175 // indicates an r+r address (used in conjunction with the 'y' modifier 14176 // in the replacement string). Currently, we're forcing the base 14177 // register to be r0 in the asm printer (which is interpreted as zero) 14178 // and forming the complete address in the second register. This is 14179 // suboptimal. 14180 return C_Memory; 14181 } 14182 } else if (Constraint == "wc") { // individual CR bits. 14183 return C_RegisterClass; 14184 } else if (Constraint == "wa" || Constraint == "wd" || 14185 Constraint == "wf" || Constraint == "ws" || 14186 Constraint == "wi" || Constraint == "ww") { 14187 return C_RegisterClass; // VSX registers. 14188 } 14189 return TargetLowering::getConstraintType(Constraint); 14190 } 14191 14192 /// Examine constraint type and operand type and determine a weight value. 14193 /// This object must already have been set up with the operand type 14194 /// and the current alternative constraint selected. 14195 TargetLowering::ConstraintWeight 14196 PPCTargetLowering::getSingleConstraintMatchWeight( 14197 AsmOperandInfo &info, const char *constraint) const { 14198 ConstraintWeight weight = CW_Invalid; 14199 Value *CallOperandVal = info.CallOperandVal; 14200 // If we don't have a value, we can't do a match, 14201 // but allow it at the lowest weight. 14202 if (!CallOperandVal) 14203 return CW_Default; 14204 Type *type = CallOperandVal->getType(); 14205 14206 // Look at the constraint type. 14207 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14208 return CW_Register; // an individual CR bit. 14209 else if ((StringRef(constraint) == "wa" || 14210 StringRef(constraint) == "wd" || 14211 StringRef(constraint) == "wf") && 14212 type->isVectorTy()) 14213 return CW_Register; 14214 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14215 return CW_Register; // just hold 64-bit integers data. 14216 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14217 return CW_Register; 14218 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14219 return CW_Register; 14220 14221 switch (*constraint) { 14222 default: 14223 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14224 break; 14225 case 'b': 14226 if (type->isIntegerTy()) 14227 weight = CW_Register; 14228 break; 14229 case 'f': 14230 if (type->isFloatTy()) 14231 weight = CW_Register; 14232 break; 14233 case 'd': 14234 if (type->isDoubleTy()) 14235 weight = CW_Register; 14236 break; 14237 case 'v': 14238 if (type->isVectorTy()) 14239 weight = CW_Register; 14240 break; 14241 case 'y': 14242 weight = CW_Register; 14243 break; 14244 case 'Z': 14245 weight = CW_Memory; 14246 break; 14247 } 14248 return weight; 14249 } 14250 14251 std::pair<unsigned, const TargetRegisterClass *> 14252 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14253 StringRef Constraint, 14254 MVT VT) const { 14255 if (Constraint.size() == 1) { 14256 // GCC RS6000 Constraint Letters 14257 switch (Constraint[0]) { 14258 case 'b': // R1-R31 14259 if (VT == MVT::i64 && Subtarget.isPPC64()) 14260 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14261 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14262 case 'r': // R0-R31 14263 if (VT == MVT::i64 && Subtarget.isPPC64()) 14264 return std::make_pair(0U, &PPC::G8RCRegClass); 14265 return std::make_pair(0U, &PPC::GPRCRegClass); 14266 // 'd' and 'f' constraints are both defined to be "the floating point 14267 // registers", where one is for 32-bit and the other for 64-bit. We don't 14268 // really care overly much here so just give them all the same reg classes. 14269 case 'd': 14270 case 'f': 14271 if (Subtarget.hasSPE()) { 14272 if (VT == MVT::f32 || VT == MVT::i32) 14273 return std::make_pair(0U, &PPC::GPRCRegClass); 14274 if (VT == MVT::f64 || VT == MVT::i64) 14275 return std::make_pair(0U, &PPC::SPERCRegClass); 14276 } else { 14277 if (VT == MVT::f32 || VT == MVT::i32) 14278 return std::make_pair(0U, &PPC::F4RCRegClass); 14279 if (VT == MVT::f64 || VT == MVT::i64) 14280 return std::make_pair(0U, &PPC::F8RCRegClass); 14281 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14282 return std::make_pair(0U, &PPC::QFRCRegClass); 14283 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14284 return std::make_pair(0U, &PPC::QSRCRegClass); 14285 } 14286 break; 14287 case 'v': 14288 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14289 return std::make_pair(0U, &PPC::QFRCRegClass); 14290 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14291 return std::make_pair(0U, &PPC::QSRCRegClass); 14292 if (Subtarget.hasAltivec()) 14293 return std::make_pair(0U, &PPC::VRRCRegClass); 14294 break; 14295 case 'y': // crrc 14296 return std::make_pair(0U, &PPC::CRRCRegClass); 14297 } 14298 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14299 // An individual CR bit. 14300 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14301 } else if ((Constraint == "wa" || Constraint == "wd" || 14302 Constraint == "wf" || Constraint == "wi") && 14303 Subtarget.hasVSX()) { 14304 return std::make_pair(0U, &PPC::VSRCRegClass); 14305 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14306 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14307 return std::make_pair(0U, &PPC::VSSRCRegClass); 14308 else 14309 return std::make_pair(0U, &PPC::VSFRCRegClass); 14310 } 14311 14312 std::pair<unsigned, const TargetRegisterClass *> R = 14313 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14314 14315 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14316 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14317 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14318 // register. 14319 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14320 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14321 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14322 PPC::GPRCRegClass.contains(R.first)) 14323 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14324 PPC::sub_32, &PPC::G8RCRegClass), 14325 &PPC::G8RCRegClass); 14326 14327 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14328 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14329 R.first = PPC::CR0; 14330 R.second = &PPC::CRRCRegClass; 14331 } 14332 14333 return R; 14334 } 14335 14336 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14337 /// vector. If it is invalid, don't add anything to Ops. 14338 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14339 std::string &Constraint, 14340 std::vector<SDValue>&Ops, 14341 SelectionDAG &DAG) const { 14342 SDValue Result; 14343 14344 // Only support length 1 constraints. 14345 if (Constraint.length() > 1) return; 14346 14347 char Letter = Constraint[0]; 14348 switch (Letter) { 14349 default: break; 14350 case 'I': 14351 case 'J': 14352 case 'K': 14353 case 'L': 14354 case 'M': 14355 case 'N': 14356 case 'O': 14357 case 'P': { 14358 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14359 if (!CST) return; // Must be an immediate to match. 14360 SDLoc dl(Op); 14361 int64_t Value = CST->getSExtValue(); 14362 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14363 // numbers are printed as such. 14364 switch (Letter) { 14365 default: llvm_unreachable("Unknown constraint letter!"); 14366 case 'I': // "I" is a signed 16-bit constant. 14367 if (isInt<16>(Value)) 14368 Result = DAG.getTargetConstant(Value, dl, TCVT); 14369 break; 14370 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14371 if (isShiftedUInt<16, 16>(Value)) 14372 Result = DAG.getTargetConstant(Value, dl, TCVT); 14373 break; 14374 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14375 if (isShiftedInt<16, 16>(Value)) 14376 Result = DAG.getTargetConstant(Value, dl, TCVT); 14377 break; 14378 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14379 if (isUInt<16>(Value)) 14380 Result = DAG.getTargetConstant(Value, dl, TCVT); 14381 break; 14382 case 'M': // "M" is a constant that is greater than 31. 14383 if (Value > 31) 14384 Result = DAG.getTargetConstant(Value, dl, TCVT); 14385 break; 14386 case 'N': // "N" is a positive constant that is an exact power of two. 14387 if (Value > 0 && isPowerOf2_64(Value)) 14388 Result = DAG.getTargetConstant(Value, dl, TCVT); 14389 break; 14390 case 'O': // "O" is the constant zero. 14391 if (Value == 0) 14392 Result = DAG.getTargetConstant(Value, dl, TCVT); 14393 break; 14394 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14395 if (isInt<16>(-Value)) 14396 Result = DAG.getTargetConstant(Value, dl, TCVT); 14397 break; 14398 } 14399 break; 14400 } 14401 } 14402 14403 if (Result.getNode()) { 14404 Ops.push_back(Result); 14405 return; 14406 } 14407 14408 // Handle standard constraint letters. 14409 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14410 } 14411 14412 // isLegalAddressingMode - Return true if the addressing mode represented 14413 // by AM is legal for this target, for a load/store of the specified type. 14414 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14415 const AddrMode &AM, Type *Ty, 14416 unsigned AS, Instruction *I) const { 14417 // PPC does not allow r+i addressing modes for vectors! 14418 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14419 return false; 14420 14421 // PPC allows a sign-extended 16-bit immediate field. 14422 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14423 return false; 14424 14425 // No global is ever allowed as a base. 14426 if (AM.BaseGV) 14427 return false; 14428 14429 // PPC only support r+r, 14430 switch (AM.Scale) { 14431 case 0: // "r+i" or just "i", depending on HasBaseReg. 14432 break; 14433 case 1: 14434 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14435 return false; 14436 // Otherwise we have r+r or r+i. 14437 break; 14438 case 2: 14439 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14440 return false; 14441 // Allow 2*r as r+r. 14442 break; 14443 default: 14444 // No other scales are supported. 14445 return false; 14446 } 14447 14448 return true; 14449 } 14450 14451 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14452 SelectionDAG &DAG) const { 14453 MachineFunction &MF = DAG.getMachineFunction(); 14454 MachineFrameInfo &MFI = MF.getFrameInfo(); 14455 MFI.setReturnAddressIsTaken(true); 14456 14457 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14458 return SDValue(); 14459 14460 SDLoc dl(Op); 14461 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14462 14463 // Make sure the function does not optimize away the store of the RA to 14464 // the stack. 14465 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14466 FuncInfo->setLRStoreRequired(); 14467 bool isPPC64 = Subtarget.isPPC64(); 14468 auto PtrVT = getPointerTy(MF.getDataLayout()); 14469 14470 if (Depth > 0) { 14471 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14472 SDValue Offset = 14473 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14474 isPPC64 ? MVT::i64 : MVT::i32); 14475 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14476 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14477 MachinePointerInfo()); 14478 } 14479 14480 // Just load the return address off the stack. 14481 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14482 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14483 MachinePointerInfo()); 14484 } 14485 14486 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14487 SelectionDAG &DAG) const { 14488 SDLoc dl(Op); 14489 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14490 14491 MachineFunction &MF = DAG.getMachineFunction(); 14492 MachineFrameInfo &MFI = MF.getFrameInfo(); 14493 MFI.setFrameAddressIsTaken(true); 14494 14495 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14496 bool isPPC64 = PtrVT == MVT::i64; 14497 14498 // Naked functions never have a frame pointer, and so we use r1. For all 14499 // other functions, this decision must be delayed until during PEI. 14500 unsigned FrameReg; 14501 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14502 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14503 else 14504 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14505 14506 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14507 PtrVT); 14508 while (Depth--) 14509 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14510 FrameAddr, MachinePointerInfo()); 14511 return FrameAddr; 14512 } 14513 14514 // FIXME? Maybe this could be a TableGen attribute on some registers and 14515 // this table could be generated automatically from RegInfo. 14516 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14517 const MachineFunction &MF) const { 14518 bool isPPC64 = Subtarget.isPPC64(); 14519 bool IsDarwinABI = Subtarget.isDarwinABI(); 14520 14521 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14522 (!isPPC64 && VT != MVT::i32)) 14523 report_fatal_error("Invalid register global variable type"); 14524 14525 bool is64Bit = isPPC64 && VT == MVT::i64; 14526 Register Reg = StringSwitch<Register>(RegName) 14527 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14528 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14529 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14530 (is64Bit ? PPC::X13 : PPC::R13)) 14531 .Default(Register()); 14532 14533 if (Reg) 14534 return Reg; 14535 report_fatal_error("Invalid register name global variable"); 14536 } 14537 14538 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14539 // 32-bit SVR4 ABI access everything as got-indirect. 14540 if (Subtarget.is32BitELFABI()) 14541 return true; 14542 14543 // AIX accesses everything indirectly through the TOC, which is similar to 14544 // the GOT. 14545 if (Subtarget.isAIXABI()) 14546 return true; 14547 14548 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14549 // If it is small or large code model, module locals are accessed 14550 // indirectly by loading their address from .toc/.got. 14551 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14552 return true; 14553 14554 // JumpTable and BlockAddress are accessed as got-indirect. 14555 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14556 return true; 14557 14558 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14559 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14560 14561 return false; 14562 } 14563 14564 bool 14565 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14566 // The PowerPC target isn't yet aware of offsets. 14567 return false; 14568 } 14569 14570 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14571 const CallInst &I, 14572 MachineFunction &MF, 14573 unsigned Intrinsic) const { 14574 switch (Intrinsic) { 14575 case Intrinsic::ppc_qpx_qvlfd: 14576 case Intrinsic::ppc_qpx_qvlfs: 14577 case Intrinsic::ppc_qpx_qvlfcd: 14578 case Intrinsic::ppc_qpx_qvlfcs: 14579 case Intrinsic::ppc_qpx_qvlfiwa: 14580 case Intrinsic::ppc_qpx_qvlfiwz: 14581 case Intrinsic::ppc_altivec_lvx: 14582 case Intrinsic::ppc_altivec_lvxl: 14583 case Intrinsic::ppc_altivec_lvebx: 14584 case Intrinsic::ppc_altivec_lvehx: 14585 case Intrinsic::ppc_altivec_lvewx: 14586 case Intrinsic::ppc_vsx_lxvd2x: 14587 case Intrinsic::ppc_vsx_lxvw4x: { 14588 EVT VT; 14589 switch (Intrinsic) { 14590 case Intrinsic::ppc_altivec_lvebx: 14591 VT = MVT::i8; 14592 break; 14593 case Intrinsic::ppc_altivec_lvehx: 14594 VT = MVT::i16; 14595 break; 14596 case Intrinsic::ppc_altivec_lvewx: 14597 VT = MVT::i32; 14598 break; 14599 case Intrinsic::ppc_vsx_lxvd2x: 14600 VT = MVT::v2f64; 14601 break; 14602 case Intrinsic::ppc_qpx_qvlfd: 14603 VT = MVT::v4f64; 14604 break; 14605 case Intrinsic::ppc_qpx_qvlfs: 14606 VT = MVT::v4f32; 14607 break; 14608 case Intrinsic::ppc_qpx_qvlfcd: 14609 VT = MVT::v2f64; 14610 break; 14611 case Intrinsic::ppc_qpx_qvlfcs: 14612 VT = MVT::v2f32; 14613 break; 14614 default: 14615 VT = MVT::v4i32; 14616 break; 14617 } 14618 14619 Info.opc = ISD::INTRINSIC_W_CHAIN; 14620 Info.memVT = VT; 14621 Info.ptrVal = I.getArgOperand(0); 14622 Info.offset = -VT.getStoreSize()+1; 14623 Info.size = 2*VT.getStoreSize()-1; 14624 Info.align = Align::None(); 14625 Info.flags = MachineMemOperand::MOLoad; 14626 return true; 14627 } 14628 case Intrinsic::ppc_qpx_qvlfda: 14629 case Intrinsic::ppc_qpx_qvlfsa: 14630 case Intrinsic::ppc_qpx_qvlfcda: 14631 case Intrinsic::ppc_qpx_qvlfcsa: 14632 case Intrinsic::ppc_qpx_qvlfiwaa: 14633 case Intrinsic::ppc_qpx_qvlfiwza: { 14634 EVT VT; 14635 switch (Intrinsic) { 14636 case Intrinsic::ppc_qpx_qvlfda: 14637 VT = MVT::v4f64; 14638 break; 14639 case Intrinsic::ppc_qpx_qvlfsa: 14640 VT = MVT::v4f32; 14641 break; 14642 case Intrinsic::ppc_qpx_qvlfcda: 14643 VT = MVT::v2f64; 14644 break; 14645 case Intrinsic::ppc_qpx_qvlfcsa: 14646 VT = MVT::v2f32; 14647 break; 14648 default: 14649 VT = MVT::v4i32; 14650 break; 14651 } 14652 14653 Info.opc = ISD::INTRINSIC_W_CHAIN; 14654 Info.memVT = VT; 14655 Info.ptrVal = I.getArgOperand(0); 14656 Info.offset = 0; 14657 Info.size = VT.getStoreSize(); 14658 Info.align = Align::None(); 14659 Info.flags = MachineMemOperand::MOLoad; 14660 return true; 14661 } 14662 case Intrinsic::ppc_qpx_qvstfd: 14663 case Intrinsic::ppc_qpx_qvstfs: 14664 case Intrinsic::ppc_qpx_qvstfcd: 14665 case Intrinsic::ppc_qpx_qvstfcs: 14666 case Intrinsic::ppc_qpx_qvstfiw: 14667 case Intrinsic::ppc_altivec_stvx: 14668 case Intrinsic::ppc_altivec_stvxl: 14669 case Intrinsic::ppc_altivec_stvebx: 14670 case Intrinsic::ppc_altivec_stvehx: 14671 case Intrinsic::ppc_altivec_stvewx: 14672 case Intrinsic::ppc_vsx_stxvd2x: 14673 case Intrinsic::ppc_vsx_stxvw4x: { 14674 EVT VT; 14675 switch (Intrinsic) { 14676 case Intrinsic::ppc_altivec_stvebx: 14677 VT = MVT::i8; 14678 break; 14679 case Intrinsic::ppc_altivec_stvehx: 14680 VT = MVT::i16; 14681 break; 14682 case Intrinsic::ppc_altivec_stvewx: 14683 VT = MVT::i32; 14684 break; 14685 case Intrinsic::ppc_vsx_stxvd2x: 14686 VT = MVT::v2f64; 14687 break; 14688 case Intrinsic::ppc_qpx_qvstfd: 14689 VT = MVT::v4f64; 14690 break; 14691 case Intrinsic::ppc_qpx_qvstfs: 14692 VT = MVT::v4f32; 14693 break; 14694 case Intrinsic::ppc_qpx_qvstfcd: 14695 VT = MVT::v2f64; 14696 break; 14697 case Intrinsic::ppc_qpx_qvstfcs: 14698 VT = MVT::v2f32; 14699 break; 14700 default: 14701 VT = MVT::v4i32; 14702 break; 14703 } 14704 14705 Info.opc = ISD::INTRINSIC_VOID; 14706 Info.memVT = VT; 14707 Info.ptrVal = I.getArgOperand(1); 14708 Info.offset = -VT.getStoreSize()+1; 14709 Info.size = 2*VT.getStoreSize()-1; 14710 Info.align = Align::None(); 14711 Info.flags = MachineMemOperand::MOStore; 14712 return true; 14713 } 14714 case Intrinsic::ppc_qpx_qvstfda: 14715 case Intrinsic::ppc_qpx_qvstfsa: 14716 case Intrinsic::ppc_qpx_qvstfcda: 14717 case Intrinsic::ppc_qpx_qvstfcsa: 14718 case Intrinsic::ppc_qpx_qvstfiwa: { 14719 EVT VT; 14720 switch (Intrinsic) { 14721 case Intrinsic::ppc_qpx_qvstfda: 14722 VT = MVT::v4f64; 14723 break; 14724 case Intrinsic::ppc_qpx_qvstfsa: 14725 VT = MVT::v4f32; 14726 break; 14727 case Intrinsic::ppc_qpx_qvstfcda: 14728 VT = MVT::v2f64; 14729 break; 14730 case Intrinsic::ppc_qpx_qvstfcsa: 14731 VT = MVT::v2f32; 14732 break; 14733 default: 14734 VT = MVT::v4i32; 14735 break; 14736 } 14737 14738 Info.opc = ISD::INTRINSIC_VOID; 14739 Info.memVT = VT; 14740 Info.ptrVal = I.getArgOperand(1); 14741 Info.offset = 0; 14742 Info.size = VT.getStoreSize(); 14743 Info.align = Align::None(); 14744 Info.flags = MachineMemOperand::MOStore; 14745 return true; 14746 } 14747 default: 14748 break; 14749 } 14750 14751 return false; 14752 } 14753 14754 /// getOptimalMemOpType - Returns the target specific optimal type for load 14755 /// and store operations as a result of memset, memcpy, and memmove 14756 /// lowering. If DstAlign is zero that means it's safe to destination 14757 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14758 /// means there isn't a need to check it against alignment requirement, 14759 /// probably because the source does not need to be loaded. If 'IsMemset' is 14760 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14761 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14762 /// source is constant so it does not need to be loaded. 14763 /// It returns EVT::Other if the type should be determined using generic 14764 /// target-independent logic. 14765 EVT PPCTargetLowering::getOptimalMemOpType( 14766 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14767 bool ZeroMemset, bool MemcpyStrSrc, 14768 const AttributeList &FuncAttributes) const { 14769 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14770 // When expanding a memset, require at least two QPX instructions to cover 14771 // the cost of loading the value to be stored from the constant pool. 14772 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14773 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14774 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14775 return MVT::v4f64; 14776 } 14777 14778 // We should use Altivec/VSX loads and stores when available. For unaligned 14779 // addresses, unaligned VSX loads are only fast starting with the P8. 14780 if (Subtarget.hasAltivec() && Size >= 16 && 14781 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14782 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14783 return MVT::v4i32; 14784 } 14785 14786 if (Subtarget.isPPC64()) { 14787 return MVT::i64; 14788 } 14789 14790 return MVT::i32; 14791 } 14792 14793 /// Returns true if it is beneficial to convert a load of a constant 14794 /// to just the constant itself. 14795 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14796 Type *Ty) const { 14797 assert(Ty->isIntegerTy()); 14798 14799 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14800 return !(BitSize == 0 || BitSize > 64); 14801 } 14802 14803 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14804 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14805 return false; 14806 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14807 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14808 return NumBits1 == 64 && NumBits2 == 32; 14809 } 14810 14811 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14812 if (!VT1.isInteger() || !VT2.isInteger()) 14813 return false; 14814 unsigned NumBits1 = VT1.getSizeInBits(); 14815 unsigned NumBits2 = VT2.getSizeInBits(); 14816 return NumBits1 == 64 && NumBits2 == 32; 14817 } 14818 14819 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14820 // Generally speaking, zexts are not free, but they are free when they can be 14821 // folded with other operations. 14822 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14823 EVT MemVT = LD->getMemoryVT(); 14824 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14825 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14826 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14827 LD->getExtensionType() == ISD::ZEXTLOAD)) 14828 return true; 14829 } 14830 14831 // FIXME: Add other cases... 14832 // - 32-bit shifts with a zext to i64 14833 // - zext after ctlz, bswap, etc. 14834 // - zext after and by a constant mask 14835 14836 return TargetLowering::isZExtFree(Val, VT2); 14837 } 14838 14839 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14840 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14841 "invalid fpext types"); 14842 // Extending to float128 is not free. 14843 if (DestVT == MVT::f128) 14844 return false; 14845 return true; 14846 } 14847 14848 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14849 return isInt<16>(Imm) || isUInt<16>(Imm); 14850 } 14851 14852 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14853 return isInt<16>(Imm) || isUInt<16>(Imm); 14854 } 14855 14856 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14857 unsigned, 14858 unsigned, 14859 MachineMemOperand::Flags, 14860 bool *Fast) const { 14861 if (DisablePPCUnaligned) 14862 return false; 14863 14864 // PowerPC supports unaligned memory access for simple non-vector types. 14865 // Although accessing unaligned addresses is not as efficient as accessing 14866 // aligned addresses, it is generally more efficient than manual expansion, 14867 // and generally only traps for software emulation when crossing page 14868 // boundaries. 14869 14870 if (!VT.isSimple()) 14871 return false; 14872 14873 if (VT.getSimpleVT().isVector()) { 14874 if (Subtarget.hasVSX()) { 14875 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14876 VT != MVT::v4f32 && VT != MVT::v4i32) 14877 return false; 14878 } else { 14879 return false; 14880 } 14881 } 14882 14883 if (VT == MVT::ppcf128) 14884 return false; 14885 14886 if (Fast) 14887 *Fast = true; 14888 14889 return true; 14890 } 14891 14892 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14893 VT = VT.getScalarType(); 14894 14895 if (!VT.isSimple()) 14896 return false; 14897 14898 switch (VT.getSimpleVT().SimpleTy) { 14899 case MVT::f32: 14900 case MVT::f64: 14901 return true; 14902 case MVT::f128: 14903 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14904 default: 14905 break; 14906 } 14907 14908 return false; 14909 } 14910 14911 const MCPhysReg * 14912 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14913 // LR is a callee-save register, but we must treat it as clobbered by any call 14914 // site. Hence we include LR in the scratch registers, which are in turn added 14915 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14916 // to CTR, which is used by any indirect call. 14917 static const MCPhysReg ScratchRegs[] = { 14918 PPC::X12, PPC::LR8, PPC::CTR8, 0 14919 }; 14920 14921 return ScratchRegs; 14922 } 14923 14924 unsigned PPCTargetLowering::getExceptionPointerRegister( 14925 const Constant *PersonalityFn) const { 14926 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14927 } 14928 14929 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14930 const Constant *PersonalityFn) const { 14931 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14932 } 14933 14934 bool 14935 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14936 EVT VT , unsigned DefinedValues) const { 14937 if (VT == MVT::v2i64) 14938 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14939 14940 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14941 return true; 14942 14943 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14944 } 14945 14946 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14947 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14948 return TargetLowering::getSchedulingPreference(N); 14949 14950 return Sched::ILP; 14951 } 14952 14953 // Create a fast isel object. 14954 FastISel * 14955 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14956 const TargetLibraryInfo *LibInfo) const { 14957 return PPC::createFastISel(FuncInfo, LibInfo); 14958 } 14959 14960 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14961 if (Subtarget.isDarwinABI()) return; 14962 if (!Subtarget.isPPC64()) return; 14963 14964 // Update IsSplitCSR in PPCFunctionInfo 14965 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14966 PFI->setIsSplitCSR(true); 14967 } 14968 14969 void PPCTargetLowering::insertCopiesSplitCSR( 14970 MachineBasicBlock *Entry, 14971 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14972 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14973 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14974 if (!IStart) 14975 return; 14976 14977 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14978 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14979 MachineBasicBlock::iterator MBBI = Entry->begin(); 14980 for (const MCPhysReg *I = IStart; *I; ++I) { 14981 const TargetRegisterClass *RC = nullptr; 14982 if (PPC::G8RCRegClass.contains(*I)) 14983 RC = &PPC::G8RCRegClass; 14984 else if (PPC::F8RCRegClass.contains(*I)) 14985 RC = &PPC::F8RCRegClass; 14986 else if (PPC::CRRCRegClass.contains(*I)) 14987 RC = &PPC::CRRCRegClass; 14988 else if (PPC::VRRCRegClass.contains(*I)) 14989 RC = &PPC::VRRCRegClass; 14990 else 14991 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14992 14993 Register NewVR = MRI->createVirtualRegister(RC); 14994 // Create copy from CSR to a virtual register. 14995 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14996 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14997 // nounwind. If we want to generalize this later, we may need to emit 14998 // CFI pseudo-instructions. 14999 assert(Entry->getParent()->getFunction().hasFnAttribute( 15000 Attribute::NoUnwind) && 15001 "Function should be nounwind in insertCopiesSplitCSR!"); 15002 Entry->addLiveIn(*I); 15003 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15004 .addReg(*I); 15005 15006 // Insert the copy-back instructions right before the terminator. 15007 for (auto *Exit : Exits) 15008 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15009 TII->get(TargetOpcode::COPY), *I) 15010 .addReg(NewVR); 15011 } 15012 } 15013 15014 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15015 bool PPCTargetLowering::useLoadStackGuardNode() const { 15016 if (!Subtarget.isTargetLinux()) 15017 return TargetLowering::useLoadStackGuardNode(); 15018 return true; 15019 } 15020 15021 // Override to disable global variable loading on Linux. 15022 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15023 if (!Subtarget.isTargetLinux()) 15024 return TargetLowering::insertSSPDeclarations(M); 15025 } 15026 15027 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15028 bool ForCodeSize) const { 15029 if (!VT.isSimple() || !Subtarget.hasVSX()) 15030 return false; 15031 15032 switch(VT.getSimpleVT().SimpleTy) { 15033 default: 15034 // For FP types that are currently not supported by PPC backend, return 15035 // false. Examples: f16, f80. 15036 return false; 15037 case MVT::f32: 15038 case MVT::f64: 15039 case MVT::ppcf128: 15040 return Imm.isPosZero(); 15041 } 15042 } 15043 15044 // For vector shift operation op, fold 15045 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15046 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15047 SelectionDAG &DAG) { 15048 SDValue N0 = N->getOperand(0); 15049 SDValue N1 = N->getOperand(1); 15050 EVT VT = N0.getValueType(); 15051 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15052 unsigned Opcode = N->getOpcode(); 15053 unsigned TargetOpcode; 15054 15055 switch (Opcode) { 15056 default: 15057 llvm_unreachable("Unexpected shift operation"); 15058 case ISD::SHL: 15059 TargetOpcode = PPCISD::SHL; 15060 break; 15061 case ISD::SRL: 15062 TargetOpcode = PPCISD::SRL; 15063 break; 15064 case ISD::SRA: 15065 TargetOpcode = PPCISD::SRA; 15066 break; 15067 } 15068 15069 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15070 N1->getOpcode() == ISD::AND) 15071 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15072 if (Mask->getZExtValue() == OpSizeInBits - 1) 15073 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15074 15075 return SDValue(); 15076 } 15077 15078 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15079 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15080 return Value; 15081 15082 SDValue N0 = N->getOperand(0); 15083 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15084 if (!Subtarget.isISA3_0() || 15085 N0.getOpcode() != ISD::SIGN_EXTEND || 15086 N0.getOperand(0).getValueType() != MVT::i32 || 15087 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15088 return SDValue(); 15089 15090 // We can't save an operation here if the value is already extended, and 15091 // the existing shift is easier to combine. 15092 SDValue ExtsSrc = N0.getOperand(0); 15093 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15094 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15095 return SDValue(); 15096 15097 SDLoc DL(N0); 15098 SDValue ShiftBy = SDValue(CN1, 0); 15099 // We want the shift amount to be i32 on the extswli, but the shift could 15100 // have an i64. 15101 if (ShiftBy.getValueType() == MVT::i64) 15102 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15103 15104 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15105 ShiftBy); 15106 } 15107 15108 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15109 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15110 return Value; 15111 15112 return SDValue(); 15113 } 15114 15115 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15116 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15117 return Value; 15118 15119 return SDValue(); 15120 } 15121 15122 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15123 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15124 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15125 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15126 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15127 const PPCSubtarget &Subtarget) { 15128 if (!Subtarget.isPPC64()) 15129 return SDValue(); 15130 15131 SDValue LHS = N->getOperand(0); 15132 SDValue RHS = N->getOperand(1); 15133 15134 auto isZextOfCompareWithConstant = [](SDValue Op) { 15135 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15136 Op.getValueType() != MVT::i64) 15137 return false; 15138 15139 SDValue Cmp = Op.getOperand(0); 15140 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15141 Cmp.getOperand(0).getValueType() != MVT::i64) 15142 return false; 15143 15144 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15145 int64_t NegConstant = 0 - Constant->getSExtValue(); 15146 // Due to the limitations of the addi instruction, 15147 // -C is required to be [-32768, 32767]. 15148 return isInt<16>(NegConstant); 15149 } 15150 15151 return false; 15152 }; 15153 15154 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15155 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15156 15157 // If there is a pattern, canonicalize a zext operand to the RHS. 15158 if (LHSHasPattern && !RHSHasPattern) 15159 std::swap(LHS, RHS); 15160 else if (!LHSHasPattern && !RHSHasPattern) 15161 return SDValue(); 15162 15163 SDLoc DL(N); 15164 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15165 SDValue Cmp = RHS.getOperand(0); 15166 SDValue Z = Cmp.getOperand(0); 15167 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15168 15169 assert(Constant && "Constant Should not be a null pointer."); 15170 int64_t NegConstant = 0 - Constant->getSExtValue(); 15171 15172 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15173 default: break; 15174 case ISD::SETNE: { 15175 // when C == 0 15176 // --> addze X, (addic Z, -1).carry 15177 // / 15178 // add X, (zext(setne Z, C))-- 15179 // \ when -32768 <= -C <= 32767 && C != 0 15180 // --> addze X, (addic (addi Z, -C), -1).carry 15181 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15182 DAG.getConstant(NegConstant, DL, MVT::i64)); 15183 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15184 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15185 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15186 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15187 SDValue(Addc.getNode(), 1)); 15188 } 15189 case ISD::SETEQ: { 15190 // when C == 0 15191 // --> addze X, (subfic Z, 0).carry 15192 // / 15193 // add X, (zext(sete Z, C))-- 15194 // \ when -32768 <= -C <= 32767 && C != 0 15195 // --> addze X, (subfic (addi Z, -C), 0).carry 15196 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15197 DAG.getConstant(NegConstant, DL, MVT::i64)); 15198 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15199 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15200 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15201 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15202 SDValue(Subc.getNode(), 1)); 15203 } 15204 } 15205 15206 return SDValue(); 15207 } 15208 15209 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15210 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15211 return Value; 15212 15213 return SDValue(); 15214 } 15215 15216 // Detect TRUNCATE operations on bitcasts of float128 values. 15217 // What we are looking for here is the situtation where we extract a subset 15218 // of bits from a 128 bit float. 15219 // This can be of two forms: 15220 // 1) BITCAST of f128 feeding TRUNCATE 15221 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15222 // The reason this is required is because we do not have a legal i128 type 15223 // and so we want to prevent having to store the f128 and then reload part 15224 // of it. 15225 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15226 DAGCombinerInfo &DCI) const { 15227 // If we are using CRBits then try that first. 15228 if (Subtarget.useCRBits()) { 15229 // Check if CRBits did anything and return that if it did. 15230 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15231 return CRTruncValue; 15232 } 15233 15234 SDLoc dl(N); 15235 SDValue Op0 = N->getOperand(0); 15236 15237 // Looking for a truncate of i128 to i64. 15238 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15239 return SDValue(); 15240 15241 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15242 15243 // SRL feeding TRUNCATE. 15244 if (Op0.getOpcode() == ISD::SRL) { 15245 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15246 // The right shift has to be by 64 bits. 15247 if (!ConstNode || ConstNode->getZExtValue() != 64) 15248 return SDValue(); 15249 15250 // Switch the element number to extract. 15251 EltToExtract = EltToExtract ? 0 : 1; 15252 // Update Op0 past the SRL. 15253 Op0 = Op0.getOperand(0); 15254 } 15255 15256 // BITCAST feeding a TRUNCATE possibly via SRL. 15257 if (Op0.getOpcode() == ISD::BITCAST && 15258 Op0.getValueType() == MVT::i128 && 15259 Op0.getOperand(0).getValueType() == MVT::f128) { 15260 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15261 return DCI.DAG.getNode( 15262 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15263 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15264 } 15265 return SDValue(); 15266 } 15267 15268 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15269 SelectionDAG &DAG = DCI.DAG; 15270 15271 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15272 if (!ConstOpOrElement) 15273 return SDValue(); 15274 15275 // An imul is usually smaller than the alternative sequence for legal type. 15276 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15277 isOperationLegal(ISD::MUL, N->getValueType(0))) 15278 return SDValue(); 15279 15280 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15281 switch (this->Subtarget.getDarwinDirective()) { 15282 default: 15283 // TODO: enhance the condition for subtarget before pwr8 15284 return false; 15285 case PPC::DIR_PWR8: 15286 // type mul add shl 15287 // scalar 4 1 1 15288 // vector 7 2 2 15289 return true; 15290 case PPC::DIR_PWR9: 15291 // type mul add shl 15292 // scalar 5 2 2 15293 // vector 7 2 2 15294 15295 // The cycle RATIO of related operations are showed as a table above. 15296 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15297 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15298 // are 4, it is always profitable; but for 3 instrs patterns 15299 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15300 // So we should only do it for vector type. 15301 return IsAddOne && IsNeg ? VT.isVector() : true; 15302 } 15303 }; 15304 15305 EVT VT = N->getValueType(0); 15306 SDLoc DL(N); 15307 15308 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15309 bool IsNeg = MulAmt.isNegative(); 15310 APInt MulAmtAbs = MulAmt.abs(); 15311 15312 if ((MulAmtAbs - 1).isPowerOf2()) { 15313 // (mul x, 2^N + 1) => (add (shl x, N), x) 15314 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15315 15316 if (!IsProfitable(IsNeg, true, VT)) 15317 return SDValue(); 15318 15319 SDValue Op0 = N->getOperand(0); 15320 SDValue Op1 = 15321 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15322 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15323 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15324 15325 if (!IsNeg) 15326 return Res; 15327 15328 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15329 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15330 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15331 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15332 15333 if (!IsProfitable(IsNeg, false, VT)) 15334 return SDValue(); 15335 15336 SDValue Op0 = N->getOperand(0); 15337 SDValue Op1 = 15338 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15339 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15340 15341 if (!IsNeg) 15342 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15343 else 15344 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15345 15346 } else { 15347 return SDValue(); 15348 } 15349 } 15350 15351 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15352 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15353 if (!Subtarget.is64BitELFABI()) 15354 return false; 15355 15356 // If not a tail call then no need to proceed. 15357 if (!CI->isTailCall()) 15358 return false; 15359 15360 // If tail calls are disabled for the caller then we are done. 15361 const Function *Caller = CI->getParent()->getParent(); 15362 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15363 if (Attr.getValueAsString() == "true") 15364 return false; 15365 15366 // If sibling calls have been disabled and tail-calls aren't guaranteed 15367 // there is no reason to duplicate. 15368 auto &TM = getTargetMachine(); 15369 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15370 return false; 15371 15372 // Can't tail call a function called indirectly, or if it has variadic args. 15373 const Function *Callee = CI->getCalledFunction(); 15374 if (!Callee || Callee->isVarArg()) 15375 return false; 15376 15377 // Make sure the callee and caller calling conventions are eligible for tco. 15378 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15379 CI->getCallingConv())) 15380 return false; 15381 15382 // If the function is local then we have a good chance at tail-calling it 15383 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15384 } 15385 15386 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15387 if (!Subtarget.hasVSX()) 15388 return false; 15389 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15390 return true; 15391 return VT == MVT::f32 || VT == MVT::f64 || 15392 VT == MVT::v4f32 || VT == MVT::v2f64; 15393 } 15394 15395 bool PPCTargetLowering:: 15396 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15397 const Value *Mask = AndI.getOperand(1); 15398 // If the mask is suitable for andi. or andis. we should sink the and. 15399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15400 // Can't handle constants wider than 64-bits. 15401 if (CI->getBitWidth() > 64) 15402 return false; 15403 int64_t ConstVal = CI->getZExtValue(); 15404 return isUInt<16>(ConstVal) || 15405 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15406 } 15407 15408 // For non-constant masks, we can always use the record-form and. 15409 return true; 15410 } 15411 15412 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15413 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15414 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15415 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15416 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15417 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15418 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15419 assert(Subtarget.hasP9Altivec() && 15420 "Only combine this when P9 altivec supported!"); 15421 EVT VT = N->getValueType(0); 15422 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15423 return SDValue(); 15424 15425 SelectionDAG &DAG = DCI.DAG; 15426 SDLoc dl(N); 15427 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15428 // Even for signed integers, if it's known to be positive (as signed 15429 // integer) due to zero-extended inputs. 15430 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15431 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15432 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15433 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15434 (SubOpcd1 == ISD::ZERO_EXTEND || 15435 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15436 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15437 N->getOperand(0)->getOperand(0), 15438 N->getOperand(0)->getOperand(1), 15439 DAG.getTargetConstant(0, dl, MVT::i32)); 15440 } 15441 15442 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15443 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15444 N->getOperand(0).hasOneUse()) { 15445 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15446 N->getOperand(0)->getOperand(0), 15447 N->getOperand(0)->getOperand(1), 15448 DAG.getTargetConstant(1, dl, MVT::i32)); 15449 } 15450 } 15451 15452 return SDValue(); 15453 } 15454 15455 // For type v4i32/v8ii16/v16i8, transform 15456 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15457 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15458 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15459 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15460 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15461 DAGCombinerInfo &DCI) const { 15462 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15463 assert(Subtarget.hasP9Altivec() && 15464 "Only combine this when P9 altivec supported!"); 15465 15466 SelectionDAG &DAG = DCI.DAG; 15467 SDLoc dl(N); 15468 SDValue Cond = N->getOperand(0); 15469 SDValue TrueOpnd = N->getOperand(1); 15470 SDValue FalseOpnd = N->getOperand(2); 15471 EVT VT = N->getOperand(1).getValueType(); 15472 15473 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15474 FalseOpnd.getOpcode() != ISD::SUB) 15475 return SDValue(); 15476 15477 // ABSD only available for type v4i32/v8i16/v16i8 15478 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15479 return SDValue(); 15480 15481 // At least to save one more dependent computation 15482 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15483 return SDValue(); 15484 15485 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15486 15487 // Can only handle unsigned comparison here 15488 switch (CC) { 15489 default: 15490 return SDValue(); 15491 case ISD::SETUGT: 15492 case ISD::SETUGE: 15493 break; 15494 case ISD::SETULT: 15495 case ISD::SETULE: 15496 std::swap(TrueOpnd, FalseOpnd); 15497 break; 15498 } 15499 15500 SDValue CmpOpnd1 = Cond.getOperand(0); 15501 SDValue CmpOpnd2 = Cond.getOperand(1); 15502 15503 // SETCC CmpOpnd1 CmpOpnd2 cond 15504 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15505 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15506 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15507 TrueOpnd.getOperand(1) == CmpOpnd2 && 15508 FalseOpnd.getOperand(0) == CmpOpnd2 && 15509 FalseOpnd.getOperand(1) == CmpOpnd1) { 15510 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15511 CmpOpnd1, CmpOpnd2, 15512 DAG.getTargetConstant(0, dl, MVT::i32)); 15513 } 15514 15515 return SDValue(); 15516 } 15517